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Abstract— Industrial Control Systems have become 

a priority domain for cybersecurity practitioners 

due to the number of cyber-attacks against those 

systems has increased over the past few years. This 

paper proposes a real-time anomaly intrusion 

detector for a model of a clean water supply system. 

A testbed of such system is implemented using the 

Festo MPA Control Process Rig. A set of attacks to 

the testbed is conducted during the control process 

operation. During the attacks, the energy of the 

components is monitored and recorded to build a 

novel dataset for training and testing a total of five 

traditional supervised machine learning 

algorithms: K-Nearest Neighbour, Support Vector 

Machine, Decision Tree, Naïve Bayes and 

Multilayer Perceptron. The trained machine 

learning algorithms were built and deployed online, 

during the control system operation, for further 

testing. The performance obtained from offline and 

online training and testing steps are compared. The 

captures results show that KNN and SVM 

outperformed the rest of the algorithms by 

achieving high accuracy scores and low false-

positive, false-negative alerts.  
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I. INTRODUCTION 

An industrial control system (ICS) is a wide class 

of automation system used to provide control and 

monitoring functionality in large industrial facilities 

and critical infrastructures such as chemical, 

transportation, nuclear, pharmaceutical, oil refineries, 

power generation plants and water/sewage treatment 

plants[1]. In early years, the components involved in 

an ICS, such as the Programming Logic Controller 

(PLC), did not have any computing or networking 

capability, however, the development of technology 

over the years and the introduction of Industry 4.0[2] 

has led to developing powerful ICS components such 

as remote terminal units, PLC's and sensors that have 

networking and wireless capabilities.  

 

These advanced ICS components allow to monitor 

and operate a control process in almost any location 

across the globe, although, its online availability has 

also attracted the attention of different cyber threat 

actors that have various motivations such as 

hacktivists, state-sponsored actors, cybercriminals 

and cyber terrorists[3]. For instance, Stuxnet[4] is the 

first documented cyberweapon, discovered in 2010, 

that targeted the Iranian’s nuclear program. It was 

designed to sabotage the centrifuges used to enrich 

the uranium. This attack raised awareness of 

cybersecurity issues for critical infrastructures 

around the world. Further, documented reports show 

an increment of 39% of attacks against ICS in 2018 

when compared to 2017 [5].  

This paper extends our previous work[6], which 

shows the feasibility of detecting anomalies on 

control systems using machine learning, and 

proposes a real-time energy-based anomaly intrusion 



detection system (EBIDS) for a model of a clean 

water supply system, utilising machine learning. 

Current related work focuses on building and testing 

machine learning models with publicly available 

datasets [9][8] or from virtual testbeds [7], however, 

these models lack online validation. For instance, a 

machine learning model might obtain consistent 

metrics during the evaluation process, but it might not 

have the same behaviour when deployed online. 

Therefore, in this paper, we develop and evaluate the 

performance of our anomaly detection system in 

offline and online mode. Further, unlike other 

approaches that rely on the information collected 

from the control network packets, our EBIDS 

proposes a stronger ICS architecture by adding an 

extra layer of protection at the lowest control level.  

 

This paper is organized as follows. Section II 

describes the related work in the field. Section III 

gives a brief overview of the design and 

implementation. Section IV refers to the EBIDS 

evaluation, while the conclusions are presented at 

section V followed by Acknowledgments. 

II. RELATED WORK 

 

In this section, existing work related to intrusion 

detection schemes for ICS’s is discussed.  

 
In [7] the authors propose a sequence-aware 

intrusion detection in Industrial Control Systems (S-
IDS) which is capable of identify patterns of ICS 
network events, extract their semantic meaning and 
models known behaviours over time. They record 
network messages and log entries to define ICS 
device operations by employing discrete-time 
Markov chains. The S-IDS proposed by the authors 
is a layered structure that collects information from 
Modbus network traffic and log files. To evaluate 
their approach, the authors train the S-IDS with data 
obtained from water treatment and purification 
system that used Modbus protocol for network 
communication. To simulate the attacks the authors, 
inject malicious traces on the network traffic prior to 
sending the data to the S-IDS. Addressing their 
results, the rate of false/positive alarms generated by 
the S-IDS is reduced when they include information 
of the ICS infrastructure and physical process. The 
attacks injected on the network traffic is also 

detected. It can be argued whether the S-IDS can 
validate tampered log files or crafted network packets 
that contain malicious data. 

