
1 
 

Sea urchin chronicles. The effect of oxygen super-saturation and marine polluted sediments 

from Bagnoli-Coroglio Bay on different life stages of the sea urchin Paracentrotus lividus  

 

 

Antonia Chiarore1*, Luigi Musco2, Iacopo Bertocci2,3, Alessandra Gallo4, Antonio 

Cannavacciuolo1, Mirko Mutalipassi5, Davide Caramiello6, Folco Giomi7, Marco Fusi8, Roberto 

Danovaro9, Marco Munari1* 

 

1Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton 

Dohrn, Punta San Pietro, 80077, Ischia (Naples), Italy 

2Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 

80121, Naples, Italy 

3Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126 Pisa, Italy 

4Department of Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa 

Comunale, 80121, Naples, Italy 

5Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 

Punta San Pietro, 80077, Ischia (Naples), Italy 

6Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, 

Naples, Italy 

7Padova, via Maniciati 6, 35129, Italy 

8King Abdullah University of Science and Technology (KAUST), Red Sea Research Center 

(RSRC), Thuwal 23955-6900, Saudi Arabia 

9Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy 

 

* Authors to whom correspondence should be addressed: antonia.chiarore@szn.it, 

marco.munari@szn.it, Tel.: +39 0815833512. 

 

 

Keywords development; marine pollution; sediment; anthropogenic impact; oxygenation; water 

turbulence 

 



2 
 

Abstract 

In marinas and harbours the accumulation of pollutants in sediments, combined with poor 

exchange of water with the open sea, poses a major environmental threat. The presence of 

photosynthetic organisms and the related oxygen production, however, may alleviate the negative 

effects of environmental contamination on heterotrophic organisms, enhancing their physiological 

defences. Furthermore, possible transgenerational buffer effects may increase the ability of natural 

populations to face environmental stress. Here we tested the occurrence of transgenerational 

effects on larvae of the sea urchin Paracentrotus lividus, whose parents were exposed during the 

gametogenesis to contaminated sediments, two temporal patterns of water re-suspension events 

and normal- (90%) vs. super-saturated (200%) levels of O2. The study site was Bagnoli-Coroglio  

(Gulf of Naples, South Tyrrhenian Sea), a historically polluted brownfield and Site of National 

Interest for which environmental restoration options are currently under exploration. Larvae from 

different adult populations were significantly, although not linearly, affected by the interaction of 

all factors to which parents were exposed, at both 24h and 48h post fertilization. Specifically, the 

exposure of larvae to elutriates from contaminated sediments determined a developmental delay, 

a reduction in size and an increased percentage of abnormalities in all larval populations 

independently of their parental exposure. On the contrary, larvae coming from parents exposed to 

contaminated sediments, when reared in clean filtered sea water, succeed in developing until the 

echinopluteus stage after 48h, with size and abundance comparable to those of larvae from control 

parents. Pre-exposure of parents to contaminated sediments did not successfully buffer the 

negative effects of elutriates on their offspring, and no positive effects of ‘super-saturated’ levels 

of O2 in response to contaminants were observed, suggesting that the Bagnoli-Coroglio area is 

currently not suitable for the re-stocking or re-introduction of this species. 

 

1 Introduction 

Human activities have heavily modified marine environments, especially in coastal areas where 

increasing urbanization and associated activities are responsible for the release of a range of 

contaminants that ultimately accumulate in marine sediments and contribute to habitat alteration 

(Agardy et al. 2005; Arizzi Novelli et al. 2006; Bertocci et al. 2019; Vitousek et al. 1997). Disused 

industrial plants are often significant sources of a wide range of chemicals that crucially threaten 
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both environmental and human health. Furthermore, inshore areas are particularly vulnerable to 

ongoing climate change, including the current and predicted increase in the intensity and frequency 

of severe storms and associated water turbulence, which can promote the resuspension of polluted 

sediments and availability of toxic chemicals in the water column and nearby habitats (Neumann 

et al. 2015; Spalding et al. 2014). The Bagnoli-Coroglio brownfield site (Southern Tyrrhenian Sea, 

Italy) is an infamous example of a heavily polluted marine area. All industrial activity at the site 

ceased in the mid 1990s, after almost a century of concrete, steel, chemical and asbestos production 

resulting in heavy contamination of both the soil and marine sediments. In particular, high 

concentrations of heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated 

biphenyls (PCBs) occur in this area (Albanese et al. 2010; Arienzo et al. 2017; De Vivo and Lima 

2008; Trifuoggi et al. 2017). Consequently, in 2014 Bagnoli-Coroglio bay was designated as a Site 

of National Interest (SNI) requiring environmental rehabilitation.  

Several studies have found that exposure to polluted sediments can have severe consequences on 

marine organisms, including changes in biodiversity and ecosystem functioning (Bertocci et al. 

2019; Martínez-Lladó et al. 2007; Ryu et al. 2011). These effects may be exacerbated in 

combination with those of global climate change, such as warming and ocean acidification, which 

can further contribute to dramatically alter the development of marine organisms (Bressan et al. 

