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Abstract of Thesis [Parts A and B]

DNA topoisomerase (topo) inhibitors are amongst the most widely used and effective

anticancer drugs that target either type I or type II enzymes, however, their clinical

application is severely restricted by dose-limiting side effects and the development of

drug resistance, commonly the result of diminished expression of the target enzyme and

evolution ofmultidrug resistance (MDR) phenomena.

The motivation for the present study was the hypothesis that dual inhibitors that target

type I and type II proteins may offer the prospect of circumventing acquired altered

topoisomerase resistance associated with downregulation of a single protein, with

consequential improvements in therapeutic index.

A fully characterised [principally by nmr and mass spectrometry], extensive library of

>100 novel, spacer-linked anthraquinone-amino acid conjugates [code-named NU:UB]

was synthesised as putative dual inhibitors of topo I and II. Key conjugates, exemplified

by the proline conjugate, NU:UB 31 (208), were shown to co-target topo I and the

individual (o. and P) isoforms of human topo II in vitro in enzyme inhibition assays

using gel electrophoretic methods; furthermore, their pattern of cell-kill correlated with

topo levels in a panel of animal and human cancer cell lines. Lead compounds were

identified and subsequently shown to have notable antitumour activity in MAC15A

experimental colon cancer which is refractory to standard agents. This research

programme has made a significant contribution to an understanding of the structural

requirements for dual enzyme inhibition and has provided new potential anticancer

drugs that have progressed to pre-clinical evaluation. [PART A]

In another aspect, the chemistry of spacer-linked anthraquinone-amino acid conjugates

was extended to the synthesis and characterisation of oligopeptide derivatives that were

designed as matrix metalloproteinase (MMP)-activated prodrugs, in a new approach to

tumour-selective drug targeting. A prototype oligopeptide prodrug PLI [(a D-ala-ala

ala-leu-gly-leu hexapapetide derivative (293)] of the in vivo-active dual topo inhibitor

NU:UB 31, containing MMP-9 sensitive cleavage 'hotspots' in the peptide motif,

underwent selective initial cleavage by human recombinant enzyme and by

homogenates of a highly MMP-9 expressing HTI080 human fibrosarcoma. Preliminary

data suggests that it may be feasible to selectively deliver potent cytotoxic agents to the

site of a tumour by exploiting the proteolytic capacity of over-expressed MMPs in the

tumour environment. [PART B]
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Preface

This thesis presents and discusses data from a research programme that was based in

synthetic organic chemistry. The chemical synthesis, compound characterisation and in

part, in vitro cytotoxicity determinations, were carried out by the author, either in-house

or in the collaborating laboratory (Cancer Research Unit, University of Bradford). The

thesis is divided into two related parts, PART A and PART B.

PART A, the major component, is concerned with the development of novel spacer

linked anthraquinone-amino acid! peptide conjugates as cytotoxic agents and putative

dual inhibitors of DNA topoisomerases I and II.

PART B extended the chemistry in PART A to include anthraquinone-based

oligopeptide prodrugs containing amino acid sequences designed to be cleaved by

overexpressed matrix metalloproteinases in the tumour environment.

Chapter one sets out the hypothesis and aims for PART A of this research programme

and surveys current cancer therapy, the structure and function of topoisomerases and

their inhibitors in current clinical use. Whilst inhibitors of either type I or type II enzymes

have been reviewed in the literature, the focus of chapter two brings together the wide

structural diversity of a growing number of compounds, so called dual topoisomerase

inhibitors, that co-target I and II proteins.

Anthraquinones occupy a central position in cancer chemotherapy and topo inhibition is

recognised as the principal mechanism by which clinically useful drugs exert their

cytotoxic action; severe dose-limiting side effects have stimulated the synthesis of

numerous derivatives over the past three decades. Chapter three critically reviews the

literature confined to the chemistry of anthraquinone-amino acid conjugates in the

context of this research project.
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Chapter four discusses the design rationale and the detailed synthesis and spectroscopic

characterisation of a library [code-named NU:UB] of novel spacer-linked

anthraquinone-amino acid conjugates as candidate topoisomerase inhibitors. For

selected key conjugates their in vitro and in vivo chemosensitivity and topoisomerase

inhibitory properties are discussed.

Chapter five sets out the hypothesis and aims for PART B of this research programme

and analyses the rationale for matrix metalloproteinases (MMPs) as targets in current

cancer therapy. Chapter six discusses the design, synthesis and properties of novel

prototype anthraquinone-oligopeptide MMP-substrates for tumour activated prodrug

therapy. Chapter seven presents summary conclusions for PARTS A and B of this

research.

Chapter eight contains a complete catalogue of novel compound structures (and their

descriptors) prepared during this programme ofwork.

Chapter nine details the experimental procedures used for the synthesis and

characterisation of the compound library and cytotoxicity determinations.

Additional experimental protocols used in the provision of biological data in support of

this work and selected NCI generated compound data are given in the appendices.

Results from this research programme have been reported, in part, in the following

publications:

Novel spacer-linked anthraquinone peptide conjugates: design synthesis and evaluation

of in vitro cytotoxicity (in experimental colon cancer), and topoisomerase inhibition.

Mincher DJ, Bibby MC, Double JA, King H, Lowe G, Philip K, Turnbull A. Annal.

Oncology, (1996), 1, 109.
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Gilmour PS, Lowe G, Turnbull A, Annal. Oncology, (1998),2, 28.

Biochemistry of topoisomerase II-alpha and II-beta inhibition by novel anthraquinone

peptide conjugates: Design of isoform-specific agents. Gilmour PS, Austin CA, Lowe

G, Turnbull A, Mincher DJ, Annal. Oncol., (1998), 2(Suppl. 2), 236.

Design and development of a new class of topoisomerase inhibitor: Preliminary in vivo

evaluation in experimental colon cancer. Mincher DJ, Turnbull A, Bibby MC, Double

JA, Gilmour PS, Lowe G, Br. J. Cancer, (1999), 80(Suppl. 2), P88.

In VIVO anti-tumour activity and preclinical development of spacer-linked

anthraquinonyl-amino acid topoisomerase inhibitors. Mincher DJ, Turnbull A, Bibby

MC, Double JA, Gilmour PS, Lowe G, Kay G, Hickson ID, Br. J. Cancer, (1999),

80(Suppl. 2), P87.
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Turnbull A. Publication Date: 23-12-1999.
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Nomenclature

The structure below represents the compounds prepared in this study in their simplest

format.

o NfSPACERnAMINOACIDj-0
I

~ :::

o "(01-1)

The terms anthraquinone, anthra-9, IO-quinone, anthracenedione and anthracene-9, 10-

dione have been used interchangeably, since they are all in common usage. The

compounds synthesised in this study are regarded fundamentally as anthraquinones i.e.

anthraquinones substituted with amino (RNH- or R1R2N-) side-chains in the I-position.

As such, anthraquinone amino acid! peptide conjugates derived from simple

aminoalkylamino or hydroxyalkylamino spacer groups have been named as substituted

anthraquinones, according to the numbering system shown in the figure [This also

facilitates comparison with (aminoalkylamino)anthraquinones in clinical use, e.g.

mitoxantrone (7) ]. The IUPAC system has been used to name conjugates containing

more complex (e.g. cyclic or branched) spacer groups when it was more convenient to

do so. Aminoalkylamino groups have been abbreviated to, for example, 'propyl' and

'butyl', representing the species -NH-(CH2)3-NH- and -NH-(CH2)4-NH-, respectively

when set in the context of spacer linked conjugates and are convenient descriptors for

the simpler spacer groups in these molecules. Similarly, hydroxyalkylamino spacer

groups have been abbreviated to, for example, 'propoxy' which corresponds to -NH-

(CH2)3-0- or 'butoxy' -NH-(CH2)4-0- etc. It is anticipated that the meaning of these

descriptors facilitates communication and will be obvious from the context.
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Example A: 1-[3-(N-Tertiarybutoxycarbonyl-L-alanylamino)propylamino]anthraquinone

~~NIICO--"'NIICOOC(CH')'

~o

More generally, the example may be described as 'an N-protected, propyl-linked L-

alanine conjugate' wherein propyl is a shorthand description for the spacer moiety.

Example B: 1-[3-(D-alanyl-L-Alanyl-L-alanyl-L-Ieucyl-glycyl-L-Ieucyl-L-prolylamino)-

propylamino]anthraquinone trifluoroacetate

In example B, descriptors for the aminoacyl residues derived from the component

amino acids are conveniently used to describe B as: a D-alanyl-L-Alanyl-L-alanyl-L-

leucyl-glycyl-L-Ieucyl-L-prolyl heptapeptide conjugate. [The peptide is thus described

conventionally, with the N-terminus 'to the left']

Note: During discussion of anthraquinone-oligopeptide conjugates of this type,

particularly metabolism (degradation) studies of Example B, it was convenient to

describe molecules as having residual amino acid fragments attached to the

anthraquinone-spacer [AQ-SP] compounds, as in a (truncated) e.g. AQ-SP-pro-Ieu-gly

tripeptide conjugate ("the pro-leu-gly conjugate"), wherein it was understood that

x



neither the amino acid sequence was altered nor the amino terminus reversed [i.e. that

gly was the amino terminus and that the correct interpretation would be unambiguous

from the context in which these passages occurred].

Example C:

OH

When the anthraquinone is linked to the N-terminus of an amino acid or peptide (here, a

dipeptide), as in Example C, it is convenient, and in keeping with literature precedent, to

regard the structure fundamentally as a peptide that bears the anthraquinone substituent,

thus affording the systematic name N-(4' -hydroxy-9', 10' -dihydro-C-9', 10'-dioxo-l r -

anthryl)alanylleucine for C. This leads to the use of the general descriptive terms,

anthracenyl- (or anthraquinonyl) amino acids/peptides for compounds of this type.

When naming hydroxyanthraquinones, the terms quinizarin and 1,4-

dihydroxyanthraquinone have been used interchangeably as have leucoquinizarin and

leuco-I,4-dihydroxyanthraquinone, and, leuco-l,4,5-trihydroxyanthraquinone and

leuco-S-hydroxyquinizarin also as a result of common use of these terms.

Abbreviations

AML

aq

AQ-SP

Boc (or tBoc)

acute myeloid leukaemia

aqueous

Anthraquinone-spacer (compound or residue)

tertiarybutoxycarbonyl

Xl



cdk

C1

CHO

CML

DCC

DCU

DMAP

DMF

DMSO

d

dd

DEPT

EGFR

E1

eq

ES(1)/(+) or (-)

ether

FAB

Fmoc

m

MAC

MDR

mg

mm

tertiarybutyl

cyc1in dependent kinase

chemical ionisation

Chinese hamster ovary (cell line)

chronic myeloid leukaemia

dicyc1ocarbodiimide

dicyclohexylurea

4-(N,N-dimethylamino)pyridine

N,N-dimethylformamide

dimethysulphoxide

doublet

double doublet

distortionless enhancement by polarisation transfer

epidermal growth factor receptor

electron impact

molar equivalent(s)

electrospray (ionisation)/positive or negative mode

diethyl ether

fast atom bombardment

fluorenylmethoxycarbonyl

multiplet

murine adenocarcinoma of the colon

multi-drug resistance

milligram(s)

minutes
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mmol

MRP

NADH

NADPH

nmr

NSCLC

NU:ICRF

NU:UB

Pfp

Pgp

ppm

q

qn

s

SCLC

t

THF

t.l.c.

TFA

topo

Trt

VEGFR

Z

millimole(s)

multi-drug resistance protein 1

nicotinamide adenine dinucleotide (reduced)

nicotinamide adenine dinucleotide phosphate (reduced)

nuclear magnetic resonance

non-small cell lung cancer

Napier University: Imperial Cancer Research Fund (compoundcodes)

Napier University: University of Bradford (compoundcodes)

pentafluorophenyl

p-glycoprotein (also known as p-170)

parts per million

quartet

quintet

singlet

small cell lung cancer

triplet

tetrahydrofuran

thin layer chromatography

trifluoroacetic acid

topoisomerase

trityl

vascular endothelial growth factor receptor

benzyloxycarbonyl

Xlll



CHAPTER ONE

[PART A]

TOPOISOMERASE INHIBITORS AND CANCER:

DESIGN AND PERSPECTIVES



1.1 Hypothesis [Part A]

Anthraquinone-based compounds have successfully been used in the cancer clinic for

several years; doxorubicin and mitoxantrone are notable examples that, after their

introduction, were shown to target DNA topoisomerase enzymes as a key component of

their cytotoxic action. Clinical application of these agents is, however, restricted due to

acute toxicity and side effects associated with non-topoisomerase, secondary

mechanisms of action, including free radical formation and lipid peroxidation, and the

development of either altered topoisomerase drug resistance or multidrug resistance.

In this research programme, it was hypothesised that lead compounds from a novel

series of spacer-linked anthraquinone-amino acid conjugates [code-named NU:UB]

would be actively cytotoxic and act as 'clean' dual inhibitors of DNA topoisomerase I

and II enzymes, and as a consequence of their chemical design features would not suffer

from secondary mechanisms of action. It was proposed that nuclear amination of halo

or hydroxy-anthraquinones with bifunctional amine spacer groups followed by amino

acid or peptide conjugation to the free spacer terminus, would provide ease of access to

a varied compound library for biological evaluation. It was further proposed that dual

enzyme inhibitory properties, in contrast to targeting a single enzyme, had the potential

to afford compounds capable of circumventing multidrug resistance phenomena.

1.2 Aims [Part A]

The principal aim of this research programme was to synthesise and characterise several

series of spacer-linked anthraquinone-amino acid/peptide conjugates as putative

topoisomerase inhibitors. Furthermore, the conjugates were to be evaluated for their

chemosensitivity in a panel of human and animal tumour cell lines in vitro and (in

collaboration) in vivo. Conjugates were designed either with nuclear un-substituted or



hydroxy-substituted aminoanthraquinone chromophores, conformationally flexible or

constrained spacer groups and were either amide-linked or ester-linked to the amino

acid or peptide motif. Attempts would be made to correlate chemical structure with

pattern of cell kill and observed inhibitory actions against DNA topoisomerase enzymes,

to contribute to the rational design of more selective drugs to target topoisomerase

proteins.

1.3 Cancer Therapy

The most frequently used cancer therapies (e.g. doxorubicin, cisplatin, taxol) were

discovered in the laboratory over two or even three decades ago (Baguley and Kerr

2002).

These therapies were discovered empirically in tumour cell kill assays without bias

towards or pre-existing knowledge of the biochemical mechanism of action. Recently,

rational approaches to drug design have been applied to cancer therapies. These

approaches focus on identifiable molecular targets that are responsible for cell

transformation yet to date have been relatively ineffective at curing most malignancies.

Ideally, a molecular target for cancer therapy should have a unique role in the cause of

the cancer's pathogenesis and be regulated differently between tumour and normal

cycling tissues. Preferably, the target should be located in a biochemical pathway so that

a biochemical antagonist of the target will selectively induce growth arrest or apoptosis

of the tumour cells. Unfortunately, at present, the identification of all the molecular

targets that give rise to the majority of cancers is incomplete. Identification of such

targets is further complicated by the genetic instability of cancer cells. Even though

multiple genetic changes contribute to the generation of cancer, several irrelevant
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genetic differences are commonly observed that complicate identification of the critical

molecular target.