In [8] the authors proposed a support vector 

machine (SVM) approach for cyber-attack detection 

on Industrial Control Systems Monitoring. Their 

proposed approach includes building a discriminant 

model, using SVM, between benign and malicious 

traffic by analysing intervals and length of control 

network packets. Their testbed involves two tanks of 

water equipped with real control devices and 

controlled automatically. They collected ten datasets 

under normal and attack conditions. Their attack 

scenarios involved a formal pen testing using the 

Metasploit Framework Rapid7 attack tool. 

Addressing their captured results, their SVM model 

achieved 95% of precision and 0.50 error rate on 

average for the datasets recorded. It is unclear 

whether the attacks executed aimed to disrupt the 

control network or the ICS operation. Further, is not 

discussed the importance of the features chosen 

among others available on the control network 

packets. 

In [9] the authors proposed a novel one-class 

classification approach for Cyberattack detection in 

a water distribution system. The novelty of their 

approach relies on the use of the truncated 

Mahalanobis distance in the decision function of the 

classifier, which, improves the classification speed 

when compared to similar one-class classifiers. In 

order to test their approach, they recorded a dataset 

that corresponds to the final stage of a real water 

drinking distribution plant. Further, the dataset 

includes four simulated attacks to components such 

as pump, flowmeters and sensors that compose the 

ICS. Their captures results outperformed other 

approaches, for the four types of attacks included in 

the dataset, by achieving 100%, 88.8%, 91.3% and 

82.3% of detection rate. However, is unclear how the 

authors obtained the detection rate or how it is 

evaluated. Moreover, the authors do not indicate 

whether the dataset includes information from the 

control process of network features.  

In [10] the authors propose a Neural Network 

approach for anomaly detection in a water treatment 



system. To conduct the research, they used a dataset 

obtained from the SWaT testbed, which is an 

operational scaled-down water treatment plant. The 

authors propose several techniques to improve the 

anomaly detection which include exponentially 

weighted smoothing, mean p-powered error 

measure, individual error weight for each variable 

and disjoint prediction window. Addressing their 

captured results, their machine learning models 

achieved 96.7%, 95.2% and 93.6% for MLP, CNN 

and RNN respectively.  Although, it is argued 

whether this approach is applicable in an online 

environment since real-world applications demand 

high processing power.  

In [11] the authors propose a multilayer data-

driven approach for cyber-attack detection on 

Industrial Control Systems. Their proposed detection 

system is structured with a defence in depth concept 

that employs supervised and unsupervised machine 

learning models for intrusion detection. Their 

experimental setup includes a SCADA system and a 

testbed that simulates a two-loop nuclear system. 

The dataset contains malicious and benign network 

traffic and host system data collected by the 

Windows performance monitor. The malicious 

traffic includes packet sniffing using MITM, DoS, 

data exfiltration, false data injection and tampering, 

and simultaneous cyber-attacks which leads to a 

small loss of coolant accident. Addressing their 

captured results, they achieved a true positive rate of 

98.84% for KNN followed by 98,27% for bagging, 

97.69% for random forest and 94.80% for decision 

tree. Although their approach shows promising 

results, they still trust in the information collected 

from the network and their set of attacks is network-

based. 

In [12] the authors propose a one-class support 

vector machine (OCSVM) for intrusion detection in 

a SCADA system. They used datasets that contain 

malicious and benign traffic from a SCADA network 

that mainly involves MODBUS/TCP traffic for 

offline training. Their attack scenarios include man 

in the middle (MITM) by address resolution protocol 

(ARP), SYNC flooding and honeypot interaction. 

Addressing their captured results, the OCSVM 

intrusion detection was able to produce 98.42% and 

99.12% accuracy for two online detection testing. It 

can be argued whether the evaluation of a machine 

learning model can be determined with by only one 

metric: accuracy. Further, their online detection 

process is unclear, and it does not provide a 

comparison between the result obtained during the 

offline validation and online testing.  

In this paper, the online and offline performance 

of the machine learning algorithms is discussed. 

Unlike the work provided by [9], the performance of 

the machine learning algorithms is shown in detail 

highlighting the strengths and weaknesses found in 

each one of them. Further, despite the work of [7], 

[9], in this research, the features used to build the 

machine learning models are obtained from hard-

wired current sensors placed in the middle of the 

sensors that compose the ICS and the PLC. 