2014; Matozzo et al. 2012; 2013; Munari et al. 2016; 2018; 2019; Range et al. 2014). Additional 

concerns arise from the current and predicted modification of patterns of intensity and temporal 

occurrence of extreme weather conditions (Aumann et al. 2008; Burge et al. 2014; Easterling et 

al. 2000; Trapp et al. 2007; Wolff et al. 2016), which can result in more severe and frequent 

exposure of marine organisms to the re-suspension of chemical substances accumulated in 

sediments. Thus, it is pivotal to assess the combined effects of sediment pollution and changing 

patterns of water turbulence on marine organisms, to better understand and predict wide 

anthropogenic impacts on marine systems and to effectively direct environmental restoration 

plans.  

The effects of environmental chemical contamination can be potentially buffered by oxygen 

release in coastal habitats, due to the activity of photosynthetic organisms that may enhance animal 

aerobic performance under stressful conditions, as reported for several marine taxa in response to 

ocean warming (Giomi et al. 2019). It must also be considered that, under natural conditions, 

marine organisms are typically adapted to respond to environmental changes within a tolerance 
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range set by internal physiological regulation (Pörtner et al. 2004; Zhang et al. 2012). While the 

maintenance of homeostasis allows acclimatization, it may result in a reallocation of resources 

away from growth and reproduction. Furthermore, it is widely recognized that early life stages of 

many organisms are more sensitive than adults to environmental stress (Byrne 2012; Moran 1994), 

representing a possible bottle-neck for natural populations. However, negative effects on early life 

stages imposed by environmental perturbations can be mitigated by anticipatory parental effects 

(Agrawal et al. 1999; Marshall and Uller 2007; Thor and Dupont 2015). This type of heritable 

plasticity, being a source of phenotypic individual variation within populations, has important 

ecological and evolutionary consequences (Uller 2008), and may allow populations to adapt to 

new environmental conditions (Miller et al. 2012; Parker et al. 2012; Reed et al. 2011).  

In this study we decided to use the  purple sea urchin Paracentrotus lividus (Lamarck, 1816) since 

it is widely used as a model species in many ecotoxicological studies, being considered a good 

bioindicator of environmental change (Bellas 2008; Bonaventura et al. 2011; Bošnjak et al. 2011; 

Dinnel et al. 1988; Kobayashi and Okamura 2004; Matranga et al. 2000; Morale et al. 1998; 

Pinsino et al. 2010; Sconzo et al. 1995; Zito et al. 2005). Furthermore, the species has a key role 

in shaping benthic marine communities in the Mediterranean Sea and Atlantic Ocean (Guidetti et 

al. 2003; Guidetti 2004; Sala and Zabala 1996), where it also represents an important commercial 

resource (Bertocci et al. 2014). P. lividus is a gonochoric species lacking sexual dimorphism 

(Gianguzza et al. 2009). The reproductive cycle of P. lividus is annual, with three main phases: the 

growing phase (late autumn and winter) when gonads accumulate reserve material; the maturation 

phase (spring and early summer) in which gametogenesis and spawning take place; and the 

spent/regenerating phase in which relict gametes are resorbed by the nutritive phagocytes (Spirlet 

et al. 1998). Here, we first exposed adult sea urchins during their gametogenesis phase to 

experimental combinations of two water turbulence patterns (‘aggregated’ vs. ‘spaced’ events of 

re-suspension of contaminated sediments) and two levels of dissolved oxygen (‘normal’ vs. ‘super-

saturated’), in order to simulate oxygen production by photosynthetic organisms, (Viaroli and 

Christian 2003). Larval populations were obtained from adults exposed to each of these 

combinations of factors and reared either in clean filtered sea water (FSW) or in the presence of 

elutriates from contaminated sediments. The aims were (i) to assess the simultaneous and potential 

interactive effects of patterns of turbulence associated with the resuspension of contaminated 

sediments and oxygen availability on larval development after the exposure of adults during 
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gametogenesis; (ii) to quantify the parental effect on offspring performance after the pre-exposure 

of adults to stressful conditions. 

  

2 Materials & Methods 

2.1 Study Site 

The study site was the coastal area of Bagnoli-Coroglio, an industrially contaminated region 

located in the South-Eastern part of the Pozzuoli Bay (Gulf of Naples – southern Tyrrhenian Sea, 

Figure 1), characterized by sandy and clay substrates protected by artificial rocky reef (Bertocci et 

al. 2019; Cocco et al. 1988; De Pippo et al. 1988). Industrial activity was ongoing in this area from 

1905 to 1990, predominantly in the form of steel production, asbestos manufacturing, concrete and 

chemicals production. In 1994, the Italian Government implemented a remediation plan for this 

brownfield site, which was classified as a SNI in 2000. Previous studies on the chemical 

composition of coastal marine sediments in the Bagnoli area highlighted heavy contamination by 

metals, PAHs and PCBs (Albanese et al. 2010; Arienzo et al. 2017; Trifuoggi et al. 2017). High 

sediment concentrations of heavy metals such as Cu, Fe, Hg, Mn, Ni, Pb and Zn, were reported by 

Romano et al. (2018), although they could also be related to local hydrothermal activity and other 

anthropogenic sources (De Vivo and Lima 2008). Environmental data as temperature, 

conductivity/salinity, dissolved oxygen and fluorescence profiles were collected during five 

cruises from February to October 2019 in seven stations within the Pozzuoli Bay, and results are 

shown in Margiotta et al. (2020).  