Chemotherapeutic treatment of cancer today involving FDA (Food and Drug

Administration, US) approved drugs (http://www.fda.gov/cder/cancer/druglistframe.htm)

can be grouped into four different categories based upon either their target or the nature

of their composition. These groups include: cytotoxics, biologicals, targeted

therapeutics, and hormonal therapeutics.

Cytotoxics were discovered primarily due to their abilities to kill cells. Those

compounds with antitumour activity against animal tumour models entered the clinic

and those with clinical efficacy were approved, all the while without knowledge of their

target of action. The cytotoxic targets were later discovered to include: DNA

(intercalating, alkylating and cross-linking agents); DNA synthesis pathway enzymes

(antimetabolites); tubulin (antimictrotubule and tubulin polymerizing agents); and

topoisomerases (topoisomerases I and II). Biologicals can be subdivided into antibody

(receptor blocking, ligand binding, and targeted delivery) and natural biological

(cytokines and interferons) subgroups. Molecular targeted therapeutics (Buolamwini

1999) are predominantly signal pathway or ancillary enzymes (ras, raf, mek, src, her,

cdk, kit, BCR-Abl tyrosine kinase, VEGFR and EGFR tyrosine kinases,

metalloproteinase, proteosome, etc.). However, the FDA has approved only one BCR

Abl tyrosine kinase inhibitor, one EGFR tyrosine kinase inhibitor, and one proteosome

inhibitor. Hormonal therapeutic agents include gonadotropin releasing hormone

analogues, antiandrogens and antiestrogens. The FDA has approved several of these for

commercialization.

Confusion may arise from discussions about molecular targets of cytotoxic drugs and

molecular targeted drugs that may be cytotoxic. Topoisomerase (enzyme) targeting
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drugs are classified as cytotoxics even though they have specific molecular targets. This

is because their cytotoxic properties were generally known prior to the discovery of their

molecular targets, whereas molecular targeted drugs were discovered from their actions

on their respective molecular targets.

Classical cytotoxic drugs continue to dominate the market with respect to the number of

prescriptions written because of their proven efficacy in the clinic but their commercial

values are limited because most are off-patent. Gernzar (antimetabolite), Navelbine

(antimicrotubule) and Camptosar (topoisomerase I) are recent commercial successes in

this category. Hormonal therapy is the most rapidly growing category of chemotherapy

because of reduced toxicity risks exhibited by members of this class. However, efficacy

is directly dependent upon the hormone receptor expression in the tumour and this

hormone dependency can be lost with time. Natural biologicals, which include

interferon and interleukin IL2, are effective but unexciting in their clinical responses but

receptor blocking antibodies [Herceptin (HER-2/neu antibody), Erbitux], ligand binding

antibodies (early clinical trials), and targeted delivery antibodies (Rituxan, Rituximab,

SGN-15) are commercial successes or show promising results (Kim 2003). The FDA

approval of Rituxan in November 1997, for the treatment of relapsed of refractory low

grade CD20 positive follicular lymphoma, represented the first Mab therapy approved in

cancer therapy (McLaughlin et al 1998). Herceptin has received FDA approval for use

in patients with metastatic breast cancer that demonstrates over-expression of HER

2/neu (Baselga 2001). Targeted therapeutic approaches, on the other hand, have met

with disappointments until very recently when Gleevec (STI-571, Imatinib) (a tyrosine

kinase inhibitor that inhibits abl-specific phosphorylation) (Roskoski 2003) and Iressa

(Gefitinib, ZD1839) (targeting EGFR tyrosine kinase) (Khalil et a12003) were approved

for CML (Druker et al 2001) and NSCLC, respectively.
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The focus of large and small pharmaceutical companies has been squarely on hormonal,

biological, and novel molecular targets in drug discovery and development of anticancer

agents in recent years. The resulting fierce competition in the hormonal arena and the

general lack of success in the biological and molecular target areas are factors forcing

large pharmaceutical companies to seek in-licensing opportunities for drugs that actually

work in the clinic. Thus, some re-focusing on cytotoxics and their controlled delivery to

tumours is receiving growing attention.

Topoisomerase I (topo I) and topoisomerase II (topo II) are clinically validated targets.

The commercially available camptothecin analogues targeting topo I include Camptosar

(Irinotecan, CPT-11) and Hycamtin (topotecan). Camptosar is approved for colon

carcinoma and Hycamtin is approved for ovarian cancer and SCLC. A number of other

camptothecin analogues are in various stages of clinical evaluation (Zunino et al 2002).

Several topo II targeting drugs were commercially available well before their molecular

target was identified. These include etoposide and teniposide, doxorubicin and other

anthracyclines, and mitoxantrone. No new class of topoisomerase II targeted agents has

been approved or appears in the pipeline; greater interest persists for anti-topoisomerase

I agents since clinically approved examples are limited to the camptothecin family and

are structurally labile. The clinically active topoisomerase I and II targeting drugs all act

by stabilizing a covalent, transient intermediate formed between the genomic DNA of a

cancer cell and topoisomerase enzymes.
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1.4 DNA Topoisomerases

1.4.1 Function and Mechanism

DNA topoisomerases are essential enzymes found in all living organisms. Topoisomerases

control and modify the topological states (such as over- and under-winding, knotting or

tangling) ofDNA by a complex catalytic process involving strand cleavage, strand passage

and finally religation of the DNA strands. Hence, these DNA associated enzymes playa

critical role in replication, transcription, recombination and many other cellular processes

(Wang 2002). There are two distinct classes of topoisomerase, differentiated by their

mechanistic and physical properties (Champoux 2001). Type I cause transient single

strand breaks in DNA, allowing controlled rotation about (or passing of a single strand

through) the nick before rejoining; a process that does not require an energy cofactor, the

energy for this reaction is instead derived from that stored in the supercoiled DNA. The

type I enzymes have been further subdivided into type IA and type ill subfamilies based

on the type of DNA adduct they form. Type IA topoisomerases (including eukaryotic

topoisomerase IDa and IDJ3) form a transient covalent phosphotyrosine linkage to the 5'

end of DNA whereas type ill topoisomerases (including eukaryotic topoisomerase I and

mitochondrial topoisomerase I) attach to the 3' DNA terminus. Type IA topoisomerases

are able to relax only negatively supercoiled DNA, require magnesium and a single

stranded stretch of DNA for function. In contrast, type IB topoisomerases can relax both

positively and negatively supercoiled DNA with equal efficiency and do not require a

single-stranded region ofDNA or metal ion to function (Wang 1996, Champoux 1998).

The type II enzymes modulate topology by passing an intact helix through a transient

double-stranded break they create in the DNA backbone (Berger 1998). During cleavage,

two tyrosines attack opposite stands of the DNA duplex, forming covalent 5'-
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phosphotyrosine linkages to DNA, in a four base pair stagger. ATP is required for the

catalytic activity of type II topoisomerases.

Topoisomerases I and II have been extensively studied over the past three decades in

relation to human cancers and these topoisomerases will be discussed below.

1.4.2 DNA Topoisomerase I

The gene for human topoisomerase I has been mapped to chromosome 20q12-13.2 (Juan

et al 1988). The topoisomerase I gene product is a ~1OOkDa monomeric protein that

requires phosphorylation for full activity and this protein is most abundant in the

nucleus but also found in nucleoplasm (Pommier et al 1990, Fleischmann et al 1984).

Limited proteolysis has shown that the enzyme is composed of four major domains: a

highly charged 24kDa NH2-terminal domain, a positively charged 56kDa core domain, a

7 kDa linker domain, and a 6 kDa COOH-terminal domain which contains the catalytic

Tyr-723 (Stewart et al 1996). The determination of crystal structures of the core, linker

and C-terminal domains of human topoisomerase I in complex with DNA has given

greater insights into the catalytic mechanism of action of this enzyme on DNA (Stewart

et al 1998, Redinbo et al 1998). More recently, the x-ray crystal structure of human

topoisomerase I covalently bound to duplex DNA and the camptothecin analogue

topotecan has been reported (Staker et al 2002). This structure can help explain several

of the already established structure-activity relationships of the camptothecin family and

suggests mutations that are significant in the production of a drug-resitant enzyme.

Furthermore, a crystal structure of human topoisomerase I with an oligonucleotide

containing Ara-C (l-beta-D-arabinofuranosylcytosine), the potent antineoplastic drug

used in the treatment of acute leukaemia, at the +1 position of the non-scissile DNA

strand has also been described (Chrencik et al 2003). It was speculated that subtle
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structural changes, caused by the presence of the Ara-C in the DNA duplex, may

contribute to the cytotoxicity of this drug (though not as a topoisomerase poison) by

prolonging the lifetime ofthe covalent human topoisomerase I-DNA complex.

Topoisomerase I is present throughout the cell cycle and its activity varies less than

topoisomerase II during the cell cycle (Heck et al 1988, Romig and Richter 1990), which

makes topoisomerase I an attractive target for drug development.

1.4.3 DNA Topoisomerase II

Relaxation of DNA supercoiling by topoisomerase II is considered to playa major role in

DNA replication and transcription. Topoisomerase II also has a critical role in

chromosome condensation and separation during mitosis. In fact, it is believed that

topoisomerase II partly makes up the chromosome scaffold and the nuclear matrix. The

chromosome scaffold is the protein structure that remains after DNA and histones have

been removed from chromosomes in mitotic cells, and the nuclear matrix is a similar

preparation from cells in interphase (Adolphs et al 1977). Two isoforms of human

topoisomerase II have been identified and these are referred to as topoisomerase IIn and

topoisomerase II~, 170 and 180kDa proteins respectively. The topoisomerase IIn gene is

located on chromosome 17q21-22 and the topoisomerase II~ gene on the 3p24

chromosome (Tan et al 1992). These enzymes differ in many aspects including cell cycle

regulation and nuclear isolation (Austin et aI1995). Topoisomerase IIn is localised in the

proliferating compartments of all tissues and is detectable in both the cell nucleus and

cytoplasm, whereas topoisomerase II~ is expressed ubiquitously and is localised in the

nucleoli and nucleoplasm (Turley et aI1997). During mitosis, topoisomerase IIn appears

completely bound to the mitotic chromatin, while topoisomerase II~ diffuses into the

cytosol (Meyer et al 1997)
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Topoisomerase ITp levels remain relatively constant over the cell cycle and topoisomerase

ITa levels are closely linked to the proliferation state of the cell, increasing 2-3 fold during

G2/M phases and in rapidly proliferating cells (Turley et aI1997).

1.4.4 Topoisomerases as Targets for Cancer Chemotherapy

Many of the most effective anticancer agents in current clinical use are known to exert

their cytotoxic action, at least in part, by targeting DNA topoisomerase enzymes. Since

tumour cells in many cases are highly proliferative cells and topoisomerases are

involved in replication and proliferation processes, the levels of these enzymes are often

increased in growing cancer cells compared to normal cells, providing potential for

tumour selectivity.

Topoisomerase levels have been shown to be elevated in many haematological

malignancies and solid tumours compared to corresponding normal cells. For example,

topo I levels were found to be 14-16 fold higher in cancerous colon tissue than in normal

colon (Giovanella et at 1989). Both topoisomerase IT isoforms can be overexpressed in

human tumours. Overexpression of topoisomerase IT has been noted in human cervix,

lung and colon cancers as well as in a study of ovarian tumours where a lO-fold increase

in topoisomerase I and topoisomerase IT compared to normal tissue was

reported (McLeod et at 1994, Vander Zee et at 1991). Although elevated topoisomerase

levels in tumours might contribute, in part, to this selectivity, it is likely that other factors

such as cell cycle checkpoints, deficient DNA repair pathways and apoptotic response

represent important factors in selectivity ofdrugs against cancer cells (Pommier 1999).
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The interaction oftopoisomerases with DNA can be broken down into several key steps:

1. Enzyme-DNA-binding.

2. Cleavage of DNA by transesterification from the phosphodiester DNA backbone to an

enzyme catalytic tyrosine resulting in a covalent bond between the protein and one

terminus of the DNA nick (3' terminus in the case of topo I and 5' terminus of a

double-strand break in the case of topo II).

3. DNA strand passage.

4. Resealing of the DNA break concerted with the release of the topoisomerase enzyme.

5. ATP hydrolysis (topo II only).

Topoisomerase targeting agents may act at any of the above steps resulting in inhibition or

poisoning of the enzyme and subsequent cell death.

The mechanism of action of topoisomerase inhibiting agents can be divided into 2

categories: catalytic inhibitors (or suppressors) and topoisomerase poisons (although

the name topoisomerase inhibitors often refers to both types). Topoisomerase poisons act

by stabilisation of a drug-DNA-enzyme ternary complex, preventing religation of the

cleaved strand(s). An increase in the concentration of these transient covalent enzyme

DNA complexes to levels which cannot be tolerated in the cell converts topoisomerases

into physiological toxins (Froelich-Ammon and Osheroff 1995). Following traverse of

replication complexes, transient topoisomerase mediated breaks become permanent

double- stranded breaks, triggering events that ultimately culminate in cell death (Fortune

and Osheroff 2000). The triggering of these events is sometimes referred to as

"programmed cell death syndrome" or apoptosis.

Catalytic inhibitors are agents that act on any other steps in the catalytic cycle, for

example, by binding directly to topoisomerases, or binding to DNA and changing its

10



structure so that it can no longer be recognised by the topoisomerases, or by trapping

topoisomerase II in a closed clamp form, preventing enzyme turnover (Roca et aI1994).

Figure 1: The Role of Topoisomerases in the Life and Death of Cells
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[Adapted from Wilson Byl et aI, Biochemistry, (1999),~ 15573-79.]

Figure 1 outlines how topoisomerase poisons can be distinguished from inhibitors by their

cytotoxic criteria. Increased levels of topoisomerases render cells hypersensitive to enzyme

poisons but resistant to inhibitors. Conversely, decreased enzyme levels render cells

resistant to poisons but hypersensitive to inhibitors. Maximal toxicity of topoisomerase

poisons occurs during S phase whereas it has been proposed that trapping of the DNA

topo II in the closed-clamp form, the mechanism of action of the bis(2,6-

dioxopiperazine) class of catalytic inhibitors (Andoh 1998), inhibits cell-cycle

progression at G2-M. For the pure inhibitors of topoisomerase II, mitosis may be the

cellular process whereby the damage is instigated; proceeding through this stage of the

cell cycle when topoisomerase II is inhibited can result in aneuploidy and chromosomal

breakage (Wang 1994a).
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1.4.5 Topoisomerase I and II Inhibitors in Current Clinical Use

0 OH 0
II
c'"

" R
""OH

0 OH 0

OH

(1) R = CH20H = Doxorubicin

(2) R = CH3 = Daunorubicin

For the past three decades, the anthracycline antibiotics doxorubicin (adriamycin) (1) and

daunorubicin (daunomycin) (2) have been considered as first-line chemotherapy in the

treatment of a variety of solid and haematological tumours (Murphy et al 1995, Wiemik

and Dutcher 1992), despite serious dose-limiting side effects such as myelosuppression

and cardiotoxicity (Zucchi and Danes 2003).

