Component-based Network Test
Tools Platform for Network Design
and Maintenance

Hasanain Golam

A thesis submitted in partial fulfilment of
the requirements of Napier University for

the degree of Master of Philosophy

May 2003

Declaration of originality

I hereby declare that this thesis and the work contained herein were composed and origi-

nated entirely by myself, other than those items acknowledged in the text. The work was
completed under a supervised program at Napier University between June 2000 and May
2003.

Hasanain Golam — May 2003

ii

To my late father Dr. M. Motin

iii

Acknowledgements

I would like to thank the members of staff at Napier University who contributed to any
aspect of this research. I would especially like to thank Dr. Bill Buchanan, Mr. Ian F.

Smith and Dr. Jose Munoz for their guidance over the last two years.

I would like to thank Seven Layer Communications Ltd., Edinburgh for their support and

encouragement without which this work would have been impossible.

iv

Abstract

Tools development for testing real time systems rely heavily on frameworks that are capable
of delivering the advantages of precise control, the availability of a range of functions and
the availability of standardised and reusable components. The advantages with having such
a framework, results in considerable saving in time and effort when new test tools are de-
veloped or when existing tools are upgraded.

The aim of this thesis is to propose a software framework (termed tools platform hence-
forth in this thesis) that provides increased reusability, configurability and efficiency to tool
developers and Tool Users. The tools platform designed as a generic system could be in-
stantiated with the desired degree of granularity at start-up, allowing Tool Users to add
functions in the course of the tests. Common utilities provided by the platform that allow
the Tool User to link tool libraries at run time, route and share data within components,
schedule tasks for communications among components and format data in network layers,
could be readily used while developing new tools. The immediate goals for the develop-
ment of the platform were to address the following:

e Design the tool platform architecture

e Implement and test the basic tools platform;

e Prove the concept of this model by using the tools-platform to load a real-time data
generation tool into the software system and perform real-time data generation; and

e Test and compare real-time performance of the platform with a purpose-built tool.

The platform was made to operate and control a generation tool to generate Ethernet data
over a 100BASE-T line. The platform obtained as high as 98.43% utilisation of the line at
full loading and compared quite well to a purpose built Ethernet generator, which obtained
98.48% under similar conditions.

Keywords: network, maintenance, components, reuse

Abstract iv

Table of contents

ADSTIACE ittt e a e e aa e e e s e e e e aaaeenns iv
Table Of CONTENTS.uiuuuiieniirieiiiiaiiiieii e e e s e s e e s res e rnasrrnnsernnssrnns i
1 Introduction...........ooo 1
1.1 Research problem definitioncc.ccovierviiiniiiiniieniiinieceecce e 1
1.2 ReSearch OULHNEccovieriiiiniiiieeteeteee et 2
1.3 ThesSiS StIUCTUTE.ccvieeiieriieeieeeieetee ettt snees 1

2 1 1= VR 5
2.1 INTTOAUCTION c..eeiiiiiiiieciieeieee ettt sttt et sae e st e sane e aaeens 5
2.2 NetWOrk teSt tOOIScevvuiiiiiieiiiieeteeeee et 6
2.3 Component-based approach in network test tools.........cccceevverruernnene 8
2.4 TRIEAAS ...eeiviieieeieeeeetee ettt sttt s 10
2.5 SUINIMATY cnniiiiiiiiiieeeettee ettt e st e s e et e e s e sseeeesesnraeeesenns 12

3 SOftware REUSEeccceiiiiiirri e 13
3.1 INTrOAUCHION ..ttt ettt anas 13
3.2 SOTtWATE TEUSE......etieuieiiieeiieeieeeteeete ettt ettt et e a e s aa e s 14
3.3 Component-based software engineering...........ccccceceeeeerveeervienneerneennne. 16
3.4 Component design reSeaArCh........cccevvuieriiiinieiiieniiierieerteesee e 18
3.5 Software components and software faultsccccceeveerviervieniienneennne. 20
3.6 Measuring and Quantifying ReUSe........c.ccceevveevieriiiniiensieenieeieeeee, 21
3.7 COIMPONENTS...ceiiiiiiitiiiiiiteeeeeiteeeeeiteeeeerrteeeeerrreeesesreeeesessreeesssnneeesaas 22
3.8 REAIMIS ettt 23
3.9 Distributed archit@Cture..........ccecueerviierieirienieeeeieeeeee e 24
3.10 Rules governing design based on this designcccccceeeervieineennnen. 25
3.10.1 SymmetriC COMPONENTS.....cccecueerrreierierenrieeeeeeereeeerereeesseeseseeseneeessseesenseens 25
3.11 SUIMIMATY ..etiiiiiiiieeeetee ettt e e st eeeeane 26

4 Network Test Tools Platform ..o, 25
4.1 INIOAUCHION .ottt ettt s e aa e e 25
4.2 Problems in developing software tools for network testing................. 26
4.3 Network Test Tools Platform Architecture.........ccccccoeveevvierviienivennnennne. 27
4.4 Core Platform COMPONENTS.......c.cevierrieriiienieenienieeeeeeee e see e 31
4.5 Standard Platform COmMpPONENtsc.ccevcveeriernieniiienieenieenieesee e 32
4.6 Tool User Control Over The Platformccccceevieeviieniiennieniieniceienne, 32

Table of contents ii

4.7 State Transition Model.........ccccoeviiriiiniiiiiiieeeceeeeeeee e 33
4.8 SUIMIMATY .eeiiiiiiiieiiiiiieeeieiteeeseitee e st ee e e e erbteesesrrteeseenraeesesnraeesssnsaeeess 34

5 Case Study and Results.............cooooriiccciiiirrreee, 34
5.1 INTrOAUCHION c..eeeiiiiiiiieieeteeeeeeetee ettt 34
5.2 ODJECHIVES c..eeeeuieeiieeieeieee ettt ettt ettt sttt e st e areeaees 35
5.3 Testset-up and test ProCEAUTIE.........cccuervueerierriiernieeieeeeeieeeee e 36
5.4 Sample calculations for maximum theoretical throughput................. 37
5.5 Case Study ReSults........cccovuieriiiniiirieiieeteeeeeetee e 41
5.1.1 Results before optimisation..........cccccevuevierenenenenenenenenereneneeeseeee 41

5.6 Reasons for poor performance of platform........cccccoeceeevieniinniinnnnnne. 43
5.7 Optimisation teChNIQUEScocceerviiiriiiniieiieeteeeeeeeee e 44
5.8 Results after optimiSationcccueevueeriieiniieeniieniieeeeeeeeee e 45
5.9 SOUTCES Of ITOTS ...coouviiiiiiiieiiieeieeeieete ettt ettt 47
5.10 Discussion Of TESULLScocueeriiiriierieiiieeieeeeeeee et 47

6 CONCIUSIONS........cceeiie it 49
6.1 OULHINE ..ottt s e 49
6.2 Review Of ODJECHIVEScevuiiiiiiiiiiecteeteeee et 50
6.3 DISCUSSIONS. ..ccuutiiiiiiiiiiiiiiieiiieetcrecre et 50
6.4 FUurther WOrk......occooiiiiiiiit et 51

Table of contents iii

1 Introduction

1.1 Research problem definition

Devices designed for networks often have to be tested using network testing tools. These
tools typically test devices to validate that they perform to the required specification, and
to simulate fault conditions for differing types of network conditions. The aim of this
research, undertaken in collaboration with Seven Layer Communications Ltd., is to
overcome inefficiencies in the development of bespoke network test tools for every new
requirement. This is especially relevant when the tools are used in systems which are de-
signed to work at their optimal level, such as in high-speed, real-time network testing
tools. Fresh product development often leads to long development times, increased
costs, and limited scalability of these application-specific tools. The objective was thus to
develop a powerful, flexible platform for hosting a suite of network test tools for the
telecommunications and networks markets.

Seven Layer Communications Ltd. is an innovate Scottish company which provides
computer network software and hardware products, and support services. This includes
software, hardware, operational and manufacturing testing and development of test tools
to the telecommunications and embedded product market.

As a service provider to the telecommunications and network market, the goal of
companies such as Seven Layer Communications, is to recover some of this investment
through product reuse. Thus software products must keep up with rapid changes in the
software industry, changing technologies, business costs, acceptable levels of quality and
reduced time-to-market.

The aim of the first development stage was to develop a reusable software framework,
which could be used to generate user configurable Ethernet data at specified rates. This
would be compared with a bespoke tool for its performance levels. If found acceptable,
it would then be expanded to develop other tools. An important factor is thus an adapt-
able framework. Reusable software components that formed the basic components of the
tools platform, platform design documents, architecture documents and user-manuals

were identified as the first set of deliverables from the project.

Chapter 1: Introduction 1

1.2 Research outline

This research work was based on a DTI-funded TCS (Teaching Company Scheme)
programme with Seven Layer Communications Ltd. TCS (TCS, 2003) is a UK Gov-
ernment—funded scheme that helps companies access the knowledge and skills within
the UK's knowledge base (universities, colleges, independent research and technology
organisations and Government-funded research institutes). Small and medium-sized
businesses with the potential to grow can participate in TCS and can benefit from the
expertise of academics and researchers. Napier University was selected in this case as it
has a strong background in network-related research, and has good skills in the areas of
software reuse, and in application families related to embedded systems (Lewis, 2000).

The main research problem identified was to reduce the development time of net-
work test tools and to achieve the same or comparable levels of performances as those
obtained from bespoke tools. With these objectives in mind, our research has involved
the investigation of the research areas of software reuse, tools platforms, networking, and
component-based software design.

Literature searches were carried out with a focus on publications such as tools plat-
forms used for authoring environments and designing objects (Bylund et al, 2002) and
software simulators that allowed multiple users to interact in a shared environment
through a network. Component-based agent architectures were also investigated, some
of which provide asynchronous concurrent execution, reactivity and can be applied to
complex reasoning capabilities, accounting and monitoring of consumed time, costs and
quality (Fricke et al, 1998). The research also investigated other powerful environment-
adaptive computation models by which objects are capable of changing their roles and
which collaborate with other objects dynamically at run-time. This is done by entering a
particular environment or by leaving it (Ubayashi et al, 2001).

On reuse, Schmid (2002) defined models which reused investment planning, apart
from this, the more well-known methods are of design patterns and software frameworks
(Vazhkudai et al. 2000), and in improvements in development processes and software
engineering (Lam et al. 2002). Other areas investigated included work describing net-
work directory services (NDS that dealt with a new Novell product-ZENworks for
Servers) that allowed administrators to establish specified appropriate rules for the man-

agement of many servers at the same time and guaranteed immediate delivery of stored

Chapter 1: Introduction 2

data (Kuczora et al. 2000).

An important element of the work is to develop a distributed data acquisition system.
This was based on the developments by the ZTH Group at Los Alamos National Lab
and the RFX Group at CNR in Padua, Italy. Their system was designed to operate in a
distributed, client/server environment with access to multiple concurrent readers and
writers to the data store over a LAN (Local Area Network) or over the Internet for re-
mote diagnosticians and machine operators (Stillerman et al 1997).

Along with this, the research has developed a novel software platform, which was
used to appraise the research. The platform uses a component-based software framework
that specifically targets network testing and overcomes identified inefficiencies, while
developing bespoke network tools for new requirements. This work has been presented
at the Industrial Track, IEEE ECBS 2002 Conference in Lund, Sweden (ECBS, 2002),
and outlines a model for a software framework consisting of several components, which
could be reused to develop test tools to meet changing requirements. With the presence
of such a framework, the developer could use the framework as the initial starting point.
Having achieved this, the developer could then focus on developing functions that were
strictly related to the specifics of the test requirements.

A case study is presented in Chapter 5, which compares the flexible tools platform
with a purpose-built tool that operated under similar conditions, and performs exactly
the same operation as the platform. The purpose-built tool, as expected, performed bet-
ter, initially, but subsequent iteration of the platform matched the performances of the
purpose-built tool. Finally, Chapter 6 concludes the thesis. Achievements and failures
are discussed and scope for improvements and areas of further work are also detailed.

A key element of the research was to base it on a standard networking protocol stack
and the the OSI seven-layer model. The motivation of the project was the development
of a software system, which will properly exercise and validate a network. Thus it must
simulate data at various levels of the OSI model. The development also required that a
primary framework be developed that would provide support functions to the tools.

The model was designed around software components, which will be able to plug-
into the system to create a protocol stack and networking data frame, as illustrated in

Figure 1.1.

Chapter 1: Introduction 3

Data
from session layer

Transport

Transport SCTP !ayer
P component compo nent component interface

Binding between the

protocols is configured . ————————————— -
at run-time) Network
layer
interface
Network P IPX
component component
e e = ATM _————-—
component Data link
layer
interface
Data link Other Ethernet
component
Ethernet
data frame ATM

data cell

Figure 1.1: Component-based protocol stack and data frame builder

1.3 Thesis structure

The thesis is organised as follows:

e Chapter 2 outlines background network theories and models.

e Chapter 3 provides a literature review on software reuse, component based models
and recent developments.

e Chapter 4 provides an overview of the software network tool platform — its architec-
ture and components that make up the component-based software system.

e Section 5 discusses results from a case study in which the reusable platform was
compared to a bespoke tool for performance.

e Section 6 concludes this thesis with discussions about the platform and scope for

improvements.

Chapter 1: Introduction 4

2 Theory

2.1 Introduction

Computer networks are becoming larger and more complex, whilst the development of
network-based applications is becoming more costly and difficult to maintain after de-
ployment (Golam et al, 2002). To assist with the construction, maintenance and
evolution of computer networks, network test tools can be developed. These tools enable
networks to be tested and analysed in real-time conditions to detect errors prior to their
commissioning. The tests verify that the system works to a required specification, and
also verifies that there are no known faults on the system. Often a system can work well
under known conditions, and a fault can be easily found when part of it fails. A more
difficult fault to trace is the intermittent fault, which is typically caused by a certain se-
ries of events. An example of this is where a computer bus operates well in most
circumstances, but there is a state at which there is a maximum of electrical noise gener-
ated. This is typically where the bus changes from all 0’s to all 1’s. This condition could
cause enough electrical noise to cause errors in the system. Thus the test environment
must test for these extreme conditions. The test system must thus verify that the system
does not have any known faults, for as many conditions as possible, and that it performs
with a given range of specifications.

The tools used vary according to the requirements of the network under test but

typically include (Figure 2.1):

e Data generation tools. These simulate network traffic conditions or generate con-
figurable data at known speeds.

e Data acquisition tools. These are used to log and verify data.

o Test execution support tools. These are used to log test results, generate test reports

and handle test configurations.

Within these tools there are many different functions including memory allocation func-

tions, file management, timing measurements, signal handling, dynamic loading of

Chapter 2: Theory 5

libraries, and multi-thread management. Network test tools can be combined into a
network test tool suite which itself can be a complex piece of software. Often the larger
and more complex the network-under-test, the larger and more complex the network

test tools required to validate it.

Data Device Data
Generation Under Acquisition
Tools Test (DUT) Tools

Data Data
Control Control Control
Test
Conf. P Test Results
Support

7 Tools

Figure 2.1: Network testing tools

2.2 Network test tools

The actvities carried out using network test tools can be categorised into:

e Real-time activities. This is the generation or acquisition of configurable data at
high speeds. The data generation typically has to be achieved in real-time as it simu-
lates the operation of the network in its working environment.

e Non real-time activities. This includes the the analysis of statistics, logging of test
results, making queries to tools, and so on. Once the data has been logged it can be

analysed off-line.

A Tool User is a network test tool operator who uses the network test tools to perform
network tests. They typically make queries to the tool, collect and analyse statistics or
log test results. Thus, it is desirable that Tool User time activities are kept separate from

the real-time activities in a network test tool. This is important to attain the highest

Chapter 2: Theory 6

performance level. This led us to the re-design of the tools platform and provided large
improvements in the performance. The design details of this are provided in Chapter 4
and performance measurement in Chapter 5.

Network test tools are usually bespoke applications designed to test functions deliv-
ered by the software and hardware. Figure 2.2 shows that the development of a network
test tool emerges from the requirements articulated in the functional specifications for a
network-under-test. The development life-cycle of a network test tool runs in parallel
with the development life-cycle of the network-under-test. Deliverables from a network
test tool development lifecycle include a network test tool suite, test scripts, and test re-
sults that are used in the verification of the network. Network test tools maintenance has
been identified as a major issue when expanding to new network technologies from
Ethernet to ATM or expanding to support new networking protocols such as IP, TCP,

and UDDP, in a direction that effectively opens up new business areas for the company.

Software Software Software Software Software
Requirement Design Bundle Verification Release/ Software-under -
Deployment

-- B‘Q- lifecycle

Tools Tools
Requirement Design Tools suite Test tool

4 4 | development
. q . ‘ lifecycle

Figure 2.2: Requirements of tools are drawn from the requirement of the software it is

intended to test. Each of the developmental cycles follow their own course

2.3 Component-based approach in network test
tools

Component-based software development is used to meet needs in a relatively short time,
where the time to build a system from start is not available. Software components, when

properly standardised, may be used to make up the target application. This provides a

Chapter 2: Theory 7

method whereby off-the-shelf components can be assembled to make up the basic
framework of the application. Specific components can then be developed which are not
provided for, or are specific, to that application. This avoids unnecessary reinvention of
technology (Batory et al, 1992).

In component-based software development, off-the-shelf components can be assem-
bled to make the basic building blocks for a software system. Existing components can
also be modified, or new components developed, to meet specific requirements. Two

criteria that influence the successful deployment of a component are:

e Clearly understood specification of its functionality. The internal elements of the
components may be fairly complex. Thus the overall functionality of the component
is important in the assessment of its application to the system.

e Well-defined interfaces. As much as possible the component should not affect any
other part of the calling program, and must only operate on the data provided. This

decouples the component from the rest of the program.
A component-based development approach can offer improvements to:

e Configurability. Customised services can be developed aimed at specific require-
ments of the application.

e Efficiency. Customised services can reduce execution overhead that often results
from the inclusion of unnecessary properties in monolithic services.

e Reusability. Multiple related services for different applications can be configured
with the use of individual components, rather than having to implement entirely
new services.

e Extensibility. Individually tested and standardised components can be developed to
provide new functionality. If already not available, new properties can be included to

extend an existing service (Bhatti et al, 1998).

Chapter 2: Theory 8

Test tool 2 /
"

Testtool n
Common features Tool specific features
across tools unique to atool

Figure 2.3: Common Identifiable features in test tools

Figure 2.3 illustrates that significant commonality may exist across network test tools. In
a tool suite consisting of many tools, common functions get implemented each time
new network test tools are developed. The aim of a component-based network test tools
platform is to prevent the repeated implementation of common functions in every tool.
Instead, each of these functions is made available in the platform so that they may be
used for the development of new tools.

A concern with using reusable components to build network test tools is an antici-

pated increased overhead for the system. This might include:

e Increased processing overhead. If the component has been designed to have extra
properties, such as a network protocol component supporting two different types of
network protocol, these extra properties will generally add an extra overhead in
processing times, especially in testing the requirements of the interface.

e Increased memory usage. In embedded systems this can be an important factor, as
memory space is typically limited in size.

o Increased storage size. The reusable components will generally increase the footprint
of the overall program. In some applications the actual size of the program is limited

in its storage.

Chapter 2: Theory 9

It is thus important to accommodate the additional variability that often makes a com-
ponent more reusable, but it is also a deterrent to the component-based software
development approach. A trade-off is often necessary between the degrees of flexibility
available within a network test tool and its real-time performance.

Seven Layer Communications have observed over the past few years that developing
bespoke network test tools is inefficient in the medium- to long-term, as it typically
leads to long development times, increased costs, and limited scalability of these applica-
tion-specific tools. They thus identified a significant opportunity in developing a
powerful, flexible platform for hosting a suite of network test tools for the telecommuni-
cations and networks market. In this thesis, we describe a component-based network test
tool and show that by separating Tool User time functions from real-time functions,
both the flexibility and high performance expected for these real-time activities may be

attained.

2.4 Threads

Threads are generally used in environments where separate and parallel activities need to
be accomplished. A simple example of the use of a thread is to perform a calculation of a
function F(n) dependent on several other slave functions; functions which do calcula-
tions of their own. These are generally used in applications where one master function is
dependent on several dependent functions, when the master function must wait for each
of these functions to finish. In such a scenario, the master is said to wait and join all
slave functions before advancing to calculate the main function F(n). This is shown

next, where F(n) is the master function and £, f,, f,, ..., f, are all slave functions, where:

Fn)=f+fi+fi+..... +f

where:

f=a+b+...+m

Chapter 2: Theory 10

j2=¢zz+172+...+m2

ﬁ=43+173+...+m3

Work descriptor

Master thread

sequence
number

Slave threads

A N program
S =), counter
v v
A A
o - o =
v v

Figure 2.4: Master thread spawns parallelism in a parallel construct setting the starting
program counter and the arguments for the slave threads and by assigning a
sequence number to the parallel construct

Customised thread packages are provided in different environments for attaining paral-
lelisation environments. POSIX (Portable Operating System for unIX), which is a
UNIX standard, also provides standard threads in the Linux operating platform. Being
standardised, they allow the user to write portable programs, which are written for
multi-platform environments, to provide mechanisms to spawn and join parallelism. In
our application, POSIX threads on Linux operating system were used to attain parallel-
ism while generating Ethernet data on separate logical channels (Chapter 4 Network
Test Tools platform). The implementation of such mechanisms greatly influences the
type of parallelism that can be exploited at application level.

The master thread spawns parallelism in a parallel construct, setting the starting pro-

Chapter 2: Theory 11

gram counter and the arguments for the slave threads, and by assigning a sequence
number to the parallel construct. A fixed memory area is used to collect all this informa-
tion which is known as the work descriptor (Figure 2.4). Each of the slave threads pick-
up their work from this descriptor and they participate in the parallel construct identi-
fied by the current sequence number, executing the same function with the same
arguments. However, it restricts the parallelism that can be exploited by the application
level because each of the descriptors cannot be reused until the previous parallelism has
been joined (Xavier et al, 1999).

Standard libraries provide different thread join implementations. The default thread
join is to use a join structure in the shared memory area (work descriptor). Slave threads
use a global sequence number to indicate that its work has been finished. Meanwhile,
the master thread, after participating in the spawned work, waits for all the sequence

numbers to join.

2.5 Summary

This chapter outlines the background theories of network tools and component-
based software development. Various advantages and disadvantages for component
based software development and issues with reusablility are covered. In addition, some
background theory of threads and their implementation is also covered here, as design
enhancements in the second version of the tools platform with the use of threads, greatly
improved its performance (Chapter 5 Case Study and Results). The remaining back-
ground theory is covered in Appendix Al, which provides an overview of the widely
used OSI model, the foundation of the model, details of each network layer and the
Ethernet protocol.

The next chapter covers research into software reuse and recent developments in the

fields of component-based development and reuse.

Chapter 2: Theory 12

3 Software Reuse

3.1 Introduction

Software re-engineering and reuse try to maximise software usage for any given devel-
opment effort. It also tries to improve system quality (Wegner, 1984). Often, during
software development, many alternative ideas and designs are considered, and rejected,
even though these may have potential use in other applications. For this, tools, test cases,
technologies, and even complete systems, may be removed at the end of their useful
lives. It is the objective of software reverse engineering and reuse to recover some of this
investment (Hall et al, 1997 and McClure, 1997).

Software reuse tries to attain a greater return on development time than traditional
approaches, and is therefore deemed an important factor in the software industry. De-

velopment must also keep up with:

e Rapid changes in the software industry.
e Changes of technologies.

e Business pressures of cost.

e Acceptable levels of quality.

e Reduced time-to-market.

Various methods of attaining software reuse have been proposed to attain these objec-

tives, such as:

o Specifying structured system specifications (Mibe et al, 2002). This type of approach
fits in well with the traditional design methods, such as in Structured Analysis and
Design.

e Detailing the planning of software components. This is achieved at both the organ-
izational and program level (Sundarraj, 2002).

e Using object-oriented business and system modelling (Griss, 1999 and Thiry et al,

2002). This has the benefit in that it fits well with the objectives of the organisation,

Chapter 3: Software Reuse 13

and can be easily mapped to business objectives.
e Good housekeeping. This is where information on software products and processes

is stored, and organized, to enhance reuse (Houhamdi, 2002).

After defining a suitably abstract component-model, certain modelling tools may be fur-
ther used to systematically and rigorously model each component (Atkinson et al, 2002).
A key problem in software reuse is the selection of appropriate software components
which satisfy a given requirement, especially when reused in different application do-
mains, namely horizontal reuse (Redondo et al, 2002), and to product family lines
(Lewis, 2000).

3.2 Software reuse

Software reuse tried to improve productivity and quality of software systems. Unfortu-
nately, it has not been widely adopted in industrial systems. Berard (1993) proposes that

there are several reasons for this:

e Dsychological, sociological and economic factors (Tracz, 1987a). Many developers
are under pressure to produce software within a given time requirement, and many
software development project slip in their planning, thus reuse is often one of the
first factors to be rejected in the development process. Many graduates are also not
trained in using reuse methods, as they have typically been trained to write software
to meet a single objective. This may change, though, as the next generation of devel-
opers may be more in-tuned with searching for components over the Internet.

e Lack of potentially reusable components and the lack of systematic methods for lo-
cating resources to solve a problem (Tracz 1987a, 1987b and Biggerstaff et al 1987).
Many software developers do not know where to find usable components, and there-

fore the concept of component factories has been proposed (Taylor, 2001).

Many early systems used generalized software libraries (Mcllroy, 1987), which is a fairly
well understood technology. Unfortunately, these modules often have to interact with
each other, and need to be compatible for the systems that they run on. Lewis (2000)

argues that library-based reuse works in well-understood, low-level application areas

Chapter 3: Software Reuse 14

such as user interface libraries, mathematical and statistical packages, but has failed in its
wide-spread usage. Griss (1993) argues that software library methods require developers
to browse libraries for a component, rather than designing a product from available
components. Along with this, the components in the library may not be compatible
with the target system, such as on a mobile phone, or a Linux-based system. This prod-
uct-centric approach produces software components which engineers components for
only one type of system, and which cannot be used on other systems. Lewis (2000) out-

lines that systems are now overcoming these problems by having:

Software kits (Beach et al, 1992).

Task neutral problems (Beys et al, 1996).

Generic building blocks (Milli et al, 1995).

e Component-based software engineering (Szyperski, 1998).

This has produced components which are flexible and modular. Although this may solve
some compatibility issues and reduce the libraries in size, one fundamental problem still
persists: soffware products are not designed from existing components. Application family
engineering involves the design of a library of components using a well-defined process
(Arango, 1999). It is basically a collection of software applications which share common
characteristics. These include application families for systems such as mobile phones,
industrial control systems and, of course, network testing tools. Lewis (2000) identifies
that application family engineering highlights the key elements of commonality and
variability among systems of a family. This will be integrated in the analysis, design and
coding of the software elements. These elements are then defined by filtering the re-
quirements, design and code solutions.

Unfortunately, many industries have failed to adopt application family engineering
and other reuse methods, as there are concerns over the overhead, especially in terms of
processing and memory that the additional reuse may add. In a real-time network test-
ing system which runs tests on networks running at 1Gbps, the extra code may add too
much of an overhead to the system to justify the reuse. Owing to the fact that reusable
components are generic, code cannot be optimised (as in a bespoke application) and

therefore will suffer from an additional execution time overhead.

Chapter 3: Software Reuse 15

3.3 Component-based software engineering

Component-based software engineering is a recent model, but is widely accepted as it
targets similar goals to that of software reuse. In general, it focuses on the assembly of
software systems from components (Stallinger et al, 2002). It is based around reducing
the time-to-market, and increasing the quality of software systems. Thiry et al (2002)
has shown that by applying an object-oriented component based approach, the design of
a complex system, such as the modelling of a robotic articulated arm, or in the design of
network test tools, can be easily attained. In our development, we have used the compo-
nent-based software development model for reusing system components. With this,
components are initially developed and were fine-tuned in later releases to attain better
performance and flexibility of the overall software system.

A heavy requirement for reuse is that not only the technologies used are properly un-
derstood, but they must have been standardised. Batory and O’Malley (1992) explain

that a component-based model is one which primarily deals with:

e Components. Components are members of a larger realm, where every member im-
plements their specific function using the interface provided by the realm. This
hugely simplifies the use of components by the user. It also gives the user the capa-
bility of using a common interface and getting different functionality with different
software components.

e Realms. These are a direct extension of object-oriented design, and are a set of one
or more classes that are exported by each of its members. The design makes sure that
each component is a member of a realm, where all members of it realise the same in-
terface, but in different ways. This ensures that members of a realm are compatible

and interchangeable.

In this application, we have used this model. Using the same framework and a common

interface, the user gets the benefit of using various tools in the software system.

Chapter 3: Software Reuse 16

3.4 Component design research

Stallinger et al (2002) outlines the importance of component design and its application
to software process improvement. For this, they argue that it increases the quality of
software systems, accelerates time-to-market and decreases development costs. They also
argue that, in component design, that reuse is an important factor.

Software reuse has been applied to many different applications. One of the most ob-
viously is in the development of mathematical components (such as in the generation of
mathematical functions), and in operating system development (such as components
which access file system functions). Many mathematical algorithms are well known, and
can be implemented in a reusable form, with differing types of uses. One area which of-
ten lacks reuse is multimedia and WWW development. For this Chuang et al (2001)
have proposed models for the development of reusable components for multimedia de-
velopment. They argue that reusable software components have normally only been
applied to code and documents, but can be extended to incorporate voice narration,
animation sequences and message mechanisms. This is defined as software components
multimedia reusable components (MRCs), and they propose that by using these MRCs,
that an interactive multimedia software can be constructed easily. The new standards for
MPEG-21 now use reuse for content.

The Software Reuse: Methods, Techniques, and Tools International Conference
(2002) presented many different applications of software reuse, including Schmid
(2002) who defined models which reused investment planning. In this, they identified
the key reusable variabilities to determine the economic benefit of packaging these vari-
abilities in terms of reusable quantities.

One main drawback of traditional roles of the reusable components is that they gen-
erally remain static for a particular application and huge gaps existed between the
development environments and run-time environments. Lam et al (2002) have identi-
fied improvements in development processes and software engineering to overcome this
problem. For this they have presented an Application Run-time Life Cycle Model that cap-
tures and provides application contexts. These are basically combinations of component
contexts. The model has the ability of adapting to different run-time environments by

collating necessary information into a component run-time integration box. Ubayashi et

Chapter 3: Software Reuse 17

al (2001) has also proposed a powerful environment-adaptive computation model (the
epsilon—computation model) by which objects change their roles and collaboration forms
with other objects dynamically at run time by entering a particular environment or by
leaving it. They have proposed a number of methods and a new language to describe
collaborations among objects. This approach could particularly prove useful in the con-
text of network tests running back to back. In the event of test execution failures, certain
decisions could be made during the exectution of the tests and the process recovered.

Another drawback in the reuse of components is that highly specific components
have small chances of being reused, while, on the other hand, reuse of components that
are too general often prove useless. Moreira (1999) proposed an algorithm that identifies
the requirements, such that a formal parameter should preserve part of the original
component semantics. He has argued that in order to reach this goal, relevant conditions
must be identified under which known proofs of the properties are reproducible. The
results are captured in a set of equations so that they are preserved in the process. In the
development of specialized components, the captured results are matched against the
known properties of the required component.

Park et al (2002) have detailed the practical application of existing reusable compo-
nents in the development of new components. In situations where no single component
in the component reuse library readily meet the developers requirements, their approach
has been based upon a retrieval system that retrieves all possible compositions of com-
ponents that fit into the target composition structure. It does this by automatically
inferring semantic properties of donor components and matching them to the recipient
component. In the same area, Jia et al (2002) proposed a semantics intensive component

model, which has three views of components to describe the semantic structure:

¢ Domain space.
¢ Defined space.

e Context space.

They have argued that a formal method of the defining feature space may provide a po-
tential solution to component reuse automation and engineering.
Conventionally, component based software reuse has been performed by identifying

basic elements which allow them to be used elsewhere. These could be reuse of:

Chapter 3: Software Reuse 18

e Code fragments. Well structured, and well documented code, typically allows parts
of the code to be directly reused in other applications.
e Software components.

e Libraries, and so on.

Wehrtle (2001) has presented an open framework for building and evaluating new qual-
ity-of-service elements in a Linux-based software router. He argued that, in most cases,
new Quality of Services (QoS) behaviour may be built by reusing higher-level abstract
models, and not only with elements. In the development of more complex heterogene-
ous and distributed systems, Aniorte et al (2002) has presented a component model
which prolongs the life of such systems, as their evolution makes them difficult to man-
age. They have also argued that their model, backed up with a European project
(ASIMIL project), has made possible the integration of the reused components.

The question of finding the information around us regarding software reuse is a wide
one. In the Seventh IEEE Conference and Workshop on the Engineering of Computer
Based Systems (ECBS 2000), Luqi (2000) presented a survey collating major software
reusable component repositories, so that they will form a base, in the future, to develop

searchable, user-friendly, useful and well-organized repositories.

3.5 Software components and software faults

The general belief that component reuse improves software reliability is based on the
assumption that the prior of usage of software elements has exposed the potential soft-
ware faults. The more a component is used, the great the number of faults that will be
detected on it. Most companies use this type of development, where they update soft-
ware, rather than creating a completely new system, even though the newly created
system is likely to operate more efficiently, it is less likely to be robust, as it will not have
the same amount of testing that the current system has. This is especially relevant when
a component is used in other applications domains, if possible, as these tend to highlight
different types of problems with the component. For example, file system component
might work well on a certain type of operating system, but when used on other types of

systems they can highlight new problems, which are not due to the operating system,

Chapter 3: Software Reuse 19

but due to a differing way of using the component. Hongxia et al (2001) has argued
that, in reality, this it is not due to inherent differences in the environments and usage of
the component. They captured information at a semantic level to detect potential mis-
matches between components in a new environment, and gave guidance on how to
resolve the mismatches to fit components in the new context. They also argue that this
information in an appropriate format and an automated analysis can show serious expo-
sures to reliability in a component-based system, before it is integrated, and therefore

may provide possible solutions in overcoming them.

3.6 Measuring and Quantifying Reuse

Software reuse has provided organizations with a feasible option to gain competitive
advantage by improving development productivity and quality, as well as reducing
development cycle times. Although many organizations value the benefit of reuse, the

drawback is that they have not put a reuse program into full consideration owing to:

e Lack of strategic plans from managers.

e Training to software development teams.

e Rewarding systems to encourage reuse.

e Lack of good measuring tools and necessary reuse libraries.

e Lack of clear guidelines regarding the development of reusable codes.

e Domain analysis.

e Lack of an efficient feedback system available to managers to implement software
reuse (Soliman, 2000).

e Commercial secrecy

e Incompatibility between language versions or components in a disbtributed system.

Successful changes in organizational characteristics, such as culture and structure, are
necessary for implementing successful reuse programs (Baldo, 1998). Marinescu (1999),
on the other hand, has attributed lack of reuse to an inherent incapacity of metrics to
help in assessing and improving the quality of object-oriented systems. Marinescu
suggests that metrics are largely used in an unsystematic, dispersed and ambiguous

manner.

Chapter 3: Software Reuse 20

In order to overcome critical managerial issues preventing reuse, Soliman (2000)
discusses some of the most critical managerial issues in implementing a software reuse
program. Marinescu (1999) defines a multi-layered system of metrics that measures
inheritance-based reuse, and proposes a number of metric definitions for the layers of
these systems. Also, Baldo (1998) defines the current status of the software reuse
measurement problem and the focuses on addressing the problem.

Traditionally, the reuse rate is defined as the percentage of the development effort
retrieved as code segments from a software repository (Rothenberger et al, 1999). They
propose a metric and have presented a case study in which a software development firm
has monitored the reuse success in a real development project using this proposed
model.

Doroshenko (1998) presents a tool and method that supports measurement for the
amount of reuse with different software models, including composition and generation
approaches and the effect of expertise on historical data. He stresses the need of model
specific translators for importing and classification of software. Further research has been
identified in this area for internal reuse and streamlining development of translators.
Rine et al (1998) presents an interesting survey that has statistically analysed relation-
ships among reuse capability, productivity, quality and the individual software reuse

success factors.

3.7 Components

Batory and O’Malley (1992) have suggested a component-based model in which the
fundamental unit of large-scale software construction is a component. An associated in-
terface to components is anything that is visible externally to the component (Parnas,
1979) (Figure 3.1). The actual implementations of the functions provided by the com-
ponents is hidden away in the software component, and can thus be treated as a software
black-box. They may appear as interface header files for developers to include in their
development, while the bulk of the code remains in the implementation (source code in

static libraries or as dynamically linked components in shared libraries).

Chapter 3: Software Reuse 21

3.8 Realms

Design is achieved so that every component is a member of a realm 7 [Figure 3.2],
where all members of 7 realise the same interface, but in different ways. This ensures
that members of a realm are compatible and interchangeable. The concept of interfaces
of a realm is a direct extension of object-oriented design. It is the set of one or more

classes of the following that are exported by each of its members:

e Objects.
e Operations.

e Interrelationships.

External Published Internal
environment Interface Implementation

F1 Software
component

F2

Fn

Test scripts

L'LL

Figure 3.1: Published interfaces allow users various functions. The actual
implementations of the functions are hidden in the software

components.

Chapter 3: Software Reuse 22

Composition

Figure 3.2: Realms, software compositions and software domains

3.9 Distributed architecture

Bhatti et al (1998) describe a communication-oriented abstraction as a method to sim-
plify and develop complex applications built on a distributed architecture. The
application is distributed and a layer provides a distribution support layer. This can be
viewed as application-oriented network protocols, or distributed services, that are im-
plemented at a high-level in the protocol stack, from a networking perspective.

Microprotocols are used to implement individual properties as finer-grain modules,
and provide a means of separating and delegating tasks, to achieve the overall goal. With
atomic multicast, one microprotocol might implement the consistent ordering require-
ments, while another might implement reliable transmission. Microprotocols can also be
used to implement different semantic variants of the same property.

Structured Microprotocols provide the following advantages to conventional mono-

lithic approaches to similar systems or services:

e Configurability. Customised services can be provided aimed at specific requirements
of the application.

iciency. Customised services avoid execution overhea at often results from in-
e Efficiency. Cust d d t head that oft les fi

Chapter 3: Software Reuse 23

clusion of unnecessary properties in monolithic services. Microprotocols provide a
means of choosing the most efficient alternative given the current execution envi-
ronment.

e Reusability. Multiple related services for different applications can be utilised by
means of individual microprotocols rather than having to implement entirely new
services.

e Extensibility. Microprotocols may be used to provide new functionality and to in-
clude new execution properties that extend an existing service. Design of similar
microprotocols can be included to an existing microprotocol suite (Bhatti et al,

1998).

3.10 Rules governing design based on this design

Every component implements an abstract-to-concrete mapping. This means transforma-
tion of objects (and operations) visible at its interface, or abstract level map to objects
(and operations), at its concrete level (Figure 3.3). A crucial concept here is that compo-
nents do not know the implementation of their concrete objects and operations (Batory

etal, 1992).

3.10.1 Symmetric components

A distinctive and fundamental concept of our model is the possibility of symmetric
components; that is, components that can be composed and arranged in a suitable stack.
More specifically, a component of realm 7 is symmetric, if, and only if, it has at least
one parameter of type 7. Components 4[z: R] and e[z: R] of realm R are symmetric as
both have a parameter z of type R. Thus, compositions d[e[z: R]] and e[d[z: R]] are pos-
sible.

The scheme also opens up possibilities to access various components of the same
types through the same interface. Development of protocol layers with each layer pro-

viding general functionality could have the implementation shown next.

Chapter 3: Software Reuse 24

Common
Interface

Figure 3.3: Stacked Microprotocols accessed through a well defined published interface

3.11 Summary

This chapter provided an overview of the various methods of attaining reuse, its justi-
fication, sociological and economic factors preventing software reuse and some of the
traditional approaches to it. It has also looked at some of the recent developments in
these fields. Other areas covered were software components and faults and an overview
of measuring and quantifying reuse. Finally, some component-based designs and archi-
tectures were discussed.

The next chapter provides an overview of the network tools platform, its architecture,

main components and its state transition model.

Chapter 3: Software Reuse 25

4 Network Test Tools Platform

4.1 Introduction

The motivation for the development of this component-based software system was
mainly to overcome problems identified while developing purpose-built tools from

scratch. The main problems identified were:

Long development times.

Increased costs.

Limited reusability of existing software tools.

Limited scalability of these application specific tools.

Once developed, these tools could only be used for the specific purpose that they were
primarily developed for. New requirements normally meant development of entirely
new tools. The collaborator for this research project, Seven Layer Communications Ltd.,
identified a significant opportunity to develop a powerful, flexible platform for hosting a
suite of network test tools for the telecommunications and networks market.

Network design tools are generally used to plan networks, improve network effi-
ciency, reduce costs, improve performance, and may also be used to predict required
bandwidth for new applications (Mann 1998). Complex test harnesses, implemented
using network test tools, must be capable of running multiple structured tests simulta-
neously. In actual cases, test tools that are based on a single thread are not sufficient and
are not capable of managing multiple simultaneous requests. Amaranth (1998) pre-
sented a system capable of running multiple simultaneous tests using C and T¢l, and
attained a system which is capable of running multiple structured tests, simultaneously.

The proposed development was to deliver a software framework consisting of several
components, which could be reused to develop test tools to meet changing require-
ments. With the presence of such a framework, the developer could use it as a starting
point for the initial development of the system. Having achieved this, the developer

could then focus on developing functions that were strictly specific to the test require-

Chapter 4: Network Test Tools Platform 25

ments. Several functions like memory allocation functions, file handlers, signal handlers,
timing functions, and so on, are housed in the framework as standard components and

therefore avoided the need to rewrite these functions for every tool.

4.2 Problems in developing software tools for net-
work testing

Test tools are generally custom applications designed to test functions delivered by the
target Software-Under-Test (SUT). By virtue of the nature of the test tools being applica-
tion-specific, they are designed and implemented from requirements drawn from the
SUT requirements (Figure 2.2). The aim of the test tool is thus to test, through pass/fail
criteria, whether the software meets the functional specifications. For the results, the test
outcome is fed back into improving the software-under-test and/or into fixing bugs. The
designer can also get an extensive viewpoint on the actual implementation of the system.
Often bottlenecks for hardware and software can be identified only by stress testing each
element of the design.

The deliverables from the test tool development lifecycle - tool suites, test scripts, re-
sults, etc - are supplied back to the SUT development life-cycle before its final release
and deployment. Typical examples of software tools used in network testing (Golam et
al, 2002) are:

e Data generation tools used to simulate network traffic conditions or generate con-
figurable data at known speeds, such as software tools to generate
telecommunications signals to simulate conditions of telecom traffic.

e Data acquisition tools used for data logging and verification, such as tools used to

check sanity of data generated from protocol stacks.

Some of the problems associated with the development of purpose-built tools from
scratch are decreased scope of extensibility of the existing class of tool and reduced effi-
ciency. During the tool development lifecycle, it was observed that certain common

features across tools were rewritten every time new tools were developed.

Chapter 4: Network Test Tools Platform 26

4.3 Network Test Tools Platform Architecture

The proposed architecture was based around reusing common functions that allowed
developers to focus on developing compact tools that were strictly specific to require-
ments. Figure 4.1 shows that the Network Test Tools Platform Architecture consists of

three layers:

e Tools layer. This contains tools that are used for generation, acquisition or verifica-
tion of test data. The Tools layer used available driver functions to communicate to
the hardware.

e Drivers layer. This makes use of third party drivers, such as Ethernet drivers and
I/O card drivers, to communicate to the underlying hardware layer. Drivers were
used for driving Ethernet interfaces without any modifications.

e Hardware layer. In this research, this consists of an Intel x86 processor based sys-
tem, which was capable of loading Windows or Linux operating systems and

Ethernet hardware interface modules (Mod 1 — n).

¢

Tool(s)

Tool
Tool Platform
Layer Operating System ‘
Driver Driver Driver Driver
Layer 1 2 n

y y A A

———————————————— A\ 4 \ 4 A\ 4
Hardware Hardware Platform
Layer e e ‘ e ‘

' Mod1l ' + Mod1 ! ! Modn !