Analyses of the historical data on the benthic diversity in the Bagnoli-Coroglio site, reported the 

occurrence of the species Paracentrotus lividus in this area in the past (Gaglioti et al. 2020), 

however further studies are needed to assess the current state of the local P. lividus population.   
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Figure 1: Map of the Bagnoli-Coroglio study area. 

 

2.2 Field oxygen data collection  

To evaluate natural fluctuations in water oxygenation, dissolved oxygen was monitored by 

mooring an oxygen probe equipped with calibrated dissolved oxygen concentration (optical) 

sensors (MiniDOT sensors, PME, Vista, Ca, USA). The probe, with a logging frequency of five 

minutes, was deployed within a seagrass (Posidonia oceanica) meadow in an uncontaminated area 

in the Gulf of Naples (40°43'58"N 13°57'59"E; temperature 15.00±0.50°C, salinity 38.00±0.03 

psu), in order to reflect the expected conditions at the study site once the ecosystem has been 

successfully restored.  

 

2.3 Animal collection 

Two hundred adults P. lividus individuals were collected in March 2019 at San Pancrazio 

(40°42'15.0"N 013°57'22.3"E), Ischia Island (Gulf of Naples), at a maximum depth of 5 m with 

the authorization of the Marine Protected Area ‘Regno di Nettuno’. Animals were kept in a cool 

box after collection and in the laboratory prior to experimental procedures. P. lividus is not 

protected or endangered and all experimental procedures on animals were in compliance with the 

guidelines of the European Union (Directive 609/86).  
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2.4 Adult sea urchin rearing mesocosms 

‘Ad hoc’ mesocosms comprising twelve independent, closed recirculating tanks ( 50 liters each), 

filled with natural sea water, were set up in the Stazione Zoologica Anton Dohrn facility of Villa 

Comunale (Naples) for the maintenance of marine organisms. Each tank had an internal filter 

divided into three sequential compartments. The first compartment was filled with filtering wool 

and foam sponges, ensuring mechanical filtration by collecting particulate matter and debris. The 

second compartment housed SUBSTRATpro (Ehiem GmbH & Co. KG, Deizisau, Germany), a 

pearl-shaped sintered glass specifically designed for the colonization of aerobic chemoautotrophic 

bacteria belonging to genus Nitrosomonas, Nitrosococcus and Nitrospira (Schreier et al. 2010) as 

well as several ammonia-oxidizing archaea (Hatzenpichler 2012), to ensure biological filtration. 

The third compartment contained a Syncra Silent recirculating pump (pump flow rate 700 L/h, 

pump wattage 8 Watt; SICCE S.r.l, Pozzoleone, Italy) to ensure water recirculation in the internal 

filter. The sea water level was checked on a daily basis and manually adjusted to balance 

evaporation. Chemical-physical variables of both sea water and sediments are available in Ruocco 

et al. (2020).   

 

2.5 Adult sea urchin experimental design 

The bottom of eight tanks, randomly chosen of the twelve, was covered with approximately 5 

centimeters of sediment collected from a sampling station located within the Bagnoli-Coroglio 

area (40°48’25.9’’N, 014°09’33.2’’E; depth: 3.8 meters). The sediment used to cover the tanks 

came from the same sampling core, however before being used, it was uniformly mixed. Data 

regarding the composition and quantification of the contaminants within the sediment are 

described in Morroni et al. (2020). 

The remaining four tanks were maintained with sea water without sediment. Two of these tanks 

without sediment, and four of the tanks with sediment were randomly assigned to exposure to the 

‘spaced’ turbulence pattern (two events, 48h duration, separated by two weeks within one month 

of exposure). The remaining tanks were assigned to exposure to the ‘aggregated’ turbulence 

pattern (two events, 48h duration, separated by three days within one month of exposure). This 

allowed the manipulation of the temporal variance of turbulence events, controlling the total 

frequency and intensity of events established over the course of the experiment (Benedetti-Cecchi 
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2003; Benedetti-Cecchi et al. 2006; Bertocci et al. 2005). The application of water turbulence 

events in tanks without sediment allowed us to test potential effects of hydrodynamics, 

independently of the presence of sediments and associated chemical and physical effects. A 

detailed illustration of the mesocosm experimental design was provided by Ruocco et al. (2020). 

To produce water turbulence, and re-suspension of the sediment, an electric pump (flow rate 

4500L/h, power: 10 watt) was placed in each experimental tank. Duration and frequency of 

experimental re-suspension events were set up on the measures of the natural storm events in the 

study area. The environmental data such as wind speed, the wave height and period were collected 

daily from an oceanographic buoy within a monitoring program of the Stazione Zoologica Anton 

Dohrn as reported by Ruocco et al. (2020). Water and suspended particles were collected on the 

second day following each event of turbulence and analyzed for heavy metals and polycyclic 

aromatic hydrocarbons (PAHs) content. Chemical analyses were performed by Bioscience 

Research Center SRL (Orbetello, Italy). Details of the analyses are reported in Ruocco et al. 