Although topoisomerase II has long been recognised as the primary cellular target of

doxorubicin and daunorubicin (Tewey et al 1984), a number of additional mechanisms

have been identified as contributing to the antiproliferative and cytotoxic actions of these

agents. These include DNA intercalation and subsequent inhibition of macromolecular

biosynthesis (Fritzache and Wahnert 1987), induction of DNA damage by free radical

formation (Muller et al 1998), lipid peroxidation (Fukuda et al 1992) and direct

membrane effects (Tritton and Yee 1982).

Cancer cells are very effective in developing biochemical mechanisms which allow for

cellular resistance to a particular antineoplastic agent. In order to overcome the problem of

resistance development, clinicians generally use treatment regimens combining several

drugs with different cellular targets (combination therapy). A particular drug that produces
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some tumour shrinkage when used alone may produce a cure when used in combination

with other antineoplastic drugs. Topoisomerase inhibitors feature in many of the most

effective treatment regimens. For example, ABVD [adriamycin (topoisomerase II

inhibitor), bleomycin (DNA cleaving agent), vinblastine (antimitotic agent) and

dacarbazine (an alkylating agent)] is standard therapy for advanced Hodgkin's disease,

with roughly 80% of patients achieving complete remission and 60% of patients cured

(Urba and Longo 1992).

More recently additional anthracyclines, including epirubicin (3), idarubicin (4) valrubicin

(5) and aclarubicin (6) have received clinical approval, based upon modest improvements

over doxorubicin and daunorubicin.

Epirubicin is used mainly in the treatment of breast cancer, either as a single agent or as

part of adjuvant therapy (FDA approved September 1999). Although less potent than

doxorubicin it is also less cardiotoxic; a cumulative dose ofepirubicin ofup to 950 mg/m'

can be administered before the emergence ofacute and chronic cardiomyopathy (Ryberg et

at 1998), compared to 550 mg/m2 for doxorubicin. A structural feature common to all

anthracyclines is a quinone ring which can generate reactive oxygen species (ROS)

through one-electron reduction by flavin-centred reductases (Minotti et at 2000) or

through a non-enzymatic pathway involving coordination of a ferric ion with chromophore

rings B and C (Myers 1998). In the presence of water molecules, this complex can initiate

redox cycling and the production of superoxide anions and ultimately hydroxyl radicals

(Olson and Mushlin 1990). Myocardial cells lack free-radical scavenging defence

mechanisms and are therefore particularly susceptible to anthracycline-mediated ROS

generation. Additionally, treatment with anthracyclines results in the elimination of

glutathione peroxidase activity (Myers 1998).
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(3) Epirubicin

(5) Valrubicin

(4) Idarubicin

Both idarubicin and ac1arubicin are used in the treatment of acute leukaemia. Idarubicin

(4-demethoxydaunorubicin) has higher lipid solubility, increased cellular uptake and less

dependency on P-glycoprotein eftlux than its parent compound daunorubicin (Speth et al

1989, Roovers et al 1999) and is approved for use, in combination with other

antileukaemic drugs, for the treatment of acute myeloid leukaemia (AML) in adults. The

mechanism of action of both idarubicin and ac1arubicininvolves, to some extent, targeting
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of topoisomerase I in addition to topoisomerase II. Idarubicin has been shown to produce

low levels of topoisomerase I-mediated DNA cleavage in vitro, however studies in yeast

indicate that poisoning of topoisomerase II is the principal mechanism of cell kill (Guano

et al 1999). Aclarubicin has a dual topoisomerase targeting mechanism; acting as a

topoisomerase I poison and a catalytic inhibitor of topoisomerase II. This compound is

discussed in greater detail in Section 2.

Valrubicin (N-trifluoroacetyldoxorubicin-14-0-valerate) (5), a semi-synthetic doxorubicin

analogue with improved cellular uptake and reduced cardiotoxicity compared to its parent

compound (Onrust and Lamb 1999), has been approved for use (1998) in the treatment of

bladder carcinoma, by intravesical administration. Valrubicin readily penetrates the

superficial muscle layer of the bladder wall at cytotoxic drug concentrations. Although

valrubicin binds less strongly to DNA than doxorubicin its principal mechanism of action

is still thought to be through poisoning of topoisomerase II enzymes, however, metabolic

activation by non-specific esterases is essential for stabilisation of cleavable complexes

(Silber et aI1987).

OH 0

(7)

»<: ~NH
NH' <:»: ~oH

NH~NH~OH

The proven clinical usefulness of doxorubicin led to an intensive search, in the late 1970s,

for new structurally related compounds with antitumour activity but without the dose-

limiting cardiotoxicity and which were easier to access, given the lengthy procedures

required for total synthesis or modification (semi-synthesis) of doxorubicin analogues. It

was believed at that time (wrongly) that the amino sugar moiety was responsible for the
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cardiotoxicity of doxorubicin and daunorubicin (Adamson 1974), hence vast numbers of

compounds were synthesised which retained a planar anthraquinone ring system and

contained amino- or alkylamino-substituted side chains in place of the sugar.

The experimental antitumour activity of one such molecule, 1,4-bis[2-(2-

hydroxyethyl)amino]ethylamino]-9,1O-anthracenedione (ametantrone), was discovered by

random screening at the National Cancer Institute (NCI) and led to the synthesis and

extensive investigation of structure-activity relationships on a series of bis(substituted

aminoalkylamino)anthraquinones by Zee-Cheng and Cheng (1978). 1,4-Dihydroxy-5,8-

bis[2-(2-hydroxyethyl)amino]ethylamino]-9,1O-anthracenedione was the most active

compound identified and was subsequently prepared as its water soluble hydrochloride

salt, mitoxantrone (Novantrone) (7) (Murdock et al 1979). Mitoxantrone is the only

compound of this class (aminoanthracenediones) approved for clinical use. It retains the

topoisomerase II poisoning ability and clinical efficacy of doxorubicin but has greatly

diminished cardiotoxicity (Faulds et al 1991). Mitoxantrone is primarily used for the

treatment of breast and prostate cancers, leukaemia and lymphomas and has been

incorporated into selected chemotherapy regimens in place of doxorubicin because of its

reduced toxicity (Benjamin 1995).

(8)

Amsacrine (mAMSA) (8) was prepared by Atwell and co-workers in the early 1970s

during a programme of work to design and synthesise anilino-substituted analogues of 9-
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anilinoacridine with anti-tumour activity (Atwell et al 1972). Amsacrine is a potent

topoisomerase II poison but clinical development was hampered due to poor solubility

and lack of broad-spectrum clinical activity and its use is limited to the treatment of

acute leukaemia (Schaich et al 2002).

Etoposide (9)

Teniposide (10)

Etopophos (11)

-OH

-OH

o
II

-O-P-OH
I
OH

Podophyllotoxins have been used medicinally by various cultures for over 1000 years

(Sliven 1991). In the 1940s, podophyllotoxin was found to act as an antimitotic agent by

inhibiting mitotic spindle production, resulting in cell death (King and Sullivan 1946).

However, podophyllins were too toxic for clinical use and a search began for

podophyllotoxin derivatives that retained antineoplastic activity but were less toxic. Two

synthetic podophyllotoxin analogues, etoposide (VP-16) (9) and teniposide (VM-26) (10),

were found to be potent antineoplastic agents but almost completely lacked antimitotic

activity. These compounds entered clinical trial in the early 1970s, and it was reported in

1976 that etoposide caused dose-dependent single-strand and double-strand DNA breaks

(Loike et al 1976), however it was not until 1984 (one year after FDA approval) that

topoisomerase II was identified as the molecular target of etoposide (Chen et al1984). In

fact, etoposide was the first clinical anticancer agent demonstrated to act through

inhibition of topoisomerase II.
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Etoposide has widespread clinical use against a variety of neoplasms, including

lymphomas, leukaemias, neuroblastoma and soft-tissue sarcomas, and it is the first choice

drug for the treatment of testicular and small cell lung cancers (Belani et al 1994).

Despite teniposide being 10-fold more cytotoxic in vitro than etoposide, its use is limited,

mainly due to a higher incidence of hypersensitivity reactions, to the treatment of

refractory childhood acute lymphoblastic leukaemia. Myelosuppression is the dose

limiting toxicity for both compounds and there have been many reports of the late (1-5

years) development of acute non-lymphocytic leukaemia (with l1q23 chromosomal

abnormalities) in patients treated with either etoposide or teniposide (Stine 1997).

Due to the poor aqueous solubility of etoposide, a phosphate prodrug etopophos (11) was

developed and given FDA approval (1996) for use in combination therapy in the treatment

of testicular and small cell lung cancer. Etopophos is soluble in water at concentrations up

to 20 mg/ml, is rapidly converted in the blood to etoposide within 15 minutes of

administration and has equivalent antitumour activity to etoposide (Schacter 1996).
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Figure 2: Structure of camptothecins and (i) inactivation by opening of the lactone E ring
(at physiological pH) and (ii) formation of the hypothetical covalent intermediate between
camptothecin and the topoisomerase I-DNA cleavage complex. [Adapted from Pommier
etal. Biochim. Biophys. Acta, (l998a), 1400,83-106].
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The potent antitumour activity of camptothecin (12) was discovered in the mid 1960s,

however, early clinical trials were discontinued because of unmanageable clinical

toxicities. The identification of topoisomerase I as the cellular target of camptothecin (Liu

1989) led to the development ofwater-soluble derivatives with fewer side effects, such as

topotecan (Hycamtin) (13) and irinotecan (Camptosar, CPT-II) (14). All clinically used

camptothecins are potent topoisomerase I poisons with the exception of irinotecan; a

prodrug that requires conversion to the active metabolite SN-38 (15), by a
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carboxylesterase converting enzyme. Camptothecin and its derivatives poison

topoisomerase I by stabilising the transient covalent DNA-topoisomerase I [Figure 2

(ii)] cleavage complex and preventing religation of the cleaved DNA strand. SN-38 is

amongst the most potent cleavable complex inducing compounds in this class. Single

strand breaks induced by topoisomerase I are considered non-toxic to cells because the

DNA lesions can be efficiently and rapidly repaired. However, their conversion into

double strand breaks, believed to be formed by collision of the stabilised cleavable

complex with proceeding replication forks during the S phase of the cell cycle, results in

the inhibition of DNA synthesis, G2 arrest and eventual cell death (Hsiang et al 1989).

The camptothecins in current clinical use have two major limitations:

1. The instability of the six-membered lactone ring; at physiological pH

camptothecins are in equilibrium with their inactive (carboxylate) form [see Figure

2 (i)].

2. Their topoisomerase I cleavage complexes reverse within minutes after removal

of the drug (Covey et al 1989), leading to long infusion times for patients during

cancer therapy.

Topotecan (Hycamtin) first received FDA approval in 1996 for the treatment of patients

with advanced metastatic ovarian carcinoma and has since been approved for use in the

treatment of small cell lung cancer. This drug has the shortest plasma half-life of any

camptothecin (reported to date) and requires repeated daily administration or continuous

infusion over several days or even weeks (Takimoto et al 1998). lrinotecan, (CPT-11,

Camptosar) is approved for the treatment of metastatic colon carcinoma which has

relapsed or progressed following failure of 5-FU-based therapy (Cunningham 1999).
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Although the majority of topoisomerase II-targeting agents are poisons, examples of

catalytic inhibitors of the enzyme with clinical applications are known.

In contrast to poisons, catalytic inhibitors do not directly induce strand breaks and may

even prevent their formation; they can act at any stage of the catalytic cycle other than

cleavable complex formation, either by interfering with enzyme-DNA binding or by

trapping the DNA-bound enzyme in the closed clamp conformation. Two, controversial,

therapeutic approaches have emerged based on the combination of a poison with a

catalytic inhibitor.

One approach is pharmacological modulation of poisoning effects by a catalytic

inhibitor. Since a pure inhibitor can abolish the toxic effect of a poison, inhibitors of this

type may be used to direct the toxic effect. For example, the bisdioxopiperazine,

dexrazoxane (ICRF-187) (16), that does not cross the blood-brain barrier, can be used to

increase the tolerated dose of etoposide, which does (Holm et al 1996). The principle is

being evaluated in phase II trials in small-cell lung cancer patients with central nervous

system metastases.

A potentially broader application of combining a protective catalytic inhibitor with a

poison is suggested by the known acidic extracellular environment associated with solid

tumours. Whereas (neutral) etoposide can permeate plasma membranes, weak bases

cannot; weakly basic non-toxic catalytic inhibitors could protect normal tissues without

compromising the antitumour efficacy of etoposide. This concept has been demonstrated

in preclinical models using the weakly basic topoisomerase II catalytic inhibitor

chloroquine, although the latter is too toxic for in vivo use (Jensen et al 1994) and

clearly more suitable compounds need to be found.
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(16)

In another approach, the sequential use of an inhibitor with a poison, catalytic inhibitors

are attractive agents in second-line therapy of malignant tumours, since they display no

cross-resistance in cell lines selected for resistance to topoisomerase II poisons. A

clinically approved example has been advanced in Japan; sobuzoxane (MST-16) (17) is

another member of the class ofbisdioxopiperazine catalytic inhibitors (Andoh 1998).

(17)

Catalytic inhibitors, although generally predicted to be of lesser value in therapy than

poisons, due to decreased levels of DNA damage, may find application (other than in

the alternative senses outlined above) given that some catalytic inhibitors, including

merberone and dexrazoxane are able to induce apoptosis in the absence of DNA breaks

(Khelifa and Beck 1999). The clinical significance of these properties is yet to be

established but may become significant in circumventing drug resistance syndromes.

1.4.6 The Need for New Topoisomerase Inhibitors?

The wide structural diversity of topoisomerase inhibitors and their mechanisms of action

have been the subject of recent comprehensive reviews (Pommier 1998b, Malonne and

Atassi 1997, Gatto et al1999, Bailly 2000). The development of topoisomerase inhibitors

as clinically useful anticancer drugs, their performance in the clinic and limitations of their
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clinical application have been discussed in detail (Takimoto et al 1998, Holden 2001,

Larsen et al2003).

The major clinical limitation of existing topoisomerase inhibitor-based chemotherapy is

the problem of multi-drug resistance (MDR) whereby the development of resistance to one

drug results in the simultaneous development of resistance, not only other topoisomerase

inhibitors but to a variety of other, often structurally and mechanistically unrelated

compounds (Kartner and Ling 1989; Kaye 1988; Ueda et al 1999). One of the most

important and well characterised mechanisms ofMDR involves increased expression ofP

glycoprotein (Pgp), a transmembrane glycoprotein, which acts as a drug efflux pump for

many of the most important classes of anticancer drugs such as the anthracyclines, vinca

alkaloids, epipodophyllotoxins and taxanes.