I !

Figure 4.1: Network Tools Platform Architecture

Chapter 4: Network Test Tools Platform 27

Functions available on Linux, like gettimeofday for timing measurements and ptheads
POSIX (Portable Operating System for unIX) threads, were used in the development.
Thread functions implemented in the Tools layer were used for the generation activity
while timing measurements were used to measure Ethernet data transmission times.

The network test tools platform could be used to validate any network-under-test
that used any underlying transmission technology. In the current version of the plat-
form, Ethernet technology was to generate user configurable 100 BASE-T data'.
Ethernet generators are normally used in tests to simulate traffic conditions or to provide
Tool User-configurable data at known speeds to test software. Only one Ethernet gen-
erator was used in the Tools layer to interact with the Ethernet hardware through
drivers.

Ethernet conforms to the data link and physical layers of the OSI model and con-
form to the IEEE 802.3 standard for data frames. Typical tests on the data frame would
be:

e Start and end delimiter test. Ethernet contains a start and end delimiter for the
frame, which is identified with a consecutive sequence of 10101010. A test system
would verify that the system could respond to this, and also simulate incorrect start
and end delimiters.

e Source MAC address test. On a network each node has a unique source 48-bit MAC
address. The testing device must be able to simulate the required range of source ad-
dresses, and also for incorrect MAC addresses, so that the device-under-test can be
tested for incorrect operation.

e Destination MAC address test. The device-under-test should only respond to its
own MAC address, and also to a broadcast network address (which is identified with
the special address of FF-FF-FF-FF-FF-FF).

e Data frame payload tests. The testing system must be able to generate differing sizes
of data frame, to see if the Device Under Test (DUT) can respond correctly to these.
In this research the payload is generated using IP packet, which have been generated

from TCP segments.

I Ethernet is the most widely used Local Area Network (LAN) technology that allowed data transfer rates

of 10 Mbits per second to 1 Gbits per second.

Chapter 4: Network Test Tools Platform 28

Error Detection test. Fach Ethernet frame contains a CRC for error detection. The

testing system must thus be able to generate correctly formed CRC, and incorrect

ones (so that the DUT can detect an error).

The three layers of the architecture are shown in Figure 4.2. This contains a set of core

components and a set of standard components. In this case it is an example of the

components in the context of the Ethernet example.

3 Standard

o

Type Registry

F——— === === === -
chrmma na Ethernet
ankl control _gﬁ’v
Ethernet Module
4 Tool Fie |
Command Command Data |
parser Language 1 ¢
Module Eth‘ar Traffic
profile
1
C!Jmmand Ethernet
anki Comrél HW
P Ethernet Module
______ -—-=-1

Instant Registry

Asynch. Event
controller
component

Loader & Linker
component

Data Delivery
component

'¢' Interface

Ethernet Data generator using two Ethernet modules. Interactive User
control is provided through the ‘Standard 1/O’ component and File

modules provide Ethernet data to the tools.

Chapter 4: Network Test Tools Platform 29

4.4 Core Platform Components

Core components are components that are generally present in the platform and are
used in every network test tool. Various components in the platform are used to imple-

ment the generator. They include:

e Loader and Linker component. These are used to load shared library modules to
create individual instances of all the components in the platform and individual in-
stances of all Ethernet modules.

e Data delivery component. This is used for steering blocks of data from one part of
the software system to another, in a known and controlled manner.

e Asynchronous event controller. This component provides a common mechanism
for controlling and responding to asynchronous events, which can be any or all of

the following:

e File Input/Output.

e Socket Input/Output.
e Timing.

e Signal.

e Alarms.

e Network events.

e Tool User interactions.

e Type Registry. This records each instance of a particular type of component present
in the platform. Type and Instance Registries are used to track and find active in-
stances of components within a platform.

e Instance Registry. This keeps a count of instances of a particular type of component
in the platform. For example, if the platform uses two instances of the Ethernet
component to generate data, then the instance register records these with different

names under the Ethernet generator type.

Chapter 4: Network Test Tools Platform 30

4.5 Standard Platform Components

Standard platform components depend upon the choice of interpretive language support

provided. Various components in the platform are used to implement the generator.

These include:

e Standard Input/Output. The ‘Stdlo’ component provides the gateway for Tool
User control over the platform.

e Command Parser. This translator component parses user commands to meaningful
commands for the command interpreter.

e Tc Command Interface. This provides a common programmatic interface for con-

trolling the platform using an interpretive language.

4.6 Tool User Control Over The Platform

Command line control was introduced in order to provide a better programming envi-
ronment, and was used to configure the network test tool platform to test the network-
under-test. This method represents the communication medium between the Tool User

and the environment. Normally, command interpretation is done in two distinct stages:

1. The interpreter layer interprets the Tool User command and invokes the relevant
software system component.

2. The software system component then performs the requested operation.

The command line interface is implemented using Tcl (Tool Command Language),
which is an interpreted language with programming features, available across platforms
running the Unix, Windows or Apple Macintosh operating system. Tk, the associated
toolkit, is an easy and efficient way of developing Windows-based applications. Applica-
tion tasks at the lowest level were developed as C/C++ modules, and integrated with Tkcl.
The modules were then exported as new Tcl commands. The Tool User executes indi-
vidual modules using this new command. A collection of Tcl commands in a script was
composed to make the overall application. The scripting language, much like any shell
language, has the ability to access and execute other programs. Several Tcl based applica-

tions can be made to work together to create a new application or extend an existing

Chapter 4: Network Test Tools Platform 31

one.

4.7 State Transition Model

The operation of the network test tools platform follows a state transition model from

power up to shutdown. Figure 4.3 shows the state transitions based on Tool User com-

mands, which allow a Tool User to configure the generator and prepare the operating

environment before actually generating data. Appropriate queries can be made to deter-

mine the state of the software system at any time. A typical test run for the Ethernet

generation consists of:

Power on.

Initialisation. The network test tools platform, including test tools, are created and
initialised. This would bring the state of the Ethernet generator to ‘not configured’.
Basic Configure. The tool is configured, communication to the Ethernet driver is
established, and a socket is opened for communication. A Tool User defines the con-
tents of an Ethernet frame.

Start. This action from the Tool User triggers the start of the Ethernet data genera-
tion.

Pre-Run Check. After a primary pre-run check, the Ethernet data generation starts in
a separate thread.

Stop. On completion of the generation thread, the state of the generating engine
would advance to halt again. If a trigger from the Tool User is received, generation

would start again.

Chapter 4: Network Test Tools Platform 32

@ o

knitialise tool

Do Configure Data
Initialised Config-
Do Configure (FAIL) uring

Re- Halt
Configure Tool
Data (FAIL) | (PASS)

> 'QOFF

Repeat PreRunCheck

START

(FAIL)
Advance to STOP
Not Running
Go to Stop
» [Waiting
To Stop
Start Return to

Generation | Not running

Figure 4.3: State transition based on incoming commands (config, start,
stop) from Command handler. Data generation is managed as

a single and separate thread

4.8 Summary

This chapter presented an introduction to the Tools platform and the problems that led
to its design and development. An overview of the tools platform architecture was pre-

sented which depicted its use in the context of network testing. Components that made

Chapter 4: Network Test Tools Platform 33

up the tools platform were also presented in this chapter. The final section outlined the
sequence of states and operations of the tools platform, during a typical generation proc-
ess, through the use of a state transition diagram. The next chapter presents a case study

involving this platform and discusses the results obtained from test results.

Chapter 4: Network Test Tools Platform 34

5 Case Study and Results

51 Introduction

The reason for reusing software is to attain a greater return on development time than

traditional approaches. Some proposed methods of attaining software reuse are to:

e Specify structured system specifications.
o Use smaller logical components to build a complex system.
e Detailed planning of software components through the use of object-oriented busi-

ness and system modelling.

Several component based modelling techniques are used to construct a basic framework
with reusable components (Chuang et al, 2001, Stallinger et al, 2002, Milli et al, 1995,
and Szyperski, 1998). Having done this, each component is then rigorously modelled
and potential mismatches between components are resolved to adapt to the new envi-
ronment (Hongxia et al, 2001). A key problem in software reuse is the selection of
appropriate components for satisfying a given requirement, which must be applied to
different domains of application (Redondo et al, 2002). Since this is not possible in the
very first iteration, components are used to make up the basic framework of the software
system, and then fine-tuned in several iterations in order to attain the level of perform-
ance that one would expect from a bespoke software system.

In this application, the network test tools platform was composed of several compo-
nents which are used to control a tool. This tool generates 100BASE-T Ethernet frames
in quick successions. Data frames are configured so that the actual payload in frames
could be altered and re-sent. This is typically used to test network software under differ-
ent payload conditions and error conditions for which errors are actually introduced by
the Tool User into the Ethernet frames.

In order to assess the usefulness of the platform, a purpose-built tool was used to op-
erate under similar conditions and perform exactly the same operation as the platform.

This purpose-built tool existed before the implementation of the tools platform and

Chapter 5: Case Study and Results 34

used the same third-party drivers, and had a similar architecture. The difference was that
the purpose-built tool did not use any of the prefabricated components from the plat-

form in the Tools layer, but did use the underlying driver and the hardware layer.

5.2 Objectives

The objectives of testing the network test tools platform were to verify the following

ideas:

1. The generic component-based model attains a greater return on development
time than traditional approaches (Hall et al, 1997 and McClure, 1997).

Test method: This could be tested by developing a network test tool using two
approaches — one using the reusable component-based model and the other us-
ing traditional methods to develop a bespoke monolithic tool — and then

individually testing them for savings in development times.

Implementation details: This test could not be performed owing to limited pro-
ject timelines and lack of developers who could individually verify the two
approaches. New product development in the company, however indicated con-
siderable savings in development time when core components (Section 4.4 Core

platform components) were used from the platform.

2. The network test tools platform could achieve the same or comparable levels of
performance as those obtained from bespoke tools. The main research problem
identified was to reduce the development time of network test tools and to
achieve the same or comparable levels of performances as those obtained from be-

spoke tools (Chapter 1, Introduction, Section 1.2 Research outline.)

Test method: Subject the reusable Network test tools platform to the same opera-

tion, as that of a bespoke tool. The task selected was to generate user-
configurable 100 BASE-T Ethernet data at specified rates.

Chapter 5: Case Study and Results 35

Implementation details: This approach was tested using the new network test
tools platform and a bespoke tool that existed prior to the implementation of the

tools platform. The case study is presented in the following sections.

5.3 Test set-up and test procedure

The aim was to use the component-based model to attain similar performance levels of
the bespoke tool. They generated 1000 Ethernet frames with varying payload sizes (120-
1514 bytes) over a 100BASE-T line, at the maximum given speed. As shown in Figure
5.1, Ethernet frames are generated from a transmitting computer on a 100 BASE-T line
and were received by another system, and checked for correct formats and sizes.

To assess performances, the following were measured;

e Bit transfer rate of data in Mbps, and
e Percentage utilisation of the 100BASE-T line.

The effects of the component-based software model were studied in two stages. The first
stage deployed the individual components and studied the desired level of performance
and system flexibility. The second stage fine-tuned each of the components to attain the
desired degree of performance as that of the purpose built tool and studied the perform-

ance of the network tools platform with respect to the purpose built tool.

Ethernet generation using: Ethernet reception done
1. Tools platform. using tool ethrx, in both
2. Purpose-built tool. cases

Transmitter Receiver

100BASE-T line

Figure 5.1: Test setup using two hosts to generate and collect Ethernet frames. Frames

generated were verified for correctness at the receiving host

Chapter 5: Case Study and Results 36

54 Sample calculations for maximum theoretical
throughput

The software system used Ethernet frames that are units of Ethernet data containing a

source and destination address. An Ethernet frame conforming to IEEE 802.3 has:

e Preamble (7 bytes)!. This informs all the other nodes on the segment that the node
wishes to communicate, and should be enough time to detect that another node is
trying to communicate at the same time.

e Start of frame delimiter (1 byte)2. This identifies that the next part of the frame
contains the destination address.

e Destination address (6 bytes)3. This is a 48-bit MAC (Media Access Control) ad-
dress4, and is the physical address of the destination node.

e Source address (6 bytes). This is the MAC address of the originator of the data
frame.

e Type information (2 bytes). This typically contains information which defines the
length of the data frame. There are several different types of Ethernet data frames,
such as Ethernet SAP, Ethernet SNAP, Ethernet II and Ethernet 802_2, which have
slightly different implements of the Ethernet standard.

e Data payload (46 to 1500 bytes)>. The minimum frame payload is 46 Bytes.

e Frame check sequence (4 bytes). This is an error detection scheme, and uses the
standard CRC-32 conversion.

I The Preamble bit patterns is 10101010...1010.

2 The standard start-of-frame bit pattern is 10101011.

3 A special address of FF-FF-FF-FF-FF-FF can be used as a broadcast address, in which all the nodes on
the segment listen to the data frame. The broadcast address is typically used to determine the MAC
address of a host, which has a known IP address. This process is known as ARP (Address Resolution
Protocol).

4 The first 24 bits identifies the manufacturer of the network card, and the second 24 bits identifies the
serial number of the NIC (Network Interface Card).

5 A data frame which is less than 46 Bytes is known as a runt, and a data frame which is greater than

1514 Bytes is known as a giant.

Chapter 5: Case Study and Results 37

A single transmitting node that does not suffer any collisions achieves the maximum

frame rate. This implies a frame consisting of 72 bytes with a 9.6 ps inter-frame gap

(corresponding to 12 Bytes at 10 Mbps) corresponds to 84 bytes (Fairhurst, 2001).

Frame Part Minimum Size Frame (Bytes)
Inter Frame Gap (9.6ps) 12

MAC Preamble (+ SFD) 8

MAC Destination Address 6

MAC Source Address 6

MAC Type (or Length) 2

Payload (Network PDU) 46

Check Sequence (CRC) 4

Minimum Frame Physical Size 84

The maximum number of frames per second is:

Frames =

Ethernet _Data _Rate

max

(5.1)

Total _ Frame _ Physical _ Size(bits)

For a maximum payload of 1500 bytes, the entire frame has the following content:

10,000,000

Frames,,,, = Baxt) 14,800 frames / sec (5.1)
Frame Part Maximum Size Frame (Bytes)
Inter Frame Gap (9.6ps) 12
MAC Preamble (+ SFD) 8
MAC Destination Address 6
MAC Source Address 6
MAC Type (or Length) 2
Payload (Network PDU) 1500
Check Sequence (CRC) 4
Maximum Frame Physical Size 1538

The largest frame consists of 1526 Bytes with a 9.6 ps inter-frame gap (corresponding to
12 bytes at 10 Mbps). The total utilised period (measured in bits) therefore corresponds

t01538 bytes. The maximum frame rate is:

Chapter 5: Case Study and Results 38

Ethernet _Data _ Rate
Total _Frame _ Physical _Size(bits) (5.3)

Frames ., =

Frames ., = 812.74M

sec (5.4)

The link layer throughput (i.e. number of payload bits transferred per second) is:

Throughput = Frame Ratex Size of Frame Payload (bits)
=812.74%x(1500x8)
=9,752,880 bps

This represents a throughput efficiency of 97.5 %.
Now, considering parts of the physical frame over which the user has control, we find
that the user may generate a frame of maximum size of 1514 bytes. The part of the

physical frame over which the user has no control (shown shaded in the table below)

adds up to 24 bytes.

Frame Part Bytes under control of user | Bytes not under user-control
Inter Frame Gap (9.6ps) 12

MAC Preamble (+ SFD) 8

MAC Destination Address 6

MAC Source Address 6

MAC Type (or Length) 2

Payload (Network PDU) 1500

Check Sequence (CRC) 4

Total bytes 1514 24

Therefore the percentage utilisation for a maximum sized frame, is given by:

Maximum percentage utilisation = Bytes in use / Total bytes x 100%
= 1514/1538 x 100 %
=98.4%

Chapter 5: Case Study and Results 39

5.5 Case Study Results

All the frames sent out from the transmitting machine were received in both cases (using
tools platform and purpose built tool) by the receiving machine. Performance was meas-
ured by sending frames at the maximum possible speed with variable payload sizes of x
bytes. A fixed number of frames were sent out and the corresponding times for sending
out this number of frames were recorded (z seconds). The actual number of bytes trans-
mitted was obtained by multiplying the number of frames sent out with the payload
sizes in bytes. This is the value y bytes shown in Table 5.1. Rate of bit-transfer on a 100
BASE-T line was calculated as follows.

5.1.1 Results before optimisation

This section outlines the first set of results that were obtained from the tools platform
against the purpose-built tool, both operating under similar conditions. Table 5.1 shows
bit transfer rate results values of frames with sizes from 120 bytes to 1514 bytes. Results
obtained for the platform and the purpose built tool for maximum payload sizes of 1514

bytes were as follows (Figure 5.2):

Platform 23.11%
Purpose-built tool 69.92 %

Chapter 5: Case Study and Results 40

Table 5.1 - Performance of platform against purpose built tool

Sr. No Frame Len Total bytes Time Rate Total bits Time Rate (Mbps)
(x bytes) sent sent

(x1000b) (*s€9) (Mbps) (x1000b) (¥s€9)

(y bits) (y bits)

Purpose-built tool Platform
1 120 960 0.08335 11.52 960 0.72 1.33
2 240 1920 0.08735 21.98 1920 0.734 2.62
3 360 2278 0.07441 30.61 2278 0.721 3.99
4 480 2822.4 0.0748 37.73 2822.4 0.539 7.12
5 600 4800 0.10559 45.46 4800 0.507 9.47
6 720 5760 0.11171 51.56 5760 0.512 11.25
7 840 6720 0.10432 64.42 6720 0.512 13.13
8 960 7680 0.10125 75.85 7680 0.516 14.88
9 1080 8640 0.12453 69.38 8640 0.52 16.62
10 1200 9600 0.10189 94.22 9600 0.521 18.43
11 1320 10560 0.12421 85.01 10560 0.522 20.23
12 1440 11520 0.16218 71.03 11520 0.525 21.94
13 1514 12112 0.17322 69.92 12112 0.524 23.11

Chapter 5: Case Study and Results 41

___| Platform

100.00 I Purpose built tool
80.00 |
7 60.00
=3
§ 40.00
20.00 1
0
120 240 360 480 600 720 840 960 1080 1200 1320 1440 1514
Frame size (bytes)
Figure 5.2: Performance of platform against purpose-built tool
5.6 Reasons for poor performance of platform

The test results demonstrated the expected results that the purpose-built tool was far
superior to the general-purpose component based model. The main reasons for the poor

performance of the platform were due to:

e Activity overheads like command parsing, copying data between various components
slowed down real-time data generation in the platform.

e DPerformance was reduced as data generation by the platform was carried out asyn-
chronously, that is, the user could execute other activities, such as configure the next
set of data to be generated or log results, while generation was in progress. This was
a great advantage over the bespoke tool, but slowed down the real time data genera-

tion activity. In contrast, the bespoke tool generated Ethernet data synchronously,
g Y Yy

Chapter 5: Case Study and Results 42

and therefore performed better.
The platform used several components to construct the basic framework of the sys-
tem. This was the first iteration of the components, which worked together to

achieve a common goal, but required further improvements.

5.7 Optimisation techniques

The second iteration was mainly based around optimising several components in the

platform to improve the overall performance. The Ethernet component, the File handler

component, and the Tcl component (Figure 4.2: Ethernet data generator) underwent

major changes so that real time data generation could be separated from the user time

activities. These include changes in the design and code level, particularly:

An Ethernet data generation thread was used in the application to greatly improve
the performance of the generation activity. The network test tool now simulated
real-time conditions available in the bespoke tool by using a dedicated thread to
manage the data generation activity. The master thread was still used, but was
mainly used for user time activities in the test tool (command parsing and query-
ing)°.

As an improvement over the previous version of the tools platform, data was now
stored in a common area. All components that required access to the data were pro-
vided with a pointer to the data. This avoided unnecessary copying of data between
components and therefore improved real-time performance.

The State transition model for data generation was remodelled (Figure 4.3: State
transitions based on incoming commands). The operation of the network test tools
platform followed the state transition model from power up to shutdown, which al-
lowed the Tool User to configure the generator and prepare the operating
environment before actually generating data. In such a system, generation threads
were created to generate data and then destroyed after the real-time generation activ-

ity had been successfully completed.

6

We used POSIX (Portable Operating System for UNIX) compliant threads under Red Hat Linux 7.0

for our application

Chapter 5: Case Study and Results 43

5.8 Results after optimisation

Table 5.2 shows bit transfer rate results values of frames with sizes from 120 bytes to
1514 bytes. Results obtained for the platform and the purpose built tool for maximum

payload sizes of 1514 bytes were as follows:

Platform 98.43%
Purpose-built tool 98.48%

Results obtained from the platform were found to be consistent with the purpose built
tool thereby proving the fact that there was insignificant loss of performance of the plat-
form when compared to a purpose built tool and was therefore a good Ethernet
generator. Figure 5.3 shows the comparison the percentage utilization of the tools plat-
form with respect to the purpose built tool. The tools platform was observed to closely
follow the behaviour of the purpose built tool and therefore proved that there was no or

minimal loss of performance for the platform to carry out the generation activity.

Chapter 5: Case Study and Results 44

Table 5.2: Performance of platform against purpose-built tool

Sr. No Frame Len (x Total bits sent Time Rate Total bits sent Time Rate (Mbps)
bytes) (1000 bits) ~ (#5°) (Mbps) (X1000 bits) ~ (*5¢9)
(v bits) (y bits)
Purpose-built tool Platform
1 120 199904 3.325 60.12 199904 5.152 38.80
2 240 396480 5.000 79.30 541544 7.322 73.96
3 360 450504 5.136 87.71 450504 4.823 93.40
4 480 1366056 14.348 95.21 1366056 14.382 94.98
5 600 616352 6.410 96.15 616352 6.497 94.87
6 720 725880 7.505 96.72 725880 7.514 96.60
7 840 784120 8.064 97.24 784120 8.072 97.14
8 960 550312 5.636 97.65 550312 5.640 97.57
9 1080 921824 9.420 97.86 921824 9.419 97.87
10 1200 635600 6.478 98.12 635600 6.488 97.96
11 1320 913304 9.305 98.16 913304 9.297 98.24
12 1440 1082928 11.004 98.41 1082928 11.001 98.44
13 1514 771320 7.832 98.48 771320 7.836 98.43

Chapter 5: Case Study and Results 45

—_—

Pla

orm
120.004 v I PurHose built tool

100.001

80.00 4

————]

60.00 4

40.00 1

Rate (Mbps)

20.00 1

e

R R R R BB ER R BRI,
R R R R RRRs
R R R R ERIRRaR
R R R R ERIRRaR

]
S AR
R R R R BB ER R RaRERERes,
R R R R R BB ERERRy
R R R R R BB ERERRy

L e e e e et

|

40 360 480 600 720 840 960 1080 1200 1320 1440 1514
Frame Size (bytes)

0.00 -
120

N

Figure 5.3: Performance of platform against purpose-built tool

5.9 Sources of errors

The main source of error is the effect of:

e Varying CPU usage. Times recorded for complete data transfer are not consistent
over a series of test runs. This is due to other processes claiming CPU usage at any
time and was beyond the control of the generation process.

e Timing measurements. This was greatly influenced by the use of time functions pro-
vided under Linux 7.0. Though the time functions provide time intervals of 1ps,

they are not accurate to that degree.

These errors apply to both the platform and the purpose-built tool.

5.10 Discussion of results

The high performance obtained by the network test tools platform was due to the use of
a separate child thread for generation that replicated dedicated test conditions of a pur-

pose-built tool. A child thread was required in this case because activities not concerned

Chapter 5: Case Study and Results 46

with the generation process (file I/O, data logging, querying, etc) were separated out in
the master thread and the child thread was concerned only with the generation activity.
The purpose built tool did not require a separate thread as no user time activity was im-
plemented.

During the data generation process in the platform, a child thread was created when
the state reached ‘Notr Running’ (Figure 4.3). When the state of the platform progressed
to ‘Running’, the platform simulated the exact running condiitons as the bespoke tool
and hence produced almost identical results.

The use of an Ethernet data generation thread influenced the performance of the
generation activity. By logically separating the Tool User time activity (command pars-
ing, querying, etc) from the real-time generation activity, the network test tool closely
simulated real-time conditions available in a purpose-built tool. Customised thread
packages are provided in different environments for attaining parallelism. Being stan-
dardised, they allow the Tool User to write portable programs’” (McCarthy et al, 1997).
Each package provides mechanisms to spawn and join parallelism. The implementation
of such mechanisms greatly influences the type of parallelism, which can be exploited at
the application level (Xavier et al, 1999). Each of the child threads must wait until the
child thread with the longest execution time finishes before joining to the master thread.
Hence, at the application level, the master process is always dictated by the child thread
with the longest execution time.

Parallelism was achieved in the platform by spawning a child thread at run-time and
delegating all data generation tasks to it. The child thread logically separated itself from
the slow activities of the parent thread and therefore obtained better results. The gener-
ating thread on completion joined itself to the main thread.

The main advantages of a Network Test Tools platform were:

e The provision of an operating environment to configure and control all tools. Tool
Users could choose from a family of commands like configure, reconfigure, start,
stop, load, unload, delete, and so on, through the use of a published command line

interface.

7" These are programs that are written for programs to be used across different multi-platform environ-

ments

Chapter 5: Case Study and Results 47

e Communication between components inside the platform was manageable and well
understood with the use of published interfaces. This allows Tool User access to
components already available within the platform, or to develop new components to
add to the platform suite.

e A programmable Tool User control over the platform allowed automatic and com-
plete test executions through the use of test scripts.

e The provision of multi-tool support.

The result are monitoring and data logging tools to capture test results and monitor test
progress. Problems identified during tool development were the lack of precise control
over tools, the lack of understanding of system states usually important for debugging
and logging test results and the increase of performance overheads for individual tools.

A network test tools platform could reduce the testing time of network maintenance
and evolution, as the development and configuration of the networks test tool itself is
made much shorter through the reuse of core and standard components. Reusable test-
ing components could also bring consistency and reliability to the testing process. The
platform supported scalability by allowing Tool Users to add new components.

A concern with using reusable components to build network test tools is the antici-
pated increased processing overhead, such as, increased embedded memory or processing
time. This is incurred to accommodate the additional variability that often makes a
component more reusable and is often a deterrent to a component-based software devel-
opment approach.

In this research, we have demonstrated that the performance of the network test tools
platform compares favourably with the performance of the purpose-built network test

environment.

Chapter 5: Case Study and Results 48

6 Conclusions

6.1 Outline

While Chapter 5 details our findings with respect to the case study, this chapter outlines
our main objectives, the extent to which these have been met, the scope for improve-
ments and future work. This research was identified as a significant opportunity to
develop a reusable tools platform, as the development of bespoke network test tools was
inefficient owing to typically long development times, increased costs, and limited scal-
ability of these application specific tools (Chapter 4, Network test tools platform). The

objectives were to:

o Research the various options available for developing a reusable framework.

e Compare such a framework with a bespoke tool.

e Reduce the general development time of new tools through this reuse and to recover
some of this investment (Hall et al, 1997 and McClure, 1997).

The advantages from the developed system were:

e Extensibility. The tools platform could be used to provide new functionality and to
include new execution properties that extended an existing service. Design of similar
function could be included to an existing tool suite. This, along with reusability,
gave the approach of tools platform its strength.

e Reusability. Multiple related services for different applications could be used with
the use of individual functions rather than having to implement entirely new ser-
vices. Development was based around standardised components that had been
tested. These components served as standard building blocks and integrated well
into specific development with minimum rework.

e Configurability. Customised services could be provided by adding new functionality
to the platform. The platform provided the basic software framework for such addi-

tions. Developers could make use of the available interfaces available within the

Chapter 6: Conclusions 49

platform or define their own when developing new components.

6.2 Review of objectives

Our main research problem was to reduce the development time of network test tools
and to achieve the same or comparable levels of performances as those obtained from
purpose-built tools. Our research involved investigation into areas of software reuse,
tools platforms, networking, and component-based software design and techniques. This
led to literature searches to particularly focus on publications such as tools platforms
used for authoring environments and designing objects, software simulators in a shared
environment, component-based agent architectures, environment-adaptive computation
models and models which reused investment planning and improvements in develop-
ment processes and software engineering (Chapter 3 Software Reuse).

Along with this, the research has developed a novel software platform, which was
used to appraise the research (Chapter 4 Network test tools platform). The platform is a
component-based software framework that could specifically target network testing and
overcome inefficiencies identified, while developing bespoke network tools for new re-
quirements. The work has been presented at the Industrial Track, IEEE ECBS 2002
Conference in Lund, Sweden (ECBS, 2002). The model was tested against a bespoke
tool and levels of performance of the platform were found to closely follow that of the
bespoke tool (Chapter 5 Case Study and Results).

The test results obtained achieved our objective of researching and developing a reus-
able software platform that obtained acceptable levels of performances. Our second
objective of testing whether this generic component-based model attained a greater re-
turn on development time than traditional approaches could not be performed owing to

lack of time and manpower (Section 5.2 Objectives, Chapter 5 Case study and results).

6.3 Discussions

A concern with using reusable components to build network test tools is:

e Anticipated increased processing overhead.
o Increased memory (particularly embedded memory) or processing time

o The additional variability for making a component more reusable

Chapter 6: Conclusions 50

These reasons above may act as deterrents to the component-based software develop-

ment approach. However, the use of a reusable software system could:

e Reduce the testing time of network maintenance and evolution.

e Add consistency with reusable testing components.

e Add reliability to the testing process.

e Make development times shorter. The development and configuration of the net-
works test tool itself is made much shorter as they are strictly specific to the test

requirements. All other generic functions are derived from the reusable framework.

6.4 Further work

In our research, we have focused on generic building blocks (Milli et al, 1995) and com-
ponent-based software engineering (Szyperski, 1998). Our approach has been the
development of reusable components from available libraries. In contrast, Griss (1993)
describes methods by which developers could browse libraries for a component, rather
than designing a product from available components. This approach could potentially
find application when the network tools platform hosts a fair number of components
and/or attains a certain degree of maturity.

Our proposed application was developed with a target application domain in mind,
namely, the network test tool domain. We have developed a generating engine, which
was capable of generating user-configurable 100 BASE-T Ethernet data. The compo-
nent-based network test tool could be potentially expanded to include other network
test tools. A possible future development would be the design and development of an
acquisition engine, which would be capable of accepting network traffic and checking
the correctness of data and looking for error conditions. In addition, the platform frame-
work could be expanded to include other components in order to cater to both network
and non-network testing requirements.

We have found in our journal research that a considerable amount of work has been
done in application run-time models in which models adapt to different run-time envi-
ronments (Lam et al, 2002 and Ubayashi et al, 2002). Objects in the software system
usually have a predefined role throughout their lifetimes. Ubayashi et al. (2002) have

Chapter 6: Conclusions 51

proposed an environment-adaptive computation model (epsilon computational model),
which derives its run-time information from the language side and allow objects to
change their roles dynamically along with the progression of computation. This ap-
proach could be added as a separate higher-level functionality to our network test tools
platform, especially in cases where several network tests must be carried out by the same
platform. Complex Regression testing would typically require several tests to run back-
to-back or several of the these chains in parallel. In cases, where sub-tests fail or error
conditions appear in the execution of the sub-test, the master process must decide the
progression of the test. This could mean that the chain of tests may need to continue,
stop, wrap-up or halt depending upon the structure of the whole testing mechanism.

A key factor of the measurement of reuse would be to use reuse rate measurements

(Rothenberger et al. 1999).

Chapter 6: Conclusions 52

References

Amaranth P (1998) A Tcl-based multithreaded test harness. Proceedings of the Sixth An-
nual Tcl/Tk Conference. USENIX Assoc. pp69-77.

Aniorte P, Seyler F (2002) Distributed software: from component model to software
architecture. /77 2002. Proceedings of the 24th International Conference on Information
Technology Interfaces. Univ. Zagreb. Part vol. 1. pp455—64.

Arango], McKinley P (2000) Vguide: Design and performance evaluation of a synchro-
nous collaborative virtual reality application. Proceedings of the IEEE International
Conference on Multimedia and Expo, July 2000.
hitp:/lciteseer.nj. nec.com/arango00vguide. html

Atkinson C, Bunse C, Groff H-G, Kiihne T, (2002) Towards a general component
model for Web-based applications. Annals of Software Engineering, vol.13, 2002.
pp35-69.

Baldo] Jr (1998) A measurement framework for organizational software reuse attributes.
Joint Conference on Intelligent Systems 1999 (JCIS'98). Assoc. for Intell. Machinery. Part
vol. pp523-526.

Batory D, O'Malley S (1992) The design and implementation of hierarchical software
systems with reusable components. ACM Transactions on Software Engineering and

Methodology, Vol 1, No 4, October 1992. pp355-398.

Berard E (1993) Life Cycle Approaches, Chapter 4 in Essays on Object-Oriented Software
Engineering. Prentice Hall.

Beys P, Benjamins R, Heijst G (1996) Remedying the Reusability -- Usability Tradeoff
for Problem-Solving Methods. Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-Based Systems Workshop, Alberta, Canada. pp2-1,2-20.

Bhatti T, Hiltunen A, Schlichting D, Chiu W (1998) Coyote: a system for constructing

fine-grain configurable communication services. ACM Transactions on Computer Sys-

References: 65

tems, Volume 16, Issue 4. pp321-366.

Biggerstaff T, Richter C (1987) Reusability framework, assessment, and directions. Pro-
ceedings of the Twentieth Hawaii International Conference on System Sciences 1987.
Hawaii Int. Conference Syst. Sci. 1987 Honolulu, HI, USA. vol 2. pp502-12

Bylund M, Espinoza F (2002) Testing and demonstrating context-aware services with
Quake III Arena. Communications of the ACM, vol.45, no.1, Jan 2002. pp46-8.

Chen H, Tse T, Chen T (2001) TACCLE: a methodology for object-oriented software
testing at the class and cluster levels. ACM Transactions on Software Engineering and
Methodology, 10, 1 Jan. 2001. pp56 — 109.

Chuang S, Chen C, Deng-Jyi C, Chen D (2001) The design and implementation of
multimedia reusable components. Proceedings of the ISCA 3rd International Confer-

ence Information Reuse and Integration. Int. Soc. Comput. and their Applications —
ISCA, 2001. pp97-101.

Crispen R, Stuckey L (1994) Structural model: Architecture for Software Designers.
Boeing Defence and Space Group ACM Press Series-Proceeding. pp272-281.

Doroshenko E (1998) Toward a method for deriving measures of reuse. Proceedings

1998 Australian Software Engineering Conference, IEEE Comput. Soc. pp170-83.

Fairhurst G (2001) Ethernet frame calculations, Last updated Oct 2001. Retrieved Sep-
tember 2002 from hitp:/fwww.erg.abdn.ac.uklusers/gorry/coursel/lan-pages/enet-cale. html.

Ferrero A (1999) The Eternal Ethernet, Second Edition. Addison-Wesley ISBN 0-201-
36056-X.

Fricke S, Albayrak S, Meyer U, Bamberg B, Tobben H (1998) A development and test
environment for agent-based telematic services. Intelligent Agents for Telecommunica-
tions Applications Basics, Tools, Languages and Applications, 10S Press. 1998,
Amsterdam, Netherlands. pp225-51.

Golam H, Ian S, Buchanan W, Munoz J, Mannion M (2002) Development Model for a

References: 66

Component-based Tools Platform. Workshop On Component-Based Software Engi-
neering: Composing Systems from Components, April 10-11 2002, Lund University,
Lund, SWEDEN.

Griss M (1999) Architecting for large-scale systematic component reuse. Proceedings of
the 1999 International Conference on Software Engineering, ACM. New York, USA.
pp615-16.

Hall P, Lingzi] (1997) The Re-engineering and reuse of software. Soffware Engineering,
The Open University, IEEE Computer Society, The Institute of Electrical and Electronics
Engineers, Inc. 1997.

Hongxia J, Santhanam P (2001) An approach to higher reliability using software com-
ponents. Proceedings 12th International Symposium on Software Reliability Engineering,
IEEE Comput. Soc. 2001. pp2-11.

Houhamdi Z (2002) Integrated support for software reuse in CASE. Modelling and
Simulation 2002. 16th European Simulation Multiconference. ESM'2002. SCS Europe.
ppl08-14.

Jia Y, GuY (2002) Domain feature space based semantic representation of component.
Ruan Jian Xue Bao/Journal of Software, vol.13, no.2, Feb. 2002. pp311-16.

Khorshid W (1988) Generating Environments for Programming-in-the-large. Computer
Science Department; Wayne State University; Detroit, MI 48202. Proceedings of the
1988 ACM sixteenth annual conference on Computer science.

Kuczora M (2000) NDS and ZENworks of Novell Proposal of network administration
tools. Wydawnictwo Politech. Slaskiej. Studia Informatica, vol.21, no.1, 2000. pp731-
9.

Lakshmi S, Venkat V (1996) T¢cl Tk cookbook. Advanced Interactive Systems Division,
Department ~ for ~ Computing and Information Systems — Department
Rutherford Appleton Laboratory, Chilton, Didcor. OX11 0QX.

Lam T V, Lixin T (2002) Customizable software component run-time model.

References: 67

MASPLAS'02. Proceedings of the 8th Annual Mid-Atlantic Student Workshop on Pro-
gramming Languages and Systems. Pace Univ. 7.1-7.12.

Lewis O, Mannion M, Buchanan W (2000) Performance Issues of Variability Design
for Embedded System Product Lines. 22nd International Conference on Software En-
gineering (ICSE), Limerick.

Lowell J (1988) Software Evolution, The Software Maintenance Challenge Chapter 1. John
Wiley & Sons, Inc. 1988, ISBN 0-471-62871-9.

Lugi G (2000) A survey of software reuse repositories. Proceedings Seventh IEEE Interna-
tional Conference and Workshop on the Engineering of Computer Based Systems (ECBS
2000). IEEE Comput. Soc. pp92-100.

Mann K (1998) Modelling goes out of fashion network design tools. Nerwork News (UK
Edition), 28 Oct. 1998, 38. Publisher: VNU Business Publications, UK. pp35-36.

Marinescu R (1999) A multi-layered system of metrics for the measurement of reuse by
inheritance. Proceedings Technology of Object-Oriented Languages and Systems. IEEE
Comput. Soc. ppl146-55.

Martorell X, Ayguadé E, Navarro N, Corbaldn], Gonzdlez M, Labarta J (1999) Thread
fork/join techniques for multi-level parallelism exploitation in NUMA multiproces-

SOfTS. Proceedings 0f the 1999 international conference on Supereomputing. pp294 —301.

McCarthy M, Linux] (1997) What is Multi-Threading? ACM 1997, ISSN:1075-3583,
Article 3. hitp:/fwww.acm.orglpubs/citations/journals/linux/1997-1997-34es/a3-

mecarthy/#abstract.

McCarthy M, Linux J (1997) Thread-Specific Data and Signal Handling in Multi-
Threaded Applications. ACM 1997, 36es (Apr. 1997), Article, 3
hitp:/fwww.acm.orglpubs/citations/journals/linux/1997-1997-36esla3-mccarthy/

McClure C (1997) Harvesting components for reuse. Object Magazine, vol.7, no.7, Sept.
1997. pp58-9, 62-4.

References: 68

Mcllroy D (1968) Mass-produced software components. In P. Naur and B. Randell,
editors, Software Engineering, NATO Science Committee report. pp138-155.

McKinley P, Malenfant A, Arango J (1999) Pavilion: A Middleware Framework for
Collaborative Web-Based Applications. Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work, Phoenix, Arizona, November
1999. pp179-188.

Mibe R, Takahashi S (2002) A method for software reuse in information and control
software systems development. Transactions of the Institute of Electrical Engineers of
Japan, Part C, vol.122-C, no.5, May 2002. pp851-9.

Milli H, Mili F, Mili A (1995) Reusing Software: Issues and Research Directions. /EEE
Transactions on Software Engineering, Vol. 21, No. 6: June 1995. pp528-562.

Moreira A (1999) Proof preservation in component generalization. FM'99 - Formal
Methods. World Congress on Formal Methods in the Development of Computing Systems.
Proceedings, Vol.Il. (Lecture Notes in Computer Science Vol.1709). Springer-Verlag.
Part vol.2.

Olarnsakul M, Batanov D (2000) A component co-ordination model for customization
and composition of component-based system design. Seventh IEEE International

Conference and workshop on the Engineering of Computer based systems. 3-7 April 2000.

Taylor P (2001) Process Support for Component Factories on the Internet. PhD, Feb
2001. University of Ulster.

Park Y, Wu L (2002) Software component retrieval by composition using semantic
properties. International Journal of Computers & Applications, vol.24, no.1, 2002. pp8-
13.

Parnas D (1979) Designing software for ease of extension and contraction. /EEE Trans-
action on Software. Eng. Mar. 1979.

Prieto-Diaz R, Arango G (1991) Domain Analysis and Software Systems Modelling
IEEE Computer Society Press, 1991.

References: 69

Redondo R, Arias], Vilas A, Martinez B (2002) Approximate Retrieval of Incomplete
and Formal Specifications applied to horizontal reuse. Proceedings 28th Euromicro

Conference, IEEE Comput. Soc. pp90-97.

Rine D, Sonnemann R (1998) Investments in reusable software. A study of software re-
use investment success factors. Journal of Systems & Software, vol.41, no.1, April 1998.
ppl7-32.

Rothenberger M, Hershauer J (1999) A software reuse measure: monitoring an enter-
prise-level model driven development process. Information Management, vol.35, no.5,

May 1999. pp283-93.

Schmid K (2002) Integrating reference architecture definition and reuse investment
planning. Software Reuse: Methods, Techniques, and Tools. 74 International Con-
ference, ICSR-7. Proceedings (Lecture Notes in Computer Science Vol.2319). Springer-
Verlag. 2002. pp137-52.

Soliman K (2000) Ciritical success factors in implementing software reuse: a managerial
prospective. Challenges of Information Technology Management in the 21st Century.
2000 Information Resources Management Association International Conference. ldea

Group Publishing. pp1174-5.

Sommerville I (1998) Software Engineering. Chapter 32, Software Maintenance, Section
32.1, Fifth Edition 1998. Addison-Wesley. ISBN 0-201-42756-6

Spurgeon C (2000a) Ethernet: The Definitive Guide. O'Reilly and Associates. ISBN:
1565926609. Published Feb 2000.

Spurgeon C (2000b) Quick Reference Guides to 10 Mbps Ethernet.
hitp:/fwww.ethermanage.com/ethernet/descript-10quickref-html. Last updated on January
31, 2000. Retrieved December 15, 2002.

Stallinger F, Dorling A, Rout T, Henderson-Sellers B, Lefever B (2002) Software proc-
ess improvement for component-based software engineering: an introduction to the
OOSPICE project. Proceedings 28th Euromicro Conference. IEEE Comput. Soc.
pp318-23.

References: 70

Stillerman J, Fredian T, Klare K, Manduchi G (1997) MDSplus data acquisition system
[for pulsed experiments]. Review of Scientific Instruments, vol.68, no.1, pt.2, Jan.
1997. pp939-42.

Sundarraj R (2002) An optimization approach to plan for reusable software compo-
nents. European Journal of Operational Research, vol.142, no.1, 1 Oct. 2002. pp128-
37.

Szyperski C (1999) Component Software: Beyond Object-Oriented Programming. Addi-
son-Wesley.

Teitelbaum T, Reps T (1988) The Cornell Program Synthesizer: A syntax Directed Pro-
gramming Environment. Proceedings of the 1988 ACM sixteenth annual conference on

Computer science.

Thiry L, Thirion B (2002) Object-oriented modelling and simulation of complex con-
trol systems. Modelling and Simulation 2002. 16th European Simulation
Multiconference 2002, ESM'2002. SCS Europe. pp115-19.

Thorne F (1999) Costs and benefits of reuse. Australian Computer Journal, vol.31, no.1,
Feb. 1999. pp1-8.

Tracz W (1987a) Software Reuse: Motivators and Inhibitors. Digest of Papers
COMPCON, Spring 1987, Computer Society Order Number 764, Computer Society
Press of the IEEE, Washington, D.C. pp358 - 363.