(2020). 

Oxygen was provided by bubbling it into four tanks randomly chosen out of the eight tanks with 

sediment using an ACQ140 automatic control system (Aquatronica, Reggio Emilia, Italy) 

connected to submersed dissolved oxygen probes (Aquatronica, model ACQ310N-O2) via digital 

oxygen interfaces (Aquatronica, model ACQ210N-O2). In addition, in order to ensure a constant 

dissolved oxygen concentration, the automatic control system digitally controlled eight solenoid 

valves (Aquatronica, model ACQ421) connected to a 40-liter oxygen tank. Specifically, a value of 

90% of oxygen saturation served as reference while a value of 200% was chosen as representative 

of the daily super-saturation (Table 1, Figure 2). Ten adult sea urchins per tank (seven females and 

three males) were then exposed to each experimental condition for a month, during gonad 

development, under a 12h:12h light: dark photoperiod setting. Adults were daily checked for 

mortality and fed with ‘sea lettuce’, Ulva lactuca Linnaeus ad libitum. 
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Table 1: List of abbreviation of adult sea urchin experimental design 

ID Sediment O2 saturation Pattern of turbulence 

POP 1 NO 90% Aggregated 

POP 2 NO 90% Spaced 

POP 3 YES 90% Aggregated 

POP 4 YES 90% Spaced 

POP 5 YES 200% Aggregated 

POP 6 YES 200% Spaced 

 

 

 

Figure 2: Adult experimental design. See M&M section for details.  

 

2.6 Larval experimental design 

At the end of the exposure period, adults from each tank were weighed and the test diameter of 

each individual was measured. A minimum of three females and three males from each 

experimental condition (n = 6) were separated to constitute pools of gametes in order to establish 

six unique laboratory populations of embryos. Sperms were collected with a micropipette and kept 

dry on ice in a plastic tube until use. Eggs were collected in 500 mL beakers filled with 0.22 m 

FSW. Prior to use, egg and sperm quality and quantity were evaluated. Pools of eggs and sperms 

were established using the same number of gametes from each individual, in order to have the 

same contribution from every parent during fertilization. A constant sperm: egg ratio (1250:1) was 

used (Moschino and Marin 2002), and fertilization was checked after 30 minutes by observing the 

elevation of the jelly coat. Embryo populations were then maintained in 25 ml vials, three 

replicates for each experimental condition, for 48h of exposure at 22°C. To test parental effect in 

TURBULENCE
Aggregated Spaced

SedimentSediment

O2 O2
O2

O2

NO YES YESNO

90%

90%

90%

90%200% 200%

POP1 POP 5 POP 2POP 3 POP 4 POP 6
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response to the selected factors, offspring from each parental population were exposed to the 

conditions that parents experienced during gametogenesis. Embryos coming from parents exposed 

to sediments were reared in elutriates. Elutriates were prepared as reported by Gallo et al. (2020) 

from the same sediment core used in the adult tank. Specifically, POP 1 and POP 2 embryos were 

exposed to FSW at O2 90%-saturation level (FSW_90% O2), POP 3 and POP 4 to elutriate at O2 

90%-saturation level (ELU_90% O2), and POP 5 and POP 6 to elutriate at O2 200%-saturation 

level (ELU_200% O2). Furthermore, POP 1 and POP 2 embryos were transplanted into FSW at 

‘super-saturated’ O2 level (FSW_200% O2), into elutriates at ‘normal-saturated’ O2 level 

(ELU_90% O2) and elutriates at ‘‘super-saturated’’ O2 level (ELU_200% O2), while POP 3, 4, 5 

and 6 embryos were transplanted into FSW at ‘normal-saturated’ O2 level (FSW_90% O2). This 

approach has the potential to highlight: (a) specific effects of parental exposure on embryonic and 

larval development comparing larval populations reared in FSW; (b) selective pressure acting 

during gametogenesis and resulting in a better response of offspring from adults reared in stressful 

conditions to stress (in this case adults with the highest phenotypic plasticity are most likely to 

spawn and pass down their genotypes to the next generation).  

 

2.7 Larval developmental traits  

The effects of the three combined factors on larval growth were examined in two developmental 

stages (24h and 48h post-fertilization). Embryos at 24h and 48h post-fertilization (hereafter as hpf) 

were observed with an optical macroscope (Leica Z16 APO), equipped with a Leica DFC 300FX 

camera connected to a computer with the Leica LAS program (Leica Application Suite, Version 

4.5). A minimum of 100 embryos per replicate were photographed. Different developmental stages 

were distinguished to evaluate any delay after 24 and 48 hours of exposure, and their frequencies 

were calculated. Five main classes were considered: arrested that corresponds to undeveloped 

embryos, gastrulae distinguished by the onset of invagination, prism characterized by the early 

development of calcareous rods and the typical cuboid shape of the embryos, early pluteus is 

distinguished by the beginning development of the four appendixes, echinopluteus represents the 

48 hpf stage characterized by the total development of oral and aboral rods. (Figure 3). 