Whereas MDR is inherently expressed in some cancers, in others it develops in response

to treatment and is the main reason for the failure ofchemotherapy.

Another mechanism associated with resistance against topoisomerase-interactive agents is

a decreased level or activity of the target enzyme (known as altered topoisomerase

resistance or at-MDR). However, since the topoisomerase I enzyme function is essential

to very basic cell survival requirements, commonly decreased activity of topo I is

compensated for by an increase in topo II expression, with subsequent enhanced

cytotoxicity of cells to topo II inhibitors (Whitacre et al 1997). Similarly, resistance to

topo II inhibitors has been linked to a reduction in the catalytic activity of topoisomerase II

(Beck et al1993) or a reduction in levels of topo IIa mRNA. For example, in a study of

66 etoposide- and mAMSA- resistant cell lines (Matsumoto et al 1997) reduced

expression of topo II a mRNA was observed in 95% of resistant cell lines in comparison

to parental cell lines, with a compensatory increase in topo I and topo II-~ mRNA levels.
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CHAPTER TWO

[PART A]

DUAL TOPOISOMERASE INHIBITION



2 Dual Topoisomerase Inhibition

While most topoisomerase interacting drugs target either topo I or topo II, several classes

of compounds have more recently been shown to act against both enzymes often

exhibiting a complex pattern of activities including inhibition and poisoning of the two

enzymes.

Simultaneous targeting of both topo I and topo II (u- and/or P- isoforms) by a drug may be

an important contributing factor for circumventing resistance mechanisms due to alteration

of a single target enzyme.

The principal classes oftopoisomerase inhibitors are described below.

DACA (N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide) (18) and related tri- and

tetracyclic carboxamides have been extensively studied over the past two decades and

form the largest class of dual topoisomerase I and II inhibitors.

DACA was developed by Baguley and co-workers during a programme to design and

synthesise acridine derivatives with selective activity against solid tumours (Atwell et al

1987). The synthesis of DACA is outlined in Scheme 1. Cyclisation of the N-phenyl

aniline-dicarboxylic acid (19) using polyphosphoric acid gave the acridone (20).

Reduction of compound (20) using aluminium/mercury amalgam, followed by reoxidation

of the resulting intermediate acridan with FeCh afforded the acridine-4-carboxylic acid

(21). Reaction of (21) with 1,1'-carbonyldiimidazole followed by addition of N,N

dimethylethylenediamine gave the acridine carboxamide, DACA (18).
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Early studies indicated that topoisomerase II (Schneider et a11988) was the main target for

acridine-4-carboxamides (DACA etc), while pointing out their non-classical mechanism

of action (Woynarowski et aI1994). In contrast to the majority of topo II poisons, DACA

displayed a wide spectrum of activity against solid tumours in animals but was only

moderately active against experimental leukaemia The ability ofDACA to overcome both

p-glycoprotein-mediated and atypical multidrug resistance together with a complex

relationship between cytotoxicity and drug concentration and exposure times, including

self-inhibition at high drug concentrations, suggested a unique mode of action (Finlay et al

1993).
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Figure 3: Structure of selected acridines

(23)
Cl-amsacrine

It has since been shown that DACA is in fact a dual poison of both topoisomerases I and

II. Structure activity studies on a series of acridine derivatives, (Figure 3) related to both

amsacrine and DACA, have identified molecular features which are important in

controlling the ability of acridines to stimulate DNA cleavage with either topoisomerases I

or II. The main findings of the study were that amsacrine (8) and its 7-chlorinated

derivative (23) poison only topo II. The addition of the N-2-(dimethylamino)ethyl group

alone, in compounds (22) and (24), slightly increased activity towards topo I, whilst

addition of the charged side-chain in combination with the removal of the anilino group

(DACA) (18) resulted in a pronounced change in the pattern of topo II induced cleavage,

promoted topo I cleavage and gave compounds with biological activity against "atypical"

multidrug resistant cell lines. The addition of the 7-chloro substituent to DACA (25)

suppressed topo II cleavage but increased stimulation of topo I cleavage and activity in

multidrug resistant cell lines (Finlay et al 1996). Further studies extending the SARs for

26



acridine-4-carboxylic acids, substituted in the 5-, 6-, 7-, or 8- position, found that steric

bulk was more important than the electronic properties of the substituent, with larger

groups leading to loss of cytotoxic activity (Spicer et al 1997). More recently, Bridewell

et al (1999) have carried out a detailed investigation into the relative roles of

topoisomerases I and II in the cytotoxic mechanism ofDACA and its 7-chloro derivative.

In cell-free systems DACA produced no evidence of topoisomerase I-mediated DNA

cleavage but inhibited enzymatic activity at concentrations >1O~M; poisoning of

topoisomerase II occurred at drug concentrations >5~M. CI-DACA induced topoisomerase

I-mediated DNA cleavage at 5~M but inhibited DNA relaxation at 1O~M, consistent with

suppression (self-inhibition) of poisoning. This compound produced only very weak

topoisomerase II-mediated DNA cleavage bands.

Hence, although both DACA and its 7-chloro derivative have dual topoisomerase IIII

specificity, DACA preferentially poisons topoisomerase II and CI-DACA preferentially

poisons topoisomerase 1.

More recently, the TARDIS (trapped in agarose DNA immunostaining) assay has been

used (Padget et al 2000) to determine whether DACA stabilised topoisomerase-DNA

complexes formed in situ in individual human leukaemia CCRF-CEM cells.

The results confirmed the findings of Bridewell et al indicating the preferential role of

topoisomerases II in the cytotoxic mechanism of DACA. Under the conditions used in the

TARDIS assay DACA appeared to be selective for topoisomerase IIa. DACA was more

effective in forming cleavable complexes with topoisomerase IIa than with either the II-~

isoform or topoisomerase 1. However, the authors concluded that even formation of low

levels ofcleavable complexes with these enzymes might still playa role in cell death.
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A panel of three human leukaemia (Jurkat) cell lines, displaying a range of resistance

mechanisms (Finlay et al 1990), has been used in a number of studies (Spicer et al 1997;

Gamage et al 1999; Gamage et al 2002; Spicer et al 2002) to predict possible

topoisomerase-mediated mechanisms of action for compounds structurally related to

DACA.

JLc is the wild-type (sensitive) cell line, JLA is resistant to the DNA intercalator amsacrine

and similar agents due to reduced levels of topoisomerase II. The doxorubicin-resistant

cell line JLD also has altered levels oftopoisomerase II. A compound with ratios (JLAI JLc

and JLoI JLc) of ICso values less than about 2-fold would possibly be expected to act by a

novel, non- pure topoisomerase II-mediated mechanism of action. In this screen, the dual

topoisomerase I and II inhibitor DACA has JLAI JLc and JLoI JLc ratios of 2.3 and 2.5

respectively, while its 7-chloro derivative, which has been shown to preferentially poison

topoisomerase I, has ratios of 1.2 and 1.3. The topoisomerase II poisons amsacrine and

doxorubicin have JLA! JLc and JLDI JLc ratios of 85 and 74 (amsacrine) and 4.4 and 13

(doxorubicin) respectively. Hence, this panel can provide an initial screen for selecting

analogues of DACA with greater absolute potency but similar or lower JLA! JLc and JLoI

JLc ratios. Examples of its use to identify compounds with a mixed topoisomerase II II

mechanism of action are discussed below, particularly where actual topoisomerase

inhibitory data confirms the suspected mode ofaction.

Several studies have shown that the relative activity of DACA (and acridines in general)

against topoisomerase I and II enzymes can be modulated by appropriate substitution of

the acridine chromophore (Spicer et al1999a; Denny et alI982).

Bridewell et al (2001) used a series of DACA analogues (mainly halogen derivatives,

monosubstituted in the 5-, 6- or 7- positions) in an attempt to correlate in vitro and in vivo
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biological activity. Topoisomerase I and II-mediated cleavage and relaxation assays and

the panel of three human leukaemia (Jurkat) cell lines were used to identify compounds in

which topoisomerase II might playa greater role in their mechanism of action. The

compounds displayed a very complex relationship between topoisomerase poisoning and

inhibition, in vitro cytotoxicity and in vivo antitumour activity. The authors hypothesised

that DACA analogues can act both in vitro and in vivo to simultaneously poison

topoisomerase II and inhibit topoisomerase I catalytic activity, and that this combination of

dual activity contributed to the high antitumour activity ofthis class ofcompound.

Compounds containing two neutral, relatively lipophilic DNA monointercalating

chromophores, such as naphthalimides (Nitiss et a11998) and anthracyclinones (Chaires

et al 1997), linked by a flexible chain are currently being developed as anticancer drugs.

A comparative study of a variety of these bis(chromophores) with their corresponding

monomers found variable but significant gains in potency for the dimeric species

(Spicer et aI1999b).

Bis(DACA) (26) (Spicer et al 1999b) and its 5-methyl analogue (27) (Gamage et al

1999) were prepared during a programme of work to develop a series of dimeric

tricyclic carboxamides, including substituted bis(acridine-4-carboxamides). The

bis(DACA) analogue was found to be 5-fold more cytotoxic than its monomer.

(26)
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Compound (27) was the most cytotoxic member from this series of acridine-substituted

bis(acridine-4-carboxamides) with general structure (28).

Over 40 analogues were prepared containing a wide range of substituents in one or two

positions of the acridine ring system. Analogues with small substituents in the 5-

position were most potent with ICso values in the nanomolar range against many cell

lines in the NCI cell line panel. Larger substituents in any position caused a significant

decrease in potency. For example, a 5-phenyl analogue was almost 250-fold less potent

than compound (27) in the NCI screen (mean GIso over the whole cell line panel). All

compounds were tested in the human leukaemia (Jurkat) cell line screen, in which the

results indicated that they were likely to have a greater effect on topoisomerase I

inhibition than topoisomerase II. It was confirmed that compound (27) inhibited

topoisomerase I activity in a cell-free system, however any effect on topoisomerase II

enzymes was not reported.
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The development of dimeric analogues of lipophilic neutral DNA intercalators has been

extended by Spicer et al (2000) to include bis(phenazines). The synthesis of compounds

with general structure (31) is outlined in Scheme 2. Activation of the acid (29) with

1,1' -carbonyldiimidazole gave the resultant N-imidazolide (30) which was isolated,

purified and reacted with a stoichiometric amount of an appropriate a,ro-bis-amine to

give the bis(phenazine-l-carboxamide) (31).

Scheme 2. General reaction scheme for the synthesis of bis(phenazines).
[Applicable to Spicer et al2000 and Gamage et al2001]

(29)

CDIIDMF..
5G-60OC/lSb

(30) (31)

A series of monocationic ring-substituted bis(phenazine-l-carboxamides), joined by the

same -{CH2)3NMe(CH2)3- linker chain used in the aforementioned bis(acridine-4-

carboxamide) series, has been prepared. These compounds, with general structure (32),

were evaluated for cytotoxic activity in a panel of tumour cell lines, including the panel of

three human leukaemia (Jurkat) cell lines used to identify compounds with a possible

mixed topoisomerase II II mechanism ofaction. All compounds had JLA! JLc and JLoI JLc

ratios <2, consistent with topoisomerase II inhibition not being their primary mechanism

ofaction.
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The most cytotoxic compound (33) was shown to (slightly) stimulate topoisomerase 1-

mediated cleavage of plasmid pBR322 DNA at low drug concentrations (0.1 and 0.25

~M). Higher drug concentrations (l and 5 ~M) were found to inhibit the relaxation of

plasmid DNA by both topoisomerase I and II.

All bis(phenazines) included in this study were preferentially active towards colon tumour

cell lines in the NCI 60 cell line screen, being on average almost lO-fold more active in the

HT29 colon cell line than in the panel as a whole; significant growth delays were produced

in vivo in the subcutaneous murine colon 38 tumour model by several bis(phenazine)

analogues.

Studies were extended to the include of a series of dicationic bis(9-methylphenazine-1-

carboxamides) joined by a variety of dicationic linkers of varying length and

conformational rigidity. Compounds with general structure (34), have been prepared and

evaluated for their in vitro growth inhibitory effects in human and murine cell lines,

including the panel of three human leukaemia (Jurkat) cell lines. (Gamage et aI2001). All

compounds had JLA! JLc and JLoI JLc ratios <1, consistent with topoisomerase II

inhibition not being their primary mechanism of action.
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This senes of bis-phenazines is exemplified by compound (35) which was potently

cytotoxic, with ICsovalues in the low/sub nanomolar range against a variety of human cell

lines, and poisoned both topoisomerase I and II in a purified enzyme system (Stewart et al

2000).

o

2

(36)

Deady et al (1999) reported the synthesis and structure-activity relationships of

chromophore-substituted analogues of the prototype indenoquinoline (36); a potent

cytotoxin which displayed patterns of cell line activity consistent with dual topoisomerase

IIlI inhibition (Deady et al 1997). A series of compounds containing mainly methoxy and

chlorine groups in the 1-,2-,3-,4- and 8- positions of the ring system were prepared. Most

compounds retained both cytotoxic potency and JL,J JLc and JLoI JLc ratios in the human

leukaemia (Jurkat) screen predictive of a dual topoisomerase IIlI mechanism of action,

except for the 4-substituted analogues which were less effective in the resistant cell lines

than the wild type, suggesting a mode of action mainly mediated by interaction with

topoisomerase II. The authors did not include any actual topoisomerase inhibitory data to

confirm the proposed mechanism ofaction by this series of indenoquinolines.

Vicker et al (2002) have reported the development of second generation, orally active,

dual topoisomerase I and II inhibitors, structurally related to DACA. Extensive structure
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activity relationships on >75 novel angular benzophenazines, conforming to general

structure (37) were carried out.

(37) (38)

The effects on cytotoxic potency of substituents in the 1-, 2-, 3-, 4-, 8-, 9- and 10-

positions of the benzo[a]phenazine fused ring system, and variation in the nature of the

amide side chain at the C-ll position were investigated.

The introduction of chirality into the carboxamide side chain resulted in a series of

enantiospecific cytotoxic agents, exemplified by compound (38), coded XR11576. The

(R)-enantiomer was ~4-fold more potent than the (S)-enantiomer with ICso values of 23

nM and 29 nM in the H69 parental human small cell lung carcinoma and H69ILX4 (P-

glycoprotein over-expressing) resistant cell lines respectively. The authors believed this

to be the first reported example wherein side chain chirality in DNA intercalating agents

had an important influence on biological activity. XR11576 stabilised both

topoisomerase 1- and II-mediated cleavable complex formation in a dose-dependent

manner between 0.03 and Il!M (Dangerfield et al 2001); cleavage patterns obtained

differed from those induced by camptothecin and etoposide. This compound has also

been shown to be unaffected by various mechanisms of multi-drug resistance, including

down-regulation of topoisomerase II and displays marked in vivo efficacy against a

number of tumour xenografts. (Mistry et aI2002).
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(39)

TAS-103, in common with DACA (39), bears a cationic (dimethylamino)ethylamino side

chain (but not amide-linked to the nucleus) and shares structurally similar features with

intoplicine (40) which also contains a (longer) aminoalkylamino side-chain. This

substituent appears to be important in the ability of these compounds to interact with

topoisomerases and in drug transport through cell membranes (Pastwa et a11998; Haldane

et al 1999). A 1997 paper by Utsugi et al reported that TAS-l 03 was a dual topoisomerase

I and II poison and also interfered with the catalytic activities of both enzymes in the low

micromolar range in vitro. Later studies by Wilson Byl and co-workers re-classified TAS-

103 as a topoisomerase II poison; dual topoisomerase poisoning was confirmed in cell free

systems, however, results from yeast genetic models revealed that poisoning of

topoisomerase I made virtually no contribution towards the cytotoxicity of TAS-I03

(Wilson Byl et al 1999). Additionally, Fortune et al (1999) reported that the apparent

inhibition of topoisomerase I catalytic activity by this compound was more probably as a

result of strong intercalative binding of the drug to DNA and not by the inhibition of

enzymatic activity. The authors confirmed that TAS-I03 does inhibit the catalytic activity

of human topoisomerase IIa by blocking the DNA religation reaction of the enzyme.