Moreover, this research provides results obtained 

from the execution of a novel set of attacks against a 

physical testbed which differs from the work 

presented by [10], [12] where the authors use virtual 

testbeds or common network attacks such as DoS 

and Man in the middle. 

III. DESIGN AND IMPLEMENTATION 

 For testing purposes, we implemented a model of 
clean water supply system(CWSS) using the Festo 
MPA Compact workstation[13] in the configuration 
shown in Fig 1.  

A. Normal Operation 

 The CWSS model aims to maintain the required 
tank water level setpoint in the tank B102. To achieve 
this, the water stored in the tank B101 is pumped via 
a variable speed drive so that the required tank water 
level can be maintained while the demand from the 
tank varies throughout the valve V106. We propose a 
water demand model for the seven day week, which 
is based on the real model of power consumption in 
the UK [14]. We keep this water demand model 
simplistic, so it could be reproduced in the future. 
More details about this model can be found in our 
previous work [15]. The water level of the tank is 
measured as the process variable (PV) for a 
proportional-integral-derivative (PID) closed-loop 
control of the delivery pump to maintain the required 
tank water level setpoint (SP). A detailed explanation 
of this testbed can be found in our previous work [16].  



 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Festo MPA Process Control Rig Diagram. 

 

A. Attack Scenarios 

Table I summarizes the set of attacks executed to 

the CWSS. Technical details regarding the attacks 

executed can be found in our previous work[15]. 

Malicious traffic includes crafted packets, executed 

by a malicious insider capable of accessing to the 

PLC over the control network, that overwrite the 

input/output memory of the PLC, as a result, the 

normal operation of the control process is 

compromised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Energy-based IDS Architecture 

Historically, ICS devices such as PLC’s and I/O 

were not networked and lacked computing and 

communication capabilities[1]. The emerge of 

Industry 4.0 [17] has led to developing ICS devices 

able to exchange data over the Internet. Further, the 

convergence of IT and ICS networks allow to 

manage, monitor and control industrial processes 

from remote locations. Fig. 2 shows a typical 

architecture of an IT and ICS network with security 

devices such as firewalls placed over the network 

[18]. When it comes to cybersecurity; defence in 

depth[19] is one of the well-known approaches, it 

comprises of a series of defensive mechanisms that 

are layered in the network in order to protect the 

assets. For instance, Fig 2 shows one firewall 

inspecting the incoming/outgoing traffic from the 

internet whereas the second firewall inspects the 

traffic between the corporate and control network. 

 

The energy-based IDS (EBIDS) proposed in this 

paper adds an extra layer of protection to the control 

system, because it is placed at the lowest in the 

control process level and it is hard-wired to the 

PLC/Sensors. For instance, our previous work [15] 

demonstrates that the Input/Output memory of 

Siemens PLC’s can be overwritten by crafting and 

sending packets to the PLC over the network [20], 

hence the values obtained from those spaces of 

memory are vulnerable to cybersecurity risks and 

exploits, which is unlikely to the values obtained by 

the EBIDS because its architecture makes it not 

accessible from the IT/ICS network.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. EBIDS architecture. 

 

 

TABLE I SET OF ATTACKS EXECUTED TO THE CONTROL SYSTEM 

Attack Effect 

Modifying Setpoint 

in the Working 
Memory 

Water Level Increases/Decreases 2-2.5 

litres. It depends on the value sent from 

attacker to the Input Memory of the 

PLC. 

Attack on Ultrasonic 

Sensor 

Water Level Increases/Decreases. It 

depends on the value sent from attacker 

to the Input Memory of the PLC. 

Attack on Flow In 
Affects Pump Operation, consequently 

the water level in the reservoir tank. 

Attack on Pump Water level decreases 0.5-1 Litres. 

Attack on Flow Out 
Affects the Control Operation when 

using feedforward Controller. 

Attack on Pressure 

In 

Slightly affects the normal operation of 

the control system. The water level 
increases/decreases 0.1 - 0.2 litres. 

Attack on Pressure 

Out 

Affects the control operation when 

using a PI controller that takes the 

Pressure Out as Input for calculating the 

water level, otherwise this does not 
affect the control operation. 