Tracz W (1987b) Ada Reusability Efforts: A Survey of the State of the Practice. Proceed-
ings of the Joint Ada Conference, Fifth National Conférence on Ada Technology and
Washington Ada Symposium, U.S. Army Communications-Electronics Command, Fort
Monmouth, New Jersey. pp35 - 44.

Ubayashi N, Tamai T (2002) Modeling collaborations among objects that change their
roles dynamically and its modularization mechanism. Systems & Computers in Japan,

v0l.33, no.5, May 2002. pp51-63.

Vazhkudai S, Cunningham H (2000) A reusable software framework for distributed de-

References: 71

cision-making protocols. Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications. PDPTA2000. CSREA Press. Part
vol.2. pp867-73

Wegner O (1984) Capital-intensive software technology. [Journal Paper] IEEE Software,
vol.1, no.3, July 1984. pp7-45

Wehrtle K (2001) An open architecture for evaluating arbitrary quality of service mecha-
nisms in software routers. Networking - ICN 2001. First International Conference on

Networking. Proceedings, Part II (Lecture Notes in Computer Science Vol.2094).
Springer-Verlag. pp117-26

References: 72

Bibliography

Bianchi A, Fasolino A, Visaggio G (2000) An Exploratory Case Study of the Mainte-
nance Effectiveness of Traceability Models. JEEE 2000.

Britton K, Parket R, Parnas D (1981) A procedure for designing abstract interfaces for
device interface modules. International Conference on Software Engineering. ppl95-
204.

Clinger M (1990) Very high performance Networking for Supercomputing, Conference
on High Performance Networking and Computing.
Proceedings of the 1990 ACM/IEEE conference on Supercomputing.

Felice L, Riesco D (2002) Applying a reusable component model in RAISE formal
method. Issues and Trends of Information Technology Management in Contemporary
Organizations. 2002 Information Resources Management Association International Con-
ference. Idea Group Publishing. Part vol.1. pp589-92.

Ford R (1990) A Generic Embedded Real-Time Monitor Subsystem. Proceedings of the
1990 ACM annual conference on Cooperation 1990, Washington, D.C., United States
ACM; ISBN 089791-348-5/90/0002/0312.

Gutknecht O, Ferber], Michel F (2001) Integrating Tools and Infrastructure for Ge-
neric Multi-Agent Systems. Proceedings of the fifth international conference on
Autonomous agents 2001, Montreal, Quebec, Canada.

Kutten S, Peleg D, Vishkin U (2001) Deterministic Resource Discovery in Distributed
Networks. Proceedings of the thirteenth annual ACM symposium on Parallel algorithms
and architectures 2001, Crete Island, Greece ISBN 1-58113-409-6/01/07.

Marques J, Guedes P (1989) Extending the Operating System to Support an Object
Oriented Environment. OOPSLA 1989 Proceedings.

Simmonds R, Bradford R, Unger B (2000) Applying Parallel Discrete Event Simulation
of Network Emulation. University of Calgary, Canada and University of Bath, UK.

References: 73

IEEE 2000.

Tsasakou S, Voros N, Koziotis M, Verkest D, Prayati A, Birbas A (2001) Hardware-
Software Co-design of embedded systems using CoWare’s N2C methodology for ap-

plication development. Project performed in the framework of the ESPRIT project
24129 CODAC.

Vishkin U (2000) A no-busy-wait balanced tree parallel algorithmic paradigm. Proceed-
ings of the Twelfth annual ACM symposium on Parallel algorithms and architectures.
ppl47 — 155.

References: 74

Al Appendix

Al.l Background Theory

Networks have rapidly grown from providing basic point-to-point connections in offices
(the invention of Ethernet in Xerox PARC) to providing immense e-commerce services
to allow customers the ability to shop, bank, collect and publish information, communi-
cate and advertise among a host of other services. It has therefore become very important
for networks to become robust, reliable and secure.

Networking involves the interconnection of workstations, terminals and other net-
worked devices that allows computers of different types to intercommunicate using a
network protocol. In order to make networks more manageable and robust, the OSI ref-
erence model provides a framework that eases the problem of moving information
between computers by dividing the problem into seven smaller and more manageable
tasks. Similarly, security measures must be implemented so that they do not inhibit or
dissuade the intended e-commerce operation. These threats originate from both hackers
as well as the e-commerce site itself. The vulnerable spots are at the endpoints - the cus-
tomer's computer/network and the business' servers/network. Privacy issues are amongst
the major drivers for improved network security along with the elimination of theft,
fraud and vandalism (Marchany et al, 2002).

Some of the problems in the electronics industry are the interconnection of equip-
ments, compatibility of software and connection of electronic equipments in one part of
the world to another. The International Standards Organization (ISO) developed a
model known as the OSI (Open Systems Interconnection) model to address these prob-

lems. Its main objects were to:

e Allow manufacturers of different systems to interconnect their equipment through
standard interfaces.
o Allow software and hardware to integrate well and be portable on different systems.

e Create a model for all countries of the world to use.

Appendix: 53

Figure A.1 shows the OSI model in the context of a transmitter and a receiver system
communicating with each other. In a typical transaction of data, data passes from the
top layer of the sender to the bottom and then up from the bottom layer to the top on
the recipient. Each layer on the sender, though, communicates directly to the recipient’s
corresponding layer, which creates a virtual data flow between layers. The seven layers of
the model solves each of problem areas, which are: the physical layer; the data link layer;
the network layer; the transport layer; the session layer; the presentation layer and the
application layer.

The top layer, known as the application layer, initially gets data from an application
and appends it with data that the recipient’s application layer reads. This appended data
passes to the next layer, known as the presentation layer whereby again it appends it
with its own data, and so on, down to the physical layer. The physical layer is then re-
sponsible for transmitting the data to the recipient. The data sent can be termed as a
data frame, whereas data sent by the network and the transport layers are typically re-

ferred to as a data packet and a data segment, respectively.

Sender Virtual Receiver
data flow A
Application | == == == -—A Application

- - - {PlA-
- = — {S[P[A] ~ =
- — {T[slplAF =

= — [N[T[s|P[A|= —

Presentation Presentation

Session Session

Transport Transport

Network Network

Data link ——|D|N|T|S|P|A|D|-— Data link

Physical Physical

——— e

Actual data flow

Figure A.1: Seven-layer OSI model

Appendix: 54

The basic functions of each of the layers are:

e Physical. This layer is concerned with the transmission of binary data. It defines the
electrical characteristics of the communications channel and the transmitted signals,
such as voltage levels, connector types, cabling, etc.

e Data link. This layer ensures that the transmitted bits are received in a reliable way.
Extra bits are added to define the start and end of the data frame, error detec-
tion/correction bits for ensuring that multiple nodes do not try to access a common
communication channel simultaneously.

e Network. This layer is concerned with addressing and determining the best path by
routing data packets through a network. If data packets require going out of a net-
work, then the transport layer routes them through interconnected networks. Its task
may involve, for example, splitting data for transmission and re-assembling it upon
reception. The IP part of TCP/IP is involved with the network layer (or IPX in
Novell NetWare).

e Transport. The transport layer is concerned with the end-to-end connection and
ensures reliability of connection. Network transmission protocol supports the
transmission of multiple streams from a single computer. For example, the TCP part
of TCP/IP is involved with the transport layer (or SPX in Novell NetWare).

e Session. This layer provides an open communications path with the other system. It
involves the setting up, maintaining and closing down of a session. The communica-
tion channel and the internetworking of the data should be transparent to the
session layer. For example, a typical session protocol is telnet, which allows for re-
mote login over a network.

e DPresentation. This layer provides a set of translations that allows the data to be in-
terpreted properly. For example it may have to translate between two systems if they
use different presentation standards, such as different character sets or differing char-
acter codes. The presentation layer can also add data encryption for security
purposes.

e Application. This layer provides network services to application programs, such as

file transfer and electronic mail.

Appendix: 55

Al.2 Foundations of the OSI model

The OSI reference model is purely an abstract model, and provides a conceptual frame-
work, which defines the network functions at each layer. It thus defines how data from
the source - the network device that is sending data - is transmitted to the destination,
which is the network device that is receiving data. This data is transmitted in the form of
data packets. At the source, the data is passed through all of the layers of the OSI model,
with each layer adding its own information. The process of adding the extra information
is known as encapsulation. The data packet is thus wrapped in a particular protocol
header. For example, Ethernet networks require an Ethernet protocol header before
transmitting onto the Ethernet network.

Figure A.2 shows how the data link, network and transport layers are responsible for
transporting data between applications basically covering the session, presentation and
application layers. The data link layer delivers data between devices on a network seg-
ment, and the network layer is responsible for passing it between network segments and
delivers the data at the destination using routers. The transport layer multiplexes the

data into a single data stream for transmission, and demultiplexes it at the destination.

MAC Data stream
address
in NIC

Socket Transport

layer

Network

) layer %

Network
address

Figure A.2: Networking showing lower-level layers

Appendix: 56

A1.2.1Data link layer - MAC addresses and Network Interface Cards

Computers connect to the physical media using an NIC (network interface card). The
data link layer provides for the access to the network media and thus builds on the
physical layer. It takes data packets from the upper levels and frames them so that they

can be transmitted from one node to another. The data link layer provides for:

e Error control. This provides for the addition of binary digits that can be used to
identify if there has been an error in the transmission of one of more bits. Generally,
some mechanism exists for the destination to tell the source that it has received bits
in error, and to request a retransmission.

e Flow control. This is where there is an orderly flow of transmitted data between the
source and the destination, so that the source does not send data more than the des-
tination is equipped to handle. Typically the destination sends back messages that
indicate whether the destination can receive data, or not.

e Line discipline. This provides for the orderly access to the network media. This is to
prevent multiple nodes to gain access to the common network at the same time.
Typically only one node is allowed access to the network at a time, with techniques
that allow an orderly access through collision detection and token passing. Collision
detection involves detection of other nodes trying to transmit at the same time while
token passing involves nodes passing an electronic token from one node to the next,
so that nodes can only transmit when they capture the token.

e Network topology. Physical arrangement of network nodes and media within an
enterprise networking structure.

® Ordered delivery of frames. This provides for sequencing of the data frames in the
correct order, and allows the recipient to determine if there are any gaps in the se-
quence of the received data frames.

o Physical addressing. Each node on a network has a unique hardware address, which
is normally known as a Media Access Control (MAC) address. This MAC address
must be used if a node is to receive the transmitted data frame. The only other data
frame that a node can receive is when the destination address is a broadcast, which is
also received by all the nodes on the network. On Ethernet networks, the MAC ad-
dress has six bytes, which is allocated by the IEEE.

Appendix: 57

Physical and network addresses
The MAC address identifies the physical address of the NIC, and differs from the net-

work address (which is also known as a protocol address), which is used by the network

layer. An Ethernet address takes the form of a hexadecimal number, such as:

0000. OE64. 5432 or 00-00-OE-64-54-32

The network address for IP takes the form of a dot address, such as:

168. 176. 155. 130

All computers that connect onto the Internet must have a unique IP address.

A1.2.2 Network layer protocols for reliable delivery

The network layer defines protocols that are responsible for data delivery at the required

destination, and requires Network addresses and Routing.

e Network addresses. This identifies the logical location of the node, the address
within the network, and the actual node, which is the physical address. The form of
the network address depends on the actual protocol used. For example, IP uses a dot
address, such as 168.176.2.130 that identifies the network and the host. On the
other hand, Novell Netware uses IPX address, which are eight-digit hexadecimal ad-
dress to identify the network address and the node portion with a 12-digit MAC
address, such as F5332B10: 00000E645432. Unlike network addresses that are set-
up in software and are loaded into the computer when it starts, MAC address are
unique and are set-up in the hardware.

e Routing. Routing refers to passing of data packets from one network segment to an-
other. A router is responsible for routing and it does so by reading the network
address and deciding on which of its connections it should pass the data packet on
to. Routing information is not static and must change as the conditions on the net-
work change. Thus each route must maintain a routing table, which is used to
determine the route that the data packet takes. These routing tables are updated by

each of the routers talking to each other using a routing protocol. Two typical rout-

Appendix: 58

ing protocols are Routing Information Protocol (RIP) and Open Shortest Path First
(OSPF). RIP uses the least number of hops which relates to the number of routers
between the destination and the current router, whereas OSPF uses other metrics to

determine the best route, such as latency and bandwidth capacity.

A1.2.3 Transport layer

The transport layer provides for reliable end-to-end error and flow control. This is re-

quired because the network layer does not validate that any data packets have been

successfully received and is therefore up to the transport layer to detect error and provide

flow control.

Connection type. This defines the method of handshaking between the source and
the destination, and can be connection-oriented or connectionless. In the former,
there are no acknowledgements and responses when the data is transmitted from the
source to the destination. In the latter, however, a virtual connection is set up, and
data is acknowledged by the destination, by sending acknowledgement data to the
source. With this information, the source is able to determine whether the data has
been received correctly. In order to detect if data segments have been lost or are in
error, each data segment has a sequence number. The destination sends back the ac-
knowledgement with the data packet segment that it expects to receive from the
source, thus acknowledging all previously transmitted data segment to the acknowl-
edged data segment number. Figure A.3 shows an example flow of information. The
transport layer creates a connection by negotiation, where both the source and desti-
nation pass the details of their connection, for a connection-oriented connection.
Passing details of their socket and the data segment number attains this.

Name resolution. This allows for the resolution of logical names to logical network
addresses. It is often easier to access networked devices using a logical name, rather
than their logical address, as these are more user friendly. Domain Name Service
(DNS) resolves domain names to IP addresses in a TCP/IP network. For example, a

domain name of www.slayer.com could be resolved to the network address of

216.92.22.229.

Appendix: 59

Connection creation

Initiator
Do you want

to connect?

i Yes. Here's the
i details of my
i connection.

Here’s the
details of my
connection.

Connection details
*Unique connection number
(socket).

«Starting number of
segment sent.
*Number of packets to be

Data

— — -
i .
transfer = =~ ™ =~ received before an
S~ I knowled ti
~~Z~ acknowledgement is
— .
required.
- -
4 Acknowledgement
of data

Close

connection \

Figure A.3: Basic transport layer connection-oriented protocol

Al.3 Ethernet

Ethernet is a local area network (LAN) technology that transmits information between
computers at speeds of 10 and 100 million bits per second and most recently 1000 mil-
lion bits per second (Gigabit Ethernet). The most widely and commonly used version of
Ethernet technology is the 10-Mbps twisted-pair variety. Varieties of the 10-Mbps
Ethernet media include the thick coaxial system, thin coaxial, twisted-pair, and fiber op-
tic systems. 100-Mbps Fast Ethernet systems operate over twisted-pair and fiber optic
media. This sub-section provides an overview of the Ethernet system, background his-
tory, elements of the Ethernet system and related protocols.

The first experimental Ethernet system was developed in Xerox PARC to intercon-
nect the Xerox Alto, a personal workstation with a graphical user interface in late 1972.

The first Ethernet was also used to link servers and laser printers. The signal clock was

Appendix: 60

derived from the Alto's system clock and resulted in the data transmission rate of 2.94
Mbps. It was named Ethernet with the name “ether” to describe the way of describing
the physical medium (the cable), which was an essential feature of the system, much the
same way that the old "luminiferous ether" was once thought to propagate electromag-

netic waves through space (Spurgeon, 2000b).

A1.3.1 Elements of the Ethernet System

The Ethernet system consists of three basic elements. These are:

o The physical medium which is used to carry Ethernet signals between computers,

e A set of access control rules that is embedded in each Ethernet interface so as to al-
low multiple computers to negotiate access to the shared Ethernet channel, and

e The Ethernet frame shown in Figure A.5, which has a structured set of bits used to

carry data over the system.

A1.3.2 Physical medium for Ethernet transmission

Ethernet-equipped computers, known as stations, operate independently of all other sta-
tions on the network by sharing a signalling medium. Each station follows the simple
rule of waiting for a silence period by listening to the network before transmitting data
in the form of an Ethernet frame.

At the end of each frame transmission, all stations on the network must contend
equally for the next frame transmission opportunity, thereby ensuring that access to the
network channel is fair, and that no single station locks out the network. This is
achieved by the medium access control (MAC) mechanism embedded in the Ethernet
interface located in each station.

This mechanism is based on a system called Carrier Sense Multiple Access with Colli-
sion Detection (CSMA/CD). This protocol operates by determining silence periods in
the media before allowing transmission of data. If transmission from any other interface
is detected (collision detection), the interface in question simply waits for its turn. Mul-
tiple access refers to all Ethernet interfaces that are equal in their ability to send frames
onto the network without any interface getting a higher priority than anyone else.

Collision detection specifically refers to an algorithm of rescheduling transmission in

the event of signal collision from different sources. All stations are notified of this event,

Appendix: 61

and instantly each reschedules their transmission using a specially designed backoff algo-
rithm (Spurgeon, 2000b). As part of this algorithm the stations involved each choose a
random time interval to schedule the retransmission of the frame, which keeps the sta-
tions from making transmission attempts in lock step. In the event of a collision, data is
automatically retransmitted in a few microseconds.

High-level network protocols can ensure that the data is correctly received at the des-
tination computer by establishing a reliable data transport service using sequence
numbers and acknowledgment mechanisms in the packets.

The heart of the Ethernet system is the Ethernet frame, which is used to deliver data
between computers. The frame consists of a set of bits organized into several fields,
which include address fields, a variable size data field that carries from 46 to 1,500 bytes
of data, and an error checking field that checks the integrity of the bits in the frame to

make sure that the frame has arrived intact.

A1.3.3High-Level Protocols and Ethernet Addresses

Computers attached to an Ethernet generally use high-level protocol software, such as
the TCP/IP protocol suite, to communicate. High-level protocols such as IP use a 32-bit
addressing system. The high-level IP-based networking software in a given station is
aware of its own 32-bit IP address and can read the 48-bit Ethernet address of its net-
work interface, but may only establish communication with other networks by
requesting this data from its environment.

IP resolves this by using yet another high-level protocol called the Address Resolution
Protocol (ARP) in order to discover the Ethernet addresses of other IP-based stations on
the network.

For example, if an IP-based station (station “A”) with IP address 192.168.2.1 wishes
to send data over the Ethernet channel to another IP-based station (station “B”) with IP
address 192.168.2.2. Station “A” sends a packet to the broadcast address containing an
ARP request. The ARP request basically says “Will the station on this Ethernet channel
that has the IP address of 192.168.2.2 please tell me what the address of its Ethernet
interface is?”

Since the ARP request is sent in a broadcast frame, every Ethernet interface on the
network reads it in and hands the ARP request to the networking software running on

the station. Only station “B” with IP address 192.168.2.2 will respond, by sending a

Appendix: 62

packet containing the Ethernet address of station “B” back to the requesting station.
Now station “A” has an Ethernet address to which it can send data destined for station

“B”, the high-level protocol communication can proceed. (Spurgeon, 2000a and 2000b)

Station A Station B Station C
192.168.2.1 192.168.2.1 192.168.2.1

2 g 2
o —>

A — BROADCAST: Will station with IP address
192.168.2.2 please respond with Ethernet interface
details?

B — REPLY: My Ethernet interface is x

A

A, B— COMMUNICATION: High-level protocol
communication proceeds between A and B

Figure A.4: Address Resolution Protocol (ARP) in order to discover the Ethernet
address for a given IP address. Station B replies to the ARP request
while station C ignores the request

The Ethernet Frame

The Ethernet frame is at the heart of the Ethernet system, which is used to deliver data
between computers. The Ethernet frame consists of several fields, which include address
fields, a variable size data field that carries from 46 to 1,500 bytes of data, and an error
checking field that checks the integrity of the bits in the frame to make sure that the
frame has arrived intact. (Figure A.5)

The first two fields in the frame are each 48-bit addresses, called the destination and
source addresses. The IEEE controls the assignment of these addresses by administering
a portion of the address field, by providing 24-bit identifiers called "Organizationally
Unique Identifiers" (OUIs) to each organisation that wishes to build Ethernet interfaces.
The organisation essentially retains the first 24 bits assigned to it in the 48-bit address of

the Ethernet hardware. This 48-bit address is also known as the physical address, hard-

Appendix: 63

ware address, or MAC address.

All Ethernet interfaces look at the first 48-bit field of the frame, which contains the
destination address whenever an Ethernet frame is sent onto the shared signal channel.
The interfaces compares the destination address of the frame with their own address and
reads in the entire frame and delivers it to networking software, whenever a match is

found. Otherwise, the network interfaces ignore the frame.

() ~
8 g 7] 7] 7] gg 7]
] SS9 T Q9 Q S B]
&< 22 | 22 | g2 | «s€5 3 o S
o o o o 2o T3S 5 ox o
o o 0 o ”n © [\ O < o O <
? MAC Header ? Data ?CRC ?

Figure A.5: Fields in the Ethernet frame. The main components are the

MAC header (22 bytes), a variable data field (46-1500 bytes)

Appendix: 64

Source code

Component Loader

/* LR S
*

Source File Name : CnplLoader.cc

Modul e Nane : CnplLoader
Application Nane : TP1

Proj ect Name : TCS 01

R R X E]

(c) 2001 Seven Layer Communi cations Ltd.

B R R R R R R S R R R R R R R S R R R R R R S

NOTES: Conponent Loader

E I T . I I

* END OF NOTES

* */

/* Uncomment if 'what' string is needed */

/* static char gldent[] = "@#)filename Version 0.0 "; */
/*

* Standard Library Includes (normal systemn)

* */

#i ncl ude <fstreanp
#i ncl ude <dl fcn. h>
#i ncl ude <string>
#i ncl ude <map>

/*
Ext ernal | ncludes (external toolkits)
* */
/*
Proj ect -w de | ncl udes (project only)
* */
/*
Modul e | ncl udes (rodul e only)
* */

#include "../../../inc/|face/lfLoader.hh"
#include "../../../linc/Iface/lfSched. hh"
#include "../../../linc/Iface/lfRouter.hh"

/*
* Modul e #DEFI NEs
* */
#define SCHED SHLIBPATH "../../../lib/libCmpSched. so"
#define ROUTER_SHLIBPATH "../../../1ib/libCrpRouter.so"

Source code: 74

#defi ne SCHED_SYMNAME " Cr eat eCnp_Schedul er”;
#defi ne ROUTER_SYMNAME " Cr eat eCp_Rout er”;

/*
* Enumerations & Other Typedefs (defn)
* */
cl ass t TypeRegEnt ;
typedef tConponent * (*tCreateCnpSyn)();
typedef map<string, tTypeRegEnt>tTypeRegistry;
typedef map<string, tConponent *> tlnstRegistry;

/*

Classes (forward decl) & Structures (defn)

*/

Modul e Functions (decl.) tlIfLoader (static local only)
*

/

* G obal Variables (defn.) (used externally)

/*
* Local Mdule Variables (defn.) (static local only)
* */

static string nmCnpNaneBase("CreateCnp_");

* Functions & class definitions visible externally

* Functions & class definitions internal to nodul e
*

/* Function and cl ass header prototypes */

/* R R R R R S S R S R S S R S S R R R R R R R R R R

Cl ass : tTypeRegEnt
Description :

*

*

* kkkkhkhkhkhkhkhhhhhkhhhhhhhkhhkhhhkhhkhhkhhkhkhkhhkhhhhkhkhhhhkhkkkkk

* NOTES:

EE R R R R R R R R R R R */
Cc

ass t TypeRegEnt

public:
t TypeRegEnt (string asShl i bPat h)
sShl i bPat h(ashl i bPat h),

sCreat eCpSyn(0),
sl nstances(0)

{1}
~t TypeRegENt ()
{1}

t Component * Create(const string & aTypeNane);

private:

*/

*/

Source code: 75

string sShl i bPat h;

t Creat eCpSym sCreat eCmpSym
unsi gned int sl nst ances;

void * sHdl ;

R R X E]

Function : Create()

Description : Create instance of CnpType
Paraneters : const string & aTypeNane
Returns : pointer tConmponent *

khkhkkhhkhhkhhkhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhkhkhhhhkhhhhhhkhkkk

NOTES:

B R R R R R R R R R R R R R R */
t Conponent *

t TypeRegEnt : : Create(const string & aTypeNane)

{

E R

t Component * | pCnp;

/1 if Instances=0, no shared Lib in nmem
if (slnstances == 0)
{
/1 open dlinker file
sHdl = dl open(sShlibPath.c_str(), RTLD NOW| RTLD GLOBAL);

if (sHdl == NULL)
DBG("oops, bad dl open for " << sShlibPath << ": " << dlerror());
throw (string("bad : ") + string(dlerror()));

}

sCreat eCnpSym =

(tCreat eCmpSym) dl syn(sHdl , (nmCnpNanmeBase + aTypeNane).c_str());
/1 DBGE "sCreateCmpSym " << sCreateCmpSym);
if (sCreateCnpSym == NULL)

{
/1 DBG(" oops, no symbol: " << dlerror());
throw (string("no synbol: ") + string(dlerror()));
}
}

| pCp = sCreat eCpSym();
++sl| nst ances;
return (I pCnp);

}

[F Kk ko ok ok ok ok kK ok ok ok ok kK K ok ok ok ok ko ko ko kR ok kR Rk ok ok ok kR ok k k ok ok Rk x

Class : tCnpLoader
Description: created fromnain, |oader controls
creation of all other conponents

*
*
*
* kkkkhkhkhkhkhkhhhhhkhhhhhhhkhhkhhhkhhkhhkhhkhkhkhhkhhhhkhkhhhhkhkkkkk
*
*
Cc

NOTES: see t|fLoader. hh

R R R R R R R R R S S R S R R R R */
ass t CpLoader

publ i c t Conponent,

public tlfLoader

{
public:
t CnpLoader () ;
~t CnpLoader () ;
voi d I nvoke();
voi d ReadTypeRegFi | e(string aRegFile);
t Component * InstCreate(string aTypeNanme, string al nst Nane);
bool Cr eat eDef Cnp() ;
t Component * CheckAgai nst Def Cnp(string aTypeNane, string al nstNane);
t Component * I nst Query(string al nst Nane) ;
voi d I nstDel ete(string al nst Nane);

Source code: 76

bool I nternal Task (char * apBuffer, unsigned int aCount);

private:
t TypeRegi stry sTypeRegi ster;
t1nstRegistry sl nst Regi ster;
string | RegFi | e;
bool sCr eat eDef Cp_Fl ag;
b
/* EEEEEEEEEEEREEEEEREEEEEREEREEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEE]
* Function : tCnplLoader ()
* Description: create instance of tCnpLoader
* Parameters : none
* Returns : CTOR tCrpLoader
R R R EEEREEEEEREE]
* NOTES:
*

EE R R R R R R R S R R S R R R R R R R */

t CnpLoader: : t CnpLoader ()
sCr eat eDef Cp_Fl ag(0)
{

string | Def Loader Nane ("1 oader ") ;
/1 cout << "CTOR tCnpLoader created" << endl;

/1 default name for |oader instance "l oader"
sl nst Regi ster.insert(make_pair (| Def Loader Nane, this));

}

/* EE R R R R R R R R R S R R R S R R R R R R R R
* Function : ~tCnhpLoader ()
* Description: renove instance of tCnpLoader
* Parameters : none
* Returns : DTOR tCnpLoader
EE R R R R R R R R R
* NOTES: TH S REMOVES ALL COVPONENTS FROM sl nst Regi st er
*

LEE AR EEEEEEEEE R EEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

t CnpLoader : : ~t ChpLoader ()
{
for (tInstRegistry::iterator llnstlter = slnstRegister.begin();
IInstiter !'= slnstRegister.end();
++l I nstlter)

delete (lInstlter->second);

/* R I R S

* Function : Invoke()

* Description : invoke tCnpLoader

* Paraneters : none

* Returns : void

EE R R S R S R R R S R S R R R R R R R R

* NOTES:

R R R R R R R R R R EEE] */
voi d

t CnpLoader: : | nvoke()

DBG "hel l o from t CnpLoader™);
}

/* R R R R R R R R S S S S R S R R R R R S R R

* Function : ReadTypeRegFile()

Source code: 77

Description: readS local file to popul ate sTypeRegi ster
Paraneters : string aRegFile
Returns : void

khkhkkhkhkhhkhhkhhhkhhhhkhhhkhhkhhkhhhhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhkkkk

NOTES:

R R R SR R R R R R S S R S R S R R R R R R R R R */
voi d

t CnpLoader: : ReadTypeRegFi | e(string aRegFil e)

{

string | Name;

string | Path;

ifstream | Reg(aRegFile.c_str());

E R

whi | e(l Reg >> | Name >> | Pat h)
{

/1 cout << "inserting " << IName << ", " << |Path << endl;
sTypeRegi ster.insert(make_pair (| Name, tTypeRegEnt (|l Path)));

/* EEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEE RS

* Function : InstCreate()

* Description: Create an instances of a given Cnp

* Parameters : string aTypeNane, string al nstNanme

* Returns : tConponent *

R R R

* NOTES:

R R R R R EEEEEEEEEEEREEREEEEEREEEEEEEEEEEEREREREREEEEEEEEEEEEES */
t Component *

t CnpLoader:: I nstCreate(string aTypeNane, string al nst Nane)

t TypeRegi stry::iterator | Typelter;

tInstRegistry::iterator IllInstlter;
t Component * | pConponent ;
I if (sCreateDefCnp_Flag != 1)
/1 {
/1 Cr eat eDef Cnp() ;
/1 }
/1 /1 expand to include other default conmponents
/1 if ((aTypeNane == "Scheduler") ||
/1 (aTypeNanme == "Router"))
11 {
Iy | pConponent = CheckAgai nst Def Cnp(aTypeNane, al nst Nane) ;
/1
/1 el se
11 {

/1 ensure no duplicate instance is created
Ilnstlter = slnstRegister.find(alnstNane);
if (llnstlter !'= slnstRegister.end())

/1 Found duplicate
DBG("Duplicate entry for " << alnstNane);
return (NULL);

}
| Typelter = sTypeRegister.find(aTypeNane);
if (I Typelter == sTypeRegi ster.end())
{
/1 Not found

DBG("didn't find entry for " << aTypeNane);

Source code: 78

return (NULL);

}
/ /updat e sl nst Regi ster
| pConponent = | Typel ter->second. Creat e(aTypeNane) ;
if (lIpConmponent == NULL)
t hrow,
sl nst Regi ster.insert(make_pair(al nst Name, | pConponent));
/1 }
return (I pConponent);
}
/* R S I R O L
* Function : CreateDef Cmp
* Description: creates default components
* Paraneters @ -
* Returns : void
EEE R
* NOTES:
R R R R EEEREEEEEREE] */
bool
t CnpLoader : : Cr eat eDef Cnp()
{
t Component * | pSched;
t Component * | pRout er;
string | Def Schedl nst ("sched") ;
string | Def Routerlnst(“router");
string | SchedCnmp(" Schedul er") ;
string | Rout er Cp(" Rout er");
string | SchedPat h("/ vi ew hasanai n_tcs01_00.01/1ib/li bCpSched. so");
string | Rout er Pat h("/vi ew hasanai n_t cs01_00.01/1ib/li bCrpRouter. so");
t Conponent * (*1 pCreat eSchedSynm) () ;
t Component * (*1 pCreat eRout er Sym) () ;
string | Cr eat eSchedSynmNane(" Cr eat eCp_Schedul er") ;
string | Cr eat eRout er SymNane(" Cr eat eCnp_Router") ;
void * | pSchedHdl ;
void * | pRout er Hdl ;
bool Sched_CreateFl ag = 0;
bool Rout er _CreateFl ag = O;

t TypeRegi stry::iterator | Typelter;

t TypeRegi stry::iterator | Typelter?2;

/'l create 'Schedul er'

DBG("creating default Scheduler ");

| pSchedHdl = dl open(| SchedPath.c_str(), RTLD NOW| RTLD GLOBAL);
if (IpSchedHdl != NULL)

| pCreat eSchedSym =
(t Conponent * (*)())dlsyn(l pSchedHdl, | CreateSchedSymName.c_str());

if (IpCreateSchedSym == NULL)

Source code: 79

DBGE(" bad synbol: " << dlerror());
}

| pSched = | pCreat eSchedSyn();
if (IpSched == NULL)

throw (string("couldn't create schedul er conponent"));

}
/1 now update slnstRegister and sTypeRegister with new entry
sl nst Regi ster.insert(make_pair (| Def Schedl nst, | pSched));
| Typelter = sTypeRegister.find(lSchedCnp);
if (I Typelter == sTypeRegister.end())
/1 Not found

sTypeRegi ster.insert(make_pair (| SchedCmp, | SchedPath));

DBGE " made sched");
Sched_CreateFlag = 1;
}

el se

DBG" bad dlopen: " << dlerror());
}

/'l repeat the same for 'Router’

DBG "creating default Router ");
| pRout er Hdl = dl open(| RouterPath.c_str(), RTLD NOW| RTLD_GLOBAL);

if (IpRouterHdl != NULL)
{

| pCreat eRout er Sym = (t Conponent * (*)())dlsyn(l pRouterHdl, |CreateRouterSym
Name. c_str());

if (IpCreateRouterSym == NULL)

DBG("coul d not create router synbol");
}

| pRouter = | pCreateRouterSym();
if (lpRouter == NULL)

throw (string("couldn't create router conponent"));

}
DBG "nade router");
/1 now update slnstRegister with new entry
sl nst Regi ster.insert(make_pair (| Def Routerlnst, |pRouter));
| Typelter2 = sTypeRegi ster.find(l RouterCnp);
if (I Typelter == sTypeRegister.end())

/1 Not found
sTypeRegi ster.insert(make_pair (|l RouterCrp, | RouterPath));

Rout er _CreateFlag = 1;
}

el se

DBG " coul d not open router conponent |ib");

}
if ((Sched_CreateFlag) && (Router_CreateFlag))

sCreat eDef Cp_Fl ag = 1;

Source code: 80

return (true);

el se

{

DBG"failed creating default conponents");
return (false);

}
}
/* PR SRR SRS S SRR RS EEE S SRR SRS EEEEEREEEEEEEEEEEEEEEEEEEEEEES
* Function : CheckAgai nst Def Cnp
* Description: avoids duplication of defaults
* Parameters : string aTypeNane, string al nstNane
* Returns : tConponent *
* PR SRR R EEEEEE RS SRS SRR RS EEEEEREEEEEEEEEEEEEEEEEEEEEEES
* NOTES:
*

EE R R R R R R R S R R S R R R R R R R */

t Conponent *

t CnpLoader : : CheckAgai nst Def Chp(string aTypeName, string al nst Nane)
{

string | Def Schedl nst ("sched");

string | Def Routerlnst("router");

string | SchedCmp(" Schedul er");
string | Rout er Cp(" Router");

t Component * | pConponent ;

i f (aTypeNane == | Rout er Cnp)
{

| pConponent = | nst Query(| Def Routerlnst);
if (I pConponent != NULL)

DBG("handl e to default 'router' returned, " << alnstName << " ignored");
}
el se
i f (aTypeNane == | SchedCnp)

| pConponent = | nst Query(I| Def Schedl nst);
if (I pConmponent != NULL)
DBG("handl e to default 'sched' returned, " << alnstName << " ignored");

return | pConponent;

}

/* R R R R R R R R R S S R S R R R R
* Function : |nstQuery
* Description: Queries loader to find pointer to conponents
* Parameters : string al nstName
* Returns : tConponent *
R R R R R R R R R R EEE]
* NOTES:
*

R R R R Sk S S S R S S S S S S S S S R S R R R R R R R R */

t Conponent *
t CnpLoader: : | nst Query(string al nst Nane)

tInstRegistry::iterator IllInstlter;

Ilnstliter = slnstRegister.find(alnstNane);
if (Ilnstlter == slnstRegister.end())

Source code:

/1 none found in InstRegister
DBG("No entry for " << alnstNane << " found");
return (NULL);

}

el se

return (llnstlter->second);

}

-

khkhkkhhkhhkhhkhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhkhkhhhhkhhhhhhkhkkk

Function : InstDelete

Description : Deletes the instance of the conmponent
Paraneters : string al nstNane

Returns : void

khkhkkhhkhhkhhkhhhkhhhhkhhhkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhkhhhhkhhkhhhhkhkkkk

NOTES:

EEEEE RS EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEESEEREEESEESEEEEEE RSN */
voi d
t CnpLoader: : I nst Del ete(string al nst Nane)

-~

E S

tinstRegistry::iterator Ilnstlter;

/1 find instance to delete
Ilnstlter = slnstRegister.find(alnstNane);
if (Ilnstlter == slnstRegister.end())

/1 none found
DBG " Found no instances of " << alnstNane << "to delete");

}

el se

/] del ete conmponent & renove InstRegistry entry
delete (lInstlter->second);
sl nst Regi ster.erase(lInstlter);

}

R R R R R R R R R R R S R R

Function : InstDelete

Description : Deletes the instance of the conponent
Paraneters : string al nstNane

Returns : void

R R R R E]

NOTES:

R R R R R S S R S R S S R S S R R R R R R R R R R */

bool
t CnpLoader: : I nternal Task (char * apBuffer, unsigned int aCount)

E R

// do nothing, for now
return (true);

}
/*

* Entry Points
*

*/

extern "C'
t Component *
Cr eat eCnp_Loader ()

return (new t ChpLoader);
}

Source code: 82

L T

E I

Function and cl ass header prototypes */

khkhkkhhkhhkhhkhhhkhhhhkhhhkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhkhhhhkhhkhhhhkhkkkk

Function :

Description :

Paraneters

Ret ur ns

R E SRR SRS EEEE SRS EEEEEE SRR R R SRS EE R R R EEEREEEREEEEREESEERERERSESE]
NOTES:

R R R R X E]

ERE R R R R R R S R R R R R R R R R R R R

Cl ass
Description :
R S R L

R R R R R R R R R S S R S R R R R

Component EthGen

/* LR R R R R R R R R R R R R R R S R R R R R R R R R S

*

E I I S . N N I B T

Source File Name : CnpEthGen.cc
Modul e Nane : CnpEt hGen
Application Nane : TP1

Project Name : TCS 01

*/

*/

R e R X E]

(c) 2001 Seven Layer Conmuni cations Ltd.

R R R S R R R R R S R R R S R R R R S S R R R R R R R R S

NOTES: Sequence of events for copying data into menory
A tenporary menory is used to make a copy just before

gener ati on.

Config() builds the menory

PreRunCheck() makes a tenporary map of the above nmenory before gen

Config()
{

sSeqStoreArray[8] is used to store arrays of FrameVectors
sFraneVect or [8] stores pointers to franes as a vector

sEt hGenSeq][8] is used to contain sequence specific

paraneters (like tinelnt) as this
information is not stored in sSeqStoreArray
Addi tionally sEthGenSeq al so contains
sFrameVector[] as ptr

Source code: 83

}
Pr eRunCheck()

sChannel Array[8]

ECE S

/*
/*

/*
*
*
#
#
#
#
#
#
#i

#

#
#
#
#
#
#
#i
#i

#

/*
*
#
#
#
#

#
#

/*
*
*

sChannel Array[]

END OF NOTES

is used for generation

copi es everything from skt hGenSeq] 8]

*/

Uncoment if
static char gldent[]

"what' string is needed

= "@#)filename

*/

Version 0.0 ";

*/

Standard Li brary Includes

(norma

system

*/

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

ncl ude

<pt hr ead. h>
<dl fcn. h>
<string>
<|Tap>
<vect or >

<f streanr
<uni std. h>

<sys/tinme. h>

<linux/if_ether.h>
<l i nux/if_packet.h>
<sys/ioctl.h>

<sys/ socket . h>
<linux/if.h>
<netinet/in.h>
<errno. h>

<string>

<i omani p>

/* The L2 protocols */

Ext er na

I ncl udes (externa

tool kits)

Proj ect -wi de | ncl udes

(project only)

*/

Modul

e I ncludes (rmodul e only)

*/

ncl ude
ncl ude
ncl ude

ncl ude "

ncl ude

nclude ".