Results from the TARDIS assay (Padget et al 2000) also indicated preferential targeting of

topoisomerase IIa by TAS-103 in whole human leukaemia CCRF-CEM cells; similar

topoisomerase IIa selectivity was also reported for DACA (18).
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Despite conflicting reports on the relative contribution of topoisomerase I and II poisoning

towards the cytotoxicity ofTAS-103, activity was retained in camptothecin and etoposide

resistant cell lines and was not affected by P-glycoprotein-mediated, MRP or LRP

mechanisms of multidrug resistance (Aoyagi et al 1999, Mindermann et al 2000). TAS-

103 had a broad spectrum of antitumour activity in vivo against a variety of human

xenografts, derived from lung, colon, stomach and pancreatic cancer, and has proceeded to

Phase I clinical trial (Utsugi et aI1997).

(40)

Intoplicine (RP-60475) (40) is an in vivo active dual topoisomerase I and II poison that

underwent early clinical trials. In cell free systems and living cells intoplicine induced high

levels ofconcentration-dependent topoisomerase 1-and II- mediated strand breaks and was

active in m-AMSA- and camptothecin-resistant but not multidrug-resistant cell lines

(Poddevin et al 1993). Riou and co-workers reported structure activity relationships for a

series of 22 intoplicine analogues that displayed a range of topoisomerase 1- and/or II-

mediated cleavage activity. Compounds with dual topoisomerase I and II poisoning ability

were more active in vivo in the P388 leukaemia model than those which selectively

inhibited either topoisomerase I or II alone. It was proposed that dual topoisomerase

poisoning is crucial for antitumour activity within this series of compounds (Riou et al

1993).
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I I

(41)

The pyrazoloacridine (NSC 366140) (41) has undergone broad phase II clinical trial in a

number of tumour types (Adjei 1999) and has shown selective activity against solid

tumour cells, cytotoxicity in non-cycling and hypoxic cells and can circumvent P-

glycoprotein and multidrug resistance-associated protein (MRP) mechanisms of drug

resistance. NSC 366140 was shown to be a potent catalytic inhibitor of both

topoisomerases I and II at low micro-molar concentrations in vitro (Adjei et al 1998) but

had no effect on cleavable complex stabilisation.

OH

HO

(42)

OH

HO

(43)

OH

Dual targeting of topoisomerases I and II has been shown for some flavones and

isoflavones at high (usually milli- rather than micro-molar) drug concentrations. For

example, the isoflavone genistein (4', 5,7-trihydroxyisoflavone) (42) induced mammalian

topoisomerase II dependent DNA cleavage in vitro; the cleavage activity was comparable

to that of the standard topoisomerase II poisons m-AMSA and etoposide (Yamashita et al

1990). Boege et al (1996) reported that both quercitin (43) and, to a lesser extent genistein,

inhibited topoisomerase I-catalysed religation of DNA. Quercitin produced a moderate

amount of topoisomerase II-mediated DNA cleavage at 50!J.g/ml drug concentration,
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however, this value was well above that required for cytotoxicity by quercitin which had,

for example, an ICso of 7~g/ml against the leukaemic CCRF-CEM cell line (Austin et al

1992).

(44)

Wassermann (1990) et al reported perhaps the first example of dual topoisomerase I and II

poisoning by an antitumour agent. Actinomycin D (44), a natural antitumour antibiotic

with limited clinical use, was found to stimulate both topoisomerase I- and II- induced

DNA cleavage.

o
HO

OH 0

(45)

OH OH

OH

A 1991 paper by Yamashita et al reported dual topoisomerase I and II poisoning by the

antitumour antibiotic saintopin (45), which produced levels of topoisomerase I-mediated

DNA cleavage comparable to that of camptothecin and topoisomerase II-mediated DNA

cleavage activity equipotent with m-AMSA and etoposide, in cell free systems. Later

studies by Fujii et al, using immunoband depletion experiments with whole-cell lysates,
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indicated that topoisomerase I was likely to be the principal cellular target of saintopin

(Fujii et al 1997). Saintopin was used as a probe for the study of drug-enzyme interactions

by dual topoisomerase inhibitors. Leteurtre et al (1994) proposed a 'drug-stacking' model

that can accommodate a common topo I-topo II pharmacophore with the drug binding

through hydrogen bonding and/or stacking with a base flanking the DNA termini and

stacking with the catalytic tyrosine within the active-site pocket ofthe enzyme.

Protoberberine alkaloids, for example berberine (46), and structurally related organic

cations display a range of topoisomerase I- and/or II poisoning abilities. The

benzophenanthridine natural products nitidine (48) and fagaronine (47) are dual topo I

and II poisons (Larsen et al 1993, Wang et al 1993), whereas the protoberberine analogue

coralyne (49) poisons only topo I (Makhey et al 1996).

Structure-activity relationships on coralyne and a series of related compounds have shown

that small structural changes can have a large effect on biological properties.
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Certain protoberberines, including (50), (51), (52) and (53) exhibited selective in vitro

cytotoxicity against some solid tumour-derived cell lines, including SF-268 glioblastoma,

compared to the RPM! 8402 leukaemia cell line (Sanders 1998). Despite these compounds

being potent dual topoisomerase I and II poisons (Makhey et al 1996), this selective

cytotoxicity was not linked to their interaction with topoisomerases, rather, it was
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associated with the presence of an imminium ion and other structural features of

protoberberines, principally 3,4-methylenedioxysubstitution ofthe A-ring.

Compound (54), which differed from compound (52) only by its pattern of A-ring

substitution, poisoned only topoisomerase I but retained selective in vitro cytotoxicity.

Removal of the 8-methyl substituent and switching the A-ring dimethoxy substitution

pattern from the 2,3- positions to 3,4- in compound (55) abolished all topoisomerase

poisoning ability. The ring-opened and N-methylated quaternized coralyne analogues, (56)

and (57) respectively, were inactive against both topoisomerases I and II.

o

CHI 3

O.::::-~.()
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011 C~1ii
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~~

:~
(6) Aclarubicin

The trisaccharide anthracycline aclarubicin (aclacinomycin A) (6), used clinically in the

treatment of acute myelocytic leukaemia, has been shown to act as a (concentration

dependent) topoisomerase I poison (Nitiss et al 1997) and a catalytic inhibitor of

topoisomerase II (Sehested and Jensen 1996). This unusual pattern of dual topoisomerase

activity contrasts greatly with that of the anthracyclines doxorubicin and daunorubicin;

'classical' topoisomerase II poisons that have no effect on topoisomerase 1. The switch
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between topoisomerase II poisoning and catalytic inhibition has been linked to the

presenceof a carboxymethyl group at C-10 (Jensen et al 1993).

The observation that aclarubicin can kill both exponentially growing and plateau phase

cells by a non-cell cycle-selective mechanism may be a consequence of simultaneous

topoisomerase I and II inhibition (Bridewell et aI1997).

(58)

Lucanthone (58), an antitumour drug used as an adjuvant in radiation therapy, was

reported to inhibit the catalytic activity of topoisomerases I and II at micromolar

concentrations and stabilize topoisomerase II-DNA cleavable complexes, although the

level of DNA double strand breaks induced by lucanthone was not clear (Bases and

Mendez 1997).

Later work by Dassonneville et al (1999) confirmed that lucanthone produced

significant topoisomerase II-mediated cleavage of plasmid DNA at 20 and 50/lM drug

concentrations.
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(59)

The water-soluble homocamptothecin, BN 80927 (59), which possesses an expanded

(seven-membered) E-ring lactone (in contrast to the usual six-membered ring in the

camptothecins), has been shown to be a potent topoisomerase I poison and a catalytic

inhibitor of both topoisomerases I and II (Lavergne et al 1999). In cell-free systems, BN

80927 inhibited the topo I-mediated relaxation of supercoiled pUK19 plasmid DNA in a

dose-dependent manner, giving a maximum of 70% relaxed DNA at l~M. In

immunoband depletion experiments in intact colon HT29 cells BN 80927 induced 3-fold

higher levels of topo I-cleavable complex formation than SN-38, the active metabolite of

the clinically used drug CPT-ll (irinotecan) (Demarquay et al 2000). BN 80927 also

inhibited topo II-mediated relaxation of supercoiled pUK19 plasmid DNA producing

>80% relaxed DNA at 1 and 1O~M drug concentrations, an inhibitory activity equivalent

to that of etoposide. This dual mechanism of action is unique for a compound so

structurally related to camptothecin.

BN 80927 retained activity in PgP and MRP over-expressing cell lines and was potently

cytotoxic on populations of resting GoIG l HT29 cells; neither camptothecin, SN38 nor

etoposide showed any activity against these cells (Huchet et al 2000).

Significantly higher plasma concentrations of the active form were achieved (90%

remaining after 3h) than for camptothecin (tll2 30 min) due to greater stability ofthe seven

membered lactone ring. Insertion of the methylene spacer between the alcohol moiety and
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the carbonyl group in the conventional six-membered a-hydroxylactone ring, found in

camptothecin (12) and its clinically active analogues topotecan (13) and irinotecan (14),

considerably reduced conversion into its inactive carboxylate form. Furthermore, BN

80927, administered orally, was more efficacious than the clinically used camptothecin

derivative topotecan, administered intraperitoneally, in xenograft studies against PC3 and

DU145 transplantable prostate tumours in mice and has proceeded to clinical trial.

N-methyl-D-glucamine salt

(60)

F11782 (60), a fluorinated lipophilic epipodophylloid (Guminski et al 1999) currently in

preclinical development by Pierre Fabre, has been shown to be a potent dual catalytic

inhibitor of topoisomerases I and II (a and ~). Fl1782 inhibited topoisomerase I mediated

relaxation of plasmid DNA (ICso4.2f.!M) and inhibited the kDNA decatenation (ofkDNA)

activity of topoisomerase IIa and II~ (ICso values of 1.8f.!M and 1.3f.!M respectively) but

did not stabilise either topoisomerase 1- or II-mediated cleavable complex formation

(Perrin et al 2000). This mechanism of action is in marked contrast to that of its parent

compound etoposide; a classical topoisomerase II poison which does not act as a catalytic

inhibitor ofeither topoisomerase I or II (Hande 1998).
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It has been proposed that Fl1782 inhibits the binding of topoisomerases to DNA by a

direct interaction between the drug and enzyme. Fl1782 neither binds to DNA nor

stabilises cleavable complex formation but has been shown to induce DNA damage in

wild-type Chinese Hamster Ovary CHO-KI cells by the formation of DNA double-strand

breaks, a feature normally associated with topo poisons rather than catalytic inhibitors and

appears to be unique to Fl1782 (Barret et al 2002a). Despite having only moderate

cytotoxicity in vitro with, for example, ICso values against the human GCT27 testicular

teratoma and A2780 non-small cell lung cancer cell lines of O.l8/-.lM and 67/-.lM

respectively (Barret et al 2002b), Fl1782 displayed significant in vivo antitumour activity

against a variety of murine and human tumour models (Kruczynski et al 2000). This

compound also showed synergistic cytotoxicity in vitro when incubated simultaneously

with many standard clinical agents including the topoisomerase II poisons doxorubicin and

etoposide.

HO

(61) R=OH
(62)R=H

Mizushina and co-workers (2000) have investigated the effects of novel natural

triterpenoids (61) and (62) on the activities of many DNA associated enzymes including

human topoisomerases I and II. Concentrations of 100/-.lM for each compound inhibited

the topoisomerase I and topoisomerase II mediated relaxation of plasmid DNA by 85%

and 95% respectively. The activities of eukaryotic DNA polymerases were also inhibited

by > 70% despite neither compound binding to DNA, suggesting that they act directly on
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these enzymes even though the mode of action, amino acid sequences and three

dimensional structures of topoisomerases I and II and DNA polymerase are markedly

different. The authors did not report whether the compounds had any effect on cleavable

complex formation and suggested that they inhibited the catalytic activity of

topoisomerase I and II enzymes prior to DNA binding. Despite compound (61) being

cytotoxic in vitro against the human stomach cancer cell line NUGC with an LDso value of

38J.lM no further anti-cancer studies were reported for these triterpenoids, perhaps due to

insufficient compound isolation.

"0 (63)

COO"

Later studies from the same laboratory described analogous inhibition of topoisomerases

I and II and eukaryotic DNA polymerases by (R)-(-)-elenic acid (63), an alkylphenol

produced by an Indonesian sponge and synthesised in bulk by the authors (Mizushina et

al 2002). Elenic acid completely inhibited the catalytic activity of both topoisomerase I

and II at 2J.lM and calf DNA polymerase at 15J.lM but had no effect on other DNA

metabolising enzymes, for example, prokaryotic DNA polymerase or HIV-1 reverse

transcriptase. Compound (63) was moderately cytotoxic against a human gastric cancer

cell line NUGC-3, with a LDsovalue of 22.5J.lM. The authors erroneously appeared to

assume that lack of DNA binding by this compound (determined by uv thermal melt

analysis) would preclude cleavable complex stabilisation; the topoisomerase I poison

camptothecin binds neither to DNA nor the enzyme alone, rather only to the 'cleavable

complex'.
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(64) 3-O-Acetyl-a-boswellic acid
(AaBA)

(65) 3-o-Acetyl-(3-boswellic acid
(AIlBA)

(66) 3-O-Acetyl-ll keto-(3-boswellic acid
(AKIlBA)

00 00

(67) Betulinic acid (68) Ursolic acid (69) Oleanolic acid

00 00 00

(70) 18-I3-Glycyrrhetinic acid (71) a-Amyrin (72) I3-Amyrin

Acetyl-boswellic acids and related pentacyclic triterpenes; natural products with antiviral

(Pavlova et al 2003) and potent anti-inflammatory activity (Safayhi et al 1997), have

recently been shown to be cytotoxic in vitro against a variety of human cancer cell lines.

Studies have been carried out by Syrovets and co-workers to determine a possible

mechanism of action for this class of compound. The ability of nine structurally related

pentacyclic triterpenes to inhibit the topoisomerase 1- and IIa- mediated relaxation of

DNA was determined by gel electrophoresis. All three acetyl-a-boswellic acids [(64), (65)

and (66)] inhibited human topoisomerase I and IIa in a concentration-dependent manner.