 



C. Dataset 

The dataset contains malicious and benign traffic 

that is recorded during a one-day operation. The 

EBIDS is tested using the dataset collected from the 

CWSS implemented for this research. Fig. 1 shows 

the sensors/actuators that are monitored: ultrasonic 

sensor B101, Pump 101, Flowmeter_in B102, 

Pressure_in 104, Pressure_out 105 and Flow_out 

B103. Each one of the sensors/actuators is hard-

wired to the INA 219 sensor[21] and Input/output 

memory of the Siemens S7-1500 PLC[22]. The INA 

219 sensor provides four energy features: voltage in 

the shunt resistor, the voltage in the INA 219 board, 

current and power. Thus, the dataset used in the pre-

processing phase of the machine learning process 

contains 24 features in total. Fig 3 shows the original 

dataset obtained from the testbed and the balanced 

dataset after applying SMOTE oversampling 

technique[23]. SMOTE has been successfully 

applied and widely used in similar researches. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Energy-based dataset. 

D. Machine learning algorithms 

The discussion of ML algorithms is beyond the 

scope of this paper, however, we provide literature 

with further information and technical discussions 

regarding those algorithms[25]. In this paper, we use 

traditional ML algorithms that were applied to 

similar researches discussed in section II. The 

following supervised ML algorithms are chosen for 

training and testing. 

- K-Nearest Neighbour (KNN). 

- Support Vector Machine (SVM). 

- Decision tree (DT). 

- Multilayer Perceptron (MLP). 

- Naïve Bayer (NB). 

 

E. Machine learning evaluation 

metrics 

Choosing the right metrics for evaluating a 

machine learning algorithm influences how its 

performance is measured and compared with other 

approaches[26]. The metrics are usually derived 

from the confusion matrix, which is a summary of 

prediction results on a classification problem. Table 

II shows a confusion matrix, True Negative (TN) 

represents the number of benign samples correctly 

classified as benign, True Positive (TP) represents 

the number of malicious samples correctly classified 

as malicious, False Negative (FN) represents the 

number of benign samples incorrectly classified as 

malicious and finally, False Positive (FP) represents 

the number of malicious samples incorrectly 

classified as benign[27].  

 

 

 

 

 

 

Our research focuses on critical infrastructure 

such as a clean water supply system, for that reason, 

we emphasise in maximizing the detection rate and 

minimizing as much as possible the number of false 

alarms reflected in the EBIDS. The metrics used to 

evaluate the results obtained from this research are 

explained as follows. Accuracy, shown in equation 

(1), is the ratio of correct predictions over the total 

number of predictions.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
 

 

False Negative Rate (FNR) represented in 

equation (2) indicates the ratio of malicious traffic 

classified as benign.  

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

 

False Positive Rate (FPR), shown in equation (3) 

indicates the ratio of benign samples classified as 

malicious. 

 

 

TABLE II CONFUSION MATRIX 

Class Classified as Benign Classified as Malicious 

Benign True Negative (TN) False Positive (FP) 

Malicious False Negative (FN) True Positive (TP) 

 

(1) 

(2) 

(3) 



𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

F. Energy-based IDS Operation 

The EBIDS has two components which are shown 

in Fig 4. An EBDIS detection classifier, which is 

built offline using a free software machine learning 

library for python[28]: scikit-learn and the real-time 

detection application. These two components are 

explained as follows: 

 

1) Offline. The EBIDS detection classifier is 

trained offline with a dataset collected from the 

testbed. The dataset contains newly engineered 

energy-based traces of malicious and benign traffic 

obtained from the sensors/actuators that compose the 

testbed. The pre-processing step in machine learning 

improves the quality of the raw data collected from 

the testbed converting it into a clean set of usable 

information. The steps involved in data 

preprocessing includes a) removing the noise from 

the energy-based dataset by applying a low pass 

digital filter[29] on it, due to the data collected 

includes external factors such as noise. b) Using 

feature selection techniques such as Chi-Square and 

Information Gain to remove features that do not 

contribute to the energy-based ML model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Online Detection Energy-based IDS. 

c) Using smooth techniques to adjust the class 

distribution of the dataset. d) Testing the 

effectiveness of the machine learning models by 

splitting the dataset into k consecutive folds for 

cross-validation. e) Scaling the dataset by applying 

Standardization/Normalization techniques. 