/..linc/1face/lfEthGen. hh"
./..linc/ Et hGenBuf. hh"

./ ../linc/Conponent.hh"
/..linc/ ThreadBase. hh"

../..linc/EthGenFrane. hh"
"..l../linc/ EthGenSeq. hh"

Modul

e #DEFI NEs

#define TRANSI TIONS 12
#define MAX_FRAVE RATE 8127

*/

Source code: 84

Enurer ati ons & Qther Typedefs (defn)

/1 typedef long Channel Ti neDel ay[NO OF CHANNELS] ;

* Classes (forward decl) & Structures (defn)

* Modul e Functions (decl.) (static local only)

* G obal Variables (defn.) (used externally)

* Local Mddule Variables (defn.) (static local only)

*/

*/

* Functions & class definitions visible externally

* Functions & class definitions internal to nodul e

/* Function and cl ass header prototypes */

khhkhkhhkhhkhhkhhhhhkhhkhhhkhhkhhkhhkhhhkhhkhhkhkhhkhhkhhhkhhkhkhhkhkhkhkhkkk

Class : tThreadData
Description : thread data class

R R R R E]

NOTES:

EE R R R R R R R R R R

cl ass t ThreadDat a_SeqTi ner
:public tThreadDat a

E I S

{
public:
t Thr eadDat a_SeqTi mer (t Et hGenSeq * apSeq)
spSeq(apSeq)
{1

t Et hGenSeq * Get Pt r ToSeq()

return (spSeq);
}

private:
t Et hGenSeq * spSeq;
b

*/

*/

*/

Source code: 85

/* R R R S Sk S R S S R S S R S S R R S S S S

* Class : tCnpEt hGen
* Description: EthGen class
* ER I R I I I I I R I I
* NOTES:
EE R R R R R R R R R */
cl ass t CpEt hGen
publ i c t Conmponent,
public tIfEthGen,
private tThreadBase
{
publi c:
t CpEt hGen()
sSock(-1),
sl f Et hernet ("ethl"),
sCGenThr eadLoop(fal se),
sFrameCount _Al | (0)

/] Create socket
sSock = socket (PF_PACKET, SOCK_RAW htons(ETH P_ALL));

if (sSock == -1)

throw (string ("Could not create socket - requires root access "));
/] set initial state as 'Not configured at creation tinme
sContext.sState = eDssNotlnit;

ChangeSt ate(eDselnit);

/1 Init nmutex
pt hread_nut ex_i ni t (& Cont ext . sSt at eMut ex, NULL);

DBG("created CpEt hGen");

}
~t CpEt hGen()
{
/1 bring systemstate to halt
/1 Destroy nmutex and cl ose socket
pt hr ead_mut ex_dest r oy(& Cont ext . sSt at eMut ex) ;
cl ose(sSock);
DB " del et ed CrpEt hGen");
}
const string QueryState() const;
bool SetInterface(string al nterfaceNane);
const string Querylnterface() const;
bool Config(const tChannel Array * apChannel Array);
bool Pr eRunCheck();
bool Start Engi ne();
bool St opEngi ne() ;
bool Generate();
bool St opGenerate();
bool I nsert Channel (unsi gned int aChannel No,

t Et hGenSeq * aEt hNewSeq) ;

Source code: 86

bool Modi f yChannel (unsigned int aChannel Num
t Et hGenSeq * aEt hNewSeq) ;

bool RenmoveChannel (unsi gned i nt aChannel Nunj ;
bool I nsertSeq();

bool Modi fySeq() ;

bool RemoveSeq() ;

bool I nsert Frame();

bool Modi fyFrame() ;

bool RenmoveFrame() ;

bool Er asel nt Mermory() ;

bool Er aseTenpMenory() ;

/1 set and query Pdu | en

bool Set PDU_Len(unsi gned i nt aBuf Len,
unsi gned int aChannel Num
unsi gned int aPduNum ;

const unsigned int QueryPDU Len(unsigned i nt aChannel Num
unsi gned int aPduNun;

/1 assign rate to specific channel

bool Set Rat e_Fr anePer Sec(unsi gned i nt aFraneRate,
unsi gned i nt aChannel Nunj;
bool Set Rat e_Mops(unsi gned i nt aRate_M,

unsi gned i nt aChannel Nunj ;

/1 assign time/loop limt to specific channel

bool Set Lim t_Ti ne(l ong aTi ne_Sec,
unsi gned i nt aChannel Nun) ;
bool Set Li mi t _Loops(l ong aLoops,

unsi gned int aChannel Nunj;

const unsigned int QueryRate_FranePer Sec(unsi gned i nt aChannel Num const;
const unsigned int QueryRate_BitsPerSec(unsigned int aChannel Nun) const;

/1 query stats from channel
const long |l ong QueryStats_FranmeSent (unsi gned i nt aChannel Num) const;
const tineval QueryStats_Ti mel nterval (unsi gned int aChannel Num const;

/1 modify destination buffer, given src buffer, offset and |len
int Modi f yBuf f er (unsi gned int aOff Set,

unsi gned i nt aBufLen,

unsi gned char * apDest Buf,

unsi gned char * apSrcBuf);

bool Modi f yFraneBuf f er (unsigned int aCff Set,
unsi gned i nt aBuf Len,
unsi gned char * apSrcBuf,
unsi gned i nt aChannel Num
unsi gned int aFrameNum ;

bool Quer yFrameBuf f er (unsi gned i nt ad f Set ,
unsi gned int aBuflLen,
unsi gned char * apBuf,
unsi gned int aChannel Num
unsi gned int aFrameNun;

voi d I nvoke()
{ DBG("invoked CnpEthGen"); }

unsi gned int ConvertHexTol nt(char * alnb, int aLen, char * aCuth);

Source code:

87

unsi gned i nt Convertlnt ToHex(char * alnb, int alLen,
char * aCutb);

private:

/'l Socket state
int sSock;

/1 default ethernet interface
string sl f Et her net;

/1 channel array[] is an array of ptrs to Seqs (tenp nen
t Channel Array sChannel Array;

/1 array for sequences
t Et hGenSeq sEt hGenSeq[NO_OF _CHANNELS] ;

/1 array of vectors (of tEthGenFrane ptrs) to be used in nmenory
t Et hGenFr ameVec sFranmeVect or [NO_OF_CHANNELS] ;

/1 actual storage of all channel/seq/frane internal to EthGen
t SeqSt oreArray sSeqStoreArray;

/1 flag for |ooping for gen thread
bool sGenThr eadLoop;

/'l nunber of franes to be sent out
unsi gned i nt sFrameCount _Al | ;

/1 generation thread pointer to avoid memconflicts
t Channel Array * spActiveArrayPtr;

/1 GENERATI ON TI ME/ LOOPS/ | NF VARI ABLES
| ong sCGenLoopLi m t[NO_OF_CHANNELS] ;
| ong sCGenTi meLi m t [NO_OF_CHANNELS] ;

/1 VARI ABLES, STATS ON GEN

/1 count of frames sent out from each channel
I ong | ong sFramesSent _Channel [NO_OF_CHANNELS] ;

/'l generator start tine
| ong sCGenStart Ti me_sec;
| ong sCGenSt art Ti me_usec;

/'l generator finish tinmes
| ong sCGenFi nTi ne_sec[NO_OF_CHANNELS] ;
| ong sCenFi nTi me_usec[NO_OF_CHANNELS] ;

/1 Channel Rate actual values to which they are set -
/1 many rate in fps == one TineDelay in usecs

/1 hence this arrangenent

unsi gned i nt sChannel Rat e_f ps[NO_ OF_CHANNELS] ;

/1 count for Ethernet interface failure to send data - returns (-1)
| ong long sRtIDriverFail Count;

// Component states
typedef enum {
eDssNot I nit,
eDsslnit,
eDssNot Cf g,
eDssCf gi ng,
eDssHal t,

Source code: 88

eDssPreRC,
eDssNot Runni ng,
eDssRunni ng,
eDssWai t St op

} tEthGenSt at es;

/] Conponent events

typedef enum {
eDselnit,
eDseConfi g,
eDseBad(Cf g,
eDseGood(Cf g,
eDseSt art PreRC,
eDsePr eRCFai |,
eDsePr eRCPass,
eDseSt op,
eDseCen,
eDsePost Cen,
eDseEndGen

} tEthCGenEvents;

/1 Conponent context across threads
struct {
I/ State stuff
t Et hGenSt at es sSt at e;
pthread_mutex_t sStateMit ex;
} sContext;

/1 generation thread nmain
i nt sGenThr Count ;

t ThreadData * Thr Mai n(t ThreadData * apData);

/1 Main thread event ops

bool Dol nit();

bool DoConfig();
bool DoBadCf g() ;
bool DoGoodCf g() ;
bool DoReConfig();
bool DoStart();
bool DoBadPr eRC() ;
bool DoGoodPr eRC() ;
bool DoGenerat e();
bool DoRGSt op() ;
bool DoNRSt op() ;
bool DoRGENdGen() ;
bool DoWSEndGen() ;
bool DoNot hi ng() ;

typedef struct {

/] state transition |ookup

t Et hGenSt at es sCur St at e;

t Et hGenEvents sEvent;

t Et hGenSt at es sNewSt at e;

bool (tCpEthGen:: *sFunctionCall)();
} tStateTrParnEnt;

static tStateTrParnEnt sStateTrPar bl [TRANSI TI ONS] ;

t ypedef bool (tCpEthGen:: *sFunctionCall)();

Source code: 89

/] changing states
bool ChangeSt at e(t Et hGenEvent s aEt hGenEvent) ;

b
t CnpEt hGen: : t St at eTr Par nEnt t CpEt hGen: : sSt at eTr Par mirbl [TRANSI TI ONS] = {
{eDssNotInit, eDselnit, eDssNot Cf g, &t CnpEt hGen: : Dol nit},
{eDssNot Cf g, eDseConfig, eDssCfging, & CnpEthGen:: DoConfi g},
{eDssCf gi ng, eDseBadCf g, eDssNot Cf g, &t CnpEt hGen: : DoBadCf g},
{eDssCf gi ng, eDseGood(Cf g, eDssHal t, &t CnpEt hGen: : DoGoodCf g},
{eDssHal t, eDseConfi g, eDssCf gi ng, &t CnpEt hGen: : DoReConfi g},
{eDssHal t, eDseStart PreRC, eDssPreRC, &t CnpEt hGen: : DoStart},
{eDssPreRC, eDsePreRCFail, eDssHalt, &t CnpEt hGen: : DoBadPr eRC},
{eDssPreRC, eDsePreRCPass, eDssNot Runni ng, &t CnpEt hGen: : DoGoodPr eRC},
{ eDssNot Runni ng, eDseGen, eDssRunni ng, &t CnpEt hGen: : DoGener at e},
{eDssRunni ng, eDsePost Gen, eDssNot Runni ng, &t CnpEt hGen: : DoNot hi ng},

{ eDssNot Runni ng, eDseSt op, eDssWai t Stop, &t CrpEt hGen: : DoRGSt op},

{eDssWii t Stop, eDseEndGen, eDssHalt, &t CnpEt hGen: : DOWSENdGen}

khkhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhkhhhhhkhhkhhhkhhkhhhhhhkhhhkhkhkhkkk

Function : QueryState

Description: query the present systemstate

Paraneters : none

Returns : string

EE R R R R R R R R R S R R R S R R R R R R R R

NOTES:

* PR SRR SRS S EEE RS ES RS EEERE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES */
const string
t OnpEt hGen: : QueryState() const

{
string | DsSt at e;

E I

swi t ch(sCont ext.sState)

{

case eDssNotlnit:
I DsState = "Not Initialised";
br eak;

case eDssNot Cf g:
| DsState = "Not Configured”;
br eak;

case eDssCfging:
| DsState = "Configuring”;
break;

case eDssHalt:
| DsState = "Halt";
br eak;

case eDssPreRC.
| DsState = "PreRun Check";
br eak;

case eDssNot Runni ng:
| DsState = "Not Running";
br eak;

case eDssRunni ng:
| DsState = "Runni ng";
br eak;

Source code: 90

case eDssWait Stop:
| DsState = "Waiting to Stop";

br eak;
defaul t:
| DsState = "unknown";
br eak;
/1 DBGE "Current Engine state = " << |DsState);
return | DsState;
/* R E R R R SRS EEEE SRS R R R R R R SRR R R SRS EE R R R EEEREEEREEEEREESEERSERERSESE]
* Function : Setlnterface
* Description: sets ethernet interface to <name>
* Parameters : string
* Returns : bool
R EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEREEEESEEREESEERESEEEESEEEEEEESEE]
* NOTES:
* ER R R I I R R I R I I R R I */
bool

t CnpEt hGen: : Set I nterface(string al nterfaceNane)
{

/1l make a copy of interface name in case call fails
string lInterfacedd = Querylnterface();

if (IInterfacedd == al nterfaceNane)
{
DBG"'" << alnterfaceName << "' already set");
return (true);
}
el se

sl fEt hernet = alnterfaceNaneg;

// Dolnit() again to renove previous interface
if (!'Dolnit())

/Il reset old interface nane to slfEthernet
sIfEthernet = IInterfaced d;

return (false);

return (true);
/* IR EEEEEEEREEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEESS
* Function : Querylnterface
* Description: gets ethernet interface nane currently active
* Parameters : none
* Returns : string
EE R R S S S R R S S R S S R R R R R R R R R R R R
* NOTES:
*

LR RS EE R EEEEEEEEEEEE R EEEEEEEEEEEEEEEEEEEEEEEEE Y]

const string
t CnpEt hGen: : Queryl nterface() const

if (slfEthernet == "eth0")
{

Source code: 91

DBG "et hO must not be used");
}

return (slfEthernet);

}

EE R R R R R R R R R R R R R R R R R

Function : Config
Description : configure
Paranmeters : arNet Nanes
Returns : bool

B R R R R R R R R R R R R R R

NOTES:

LR AR EE R SRR R EEEEEEEEEEEE R EEEEEEEEEE Y

bool
t OnpEt hGen: : Confi g(const tChannel Array * apChannel Array)

EEE R

t Et hGenFr anmeVec * | pFraneVec = NULL;
/1 t Et hGenFr aneVec * | pFranmeVec2 = NULL;
| ong | Ti reDel ay = 0;

/1 lock out state to 'Configuring' before doing anything
i f (!ChangeStat e(eDseConfig))

DBG "coul d change state to configuring");

}

/1 erase all in internal menory before proceeding
if (!EraselntMenory())
{

DBG "coul d not erase internal nenory");
return (false);

}

I/ set all channels to generate for infinite time by default
for (unsigned int | Channel Num = 0; | Channel Num < NO OF CHANNELS; ++| Channel Num

sCGenLoopLi m t[| Channel Nunj =
sGenTi meLi mi t[| Channel Nunmj =

}

/1 copy all into internal menory

_:l_Y
__‘]_7

/1 find channel 0 - 7 and popul ate Frame Vectors
for (unsigned int | Channel No = 0; | Channel No < NO_OF_CHANNELS;
++| Channel No)

/1 get frameVec for non-null entries
i f ((*apChannel Array)[| Channel No] != NULL)

| pFraneVec = (*apChannel Array)[| Channel No] - >Get Fr aneVec() ;
if (IpFrameVec != NULL)
{ DBG(" Stored channel [" << | Channel No << "] into internal nenory");
/1 for each frame in vector, copy into internal nmem
for (tEthGenFraneVec::iterator | Frane = | pFrameVec- >begin();

| Frame != | pFrameVec->end(); ++l Franme)

/1 internal storage config
(sSeqSt or eArray[| Channel No]) . push_back(t Et hGenFrane((**| Frane) . Get FraneNane(),

Source code: 92

(**1 Frame) . Get Et hGenBuf _Len(),
(**1 Frame) . Get Et hGenBuf _Buf (),
(**| Frame) . Get Et hGenBuf _LoopCount ()));

DBG(" (**| Frane). Get FraneName() = " << (**|Frane). Get FranmeNane());
}
}

}

}

/1 copy all sequence specific paraneters, required by sChannel Array[] later in PreConfig
for (unsigned int | GenChannel = 0; | GenChannel < NO OF CHANNELS; ++| GenChannel)

if ((*apChannel Array) [l GenChannel] != NULL)

/1 for each frame in sSeqStoreArray vector, copy into internal nmem
for (tSeqStore_Vec::iterator | St oredFrame = sSeqStoreArray[| GenChannel]. begin();
| St oredFrane ! = sSeqStoreArray[| GenChannel].end(); ++l StoredFrane)

DBG(" Copyi ng '" << | StoredFrane->GCGet FrameNane() << "' ");
sFranmeVect or [| GenChannel]. push_back(| St or edFr ane) ;
}

| Ti meDel ay = (*apChannel Array)[| GenChannel] - >Get Ti neDel ay();

sEt hGenSeq[| GenChannel] . Set Fr aneVec(&Fr aneVect or [| GenChannel]);
sEt hGenSeq[| GenChannel] . Set Ti neDel ay(| Ti meDel ay) ;

DBG("Ti me delay " << sEthGenSeq[| GenChannel]. Get Ti neDel ay()<< " into ment);
DBG("------------- Copi ed Channel [" << | GenChannel << "] --------mmmmoon-- ")
}
}

/1 now copy all non-null pointers to tenporary buffer
/1 now done in PreRunCheck() stage

/1 if not ready, set state to 'not configured
i f(!ChangeSt at e(eDseGoodCf g))
{
DBG "coul d not advance state to halt");
ChangeSt at e(eDseBadCf g) ;
return (false);

}

return (true);

khhkhkhhkhhkhhhhhkhhhhkhhhkhhkhhkhhkhkhhhhkhhhkhhkhhkhhhhhkhkhhkhkhkhkhkkk

Function : PreRunCheck

Description: do prerun check and advance to state to
' Not Runni ng'

Paranmeters : none

Returns : bool

R R R R R R R R R R S R R R R R R

NOTES: invoke thread and provide input data to process on

IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS */

bool
t CnpEt hGen: : PreRunCheck()

EE R

t Et hGenFrameVec * | pFrameVec = NULL;
DBE "into PreRunCheck ");

/'l set state to 'PreRunCheck'

Source code: 93

if (!ChangeState(eDseStartPreRC))

DBG "coul d not advance state to 'PreRC ");
return (false);

}

/'l erase all in tenp nenory before proceeding
if (!EraseTenpMenory())

DBG "coul d not erase tenporary nenory");
return (false);

}

/1 copy all PDUs/Seq to tenmp buffer
for (unsigned int | GenChannel = 0; | GenChannel < NO OF_CHANNELS; ++| GenChannel)

DBG(" Checki ng store seq[" << | GenChannel << "] tinme delay ="
<< sEt hGenSeq[| GenChannel]. Get Ti meDel ay() << " usecs");

/1 copy only valid channels to tenp nmenory
| pFraneVec = sEt hGenSeq[| GenChannel] . Get FranmeVec();

if (lIpFrameVec != NULL)
if (IpFrameVec->size() > 0)

DBG("Vector size is " << |pFraneVec->size() << " franes");
sChannel Array[| GenChannel] = &sEt hGenSeq[| GenChannel];

/'l keep count of total number of frames to generate
| pFraneVec = sChannel Array[| GenChannel] - >Get FrameVec();

sFrameCount _All += | pFrameVec- >si ze();

}
}
el se
{
/] explicitly set to null - may have al ready been done in EraseTenmpMemn()
sChannel Array[| GenChannel] = NULL;
}
}
DBG " sFrameCount _All = " << sFraneCount _All);

/1 point to new array
spActiveArrayPtr = &sChannel Array;

/1 advance state to ' Not Running'
i f (!ChangeSt at e(eDsePr eRCPass))

DBG "coul d not advance state to ' Not Running'");
ChangeSt at e(eDsePreRCFai |) ;

DBG("resetting to halt state");

return (false);

}

return (true);

Source code: 94

/* R R R S Sk S R S S R S S R S S R R S S S S
* Function : StartEngi ne
* Description: start generating engine
* Paraneters : none
* Returns : bool
EE R R R R R R R R R
* NOTES: invoke thread and provide input data to process on
R S I R R */
bool
t CnpEt hGen: : St art Engi ne()
{
/1 Start engine after checking for correct state
if (QueryState() == "Not Running")
/1 advance state to 'eDseCGen' to kick off generation
i f (ChangeSt at e(eDseGen))
{
/1 now ki ck of generation thread
if (!ThrGo(NULL))
DBG(":-P Could not create thread");
return (false);
}
el se
DBG(" Thread running ")
}
}
el se
{ .
DBG "coul d not advance state to 'Running' ");
return (false);
}
}
el se
DBG("! Incorrect state to start Engine");
return (false);
}
return (true);
}
/* EEEE R R EES
* Function : StopEngine
* Description: stop generating engine
* Paraneters : none
* Returns : bool
R o O R R
* NOTES:
EE R R R R R R R R R R R */
bool

t CpEt hGen: : St opEngi ne()

t Et hGenFr aneVec * | pFraneVec = NULL;
timeval | Get Ti ne;
/1 | ong | Fi ni shTi me_sec;
/1 | ong I Fi ni shTi me_usec;
| ong | Del t aTi me_sec;
| ong | Del t aTi me_usec;
f I oat I Ti mel nterval ;

Source code: 95

fl oat I BwUtilisation;

unsi gned int | ByteslnSeq_Average[NO OF CHANNELS] ;
unsi gned int | ByteslnSeq[NO OF_CHANNELS] ;

int | SeqSi ze[NO_OF_CHANNELS] ;
| ong | Tot al Bi t s[NO_OF_CHANNELS] ;
/1 /] stop engine only if running
/1 if (QueryState() != "Running")
/1 {
I DBGE " Engi ne not running");
/1 return (false);
/1 }

getti meof day(& Get Tine, 0);
DBG(" END: To -->" << | CGetTinme.tv_sec << "." << | GetTine.tv_usec);

for (int IStatsCount = 0; |StatsCount < NO _OF_CHANNELS; ++l StatsCount)
{

DBG("pre stop engine finish tine [" << |StatsCount << "] =" << sGenFin-
Ti me_sec[| St at sCount]
<< ".," << sGenFinTi me_usec[| StatsCount]);

}
/1 provision to conplete whol e sequence when engine is stopped by user

// case 1: loop limt not reached
/1 forced stop, hence set loop limt to 1 to allow conplete generation
/1 ideally nmust be set for sequences, not PDUs
for (unsigned int | Channel No = 0; | Channel No < NO_OF_CHANNELS;
++| Channel No)

i f (sChannel Array[| Channel No] != NULL)

/1 for all channels set loop limt to 1
i f (sChannel Array[| Channel No] - >Get FranmeVec() - >si ze() > 1)

/1 let ThrMain handle the rest
sCGenLoopLi m t[| Channel No] = 1;
}

el se
/1 for PDUs
/'l check thread existence
i f (sGenThreadLoop)
sCGenThr eadLoop = fal se;

/1 allow thread to cleanup
usl eep(200000) ;

el se
{
DBG("generation | oop al ready finished");
}
}
}
}

/1 sChannel[] is made NULL in ThrMain to deactivate

whi l e (sGenThreadLoop)

/1 wait until ThrMain term nates

Source code: 96

[/cout << ". ";

}

/] case 2: time limt not reached
/1 forced stop, ignore tinme

/1 reset all channels (generate for infinite tine by default)
for (unsigned int | Channel = 0; | Channel < NO OF_CHANNELS; ++l Channel)
{

sCGenLoopLim t[| Channel] = -1;
}

/] go to state 'waittostop'
i f (!ChangeState(eDseStop))
{

DBG "coul d not advance state to 'waiting to stop'");
return (false);

}
if (!ThrJdoin())

{

DBG("! Could not join thread");

}

el se
for (int |IStatsCount = 0; |StatsCount < NO OF_CHANNELS; ++l StatsCount)
if ((sGenFinTime_sec[lStatsCount] == 0) && (sGenFi nTi me_usec[| StatsCount] == 0))

/Il store finish times for stats later

sCGenFi nTi ne_sec[| StatsCount] = | GetTine.tv_sec;
sCGenFi nTi me_usec[| StatsCount] = | Get Ti me. tv_usec;
}
}
/'l get stats on all channels
for (unsigned int |IStatsCount = 0; | StatsCount < NO OF CHANNELS; ++| StatsCount)
{
if (sChannel Array[I| StatsCount])
{
/] DBG(setw(10) << | GetTime.tv_sec << "." << setw(6) << | Get Ti ne. tv_usec
/] << " [" << |StatsCount << "] =" << sFranmesSent_Channel [| StatsCount]);

| pFraneVec = sChannel Array|[| St at sCount] ->Get FrameVec();

| SeqSi ze[| StatsCount] = | pFranmeVec- >si ze();
DBG(" SeqSi ze[" << I StatsCount << "] " << | SeqSize[l StatsCount]);

[/ for each frame in vector, copy into internal nem
for (tEthGenFrameVec::iterator | Frane = | pFranmeVec- >begin();
| Frane ! = | pFranmeVec- >end(); ++l Frane)

| Byt esl nSeq[| St at sCount] += (**| Frane). Get Et hGenBuf _Len();
}

| Byt esl nSeq_Aver age[| Stat sCount] = | ByteslnSeq[l StatsCount]/| SeqSi ze[| StatsCount];

DBG("Bytes in seq[" << |StatsCount << "] " << | ByteslnSeq[l| StatsCount]);

DBG(" Average size in seq[" << |StatsCount << "] " << |Bytesln-
Seq_Average[| Stat sCount]);

if (sGenFinTime_usec[l StatsCount] < sGenStartTi ne_usec)

/] DBE"** delay time adjustnents");

| Del taTi me_usec = (sGenFinTi me_usec[| StatsCount] + 1000000) - sCenStartTi me_usec;

Source code: 97

| Del taTi me_sec = sGenFi nTi me_sec[| StatsCount] - sGenStartTi me_sec - 1;

}
el se
| Del taTi me_usec = sGenFi nTi me_usec[| StatsCount] - sGenStartTi me_usec;
| Del taTi me_sec = sGenFi nTi me_sec[| StatsCount] - sCenStartTi me_sec;
}

I Timelnterval = | DeltaTi ne_sec*1000000 + | DeltaTi me_usec;

/1 calculate total bytes from average
| Total Bits[I StatsCount] = (Il ByteslnSeq_Average[l StatsCount] * 8);

DBG("bits out " << (IBytesln-
Seq_Aver age[| St at sCount] *sFranesSent _Channel [| St at sCount]*8));
DBG("time " << |ITinelnterval);

I BMUtilisation = ((IBytesln-
Seq_Aver age[| St at sCount] *sFranesSent _Channel [| Stat sCount]*8)/I| Ti mel nterval);

DBG(" Franes sent [" << sFramesSent_Channel [| StatsCount] << "] in " << ITinelnter-
val /1000000 << " secs, Channel '" << | StatsCount << "' rate ="
<< (sFranesSent _Channel [| St at sCount]*1000000) /1 Ti nel nterval << " fps ");

DBG(" BandW dth utilisation (100BASE-T) Channel [" << | StatsCount << "] " <<
IBMUtilisation << " %");

}

}

for (int |IStatsCount = 0; |StatsCount < NO OF_CHANNELS; ++l StatsCount)
{

DBG(" post stop engine finish tinme [" << |StatsCount << "] =" << sGenFin-
Ti me_sec[| St at sCount]
<< "." << sGenFinTi me_usec[| StatsCount]);

}

if (sRtIDriverFail Count != 0)
{

DBG("**** Rtl driver failed " << sRtIDriverFail Count << " tinmes ");

}
}

/1 bring state back to Halt
i f (!ChangeSt at e(eDseEndCen))
{

DBE " Coul d not return state back to "halt'");
return (false);

}

return (true);

EE R R R R Sk S S S S R S S S S R S S R S R R R R R R R R

Function : Cenerate

Description: start generating franes
Paranmeters : none

Returns : bool

R R R R R R S S R R R R

NOTES:

LRSS EE R EE Y

bool
t CnpEt hGen: : Gener at e()

L

i f (!ChangeState(eDseGen))

Source code: 98

{

return (false);

return (true);

/* PR SRR SRS S SRR RS S SRS E SRR R RS SRR EEREEEEEEEEEEEEEEEEEEEEEEES
* Function : InsertChannel

* Description: introduce a new channel to system

* Paraneters : none

* Returns : bool

* EE R I R I I I R I I I R I I
* NOTES:

R R R R R R R R R R E SRR R R R R R SRR EE SRS RS EE R EEEEEREEEREESEERESEREERESESESEE
bool

t CnpEt hGen: : | nsert Channel (unsi gned i nt aChannel No,

{

-~

EE R

t Et hGenSeq * aEt hNewSeq)
/1 lock out state to 'Configuring' before doing anything
if (!ChangeState(eDseConfig))
{

DBG("coul d change state for Reconfig");
}

/1 check for existing duplicate channels
/1 if gen thread is not running
/1 renove duplicate

/1 insert new channel elenent to 'sChannel'
sChannel Array[aChannel No] = aEt hNewSeq;

i f (sChannel Array[aChannel No] == NULL)

DBG("! Could not insert channel "
<< aChannel No << "' ");

return (false);

/'l else

/1 copy contents to new location and insert el enent
/1 update flags of old |ocation

/'l set state back to halt
i f (!ChangeState(eDseGoodCfQ))
{

DBG("coul d not reset to "halt'");
return (false);

}

/1l return
return (true);

IR EEEEEEEEEEEEEEREEREEEREEREEREEREEREEREEERERERERESRERESEERESEESEESS
Function : Modi fyChannel

Description :

Parameters : none

*/

Source code: 99

EE R

Returns : bool

EE R R R R R R R R S R R R R R

NOTES:

LR AR EEEEEEEEE R EEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

bool
t CnpEt hGen: : Modi f yChannel (unsi gned i nt aChannel Num

{

t Et hGenSeq * aEt hNewSeq)
/1 lock out state to 'Configuring' before doing anything
i f (!ChangeSt ate(eDseConfig))
{

DBG "coul d change state for Reconfig");
}

/1 check for for the existing channel
/1 if it exists, renove previous and insert this one
/1 if it does not exist, create new channel

I/ set state back to halt
i f (!ChangeSt at e(eDseGoodCfg))

DBG("coul d not reset to 'halt'");
return (false);

}

return (true);

/* EEEE R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEES

* Function : SetPDU Len

* Description: set pdu length

* check <= current length perforned; data not nodified

* Parameters : buffer length, channel num and PduNum

* Returns : bool

R I R R

* NOTES:

EEE R R R R R R R R R R R */
bool

t CnpEt hGen: : Set PDU_Len(unsi gned i nt aBuf Len,

by

unsi gned int aChannel Num
unsi gned int aPduNum

unsigned int | SeqStoreSize = 0;
unsi gned int | NewLength = 0;

/1 do usual checks on paraneters
if ((aChannel Num < 0) || (aChannel Num >= NO_OF CHANNELS))

DBG(" Engi ne supports " << NO_OF_CHANNELS << " channels only");
return (false);

}
i f (aBuflLen > ETH_MAX_LEN)

/1 buf overflow - beyond max PDU size

DBG("Buffer length (" << aBufLen << " is nore than perm ssible
tes");
return (false);

}

/] ensure frame exists in sSeqStoreArray

tSeqStore_Vec: :iterator | FrameVect or = sSeqSt or eArray[aChannel Nuni

<< ETH MAX_LEN << "

. begin();

Source code: 100

| SeqSt oreSi ze = sSeqSt or eArray[aChannel Nunj . si ze();

/1 if sSeqStoreArray[].size() is zero, the channel does not exi st
if (1SeqStoreSize == 0)

DBG "! Channel [" << aChannel Num << "] does not exist");
return (false);

}

/'l note aFrameNum starts fromO
if ((ISeqStoreSize > 0) && (| SeqStoreSize >= (aPduNum+1)))
{

/1 go to particular frame

for (unsigned int IIndex = 0; |lndex < aPduNum ++l | ndex)
{
++| FrameVect or;
}
i f (aBuflLen == | FraneVect or - >Cet Et hGenBuf _Len())
{

DBG(" Requested buffer len is equal to existing PDU len");
DBG(" Not hing to nmodify");
return (true);

/1 if greater
i f (aBuflLen > | FraneVect or->Get Et hGenBuf _Len())

DBG("PDU is only " << | FraneVector->Cet Et hGenBuf _Len() << " bytes long");
return (false);

el se

/1 valid case
| NewLengt h = | FraneVect or - >Set Et hGenBuf _Len(aBuf Len) ;

if (I NewLength != aBuflLen)
{
DBG("Buffer length was set to " << | NewLength << "instead of "

<< aBuflLen << " bytes");
return (false);

}
}
}
el se
DBG "! Channel [" << aChannel Num << "] contains " << | SeqStoreSize << " PDUY(s)");
return (false);
}

return (true);

/* IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS
* Function : QueryPDU Len

* Description: query pdu length

* Parameters : channel num and PduNum

* Returns : unsigned int

LR EEEEEEEE SRR R R EEEEREEREEREEREEREEREEEERERERERERERERESRERESERESS
* NOTES:

*

R R R R R R R R S S S S R S R R R R R S R R */

const unsigned int

Source code: 101

t OnpEt hGen: : Quer yPDU_Len(unsi gned i nt aChannel Num
unsi gned i nt aPduNum)
{

unsi gned int | SeqStoreSize = 0;
unsi gned int | PDULen = O;

/1 do usual checks on paraneters
if ((aChannel Num < 0) || (aChannel Num >= NO _OF CHANNELS))

DBG(" Engi ne supports " << NO _OF_CHANNELS << " channels only");

return (0);
}
/'l ensure frame exists in sSeqStoreArray
tSeqStore_Vec: :iterator | FrameVect or = sSeqSt or eArray[aChannel Nuni . begi n();

| SeqSt oreSi ze = sSeqSt or eArray[aChannel Nunj . si ze();

/1 if sSeqStoreArray[].size() is zero, the channel does not exist
if (1SeqStoreSize == 0)

DBE "! Channel [* << aChannel Num << "] does not exist");
return (0);

/1 note aFrameNum starts fromO
if ((ISegStoreSize > 0) && (| SeqStoreSize >= (aPduNumtl)))

/1 go to particular frame
for (unsigned int |IlIndex = 0; |lIndex < aPduNum ++l | ndex)

++| FranmeVect or ;

/1 get PDU |l ength
| PDULen = | FrameVect or - >CGet Et hGenBuf _Len();
}

el se

DBG "! Channel [" << aChannel Num << "] contains " << | SeqStoreSize << " PDUY(s)");
return (0);

return (I PDULen);
}

R R R R R S S R S R S S R S S R R R R R R R R R R

Function : SetRate_FranmePer Sec
Description: set tx rate for channel
Paraneters : frame rate and channel num
Returns : bool

R R R R R R R R R S S R S R R R R

NOTES:

IR EEEEEEEREEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEESS */

bool

t CnpEt hGen: : Set Rat e_Fr amePer Sec(unsi gned int aFraneRate,
unsi gned i nt aChannel Num

{

| ong | Ti mel nt erval _usec;

E R R I

t Et hGenFrameVec * | pFrameVec = NULL;

/1 check valid franme rate
if (aFraneRate == 0)

DBG "cannot set franerate = 0 fps");

Source code: 102

return (false);

}

/1 check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO _OF CHANNELS))

DBG " Engi ne supports 0-" << NO OF_CHANNELS-1 << " channels only");
return (false);

}

/1 warn if requested rate is higher than permssible
if (aFraneRate > 8127)

{
DBG("! Pernissible frame rate is " << MAX_FRAME RATE << " max " << endl
<< "1 Unknown behaviour with set tine limt and set loop limt");

}

/1 change at the source sEthGenSeq[]
| pFraneVec = sEt hGenSeq[aChannel Nunj . Get FrameVec();

if (lIpFrameVec != NULL)
{
if (IpFrameVec->size() > 0)
if (aFraneRate <= 1000000)

| Ti mel nt erval _usec = 1000000/ aFr ameRat e;

}
el se
DBG("! invalid frane rate request, greater than 1e6");
return (false);
}
DBG("cal cul ated tine interval = " << ITinmelnterval _usec << " usecs");

/1 set time delay for sequence
if (!(sEthGenSeq[aChannel Nunj. Set Ti meDel ay(!| Ti mel nterval _usec)))
{

DBG("coul d not set time delay");
return (false);

el se

{

/'l now update |ocal copy
sChannel Rat e_f ps[aChannel Nunm] = aFraneRate;

el se
DBG " Channel [* << aChannel Num << "] is enpty");
return (false);
return (true);
/* R R R R Sk S S S R S S S S S S S S S R S R R R R R R R R
* Function : SetRate_Mps
* Description: set tx rate for channel in Mps
* Parameters : frame rate and channel num
* Returns : bool
EE R R S S S S R R S S R R R R R R R R R R R R R
* NOTES:
*

LR R EE R EE Y

Source code: 103

bool

t CnpEt hGen: : Set Rat e_Moips(unsi gned int aRate_M,
unsi gned i nt aChannel Num

{

t Et hGenFrameVec * | pFranmeVec = NULL;

unsigned int |ByteslnSeq = 0;
unsi gned int |ByteslnSeq_Average = 0;
unsigned int | Rate fps = 0;

int | SeqSi ze = 0;

/1 check valid franme rate
if (aRate_M == 0)
{
DBG "cannot set frane rate = 0 Mops");
return (false);

}

/1 check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO _OF CHANNELS))
{

DBG " Engi ne supports 0-" << NO OF CHANNELS-1 << " channels only");
return (false);

}

/1 warn if requested rate is higher than perm ssible
/1 already done in Tcl stage

/'l get frame vec
| pFraneVec = sEt hGenSeq[aChannel Nunj . Get FrameVec();

if (lIpFrameVec != NULL)
{

/] sequence exists
if (IpFrameVec->size() > 0)

/'l get size of sequence
| SeqSi ze = | pFranmeVec- >si ze();

DBG("sequence size = " << | SeqSi ze);
/1 100k through each vector and get length in bytes
for (tEthGenFrameVec::iterator | Frane = | pFranmeVec- >begin();

| Frane ! = | pFranmeVec- >end(); ++l Frane)
{

| Bytesl nSeq += (**| Frane). Get Et hGenBuf _Len();
}

/1 convert to average bits and then to Mits
| Byt esl nSeq_Aver age = | Bytesl nSeq/| SeqSi ze;
DBG("average bytes in sequence = " << | ByteslnSeq_Average);

// convert to fps
| Rate_fps = (aRate_M*1000000)/ (| Byt esl nSeq_Aver age*8) ;

/1 if (I Rate_fps <= MAX_FRAME RATE)

/1 { DBG("cal cul ated fps = " << | Rate_fps);

if (!SetRate_FranmePerSec(l Rate_fps, aChannel Num)
DBG(" Coul d not set rate ");

return (false);

}
/1 }

Source code: 104

/1 el se

/1
/1 DBG("cal cul ated fps = " << | Rate_fps);
DBG("fps read out as " << QueryRate_FranePer Sec(aChannel Nun));
11 }
}
}
el se
DBG " Channel [* << aChannel Num << "] is enpty");
return (false);
}
return (true);
}
/* EE R R R R R R R S R R S R R R R R R R
* Function : SetLimt_Tinme
* Description: set time limt for channel
* Parameters : time in seconds and channel num
* Returns : bool
EE R R R R R R R R R R R R
* NOTES:
R S R R */
bool
t CnpEt hGen: : Set Li mi t _Ti me(l ong aTi me_Sec,
unsi gned int aChannel Num)
{
t Et hGenFrameVec * | pFrameVec = NULL;
/1 | ong | Tot PDU_Count = O;
unsi gned int | PDU_I nSeq = 0;
| ong | Seq_Loops = 0;

/'l check valid tinme rate
if (aTime_Sec <= 0)

DBG "cannot set 0 or -ve tinme");
return (false);

}

/1 check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO_OF CHANNELS))

DBG " Engi ne supports 0-" << NO OF_CHANNELS-1 << " channels only");
return (false);

}

/1 get frame vec
| pFranmeVec = sEt hGenSeq[aChannel Nunj . Get Fr aneVec();

/1 get total nunber of franmes in seq ('n' franmes)
| PDU_I nSeq = | pFraneVec- >si ze();

if (IpFrameVec != NULL)
if (IpFrameVec->size() > 0)
/1 if dealing with sequences, convert to |oops to be executed

if (IPDU_InSeq > 1)
{

Source code: 105

DBGE("PDUs in sequence[" << aChannel Num<< "] is " << |PDU InSeq << " PDU(s)");

/1 total nunmber of sequences to be sent out in 1 second * total tine
| Seq_Loops = (QueryRat e_FranePer Sec(aChannel Num) * aTine_Sec)/ | PDU_I nSeq;

if (!((QueryRate_FramePer Sec(aChannel Nunm *aTi ne_Sec) % PDU_I nSeq))

{
/] exact match to total nunber of |oops
DBG("convert to | oop count (exact match) " << | Seq_Loops);
Set Lim t _Loops(| Seq_Loops, aChannel Nunj ;
}
el se
{
/1 allow for loop to conplete
DBG("converting to loop count = " << | Seq_Loops+1);
Set Li mi t _Loops(!| Seq_Loops+1, aChannel Num ;
}
}
el se
{ R
/1 dealing with PDUs (I PDU InSeq = 1)
DBG("time linmt set to " << aTine_Sec << " secs");
sCGenTi neLi mi t[aChannel Nunj = aTi ne_Sec;
/] set loop to -1 - they are mutually exclusive
sCGenLoopLi m t[aChannel Nun] = -1,
}
}
}
el se
DBE " Channel [* << aChannel Num << "] is enpty");
return (false);
}
return (true);
}
/* R S S R I L
* Function : SetLimt_Loops
* Description: set number of |oops
* Parameters : |oops and channel num
* Returns : bool
EE R R R R R R R R R R
* NOTES:
R R R R R R EREEEEEREE] */
bool

t CpEt hGen: : Set Li mi t _Loops(| ong aLoops,
unsi gned i nt aChannel Num)
{

t Et hGenFrameVec * | pFrameVec = NULL;

/1l check valid tinme rate
if (aLoops <= 0)
{

DBG "cannot set 0 or -ve loops");
return (false);

}

/1 check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO _OF CHANNELS))

DBG " Engi ne supports 0-" << NO OF_CHANNELS-1 << " channels only");

Source code: 106

return (false);

}
| pFrameVec = sEt hGenSeq[aChannel Nunj . Get Fr anmeVec() ;
if (lIpFrameVec != NULL)
if (IpFranmeVec->size() > 0)
DBG("limt set to " << aLoops << " |oops");
sCGenLoopLi m t[aChannel Nunj = alLoops;

I/l set time to -1 - they are nutually exclusive
sGenTi meLi m t [aChannel Nun] = -1;
}
}

el se

DBG " Channel [* << aChannel Num << "] is enmpty");
return (false);

}

return (true);

R R X E]

Function : QueryRate_FranmePer Sec
Description: query tx rate for channel
Paraneters : channel num

Returns : bool

khkhkkhhkhhkhhhhhhhhhkhhhkhhkhhkhhkhhhhhkhhkhhhkhhkhhhhhkhkhhkhkhkhkhkkk

NOTES:

EE R R R R R R R R R R R S R R R R

const unsigned int
t CnpEt hGen: : Quer yRat e_Fr amePer Sec(unsi gned i nt aChannel Num

{

unsi gned int | FraneRat e;

E R R

t Et hGenFrameVec * | pFranmeVec = NULL;
| ong | Ti meDel ay_usec = O0;
| ong | Cal cTi meDel ay_usec = 0;

/1l check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO_OF_ CHANNELS))

*/

const

DBG " Engi ne supports 0-" << NO OF_CHANNELS-1 << " channels only");

return (0);

}
| pFraneVec = sEt hGenSeq[aChannel Nunj . Get FrameVec();
if (IpFrameVec != NULL)

{

if (IpFrameVec->size() > 0)

| Ti meDel ay_usec = sEt hGenSeq[aChannel Nuni. Get Ti meDel ay();

if (I TimeDelay_usec != 0)

| FraneRat e = 1000000/ | Ti neDel ay_usec;

Source code: 107

/1 check this value against |ocal value
| Cal cTi meDel ay_usec = 1000000/ sChannel Rat e_f ps[aChannel Nuni ;

if (ITimeDelay_usec !=1|CalcTinmeDel ay_usec)
{
/1 return | FraneRate
DBG("l ocal FrameRate value is not updated");
return (| FraneRate);
}
}

el se

DBG("found tine delay for channel [" << aChannel Num << " set to 0");
return (0);

}
}
el se
DBG " Channel [* << aChannel Num << "] is enmpty");
return (0);

return (sChannel Rat e_f ps[aChannel Num) ;

}

/* PR SRR SRS SEE SRS S SRS SRR SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEES
* Function : QueryStats_FraneSent
* Description: find how many frames were sent on channel x
* Parameters : Channel Nunber
* Returns : long |ong
*

R O R S */
const |ong | ong

t CnpEt hGen: : QuerySt at s_FraneSent (unsi gned i nt aChannel Num const
{

/1 check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO _OF CHANNELS))

DBG " Engi ne supports 0-" << NO OF_CHANNELS-1 << " channels only");
return (-1);

}

DBG "frames sent on Channel [" << aChannel Num << "] ="
<< sFranesSent _Channel [aChannel Num) ;

return (sFranesSent _Channel [aChannel Nuni);

}
/* R SRR SR SESEE SRS SRS SRR R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES
* Function : QueryStats_Tinel nterval
* Description: get generation tinme interval
* Paraneters : none
* Returns : tineval
*

IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS */

const tineval
t CnpEt hGen: : QueryStats_Ti el nterval (unsi gned i nt aChannel Num) const
{

timeval I Ti mel nterval ;

t Et hGenFrameVec * | pFrameVec = NULL;

/1 | Timelnterval .tv_usec = sGenFi nTi me_usec[aChannel Nuni ;
/1 I Timelnterval .tv_sec = sGenFinTi me_sec[aChannel Nuni;

Source code:

108

/1 check for valid channel num
if ((aChannel Num < 0) || (aChannel Num >= NO_OF_ CHANNELS))

DBG(" Engi ne supports 0-" << NO_OF_CHANNELS-1 << " channels only");
| Timelnterval .tv_sec -1;
| Ti mel nterval .tv_usec -1;

return (I Tinelnterval);

}

/'l check if channel is not enpty
| pFraneVec = sEt hGenSeq[aChannel Nunj . Get FraneVec();

if (lIpFrameVec != NULL)
/1 DBG "finding time " << |ITinelnterval.tv_sec << "." << |Tinelnterval.tv_usec);

i f (sGenFinTime_usec[aChannel Nuni < sGenStartTi me_usec)

{
/1 DBG("** time adjustnents");

I Timelnterval .tv_usec = (sGenFi nTi me_usec[aChannel Nunj + 1000000) - sCGenStart-
Ti me_usec;

I Timelnterval .tv_sec = sGenFinTi me_sec[aChannel Nunj - sCenStartTi me_sec - 1;
}
el se
| Timelnterval .tv_usec = sGenFi nTi me_usec[aChannel Nunj - sGenStartTi ne_usec;
I Timelnterval .tv_sec = sGenFinTi me_sec[aChannel Nuni - sGenStartTi me_sec;
}
/1 DBG "finish time " << sCGenFinTi ne_sec[aChannel Nunj << "." << sGenFin-
Ti me_usec[aChannel Nunj) ;
DBG("time interval " << ITinmelnterval.tv_sec << "." << |Tinelnterval.tv_usec);
}
el se

DBG " Channel [* << aChannel Num << "] is enpty");

I Timelnterval .tv_sec = -1;
| Timelnterval .tv_usec = -1;
return | Ti nel nterval ;
/* RS SRR SRS EEEE RS S SRS EEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
* Function : Erasel nt Menory
* Description: erase internal menory
* Paraneters : none
* Returns : bool
* khkkhkhkhkhkhkdkhkhkhkhkhkhkdkhkdkhkhkhkhkdhkdhkhkhkhkdhkdhkdhkhkdkhkdkhkdbhkhkhkhkhhdhkdkhkdhhdx */
bool
t CnpEt hGen: : Er asel nt Menory()

for (unsigned int Ilndex = 0; |lIndex < NO OF_CHANNELS; ++I | ndex)

/] erase sSeqStoreArray
if (sSeqStoreArray[llndex].size() !'= 0)
{
cout << "Channel[" << |lndex << "] frame size reduced from"
<< sSeqStoreArray[llndex].size() << " to ";

Source code: 109

sSeqStoreArray[| I ndex].clear();
cout << sSeqStoreArray[llndex].size() << "." << endl;