For echinoplutei, the frequency of abnormal larvae (Figure 4) was evaluated and the length of 

somatic (SS) and oral (OS) spicules (Figure 5) was assessed using image analysis software 

(IMAQTM Vision, National InstrumentTM, Version 6.0).  
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Figure 3: P. lividus developmental stages.  

From left: arrested embryos, gastrulae, prism, early pluteus and echinopluteus. 

 

 

Figure 4: Examples of anomalous 4-arm pluteus at 48 hpf. A: crossed spicules,  

B and C: asymmetrical or completely degenerated arms  

 

 

Figure 5: Somatic (SS) and oral (OS) spicules at 48 hpf. 

 

2.8 Statistical analysis 

A non-parametric PERMutational multivariate ANalysis Of Variance, PERMANOVA (Anderson 

and Braak 2003) applied on the Euclidean distance matrix of raw data was chosen to test 

differences on larval growth among experimental conditions. A one-way PERMANOVA model 

was used to test for differences among larval populations reared in FSW_90% O2 only, as well as 

to test differences among original populations. In cases where results were significant, 

PERMANOVA was used to test for the interactive effect of the factors, i.e., turbulence pattern, 

sediment presence and oxygenation, to which parents had been exposed on larval development. 

Furthermore, PERMANOVA was used to run relevant pair-wise comparisons among and within 

larval populations. In cases where the number of unique values from permutations was too low, 
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the Monte-Carlo procedure was used to calculate p values. The software package PRIMER 6 

PERMANOVA Plus (PRIMER-E Ltd, Plymouth, UK) was used for all statistical analyses. 

 

3 Results  

3.1 Natural variation of seawater oxygenation 

Data collected during the mooring of the probe revealed that oxygen levels in the P. oceanica 

meadow fluctuated during the day; in particular, peaks of oxygen production occurred at mid-day 

causing local conditions of oxygen super-saturation. Diel (i.e. a 24-hour period) seawater oxygen 

fluctuations are shown in Figure 6. 

Figure 6: Diel seawater dissolved oxygen fluctuations (five minutes logging frequency). 

 

3.2 Larval developmental stages 

3.2.1 Effects of parental exposure on larval developmental stage in FSW 

After 24 and 48 hpf, a significant effect of parental pre-exposure on larval development was 

evident on larvae reared in FSW (Table 2). At 24 hpf, all the parental experimental factors and 

their interactions were significant (Table 2). Overall, the adults who have experienced a spaced 

pattern of turbulence gave birth to a higher percentage of early plutei than those who have 

experienced an aggregated one. In general, an average percentage of 65% of early plutei from 

parents exposed to a spaced pattern of turbulence was recorded, while an average percentage of 
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41% of early plutei from parents exposed to an aggregated pattern of turbulence was observed 

(Figure 7).  

Oxygen super-saturation had a negative effect on the average percentage of early plutei as well. In 

particular an average percentage of 78% of early plutei between POP 3 and POP 4 was observed, 

while the average percentage between POP 5 and POP 6 was around 41% (Figure 7). 

At 48 hpf, all the parental experimental factors and their interactions were significant, except for 

the sediment alone and the interaction between the three factors (Table 2). Overall, the average 

percentages of 4-arms echinoplutei from both parents exposed to spaced and aggregated pattern of 

turbulence, were comparable (89% and 94% respectively) (Figure 8). As observed at 24 hpf, the 

oxygen super-saturation had a negative effect on the average percentages of echinoplutei. In 

particular almost all (99%) larvae from POP 3 and POP 4 succeed to develop in echinoplutei, while 

the average percentage of echinoplutei between POP 5 and POP 6 was around 87% (Figure 8). 

However, these results take into account the total percentage of echinoplutei without distinguish 

among normal and abnormal ones. 

 

3.2.2 Transgenerational effects of parental exposure on larval developmental stages 

In general, after 24 and 48 hpf, a buffer effect of the adults’ pre-exposure to contaminated 

sediments was not observed in larvae reared in the presence of elutriates. In fact, larvae grew better 

in FSW regardless the parents of origin. For each experimental larval population, the percentages 

of developmental stages of larvae reared in FSW and those reared in the presence of elutriates, 

were always significantly different (Table 2). At 24 hpf, all the parental experimental factors and 

their interactions were significant (Table 2). Overall, as observed in all larval populations reared 

in FSW, at 24 hpf a negative effect of the pre-exposure of adults to the aggregated pattern of 

turbulence was recorded in the larvae reared in the presence of elutriates (Figure 7). Oxygen super-

saturation had a negative effect on the average percentage of early plutei as well in all the larval 

populations exposed to elutriates (Figure 7).  