Compound (64) was most potent with 1Cso values for the inhibition of the catalytic activity
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of topoisomerase I and ITa of ~3~M and ~1~M respectively. Betulinic acid (67), which

was the most effective of the other pentacyclic triterpenes [compounds (67) to (72)],

inhibited topoisomerase I and IIa with ICso values of ,.-.4J~M and ~5~M respectively.

None of the compounds stabilized cleavable complexes.

Within this series of triterpenes carboxylation of the pentacyclic ring structure, particularly

on rings A and D, was necessary for topoisomerase inhibition; compounds (70), (71) and

(72) lacking a carboxylic group on these rings were inactive against both topoisomerases I

and IIa. The authors found that inhibition of topoisomerases by these compounds was

independent of either DNA intercalation or minor groove binding and proposed that the

mechanism of inhibition was by direct binding to topoisomerases (Syrovets et al 2000). A

similar mechanism of dual topoisomerase inhibition has been proposed for the

aforementioned triterpenoids (61) and (62), studied by Mizushina et ai. Experiments to

determine the ability of these compounds to inhibit the topoisomerase IIf3- mediated

relaxation of DNA were not carried out. In a 1998 paper by Perrin et al topoisomerase

interacting antitumour agents were tested for their ability to selectively inhibit the catalytic

activity of either the a or f3 isoforms of topoisomerase II. Although the catalytic inhibitors

tested in this study were mostly more sensitive towards the a form, the topoisornerase II

poisons doxorubicin and mitoxantrone were three times more sensitive towards the f3

isoform (Perrin et al 1998). Topoisomerase IIf3- as a target for pentacyclic triterpenes

should not be overlooked.
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(73)

The pyrazolo[I,5-a]indole derivative (73) has been shown to be a potent dual catalytic

inhibitor of topoisomerases I and II (ICso values of 101lM and 2011M respectively) in cell

free assays and in living cells but did not stabilize DNA-topo IIII cleavable complexes. In

immunoband depletion experiments in DLD-l human colon carcinoma cells, pre-

treatment of the cells with 15011M of compound (73) prior to incubation with either

camptothecin or etoposide, resulted in restoration of free topoisomerases I and II to near

original levels. This indicates that compound (73) targets these enzymes in living cells

preventing their incorporation into the cleavable complexes by the topoisomerase poisons

camptothecin and etoposide. Compound (73) was active in vitro in the NCI human cancer

cell line panel (47 cell lines) with a mean GIsovalue of 1.211M although the authors did not

indicate whether the COMPARE programme confmned a possible topoisomerase-

mediated mechanism ofaction (Umemura et al 2002).
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(74)

A synthetic triptycene analogue (74), with potent cytotoxicity in the nanomolar range in

vitro, has recently been shown to be a dual catalytic inhibitor of topoisomerases I and II

(Wang et al 2003). This compound was more effective at inhibiting topoisomerase II

activity than m-AMSA and was equipotent with camptothecin in topoisomerase I

relaxation assays.
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(75) GA3P
(the numbers indicate the position

on the galactopyranose ring)

A cytotoxic marine microalgal polysaccharide (75), consisting of a D-galactan sulphate

unit associated with L-(+)-lactic acid, has been shown to be an extremely potent dual

catalytic inhibitor of topoisomerases I and II, irrespective of the presence or absence of the

lactate group (Umemura et al 2003). Compound (75) inhibited the topoisomerase 1-

mediated relaxation of pT2GN plasmid DNA with an ICso of ~O.017llg/mL; dextran

sulphate, a related polysaccharide had an ICso of ~0.006Ilg/mL. ICso values of
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~0.048Ilg/mL and ~0.024Ilg/mL were obtained for the inhibition of topoisomerase II

mediated decatenation of k-DNA by (75) and dextran sulphate respectively. Neither

dextran sulphate nor compound (75) stabilised DNA-topoismerase I or II cleavable

complexes. Despite being a potent catalytic inhibitor of both topoisomases I and II dextran

sulphate was not cytotoxic, whereas compound (75) had GIso values ranging from 0.67

111lg/mL in a panel of 38 human cancer cell lines; it seems unlikely that the mechanism of

cell kill for compound (75) involves topoisomerase inhibition.

Additionally, a 1998 paper by Fung et al. described the isolation of a novel antitumour

compound, codenamed 82, from the mucus of a coral, galaxea fascicularis, thought to

contain a Gal[3(l-4)GclNAc dissacharide linkage at its active centre, though full structural

characterization was incomplete. The authors claimed that extract 82 inhibited the

relaxation of supercoiled DNA by topoisomerases I and II and stabilised topoisomerase 1

DNA cleavable complexes however, as the quality of the gel photographs was extremely

poor and comparator topoisomerase inhibitors were not included in any of the experiments

the validity of the quantifiable data must be called into question (Fung et aI1998).
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The experimental antibiotics netropsin (76) and distamycin (77), along with many other

groove binding molecules, have been shown to modulate the activities of

topoisomerases I and II. Both are crescent shaped, N-methyl pyrrole-2-carboxamide

containing oligoamides, which bind with great specificity to narrow AT regions of the

minor groove following the turn of the DNA helix. This pronounced sequence

t
selectivity of binding to AT rich regions of DNA is due to a combination of steric,

conformational and electrostatic factors. McHugh et al reported that distamycin

stimulated topoisomerase I relaxation of supercoiled DNA at low drug concentrations

whilst drug concentrations of greater than 21lM resulted in inhibition of topoisomerase I

activity (McHugh et al 1989). Distamycin was found to stimulate topoisomerase II-

mediated DNA relaxation, antagonised the inhibitory effect of etoposide and modulated

topoisomerase II-mediated cleavage of SV40 DNA induced by etoposide (Fesen and

Pommier 1989). Both netropsin and distamycin were reported to stabilize topoisomerase

I-DNA ternary complexes, inducing limited but highly specific cleavage of DNA in

regions with extremely high AT content (Chen et alI993).
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Finally, a 'twin drug' approach adopted by several groups (Sondhi et a11997) involved

the physical linking of separate inhibitors of topoisomerase I and II, or the attachment of

pure topoisomerase inhibitors to other DNA-interactive carriers, in an attempt to design

molecules with dual topoisomerase targeting ability. Compound (80) is given as a

typical example of a hybrid molecule consisting of a topoisomerase I poisoning

camptothecin derivative (78) joined via by an imine linker to a topoisomerase II

poisoning 4'-O-demethyl epipodophyllotoxin derivative (79). The hybrid molecule (80)

stabilised cleavable complexes with both topoisomerase I and II, however, the level of

cleavage was considerably lower than for the unconjugated compounds (78) and (79).

Compound (80) was cytotoxic in vitro and retained activity against cell lines resistant to

either standard topoisomerase II poisons, camptothecin or the antimitotic agent

vincristine. The circumvention of topoisomerase-mediated mechanisms of drug

resistance may be a result of simultaneous targeting of topoisomerases I and II by this

compound. To date, no experimental agents of this type have entered clinical trial.
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CHAPTER THREE

[PART A]

ANTHRAQUINONE-AMINO ACID CONJUGATES



3 Anthraquinone-Amino Acid Conjugates

Previous studies from this laboratory have shown that 1:1 conjugates of anthraquinones

and amino acids (C-termina1ly free) constitute a new class of cytotoxic agent (Mincher

1993). Compounds with general structure (83) were prepared by reacting leucoquinizarin

(81) or leuco-5-hydroxyquinizarin (82) with the free amino acid ester (liberated from the

hydrochloride salt by the addition of an excess of potassium carbonate) in DMF, under

nitrogen [Scheme 3]. Derivatisation reactions were carried out to form hydrazides by

reaction of the derived anthraquinone amino ester conjugates with hydrazine hydrate in

methanol.

Scheme 3

OH 0

R

(i) H2N~COOR" HCI

K2COJ! DMF/ N2/ ~,3h

~

(81) X = H = leucoquinizarin
(82) X = OH = leuco-5-hydroxyquinizarin

(83)

The more cytotoxic members of the series were shown to exert their antitumour effect, in

part, by selective inhibition of human DNA-topoisomerase enzymes. For example, the

serine hydrazide conjugate NU:ICRF 506 (84) inhibited the in vitro catalytic activity of

topoisomerase I (ICso < 5 ug/ml) and topoisomerase II (ICso < 5 ug/ml) in plasmid DNA

relaxation experiments, determined by gel electrophoresis, but did not stabilise the

cleavable complex (in contrast to the mechanism of action of the topo I poison

camptothecin or the topo II poisons amsacrine and adriamycin). Furthermore, this
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conjugate inhibited the topoisomerase II (predominately the a-form, purified from HeLa

cells) -mediated decatenation ofkinetoplast k-DNA, with an ICso ofless than 1 ug/ml.

In vitro cytotoxicity studies against a variety of human cell lines have shown that

compound NU:ICRF 506 (84) had mean ICso values in the low !J.M range with, for

example, ICso values against human MCF-7 and ZR-75-1 human breast cancer cell lines of

8!J.M and 5.5 !J.M respectively and 1.4 !J.M against the A2780 human ovarian cancer cell

line.

o OH

o E
O Hc-:

~I

NH COOCH2CH3

NU:ICRF 506
(84)

NU:ICRF 505
(85)

Significant broad spectrum in vitro activity was also displayed by compound NU:ICRF

505 (85), a tyrosine ethyl ester conjugate with, for example, ICsovalues against the A549

human non-small cell lung cancer cell line and the daudi human lymphoma cell line of

8!J.M and 8.3 !J.M respectively. This compound was found to be an inhibitor of

topoisomerase I through stabilisation of the cleavable complex formed between DNA and

the enzyme in a manner similar to camptothecin with induction of 38% nicked DNA

lesions for compound (85) and 58% for camptothecin compared to drug-free enzyme only

controls. (Meikle et aI1995a). NU:ICRF 505 (85) has also been shown to circumvent Pgp-

mediated and altered topoisomerase drug resistance mechanisms in vitro. NU:ICRF 505

was noncross-resistant against a camptothecin resistant (3.4-fold) Chinese hamster ovarian

cell line CHO ADR-3 and only 1.8-fold resistant in the doxorubicin-resistant human
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ovarian cell line A2780AD
, generally considered to possess the classic MDR phenotype.

Hypersensitivity to the topoisomerase I overexpressing CHO ADR-r (doxorubicin

resistant) cell line was shown by NU:ICRF 505 (Cummings et aI1996).

As a consequence of these selective topoisomerase interactions the foregoing compounds

progressed to in vivo experiments where activity was demonstrated against human breast,

colon and lung xenografts, however poor aqueous solubility and insufficient

bioavailability prevented further development.

Limited molecular modelling studies (Meikle et al 1995a) were carried out on eight

anthracenyl-amino acid conjugates, which though structurally similar, differed greatly in

their topoisomerase inhibitory profiles. The eight equivalent atoms of the anthraquinone

ring system were overlaid, leaving each amino acid substituent in its preferred energy

minimised conformation. Compounds used in this study included the tyrosine ethyl ester

conjugate, the topo I poison NU/ICRF 505, NU/ICRF 513 (a dihydroxyphenylalanine

methyl ester conjugate, and topo II catalytic inhibitor) and NU/ICRF 514 (a tyrosine

methyl ester conjugate, and weak topo II catalytic inhibitor). It was found that each amino

acid substituent projected out from the overlaid anthraquinone ring system in a different

conformation with the dihydroxyphenyl ring in NU/ICRF 513 parallel with the

anthraquinone and the phenyl ring system in both NU/ICRF 505 and NU/ICRF 514

projecting from the anthraquinone in completely opposing directions. It was concluded

that the observed differences in topoisomerase inhibition for this class of compound are a

consequence of major conformational alterations brought about by small changes in the

amino acid substituent, suggesting that the structural requirements for topo I cleavage are

much more rigid than for topo II inhibition.
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Zagotto et al have synthesised a small series of D- and L- aminoacyl-anthraquinone

derivatives, analogues of the aforementioned NU:ICRF 505 (85), to investigate the

effects of chirality on DNA sequence recognition (Zagotto et al 2000).

1,4-Dihydroxyanthraquinone (quinizarin) (86) was converted to its leuco form (81)

using potassium carbonate and sodium hydrosulphite under nitrogen and reacted with

either tyrosine methyl ester (D or L) or tyrosinol (D or L), prepared by sodium

borohydride reduction of the corresponding methyl esters, to give compounds (87), (88),

(89) and (90). The synthesis is outlined below in [Scheme 4].

Scheme 4
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In vitro cytotoxicity testing found that the compounds were almost completely inactive

against human prostate (PC3) and lung (H460) carcinoma with ICso values » 100~M.

These results contrast with studies carried out in this laboratory on the L-tyrosine methyl

ester (87); it was not acknowledged by the authors that a compound previously

synthesised in this laboratory and codenamed NU:ICRF 514 (Mincher 1993) had, for
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example, ICso values against the COLO-320DM human colon cancer cell line and the

MCF-7 human breast cancer cell line of 12~M and 13.5~M respectively. Zagotto does

not report the protocol for solubilisation of the test compounds for cytotoxicity assays;

an explanation of the discrepancy may be that the agents were not truly in solution,

although phenotypic differences between cell lines may account for the observed lack of

cytotoxic potency.

Indeed, the authors claimed that DNA binding studies of the compounds could not be

performed due to serious solubility problems with precipitates forming even at

micromolar concentrations.

In a further attempt to determine possible DNA-recognition by the compounds

molecular modelling studies were carried out. The eight equivalent atoms of the

anthraquinone ring system were overlaid whilst leaving the chiral amino acid substituent

in its preferred energy minimised conformation. It was found that the stereochemistry at

the a-amino acid chiral centre had little effect on the three-dimensional structure of each

isomer. (Again, these results contrast with the molecular studies of Meikle et al in

which it was reported that small changes in the amino acid substituent had a major

effect on its conformation). The authors summarily concluded that a longer peptide

would be required for chiral recognition of DNA.

Morier-Teissier and co-workers have investigated the potential use of anthraquinone

peptide conjugates as redox active drugs by exploiting the ability of the quinone moiety to

undergo enzyme mediated reduction leading to the formation of hydroxy radicals and

thereby to effect DNA cleavage.

Initial studies reported the attempted 1,4- bis-amination of leucoquinizarin with glycine,

based upon the method of Greenhalgh and Hughes (Greenhalgh and Hughes 1968).
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When either leucoquinizarin (81) (2,3-dihydro-9,1 O-dihydroxy-l ,4-anthracenedione) or

5,8-dihydroxyleucoquinizarin (2,3-dihydro-5,8,9,1 O-tetrahydroxy-l ,4-anthraquinone)

(91) were refluxed with glycine and triethylamine in de-aerated ethanol only the

monosubstituted products (92) and (93) were obtained. The observed nuclear

monosubstitution (with the free amino acid) was thus consistent with the aminations

conducted with amino acid esters, even when the amine was used in excess (Mincher

1993). Dicyclohexylcarbodiimide and hydroxybenzotriazole mediated coupling of

compounds (92) and (93) with a preformed dipeptide His-Lys (as the Z-protected benzyl

ester) gave the protected anthraquinone-tripeptide intermediates. Co-removal of the Z-

protecting group and the benzyl ester using hydrogen bromide-saturated acetic acid gave

compounds (94) and (95) (Morier-Teissier et alI990).