/1 array could not be cut down
if (sSeqStoreArray[l|lndex].size() !'=0)

return (false);

}
}
el se
I DBG(" Channel [" << Ilndex << "] frame vec size " << sSeqStoreArray[l|ndex].size());
}
/1 erase sFraneVector
for (unsigned int | Channel = 0; | Channel < NO_OF CHANNELS; ++| Channel)
if (sFrameVector[| Channel].size() !'=0)
{
cout << "EraselntMenory: sFranmeVector[" << | Channel << "] size reduced from"
<< sFrameVector[| Channel].size() << " to ";
sFrameVector[| Channel] . clear();
cout << sFranmeVector[| Channel].size() << endl;
}
}
/] erase sEthGenSeq
for (unsigned int |Count = 0; |Count < NO OF CHANNELS; ++l Count)
{
try
{
sEt hGenSeq[| Count] . Set FrameVec(NULL) ;
}
catch (...)
DBG("coul d not renpve Frane vector from sEthGenSeq[" << | Count << "]");
}
}
}
return (true);
}
/* EE R R R R S R S S S S S S S S R S R R R R R S R R
* Function : EraseTenmpMenory
* Description: erase tenporary mnenory
* Paranmeters : none
* Returns : bool
EE R R R R R R R R */
bool

t CpEt hGen: : Er aseTenpMenory()

/1 clear out all non-null frane vectors
for (unsigned int IlIndex = 0; |lndex < NO OF CHANNELS; ++l | ndex)

/1 if (sFraneVector[l|lndex].size() != 0)

11 {

/1 DBG("cl earing temp nem sFrameVector[" << |lndex << "]");
/1 sFrameVector[| I ndex].clear();

Source code: 110

Iy

sChannel Array[| | ndex] =

DBG "setting sChannel Array[" << |lndex << "]

}

/'l sFrameCount for all
sFrameCount _All = 0;

/'l check drive

return (true);

NULL;

sequences at start to O

to NULL");

}
/* ERE R R I I I R I I I I R I R I I
* Function : ModifyBuffer
* Description: nodify destination buffer, given src
* buffer, offset and |l en
* Paraneters of fset, len, dest buf and src hex string
* Returns 2 bufdata < len, 0, 1 buf truncated,
* -3 zero buflen, -4 buf overflow,
* -5 nmencpy error
* ER R R I I R R I R I I R R I */
int
t CnpEt hGen: : Modi f yBuf f er (unsi gned i nt adf f Set ,
unsi gned int aBuf Len,
unsi gned char * apDest Buf,
unsi gned char * apSrcBuf)
{
/1 renoving buffer check - check for buffer |ength
/1 must be done at higher levels
unsi gned char | TenpBuffer[ETH MAX_LEN] ;
/1 clear out tenp buffer
for (unsigned int | Count = 0; |Count < ETH MAX LEN; ++| Count)
| TempBuffer[| Count] = 0;
}
/1 DBG "apSrc buffer contents");
/1 for (unsigned int i =1; i < 20; ++i)
/1
11 cout << apSrcBuf[i];
I
/1 cout << endl;

i f (aBuflLen <= 0)

/1 buflen is zero,
return (-3);

/1l check offset + len is not

if ((aOffSet + aBuflen)

/1 buf overflow -
return (-4);

nothing to nodify

beyond limt
> ETH_MAX_LEN)

beyond max PDU size

/] convert hex string to int

if (!ConvertHexTolnt((char *)apSrcBuf,

aBuf Len,

(char *)| TenpBuffer))

Source code: 111

{
DBG "coul d not convert hex string");

}

/'l copy to dest
i f (mencpy(apDest Buf +aOf f Set, | TenpBuf fer, aBuflen) == NULL)

return (-5);

/1 return O otherw se

return (0);
/* ERE R R I I I R I I I I R I R I I
* Function : ModifyFrameBuffer
* Description: nodify contents of PDU
* Paraneters : offset, len, src buf, Channel Num FrNum
* Returns : bool
R R R R SRR R R R R RS EE R R R R SRR EE SRS RS EE R R R EEEREEEREESEERESEERESERESESESESE] */
bool

t CnpEt hGen: : Modi f yFraneBuf f er (unsigned int aOf Set,
unsi gned i nt aBuf Len,
unsi gned char * apSrcBuf,
unsi gned i nt aChannel Num
unsi gned int aFr aneNum

int | SeqStoreSi ze = 0;

unsi gned int | Modi fyVal ;
unsi gned int | NewFraneLen;

/1 do usual checks on paraneters
if ((aChannel Num < 0) || (aChannel Num >= NO_OF_ CHANNELS))

DBG(" Engi ne supports " << NO_OF_CHANNELS << " channels only");
return (false);

}
if ((aOfSet + aBuflLen) > ETH MAX_LEN)

/1 buf overflow - beyond max PDU size
DBG"Of fset (" << aOffSet << ") + aBuflLen(" << aBuflLen << ") exceeds "
<< ETH MAX_LEN);

return (false);

}

/1 check for existing channel
/1 check size of sSeqStoreArray[aChannel Nuni
tSeqStore_Vec: :iterator | FrameVect or = sSeqSt or eArray[aChannel Nuni . begi n();

| SeqSt oreSi ze = sSeqSt or eArray[aChannel Nunj . si ze();

/1 if sSeqStoreArray[].size() is zero, the channel does not exi st
if (1SeqStoreSize == 0)

DBG"! Channel [" << aChannel Num << "] does not exist");
return (false);

}

/1 note aFrameNum starts fromO
if ((ISegStoreSize > 0) && (| SeqStoreSize >= (int)(aFrameNumtl)))
{

Source code: 112

/1 go to the particular frane
for (unsigned int |IIndex = 0; |lndex < aFrameNunm ++l 1 ndex)

++| Fr ameVect or ;

}
if ((aOffSet+aBuflLen) > | FranmeVector->Get Et hGenBuf _Len())
DBG("PDU is only " << | FraneVector->Cet Et hGenBuf _Len() << " bytes long");
return (false);
}

/1 get buffer and nodify
| Modi fyVal = Modi fyBuffer(alf fSet, aBuflLen, |FraneVector->GCGet Et hGenBuf _Buf (),
apSrcBuf) ;

/linterpret return val ues
switch (I MdifyVal)

{
case -3: DBE "Zero buflen - nothing to nodify");
br eak;

case -2: DB "Ofset+len is beyond PDU size(" << ETH MAX_LEN << ") limt");
br eak;

case -5: DBE "Could not mencpy");
br eak;

case 0: DB@ "Buffer copied");
br eak;

case 1: DB "Buffer was truncated at end");
br eak;

case 2: DBQ"Supplied data falls short of requested length, extra spaces filled with
"y

’break;

defaul t: DBE "unknown behaviour ");
br eak;

/1 change buffer |ength
| NewFrameLen = (| FrameVect or - >Get Et hGenBuf _Len() > (aOfSet + aBuflLen)) ?
| FraneVect or - >Get Et hGenBuf _Len() : (aOfSet + aBuflLen) ;

i f (I FrameVector->Set Et hGenBuf _Len(| NewFranmeLen) != | NewFr aneLen)
DBG("!! Coul d not nodify Length");
: el se
, DBG("nodi fied |l ength of buffer is " << | NewFraneLen);

/1 change sequence specific parameters - sFrameVector and sEt hGenSeq
sFranmeVect or [aChannel Nunj . cl ear () ;

for (tSeqStore_Vec::iterator | St or edFrame = sSeqSt or eArray[aChannel Nuni . begi n();
| St oredFrane ! = sSeqSt or eArray[aChannel Nunj . end(); ++l StoredFrane)

DBG(" Copyi ng nmodi fied '" << | StoredFrane->Cet FrameNanme() << "' into generator");
sFrameVect or [aChannel Nuni . push_back(| St or edFr ane) ;

Source code: 113

sEt hGenSeq[aChannel Numj . Set Fr aneVec(& Fr ameVect or [aChannel Nunj) ;

}

el se

DBG "! Channel [" << aChannel Num << "] contains " << | SeqStoreSize << " PDU(s)");

return (false);

}

/1 return
return (true);

R R X E]

Function : QueryFraneBuffer

Description: supply a buffer to read out contents from
a PDU (starting O - n) from
a Channel (starting 0 - x)

Paraneters : offset, len, buffer, Channel Num FrameNum

Returns : bool

R R R R R R R R S S R S R R R R S R R */

bool

t CnpEt hGen: : Quer yFr aneBuf f er (unsi gned i nt adxf f Set,

unsi gned i nt aBuf Len,

unsi gned char * apBuf,

unsi gned i nt aChannel Num

unsi gned i nt aFraneNum

E R

unsi gned char | TenpBuffer[ETH MAX_LEN] ;
unsi gned int | SeqStoreSize = 0;
/1 char | DebugBuf [1514*2] ;

/'l do usual checks on paraneters
if ((aChannel Num < 0) || (aChannel Num >= NO _OF CHANNELS))
{

DBG(" Engi ne supports " << NO _OF_CHANNELS << " channels only");
return (false);

}
if ((aOfSet + aBuflLen) > ETH MAX_LEN)
/1 buf overflow - beyond max PDU size
DBE"Of fset (" << aOffSet << ") + aBuflLen(" << aBuflLen << ") exceeds "
<< ETH_MAX_LEN);

return (false);

}

/1 ensure frame exists in sSeqStoreArray
tSeqStore_Vec::iterator | FraneVect or = sSeqSt or eArray[aChannel Nunj . begi n();

| SeqSt oreSi ze = sSeqSt or eArray[aChannel Nunj . si ze();

/1 if sSeqStoreArray[].size() is zero, the channel does not exist
if (1SeqStoreSize == 0)

DBG("! Channel [" << aChannel Num << "] does not exist");
return (false);

}

/1 note aFrameNum starts fromO
if ((ISegStoreSize > 0) && (| SeqStoreSize >= (aFrameNum+l)))

Source code:

114

/1 go to particular frame

for (unsigned int |IIndex = 0; |lndex < aFrameNunm ++l 1 ndex)

++| FrameVect or ;

/1 copy contents fromoffset upto length into tenp buffer
if ((aOffSet+aBuflLen) > | FraneVector->Get Et hGenBuf _Len())

DBG"PDU is only " << | FraneVector->Cet Et hGenBuf _Len() << "

return (false);

bytes I ong");

if (mencpy(l TempBuf fer, (IFrameVector->Get Et hGenBuf _Buf()) + aOf Set,

aBuf Len) !'= NULL)
for (unsigned int i = 0; i < aBuflLen; ++i)

cout << (int)l TenpBuffer[i];
}

/1 Convert contents to hex string
if (ConvertlntToHex((char *)| TenpBuffer, (int)(aBufLen),

DBG(" Coul d not convert to hex string");
}

/1 Display hex string for now
I for (unsigned int i = 0; i < aBuflLen; ++i)

/1 cout << (int)l DebugBuf[i];
/1 }

el se

DBG(" nmencpy error");
return (false);

}

}

el se

(char *)apBuf) !'= 1)

DBG "! Channel [* << aChannel Num << "] contains " << | SeqStoreSize << " PDY(s)");

return (false);

}

return (true);

R R R R R R R R R S S R S R R R R

Function : all other seq and frane and rate fns
Description :

Paranmeters : none

Returns : bool

LR RS EE R EE Y]

E I

bool t CpEt hGen: : RenpbveChannel (unsi gned i nt aChannel Num) {return (true);}

bool t CpEt hGen: : I nsert Seq(){return (true);}
bool t CpEt hGen: : Modi fySeq(){return (true);}
bool t CpEt hGen: : RenpveSeq(){return (true);}
bool t CpEt hGen: : I nsertFrane(){return (true);}
bool t CpEt hGen: : Modi fyFrane(){return (true);}
bool t CpEt hGen: : RenoveFrane(){return (true);}

Source code: 115

/1 bool

/

/

t CpEt hGen: : Set Rat e_Bi t sPer Sec(unsi gned int aBitRate,

unsi gned i nt aChannel Num {return (true);}

const unsigned int tCnpEthGen:: QueryRat e_BitsPerSec(unsigned int aChannel Nun) const
{return (1);}

EE R I I

EE R R R R R R R R R R R R R R R R R

Function : StopGenerate

Description : does not do anything at this point
Parameters : none

Returns : bool

B R R R R R R R R R R R R R R

NOTES:

R R X E]

bool
t CnpEt hGen: : St opGener at e()

}

R I R R */
t ThreadData *
t CnpEt hGen: : Thr Mai n(t ThreadData * apDat a)
{
timeval | Get Ti ne;
| ong I Next Ti me_sec[NO_OF_CHANNELS] ;
| ong | Next Ti me_usec[NO_OF_CHANNELS] ;
| ong | SeqTi meSt anp[NO_OF_CHANNELS] ;
| ong | SeqTi meSt anp_sec[NO_OF_CHANNELS] ;
| ong | SeqTi meSt anp_usec[NO_OF_CHANNELS] ;
| ong | LoopLi mi t [NO_OF_CHANNELS] ;
int | FranmelLen,;
int | Buf Si ze;
i nt | ActiveChCounter = 0;
/1 running counter to keep track of next frame in vec
t Et hGenFranmeVec: : const _i terator | Franel t er at or [NO_OF_CHANNELS] ;

EE I I N

return (true);

R R R R X E]

Function : private nethod
Description: thread nain
Parameters : none
Returns : bool
ERE R R I I R I I I I R R I I I R I I
NOTES:
time neasurenent is done as follows
start time is set to current time gettinmeofday

get timestanp from each sequence

*/

every time a frane is sent, start tine is reset
to a newtime which is equal to previous tine

plus ti mestanp

t Et hGenFr anmeVec * | pFrameVec[NO_OF_CHANNELS] ;

// Don't care about any args
if (apData != NULL)

del ete (apData);
}

Source code: 116

/1 find nunmber of active channels and bunp counter | ActiveChannel Counter
for (unsigned int |Count = 0; |Count < NO OF CHANNELS; ++l Count)

i f (sChannel Array[l Count] != NULL)

++| Acti veChCount er;
}

DBG "found " << | ActiveChCounter << " active channels for generation");

/1 sRtlDriverFail Count set to 0O
sRt1 DriverFail Count = 0;

/1 clear out all stats fromall channels, set to 0O
for (unsigned int |IStatsCount = 0; | StatsCount < NO OF CHANNELS; ++| StatsCount)

{
sFranmesSent _Channel [| StatsCount] = O;

}

/1 debug print out for all channels
for (unsigned int |Count = 0; |Count < NO OF CHANNELS; ++l Count)

i f (sChannel Array[l Count] != NULL)
{
DBE"----mmmmmm--- SEQ" << ICount << "] ---------------- ")
| pFraneVec[| Count] = sChannel Array[| Count] ->Cet FraneVec();
for (tEthGenFraneVec::const_iterator |Franelter = | pFrameVec[l| Count]->begin();
| Franelter != | pFraneVec[l| Count]->end(); ++l Framelter)
{
DBG("-> " << (*l Franelter)->GetFrameNane() << " - " << (*|Franelter)-
>Cet Et hGenBuf _Len());
}
}
DBG("sGenTineLimt[" << | Count << "] = << sGenTineLimt[l Count]);
DBG("sGenLoopLimt[" << | Count << "] = << sGenLoopLinmt[l Count]);
}

/1 look all channels
sCGenThr eadLoop = true;

/1 get all tine stanps fromchannels and store locally
for (unsigned int | Count = 0; |Count < NO OF CHANNELS; ++l Count)

i f (sChannel Array[l Count] != NULL)
| SeqTi meSt anp[| Count] = sChannel Array[| Count]->Get Ti neDel ay();

| SeqTi meSt anp_sec[| Count] = | SeqTi meSt anp[| Count]/1000000;
| SeqTi meSt anp_usec[| Count] = | SeqTi meSt anp[| Count] %4000000;
}
}

for (unsigned int | Count = 0; |Count < NO OF CHANNELS; ++l Count)

/1 get all frane vectors and make iterators point to beginning
if (sChannel Array[l Count] != NULL)

/1 get vector
| pFraneVec[| Count] = sChannel Array[| Count] ->Cet FraneVec();

Source code: 117

/] point iterator to beginning
| Franelterator[l Count] = (I pFraneVec[l| Count])->begin();

/1 clear out loop limt
if (sGenLoopLimt[lCount] != -1)

| LoopLi mit[I Count] = O;

}
}

/1 get initial time set t=to for all channels and save start tine
getti meof day(& Get Tinme, 0);

sCGenStart Tine_sec = | GetTi nme.tv_sec;
sCGenStart Ti me_usec = | Get Ti ne. t v_usec;

for (unsigned int ILimtCount = O; |LimtCount < NO OF CHANNELS; ++l Lim tCount)
{

/1 clear out finish times to begin with

sGenFi nTi ne_sec[| Li m tCount] = O;
sGenFi nTi ne_usec[| Li mi t Count] = O;
}
for (unsigned int |Count = 0; |Count < NO OF CHANNELS; ++l Count)
{
| Next Ti me_usec[| Count] = | GetTi ne.tv_usec;
| Next Ti me_sec[| Count] = | GetTine.tv_sec;
}
for (unsigned int | Count = 0; |Count < NO OF CHANNELS; ++l Count)
{
i f (sChannel Array[| Count] != NULL)

if ((IGetTinme.tv_usec + | SeqTi neStanp_usec[| Count]) > 999999)

DBG(" adj ust ed overfl ow before while()");
| Next Ti me_usec[| Count] = (I NextTi me_usec[| Count] + | SeqTi ne-
St anp_usec[| Count]) %4000000;

| Next Ti me_sec[| Count] = I NextTine_sec[l Count] + |SeqTi meStanp_sec[| Count] + 1;
}
el se
| Next Ti me_usec[| Count] = | NextTi ne_usec[l Count] + | SeqTi meStanp_usec[| Count];
| Next Ti me_sec[l Count] = I NextTine_sec[l Count] + | SeqTi meStanp_sec[| Count];
}
}
}
DBG(" START: From--> " << | GetTime.tv_sec << "." << | GetTinme.tv_usec);

whi |l e (sGenThreadLoop)
for (unsigned int | Channel No = 0; | Channel No < NO_OF_CHANNELS;
++| Channel No)
{ gettimeof day(& Get Time, 0);
i f (sChannel Array[| Channel No] != NULL)

/1 look for next frane in line
/1 this |oops takes around 1.5 usecs to conplete

/'l generation with del ay

Source code: 118

Get Ti me.tv_sec == | NextTi me_sec[| Channel No]) &&

f ((1GetTinme.tv_sec > | NextTi me_sec[l Channel No]) ||
|
| Get Ti me. tv_usec >= | Next Ti me_usec[| Channel No])))

i
((
(
/1 get BufSize

| Buf Si ze = (*I Franelterator[l Channel No]) - >Cet Et hGenBuf _Len() ;

if (1BufSize <= ETH MAX_LEN)

{
| FraneLen = send(sSock, (*IFranelterator[l Channel No])->Cet Et hGenBuf _Buf (),
| Buf Si ze, 0);
}
el se
{
DBG(" oooops! !'!'! invalid buffer size(" << |BufSize << "), contents[" <<

((*lI Framel terator) [l Channel No]) - >Get Et hGenBuf _Buf () << "]");

}

if (I FrameLen == -1)
{
/'l Somet hi ng bad happened
++sRt| Dri ver Fai | Count ;

/] DBGE "Could not send buffer: " << strerror(errno));
conti nue;

}
if (IFrameLen != | BufSize)

DBG(" Coul d not send out req buffer size ");
conti nue;

}

/'l keep count of frane sent
++sFramesSent _Channel [| Channel NoJ ;

/1 adjust start time and overfl ow
I Next Ti me_usec[| Channel No] += | SeqTi neSt anp_usec[| Channel NoJ ;
| Next Ti me_sec[| Channel No] += | SeqTi meSt anp_sec[| Channel Noj ;

if (I NextTine_usec[l Channel No] > 999999)
| Next Ti me_usec[| Channel No] -= 1000000;

| Next Ti me_sec[| Channel No] += 1;
}

/1 point to the next frame in line, reset if end is reached
++(| Framel terator[| Channel No]) ;
if (IFramelterator[| Channel No] == (| pFranmeVec[| Channel No])->end())
| Franel terator[| Channel No] = (I pFraneVec[| Channel No]) - >begi n();
/1 abort if loop limt is requested
if ((sGenLoopLimt[lChannel No] != -1) &&
(++l LoopLi mi t[I Channel No] >= sGenLoopLi nit[| Channel No]))
DBG(| LoopLi mi t [Channel No] <<
" comng out of seq[" << | ChannelNo << "] at end of
<< | LoopLim t[I Channel No] << " |oops "
<< "l ActiveCounter " << | ActiveChCounter);

/1l store finish times for stats later

Source code: 119

sGenFi nTi me_sec[| Channel No]
sCGenFi nTi ne_usec[| Channel No]

sChannel Array[| Channel No]

/] decrenent active channel

--1ActiveChCounter;
}
}

/'l check time limt if

((1GetTinme.tv_sec >
((1 GetTinme.tv_sec

(sGenStartTine_sec + sGenTi neLi m t[1 Channel No])

| Get Ti ne. tv_sec;
| Get Ti ne. tv_usec;

NULL;

count

request ed
if ((sGenTineLimt[|Channel No]

I=-1) &&

)
))

(1 GetTime.tv_usec >= sGenStartTi me_usec))))

{

DBG((sGenStart Ti me_sec + sGenTi meLi mit[| Channel No])

<< " coming out of seq[
<< (I GetTine.tv_sec -
<< (I GetTine.tv_usec -

/1l store finish tines

sCGenFi nTi ne_sec[| Channel No]
sCGenFi nTi me_usec[| Channel Noj

sChannel Array[| Channel

// decrenent active channel

--1ActiveChCounter;

}
/1 for every tine limt or
/1 for counter == 0, cone
if (lActiveChCounter == 0)

DBG("no active channel

/1 go out of while(1)

sCGenThr eadLoop = fal se;

/1 do post gen
i f (!ChangeStat e(eDsePost Gen))

DBG("!
}

return (0);

Could not return stat

111
/1] State transition functions
111

/* R R R R R S S S S S S S S S R S R S R R R R R R R R R

* Function : ChangeState
* Description:

change states dependi ng upon acti on and

[
&&

(sGenStartTi me_sec + sGenTi neLim t[| Channel No]
" << | Channel No << "] at end of "
sCGenStartTi me_sec) << " seconds, "
sCGenStart Ti me_usec) << " mcro seconds");
for stats later
= | Get Ti ne. tv_sec;
= | Get Ti me. tv_usec;
No] = NULL;
count
loop limt conpletion decrenent counter
out of | oop
s left to generate");
| oop
e to 'Not Running' ");
Source code: 120

* existing and final states
* Parameters : Event that happened
* Returns : bool
* ER I R I I I I I R I I
* NOTES: |ooks up table and takes acti on based on
* event requested and on existing s/mstate
* PR SRR SRS S SRR RS S SRS E SRR R RS SRR EEREEEEEEEEEEEEEEEEEEEEEEES */
bool
t OnpEt hGen: : ChangeSt at e(t Et hGenEvent s aEt hGenEvent)
{
/1 1ock nmutex
pt hread_mut ex_| ock(& Cont ext . sSt at eMut ex) ;

/1 Hunt the state/event pair

int |1dx;
for (I1dx = 0; Ildx < TRANSI TI ONS; ++l | dx)
{
/1 DBG "into ChangeState before function call ");

if ((sStateTrParmibl [I1dx].sCurState == sContext.sState) &&
(sStateTrParnibl [1dx].sEvent == aEt hGenEvent))

/1l Found a match - break
br eak;

}

}

/1 Check if found a natch
if (11dx == TRANSI Tl ONS)
{
/1 No match
pt hr ead_mut ex_unl ock(& Cont ext . sSt at eMut ex) ;
DBG(QueryState() << ": haven't found match in state transition table ");
return (false);

if ((this->*sStateTrParnmlbl [I1dx].sFunctionCall) != NULL)
{ if (!((this->*sStateTrParnbl [|1dx].sFunctionCall)()))
DBG("error fromfunction call");
/'l change state irrespective of fail - reconfigure type
/1 function require the new state to work on

sContext.sState = sStateTrParnbl [|1dx].sNewst at e;

/1 unl ock nutex
pt hr ead_rut ex_unl ock(& Cont ext . sSt at eMut ex) ;

return (false);

}
}

/'l change state
sContext.sState = sStateTrParnTbl [|1dx].sNewSt at e;

/1 unl ock mutex
pt hr ead_nut ex_unl ock(& Cont ext . sSt at eMut ex) ;

return (true);

[KKk ok kR Kk ok ok ok kR Rk ok ok kR R Rk k ok kR R Rk ok ok ok R R Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok ok x

Source code: 121

L

Function : Dolnit
Description :
Parameters : none
Returns : bool

EE R R R R Sk S R S R S R R S R R S S S S

NOTES:

LRSS R R R R R R R R EEEEE R R LY

bool
t CpEt hGen: : Dol nit ()

{

/1 Find interface index
ifreq IIfReq;
strncpy(l1fReq.ifr_name, slfEthernet.c_str(), |FNAVSIZ);

if (ioctl(sSock, SIOCGEFINDEX, & IfReq) == -1)
DBG(" Coul d not get interface index: " << strerror(errno));
}
/1 bind socket to interface
sockaddr _I'| | Addr;

nenset (& Addr, 0, sizeof(lAddr));
| Addr.sl | _fam |y = AF_PACKET;
| Addr. sl | _protocol = htons(ETH_P_ALL);

| Addr.sll _ifindex = Il1fReq.ifr_ifindex;
i f (bind(sSock, (sockaddr *)& Addr, sizeof(lAddr)) == -1)
{
DBG " Coul d not bind socket: " << strerror(errno));
return (false);
}
el se
DBG "Bound '" << slIfEthernet.c_str() << "'");
}
return (true);
}
/* R R R R R S R S S R S S S R S R R R R R R S R R
* Function : DoConfig
* Description:
* Paraneters : none
* Returns : bool
R R R R R R R R R R R R
* NOTES:
* EE R R R I I I I R I I R R I I I R I
bool

t CnpEt hGen: : DoConfi g()

return (true);

/* R SRR SR SESEE SRS SRS SRR R SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES
* Function : DoReConfig
* Description:
* Paraneters : none
* Returns : bool
* khkkhkhkhkhkhkhkhkhkhkhkhhkdkhkdkhkhkhkhkdhkdhkhkhkhkdhkdhkdhkhkhhkdhkdkhkhkhhrhhdhdhhkdhhdx
* NOTES:
RS RS EEEEE SR SRS EEEEEEEREEEEEEEREEEEREEEEEEEEEEEEREEEEESEEESEESE]
bool
t CnpEt hGen: : DoReConfi g()
return (true);

*/

*/

Source code:

122

R R R S Sk S R S S R S S R S S R R S S S S

Function : DoBadCfg
Description :
Paranmeters : none
Returns : bool

R R R SR R R R R R S S R S R S R R R R R R R R R

NOTES:

LA AR R R R EE LY

bool
t CnpEt hGen: : DoBadCf g()

L

return (true);

}

R R X E]

Function : DoGoodCfg
Description :
Paranmeters : none
Returns : bool

khhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhhhhhkhhkhkhhhkhkkk

NOTES:

R R R R R R R R S S R S R R R R S R R */

bool
t CnpEt hGen: : DoGoodCf g()

E R

{
/1 DBG"into DoGoodCfg");

return (true);

}

/* PR SRR SRS S EEE RS ES RS EEERE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES

* Function : private method

* Description:

* Paraneters : none

* Returns : bool

* ER R R R I I I I R I I I I R R I I R I

* NOTES:

R R R R EEEE R R SRS EEEEEE SRR ER SRS RS EE R R R EEEREEEREESEERESERESERSESESESE] */
bool

t CnpEt hGen: : DoSt art ()

return (true);

}

/* R R R R R S S R S R S S R S S R R R R R R R R R R

* Function : private method

* Description:

* Paraneters : none

* Returns : bool

EE R R R R R R R R R R R

* NOTES:

LR EEEEEEEEEEEEEREREEEREREREREEEEREEREEEEREEEREEREREEEEREREEESEERESS */
bool

t CnpEt hGen: : DoBadPr eRC()
{
/1 DBG(" DoBadPreRC ") ;
/] set flag to false and return to halt

return (true);

}

/* R R R R R R S R S R R S R R

* Function : DoGoodPreRC private method

Source code: 123

* Description: create thread after good pre-run check

* Paraneters : none

* Returns : bool

* ER I R I I I I I R I I

* NOTES:

R R EEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEREESEEREEEESEEEEESEESEE] */
bool

t CnpEt hGen: : DoGoodPr eRC()
{

}

return (true);

/* R E SRR SRR EEEE SRS EEEEEE SRR R R SRS EE R R R EEEREEEREEEEREESERSEREESESE]

* Function : private nethod

* Description:

* Paraneters : none

* Returns : bool

R R R R R EEE SRR R R SRR EE R R SRR EE SRS RS EE R R RS EREEEREEEEREESEEEERESEESES

* NOTES:

* LR SRR SRS EEEE RS RS SRR SRS SRR EEREEEEEEEEEEEEEEEEEEEEEEES */
bool

t CnpEt hGen: : DoGener at e()

{

/1 DBG " DoGener ate executed ");
return (true);

}

/* ERE R R I I R I I I I R R I I I R I I
* Function : private nethod

* Description:

* Paraneters : none

* Returns : bool// State transitions

EE R R R R R R R R R

* O

NOTES:

* ER R R R I I I I R I I I I R R I I R I */
bool

t CnpEt hGen: : DoRGSt op()
{

return (true);

}

/* EE R R R I I I I R I I R R I I I R I
* Function : private method

* Description:

* Paraneters : none

* Returns : bool

R R R R SRR RS SR SRS EEEE R R SRR EE SRS RS EE R R R EEEEEEREESEERESREERESERSESESESE]
* NOTES:

*

LR RS E R R EEE A EEEEE R EEEEEEEEREEEEEEEEEEEEEEEE Y

bool // State transitions

t CnpEt hGen: : DoNRSt op()
{

return (true);

}

/* IR EEEEEEEEEEEEEEREEREEEREEREEREEREEREEREEERERERERESRERESEERESEESEESS
* Function : private method

* Description:

* Paraneters : none

Source code: 124

* Returns : bool

R RS EEEEEEEEEEEEEEEE SRR EEEEEREEREEREREEEEREESEEREEEEESEEEEESESESEE]

* NOTES:

* ER I R I I I I I R I I */
bool

t CnpEt hGen: : DORGENdGen()
{
/1 DBG "i nto DoRGEndGen() ");

return (true);

}

/* B R R R R R R R R R R R R R R

* Function : private method

* Description:

* Parameters : none

* Returns : bool

EE R R R R R R R R

* NOTES:

R I R R */
bool

t CnpEt hGen: : DOWSENdGen()
{

return (true);

}

/* EE R R R R R R R R R S R R R S R R R R R R R R

* Function : private nethod

* Description: cosmetic subroutine - does nothing

* Parameters : none

* Returns : bool

EE R R R R R R R R R

* NOTES:

R I R */
bool

t CpEt hGen: : DoNot hi ng()

return (true);

}

/* EEE SRR SRR EEEEEREEEEEEEEEREEREEEEEEEEEEEEEEESEEREEESEESEREEEEESEE
* Function : ConvertHexTol nt

* Description:

* Parameters : char * alnb, int aLen, char * aQutb

* Returns : unsigned int

* RS SRR SRS EEEE RS S SRS EEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
* NOTES:

*

EE R R R R S R S S S S S S S S R S R R R R R S R R */

unsi gned int
t CnpEt hGen: : Convert HexTol nt (char * alnb, int aLen, char * aCutbh)
{

int inidx = 0;

int outidx = 0;

bool | HexChar = fal se;
/1 higher nibble

bool nib = true;

int num= 0;

Il DBE "into ConverHexTolnt");

while (inidx < alLen*2)

Source code: 125

/

}
/

t CpEt hGen: : Convert | nt ToHex(char * al nb,

{

/

EE I R T

}

ret

if (alnb[inidx] >="'0" && alnb[inidx] <= "'9")

num = alnb[inidx] - '0";

| HexChar = true;

else if ((alnb[inidx] >="A") & (alnb[inidx] <= "'F))
num = alnb[inidx] - "A + 10;

| HexChar = true;

else if ((alnb[inidx] >="a') && (alnb[inidx] <= "'f"))
num = alnb[inidx] - "a + 10;

| HexChar = true;

[/ return if char is not hex

if (!lHexChar)

DBG("invalid hex char '" << (char)alnb[inidx] << "'");

return (0);

++i ni dx;

/'l reset |HexChar to false for
| HexChar = fal se;

if (nib)

aQut b[outidx] =
nib = fal se;

el se
aQut b[outidx] =

nib = true;
++out i dx;

cout << (i

urn (1);

aQut b[outi dx] |

num << 4;

num

nt)aCut b[outi dx] ;

i ncom ng chars

khhkhkhhkhhkhhhhhkhhhhkhhhkhhkhhkhhkhkhhhhkhhhkhhkhhkhhhhhkhkhhkhkhkhkhkkk

Function :
Description :
Paraneters
Ret ur ns

Convert | nt ToHex

char * al nb,
unsi gned i nt

int aLen, char

return outbuffer to represent hex data
* aQuthb

EE R R R R Sk S S S S R S S S S R S S R S R R R R R R R R

NOTES: Qutb size >= 2*Inb

LR RS EE R EE Y]

unsi gned i nt

int inidx = 0;

int outidx = 0;

unsigned int | Num = 0;

char | Table[16] = {0, "1

int alLen,

char * aQutb)

Source code: 126

‘9", 'A, 'B, 'C, 'D, 'E, 'F};
{
I DB " --------- > alnb[" << inidx << "] =" << (int)alnb[inidx]);

/1 correction for signed int
if (alnb[inidx] < 0)

I Num = al nb[inidx] + 256;

11 DBG(" INum =" << | Num;
/1 DBGE" INum>> 4 = " << (I Num>> 4));
aCutb[outidx] = | Tabl e[l Num >> 4];
}
el se

aCQutb[outidx] = | Table[alnb[inidx] >> 4];
}

/1 DBG"thbl (" << (int)(alnb[inidx] >> 4) << ") " << "aQutb[" << outidx << "] =" <<
aQut b[outidx]);
++out i dx;

aQut b[outidx] = | Tabl e[al nb[inidx] & 0xf];
I DBG("thl (" << (int)(alnb[inidx] & Oxf) << ") " << "aQutb[" << outidx << "] =" <<
aQut b[outidx]);

++out i dx;

++i ni dx;

}

return (1);

EE I

Entry Points

*/

extern "C'
t Conponent *
Creat eCp_Et hGen()

{
return (new t CnpEt hGen);
}
| * =========== *
* EOF *
* —========== *

/* Function and cl ass header prototypes */

IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS

Function :

Description :

Par aneters

Ret ur ns

IR RS R R R R R R R R R SRS R R R R R R R R RS RS R R R R R R R R R R SRR EEREEEEE

NOTES:

R R R R R R S R S R R S R R */

E I

Source code: 127

E R

~
~

LR D T

/*
/*

#
#
#

#

#

*

R R R S Sk S R S S R S S R S S R R S S S S

Class :
Descri ption

khkhkkhkhkhhkhhkhhhkhhhhkhhhkhhkhhkhhhhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhkkkk

NOTES:

R R R SR R R R R R S S R S R S R R R R R R R R R */

Local Wrds: TCS UDP
Kokkk ok ok k ko k ko ko ko k ko k ko k ok ok k ko k ok k ko k ko ko ko k ko k ko k ko k ko k ok ok ok ok ok ok ok ok ok kk ok ok kk
Source File Name : CnpThrdMyr.cc
Modul e Name : CnpThrdMr
Application Nane : TPl

Proj ect Name : TCSO01

khkhkkhhkhhkhhkhkhhhhkhhkhhhkhhkhhkhhhkhhkhhkhhkhkhhkhhhkhkhhkhhkhkhhkhhkkhkhkhkhkkhkkkkk

(c)

R R R Sk R R S R S R S S R T S R R S R R R S S R R R S R S S S

NOTES:

END OF NOTES
*/
Uncoment if 'what' string is needed */
static char gldent[] = "@#)fil enanme Version 0.0 "; */
Standard Li brary Includes (normal system
*/
Ext ernal | ncl udes (external toolkits)
*/
Proj ect-w de | ncl udes (project only)
*/
Modul e | ncl udes (nmodul e only)
*/
nclude "../../inc/Conponent. hh"
nclude "../../inc/Iface/lfThrdMr.hh"
nclude "../../inc/ ThreadBase. hh"
Modul e #DEFI NEs
*/

ncl ude <i ostreane

ncl ude <sys/time. h>

Enuner ati ons & Qther Typedefs (defn)

Source code: 128

Classes (forward decl) & Structures (defn)

Modul e Functions (decl.)

(static local only)

G obal Variabl es (defn.)

(used externally)

Local Modul e Variables (defn.) (static |ocal only)

*/

*/

EE I

Classes visible internally only

/* EE R R R R R R R R R S R R R S R R R R R R R R

Class : tThreadEntryArg
Description :

khkhkkhhkhhkhhhhhhhhhkhhhkhhkhhkhhkhhhhhkhhkhhhkhhkhhhhhkhkhhkhkhkhkhkkk

EE R R R R R R R R R R R S R R R R

*
*
*
* NOTES:
*

Cc

ass t ThreadEntryArg

{
public:

Hol d the argunent data for a thread

t ThreadEnt ryArg(t ThreadBase * apQbj,

t ThreadData * apDat a)

spQoj (apQj),
spDat a(apDat a)

{}
t Thr eadBase *

t ThreadDat a *
private:

b

t ThreadEntryArg();

*/

*/

* Functions visible internally only (static, defn)

*/

Cl asses visible externally

*/

/* R R R R R S S S S S S S S S R S R S R R R R R R R R R

* Function : tThreadBase()
* Description:

Ctor

Source code: 129

t

E R G

— ¥ ¥ o+ *F X

Paraneters : NA
Returns : N Al pThr Arg- >spObj - >Mai n(| pThr Ar g- >spDat a)

R R X E]

NOTES:

EE R R R R R R R R R R R R R R R R R

hr eadBase: : t Thr eadBase()

R R R R R S R R R S S S S R S R R R R S R

Function : tThreadBase:: Go()

Description: Starts the new thread

Paraneters : Context data for new thread
Returns : true = created thread, false = failed

R R R R R R R S S S R S R R R R R R R

NOTES:

khkhkkhhkhhkhhkhhhkhhhhkhhhkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhkhhhhkhhkhhhhkhkkkk

bool
t ThreadBase: : Thr Go(t ThreadData * apDat a)

{

/

}
/

/

E I

int | Rt n;

*/

*/

IRtn = pthread_create(&ThrHdl, 0, tThreadBase:: ThreadEntry,

new t ThreadEntryArg(this, apbData));
cout << "ThrGo:IRtn =" << |Rtn << endl;
if (IRRn !'= 0)
{

return (false);

}

return (true);

khkhkkhhkhhkhhhhhhhhhkhhhkhhkhhkhhkhhhhhkhhkhhhkhhkhhhhhkhkhhkhkhkhkhkkk

Function : tThreadBase: : Det ach()

Description: Waits for thread to term nate
Paranmeters : Context data for new thread
Returns : true = created thread, false = failed

khkhkkhhkhhkhhhhhkhhkhhkhhhhhkhhkhhkhkhhkhhkhhkhhhkhhkhhhhhkhhkhhkhkhhhkhkkk

NOTES:

R R R R R R R R R R R S R R

bool
t Thr eadBase: : Thr Det ach()

{

i nt I Rtn;

| Rtn = pthread_detach(sThrHdl);
if (IRRn !'=0)

return (false);

return (true);

}
/* IR E SRR R R R R R R R R RS R R R R R R R R RS R R R R R R R R R R R SRR R EREEEEES
* Function : tThreadBase:: Join()
* Description: Waits for thread to term nate
* Paraneters : Context data for new thread
* Returns : true = created thread, false = failed
R R R R R E R RS SRS EEEEEEEE SRR ER SRS RS EEREEREEEEEEREESEERESERESERESESESE]
* NOTES:
* LR SRR SRS S SRS RS RS RS EEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES
bool
t ThreadBase: : Thr Joi n()
t
i nt I Rtn;
void * | Thr Rt n;

*/

*/

Source code: 130

/1 ti nmeval | Get Ti ne;

IRtn = pthread_j oi n(sThrHdl, & ThrRtn);
/1 cout << "ThrJoin:IRtn =" << |[Rtn << endl;
if (IRRn !'=0)
{

return (false);

}
/1 getti meof day(& Get Tinme, 0);

/1 cout << "ThrJoin: << | GetTinme.tv_sec << << | GetTinme.tv_usec << endl;
return (true);

}
/

EEEEEEEEEEEREEEEEREEEEEEEREEEEEEEEEEEEEEEEREEEEEEEEEEEEEEESS
Function : tThreadBase:: ThreadEntry

Description : Function called as entry point for thread
Paraneters : Pointer to arbitrary data

Returns : Pointer to arbitrary data

khhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhhhhhkhhkhkhhhkhkkk

NOTES:

EEEEE RS EEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEREESEEREEEEEEEEEEESE] */
void *
t ThreadBase: : ThreadEntry(void * apArg)

E R

t ThreadEntryArg * | pThrArg = static_cast<tThreadEntryArg *>(apArg);
t Thr eadBase * I pQbj = | pThr Arg->spoj ;

t ThreadData * | pData = | pThr Ar g- >spDat a;

void * | ThrRt n;

delete (I pThrArg);
| ThrRtn = | pObj - >Thr Mai n(| pDat a) ;
return (I ThrRtn);

Functions visible externally

EE I

*/

EE R R R R Sk S S S R S S S S R S S R S R R R R R R R R

*
* Cass :
* 1 1 .

Description :
R R I R R
*

NOTES:

EE R R R R R R R R R R R */

/1 class tCrpThrdMyr

/1 : public tConponent,
I public tIfThrdwr
1A

/1 public:

I},

/*

* Entry Points

* */
// extern "C' tComponent *

/] CreateCnp_Thr eadManager ()

11 {

Source code: 131

I return (new t CnpThrdMr);

7

| * =========== *
* EOF *
* —ooz—=—====== ¥

/* Function and cl ass header prototypes */

/* EIE R R R R R R S S S R R R R R R R R

* Function :

* Description:
Par aneters
Ret ur ns

*

*

R R R R R EEEEEEEEEEEEEEEEEEREEREEREESEEEEREREREREREEEEEEEEEEEEES
*

*

NOTES:

LEE AR EEEEEEEEE R EEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

R R R R R R R R R S S R S R R R R

Cl ass
Description :

EE R R R R R S S S S S S S S S S R S R R R R R R R R S R R

NOTES:

LR RS E R R R R EEEEE R R EEEEE R EE LY

L I

1.1 Component Router

/* LR S
*

Source File Name : CnpRouter.cc
Modul e Nane : CnpRout er
Application Nane : TP1

Proj ect Name : TCSO01

R R X E]

(c) 2001 Seven Layer Communi cations Ltd.

R R R R R R R R R R T R R R R S R R R R R S R R R R R R R R S

NOTES: Conponent Router

E R T I

END OF NOTES

/* Uncomment if 'what' string is needed */
/* static char gldent[] = "@#)filename Version 0.0 "; */

Source code: 132

#
#
#

#

ElE R

/*

Standard Li brary Includes (normal system

ncl ude <string>

ncl ude <set>
Ext ernal | ncl udes (external toolkits)
Proj ect -wi de | ncl udes (project only)
Modul e | ncl udes (rmodul e only)

nclude "../../../inc/Conponent.hh"

nclude "../../../linc/|face/lfRouter.hh"

nclude "../../../inc/|face/lfLoader.hh"

nclude "../../../inc/Conduit.hh"

Modul e #DEFI NEs

Enuner at i

ons & Other Typedefs (defn)

Cl asses (forward decl) & Structures (defn)

Modul e Functions (decl.) (static local only)

G obal Variabl es (defn.)