At 48 hpf, all the parental experimental factors and their interactions were significant, except for 

the turbulence alone (Table 2). The same trend described for larvae at 24 hpf has been recorded in 

larval development at 48 hpf, for what concern the negative effects of adults’ pre-exposure to both 

aggregated pattern of turbulence and oxygen super-saturation (Figure 8).  
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Figure 7: Percentage of developmental stages at 24 hpf. On the X axis the parental populations (POP1-6) and larval 

exposure conditions are shown. Significant differences (p < 0.05) among larval populations reared in FSW for each 

experimental parental condition are represented with lower-case letters (a-d), while capital letters (A-E) represent the 

significant differences among the larval populations reared under similar parental conditions. Asterisks represent the 

intra-group (FSW_90% O2 vs. all other larval conditions) significant differences (*: p < 0.05, **: p < 0.01, ***: p < 

0.001), n.s. = not-significant (p > 0.05)
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Figure 8: Percentage of developmental stages at 48 hpf. On the X axis the parental populations (POP1-6) and larval 

exposure conditions are shown.  Significant differences (p < 0.05) among larval populations reared in FSW for each 

experimental parental condition are represented with lower-case letters (a-b), while capital letters (A-F) represent the 

significant differences among the larval populations reared under similar parental condition. Asterisks represent the 

intra-group (FSW_90% O2 vs. all the other larval conditions) significant differences (*: p < 0.05, **: p < 0.01, ***: p 

< 0.001), n.s. = not-significant (p > 0.05)
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3.3 Larval skeletal abnormalities and growth 

3.3.1 Effects of parental exposure on larval skeletal development in FSW 

After 48 hpf, the percentage of normally developed echinoplutei was dependent on the parental 

pre- exposure for larvae reared in FSW (Table 2).  

The interaction between turbulence pattern and sediments influenced the normal formation of the 

calcareous structures in larvae maintained in FSW (Table 2). Overall, the percentage of normally 

developed echinoplutei both from parents who experienced a spaced pattern of turbulence and an 

aggregated one was comparable (77%) (Figure 9). Oxygen super-saturation had a negative effect 

on the average percentage of normally developed echinoplutei. In particular an average percentage 

of 88% of normal echinoplutei between POP 3 and POP 4 was observed, while the average 

percentage between POP 5 and POP 6 was around 65% (Figure 9). 

The length of both SS (Figure 10 A) and OS (Figure 10 B) was significantly affected by the 

parental population of origin in larvae reared in FSW (Table 2). In general, larvae reared in FSW 

had longer SS and OS compared to their siblings reared in elutriates (Figure 10 A-B), regardless 

the parent of origin.  

 

3.3.2 Transgenerational effects of parental exposure on larval skeletal development  

After 48 hpf, the percentage of normally developed echinoplutei was dependent on the parental 

pre- exposure for larvae reared in the presence of elutriates (Table 2).  

In general, it is possible to observe a negative effect of both aggregated pattern of turbulence and 

super-saturated oxygen level which parents were subjected (Figure 9). Furthermore, no normal 

echinoplutei were observed in both POP 2 and POP 5 when exposed to elutriates (Figure 9). 

The length of both types of spicules was affected by parental exposure as well (Table 2). 

Specifically, larvae maintained in elutriates had shorter spicules compared to their siblings reared 

in FSW, regardless the parent of origin, with a mean length reduction of 40% for both somatic and 

oral spicules (Figure 10 A-B). 
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Figure 9: Percentage ± SD (n = 3) of normal echinoplutei at 48 hpf. On the X axis parental populations (POP1-6) are 

shown. Larval exposure conditions are shown in the legend. Significant differences (p < 0.05) among larval 

populations reared in FSW for each experimental parental condition are represented with lower-case letters (a-d), 

while the capital letters represent the significant differences among the larval populations reared at the same parental 

condition. Asterisks represent the intra-group significant differences (*: p < 0.05, ***: p < 0.001, n.s. not-significant; 

n = 3).  

FSW_90% O2 FSW_200% O2 ELU_90% O2 ELU_200% O2

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

48
H

 %
 N

o
rm

al
Ec

h
in

o
p

lu
te

i

aA

(*)

(***)

(***)

bB

(n.s.)

a,c

C

(***)

(***)

C

a

b

b,c

C

(***)

POP 1 POP 2 POP 3 POP 4 POP 5 POP 6



18 
 

Figure 10 A-B: Mean length ± SD (n = 3) of somatic (A) and oral (B) spicules at 48 hpf. On the X axis parental 

populations (POP1-6) are shown. Larval exposure conditions are shown in the legend. Significant differences (p < 

0.05) among larval populations reared in FSW for each experimental parental condition are represented with lower-

case letters (a-b), while capital letters (A-E) represent the significant differences among the larval populations reared 

under the same parental conditions. Asterisks represent the intra-group (FSW_N-O2 vs. all other larval conditions) 

significant differences (*: p < 0.05, **: p < 0.01, ***: p < 0.001), n.s. = not-significant. 

FSW_90% O2 FSW_200% O2 ELU_90% O2 ELU_200% O2
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Table 2: PERMANOVA results. Pseudo--F values (indicated as F) and Monte Carlo p-values for all the parameters measured for larvae reared in both filtered sea 

water FSW and under parental conditions (PC). 