Following the dataset was split into training and 

testing datasets. The training dataset is composed of 

80% of the entire data and it was used to train our 

ML model. The remaining 20% of the data is used to 

evaluate the performance of the trained ML model. 

A detailed explanation of the offline machine 

learning process can be found in our previous 

work[6]. Finally, we use the joblib library [30] 

available on Python to build the ML model and save 

it as a file for online evaluation.  

 

2) Online. In the online phase of the process, the 

EBIDS uses the classifier built in the offline phase to 

detect the set attacks executed to the Input/Output 

memory of the Siemens PLC. We use the same joblib 

library described before to recover the machine 

learning model of each one of the ML algorithms. 

The ML model is deployed online in a Raspberry PI 

that collects, filters and selects the newly engineered 

energy-based features chosen during the feature 

selection process. The EBIDS raises an alarm to the 

operator when an anomaly is present in the control 

process. The EBIDS analyses 12 features, 20 times 

per second on average.  

IV. EBIDS EVALUATION 

This section summarises the results obtained from 

the evaluation of the proposed system during the 

experimentation phase. In the filtering process we 

applied a cutting edge and complex low pass filter at 

the pre-processing step, however, the same filter 

could not be applied during the online evaluation 

because the complex filter calculates its parameters 

based on the entire dataset provided. This scenario 

could not be replicated during the online testing, for 

that reason we opted for implementing our own low 

pass filter. Fig. 5 shows the results in terms of 

accuracy for online and offline evaluation. KNN 

achieved the highest accuracy during the offline 

evaluation followed closely by MLP. DT and SVM 

achieved above 98% of accuracy, whereas, NB 

shows the worst performance achieving 95.5% only. 

KNN and SVM showed a similar performance 

during the online and offline evaluation. The 

difference of accuracy among DT, NB and MLP 

during the online and offline training is more 

significative. 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Accuracy evaluation. 

The metric accuracy shows the performance 

obtained by the classifiers but is not the only metric 

capable of evaluating the performance of the ML 

classifiers. Fig. 6 shows the false positive rate (FPR) 

achieved by the classifiers. This metric indicates the 

amount of benign traffic classified as malicious. 

KNN presents the best performance for both 

scenarios achieving 0.1% and 0.11% for offline and 

online evaluation. NB achieves 2.5% of FPR during 

the offline evaluation but increases to 6.8% in the 

online evaluation.  

 

 

 

 

 

 

 

 

 

Fig. 6. False Positive Rate Evaluation. 

The false-negative rate (FNR) represents the 

amount of malicious traffic classified as benign. In 

critical infrastructures, FNR alerts are more 

dangerous than FPR, because it indicates that the 

security system fails in detecting an attack that is 

occurring in the control application. Fig 7. Shows the 

results of the FPR metric. KNN shows the best 

performance for both scenarios achieving the lowest 

scores among the other classifiers. DT and MLP 

present considerable differences between offline and 

online evaluation. SVM shows a small difference 

between both evaluations but the score achieved is 

twice the score achieved by KNN.  

 

 

 

 

 

 

 

 

 

 

Fig. 7. False Negative Rate Evaluation. 

 

V. CONCLUSIONS  

This paper proposes a real-time anomaly intrusion 
detection for a clean water supply system, utilising 
machine learning with novel energy-based features. 
A model of a clean water supply system implemented 
in the Festo Rig was used to analyse the performance 
of the proposed detection system to cyber-attacks to 
the input memory of the PLC. The evaluation of the 
ML models showed a solid performance during the 
offline testing but only KNN and SVM showed the 
same consistency during the online evaluation. 
During the dataset collection, some parts of the 
normal operation were missed because attacks were 
executed at that time. This increased the number of 
false-positive alarms because the EBIDS was not able 
to recognize those missed parts.  

The EBIDS proposed in this paper shows a 
different approach for cyber-attack detection than 
traditional network IDS. Its features are collected 
directly from the actuators/sensors that compose the 
control system instead of extracting the values from 
the ICS network traffic as most of the current 
approaches do. The main concern in using values 
collected from the ICS network traffic is trusting its 
integrity because it has been extensively probed that 
attackers can easily tamper network packets. It makes 
even worst for ICS network traffic because it lacks 
encryption. 
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