(used externally)

Local Mdul e Variables (defn.) (static |oca

*/

*/

*/

*/

*/

*/

Functions & class definitions visible externally

*/

Source code: 133

E R

cl

Functions & class definitions internal to nodule

*/

EE R R R R R R R R R R R R R R R R R

Class : tCmpRout er
Description : Conponent Router with defn for Bind fns

khkhkkhkhkhhkhhkhhhkhhkhhhhhhhkhhkhhkhhhhhkhhkhhhkhhkhhhhhhkhhkhhhhkhkkk

NOTES: inherits tConponent and interface tlfRouter

R R R R R S R R R S S S S R S R R R R S R */

ass t CpRout er
publ i c t Conmponent,
public tlfRouter

{
public:
t CnpRout er ()
{
DBG"Creating Router");
}
~t CnpRout er ()
{
DBG(" Del eting Router™);
}

pr

}s
/

E R R I

voi d | nvoke()

DBG"hel l o fromtCnpRouter");
}

bool AddConduit(tConduit * apConduit);

bool Bind(const string & arCnpNanel, const string & arPortNanel,

const string & arCnpNane2, const string & arPortNanme2);
bool Bi nd(tConponent * apCnpHdl 1, const string & arPortNanel,
t Component * apCmpHdl 2, const string & arPortNane2);
bool Bind(tlfDataPort * apPortHdl 1, tIfDataPort * apPortHdl 2);

bool Bind(const string & aCnpNane,

const string & arPortNane, tConduit * apConduit);
bool Bi nd(t Conponent * apCnpHdl,

const string & arPortNane, tConduit * apConduit);
bool Bind(tlfDataPort * apPortHdl, tConduit * apConduit);

i vate:

typedef set<tConduit *> tConduitlList;
t Condui t Li st sCondui tLi st;

EE R R R R S R S S S S S S S S R S R R R R R S R R

Function : AddConduit(* Conduit)
Description : add conduits to |ist
Paraneters : tConduit * apConduit
Returns : bool

R R R R R R R R R R S R R R R R R

NOTES:

IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS */

bool
t ChpRout er: : AddCondui t (t Conduit * apConduit)

{

tConduitList::iterator Iplter;

I plter = sConduitlList.find(apConduit);
if (Iplter == sConduitlList.end())

Source code: 134

sCondui tLi st.insert(apConduit);
return (true);

el se
DBG "duplicate conduit, cannot add: " << apConduit);
return (false);
/* R S O R L
* Function : [1] Bind(str Cnp, str Port, str Cnp, str Port)
* Description:
* Parameters
* Returns
R I R
* NOTES:
EE R R R R R R R R */
bool

t CnpRout er: : Bi nd(const string & ar CnpNanel,
const string & arPortNanel,
const string & ar CmpNane2,
const string & arPortNane2)

t Component * | pCnpHdl 1;
t Component * | pCpHdI 2;
t1fLoader * |pLoader = tl|fLoader:: CGetLoader();

/1 convert string aCnpNanel & ar CnpNane2 to instance handl es
/1 DBGE "(1) finding " << arCnpNanel);

| pCrpHdI 1 = | pLoader - >l nst Quer y(ar CrpNanel) ;
/1 DBG("(2) finding " << arCnpNane2);

| pCrpHdI 2 = | pLoader - >l nst Quer y(ar CrpNane2) ;
/1 DBG("(3) found " << arCnrpNanmel << "and " << ar CnpNane2);

Bi nd(| pCpHdl 1, ar PortNanel, | pCnpHdl 2, arPort Nane2);
/1 DBG("(8) called Bind[2] ");

return (true);

/* EE R R R R Sk S S S R S S S S R S S R S R R R R R R R R

* Function : [2]Bind(* Crp, str Port, *Cnp, str Port)

* Description:

* Paraneters

* Returns

EE R R R R R R R R R R R

* NOTES:

R o O R R */
bool

t ChpRout er: : Bi nd(t Conponent * apCnpHdl 1, const string & arPort Nanel,
t Component * apCnpHdl 2, const string & arPortNane2)
{

t1fDataPort * | pPort Hdl 1;
t1fDataPort * | pPort Hdl 2;

/1 query conmponent for its port and get pointer to port
/1 DBG("(4) Bind[2]: ChpPortMapGet " << arPortNanel);

| pPortHdl 1 = dynamni c_cast<t|fCnpPorts *>(apCnpHdl 1) - >CpPor t MapCet ()

>second;

I DBGE " (5) Bind[2]: CnpPortMapGet " << arPort Nane2);

| pPort Hdl 2 = dynani c_cast<t|fCnpPorts *>(apCnpHdl 2) - >CnpPort MapCet ()

>second;

.find(ar PortNanel) -

.find(ar Port Nane2) -

Source code: 135

/1 DBG("(6) Bind[2]: bind portHdl '" << arPortNanmel << "' and portHdl '" << arPort Nanme2

<< "My,
Bi nd(| pPort Hdl 1, | pPortHdl 2);

/1 DBG"(11) done port to port bind");
return (true);

}
/

EE R R R R R R R R R R R R R R R R R
Function : [3]Bind(* PortHdl, str Conduit)

Description :

Par anet er s

Ret ur ns

B R R R R R R R R R R R R R R

NOTES:

LR AR EE R SRR R EEEEEEEEEEEE R EEEEEEEEEE Y

bool
tCnpRouter::Bind(tlfDataPort * apPortHdl 1, tlfDataPort * apPort Hdl 2)

EEE R

/1 make conduit
t Condui t * | pConduit = new t Condui t;

/1 DBG("(7) created new conduit");

/1 bind if conduit successfully created
i f (AddConduit (| pConduit))
{

/1 DBG("(8) Bind[3] handle 2 to new conduit");
Bi nd(apPortHdl 2, | pConduit); // port2 to conduit
/1 DBG("(9) Bind[3] handle 1 to new conduit");
Bi nd(apPortHdl 1, |pConduit); // portl to conduit
/1 DBG("(12) ports bound to both ends of conduit");
return (true);
}
el se
/1 DBG(" Coul d not bind[3]");

delete (I pConduit);
return (false);

}

R R R SR R R R R R S S S S R S R R R

*
* Function : [4]Bind(str Cnp, str Port, * Conduit)
* Description:
* Parameters
* Returns
R R R R R R EREEEEEREE]
* NOTES: Cmpl, Port2, conduit is not valid
* This functions nust be used when one
* conponent has nmore than one port.

* khkkhkkhkhkhkhkhkhkhkhkhkhkhkdkhkdkhkhkhkhkdhkdbhkhhhdhhdhkdbhhkhhdhdhkhhhrdrdrdhhhxkx */
bool
t CrpRout er: : Bi nd(const string & ar CnpNane,

const string & arPortNane, tConduit * apConduit)

{

t Component * | pCnpHdl ;
t1fLoader * |pLoader = tl|fLoader:: GetLoader();

/1 query | oader to get component pointer
| pCrpHAI = | pLoader - >| nst Quer y(ar CrpNane) ;

/1 use next function
Bi nd(| pCrpHdl , ar Port Narme, apConduit);
return (true);

Source code:

136

/* LR SRR EEEEEREEEEEREEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEES
* Function : [5]Bind(* CrpHdl, str Port, * Conduit)

* Description:

* Paraneters

* Returns

R S I R R
* NOTES: CmpHdl 1, Port2, conduit is not valid

* This functions is particularly useful when one

*

conponent has nore than one port.
R I R R */
bool

t CnpRout er: : Bi nd(t Conponent * apCrpHdl ,

const string & arPortNane, tConduit * apConduit)

{
tIfDataPort * | pPortHdl;

/1 query conponent to get pointer to its port

/1 1pPortHdl = apCrpHdl - >CnpPort MapGet (). fi nd(ar Port Nane) - >second;

| pPort Hdl = dynami c_cast<t|fCrpPorts *>(apCnpHdl) - >CnpPort MapGet (). fi nd(ar Port Nane) -
>second;

Bi nd(| pPort Hdl, apConduit);

return (true);

/* ERE R R I I R I I I I R R I I I R I I

* Function : [6]Bind(* PortHdl, * Conduit)

* Description:

* Paraneters

* Returns

R R R R R R R R RS EEEE R R SRR EE SRS EEEE R R R EEEREEEREESEEREESEEREERESESESEE]

* NOTES:

* PR SRR SR SE SRR RS EESEEEER SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEES */
bool

tCnpRouter::Bind(tlfDataPort * apPortHdl, tConduit * apConduit)

/1 DBG("(9) Bind[6]: handle binding to conduit ");
apPor t Hdl - >Bi ndToCondui t (apConduit); // returns void

/1 DBG("(10) Bind[6]: conduit binding to port ");

i f (apConduit->Bi ndToPort (apPort Hdl))
{

/1 DBG " (11) successful return fromconduit binding to port");
return (true);
}
el se
{
/1 DBG " Conduit coul d not be bound ");
return (false);
}
}
/*
*

* Entry Points

* */
extern "C'

t Component *

Creat eCmp_Rout er ()

return (new t CmpRouter);
}

Source code: 137

EE R I I

EEE R

EE I I

/*
/*

Function and cl ass header prototypes */

EE R R R R R R R R R R R R R R R R R

Function :

Description :

Par aneters

Ret ur ns

IR E SRR SRR EEEE SRS R R EE SRS EEE R SRS EEEEREEEEREEEEEEEREESERERERSESES
NOTES:

R R X E]

EE R R R R R R R S R R S R R R R R R R

Cl ass
Description :
R O R R S

R R R R R R R R S S R S R R R R S R R

*/

*/

R R R Sk R R S S S R S S R R R S R R T S R R R T S R R R R R R R S

Source File Name : Conduit.cc
Modul e Nane : Conduit
Application Nane : TPl

Project Name : TCS 01

khhkkhhkhhkhhkhkhhkhhkhhhhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhkhhkhhkhhhhkhhkhhhhkhkkkk

(c) 2001 Seven Layer Conmuni cations Ltd.

EE R R R S S S S S S R S R S S S R R R S S R R R S S S R S R R R R R S

NOTES: see Conduit. hh

END OF NOTES

*/

Uncomment if 'what' string is needed */
static char gldent[] = "@#)fil ename Version 0.0 "; */

Standard Li brary Includes (normal systen)

Ext ernal | ncl udes (external toolkits)
Proj ect -w de | ncl udes (project only)
Modul e | ncl udes (rmodul e only)

*/

*/

*/

Source code: 138

*

#inclu

de "../../..linc/Conduit.hh"

* M

dul e #DEFI NEs

* Enumerations & Other Typedefs (defn)

* Classes (forward decl) & Structures (defn)

y)

only)

*/

*/

*/

*/

*/

/*

* Modul e Functions (decl.) (static local onl

*
/*

* G obal Variables (defn.) (used externally)

*
/*

* Local Module Variables (defn.) (static |ocal

*
/*

*

* Functions & class definitions visible externally
/* EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEES
* Function : BindToPort

* Description: binds conduit to port

* Parameters : tlfDataPort * apPort

* Returns : bool

R R I R R
* NOTES:

EE R R R R R R R R R R R */
bool
t Condui t:: Bi ndToPort (t!fDataPort * apPort)
{

const string & |rType = apPort->DataPortType();

tPortlList * | pLi st;

tPortList::iterator Ilter;

if (IrType == "Byteln")

| pLi st = &sCQut;
}
else if (IrType == "ByteQut")
| pList = &sln;
}
el se

return (false);

Source code: 139

}

I'l1ter = |pList->find(apPort);
if (Ilter !'=1pList->end())
{

return (true);

| pLi st->i nsert (apPort);
DBG " Bi ndToPort successful ");
return (true);

/* EE R R R R R R R R R R S R R R R R R R R
* Function : UnBi ndFronPort

* Description : unbinds conduit from port

* Paraneters

* Returns

EEE R
* NOTES:

R R R R EEEREEEEEREE] */
bool
t Condui t:: UnBi ndFronPort (t|fDataPort * apPort)

sl n. erase(apPort);

sQut . erase(apPort);

DBG " UnBound from port ");

return (true);
/* R R R R R R R R R S S R S R R R R
* Function : Transfer

* Description: transfers bytes frombuffer

* Parameters : char * apBuffer, unsigned int aCount

* Returns : bool

R R R R EEEEEEEEREES
* NOTES:

R I R R */
bool

tConduit:: Transfer(char * apBuffer,
unsi gned int aCount)

for (tPortList::iterator Ilter = sCQut.begin();
Ilter !'= sCut.end();
++l Iter)

I DBG " Transfering");
(*lI1ter)->Transfer(apBuffer, aCount);

return (true);

}

/*
*

* Functions & class definitions internal to nodule
* */

Source code: 140

*

L T

EE R

EE I S S R N

Entry Points

*/

Function and cl ass header prototypes */

khhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhhhhhkhhkhkhhhkhkkk

Function :

Description :

Par anmeters

Ret ur ns

IR E SRR SRR EEEE SRS EEEEEE SRR ERE SRS EE R R R EEEREEEREEEEREESEERERERSESES
NOTES:

R R X E]

EE R R R R R R R R R S R R R S R R R R R R R R

Cl ass
Description :
R O R S

EE R R R R R R R R R R R S R R R R

*/

*/

EE R R R S S S S S S R S R S S S R R R S S R R R S S S R S R R R R R S

Source File Name : ByteCQut.cc
Modul e Nane : ByteQut
Application Nane : TP1

Project Name : TCS 01

R e XX E]

(c) 2001 Seven Layer Conmuni cations Ltd.

R R R Sk S S S S S R S R S S S S R R R S S R R S S S S R S R R R R R S

NOTES: Specific type of data port
out port of bytes stream

END OF NOTES

*/

Uncomment if 'what' string is needed */
static char gldent[] = "@#)fil ename Version 0.0 "; */

Standard Library Includes (normal systemn

*/

Source code: 141

* External I|ncludes (external toolkits)
/*
Proj ect -w de | ncl udes (project only)
/*
Modul e | ncl udes (nmodul e only)

*

#include "../../../inc/ByteQut.hh"

/*
* Modul e #DEFI NEs
*
/*
* Enumerations & Other Typedefs (defn)
/*
* Classes (forward decl) & Structures (defn)
/*
* Modul e Functions (decl.) (static local only)
*
/*
* dobal Variables (defn.) (used externally)
*
/*

* Local Mddule Variables (defn.) (static local only)

*

const string tByteCQut::sPortType("ByteQut");

*/

*/

*/

*/

*/

* Functions & class definitions visible externally

*/

* Entry Points

*/

Source code: 142

/* Function and cl ass header prototypes */

/* B R R R R R R R R R R R R R R

* Function :

* Description:

* Paraneters

* Returns

EE R R R R R R R R

* NOTES:

R I R R */

/* R R R R R R R R S S R S R R R R S R R

* Class

* Description:

EEE R

* NOTES:

(RS RS EEEREEEEEREE] */

/* AR R R E R SR SRR EEEREEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEE RS
*

* Source File Name : Byteln.cc

*

* Modul e Name : Byteln

*

* Application Nane : TPl

*

* Proj ect Name : TCS 01

*

R O R R S I
* (c)2001 Seven Layer Conmmunications Ltd.

R S S S S R S R R S R R S R R S R S R
* NOTES: Specific type of data port

* out port of bytes stream

*

* END OF NOTES

* */
/* Uncomment if 'what' string is needed */

/* static char gldent[] = "@#)fil enanme Version 0.0 "; */

/*

* Standard Library Includes (normal system

* */

#i ncl ude <fstreane

/*
Ext ernal | ncl udes (external toolkits)
* *
/
/*
* Project-w de |ncludes (project only)

Source code: 143

/*

Modul e | ncl udes (nmodul e only)

* */

#include "../../../inc/Byteln.hh"

* Modul e #DEFI NEs

* */

* Enumerations & Other Typedefs (defn)

* */

* Classes (forward decl) & Structures (defn)
* */

* Modul e Functions (decl.) (static local only)

* dobal Variables (defn.) (used externally)

* Local Mddule Variables (defn.) (static |ocal only)

* */

const string tByteln::sPortType("Byteln");

/*

*

* Functions & class definitions visible externally

* */
/*

*

* Entry Points

*

*/

Source code: 144

E R

EE I

Function and cl ass header prototypes */

PR SRR SRS S SRR RS S SRS E SRR R RS SRR EEREEEEEEEEEEEEEEEEEEEEEEES
Function

Description :

Paranmeters

Ret ur ns

EE R I R I I I R I I I R I I
NOTES:

R R R S R S R S R S S R S S R R S S S

R R X E]

d ass
Description :

R R R R R R R S R R R R

NOTES:

khhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhhhhhkhhkhkhhhkhkkk

Conponent Schedul er

/* R R Rk S S R R R T S R R R S S S R S S S R S R R R R R R S

*

EE R T

/*

Source File Name : CnpSched. cc
Modul e Name : CnpSched
Application Nane : TP1

Project Name : TCS 01

*/

*/

R R R X E]

(c) 2001 Seven Layer Communi cations Ltd

khkhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhhkhkhhkhhkhkhhkhhhhkhhkhhkhhkkkkk

NOTES: conponent Schedul er

END OF NOTES

Uncomment if "what' string is needed */
static char gldent[] = "@#)filename Version 0.0 "; */

Standard Library Includes (normal systemn)

i nclude <fstreane
include <list>

i ncl ude <string>

i ncl ude <sys/poll.h>
i ncl ude <errno. h>

i ncl ude <unistd. h>

i ncl ude <signal . h>

Ext ernal | ncludes (external toolkits)

*/

*/

Source code: 145

*
*

/*

*

Proj ect -wi de | ncl udes (project only)

Modul e | ncl udes (rmodul e only)

#include "../../../inc/l|face/lfSched. hh"
#include "../../../inc/lIface/lfDataPort.hh"

/*

*

/*

*

Modul e #DEFI NEs

Enurer ati ons & Qther Typedefs (defn)

typedef i st<tConponent *>tCnplList;
typedef list<tlfDataPort *> tPortlList;
typedef list<tEvDetails> tEvDetThl;

/*
*

*

R

*

/*

Cl asses (forward decl) & Structures (defn)

Modul e Functions (decl.) (static |ocal

d obal Variabl es (defn.) (used externally)

Local Mddul e Variables (defn.) (static |ocal

*/

*/

*/

*/

*/

Functions & class definitions visible externally

*/

Functions & class definitions internal to nodule

*/

Function and cl ass header prototypes */

void IntrHdlr (int aSignal);
void TernmHdlr (int aSignal);

/

E R 3

khkkhhkhhhhhhhkhhhhkhhkhhhkhhk bk hhhkhhk bk hhkhhkhhkhhkhkhkhhkkhkhk k%

Function : IntrHdlr

Description : interrupt handl er function
Par anet ers

Ret ur ns

Source code: 146

EEE R R S S S S S S R S S R R R R S S S S R S S S

* NOTES:
* PR SRR SRS S SRR RS S SRS SRR R R RS SRR EEREEEEEEEEEEEEEEEEEEEEEEES */
voi d
IntrHdl r(int aSignal)
{
/1 ~c interrupts polling in Invoke()
/1 poll returns -1 and hence breaks out
/1 nothing el se needs to be done here

DBG endl << "received signal "c " << endl);
/* EE R R R R R R R R R R S R R R R R R R R
* Function : TernmHdlr
* Description: termhandler function
* Paraneters
* Returns
EEE R
* NOTES:
R R R R EEEREEEEEREE] */
voi d

TermHdl r (i nt aSi gnal)

DBG endl << "received termsignal " << endl);

}

/* EE R R R R R R R S R R R

* Class : tCnpSched

* Description:

EE R R R R R R R R R R R

* NOTES: i nherits tConponent and interface tlfSched

(RS RS EEEREEEEEREE] */
cl ass t CnpSched

publ i c t Conmponent,
public tIfSched

public:
t CnpSched()
: saPol | Tbl (0),
sPol | Tbl Si ze(0),
sDef | nst Nane("sched")

DBG " Creating Schedul er");
}

~t CnpSched()
{

DBG(" Del eting Schedul er");
}

voi d AddCnp(t Conponent * apCnp);
void AddPort (tlfDataPort * apPort);

void RunCmp();
void RunPort();

voi d I nvoke();

bool RegEvHdl (tEvDetails & arDetails);
string GetDefNane();

t Component * CetDeflnst();

bool I nt ernal Task(char * apBuffer, unsigned int aCount);
private:

t CnplLi st sCnplLi st ;

t PortList sPortList;

Source code: 147

string sNane;
t Conponent * spCnp;

/! File descriptor stuff
t EvDet Tbl sFdWat ch;
pollfd * saPoll Thl;

int sPol | Tbl Si ze;

string sDef | nst Nane;
b
/* EE R I R I I I R I I I R I I
* Function : AddCmp
* Description: Adds one component at a tine to list
* Paraneters : tConponent * apCnp
* Returns : void
* ERE R R I I I R I I I I R I R I I
* NOTES:
EE R R R R R R R R */
voi d
t CnpSched: : AddCnp(t Conponent * apCnp)
{

/1 DBG " addi ng conmponent to list");
//add to end of I|ist
sCnplLi st. push_back(apCnp) ;

/* PR SRR SRS SEE SRS S SRS SRR SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEES

* Function : AddPort

* Description: Adds one port at a tine to list

* Parameters : tlfDataPort * apPort

* Returns : void

* ER R R I R I I R I I I R R I I R I I

* NOTES:

EE R R R R R R R R R */
voi d

t CnpSched: : AddPort (t|fDataPort * apPort)

DBG "addi ng port to list");

//add to end of Ilist

sPort Li st. push_back(apPort);
}

R R R R E]

Function : RunCp()

Description: runs all conponents fromli st
Paranmeters : none

Returns : void

khhkhkhhkhhkhhhhhkhhhhkhhhkhhkhhkhhkhkhhhhkhhhkhhkhhkhhhhhkhkhhkhkhkhkhkkk

NOTES:

EEE SRR SRR EEEEEREEEEEEEREEEEREEEEEEEEEEEEEEESEEREEEEESEEEEEESE */
voi d

t CpSched: : RunCnp()

{

/1 tCnpList::iterator | Cplter;

/1 t Component * | pConponent ;

/1 unsi gned i nt | CpCount = O;

E R I

for (tCnpList::iterator |Cnplter = sCmplList.begin();
| Cmplter !'= sCnplist.end();
| Cpl ter ++)

I DBE "I nvoki ng Conponent" << ": " << ++| CnpCount);
(*I Cmpl ter)->lnvoke();

Source code: 148

L S

voi d
t ChpSched: : RunPort ()

{

unsi gned int

for (tPortList::iterator |Portlter = sPortlList.begin();

| Portlter !'= sPortList.end();
| Portlter++)
{ .
DBG "I nvoki ng port" << ": " << ++| Port Count);
I (*l Portlter)->WakePort();
}
}
/* EEEEE R SRR EEEEEEEEEEEEEEREEEEEEEEEEEEEEEEESEEREEEEESEEEEREE RSN
* Function : RegEvHdI ()
* Description: registers an event handler
* Paranmeters : tEvDetails &
* Returns : bool
* PR SRR SRS S EEE RS ES RS EEERE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEES
* NOTES:
R R R R R R R R RS EEEE R R SRR EE SRS EEEE R R R EEEREEEREESEEREESEEREERESESESEE]

bool

t ChpSched: : RegEvHdl (t EvDetail s &

{

/1 call back

t EvDet Thl : : const _iterator

i nt I1dx = 0;

/] Validate details

if ((arDetails.sEvType != tEvDetail s::eEct FdRead)
&& (arDetails.sEvType != tEvDetails::eEctFdWite))

/1 lnvalid event type
return (false);

}

I/ Check for duplicate entry

for (tEvDetThbl::const_iterator
I'lter !'= skdWatch. end();

{

}

11

++l lter)

&&

if (
(1

/] Existing entry

DBG("duplicate entry");
return (false);

}

Add to watch table

khkhkkhkhkhhkhhkhhhkhhhhkhhhkhhkhhkhhhhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhkkkk

Function : RunPort ()
Description: runs all port fromlist
Paranmeters : none
Returns : void

EE R R R R R R R R R R R R R R R R R

NOTES:

LR AR R R SRR R R R R R R R R R LY

| Port Count = 0;

arDetails)

Ilter;

I1ter = sFdWat ch. begin();

(I'lter->sEvType == arDetails.sEvType)
Iter->sFiledes == arDetails.sFiledes))

sFdwat ch. push_front (arDetail s);

*/

Source code: 149

/1 Rebuild poll table
if (sPollTblSize !'= 0)

I/l Free old table
del ete (saPol | Thl);

}
sPol | Tbl Si ze = sFdWat ch. si ze();
cout << "sPol | Thl Size = " << sPol | Tbl Si ze << endl;

saPol | Tbl = new pol | fd[sPol | Tbl Si ze] ;
for (Ilter = skFdWatch. begin(), Ildx = O;
Il1ter !'= skFdWat ch. end();
++l Iter, ++1dx)
{
// Setup each poll entry
saPol I Tbl [I1dx].fd = llter->sFil edes;
switch (llter->sEvType)

case tEvDetails:: eEct FdRead:
saPol | Tbl [I 1dx] . events = POLLIN | POLLPRI;
br eak;
case tEvDetails::eEctFdWite:
saPol | Tbl [1dx] . events = POLLOUT;
br eak;
defaul t:
br eak;

saPol | Tbl [1dx].revents = 0;
}

DBG " Event registered ");
return (true);

R R R R R S R S S R S S S R S R R R R R R S R R

Function : | nvoke
Description :

Par aneters

Ret ur ns

R R R SR R R R R R S S S S R S R R R

NOTES:
R R I R R */
voi d
t ChpSched: : | nvoke()
{

i nt | Pol | St at us;
I unsi gned i nt | ChpCount =
unsi gned int | Port Count = O;

L

0;

/1 signal handlers for ~c or terminterrupts
signal (SIGNT, IntrHdlr);
signal (SI GTERM TernHdlr);

/1 Main |oop

while (1)
111
/1] Service asyncronous events
111

/1 File descriptors check
| Pol | Status = poll (saPol | Tbl, sPoll Tbl Size, 10); // 10 nms nmax

Source code: 150

11

11

11

/1 check for changes in revents - invoke that conponent
if (IPollStatus == 0)

/1 Ti meout
else if (IPollStatus == -1)
/1 Error
DBG("break in poll, " << strerror(errno));
br eak;
el se
/'l service conponents
tEvDet Thl : : const _iterator |lter = sFdWatch. begin();
i nt I1dx = 0;
while (I Poll Status > 0)
if ((saPoll Thl[Il1dx].revents = 0))
Il Activity
DBG(" Schedul er EvCbl nvoke()");

I'lter->sphj ->EvCbl nvoke(l Iter->spData);
--1Poll Status;

++ I ter;
++| | dx;

/1 Timers

/1 Signals

/'l Service conponents

for (tCnpList::iterator |Cnplter = sCnplList.begin();
| Cplter !'= sCnplist.end();
| Chplter = sCnplist.begin())

//service each conmponent fromlist
DBG "I nvoki ng Component” << ": " << ++| CpCount);
(*I Cplter)->lnvoke();

//remove entry when control returns

sCnplLi st. erase(l Cnplter);

/'l Service ports

for (tPortList::iterator |Portlter = sPortlList.begin();

| Portiter !'= sPortList.end();
| Portlter = sPortlList.begin())

//service each conponent fromlist
DBG("I nvoking Port" << ": " << ++| Port Count);
(*lIPortlter)->WakePort();

//remove entry when control returns
sPortList.erase(lPortlter);

Source code: 151

/* IR E SRR R E R EEEE SRS EE R R R R SRR R R SRS EE R R R EEREEREEEERESEEEEEEEERESESES

* Function : Get Def Nane

* Description:

* Paraneters

* Returns

SRR EEEEEEEEEEEEEEEEEEEEEEEEREEREEREEREESEEREESEEREEEEESEEEEESEESEE]

* NOTES:

* EE R I R I I I R I I I R I I */
string

t CnpSched: : Get Def Nane()
{

}

/* R R R SR R S SR R R S S S S S S R S R R R R R R S R R

Function : Get Defl nst
Description :

Par aneters

Ret ur ns

R R R R X E]

NOTES:

ERE R R R R R R S R R R R R R R R R R R R */

t Conponent *
t CpSched: : Get Def | nst ()
{

}

return sDefl nst Nane;

E I

return (this);

/* IR E SRR SRS EEEE SRS EEEEEE SRR R R SRS EE R R R EEEREEEREEEEREESEERERERSESE]

* Function : Internal Task

* Description:

* Paraneters

* Returns

R R R R EEEE R R SRS EEEEEE SRR ER SRS RS EE R R R EEEREEEREESEERESERESERSESESESE]

* NOTES:

* PR SRR SRS S SRR RS EESE SRR R SRS EREEEEEEEEEEEEEEEEEEEEEEEEEES */
bool

t CnpSched: : | nt ernal Task(char * apBuffer, unsigned int aCount)

DBG "defaul t method");
return (true);

* Entry Points
*

*/

extern "C' tConponent * CreateCnp_Schedul er ()
{

}

return (new t CrpSched) ;

Source code: 152

/*

/*

EE

EE I

=========== %
EOF *
—========== */
Function and cl ass header prototypes */
PR SRR SRS S SRR RS EEE S SRR SRS EEEEEREEEEEEEEEEEEEEEEEEEEEEES
Function
Description :
Par aneters
Ret ur ns
PR SRR R EEEEEE RS SRS SRR RS EEEEEREEEEEEEEEEEEEEEEEEEEEEES
NOTES:

EE R R R R R R R S R R S R R R R R R R */

R R X EE]

d ass
Description :

R R R R R R R R S S R S R R R R S R R

NOTES:

LEE R EE R EEEEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

2 Component Stdlo

/*

*

E R T I N

/*
/*

/*

R R R Sk R S S S R S S R T S R R S S R R T S R R R R S S

Source File Name : CmpStdlo.cc
Modul e Name : CnpStdlo
Application Nane : TP1

Proj ect Name : TCS 01

R R R E]

(c) 2001 Seven Layer Conmunications Ltd

R R R R R R R S R S R R T S R R R R S R R R S S R R R R R R S

NOTES:

END OF NOTES

*/

Uncomment if 'what' string is needed */
static char gldent[] = "@#)filename Version 0.0 "; */

Standard Li brary Includes (normal systemn)

*/

ncl ude <uni std. h>
ncl ude <errno. h>
ncl ude <string. h>

ncl ude <i ostreane

Source code: 153

#
#
#
#
#
#
#i

Ext ernal | ncl udes (external toolkits)
*/
Proj ect -w de | ncl udes (project only)
*/
Modul e | ncl udes (rmodul e only)
*/
nclude "../../../inc/Conponent.hh"
nclude "../../../linc/lface/lfEvCh. hh"
nclude "../../../inc/l|face/lfLoader.hh"
nclude "../../../inc/lface/lfSched. hh"
nclude "../../../inc/lfacel/lfCrpPorts.hh"
nclude "../../../inc/Byteln.hh"
nclude "../../../inc/ByteCQut.hh"
Modul e #DEFI NEs
*/
Enurer ati ons & Qther Typedefs (defn)
*/
Cl asses (forward decl) & Structures (defn)
*/
Modul e Functions (decl.) (static local only)
*/
G obal Variables (defn.) (used externally)
*/
strerror
Local Mdul e Variables (defn.) (static |ocal only)
*/

Functions & class definitions visible externally

*/

Functions & class definitions internal to nodule

/* Function and cl ass header prototypes */

*/

Source code: 154

/* EE R R R R R R R R S R R R R R

* Class : tCnpStdlo

* Description:

EEE R

* NOTES: inherits tConponent and interface tlfStdlo

(RS RS EEEEEEEEREESEEEE] */
class tCnpStdlo

publ i c t Conmponent,
public tlfEvCh,
public tlfCnpPorts

{
public:
t CnpSt di o()
: sln(this, NULL, ReadCall back),
sCQut (this),
sl nst Nane()
{
t1fLoader * | pCpLoader ;
t1fSched * | pCnpSched,;
tEvDetails | EvDet ai | s(t EvDetail s::eEct FdRead, O, this, (void*)0);
DBG("Creating tCpStdlo");
/] Setup portnmap
sPort Map. i nsert (nmake_pair(string("stdin"), &sQut));
sPort Map. i nsert (nmake_pair(string("stdout"), &sln));
/1 get | oader
| pCnpLoader = t|fLoader:: Get Loader();
/1 query for Schedul er + check existence of Sched
| pCrpSched = dynamic_cast<t|fSched *>(|pCnpLoader->InstQuery("sched"));
if (I pCmpSched == NULL)
throw (string("l pCrpSched: cross cast failed"));
}
/] register itself with schedul er
| pCpSched- >RegEvHdI (| EvDet ai | s);
}

const t DataPort NaneMap & CnpPort MapCet ()

return (sPort Map);
}

voi d | nvoke()

DBG("hell o fromtCnpStdlo");
}

bool EvCbl nvoke(void * apData)

char | Buf fer[256];
size_t | Count;

1 DBG "waiting on stdin....... "),
| Count = read(0, |Buffer, 256);
if (ICount > 0)

{
/] Got some bytes
sCut. Transfer (| Buffer, |Count);

Source code: 155

I DB "transferring from CmpStdlo ...");

}
else if (ICount == 0)
{
/] Stdin closed
DBG("stdin closed");
return (false);

el se
{ .
/! Error - log it

DBG("stdin error:
return (false);

" << strerror(errno));

return (true);

}
bool Read(char * apBuffer,
unsi gned int aCount)

{
cout << string(apBuffer, aCount) << endl;
return (true);

}

bool Internal Task (char * apBuffer, unsigned int aCount)
DBG("no internal task");
return (true);

}

private:
static bool ReadCall back(tConponent * apCnp,

char * apBuffer,
unsi gned int aCount)

{ return (dynam c_cast <t CrpStdl o *>(apCnp) - >Read(apBuffer, aCount)); }
tByteln sin;
t Byt eCut sQut ;
t Dat aPor t NameMap sPort Map;
string sl nst Nane;
b
/*
*
* Entry Points
* */
extern "C' tConponent * CreateCnp_Stdlo()
{
return (new t CnpStdl o) ;
}
| * =========== *
* EG: *
* —ooz=—====== ¥

/* Function and cl ass header prototypes */

IR RS R R R R R R R R R SRS R R R R R R R R RS RS R R R R R R R R R R SRR EEREEEEE
Function :

Description :

Par aneters

EE R

Source code: 156

L I

Ret ur ns

EE R R R R R R R R S R R R R R

NOTES:

LR AR EEEEEEEEE R EEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

R R R SR R R R R R S S R S R S R R R R R R R R R

Cl ass
Description

EE R R R R R R R R R R R R R R R R R

NOTES:

LR AR R R SRR R R R R R R R R R LY

3 Tcl-C Interface Sources

/*

*

EE I I

/*
/*

/*

#
#

khkhkkhkhhkhhhhhhhkhhhhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhkhkhhkhhkhkhkkhkhkkkkk

Source File Name : CnpTcl _Loader. cc
Modul e Name : CnpTcl _Loader
Application Nane : TPO1

Proj ect Name : TCSO01

R R R Sk S S R R S R S S R S T S R R S T S R R S T R R R R S S O

(c) 2001 Seven Layer Conmmunications Ltd

Khhkhkhhkhhhhhhhkhhkhhhhhkhhkhhkhhhkhkhhkhhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhkkhkkhkkkkk

NOTES:

END OF NOTES
*/
Uncomment if 'what' string is needed */
static char gldent[] = "@#)fil enane Version 0.0 "; */
Standard Li brary Includes (normal system
*/
Ext ernal | ncl udes (external toolkits)
*/
ncl ude <tcl.h>
#i ncl ude <stdio. h>
ncl ude <sys/types. h>
ncl ude <sys/stat.h>
ncl ude <fcntl. h>
ncl ude <uni std. h>
Proj ect -w de | ncl udes (project only)
*/
Modul e | ncl udes (rmodul e only)
*/

nclude "../../../inc/Conponent.hh"
nclude "../../../inc/|face/lfLoader.hh"

Source code: 157

#include "../../../inc/ Tcl Crp_LookupCrd. hh"
#include "../../../inc/ Tcl Cnp_Get Loader. hh"

/*
* Mbdul e #DEFI NEs
#define FILE_NAVE LOADER CC "CnpTcl _Loader.cc"
/~k
Enurer ati ons & Qther Typedefs (defn)
/~k
* Classes (forward decl) & Structures (defn)
/*
* Modul e Functions (decl.) (static local only)
*
/*
* G obal Variables (defn.) (used externally)
*
/*

* Local Module Variables (defn.) (static |ocal

*

only)

static tTcl CrpCndMap<t | f Loader > nCrrd MVap;

*/

*/

*/

* Functions & class definitions visible externally

* */
/*

*

* Functions & class definitions internal to nodul e

*/

/* EE R R R I I I I R I I R R I I I R I

* Function : ReadTypeRegFile

* Description:

* Paraneters

* Returns

R R R R SRR RS SR SRS EEEE R R SRR EE SRS RS EE R R R EEEEEEREESEERESREERESERSESESESE]

*

NOTES:

LR AR EE R EE Y

static int
Tcl Cp_ReadTypeRegFi | e(t | fLoader * aplface,
Tcl _Interp * aplnterp,
int a(pj c,
Tcl _oj *CONST aapOojv[])
{
apl face = t|fLoader:: CGet Loader();
if (aplface == NULL)

throw (string ("could not get |oader interface"));

}
if (abjc < 1)

Source code: 158

L

*

st

throw (string (FILE_NAVE_LOADER _CC) +
string(": invalid number of paraneters"));

/1 quick check to ensure file presence in file space
int |File = open((const char *)Tcl_GetStringFronmj (aapCbjv[0], 0),
0, O_RDONLY);

if (IFile >=0)
{ I/ close file and continue
if (close(lFile) !'=0)
{

cout << string(Tcl_GetStringFronbj (aapojv[0], 0))
<< " file could not be closed" << endl;

}

}

el se

thromstring("file '") + string(Tcl_GetStringFronObj (aapCojv[0], 0))
+ string("" not found"));
}

apl f ace- >ReadTypeRegFi | e(string(Tcl _Get StringFrombj (aapObj v[0], 0)));

return (TCL_OK);

EE R R R R R R R R R S R R R S R R R R R R R R

Function : Tcl Cp_InstCreate

Description : create the specified cnp instance
Par anet er s

Ret ur ns

EE R R R R R R R R R R R S R R R R

NOTES:

LEE AR EEEEEEEEE R EEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

atic int

Tcl Cp_I nst Create(t!fLoader * apl f ace,

Tcl _Interp * apl nterp,
int a(pj c,
Tcl _oj *CONST aapObjv[])

t Component * | pCnp;
apl face = t|flLoader:: Cet Loader();

if (albjc < 2)
throw (string (FILE_NAVE LOADER _CC) +
string("invalid nunber of paraneters"));
if (aplface == NULL)

throw (string ("could not get |oader interface"));

}

| pCrp = aplface->InstCreate(string(Tcl_GetStringFronObj (aapGbjv[0], 0)),
string(Tcl _GetStringFronDbj (aapOoj v[1], 0)));

if (IpCnp == NULL)
{

throw (string("could not create '") +
Tcl _Get StringFronbj (aapOoj v[0], 0) +
string("' @ '") +
Tcl _Get StringFronmj (aapoj v[1], 0) +

Source code:

159

string("' instance"));

return (TCL_OK);

/* EEEEEEEEEEEREEEEEREEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEES]

* Function : Tcl Cp_I nst Query

* Description: check existence of conponent instance

* Paraneters

* Returns
R I R R

* NOTES:

EEE R */
static int

Tcl Cmp_I nst Query(tlfLoader * aplface,
Tcl _Interp * aplnterp,
int aj c,
Tcl _Onj *CONST aapObjv[])
{
t Component * | pCnp;
apl face = t|fLoader:: Get Loader();

if (adbjc < 1)

throw (string (FI LE_NAME_LOADER CC) +
string("invalid nunmber of paraneters"));

}
/1 cout << "aapObjv[O0]
I << "aapQoj v[1]
/1 << endl ;

" << string(Tcl _GetStringFronObj (aapObjv[0], 0))
" << string(Tcl_GetStringFronObj (aapObjv[1], 0))

| pCrp = apl face->I nst Query(string(Tcl_GetStringFronmObj (aapObjv[0], 0)));
if (!l pCm)
{

cout << "false" << endl;

throw (string("lnstance '") +
Tcl _Get StringFromj (aapOojv[0], 0) + "' " +
string("does not exist"));

cout << "true" << endl;
return (TCL_OK);

/* R R R R R R R R R R S R S R R R R R
* Function :
* Description:
* Parameters
* Returns
* khkkhkkhkhkhkhkhkhkhkhkhkhkhkdkhkdkhkhkhkhkdhkdbhkhhhdhhdhkdbhhkhhdhdhkhhhrdrdrdhhhxkx
* NOTES:
EE R R S R S R R R S R S R R R R R R R R */
static int
Tcl Cmp_I nstDel ete(t!fLoader * apl f ace,
Tcl _Interp * apl nterp,
int ayj c,
Tcl _nj *CONST aapObjv[])

apl face = t|flLoader:: Cet Loader();
if (albjc < 1)

throw (string (FILE_NAVE_LOADER _CC) +

Source code: 160

E R

string("invalid nunber of paraneters"));

apl face->I nstDel ete(string(Tcl _GetStringFrontbj (aapOj v[0],

return (TCL_OK);

0)));

Entry Points

*/

R R X E]

Function :
Description :
Paranmeters
Ret ur ns

khhkkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhhhhhkhhkhkhhhkhkkk

NOTES:

R R R R R R R R S S R S R R R R S R R

extern "C'
int
Crptcl _l oader _Init(Tcl _Interp * aplnterp)

{

| *
#i

E R R I

/1 Popul ate sub-conmmand map

*/

nCdMap. AddCnd((const char *)"ReadTypeRegFi |l e*, Tcl Chp_ReadTypeRegFil e);
nCdMap. AddCnd((const char *)"InstCreate", Tcl Chrp_InstCreate);
nCrdMap. AddCnd((const char *) "I nstQuery", Tcl Chp_I nst Query);
nCrrdMap. AddCnd((const char *)"InstDel ete", Tcl Chp_InstDel ete);

/1 New interpreter comuands
Tcl Cmp_RegCrdMap(apl nterp, "I1flLoader", nCndMap);

return (TCL_OK);

=========== *

ECF *
—========== */
Function and cl ass header prototypes */
EE R R R R S R S S S S S S S S R S R R R R R S R R
Function :
Description :
Par anet ers
Ret ur ns
R R R R R R R R R R S R R R R R R
IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS
R R R R R R R R S R S R R R R
Cl ass :
Description :
IR EEEEEEEEEEEEEEREEREEEREEREEREEREEREEREEERERERERESRERESEERESEESEESS
R R R R R R S R S R R S R R
ass

*/

*/

Source code: 161

/111l Types

/11l Ctor/Dtor

/11l Static methods
/11l Static nmenbers
/11l 1nstance nethods
/11l 1nstance nenbers

pr ot ect ed:
111l Types
/11l Ctorl/Dtor
/11l Static methods
/11l Static menbers
/111 1nstance nethods
/11l 1nstance nmenbers

private:
/111l Types
/11l Ctor/Dtor
/11l Static methods
/11l Static nmenbers
/111 1nstance nethods
/11l 1nstance nenbers

#endi f

Conponent Rout er

/* R R R R R S S R S R S S R R R T S R R S R R S S S R R R S R S

*

Source File Name : CnpTcl _Router.cc
Modul e Name : CnpTcl _Router
Application Nane : TPO1

Proj ect Name : TCSO01

R R R X E]

(c) 2001 Seven Layer Conmuni cations Ltd.