 

 Developmental stages 24h Developmental stages 48h Anomalies 48h Somatic Spicules (SS) 48h Oral Spicules (OS) 48h 

 FSW 

rearing 

PC - rearing FSW - rearing PC - rearing FSW - rearing PC - rearing FSW - rearing PC - rearing FSW - rearing PC - rearing 

Larval 

population 

F(5,17)=22.551  

p(MC)<0.001 

F(5,17)=17.248 

p(MC)<0.001 

F(5,17)=11.999 

p(MC)<0.001 

F(5,17)=41.511 

p(MC)<0.001 

F(5,17)=11.417 

p(MC)<0.001 

F(5,17)=190.4 

p(MC)<0.001 

F(5,17)=11.260 

p(MC)<0.001 

F(5,17)=1043.8 

p(MC)<0.001 

F(5,17)=33.995 

p(MC)<0.001 

F(5,17)=246.920 

p(MC)<0.001 

Turbulence, 

T 

F(1,17)=19.303  

p(MC)<0.001 

F(1,17)=8.133 

p(MC)=0.011 

F(1,17)=15.787 

p(MC)<0.001 

F(1,17)=3.405 

p(MC)=0.067 

F(1,17)=2.655 

p(MC)=0.116 
F(1,17)=14.360 

p(MC)<0.001 

F(1,17)=34.023 

p(MC)<0.001 

F(1,17)=0.421 

p(MC)=0.529 
F(1,17)=137.52 

p(MC)<0.001 

F(1,17)=50.987 

p(MC)<0.001 

Sediment, S F(1,17)=31.161  

p(MC)<0.001 

F(1,17)= 15.245 

p(MC)<0.001 

F(1,17)=2.651 

p(MC)=0.121 
F(1,17)=88.150 

p(MC)<0.001 

F(1,17)=3.928 

p(MC)=0.063 
F(1,17)=726.17 

p(MC)<0.001 

F(1,17)=1.865 

p(MC)=0.196 
F(1,17)=2389.7 

p(MC)<0.001 

F(1,17)=19,239 

p(MC)=0.001 

F(1,17)=429.680 

p(MC)<0.001 

O2 (S)  F(1,17)=40.853  

p(MC)<0.001 

F(1,17)=26.045 

p(MC)<0.001 

F(1,17)=23.206 

p(MC)<0.001 

F(1,17)=84.888 

p(MC)<0.001 

F(1,17)=31.554 

p(MC)<0.001 

F(1,17)=182.86 

p(MC)<0.001 

F(1,17)=16.886 

p(MC)=0.001 

F(1,17)=1653.2 

p(MC)<0.001 

F(1,17)=4.328 

p(MC)=0.057 

F(1,17)=472.850 

p(MC)<0.001 

TxS F(1,17)=10.559  

p(MC)=0.0014 

F(1,17)=7.864 

p(MC)<0.001 

F(1,17)=26.779 

p(MC)<0.001 

F(1,17)=17.435 

p(MC)<0.001 

F(1,17)=19.808 

p(MC)<0.001 

F(1,17)=19.840 

p(MC)<0.001 

F(1,17)=11.190 

p(MC)=0.007 

F(1,17)=364.79 

p(MC)<0.001 

F(1,17)=4.654 

p(MC)=0.049 

F(1,17)=112.050 

p(MC)<0.001 

TxO2 (S) F(1,17)=4.086  

p(MC)=0.0271 

F(1,17)=24.294 

p(MC)<0.001 

F(1,17)=1.595 

p(MC)=0.229 
F(1,17)=8.8705 

p(MC)=0.004 

F(1,17)=0.170 

p(MC)=0.749 

F(1,17)=14.588 

p(MC)=0.749 

F(1,17)=1.321 

p(MC)=0.272 
F(1,17)=776.57 

p(MC)<0.001 

F(1,17)=5.433 

p(MC)=0.035 

F(1,17)=205.34 

p(MC)<0.001 
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4 Discussion 

In this study, the combined effect of contaminated sediment and its re-suspension associated with 

different turbulence patterns at both normal and ‘super-saturated’ levels of oxygen were studied 

for the first time. In general, a negative effect of the pre-exposure of adults to the examined 

experimental factors on larvae was observed. Furthermore, larvae derived from parents maintained 

in the presence of sediments did not perform better when exposed to elutriates, even when reared 

at a ‘super-saturated’ level of oxygen. 

Echinoderms, including the sea urchin P. lividus, have been widely used as marine model 

organisms to study the effect of different anthropogenic stressors such as heavy metals, personal 

hygiene products, PAHs as well as environmental variability (Byrne 2012; Carballeira et al. 2012; 

Corinaldesi et al. 2017; Morroni et al. 2016; 2018). Marine sediments close to marinas, harbors 

and industrial plants are likely to be enriched, in particular, with heavy metals and PAHs, as 

recently documented in the Bagnoli-Coroglio area (Morroni et al. 2020; Ruocco et al. 2020). 

Exposure to these substances can jeopardize the normal development of early life stages of 

echinoderms, and make their populations more sensitive to environmental perturbations (Byrne 

2012). Despite the large number of studies that have addressed the effects of single stressors, such 

as heavy metals and PAHs, on benthic organisms, those that experimentally examine the 

interaction between different types of physical, chemical and mechanical variables are scarce and 

are often focused on a single life stage. 

Furthermore, it should be considered that in the natural environment increased water oxygenation 

due to the diel photosynthetic activity of algae and macrophytes can have a positive effect on the 

physiological performance of the organisms living associated with them or close by.  