OU ou 0

~
~

ou ou 0

(91)

R 0 ou

~
WI~

R 0 NU/"'.-.COOU

(92)R=U

(93)R=OU

R 0 ouW> N~
~ I 0I ;~CNH~N:

II IIo 0
(94) R=U

(95) R=OU

NU z

COOU

The gly-his-lys conjugates incorporated the known human plasma copper-binding growth

factor glycyl-L-histidyl-L-Iysine, a metal carrier with high affinity for copper and iron

(Pickart and Lovejoy 1987). The monosubstituted compounds had weak DNA-

intercalative properties but the peptide part of the molecule was shown to complex with

copper ions and under somewhat strict conditions, with hydrogen peroxide and ascorbate

produced free radicals (ultimately hydroxy radicals) that induced DNA breakage. It is

interesting to note that this approach attempted to exploit the redox properties of

anthraquinones to effect cell kill by free radicals against the trend to eliminate free radical

production in the anthraquinone and anthracycline families because of the association with
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undesirable side effects. None of the monosubstituted compounds had any indication of

potential use in cancer chemotherapy. Further studies in the same laboratory (Morier

Teissier et al 1993) were aimed at mitoxantrone analogues incorporating two side chains

(to provide improved affinity for DNA) and the metal-chelating peptide. The side chains

had diaminoethane spacers (the NCH2CH2N- pharmacophore in mitoxantrone). It was

found that 1,4-bis-amination of 5,8-dihydroxyleucoquinizarin was achieved by insertion of

the (aminoethyl)amino spacer groups; the authors did not record that these compounds

were the subject of a patented invention by the American Cyanamid Company (see

below). The method of Greenhalgh and Hughes was again adopted, this time to ensure

bis-amination, and used mono-Boc-protected ethylenediamine during the nuclear

amination step to prevent formation of the unwanted cyclization product 6-[2

aminoethyl)amino]-8, l l-dihydroxy-I ,2,3,4-tetrahydronaphtho[2,3:f]quinoxaline-7,12

dione (96).

(96)

Removal of the tBoc protecting group with trifluoroacetic acid followed by reaction with a

preformed protected tripeptide Z-Gly-Gly-L-His-OH (replacing the earlier gly-his-lys),

using the same coupling and deprotection procedure described in the previous reaction,

gave compound (97) as the dihydrobromide salt. The tripeptide gly-gly-his had earlier

been used as a metal chelating cleavage agent (Mack et al 1988). It was speculated that

such a molecule might mimic known oxidases that contain a copper-chelating group

associated with a covalently bound hydroquinone cofactor (Ito et al 1991).
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N~ANH

The ability of the anthraquinone gly-gly-his conjugate (97) to interact with calf thymus

DNA was determined using UV thermal melt analysis. Compound (97) was found to bind

strongly to DNA with a L1Tm of 17.1°C compared to 15.9°C for mitoxantrone;

fluorescence and viscometry experiments indicated an intercalative mode of binding to

DNA. This compound also formed several types of pH dependant copper-complexes,

produced a substantial amount of free radical formation and was potently cytotoxic in vitro

against the murine L1210 leukaemia and human MCF-7 breast cancer cell lines with ICso

values ofO.05f.!M and 0.80f.!M respectively.

In contrast to the monosubstituted gly-his-lys conjugate (95), which was cytotoxic in vitro

but inactive in vivo, the gly-gly-his containing conjugate (97) showed significant in vivo

activity in the P388 leukaemia model, with a TIC value of 230 at 25mglKg compared to a

TIC value of 190 for mitoxantrone at its optimal dose of 1.6mglKg.

It was speculated that the lack of in vivo activity observed with the gly-his-lys conjugate

was either due to rapid degradation of the peptide or poor cell penetration. In fact, it is

most likely that the C-terminally free carboxylic acid group would lead to poor cellular

uptake of these compounds due to ionisation at physiological pH.

Similar 4-hydroxy-1-aminoanthraquinone dipeptide conjugates, terminating in negatively

charged carboxylate groups were devoid of in vitro cytotoxicity (Meikle et aI1995b). This

was attributed to the charge preventing cellular uptake, a process that would most likely
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proceed by passive diffusion as for many of the established anti-tumour drugs (Baguley

1991) in contrast to their hydrophobic ester derivatives which were taken up by cells and

were actively cytotoxic.

Gatto and co-workers have prepared a series of peptidyl anthraquinones containing 1 or

2 side chains at positions 1 and! or 4 of the ring system (Gatto et al 1996). All

compounds possessed an amido linkage between the anthraquinone chromophore and

the first amino acid (always glycine). The mono-substituted compound (99) was

prepared by the DCC mediated coupling of Boc-glycine to 1,4-diaminoanthraquinone

(98) in the ratio of 1:2. [SCHEME 5].

Synthesis of the l,4-bis-substituted glycine conjugate (101) required formation of 0)

(bromoacetamido)-1,4-diaminoanthraquinone which was reacted with potassium

phthalimide followed by hydrazinolysis with methyl hydrazine [SCHEME 6]. Stepwise

addition of the appropriate N-protected, C-activated amino acid (gly, D-Iys, L-Iys, D-trp

and L-trp) further extended the peptide side chain up to three amino acids.

Compounds (99-107) were studied for their ability to stimulate topoisomerase II

mediated cleavage of 32P-Iabeled SV40 DNA. The glycine and tryptophan conjugates

(99), (101), (100), (102), (103), (104) and (105) displayed cleavage patterns similar to

mitoxantrone although the cleavage band intensity was considerably lower. These

compounds were also shown to be moderately cytotoxic in vitro. The glycyl conjugates

(99), (100), (101), (102) and (103) were comparable in cytotoxic potency to ametantrone

with ICso values in the low j..tM range against three tumour cell lines (HL60, HeLa and

L1210), whether one or two anthraquinone side-chains or glycine residues were present.

However, the conjugates containing D- and L-tryptophan were an order of magnitude

less active against the human leukaemia HeLa cell line (lCso values in the human HL60
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and murine Ll210 cell lines were not determined). In contrast, the lysine-containing

conjugates, (106) and (107), were completely inactive (lCso > lOO/J.M), despite

inhibiting topoisomerase II functions and binding strongly to DNA (to some extent) in a

sequence specific manner (preferentially binding to alternating GC base sequences)

(Gatto et aI1997). These results are consistent with the observation that strong sequence

specific binding to DNA alone is not sufficient for anticancer activity. Interestingly, the

higher binding affinity (2-3 fold) displayed by the D- enantiomer compared to its L

isomer (and mitoxantrone) was thought not to be purely electrostatic in nature, as would

be expected, but was attributed to more favourable hydrophobic contacts between the D

lysyl side chains and DNA base pairs.

The authors correlated cytotoxicity, and the ability to stimulate topoisomerase II-mediated

DNA cleavage, to the nature of the amino acids in the anthraquinone side chains and

attributed the lack of activity for the tryptophan and lysine conjugates to the steric bulk of

the amino acid side-chains and, in the case of lysine, the presence of additional positive

charges.
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Bielawska and co-workers have synthesised [Scheme 7] three structurally diverse L-

proline analogues of anthraquinone-2-carboxylic acid (108) containing electrostatically

neutral, anionic and basic amino acid C-termini [(109), (110) and (111) respectively]

(Bielawska et a12001a).

Scheme 7

o 0

#
11

'/'" I I ~ c .....OH

~ h

(l08) 0

L-Proline methyl ester

~

DCC

1
(i) 3-dimethylamino-l-propylamine

(ii)HCI

o ~ ",CU)
~ ",NH N

$
0 g..... oC .UC! i;

s-: I I ~ N

~ h

(111) 0

Compound (109) was prepared by carbodiimide mediated coupling of L-proline methyl

ester with anthraquinone-2-carboxylic acid. Saponification of (109) using LiOR gave

compound (110). The methyl ester conjugate (109) was aminated with 3-dimethylamino-

I-propylamine and acidified with RCI affording compound (111).

The compounds were designed as potential substrates for prolidase [E.C.3.4.13.9], an

enzyme overexpressed in some neoplastic tissues, including breast cancer. Prolidase has

the ability to hydrolyse the imido bond of various low molecular weight compounds

coupled to proline (Bielawska et al 2001b). Treatment of the compounds with prolidase

generated anthraquinone-2-carboxylic acid and L-proline.
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Cytotoxicity was determined in the MCF-7 breast cancer cell line by inhibition of

eH]thymidine incorporation into DNA. All compounds were poorly cytotoxic, compound

(109), the L-proline methyl ester, was least active with an ICso of 185f.!M and did not

inhibit topoisomerase I or II mediated pPR322 plasmid DNA at concentrations from 5

120f.!M. The N,N-dimethylaminopropyl containing conjugate (111) was found to be most

active with an ICsoof 87f.!M against the MCF-7 cell line. This compound was also found

to inhibit the catalytic activity of both topoisomerases I and II at 30f.!M and 60f.!M

respectively. The authors did not include comparator topoisomerase inhibitors in the

enzyme-mediated pBR322 plasmid DNA experiments; inspection of the gel photographs

suggests that the quality of the supercoiled plasmid was poor, calling into question the

validity of the quantifiable data.

Novel antitumour ammo acid and peptide derivatives of 1,4-bis[(aminoalkyl and

hydroxyaminoalkyl)amino]-5,8-dihydroxyanthaquinones were the subject of a 1988

European patent application by the American Cyanamid Company, EP 0295316 (Fields et

al 1988). The divalent spacer moiety contained either straight chain or branched alkyl

groups; where the spacer was -CH2-CH2- and R Was-CH2-CH2-0H then the compounds

were peptide conjugates ofmitoxantrone. Peptides typically contained 2 to 5 D or L amino

acids. The patent described the synthesis of compounds belonging to general structure

(112), and reported their in vivo activity in the murine P388 lymphocytic leukaemia model.
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R
I

X-IPEPllDEJ-N-ISPACffi)-NH 0 OH

X-[PEPllDEJ-N-ISPACffil-NH
I
R

Where R = CHzCHzOH or H

andX=H ortBoc,ZorFmoc

(112)

A later European patent application EP0489220, published in 1992, extended the scope of

the 1988 patent to include N,N'-bis(succinylpeptide) derivatives of 1,4-bis-(aminoalkyl)-

5,8-dihydroxyanthraquinones and their antibody conjugates (Fields et al 1992). The

invention described the synthesis of novel compounds belonging to general structure

(113). Peptides, typically 3 to 5 amino acid residues long, were coupled to 1,4-

bis[(aminoalkyl)amino]-5,8-dihydroxyanthaquinones, containing either straight chain or

branched alkyl groups. Addition of a C\ to C4 dicarboxylic anhydride to the peptide N-

termini and esterification with N-hydroxysuccinimidel dicyclohexy1carbodiimide allowed

reaction with antibody amino groups.

The in vivo activity of the compounds in the lymphocytic leukaemia P388 model was

reported. The inhibition of tumour growth by selected p96.5 anti-melanoma derived

monoclonal antibody conjugates was also reported in human melanoma SK-Mel-28

tumours grown in athymic mice.

o OH

o 0
II II

HO-C-(CHz)n-C-lPEPTIDEJ-NH-[SPACffil-NH 0 OH

(113)
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Ijaz and co-workers have reported the synthesis of a series of eight peptide-l-[N-(2

succinamidylethyl)amino]anthraquinones as potential AP-l transcription factor inhibitors

(ljaz et al 2001). AP-l proteins have been reported to play an important role in cell

proliferation and malignant transformation. Truncated AP-l-like peptides, of five-seven

residues, containing a lys-cys-arg motif, highly conserved in the DNA binding domain of

AP-l proteins (Abate et aI1990), were attached to the anthraquinone moiety via a flexible

linker. It was proposed that the anthraquinone chromophore would facilitate weak initial

DNA binding whilst allowing specific interaction of the peptide at the AP-l binding

domain.

Amination of l-chloroanthraquinone (114) followed by reaction with succinic anhydride

gave 1-[N-(2-succinamidylethyl)amino]anthraquinone (115) which was attached to the

(custom-synthesised) resin-bound peptide using standard peptide coupling conditions.

Simultaneous amino acid side chain deprotection and resin cleavage was achieved using

trifluoroacetic acid [Scheme 8].

The ability of the eight peptide conjugates to interact with calf thymus DNA was

determined using UV thermal melt analysis. The ~ Tm values obtained ranged from 4.8 to

10.3 °C with, unsurprisingly, higher DNA melting temperatures for peptide conjugates

containing increasing numbers of basic amino acid residues. An electrophoretic mobility

shift assay (EMSA) was used to investigate the ability of the compounds, and their

respective free peptides, to displace the binding of the AP-l protein from its DNA

consensus sequence. A concentration dependent AP-l displacement was shown for all

eight peptide conjugates. The presence of the anthraquinone moiety increased the efficacy

ofAP-l displacement relative to the free peptides.

Although the anthraquinone-peptide conjugates were assembled usmg solid phase

techniques, the compound structures were claimed in the objects of invention of an earlier
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patent (Mincher 1998) wherein solution methods were used; specific examples were

spacer-linked anthraquinone conjugates of amino acids containing flexible c.o»

diaminoalkane spacers that constitute the foundations of the compound libraries of the

present study [the NU:UB conjugate libraries].

Scheme S
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Where PEPTIDE =
Ala-Arg-Cys-Lys-Ala-OH
Ala-Lys-Cys-Arg-Ala-QH
Ala-Lys-Ser-Arg-Ala-QH
Ala-Lys-Cys-Arg-Asn-Ala-OH
Ala-Lys-Cys-Arg-Lys-Ala-OH
Ala-Lys-Cys-Arg-Asn-Arg-Ala-OH
Ala-Lys-Cys-Arg-Lys-Arg-Ala-OH
Ala-Ala-Lys-Cys-Arg-Ala-Ala-OH
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PART A

NOVEL SPACER-LINKED ANTHRAQUINONE-AMINO ACID CONJUGATES

4.1 Background

Earlier studies from this laboratory had shown that some members of a series of N

linked 1:1 conjugates of amino acids and anthraquinones interacted with either DNA

topoisomerase I or DNA topoisomerase II and at least in part, the cytotoxic properties of

these compounds correlated with enzyme inhibition in vitro. Key compounds are

exemplified by the moderate topoisomerase I poison, NU:ICRF 505 (85) and the

catalytic inhibitor of DNA topoisomerase II, NU:ICRF 506 (84) [Section 3.1]. Despite

promising in vivo activity in a number of human xenografts none of this series

progressed beyond early pre-clinical studies due to low bioavailability and poor aqueous

solubility; the latter was clearly a consequence of the presence of a terminal carboxylic

acid ester or hydrazide group in the amino acid moiety. Solubility was increased in the

corresponding sodium salts of the carboxy terminus, however, these derivatives were

devoid of cytotoxic activity, presumably as a result of poor cellular uptake of the

anionic species; similarly, anthraquinone dipeptide conjugates were also inactive and

wherein the carboxylic acid group was likely ionised at physiological pH, despite

topoisomerase I poisoning activity in cell free in vitro enzyme inhibition assays (Meikle

et a11995b)

These conjugates were mutually exclusive for either the type I or type II enzyme and the

patterns of enzyme inhibition observed for individual compounds were, in part,

rationalised on the basis of their ability to interact with or failure to bind to DNA, either

by intercalation or groove binding; in general, intercalating compounds favour

interaction with topoisomerase II whereas groove binding agents favour interaction with

topoisomerase I. The predictive value of DNA binding properties for topoisomerase
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interaction is severely limited given that ability to interact with the changed geometry of

the DNA-topoisomerase cleavable complex supersedes DNA or enzyme binding as a

determinant of biological activity. Indeed, the camptothecins bind neither to DNA nor

topoisomerases yet are stabilisers of the cleavable complex (Pommier et aI1998a).