R R R S S S S S R S R T S S R R R S R R R S kR R S R R S R S

NOTES:

E I T . I N

* END OF NOTES

* */

/* Uncomment if 'what' string is needed */

/* static char gldent[] = "@#)fil enane Version 0.0 "; */
/*
* Standard Library Includes (normal systemn
* */
/*

Ext ernal | ncl udes (external toolkits)
* */

#i nclude <tcl.h>

/*
* Project-w de |ncludes (project only)

Source code: 162

/*
Modul e | ncl udes (nmodul e only)

* */
#include "../../../inc/Conmponent.hh"
#include "../../../inc/lIface/lfRouter.hh"
#include "../../../inc/lIface/lfLoader.hh"
#include "../../../inc/ Tcl Cnp_LookupCnd. hh"

/*

* Mbdul e #DEFI NEs

* */

#define FI LE_NAVE_ROUTER CC "CnpTcl _Router.cc"

* Enumerations & Other Typedefs (defn)

* */

* (Casses (forward decl) & Structures (defn)

* */

* Modul e Functions (decl.) (static local only)

* G obal Variables (defn.) (used externally)

/*
* Local Mdule Variables (defn.) (static |ocal only)

* */

static tTcl CrpCndMap<t | f Rout er > nCrrd MVap;

/*

*

* Functions & class definitions visible externally

* */
/*

*

* Functions & class definitions internal to nodul e

* */
/* R E SRR SRS EEEE SRS SRR R SRS EEE R SRS EEEEREEREREESEEREEESEESEERESEESEESSE]

* Function :

* Description:

* Paraneters

* Returns

R R RS SRR RS SRS EEEEEEEE SRR EE SRR RS EE R R R EEEREEEREESEERESEERESERSESESEE]

* NOTES:

* R SRR SRS S S SR RS S SRR EEEREEEEEEREEEREEEEEEEEEEEEEEEEEEEEEEES */

Source code: 163

static int

Tcl Cp_Bind(tIfRouter * aplface,
Tcl _Interp * aplnterp,
int a(hj c,
Tcl _Opj *CONST aapObj v[])

if (albjc < 3)
throw (string (FI LE_NAME_RQUTER CC) +

string(": invalid number of paraneters"));
}

if (!aplface->Bind(string(Tcl_GetStringFrombj (aapObjv[0], 0)),
string(Tcl _GetStringFronDbj (aapOoj v[1], 0)),
string(Tcl _GetStringFronDbj (aapObjv[2], 0)),
string(Tcl _GetStringFronDbj (aapObjv[3], 0))))

{
throwm string("could not Bind cnps & ports"));
}

return (TCL_OK);
}

EE I

Entry Points

*/

EE R R R R R R R R R S R R R S R R R R R R R R

Function :
Description :
Par aneters
Ret ur ns

EE R R R R R R R R R R R S R R R R

NOTES:

ER R R R I I I I R I I I I R R I I R I */
extern "C'

int

Cmptcl _router_Init(Tcl _Interp * aplnterp)

{

/1 Popul ate sub-conmmand nmap

nCdMap. AddCnd((const char *)"Bind", Tcl Cnp_Bind);

E R T I

/1 New interpreter conmands
Tcl Cp_RegCndMap(apl nterp, "IfRouter”, nCnmiMap);

return (TCL_OK);

}

[* =========== *
* EOF *
* —==—======== */

/* Function and cl ass header prototypes */
#if 0

[R KKk kR Rk kkok ok kR Rk ok kR R KKk ok kKR Rk k ok ok kR Rk k ok ok kR Rk ok ok ok kR Xk k ok ok kK x

* Function :

* Description:
* Paraneters

* Returns

Source code: 164

EEE R R S S S S S S R S S R R R R S S S S R S S S

NOTES:

* o

/*
* dass :
* Description:
* NOTES:
*
cl ass
{
public:
/11l Types
/11l Ctor/Dtor
/11l Static nmethods
/11l Static menbers
/111 lnstance nethods
/11l 1nstance nenbers
pr ot ect ed:
/111l Types
/11l Ctor/Dtor
/11l Static nmethods
/11l Static menbers
/11l 1nstance nethods
/11l 1nstance nenbers
private:
/111 Types
/11l Ctor/Dtor
/11l Static nmethods
/11l Static menbers
/11l 1nstance nethods

I nstance nenbers

#endi f
Conponent Schedul er

R R X E]

EE R R R R Sk S R S R S R R S R R S S S S

khkhkkhkhkhhkhhkhhhkhhkhhhhhhhkhhkhhkhhhhhkhhkhhhkhhkhhhhhhkhhkhhhhkhkkk

R R R R R S R R R S S S S R S R R R R S R

*/

*/

KRk kK ok ok ok ok kK K ok ok ok Kk K ok ok ok Kk ok ok ok kR ok ok kK K ok ok Rk kR kR Rk Rk R Rk kR kK

*

Source File Nanme
Modul e Nane
Application Nane

Proj ect Nane :

EE I R I

NOTES:

* END OF NOTES

CpTcl _Sched. cc

CmpTcl _Sched

TPO1

TCSO01

R R R Sk S S S S S R S R S S S S R R R S S R R S S S S R S R R R R R S

(c) 2001 Seven Layer Conmmuni cations Ltd.

R R R X

*/

/* Unconment if 'what'

string is needed */

/* static char gldent[] = "@#)fil enane Version 0.0 "; */
/*
* Standard Library Includes (normal system

*/

Source code: 165

/*
* External I|ncludes (external toolkits)
* */

#i ncl ude <tcl.h>

/*
Proj ect -w de | ncl udes (project only)
* */
/*
Modul e | ncl udes (rmodul e only)
* */
#i ncl ude " . /i nc/ Conponent . hh"

/.. 1.
#include "../../../inc/l|face/lfSched. hh"
#include "../../../linc/Iface/lfLoader.hh"
#include "../../../inc/ Tcl Chp_LookupCrd. hh"

/*
* Mbdul e #DEFI NEs

* */

#define FI LE_NAVE_SCHED CC" CnpTcl _Sched. cc”

* Enumerations & Other Typedefs (defn)

* */

* Classes (forward decl) & Structures (defn)

* */

* Modul e Functions (decl.) (static local only)

* dobal Variables (defn.) (used externally)

/*
* Local Mddule Variables (defn.) (static local only)

* */

static tTcl CrpCndMap<t | f Sched> mCrrd Vap

/*

* Functions & class definitions visible externally
* */

/*

*

* Functions & class definitions internal to nodul e

Source code: 166

*/

/* R R L

* Function : Tcl Chp_AddCmp

* Description: Add conmponent to scheduler |ist

* Paraneters

* Returns

EE R R R R R R R R R R R R R R R R

* NOTES:

RS RS EEEREEEEEREES */
static int

Tcl Cp_AddCnp(t1fSched * aplface,

EE I

*

Tcl _Interp * aplnterp,
i nt ayj c,
Tcl _Ooj *CONST aapoj v[])

t Component * | pCnp;
t1fLoader * |pLoader = tl|fLoader:: GetLoader();
t1fSched * | pSchedl f ace;
if (albjc < 1)
{

throw (string(FlLE_NAVE_SCHED CC) +
string("invalid nunmber of paraneters"));

| pCp = | pLoader - >l nst Query(string(Tcl_GetStringFronDbj (aapObj v[0],
if (I pCmp == NULL)
{

throw (string("invalid conponent nane '") +
Tcl _Get StringFromj (aapoj v[0], 0) + "'");
}

/1 do not add scheduler - test for type and throw for sched type
if ((IpSchedlface = dynamic_cast<t|fSched *>(I pCmp)))
{

throw (string("cannot add conponent'") +
Tcl _Get StringFronmj (aapOojv[0], 0) +
string("' to itself "));

apl f ace- >AddCnp(| pCmp) ;
return (TCL_OK);

R R R R R R R R R R S R S R R R R R

Function : Tcl Cp_RunCnp
Description :

Par aneters

Ret ur ns

ER R R

NOTES:

EE R R R R Sk S S S S R S S S S R S S R S R R R R R R R R */

static int
Tcl Cp_RunCmp(t 1 f Sched * apl f ace,

{

}

Tcl _Interp * aplnterp,

int aj c,

Tcl _Onj *CONST aapOoj v[])
apl face- >RunCnp() ;

return (TCL_OK);

0))

Source code: 167

E R G

*

st

EEEEE RS EEEEEEEEEEEEEEREEREEREEEEEEEEEEEEEREESEEREEEESEEEEEEESES
Function : RegEvHdI
Description : register event handle to i nvoke event

| ater
Par anet ers
Ret ur ns
E I I I I I R I I R I I
NOTES:
EEE SRR SRR EEEEEEEEEEEEEEREEREEEEEEEEEEEEEEESEEREEESEESEEREEEE RSN */
atic int

Tcl Cp_RegEvHdI (t1fSched * apl f ace,

Tcl _Interp * apl nterp,
int aj c,
Tcl _Onj *CONST aapObj v[])

t Component * | pCnp;
t1fLoader * |pLoader = tl|fLoader:: GetLoader();

if (adbjc < 1)

throw (string(Fl LE_NAME_SCHED CC) +
string("invalid nunmber of paraneters"));

Tcl _Qoj * | pPtrToLi st = Tcl _Obj Get Var 2(apl nterp,
aapObj v[0],
NULL,
TCL_LEAVE_ERR_MSQ) ;

int | Li st El ement Count _Argc;

Tcl _Onj ** | pLi st El ement _Ar gv;

/] EvDetails
t EvDetail s::t EvCbType | EvType;

int | Fi | edes;
tIfEvCh * | pQoj ;
void * | pDat a;

if (!lpPtrToList)

throw (string("no list '"") +
Tcl _Get StringFronbj (aapojv[0], 0) +
string("' found"));

if (Tcl _ListObj GetEl ements(aplnterp, |pPtrTolList,
&l Li st El enent Count _Argc, & pListEl enent_Argv) != TCL_OK)

throw (string("could not CetElenments fromlist"));

}

DBG("I pLi st El emrent _Ar gv[0]
DBG("I pLi st El erent _Ar gv[1]
DBG("I pLi st El enent _Ar gv[2]
DBG("I pLi st El enent _Ar gv[3]

<< Tcl _Get StringFromj (I pLi st El ement _Argv[0],
<< Tcl _Get StringFromj (I pLi st El ement _Argv[1],
" << Tcl _Get StringFronbj (| pLi st El ement _Argv[2],
" << Tcl _Get StringFronbj (I pLi st El ement _Argv[3],

/] strip elements fromlist and make up argunents for tEvDetails
// tEvDetails[arg 1, , ,]

if (stremp(Tcl _GetStringFromoj (I pListElement_Argv[0], 0), "None") == 0)

| EvType = tEvDetail s:: eEct None;
}

if (strenmp(Tcl _GetStringFromj (I pListElement_Argv[0], 0), "FdRead") == 0)

0))
0));
0));
0));

Source code: 168

| EvType = tEvDetail s:: eEct FdRead;

if (strenp(Tcl _Get StringFronbj (I pListEl ement_Argv[0], 0),
{

| EvType = tEvDetails::eEct FdWite;

/!l tEvDetails[,arg 2, ,]

Tcl _Getl nt FronmObj (apl nterp, |pListEl ement_Argv[1l], & Filedes);

if (Tcl_GetCbjResult == NULL)

throw (string("could not get int formobj ") +
Tcl _Get StringFromj (I pLi st El emrent _Argv[1], 0));

"4

"FdWite") == 0)

}
// tEvDetails[, ,arg 3,]
| pCp = | pLoader ->I nst Query(string(Tcl _GetStringFronObj (I pListEl ement_Argv[2], 0)));
| pbj = dynam c_cast<tlIfEvCbh *>(| pCrp);
if (1pObj == NULL)
throw (string("could not cast '") +
Tcl _Get StringFromj (I pLi st El ement _Argv[2], 0) + "'
string(" to tIfEVCb type"));
}
Il tEvDetails[, , ,arg 4]

| pData = Tcl _Get StringFronObj (| pLi stEl enent _Argv[3], 0);

/1 fill up argunents

tEvDetails | EvDetail s(l EvType, |Filedes, |pObj, (void*)lpData);

/1 call Register ev handle
if (!aplface->RegEvHdl (| EvDetail s))

throw (string("could not register ") +
string(Tcl _GetStringFronDbj (I pLi stEl ement _Argv[2],
string(" with scheduler "));

}
return (TCL_OK);
}
/* R R R R R S S R S R S S R S S R R R R R R R R R R
* Function :
* Description:
* Paraneters
* Returns
EE R R R R R R R R R R R
* NOTES:
LR EEEEEEEEEEEEEREREEEREREREREEEEREEREEEEREEEREEREREEEEREREEESEERESS
static int
Tcl Cp_CGet Def Nane(t | f Sched * apl f ace,
Tcl _Interp * apl nterp,
int aj c,
Tcl _Qbj *CONST aapObj v[])
Tcl _Set Resul t (apl nterp, (char *)(aplface->GetDef Name()).c_str(),
return (TCL_OK);
}

[KKk ok kR Kk ok ok ok kR Rk ok ok kR R Rk k ok kR R Rk ok ok ok R R Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok ok x

0)) +

*/

TCL_VCLATI LE) ;

Source code: 169

Function : |nvoke

Description : tConmponent |evel invoke
Par anet ers

Ret ur ns

EE R R R R Sk S R S R S R R S R R S S S S

NOTES: required to invoke main | oop in Sched

LR AR EEE LSRR R R R R R R R EEEE R Ry

static int

E R

Tcl Cp_I nvoke(t | fSched * apl f ace,
Tcl _Interp * apl nterp,
i nt apj c,

Tcl _Qoj *CONST aapObj v[])
t Component * | pCnp;
| pCp = dynami c_cast <t Conponent *>(apl face);
if (IpCnp == NULL)
{
throw (string("could not downcast sched Iface to tConponent"));

}
| pCp- >1 nvoke();

return (TCL_OK);

~——

EE I

Entry Points

*/

EE R R R R R R R R R S R R R S R R R R R R R R

Function :
Description :
Par aneters
Ret ur ns

EE R R R R R R R R R R R S R R R R

NOTES:

ER R R R I I I I R I I I I R R I I R I */
extern "C'

int

Crpt cl _sched_I nit(Tcl _Interp * aplnterp)

{

/1 Popul ate sub-conmmand nmap

nCdMap. AddCnd((const char *) " AddCnp", Tcl Cnp_AddCnp) ;
nCdMap. AddCnd((const char *)"RunCnp", Tcl Cnp_RunCnp) ;
nCrdMap. AddCnd((const char *)"RegEvHdl ", Tcl Chp_RegEvHdl);
nCdMap. AddCnd((const char *) " Get Def Nane", Tcl Cnp_Cet Def Nane) ;
nCndMap. AddCnd((const char *)"Invoke", Tcl Cnp_I nvoke);

E R T I

/1 New interpreter conands
Tcl Cp_RegCndMap(apl nterp, "I1fSched", nCndMap);

return (TCL_OK);

}

[* =========== *
* EOF *
* ——========= */

Source code: 170

/*

Function and cl ass header prototypes */

#f 0

/*

*

I R S

R R R SR R R R R R S S R S R S R R R R R R R R R

Function :
Description :
Par aneters
Ret ur ns

R R X E]

NOTES:

EE R R R R R R R R R R S R R R R R R R R

R R R R R R R S S S R S R R R R R R R

L I

cl ass
{

public:
1111
11

Cl ass :
Description :

EE R R R R R R R S R R S R R R R R R R

NOTES:

R R X EE]

Types

Ctor/Dtor

Static nethods
Static nenbers

I nstance net hods
| nstance nenbers

pr ot ect ed:

1

Types

Ctor/Dtor

Static nethods
Static nenbers

I nst ance net hods
| nst ance nenbers

private:

1
1
Iy

b

#endi f

1.4

Types

Ctor/Dtor

Static nethods
Static nmenbers

I nst ance net hods
I nstance nenbers

Component Ethgen

*/

*/

/* LR R R R R T R R R R R R R R R R R R R R R R R R R S

*

E I R

Modul e Nare

Proj ect Nane :

Source File Nane

Appl i cation Nane

TCSO1

CmpTcl _Et hGen. cc

CpTcl _Et hGen

TPO1

Source code: 171

LR R R R R S R R R R R R R R R R R R R R S

(c) 2001 Seven Layer Communi cations Ltd.

R R X x]

NOTES:

EE R

* END OF NOTES

* */

/* Uncomment if 'what' string is needed */

/* static char gldent[] = "@#)fil enanme Version 0.0 "; */
/*
* Standard Library Includes (normal system
* */
/*

Ext ernal | ncl udes (external toolkits)
* */

#include <tcl.h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

#i ncl ude <unistd. h>

#i ncl ude <typeinfo>

/*
Proj ect -w de | ncl udes (project only)
*/
/*
Modul e | ncl udes (rodul e only)
* */
#include "../../../inc/|face/lfEthGen. hh"
#include "../../../inc/lIface/lfLoader.hh"
#include "../../../inc/ Tcl Cnp_LookupCnd. hh"
/*
* Mbdul e #DEFI NEs
* */

#define FILE_NAVE ETHGEN CC "CnpTcl _Et hGen. cc”
#defi ne MAX_FRAMVES PER SEQ 64

/*

Enunerati ons & Ot her Typedefs (defn)

* */

typedef map<string, tEthGenFrame> tEthGenFranmeMap;

/*

Classes (forward decl) & Structures (defn)

*/

/*

Modul e Functions (decl.) (static local only)
* */
/*
* dobal Variables (defn.) (used externally)
* */

Source code: 172

/*
* Local Mddule Variables (defn.) (static local only)
* */

static tTcl CrpCndMap<t | f Et hGen> nCrdMap;

/*
*

* Functions & class definitions visible externally

* */

Functions & class definitions internal to nodule

EE I

*
/
unsi gned i nt Convert HexTolnt(char * alnb, int aLen, char * aQutb);
unsi gned i nt Convert | nt ToHex(char * alnb, int alLen, char * aCutb);

i nt Get I nt FronObj (char * aVval);

/* R O R S R S
* Function : Tcl Chp_QueryState
* Description: Query internal states of EthGen conponent
* Paraneters : none
* Returns : TCL_OK [Interp set to state description]
EE R R R R R R R R R R R
*

NOTES: Tcl Cnd % | f Et hGen et hgen QueryState

LR AR EE R R R EEEEEEEEEEEEEEEEEEEEEEEEEE Ry

static int

Tcl Cp_QueryState(t!lfEthGen * apl f ace,
Tcl _Interp * apl nterp,
int a(pj c,

Tcl _oj *CONST aapObjv[])

Tcl _Set Resul t (apl nterp, (char *)(aplface->QueryState()).c_str(), TCL_VOLATILE);
return (TCL_OK);
}

/ EE R R R R Sk S S S R S S S S R S S R S R R R R R R R R
Function : Tcl Chp_Set I nterface

Description: sets ethernet interface to <name>

Par anet er s

Ret ur ns

R R R R R R R R R R S R S R R R R R

NOTES: Tcl Cnd % | f Et hGen et hgen <If Nanme>

Kokkkok ok kR Kk kk ok kA XKk ok ok kAR k ok ok kA Xk k ok ok kA Xk ok ok ok kX kk ok ok kxkkokokkx k[

L

static int
Tcl Cp_SetInterface(t!fEthGen * apl f ace,
Tcl _Interp * apl nterp,

int aj c,
Tcl _Ooj *CONST aapObj v[])
{
if (albjc < 1)
{

throw (string (FI LE_NAME_ETHGEN CC) +
string(": IfEthGen ethgen Setlnterface <Name>"));
if (!(aplface->Setlnterface(string(Tcl_GetStringFronDbj(aapOjv[0], 0)))))

throw (string("Could not set interface '") +
Tcl _Get StringFronmj (aapoj v[0], 0) +

Source code: 173

string("' "));

el se

Tcl _Set Resul t (apl nterp, Tcl_Get StringFronObj (aapObjv[0], 0), TCL_VOLATILE);
}

return (TCL_OK);

R R X E]

Function : Tcl Cp_Querylnterface
Description : query ethernet interface nane
Paraneters : none

Returns : string

R R X E]

NOTES: Tcl Cnd % | f Et hGen et hgen Querylnterface

EEE R */

static int

E R

Tcl Cmp_Querylnterface(t!fEthGen * apl f ace,
Tcl _Interp * apl nterp,
int aj c,

Tcl _Onj *CONST aapOoj v[])

Tcl _SetResul t (aplnterp, (char *)(aplface->Querylnterface()).c_str(), TCL_VOLATILE);

return (TCL_OK);
}

/ R S R L
Function : Tcl Cnp_Config

Description: Configure all channels

Paraneters : Sequence/ Franme |ist

Returns : TCL_OK, throws otherw se

EE R R R R R S S S S S S S S S S R S R R R R R R R R S R R

NOTES: Tcl Cnd % | f Et hGen <et hgen> Config <bstsfile> <seq/frame |ist>

E R

Only buffer length of 1514 (max) can be handl ed

R I R R */
static int

Tcl Cp_Config(tlfEthGen * aplface,

Tcl _Interp * aplnterp,

int a(hj c,

Tcl _Qpbj *CONST aapoj v[])

/] create a map to avoid copying frames with sane nanes
t Et hGenFr ameMap | FraneRegi st er _Map;

t Et hGenFrameMap: :iterator | FraneNanelter;

t Et hGenFrameMap: :iterator | FraneNanelter?2;

/1 frame vectors and indiv seqs for all channels

t Et hGenFr ameVec | FraneVect or [NO_OF_CHANNELS] ;

t Et hGenSeq | Seq[NO_OF_CHANNELS] ;

// avail able procs in global scope

string | Proc_Bsts_CetPattern = "Bsts_GCetPattern”;
string | Proc_Bsts_Get FraneData = "Bsts_Get FraneDat a";
string | Proc_FindFile = "FindFile";

/1 storage for Sequence el enents

Tel _Cbj * | SeqObj [MAX_FRAMES_PER_SEQ ;

i nt | SeqEl enent Count = O;

Tcl _nj *x | ppSeqlLi st El enment ;

Source code:

174

int | NumOf Framesl nSeq = 0;

/1 storage for Frane el enments

i nt | FrameEl ement Count = O;

Tcl _nj *x | ppFr anmeLi st El emrent ;
t Channel Array | Channel Array;

char | Buf [ETH_MAX_LEN ;

DBG(" - ---- 2 ceeeeees)i

if (adbjc < 2)
{

throw (string (FILE_NAVE_ETHGEN CC) +
string(": IfEthGen ethgen Config <bstsfile> <seqg/frame> "));

/1 Find file containing PDUs and sequences
if (Tcl_Eval (aplnterp,
(char *) (I Proc_FindFile
+ string(" ")
+ string(Tcl _GetStringFronbj (aapOojv[0], 0))
).c_str())
I= TCL_OX)

throwmstring("could not find file "") +
string (Tcl _GetStringFronj (aapojv[0], 0)) +
string ("""));

}

/1 8 channels plus "Config"
if (albjc > NO OF _CHANNELS + 1)

DBG"! found nore than " << NO OF_CHANNELS << " channel s");

DBG"! ignoring trailing channels '" <<
Tcl _Get StringFronbj (aapObj v[NO_ OF_CHANNELS+1], 0) << " ...");
}
DBG("----- 3 -)
/1 set all channels to NULL at start
for (unsigned int i = 0; i < NO OF_CHANNELS; ++i)
{
| Channel Array[i] = NULL;
}
for (int |IChannel = 0; |Channel < (aGbjc - 1); ++l Channel)
{
DBG("----- 3. " << [|Channel << " -------- ")
if (strenp(Tcl _Get StringFronObj (aapObj v[| Channel +1], 0), "null") == 0)
/1 DBG"set channel [" << | Channel << "] = NULL");
| Channel Array[| Channel] = NULL;
}
el se
{
DBG("----- 3. " << |Channel <<" . 0 -------- ")
/'l get list of sequences
/1 if (Tcl_Eval (aplnterp,
/1 (char *) (I Proc_Bsts_GetPattern
Il + string(" ")
/1 + string(Tcl _GetStringFronDbj (aapCbj v[0], 0))
/1 + string(" ")

Source code: 175

I + string(Tcl _Get StringFronDbj (aapObj v[I Channel +1], 0))).c_str())

I I= TCL_OK)
I {
/1 throwstring("Could not read PDU Sequence"));
I }
/1 el se
I {
DBG("----- 3. " << [Channel << " | 1 -------- ");
DBG (char *) (1 Proc_Bsts_GetPattern
+ string(" ")
+ string(Tcl _GetStringFronbj (aapojv[0], 0))
+ string(" ")
+

string(Tcl _GetStringFronDbj (aapOoj v[I Channel +1], 0))).c_str());

Tcl _Eval Ex(apl nterp,

(char *) (I Proc_Bsts_GetPattern
+ string(" ")
+ string(Tcl _GetStringFronmbj (aapOojv[0], 0))
+ string(" ")
+ string(Tcl _GetStringFronbj (aapoj v[I Channel +1], 0))).c_str(),

-1,

TCL_EVAL_GLOBAL);

DBG("----- 3. " << |Channel << " . 2 ----oo-- "y;

/1 for sequence 1-8
if (Tcl_ListObjGetEl ements(aplnterp, Tcl_GetObj Result(aplnterp),
&l SeqEl enent Count, & ppSeqLi st El ement) != TCL_CK)

throwstring("Could not get elenents from seq/ pdu(s)"));

}
el se
I NumOf Framesl nSeq = (| SeqEl enent Count +1)/ 2;
for (int i =0; i < |NumOfFrameslnSeq; ++i)
/1 copy all frame nanes to a new | ocation
1 Seqbj [i] = Tcl _NewStringObj (Tcl _Get StringFronbj (I ppSeqLi stEl enent[2*i + 1],
0), -1);
}
}
/1 }
DBG("----- 3. " << |Channel << " . 3 -------- ")

/1 for each frame in |ist
for (int |IFraneCount = 0; |FrameCount < | Nunf Franesl nSeq; ++l FraneCount)

/1 get list of frame buf and |len 'Bsts_GCet FraneDat a'
if (Tcl_Eval (aplnterp,
(char *) (1 Proc_Bsts_Get FraneDat a
+ string(" ")
+ string(Tcl _GetStringFronbj (aapojv[0], 0))
+ string(" ")
+ string(Tcl _GetStringFronObj (1 SeqObj[| FrameCount], 0))).c_str())
I= TCL_OX)

throwmstring("Could not get PDU data"));
}

el se

/1 get elements fromframe - frane |en and buffer

Source code: 176

if (Tcl _ListObjGetEl ements(aplnterp, Tcl_GetObjResult(aplnterp),
& FranmeEl enent Count, &l ppFraneLi stEl ement) != TCL_OK)

throwmstring("Could not get frame el enments"));
}

el se

| FraneNanel ter = | FraneRegi s-
ter_Map. find(Tcl _GetStringFronDbj (I Seqoj [| FraneCount], 0));

if (I FrameNanelter != | FrameRegi ster_Map. end())
{
/1 DBG("'" << Tcl _GetStringFromj (I Seqloj[I FraneCount], 0) << "' found");
/1 frame found - therefore insert framePtr into vector
| FraneVect or [| Channel] . push_back(&(| FraneNanel t er - >second)) ;
}
el se
/1 DBG(" FranmeLen(" << (unsigned
int)atoi (Tcl _Get StringFronObj (| ppFraneLi stElenent[0], 0)) << "), Buffer["
/1 << (unsigned char *)Tcl _GetStringFronObj (| ppFraneLi stEl enent[1], 0) <<

1)

Il resize frame length to max of 1514
if (atoi(Tcl _GetStringFronDbj (I ppFraneListEl ement[0], 0)) > ETH MAX LEN)
{

/1 convert to int

if (ConvertHexTol nt(Tcl _GetStringFrombj (| ppFraneLi stEl enent[1], 0),
ETH_MAX_LEN,
| Buf) == 0)

DBG("Error - could not convert hex buffer");
return (TCL_ERROR);

}
DBG("----- 3. " << [|Channel << " . 31 -------- ")

| FraneRegi s-
ter_Map.insert(nmake_pair (Tcl _GetStringFronObj (I SeqOhj [| FrameCount], 0),
t Et hGenFr ame(Tcl _Get St ri ngFrombj (1 Seqbj [| FraneCount], 0),
ETH_MAX_LEN,
(unsi gned char *)I Buf,
(unsigned int)1)));

DBG("----- 3. " << [|Channel <<" . 4.1 -------- ")

DBG("resetting franme length from" <<
at oi (Tcl _Get Stri ngFromObj (| ppFraneLi stEl enent[0], 0))
<< " to " << ETH_.MAX_LEN);

}

el se

/] convert hex string to suitable format for storage

i f (ConvertHexTol nt(Tcl _GetStringFromCbj (I ppFraneLi stEl enent[1], 0),
at oi (Tcl _Get Stri ngFronmObj (| ppFraneLi stEl ement[0], 0)),
| Buf) == 0)

DBG("Error - could not convert hex buffer");
return (TCL_ERROR);
}

DBG("----- 3. " << |Channel << " . 3.2 -------- ")

Source code: 177

| FraneRegi s-
ter_Map.insert(nmake_pair (Tcl _GetStringFronObj (I SeqObj [| FrameCount], 0),
t Et hGenFr ame(Tcl _Get St ri ngFrombj (1 Seqbj [| FraneCount], 0),
(unsi gned
int)atoi (Tcl _Get StringFronObj (| ppFraneLi stEl enent[0], 0)),
(unsi gned char *)I Buf,
(unsigned int)1)));
DBG("----- 3. " << [|Channel <<" | 4.2 -------- ");

DBG("Map: inserted '" << Tcl _GetStringFronbj (| SeqMoj [| FrameCount], 0) << "'

/1 do a search again and insert

| FraneNanel ter2 = | FrameRegi s-
ter_Map. find(Tcl _GetStringFronDbj (I Seqoj [| FraneCount], 0));

/1 DBG(Tcl _Get StringFrombj (I Seqoj [| FraneCount], 0) << " is searched again");

| FraneVect or [| Channel] . push_back(&(| FrameNanel t er 2- >second)) ;

/1 DBG("I FrameVector contents " << (I FraneNanelter2-
>second) . Get Et hGenBuf _Buf ());
/1 DBG("I FrameVector | ength " << (I FraneNanel ter2-
>second) . Get Et hGenBuf _Len());
}
}
}

/1 make up sequence

/1 time delay set to default min possible tx tine =0
| Seq[| Channel]. Set FraneVec(& FranmeVect or[| Channel]);

| Seq[| Channel]. Set Ti meDel ay(0);

}

/'l make up sequence array 'tChannel Array’
| Channel Array[| Channel] = & Seq[l| Channel];

/1 execute Config
if (!(aplface->Config(& Channel Array)))

{
DBG("! could not configure EthGen");

/l set interp to O for failure
Tcl _Set Resul t (aplnterp, "0", TCL_VOLATILE);
}

el se

// set interp to 1 for success
Tcl _Set Resul t (aplnterp, "1", TCL_VOLATILE);

return (TCL_OK);

[KKk ok kR Kk ok ok ok kR Rk ok ok kR R Rk k ok kR R Rk ok ok ok R R Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok ok x

Source code: 178

")

Function : PreRunCheck

Description: performpre-run check for EthGen
Par anet ers

Ret ur ns

EE R R R R R R R R R R R R R R R R R

NOTES: Tcl Cnd % | f Et hGen <et hgen> PreRunCheck

LR AR EEE LSRR R R R R R R R EEEE R Ry

E R

static int

Tcl Cp_PreRunCheck(t|fEthGen * apl f ace,
Tcl _Interp * apl nterp,
int a(pj c,

Tcl _Qbj *CONST aapObj v[])
if (!(aplface->PreRunCheck()))
{

throw (string("Could not perform pre-run check "));

}

return (TCL_OK);
}

R R R R R R R R S S R S R R R R S R R

Function : StartEngi ne

Description : start generating engine
Paranmeters : none

Returns : TCL_OK, throws otherw se

R R X E]

NOTES: Tcl Cnd % | f Et hGen <et hgen> Start Engi ne

EE R R R R R R R R R R R */

EE

static int

Tcl Cp_St art Engi ne(tlfEthGen * apl f ace,
Tcl _Interp * apl nterp,
int aj c,

Tcl _Ooj *CONST aapObj v[])
if (!(aplface->StartEngine()))

throw (string("Could not Start generation engine "));

return (TCL_OK);
/* R O R O
* Function : StopEngine
* Description: stop generating engine
* Paraneters : none
* Returns : TCL_OK, throws otherw se
EE R R S R R R R R R R R R R R R
*

NOTES: Tcl Cnd % | f Et hGen <et hgen> St opEngi ne

LR AR EE R EE Y

static int

Tcl Cp_St opEngi ne(t I fEthGen * apl f ace,
Tcl _Interp * apl nterp,
int a(pj c,

Tcl _Cbj *CONST aapObjv[])
if (!(aplface->StopEngine()))
{

throw (string("Could not Stop generation engine "));

}
return (TCL_OK);

Source code: 179

R R X E]

Function : Tcl Chp_Set PDU_Len
Description : reduce PDU | ength, does not nodify buffer,
does not increase existing buffer
| engt h,
Modi f yFrameBuf fer nust be used to
popul ate data first
Paraneters : ChNum PduNum Pdu | en
Returns : TCL_OK, throws otherw se

khkhkkhhkhhkhhkhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhkhkhhhhkhhhhhhkhkkk

NOTES: Tcl Cnd % | f Et hGen <et hgen> Set PDU_Len ChNum PduNum <| en>

EEE R */

E I R N

static int
Tcl Cp_Set PDU_Len(t I f Et hGen * apl f ace,
Tcl _Interp * apl nterp,
int aj c,
Tcl _nj *CONST aapObjv[])
i nt | ChNum
int | FrameNum
int | Buf Len;

if (abjc < 3)
{

throw (string (FILE_NAVE_ETHGEN CC) +
string (": IfEthGen ethgen SetPDU Len ") +
string ("<chNum> <pduNun® <buflen>"));

}

/1 get all integer and check for errors for non-ints
if (Tcl_GetlntFronObj (aplnterp, aapQojv[0], & ChNum) == TCL_ERROR)

throw (string("Channel number '") +
string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));

}
if (Tcl _GetlntFromObj (aplnterp, aapOojv[1l], & FrameNun) == TCL_ERROR)

throw (string("PDU nunber '") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

}
if (Tcl _GetlntFromObj (aplnterp, aapOojv[2], & BuflLen) == TCL_ERROR)
throw (string("Buffer len value '") +
string(Tcl _GetStringFronObj (aapObjv[2], 0)) +
string("' is invalid"));
}
if (!(aplface->Set PDU Len(| Buf Len, | ChNum | FrameNunj))
{

return (TCL_ERROR);
}

return (TCL_OK);

}

/* R R R R R S S S S S S S S S R S R S R R R R R R R R R

* Function : Tcl Cp_QueryPDU Len
* Description: queries PDU |ength,

Source code: 180

Paraneters : ChNum PduNum
Returns : TCL_OK, throws otherw se

R R X E]

NOTES: Tcl Cnd % | f Et hGen <et hgen> QueryPDU _Len ChNum PduNum

EEE R */

EE R

static int
Tcl Cmp_QueryPDU_Len(tlfEthGen * apl f ace,
Tcl _Interp * apl nterp,
int aj c,
Tcl _Ooj *CONST aapObj v[])
i nt | ChNum
i nt | FrameNum

unsi gned int | PduLen = O;
if (albjc < 2)
{

throw (string (FILE_NAVE_ETHGEN CC) +
string (": IfEthGen ethgen QueryPDU Len ") +
string ("<chNum> <pduNune» "));

}

/1 get all integer and check for errors for non-ints
if (Tcl _GetlntFronObj (aplnterp, aapQojv[0], & ChNum) == TCL_ERROR)
{
throw (string("Channel number '") +
string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));

}

if (Tcl _GetlntFrombj (aplnterp, aapOojv[1l], & FranmeNun) == TCL_ERROR)
{
throw (string("PDU nunber '") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

}

| PduLen = apl face->QueryPDU Len(l ChNum | FraneNum ;
if (IPduLen == 0)

throw(string("Pdu len = 0"));
}

Tcl _Set Resul t (apl nterp,
Tcl _Get StringFronmbj (Tcl _Newl nt Goj (I PduLen), 0),
TCL_VOLATI LE) ;

return (TCL_OK);

R R R R R R R R R R S R R R R R R

Function : Tcl Cp_Modi f yFrameBuf f er

Description: nodify contents of PDU

Par anet ers

Returns : TCL_OK, throws otherw se

khkkkhkhkhkhkhkhkhkdkhkhkhkhkdhhkdhhhhdhhdhdbhhhhdhrdbhhhhkdrdrdhhdrdrdhhhddx

NOTES: Tcl Cnd % | f Et hGen <et hgen> Modi f yFr aneBuf f er
<chNunm> <pduNunp <of f set > <bufl en> <data string>

EE R R S S S S R R S S R R R R R R R R R R R R R */

static int

Tcl Cp_Modi fyFrameBuf fer (tIfEthGen * aplface,

EE R G

Source code: 181

Tcl _Interp * aplnterp,
i nt aj c,
Tcl _pj *CONST aapObjv[])

int I ChNum

int | FranmeNum

int | O f Set ;

i nt | Buf Len;

int | HexString_Len = O;

char | pHexSt ri ng_Buf [ETH_MAX_LEN*2];
char | HexSt ri ngTest Buf [ETH_MAX_LEN*2] ;

if (abjc < 5)
{

throw (string (FI LE_NAME_ETHCEN _CC) +
string (": IfEthGen ethgen ModifyFraneBuffer ") +
string ("<chNum> <pduNume <of f set> <bufl en> <data string>"));

}

/1 get all integer and check for errors for non-ints
if (Tcl _GetlntFronmbj (aplnterp, aapQojv[0], & ChNum) == TCL_ERROR)

throw (string("Channel number '") +
string(Tcl _GetStringFronObj (aapCbjv[0], 0)) +
string("' is invalid"));

}
if (Tcl _GetlntFromObj (aplnterp, aapOojv[1l], & FrameNun) == TCL_ERROR)

throw (string("PDU nunber '") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

}
if (Tcl _GetlntFromObj (aplnterp, aapOojv[2], & OfSet) == TCL_ERROR)

throw (string("Offset value '") +
string(Tcl _GetStringFronObj (aapObjv[2], 0)) +
string("' is invalid"));

}
if (Tcl _GetlntFromDbj (aplnterp, aapOojv[3], & BuflLen) == TCL_ERROR)

throw (string("Buffer len value '") +
string(Tcl _GetStringFronObj (aapObjv[3], 0)) +
string("' is invalid"));

}

/1 check for valid hex string, throw for invalid
/1 Function checks for invalid chars
i f (ConvertHexTol nt (Tcl _Get StringFronDbj (aapObjv[4], 0),
(strlen(Tcl _GetStringFronObj (aapObjv[4], 0))/2),
| HexStringTest Buf) == 0)
{
throw(string("Supplied hex buffer has invalid hex characters"));

}

| HexString_Len = strlen(Tcl _GetStringFronmj (aapojv[4], 0));

DBG("hex string length = " << | HexString_Len);

Source code: 182

/'l clear out |pHexString_Buf[ETH MAX_LEN] to begin with
for (unsigned int |Count = 0; |Count < ETH MAX_LEN*2; ++| Count)

/1 strlen uses terminating char to determine |length
| pHexString_Buf[l Count] = "\0";
}

/1 get src string and conpare with requested | ength
if (IBufLen > | HexString_Len/2)

DBG "buffer length is greater than supplied data");

/1 fill extra spaces with Os and make up buffer
i f (mencpy(l pHexString_Buf, Tcl_Get StringFronDbj (aapObjv[4], 0),
| HexString_Len) !'= NULL)

for (int ICount = | HexString_Len; | Count < |BufLen*2; ++l Count)

| pHexString_Buf[l Count] = "0";
}
}
el se
throw (string("!mencpy error"));
}
}
el se
{
/] truncate supplied data
if (mencpy(l pHexString_Buf, Tcl _Get StringFronObj (aapObjv[4], 0),
| Buf Len*2) != NULL)
{
}
el se
throw (string("!mencpy error"));
}
}

/1 debug printout
for (int | Count = 0; |Count < |BuflLen*2; ++l Count)

{
}

cout << endl;

cout << | pHexString_Buf[l Count] << ".";

/1 call interface function with hex string

if (!(aplface->MdifyFraneBuffer(l OfSet, |BuflLen,
(unsigned char *)I| pHexString_Buf,
I ChNum | FrameNum)))

return (TCL_ERROR);
}

/1 display nodified value and wite to Tcl interp

return (TCL_OK);

/* R R R R R R R R S S S S R S R R R R R S R R

* Function : Tcl Cmp_QueryFraneBuffer

Source code: 183

Description : view contents of PDU

Par anet ers

Returns : hex string (hex string char |en = 2*BufLen)

R R L

NOTES: Tcl Cnd % | f Et hGen <et hgen> Quer yFraneBuf f er
<ChNun> <PduNune <of f set > <Buf Len>

(RS RS EEEEEEEEREESEEEE] */

static int

Tcl Cp_QueryFranmeBuffer(tIfEthGen * aplface,

Tcl _Interp * apl nterp,

int a(pj c,

Tcl _oj *CONST aapObj v[])

E R

{
/1 return buffer is twice in length to max |en
unsi gned char | Ret ur nBuf f er [ETH_MAX_LEN* 2] ;
Tcl _oj * | pTcl _Obj Res;
int | ChNum
i nt | FrameNum
int | O f Set ;
int | Buf Len;

if (abjc < 4)

throw (string (FILE_NAVE_ETHGEN CC) +
string (": IfEthGen ethgen QueryFraneBuffer ") +
string ("<chNum> <pduNun® <of f set> <buflen>"));

/1 get all integer val ues
/1 conversion and error handling for non-int vals

if (Tcl _GetlntFronObj (aplnterp, aapQojv[0], & ChNum) == TCL_ERROR)
{
throw (string("Channel Num"'") +
string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));

}

if (Tcl_GetlntFronObj (aplnterp, aapObjv[1l], & FranmeNun) == TCL_ERROR)
{
throw (string("PDU Num"'") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

}
if (Tcl _GetlntFromObj (aplnterp, aapOojv[2], & OfSet) == TCL_ERROR
throw (string("Ofset value '") +
string(Tcl _GetStringFronObj (aapObjv[2], 0)) +
string("' is invalid"));
if (Tcl_GetlntFronDbj (aplnterp, aapObjv[3], & BuflLen) == TCL_ERROR)
throw (string("Buffer Len '") +

string(Tcl _GetStringFronObj (aapObjv[3], 0)) +
string("' is invalid"));

/1 invoke QueryFranmeBuffer()

Source code: 184

if (!(aplface->QueryFraneBuffer (| O fSet,
| Buf Len,
| Ret urnBuf f er,
| ChNum
| FrameNum)))

throw (string("Qery error"));
}

/| package result into return string for Tcl
| pTcl _Obj Res = Tcl _NewStringOoj ((const char *)| ReturnBuffer, |BuflLen*2);

if (IpTcl _ObjRes !'= NULL)

Tcl _Set Resul t (apl nterp, Tcl _GetStringFronObj (I pTcl _oj Res, 0), TCL_VOLATILE);
}

return (TCL_OK);

EIE R R R R R R S S S R R R R R R R R

Function : SetRate_FranmePer Sec

Description : set channel rate in franmes/sec

Paraneters : rate

Returns : TCL_OK, throws otherw se

EE R R R R R R R S R R R

NOTES: Tcl Cnd % | f Et hGen <et hgen> Set Rat e_Fr anePer Sec
<rat e> <Channel Nunw

EE R R R R R R R R R R R */

static int

Tcl Cp_Set Rat e_FranmePer Sec(t|fEthGen * apl f ace,

Tcl _Interp * apl nterp,

int aj c,

Tcl _Onj *CONST aapObj v[])

EE R T I

int | Rat e;
int | Channel ;

if (albjc < 2)
{
throw (string (FI LE_NAME_ETHCEN CC) +
string(": IfEthGen ethgen SetRate_FramePerSec <rate fps> <channel >"));
}
/1 get int value and check errors for non-int val ues
if (Tcl _GetlntFrombj (aplnterp, aapOojv[0], & Rate) == TCL_ERROR)
throw (string("Rate value '") +

string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));

if (Tcl _GetlntFronbj (aplnterp, aapQojv[1l], & Channel) == TCL_ERROR)

throw (string("Channel '") +
string(Tcl _GetStringFronDbj (aapObjv[1l], 0)) +
string("' is invalid"));

/'l set rate value in frames per second
if (!(aplface->SetRate_FranmePer Sec(|l Rate, | Channel)))

Source code: 185

throw (string("Could not set rate '") +
Tcl _Get StringFronmj (aapojv[0], 0) +
string("'"));

return (TCL_OK);