Giomi et al. (2019), found that maintenance at a ‘super-saturated’ level of oxygen (140  3%) 

increased the LT50 of six Red Sea species (1 decapod, 1 echinoderm, 1 holothurian, 1 bivalve, 2 

teleosts) by 2°C compared to those maintained at normal levels of oxygen saturation (97  2%).  

Migliaccio et al. (2015) found that the exposure of P. lividus adults for nine days to cadmium (Cd) 

and manganese (Mn) during gametogenesis resulted in a higher percentage of abnormal larvae and 

delayed larval development when compared with larvae from control parents, despite all larval 

populations being reared in control sea water. Conversely, in our study, when all larval populations 
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were exposed to elutriates to mimic the effect of re-suspended sediments, there was a significant 

difference in larval development when compared to their siblings reared in FSW_90% O2. 

These findings are in accordance with several studies that found the exposure to a mix of heavy 

metals present in marine sediment to cause a negative effect on larval development in echinoderms, 

such as P. lividus, Asterias rubens, Psammechinus miliaris and Strongylocentrotus intermedius 

(Coteur et al. 2003; Marin et al. 2001; Xu et al. 2011). It is widely known that the combination of 

different heavy metals is often more toxic than one alone, due to additive and/or synergistic effects 

(Kobayashi and Fujinaga 1976; Pagano et al. 1996). Xu et al. (2011), for example, highlighted that 

the combination of different heavy metals such as Cd, Cu, Pb, Zn had a negative synergistic effect 

on the larval development of the sea urchin S. intermedius. Based on existing literature, the authors 

concluded that the presence of Cd could have led to oxidative damage by causing accumulation of 

reactive oxygen species (ROS) in larval tissue (Hassoun and Stohs 1996), that can intensify the 

sensitivity of cells to other toxicants present (Brzóska et al. 2008; Chowdhury et al. 1987). 

Furthermore, abnormal larval development could be due to the reduction of acetylcholinesterase 

(AChE) activity in plutei, as observed by Maisano et al. (2015) after larval exposure to increasing 

concentrations of CuO nanoparticles for 24h. AChE plays a pivotal role in the migration of primary 

mesenchyme cells (PMCs) and spicule elongation (Ohta et al. (2009). PMCs are responsible for 

the formation of skeletal spicules, which migrate into the blastocoel and produce these calcareous 

structures. Moreover, PAHs can interfere with echinoderm larval development as observed by 

Suzuki et al. (2015) in sea urchin Hemicentrotus pulcherrimus larvae exposed to two PAHs, 

benz[a]anthracene (BaA) and 4-hydroxybenz[a]anthracene (4-OHBaA), for 53h post-fertilization. 

This was due to a significant reduction of the expression of several genes involved in the formation 

of spicules, which the authors attributed to suppression of the transcription factor for spicule 

formation by 4-OHBaA. Furthermore, Pillai et al. (2003) suggest that several PAHs (phenanthrene, 

fluorene, and pyrene) can cause exogastrulation in exposed embryos, causing a vegetative state 

and death. This is corroborated by the high percentage of dead embryos in larval populations 

exposed to elutriates at both 24h and 48h post fertilization in our study. 

Contrary to the expectation that adults experiencing more stressful conditions would produce more 

resistant offspring, due to anticipatory parental effect or the selection of resistant phenotypes (Thor 

and Dupont 2015; Weston et al. 2013), larvae from parents reared with sediments at both O2 levels 
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and turbulence patterns were less resistant to elutriates than those from control parents, as 

highlighted by the total absence of echinoplutei in POP 5.  

Nevertheless, it may be possible that one month of exposure during the gametogenesis was not 

enough to trigger a transgenerational buffer effect against sea water pollution.   

Furthermore, no positive effects of higher oxygen levels on either of the life stages was observed 

and, in fact, larvae exposed to oxygen super-saturation showed a higher percentage of abnormal 

larvae and echinoplutei compared to larval populations reared in FSW_90% O2. Notably, the 

accumulation and toxicity of Ag, As, Co and Cr in the freshwater species, Daphnia magna after 

53 days of exposure was enhanced at 90% oxygen saturation compared to exposure at 40% oxygen 

saturation (De Jonge et al. (2012). The authors suggested that elevated oxygen levels resulted in 

the increased leaching of sediment-bound metals and their bio-availability (De Jonge et al. 2012). 

In addition, it might be possible that increased oxygen availability may fuel higher metabolic 

activity, resulting in a more efficient accumulation of contaminants. Our study provides the first 

evidence that the natural occurrence of oxygen super-saturation may exacerbate the 

bioaccumulation of contaminants, but at the same time raises questions about an increased 

efficiency of detoxification mechanisms and excretion processes. 

These results constitute an important baseline in the understanding of the ability of marine species 

to adapt, in a relatively short time and through few generations, to current and predicted marine 

environmental stress. The study of different traits such as gametogenesis in adults during exposure 

to stress, and consequently the quality of gametes, as well as embryo/larval physiological 

performance under different experimental conditions can contribute to better predict if species or 

populations could be successfully re-introduced or re-stocked into a perturbed environment. 

According to our study, unless considerable decontamination of marine sediments is achieved, we 

suggest that it would be unlikely to have a permanent and healthy population of P. lividus in 

Bagnoli-Coroglio bay. 
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