}

/* EE R I R I I I R I I I R I I
* Function : SetRate_Mps

* Description: set channel rate in Mps

* Paraneters : rate

* Returns : TCL_OK, throws otherw se

* ERE R R I I I R I I I I R I R I I
* NOTES: Tcl Cnd % | f Et hGen <et hgen> Set Rat e_Fr anePer Sec

* <r at e> <Channel Nune

* LR SRR SRS EEEE RS RS SRR SRS SRR EEREEEEEEEEEEEEEEEEEEEEEEES */
static int

Tcl Cnp_Set Rate_Mips(t1fEthGen * apl face,
Tcl _Interp * aplnterp,
int a(pj c,
Tcl _oj *CONST aapObj v[])

i nt | Rat e;
int | Channel ;

/1 regul ar checks
if (albjc < 2)
{

throw (string (FILE_NAVE_ETHGEN CC) +
string(": IfEthGen ethgen Set Rate_Mps <rate Mps> <channel >"));
}

/1 get int value and check errors for non-int val ues
if (Tcl _GetlntFrombj (aplnterp, aapOojv[0], & Rate) == TCL_ERROR)
{
throw (string("Rate value '") +
string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));

if (Tcl _GetlntFronObj (aplnterp, aapQojv[1l], & Channel) == TCL_ERROR)

throw (string("Channel '") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

}

/'l check for rate limts
if (IRate > 100)

DBG(" 100 BASE-T generation suppports a maxi num of 100 Mops");
}

/1 invoke SetRate_Mps
if (!(aplface->SetRate_Mps(lRate, | Channel)))
{

throw (string("Could not set rate '") +
Tcl _Get StringFronmbj (aapojv[0], 0) +
string("' Mops"));

Source code: 186

return (TCL_OK);

/* R R R SR R R R R R S S R S R S R R R R R R R R R
* Function : SetLimt_Tine

* Description: set channel tine limt in seconds

* Paraneters

* Returns : TCL_OK, throws otherw se

* PR SRR SRS S SRR RS EEE S SRR SRS EEEEEREEEEEEEEEEEEEEEEEEEEEEES
* NOTES: Tcl Cnd % | f Et hGen <ethgen> SetLimt_Tine

*

<ti me> <Channel Nunw
EEE R */
static int
Tcl Crp_SetLimit_Time(tlfEthGen * apl face,
Tcl _Interp * aplnterp,
int aj c,
Tcl _Onj *CONST aapObjv[])

| ong | Ti me_secs;
int | Channel ;

if (abjc < 2)
{

throw (string (FI LE_NAME_ETHCEN CC) +
string(": IfEthGen ethgen SetLimt_Time <time sec> <channel >"));
}

/1 get int values and check for invalid characters
i f (Tcl _GetLongFronObj (aplnterp, aapOojv[0], & Tinme_secs) == TCL_ERROR)

throw (string("Tinme value '") +
string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));

}

if (Tcl _GetlntFronObj (aplnterp, aapQojv[1l], & Channel) == TCL_ERROR)
{
throw (string("Channel '") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

}

/1 call interface functions
if (!(aplface->SetLimt_Tine(lTine_secs, |Channel)))

throw (string("Could not set time limt '") +
Tcl _Get StringFronmj (aapoj v[0], 0) +
string("' "));

return (TCL_OK);

[R KKKk kR ko kok ok kR Rk k ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok ok x

* Function : SetLimt_Loops

* Description: set channel Loops linmt

* Paraneters

* Returns : TCL_OK, throws otherw se

* LR SRR SR SS SRS RS EESEESEEEE RS EEEEREEEEEEEEEEEEEEEEEEEEEEEEEES

* NOTES: Tcl Cnmd % | f Et hGen <ethgen> SetLimt_Tine

* <ti me> <Channel Nunw

* khkkkhhkhhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkk */
st

atic int

Source code: 187

Tcl Cp_SetLimt_Loops(tlIfEthGen * aplface,

L T

*

st

Tcl _Interp * aplnterp,
int apj c,
Tcl _oj *CONST aapObjv[])

| ong | Loops;
int | Channel ;

if (abjc < 2)
{

throw (string (FILE_NAVE_ETHGEN _CC) +
string(": IfEthGen ethgen SetLimt_Loops <loops> <channel >"));
}

/1 get int values and check for non-int val ues
if (Tcl_GetLongFronObj (apl nterp, aapOojv[0], & Loops) == TCL_ERROR)
{
throw (string("Loops value '") +
string(Tcl _GetStringFronmbj (aapojv[0], 0)) +

string("' is invalid"));
}
if (Tcl _GetlntFronmbj (aplnterp, aapOojv[1l], & Channel) == TCL_ERROR)
throw (string("Channel '") +
string(Tcl _GetStringFronObj (aapObjv[1l], 0)) +
string("' is invalid"));

/1 invoke interface function
if (!(aplface->SetLimt_Loops(lLoops, |Channel)))
{

throw (string("Could not set loop limt '") +
Tcl _Get StringFronmj (aapOojv[0], 0) +
string("'"));

return (TCL_OK);

khhkhkhhkhhkhhkhhhhhkhhkhhhkhhkhhkhhkhhhkhhkhhkhkhhkhhkhhhkhhkhkhhkhkhkhkhkkk

Function : QueryRate_FranePer Sec

Description : query channel rate in franes/sec

Paraneters : channel num

Returns : TCL_OK, throws otherw se

R R R R R S S R S R S S R S S R R R R R R R R R R

NOTES: Tcl Cnd % | f Et hGen <et hgen> Quer yRat e_Fr anmePer Sec
<Channel Num

LEE AR EE R EEEEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

atic int

Tcl Cmp_Quer yRat e_FranePer Sec(tlfEthGen * aplface,

Tcl _Interp * aplnterp,
int aj c,
Tcl _Qpbj *CONST aapQbj v[])

i nt | Channel ;
unsi gned i nt | ChResul t;

if (abbjc < 1)
{
throw (string (FILE_NAVE_ETHGEN _CC) +
string(": IfEthGen ethgen SetRate_ FramePer Sec <channel >"));
}

/1 get integer value and check for errors for non-ints

Source code: 188

if (Tcl _GetlntFronDbj (aplnterp, aapQojv[0], & Channel) == TCL_ERROR)
throw (string("Channel number '") +
string(Tcl _GetStringFronObj (aapObjv[0], 0)) +
string("' is invalid"));
}
| ChResult = apl face->QueryRat e_FranmePer Sec(| Channel);
if (IChResult == 0)

throwmstring("error"));
}

Tcl _Set Resul t (apl nterp,
Tcl _Get StringFronmbj (Tcl _Newl nt Gbj (I ChResult), 0),
TCL_VOLATI LE) ;

return (TCL_OK);

/* EIE R R R R R R S S S R R R R R R R R

* Function : QueryStats_FraneSent

* Description: query channel statistics; frames sent out

* Paranmeters : channel num

* Returns : TCL_OK, throws otherw se

R R R R R EEEEEEEEEEEEEEEEEEREEREEREESEEEEREREREREREEEEEEEEEEEEES

* NOTES: Tcl Cnd % | f Et hGen <et hgen> QuerySt ats_FrameSent

* <Channel Nun

EE R R R R R R R R R R R */
static int

Tcl Cmp_QueryStats_FraneSent (t1fEthGen * aplface,

Tcl _Interp * aplnterp,
int aj c,
Tcl _Ooj *CONST aapObj v[])

int | Channel ;

char * | Resul t;

I ong | ong | Ret Val ;
int | TopHal f;
int | Bot Hal f;
char s[80];

if (abjc < 1)
{

throw (string (FILE_NAVE _ETHGEN CC) +
string(": IfEthGen ethgen QueryStats_FrameSent <channel >"));
}

/1 get integer value and check for errors for non-ints
if (Tcl_GetlntFronDbj (aplnterp, aapObjv[O0], & Channel) == TCL_ERROR)
{
throw (string("Channel number '") +
string(Tcl _GetStringFronDbj (aapObjv[0], 0)) +
string("' is invalid"));

}
| Ret Val = apl face->QueryStats_FrameSent (I Channel) ;

/1 invalid channel nunber
if (IRetVal < 0)
{

Source code:

189

}

EE R S

*

st

throw (string("error"));

}

/l return O if result =0
if (IRetVal == 0)

Tcl _Set Resul t (apl nterp, "0", TCL_VOLATILE);
return (TCL_OK);

}
| TopHal f = | Ret Val / 1000000;
| Bot Hal f = | Ret Val %4000000;

/1 pad with 0's
sprintf(s, "9%96d", |BotHalf);

/! add to top half to nake the whol e nunber
| Result = strcat(Tcl _GetStringFronDbj (Tcl _NewLongQoj (I TopHal f), 0), s);

/1 trimout |eading zeroes before returning interp
if (Tcl _Eval (aplnterp,
(char *)(string("string trimeft")

string(" ")
string(l Result)
string(" ")

4+ + + +

string("0")).c_str())
I= TCL_OK)

throwmstring("could not trimleading zeroes from'") +
string (I Result) +
string ("'"));

}

return (TCL_OK);

khkhkkhhkhhkhhhhhkhhkhhkhhhhhkhhkhhkhkhhkhhkhhkhhhkhhkhhhhhkhhkhhkhkhhhkhkkk

Function : QueryStats_Tinmelnterva

Description: query valid channel statistics

Par anet ers

Returns : list of two elenents (sec usec)

EE R R R R Sk S S S R S S S S R S S R S R R R R R R R R

NOTES: Tcl Cnd % | f Et hGen <et hgen> QueryStats_Ti nmel nterval
<channel nune

LEE AR R R EEEEEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEE Y]

atic int

Tcl Cmp_QueryStats_Tinelnterval (tIfEthGen * aplface,

Tcl _Interp * aplnterp,
int a(hj c,
Tcl _Qpbj *CONST aapObj v[])

i nt | Channel ;
tinmeval I Ti mel nterval ;
Tcl _Ooj * | pResul tLi st Obj = Tcl _Newli st Cbj (0, NULL);

if (albjc < 1)
{
throw (string (FILE_NAVE_ETHGEN _CC) +
string(": IfEthGen ethgen QueryStats_Ti nel nterval <channel >"));

/1 get integer value and check for errors for non-ints
if (Tcl_GetlntFronObj (aplnterp, aapQojv[0], & Channel) == TCL_ERROR)

Source code:

190

throw (string("Channel number '") +
string(Tcl _GetStringFronObj (aapCbjv[0], 0)) +

string("' is invalid"));
}
| Timelnterval = aplface->QueryStats_Tinelnterval (I Channel);
if ((ITinelnterval.tv_sec == -1) & (I Tinelnterval.tv_usec == -1))

throw (string("error"));

}

/1 make up a list - sec and usec
i f (Tcl _ListObj AppendEl enent (apl nterp, |pResultListObj,
Tcl _NewLongQoj (I Ti mel nterval . tv_sec))
1= TCL_CK)

throw (string("sec could not be appended to list"));
}
if (Tcl _ListObj AppendEl enent (apl nterp, |pResultlListObj,
Tcl _NewLongQj (I Ti mel nterval . tv_usec))
1= TCL_CK)

throw (string("usec could not be appended to list"));

}

DBG(" Tcl _Get Ti mel nterval " << Tcl _Get StringFronbj (Tcl _NewLongQoj (I Ti mel nterval .tv_sec),
0)
<< Tcl _Get StringFronmj (Tcl _NewLongQbj (I Ti nelnterval .tv_usec), 0));
Tcl _Set Obj Resul t (apl nterp, |pResultListObj);

return (TCL_OK);

/*

*

* Internal functions - internal to this file

* */
/* IR E SRR SRS EEEE SRS EEEE SRS EEEE SRS EEEEREREEREEEEEEEREESERSEREESESE]
* Function : Convert HexTol nt

* Description:

* Parameters : char * alnb, int aLen, char * aQutb

* Returns : unsigned int

R RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEERESEESEESEEEEEEEEE]
* NOTES:

*

LEE AR EE R EEEEEEEEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

unsi gned i nt
Convert HexTol nt (char * alnb, int aLen, char * aQutb)

int inidx = 0;
int outidx = 0;

bool | HexChar = fal se;
/1 higher nibble

bool nib = true;

int num= 0;

while (inidx < aLen*2)

if (alnb[inidx] >="'0" & alnb[inidx] <="'9")

Source code: 191

num = alnb[inidx] - '0";
| HexChar = true;

}
else if ((alnb[inidx] >="A") && (alnb[inidx] <= "'F))
{
num = alnb[inidx] - "A + 10;
| HexChar = true;
}
else if ((alnb[inidx] >= "a') && (alnb[inidx] <= "'f"))
{
num = alnb[inidx] - '"a + 10;
| HexChar = true;
}
/1 return if char is not hex
if (!lHexChar)
{
DBG("invalid hex char '" << (char)alnb[inidx] << "'");
return (0);
}
++i ni dx;
/1 reset |HexChar to false for incomng chars
| HexChar = fal se;
if (nib)
{

aQut b[outi dx] = num << 4;
nib = fal se;

el se

aQut b[outidx] = aQutb[outidx] | num
nib = true;
++out i dx;

/1 cout << (int)aCQutb[outidx];

}

return (1);

khhkhkhhkhhkhhkhhhkhhkhhhhhkhhkhhkhhkhkhhhhkhhkhkhhkhhkhhhkhhhhkhhkhhhhkhkkk

Function : Convertl nt ToHex

Description: return outbuffer to represent hex data
Paraneters : char * alnb, int aLen, char * aCutb
Returns : unsigned int

EE R R R R S R S S S S S S S S R S R R R R R S R R

NOTES:

ER R R

L T

unsi gned i nt
Convert | nt ToHex(char * alnb, int alLen, char * aQutb)
{

int inidx = 0;

int outidx = 0;

unsi gned int | Num= 0;

char | Table[16] = {"0', '1
"9 ‘A, 'B.'C.'D, 'E, 'F};

while (inidx < aLen)
{

*/

Source code: 192

I DB " --------- > alnb[" << inidx << "] =" << (int)alnb[inidx]);

/1 correction for signed int
if (alnb[inidx] < 0)

I Num = al nb[inidx] + 256;

11 DBG(" INum=" << | Num;
/1 DBGE" INum>> 4 = " << (I Num>> 4));
aCut b[outidx] = I Tabl e[| Num >> 4];
}
el se

aCut b[outidx] = | Tabl e[al nb[inidx] >> 4];

}
11 DBG"thbl (" << (int)(alnb[inidx] >> 4) << ") " << "aQutb[" << outidx << "] =" <<
aQut b[outidx]);
++out i dx;
aQut b[outidx] = | Tabl e[al nb[inidx] & 0xf];
I DBG("thl (" << (int)(alnb[inidx] & Oxf) << ") " << "aQutb[" << outidx << "] =" <<
aQut b[outidx]);
++out i dx;
++i ni dx;
}
return (1);
}
/* EE R R R R R R R R R R R S R R R R
* Function : CetlntFronObj
* Description: return int from Tcl Qbj
* Parameters : Tcl Obj *
* Returns : positive int value (-ve value for error)
EEE R R R R R R R R R R R
* NOTES:
*

LEE AR R R EEEE R EEEEEEEEEEEEE SRR EEEEEEEEEEEEE Y]

nt CGetlntFronDbj (char * aVal)

~——

int |1ntCut;
IIntQut = isdigit((int)aval);
if (IlntCQut < 0)

{

return (IIntQut);
}

el se

DBE "found " << aVal << " to be "
<< |IntQut);

}

return (llntCQut);

Source code: 193

Entry Points

*/

Function :
Description :
Paranmeters
Ret ur ns

NOTES:

E R

extern "C'

i nt

Crptcl _ethgen_Init(Tcl _Interp * aplnterp)

{
/1 Popul
nCrrd Vap.
nCrd Map.
nCrd Map.
nCrrd Vap.
nCrrd Vap.
nCnd Map.
nCrd Map.

ate sub-command nap
AddCnd((const char
AddCnd((const char
AddCnd((const char
AddCnd((const char
AddCnd((const char
AddCnd((const char
AddCnd((const char

*)"QueryState”,
*)"Setlnterface",
*)"Querylnterface",
*)"Config",
*) " PreRunCheck",
*)"Start Engi ne",
*)" St opEngi ne",

nCrrdMap. AddCnd((const char *) " Set PDU_Len",
nCdMap. AddCnd((const char *) " QueryPDU_Len",
nCndMap. AddCnd((const char *) " RenpveChannel ",
nCrdMap. AddCnd((const char *) " Set Rate_Bi t sPer Sec",

/1
/1
char Tcl
char
char
char
char
char
char
char
char

nCrdMap. AddCnd((const
nCndMap. AddCnd((const
. AddCnd((const
. AddCnd((const
. AddCnd((const
. AddCnd((const
. AddCnd((const
. AddCnd((const
. AddCnd((const

*)" Modi f yFrameBuffer",
*)" QueryFranmeBuffer",
*) " Set Rat e_Fr anePer Sec",
*) " Set Rat e_Mops",
*)"SetLimt_Tinme",
*)"SetLimt_Loops",
*)" Quer yRat e_FranePer Sec",
*)"QueryStats_FrameSent ",
*)"QueryStats_Ti mel nterval

/1 New interpreter comuands

Tcl Cmp_RegCrdMap(apl nterp, "IfEthGen", nCndMap);

return (TCL_OK);

/* Function and cl ass header
#if 0O

prot otypes */

/
Function :
Description :
Par aneters
Ret ur ns

NOTES:

E I

R R R R R R R R S S S S R S R R R R R S R R

R R X E]

khkhkkhhkhhkhhkhhhkhhhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhkhkhhhhkhhhhhhkhkkk

B R R R R R R R R R R R R R R */

Tcl Cmp_QueryState);

Tcl Cp_Set I nterface);

Tcl Cp_Queryl nterface);
Tcl Cp_Confi g);

Tcl Cp_Pr eRunCheck) ;

Tcl Cp_St ar t Engi ne) ;
Tcl Cnp_St opEngi ne) ;

Tcl Cp_Set PDU_Len) ;

Tcl Cp_Quer yPDU_Len);
Tcl Cnp_RenpveChannel) ;

Tcl Cp_Set Rat e_Bi t sPer Sec) ;

Cnp_Modi f yFrameBuffer);

Tcl Cp_Quer yFraneBuffer);

Tcl Cp_Set Rat e_Fr anmePer Sec) ;

Tcl Cp_Set Rat e_Mops) ;

Tcl Cp_
Tcl Cp_Set Lim t _Loops);

SetLimt_Tine);

Tcl Cp_Quer yRat e_Fr amePer Sec) ;
Tcl Cp_QueryStats_FraneSent) ;
", Tcl Cnp_QueryStats_Tinelnterval);

IR EEEEEEEEEEEEEEREEREEEREEREEREEEEEEREEEEEEEEEEEEEEREEEEEEEEEESS

IR EEEEEEEEEEEEEEREEREEEREEREEREEREEREEREEERERERERESRERESEERESEESEESS

*/

Source code: 194

/* R R R S Sk S R S S R S S R S S R R S S S S

Class :
Description :

khkhkkhkhkhhkhhkhhhkhhhhkhhhkhhkhhkhhhhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhkkkk

R R R SR R R R R R S S R S R S R R R R R R R R R

ass

{

public:
1111
1
Iy
1

*
*
*
* NOTES:
*

C

Types

Ctor/Dtor

Static nethods
Static nenbers

I nst ance net hods
I nstance nenbers

pr ot ect ed:

i
1

Types

Ctor/Dtor

Static nethods
Static nenbers

I nst ance net hods
I nstance nenbers

private:

#endi f

Types

Ctor/Dtor

Static nethods
Static nenbers

I nst ance net hods
I nstance nenbers

Conponent Stdlo

[H ko ko ok ok ok ok kK ok ok ok ok kK ok ok ok ok kK ok ok ok ok kK ok ok ok ok kK ok ok ok kK ok ok ok kR ok ok Rk kK ok ok kK

*

E I T I

Modul e Nane

Proj ect Nane :

Source File Nane

Appl i cation Nane

* END OF NOTES

CmpTcl _Stdlo. cc

CnpTcl _Stdlo

TPO1

TCSO01

*/

R R R Sk R R S R S R S S R S T S T S R R R T S R R R R T R R R R S R S

(c) 2001 Seven Layer Conmuni cations Ltd.

khkhkkhkhkhhkhhkhkhhhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhkhkhhkhhhkhkhkhkhhhkkkkk

NOTES:

*/

/* Unconment if

"what'

string is needed */

/* static char gldent[] = "@#)filename Version 0.0 "; */
/*

* Standard Library Includes (normal system

*

/*

*/

Source code: 195

Ext ernal | ncl udes (external toolkits)

* */

#i nclude <tcl.h>

/*
Proj ect -w de | ncl udes (project only)
*/
/*
Modul e | ncl udes (nmodul e only)
* */
#include "../../../inc/ Conmponent.hh"
#include "../../../inc/lface/lfStdlo.hh"
#include "../../../inc/lIfacel/lfLoader.hh"
#include "../../../inc/ Tcl Cnp_LookupCnd. hh"
/*
* Modul e #DEFI NEs
* */
#define FILE_NAVE_STDI O CC" CnpTcl _Stdl o. cc”
/*
* Enumerations & Other Typedefs (defn)
* */
/*
* Classes (forward decl) & Structures (defn)
* */
/*
* Modul e Functions (decl.) (static local only)
* */
/*
* G obal Variables (defn.) (used externally)
* */
/*
* Local Mddule Variables (defn.) (static |ocal only)
* */
static tTcl CrpCndMap<t | f St dl o> nCndMap;
/*
*
* Functions & class definitions visible externally
* */
/*
* Functions & class definitions internal to nodul e
* */

[KKk ok kR Kk ok ok ok kR Rk ok ok kR R Rk k ok kR R Rk ok ok ok R R Rk ok ok ok kR Rk ok ok ok kR Rk ok ok ok ok ok x

Source code: 196

Function :
Description :
Par aneters
Ret ur ns

EE R R R R R R R R R R R R R R R R R

NOTES:

(RS RS EEEEEEEEREESEEEE] */
static int

Tcl Cp_I nvoke(tIfStdlo * aplface,

Tcl _Interp * aplnterp,

int a(pj c,

Tcl _Qoj *CONST aapoj v[])

E R

{
if (abbjc < 1)
{
throw (string (FILE_NAME_STDI O CC) +
string(": invalid nunber of paraneters"));
}
apl f ace- >l nvoke();
return (TCL_OK);
}
/*
*
Entry Points
*/
/* R R R R R R R R R S S R S R R R R
* Function :
* Description:
* Paraneters
* Returns
* PR SRR SR SE SRR RS EESEEEER SRS SRR EEEEEEEEEEEEEEEEEEEEEEEEES
* NOTES:
* ERE R R R I I I R I I I I R R I I I I R I */
extern "C'
int
Cptcl _stdio_lnit(Tcl _Interp * aplnterp)
{
/1 Popul ate sub-conmrand map
nCrdMap. AddCnd((const char *) "I nvoke", Tcl Cnp_I nvoke);
/1 New interpreter commands
Tcl Cp_RegCndMap(apl nterp, "I1fStdlo", nCndMap);
return (TCL_OK);
}
| * =========== *
* EO: *
* —========== */

/* Function and cl ass header prototypes */

#if 0

/* IR EEEEEEEEEEEEEEREEREEEREEREEREEREEREEREEERERERERESRERESEERESEESEESS
* Function :

* Description:

*

Par aneters

Source code:

197

EE R

/* R R R SR R R R R R S S R S R S R R R R R R R R R

Ret ur ns

EE R R R R R R R R S R R R R R

NOTES:

khkhkkhkhkhhkhhkhhhkhhhhkhhhkhhkhhkhhhhhkhkhhkhhhkhkhhkhhhkhkhhkhhkhkhkkkk

G ass :
Description :

*
*
EE R R R R R R R R R R R R R R R R
* NOTES:
*

C

R R X E]

ass

{

public:
111
11
Iy
1
1111
111

Types

Ctor/Dtor

Static nethods
Static nenbers

I nst ance net hods
I nstance nenbers

pr ot ect ed:

1
Iy
Iy

Types

Ctor/Dtor

Static nethods
Static nmenbers

I nst ance net hods
I nstance nenbers

private:

11

Types

Ctor/Dtor

Static nethods
Static nmenbers

I nst ance net hods
I nstance nenbers

5 Tcl Sources

*/

*/

Test script for inputting bsts pattern sequence lists
to Ethernet generator.

#

Proc tested

-

-

A LT basic configure --------------------

load ../1ibCnpTcl _Loader. so
load ../1ibCnpTcl _Et hGen. so
| f Loader | oader ReadTypeRegFile Registry
| f Loader | oader |nstCreate EthGen ethgen

| f Et hGen ethgen QueryState

------------- proc Bsts_GCet FraneData --------

proc Bsts_GCet FraneData {aFil eNane aFraneNanme } {

set Channel [open $aFil eNane r]

Source code: 198

set | Count 1
set | NoOf Li nesl nBstsFile 1584
whil e {$l Count <= $I NoOf Li nesl nBstsFile} {
set | Frane [gets $Channel]
if {$l Frame == $aFraneNanme} {
set Layer [gets $Channel]
set EthHdr [gets $Channel]
set BuflLen [gets $Channel]
puts $I Franme
br eak

}

incr | Count

}

set HexData 1
while { $HexData >= 0} {

set HexData [gets $Channel]
| append | Li st $HexDat a

i ncr | Count

cl ose $Channel

set TenpList [join $IList ""]

regsub -all " " $TenpList "" ContHexString
set |List [list $BufLen $ContHexString]
return $IList

oo proc Bsts_GetPattern --------
proc Bsts_CetPattern {aFil eName aPatternname } {
set Channel [open $aFil eNanme r]
set | Count 1
set | NoOf Li nesl nBstsFile 1584

whil e {$l Count <= $l NoOf Li nesl nBstsFile} {
set | Pattern_Nane [gets $Channel]
if {$l Pattern_Name == $aPatternnanme} {
set | Pattern_Len [gets $Channel]
for {set I|Count 0} {$l Count < $lPattern_Len} {incr |Count} {
set | El enent [gets $Channel]
| append | List [split $IElement " "]
}

br eak
}
i ncr | Count
}

cl ose $Channel

set | NewList [join $lList " "]

return $l NewlLi st
A R do the above ----------------
source platformtcl

Cr eat eEt hGen2. 0

A R EEE R Config EthGen ----------------
#1 f EthGen ethgen Config ../bsts/bsts | P_004 |P_001

I fEt hGen ethgen Config ../bsts/bsts IP_001 IP_002 | P_004 | P_005 | P_006 |P_008 |P_009 |P_010

| fEthGen ethgen Config ../bsts/bsts SEQ ETHER

Source code: 199

| f Et hGen et hgen

| f Et hGen et hgen
| f Et hGen et hgen
| f EthGen et hgen
| f Et hGen et hgen
| f Et hGen et hgen
| f Et hGen et hgen
| f EthGen et hgen
| f Et hGen et hgen

| f Et hGen et hgen

| f EthGen et hgen

| f EthGen et hgen
ifconfig ethl

| f Et hGen et hgen
ifconfig ethl

| f Et hGen et hgen

| f Et hGen et hgen
I f Et hGen et hgen

Config ../bsts/bsts 802.2_I| CVP_Max

set rate for channel 0 -------
Set Rat e_Fr anePer Sec 10
Set Rat e_FranePer Sec 10
Set Rat e_FranePer Sec 10
Set Rat e_FranePer Sec 10
Set Rat e_FranePer Sec 10
Set Rat e_FranePer Sec 10
Set Rat e_FranePer Sec 10
Set Rat e_FranePer Sec 10

~N~No b wWNEFE O

query rate for channel 0 -------
Quer yRat e_Fr amePer Sec 0

set interface to eth2 -------
Setlnterface eth2

Querylnterface

PreRun Check ----------------
Pr eRunCheck

Query State ----------------
QueryState

SetLimit Time ----------uomn--
SetLimt _Time 2 0

SetLimt_Loops ----------------
Set Lim t_Loops 1000 O

Query PDU ---------mommn--
QueryFranmeBuffer 0 1 0 4

Change PDU ----------------
Modi fyFrameBuffer 0 1 0 4 abcd6789

Query PDU ----------------
QueryFranmeBuffer 0 1 0 4

Start Engine ----------------
St art Engi ne

Query Stats ----------------
QueryStats_FraneSent 0

Stop Engine ----------------
St opEngi ne

QueryStats_Tinelnterval 0
QuerySt ats_FranmeSent 0

Source code: 200

HHEHHHHHH IR

HHEHFHHHFHEHRHHR

B R T o R T T s s R T s s T 3 T S -

date: 08 Feb 02
comment s:

Weekend results
CrpEt hGen. cc Version 1.42
CpTcl _Et hGen. cc Version 1.14

FrameRat e 100 fps

Resul t:

% | f Et hGen et hgen Set Rate_FranmePer Sec 100 0

Set Rate_FranmePer Sec: tine interval to be set to 10000 usecs
% | f Et hGen et hgen QueryRat e_FranmePer Sec 0

QueryRat e_FranmePer Sec: got frane rate as 100

% | f Et hGen et hgen PreRunCheck

% | f Et hGen et hgen StartEngine

Start Engi ne: Thread running fps

% ThrMain: | StartTi me_sec.usec[0] = 1013183019. 848476

%

%

% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FraneSent: 1013183026. 768668 [0] = 692

% | f Et hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013183028. 748903 [0] = 890

% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013183034.589095 [0] = 1474
% | f Et hGen et hgen QueryStats_FranmeSent 0
QueryStats_FrameSent: 1013183036.519372 [0] = 1667
% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013184502. 933492 [0] = 148109
%

%

%

%

%

% | f Et hGen et hgen QueryStats_FranmeSent 0
QueryStats_FrameSent: 1013184506. 575326 [0] = 148473
%

%

%

%

% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013184706. 999929 [0] = 168416
% | fEt hGen et hgen QueryStats_FranmeSent 0
QueryStats_FrameSent: 1013184717.546011 [0] = 169470
% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013418542.881715 [0] = 18914004
% | f Et hGen et hgen QueryStats_FrameSent 0
QueryStats_FraneSent: 1013418765.711333 [0] = 18936187
%

%

%

%

%

% | f Et hGen et hgen QueryStats_FrameSent 0

QueryStats_FranmeSent: 1013419562.48309 [0] = 19013520
% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013419650. 52687 [0] = 19022121

% | fEt hGen et hgen QueryStats_FrameSent 0
QueryStats_FrameSent: 1013419653. 686454 [0] = 19022484

% | f Et hGen et hgen StopEngi ne

Source code: 201

Thr Mai
St opEn

n: out of thread | oop
gi ne: Franes sent out on Channel [0] =

19084446

source | oad.tcl

| fEthGen ethgen Config ../bsts/bsts SEQ ETHER

| f EthGen et hgen Set Rate_FranePer Sec 10 0

| f Et hGen et hgen QueryRate_FranmePer Sec 0

| f Et hGen et hgen PreRunCheck

I fEt hGen ethgen QueryState

| f EthGen ethgen StartEngine

| f EthGen et hgen QueryStats_FrameSent 0

| f EthGen ethgen StopEngine

+++++++H+HH AR R R AR
Name: ::CreateEthCGen2.0

#

Overview create an instance of ethgen

#

| nput paraneters:

Argl: Library path to ethgen and | oader

#

Return Data: None

#

Side effects: |oads $aLi bPath/libCrpTcl _Loader.so, $aLibPath/libCrpTcl _EthGen. so
and reads ./Registry

#

Failure:

#

#

+++++++H+HH AR AR AR
proc CreateEthGen2.0 {aLibPath} {

if {[FindFile $aLi bPath/libCnpTcl _Loader. so]

| oad
} el

return {"could not find $aLi bPath/|ibCmpTcl _Loader.so library"}

}

if {[FindFile $aLibPath/libCnpTcl _Et hGen. so]

$aLi bPat h/1i bCnpTcl _Loader. so
se {

| oad $aLi bPat h/ i bCpTcl _Et hGen. so

} el

return {"could not find $aLi bPath/libCnpTcl _EthGen.so library"}

}

if {
| fLoa
| fLoa
} el
retur

}
| f Et

retu

-

Nane:

HHHHH

se {

[FindFile ./Registry] == 1} {

der | oader ReadTypeRegFile Registry
der | oader InstCreate EthGen ethgen
se {

n {"could not find ./Registry"}

hGen et hgen QueryState

rn [IfEthGen ethgen Querylnterface]

.. Del eteEt hGen2.0

== 1}{

== 1}{

Overview. deletes the created instance of ethgen

S

Source code: 202

| nput paraneters:
Argl: none

Return Data: O for success and 1 for failure

#

#

#

#

#

Side effects:
#

Failure:
#

#

#

B T T L o o o T S T o o o S S S AN S SN A SR S
proc Del eteEthGen2.0 {} {

| f Loader | oader |nstDelete EthGen ethgen

-

Name: ::ethl

Overview. handle to ethgen for active socket ethl
I nput paraneters:

Argl: none

Optional Arg3:

Return Data: None

Side effects: makes up full conmand from args supplied

Fai l ure:

proc ethl {args } {

HHEHFHHFHFHHEHHHFHERH IR

if {[ITEthGen ethgen Querylnterface] != "ethl"} {
return "ethl not open"

}

set command [concat {I|fEthGen ethgen} $args]

eval $command

-

Nane: ::eth2

Overview handle to ethgen for active socket eth2
I nput paraneters:

Argl: none

Optional Arg3:

Return Data: None

Side effects: makes up full conmmand from args supplied

Fai l ure:

proc eth2 {args }

HHEHHFHFHFHHEHFFEHEH RS

{
if {[IfTEthGen ethgen Querylnterface] != "eth2"} {
return "eth2 not open"

set command [concat {I|fEthGen ethgen} $args]

Source code: 203

eval $command

-

Name: ::eth3

Overview. handle to ethgen for active socket eth3

I nput paraneters:

Argl: none

Optional Arg3:

Return Data: None

Side effects: makes up full conmand from args supplied

Fai | ure:

B e o

roc eth3 {args } {

if {[IfTEthGen ethgen Querylnterface] != "eth3"} {
return "eth3 not open"

}

set command [concat {I|fEthGen ethgen} $args]

eval $conmand

-

B e a oY
Nane: ::Bsts_Get FraneDat a

Overview. reads PDU data frombsts file

#

#

#

#

#

Does not support sequences - use Bsts_ CetPattern to get contents
of bsts sequences

| nput paraneters:

Argl: Bsts file nane

Arg2: Pdu Name

#

Return Data: returns a list of two elements [pdu | ength and data string]

#

Side effects:

#
#
#
#
#
p

Fai l ure:

B T
roc Bsts_GetFraneData {aFil eNane aFraneNanme } {

set Channel [open $aFil eNanme r]

set | Count 1

set | Success 0

set | NoOf Li nesl nBstsFile 1584
whil e {$l Count <= $| NoOf Li nesl nBstsFile} {
set | Frane [gets $Channel]
if {$l Frame == $aFraneNanme} {
set Layer [gets $Channel]
set EthHdr [gets $Channel]
set BuflLen [gets $Channel]
#puts $l Frane
set | Success 1
br eak

Source code: 204

incr | Count

}

set HexData 1
while { $HexData >= 0} {

set HexData [gets $Channel]
append | Li st $HexDat a

[

i ncr | Count

cl ose $Channel

set TenpList [join $lList ""]

regsub -all " " $TenpList "" ContHexString
set IList [list $BufLen $ContHexString]

if {$l Success !'= 1} {
puts "could not find pattern - $aFranmeNanme"

}

#puts $I Li st
return $IList

-

T S T S T S T O S SO S S T S O S O T T S O S O S S T S O S O S S T S T S O S T S O S S S SO S O S O S T B O S O S S SO S O S O S U O B
++++++++++++++++++++H+H

Nane: ::Bsts_GetPattern

Overview. get pattern fromformatted file

I nput paraneters:

Argl: Bsts file nane

Arg2: Sequence/ Pdu Nane

Return Data: None

Side effects:

Successful operation: returns list of frame repetation and frame name

Handl es both sequences and PDUs for |fEthGen ethgen Config ../bsts/bsts
Fai | ure:

proc Bsts_Cet Pattern {aFil eName aPatternname }
set Channel [open $aFil eNanme r]

set | Count 1

set | Success 0

set | NoOf Li nesl nBstsFile 1584

set | FraneFl ag true

(

whil e {$l Count <= $I NoOf Li nesl nBstsFile} {
set | Name [gets $Channel]

if {$l Nane == "# Sequence list"} {
set | FraneFl ag fal se

}
if {$l Nane == $aPatternnane} {

if {$l FrameFlag == "fal se"} {
set | Pattern_Len [gets $Channel]
for {set |Count 0} {$l Count < $lPattern_Len} {incr |Count} {
set | El enent [gets $Channel]
| append I List [split $lEl enent " "]

} else {

Source code: 205

| Name is now a frane
set | MAC [gets $Channel]
set | Hdr [gets $Channel]
set | FraneLen [gets $Channel]
set IList [list 1 $I Nane]
}

set | Success 1
br eak
}
incr | Count
}
cl ose $Channel
set | NewList [join $lIList " "]

if {$l Success !'= 1} {
puts "could not find pattern - $aPatternnane"
return "nul "

}
return $I Newli st

}

i e o L 2 o S
Name: ::FindFile

#

Overview. checks existence of file in file structure

#

I nput paraneters:

Argl: Bsts file nane

#

Return Data: 1 if file found, O otherw se

#

Side effects

#

#

i L A o S O
proc FindFile {aFil eNanme} {

return [file isfile $aFil eNane]

Source code: 206

-

HHHFHBFTHFHFHEHRHEHH R

proc Del et eEt hGen2.

' TS O T S T S T S O S U S S O S O S SO T S O S WO S S A
+++++++++++++++++++++H

Name: ::CreateEthGen2.0
Overview. create an instance of ethgen

I nput paranmeters:
Argl: Library path to ethgen and | oader

Return Data: None

Side effects: |oads $aLi bPath/libCmpTcl _Loader.so, $aLi bPath/libCpTcl _Et hGen. so

and reads ./Registry

Fai l ure:

o

roc CreateEthGen2.0 {aLibPath} {

if {[FindFile $aLibPath/libCnpTcl_Loader.so] == 1} {
| oad $aLi bPat h/1i bCnpTcl _Loader. so
} else {
return {"could not find $aLi bPath/|ibCmpTcl _Loader.so library"}

}

if {[FindFile $aLi bPath/IibCipTcl EthGen.so] == 1} {
| oad $aLi bPat h/ i bCpTcl _Et hGen. so
} else {
return {"could not find $aLi bPath/IibCnpTcl _EthGen.so library"}

}

if {[FindFile ./Registry] == 1} {

| f Loader | oader ReadTypeRegFile Registry
| f Loader | oader |nstCreate EthGen ethgen
} else {

return {"could not find ./Registry"}

}

| f Et hGen ethgen QueryState

return [IfEthGen ethgen Querylnterface]

Name: ::Del eteEt hGen2.0
Overview deletes the created instance of ethgen

I nput paraneters:
Argl: none

Return Data: O for success and 1 for failure
Si de effects:

Fai l ure:

0{} {

| f Loader | oader |nstDelete EthGen ethgen

e o

Source code: 207

Narme: ::ethl

#

Overview handle to ethgen for active socket ethl

#

| nput paraneters:

Argl: none

Optional Arg3:

#

Return Data: None

#

Side effects: makes up full command from args supplied
#

Failure:

#
#
#

B o T o L I i o T T o S I o o o S B
proc ethl {args } {

if {[IfTEthGen ethgen Querylnterface] != "ethl"} {
return "ethl not open"

set command [concat {IfEthGen ethgen} $args]
eval $command

Name: ::eth2
Overview. handle to ethgen for active socket eth2

I nput paraneters:

Argl: none

Optional Arg3:

Return Data: None
Side effects: makes up full conmand from args supplied

Fail ure:
B o o o o o o o o o o

roc eth2 {args } {

if {[ITEthGen ethgen Querylnterface] != "eth2"} {
return "eth2 not open"

}

set command [concat {I|fEthGen ethgen} $args]

eval $command

—

B T B B e
Nanme: ::eth3

#

#

#

Overview handle to ethgen for active socket eth3
#

I nput paraneters:
Argl: none

Optional Arg3:
#

Return Data: None
#
#
#
#

Side effects: makes up full conmmand from args supplied

Fai l ure:

Source code: 208

#
#
s o L S 3

proc eth3 {args } {

if {[IfTEthGen ethgen Querylnterface] != "eth3"} {
return "eth3 not open"

set command [concat {IfEthGen ethgen} $args]
eval $command

-

T O T T S T T T T SO S S T S O S O T S O S O S S S O S O S SO SO S O S O S S O A
+++++++++++++++++++ A

Nane: ::Bsts_Get FraneDat a

Overview. reads PDU data frombsts file

#

#

#

#

#

Does not support sequences - use Bsts_CetPattern to get contents
of bsts sequences

| nput paraneters:

Argl: Bsts file nane

Arg2: Pdu Name

#

Return Data: returns a list of two elenents [pdu | ength and data string]

#

Side effects:

#
#
#
#
#

Fail ure:

B e a oY
proc Bsts_GCet FraneData {aFil eNane aFraneNane } {
set Channel [open $aFil eNane r]
set | Count 1
set | Success 0

set | NoOfLi nesl nBstsFile 1584
whil e {$l Count <= $I NoOf Li nesl nBstsFile} {
set | Frane [gets $Channel]
if {$l Frame == $aFranmeNane} {
set Layer [gets $Channel]
set EthHdr [gets $Channel]
set BuflLen [gets $Channel]
#puts $l Frame
set | Success 1
br eak

}

incr | Count

}

set HexData 1
while { $HexData >= 0} {

set HexData [gets $Channel]
| append | Li st $HexDat a

i ncr | Count

cl ose $Channel

set TenpList [join $IList ""]

regsub -all " " $TenpList "" ContHexString
set IList [list $BuflLen $ContHexString]

if {$l Success != 1} {
puts "could not find pattern - $aFraneNane"

Source code: 209

}

#puts $I Li st
return $IList

[

+++++++H+
Nane: ::Bsts_GetPattern

Overview. get pattern fromformatted file

| nput paraneters:
Argl: Bsts file nane
Arg2: Sequence/ Pdu Nane

Return Data: None
Si de effects:

Successful operation: returns list of frane repetation and frane nane
Handl es both sequences and PDUs for |fEthGen ethgen Config ../bsts/bsts
Fail ure:

proc Bsts_GCet Pattern {aFil eName aPatternnanme }
set Channel [open $aFil eName r]

set | Count 1

set | Success 0

set | NoOfLi neslnBstsFile 1584

set | FraneFl ag true

T O T S T S T S O S O S S T S O S SO T S T S O S O S S O S O B SO N
++++++++++++++++++++

{

whil e {$l Count <= $I NoOf Li nesl nBstsFile} {
set | Nane [gets $Channel]

if {$I Nane == "# Sequence list"} {
set | FraneFl ag fal se

}
if {$l Nare == $aPatternnanme} {

if {$l FraneFl ag == "fal se"} {
set | Pattern_Len [gets $Channel]
for {set | Count 0} {$l Count < $lPattern_Len} {incr |Count} {
set | Elenent [gets $Channel]
| append | List [split $IElement " "]

} else {
| Name is now a frane
set | MAC [gets $Channel]
set | Hdr [gets $Channel]
set | FraneLen [gets $Channel]
set IList [list 1 $lNane]
}

set | Success 1
br eak

}
incr | Count

}

cl ose $Channel

set | NewList [join $IList " "]

if {$l Success != 1} {
puts "could not find pattern - $aPatternnane"

Source code: 210

return "nul "

}
return $I Newli st

}

S e T T O B B e o T T L o e o o S B R O I o o
Nanme: ::FindFile

#

Overview. checks existence of file in file structure

#

| nput paraneters:

Argl: Bsts file nane

#

Return Data: 1 if file found, O otherw se

#

Side effects

#

#

s e e T T O B B s o o S T L R I o o o o = X S S A B S A A S S S

proc FindFile {aFil eNanme} {

return [file isfile $aFil eName]

Source code: 211