4.2 Spacer-Linked Anthraquinone-Amino Acid! Peptide Conjugates:

Synthetic Strategy

4.2.1 Design rationale

In an attempt to overcome the drawbacks which were associated with the foregoing

compounds, spacer-linked anthraquinone amino acid! peptide conjugates have been

synthesised, in this research programme, in which the amino acid or peptide motif is

reversed to afford C-linked, N-terminally free conjugates [code-named NU:UB] of the

general structure shown in Figure 4.

Figure 4

NU:UB GENERAL STRUCTURE

(OH)H o

o

/

Rl = amino acid
side chain

+SPACER-x"3Jti-fR2J____
II R2 = salt, peptide motif

"':: \
0

or capping group

H(OH) amide (X=NH) or ester (X=O) linkage
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This design rationale was adopted in order to facilitate:

(i) improved water solubility by salt formation (usually trifluoroacetate or acetate)

at the free N terminal amino group of the peptide motif and, where appropriate,

on the side chain of basic amino acids such as lysine.

(ii) the introduction of a flexible spacer between the anthraquinone and amino acid

to potentially allow an unrestricted bimodal (part intercalative, part groove

binding) interaction with nucleic acids.

(iii) improved contact with topoisomerase enzymes as a result of the separation of

potential DNA and protein binding domains, towards the design of dual

topoisomerase I and II inhibitors.

(iv) the ease of access to oligo-peptide derivatives by stepwise addition of readily

available N-protected amino acids to the free N-terminus of the growing peptide

using standard peptide coupling reactions.

A main objective of the research programme was to correlate cytotoxicity and

topoisomerase inhibition with amino acid structure, spacer length, composition and

sequence of the peptide motif.

4.2.2 Preparation of Conjugates: Overview

The preparation of the compounds can be broken down into the following key steps:

(i) Formation of the anthraquinone spacer compound by nuclear amination ofhalo- or

hydroxy- anthraquinones with bifunctional amines (a,ro-diamines or amino

alcohols).
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EITHER

(ii) Activation of an N-protected amino acid by conversion to the active ester (0

pentafluorophenolate, or N-hydroxysuccinimide) and coupling of the activated

amino acid to a free amino terminus of the anthraquinone spacer compound to

afford amide linked N-protected conjugates.

OR

(iii) DCC mediated coupling of an N-protected amino acid to a free hydroxy terminus

of the anthraquinone spacer compound to afford ester linked N-protected

conjugates.

(iv) Deprotection of the N-protected, amide- or ester- linked conjugates, using the

appropriate reagents, to give the candidate drugs as water-soluble salts.

(v) Where appropriate, sequential coupling of additional amino acids (or peptides) by

an analogous sequence ofreactions.

4.2.3 Anthraquinone Spacer Compounds: Scope of Synthesis

The structures of the anthraquinone-spacer compounds were chosen to differ greatly

both in the substitution pattern of the anthraquinone chromophore and the structure of

the spacer group. Compounds prepared were unsubstituted aminoanthraquinones or

were further substituted with hydroxy groups in the 4- or 4,8- positions. Spacer groups

could be further sub-divided as to whether they terminated in an amino or hydroxy

group and hence coupled to amino acids via an amide or ester linkage.

The majority of compounds synthesised contained flexible spacer groups derived from

straight chain a,ro-diaminoalkanes or co-aminoalkanols (commonly 3 or 4 methylene

groups in length). The main function of the linker group was to distance the

anthraquinone (potentially intercalative DNA-binding domain) and peptide motif
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(potentially groove binding domain) to create the potential for a bimodal mechanism of

binding to DNA, considered to be important in the design of compounds with a dual

action against topoisomerase type I and II enzymes.

A limited number of conjugates were prepared where the spacer group comprised:

(i) a shorter alkyl chain.

(ii) bulky, branched (including chiral) or cyclic groups in close proximity to the

anthraquinone nucleus.

(iii) direct attachment of a cyclic amine to the N-I position of the anthraquinone.

Reduction in spacer length and increase in steric bulk and resultant conformational

restriction are features that might preclude intercalation of the anthraquinone

chromophore and result in a switch to a more groove binding mode of DNA interaction.

It was realised that the choice of spacer could also have an important effect on cell

permeability, solubility and bioavailability of the conjugates.

4.2.4 Aminoanthraquinone-Spacer Compounds Derived from Haloanthraquinones:

Synthetic Procedures

Scheme 9 outlines the scope of the chemical syntheses and general structures of each of

the types of spacer compound prepared by the nucleophilic displacement of chlorine from

readily available l-chloroanthraquinone with either an a,co-diaminoalkane or co

aminoalkanol (in excess) in DMSO, typically at 100°C or under reflux as required for

O.5h. Subsequent cooling and addition of water gave red precipitates of the crude

(hydroxyalkyl)aminoanthraquinones or (aminoalkyl)aminoanthraquinones [the spacer

compounds]; chloroform soluble compounds could be extracted and purified by column

chromatography.
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Scheme 9:

Spacer compounds prepared by nucleophilic substitution of 1-chloroanthraquinone
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Where each n is independently variable

Nucleophilic substitution of haloanthraquinones is a simple and effective procedure to

access many aminoanthraquinones in good or high yields. Although several impurities are

introduced, as judged by highly coloured trace spots on thin layer chromatograms, the

crude product is usually sufficiently pure for subsequent reactions. Katzhendler et at

(1989) conducted aminations of l-chloroanthraquinone to

(aminoalkyl)aminoanthraquinones as simple analogues of ametantrone and mitoxantrone

(7) that were shown to be relatively inactive in vivo in the murine P388 tumour model, the

most active being 1-[(2-aminoethyl)arnino]anthraquinone which was 85-fold less active

than the clinically useful anthraquinone doxorubicin (1). Several conclusions were made

75



concerning the antitumour activity of 1-(aminoalkyl)aminoanthraquinonesunsubstituted in

other nuclear positions which can be summarised as:

1. an amino group in the side chain was essential for activity and the optimal number

of carbon atoms separating the nitrogens was two; increasing the carbon chain to

C3 or C4 decreased activity 1.6- and 3.2- fold respectively. This trend was also

observed for an analogous series of bis-aminated anthraquinones (Zee-Cheng and

Cheng 1983).

2. a terminal primary amine was more active than a tertiary amine.

3. insertion of an additional ethylamino group into the side chain [more closely

related to mitoxantrone (7)] did not increase activity and, in some cases slightly

decreased it.

In the present study, the purpose of aminating anthraquinones was to provide a

platform for attachment of amino acid and peptide motifs rather than to identify

antineoplastic spacer compounds.

Given the observation that the presence of hydroxy groups substantially increased

antitumour activity of mitoxantrone (7) compared to its unhydroxylated analogue

ametantrone, Zee-Cheng et al (1987) had prepared a series of

(aminoalkyl)aminoanthraquinones either with or without hydroxy groups and in which

chlorine substitution was retained; the compound general structure for non

hydroxylated examples is given in Figure 5.
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Figure 5

(116) XI =NH(CHzhNH(CHzhOH; Xz=H

(117) XI = H; x, =NH(CHzhNH(CHzhOH

The monoaminated compounds (116) and (117) were synthesised by reacting 2-[(2-

aminoethyl)amino]ethanol with 1,5-dichloroanthraquinone and 1,8-dichloroanthraquinone

respectively in competition with bis-amination. Furthermore, the hydroxylated examples

were obtained from 1,5-dichloro-4,8-dihydroxyanthraquinone (118), as outlined in

Scheme 10. Monoamination of (118) was achieved by reacting the derived ditosylate (119)

with one equivalent of the appropriate amine to give compounds (120) and (121), after

hydrolysis of the remaining tosyl group.

Scheme 10

NH~NH~OH
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(i) HzN(CHzhNH(CHz)zOH
(ii) hydrolysis
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(120) (121)
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Compound (122) was prepared from the ditosylate of 1,8-dichloro-4,5-

dihydroxyanthraquinone in a directly analogous fashion to the preparation of (120) by

reaction with one equivalent ofN,N-dimethylethylenediamine followed by hydrolysis.

CI 0 CI

Interesting monoamination reactions occurred with 1,4-dichloro-5,8-

dihydroxyanthraquinones. When treated with aliphatic ammes m pyridine, the latter

anthraquinones gave compounds ofstructures (123), (124) and (125), i.e. displacement ofa

chlorine atom occurred.

CI 0 OH

~
~

CHh"'N~NH 0 OH

I
CH) (123)

CI 0 OH

@
HO~NH~NH 0 OH

(124)

CI 0 OH

I ~CH) ~
CHrN~NH 0 OH

(125)

However, the same reactions carried out in butanol gave compounds with structures (126)

and (127), in which the hydroxy group had been substituted.

CI 0 00 CI 0 00

(127)

When aromatic amines were used, both chlorine atoms were substituted to give 1,4-

dihydroxy-5,8-bis(arylamino)anthraquinones. Furthermore, when 1,4-dichloro-5,8-

dihydroxyanthraquinone was converted to its leuco derivative with tin and hydrochloric
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acid followed by reaction with N,N-dimethylethylenediamine, bis-amination took place.

After re-oxidation to the anthraquinone system compound (128) was obtained.

CI 0

NH~N/CH3

I
(128) CH3

The compounds were tested for biological activity against P388 leukaemia (in vivo) and

murine L1210 and human colon carcinoma (in vitro). Compound (127) was most active

whilst compounds (126), (123) and (124) also had notable activity against P388 (in vivo)

and L1210 (in vitro). The authors concluded that the optimum number of carbon atoms

between the two amino nitrogen atoms was two [consistent with the observations of

(Katzhendler et al 1989)], and suggested that a hydroxy group para to the

amino(alkylamino) group was a necessary but insufficient criterion for activity. The most

active compounds have these hydroxy groups, however, compounds (120), (121) and (122)

also have these hydroxy groups yet are inactive. It was pointed out that aryl chioro-

substituted (aminoalkyl)aminoanthraquinones were generally less active than their

corresponding hydroxy-substituted compounds in the in vivo P388 model. It is worth

noting that the P388 tumour model has been largely discredited by the oncology

community as an indicator of likely performance in the human clinical setting.
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4.2.5 Aminoanthraquinone-Spacer Compounds Derived from

Hydroxyanthraquinones: Synthetic Procedures

Examples of 4-hydroxylated and 4,8-dihydroxylated aminoanthraquinone spacer

compounds were synthesised in this research programme as platforms for amino acid

conjugation, using adaptations of literature procedures.

Because, in general, the introduction ofhydroxy or alkoxy groups into the anthracenedione

ring system enhances cytotoxic potency it was considered important to parallel the non-

hydroxylated series with hydroxylated analogues. Hydroxylation of the nucleus, as in the

case of mitoxantrone may be expected to increase cytotoxicity associated with stronger

binding to DNA and slower dissociation kinetics due to the presence of the hydroxy

groups. The method of nucleophilic displacement of chlorine from

chlorohydroxyanthraquinones to prepare aminohydroxylated compounds is generally

unsuitable. This is due either to the non-availability of starting materials with the correct

substitution pattern or because of intrinsic resistance to nucleophilic displacement of

chlorine from these more electron rich compounds; chlorine in l-chloro-4-

hydroxyanthraquinone, for example, is unreactive to amines. The strategy adopted for the

synthesis of 4-hydroxylated aminoanthraquinone-spacer compounds (130) was based on

the controlled mono-amination of quinizarin (l,4-dihydroxyanthraquinone) (129) with

primary amines [Scheme 11] for an appropriate reaction time.

Scheme 11

0 OH

~N-(C~)n-OH

~

THFf EtOH (1:1)

0 OH A,1.5-2h

(129)

o NH-(~>n-OH

o OH

(130)
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The reactions in scheme 12 outline the steps taken in the preparation of 4,8-

dihydroxyaminoanthraquinone spacer compounds, for use in amino acid conjugation, from

leuco-1,4,5-trihydroxyanthraquinone (leuco-5-hydroxyquinizarin). Methods were based

upon the reported regiospecific amination of this leuco-trihydroxyanthraquinone.

Morris et al (1986) synthesised (though not as anticancer compounds) (133) and (135)

from leuco-5-hydroxyquinizarin (82). It was found that if the intermediates (131) and

(132) were oxidised and then hydrolysed using Hel or NaOH, they each gave 5-

hydroxyquinizarin (134). However, if these intermediates were stirred with triethylamine

in dichloromethane in the presence of air, the aminoanthraquinones (133) and (135) were

formed.

Scheme 12: Regiospecific amination ofleuco-1,4,5-trihydroxyanthraquinone

OH 0

OH 0

OH 0

1NII,CH,Ph

OH 0

OH

(82)

OH OH NCHzPh

(i) Air (i) Air
(131)

~HCI
(ii) 10M HCI

lD~' or l.Sm NaOH or l.Sm NaOH
CHzClz

0 OH 0 OH 0 OH

OH

(133) (134) (135)
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Applying this methodology in this project, a mono N-tBoc protected diaminoalkane or

aminoalkanol was added to a solution of leuco-l,4,5-trihydroxyanthraquinone (82) in

dichloromethane and stirred for 6h. Oxidation was achieved by addition of triethylamine

and aeration [Scheme 13]. N-deprotection with trifluoroacetic acid converted tBoc

protected intermediates (136) into aminoalkylamino-spacer compounds (138). These

methods allowed access to nuclear-hydroxylated versions of the corresponding

unsubstituted spacers [see Scheme 9]. Alternatively, amination using either straight chain

a,ro-aminoalkanols or branched chain (including chiral) a,ro-aminoalkanols afforded the

nuclear-hydroxylated, hydroxyalkylamino-spacer compounds (137a) and (137b)

respectively.
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Scheme 13:

Spacer compounds prepared by amination of (leuco) hydroxyanthraquinones

OH OH OH

(82) OH OH

(i)

(i) tBocNH-(~>n-NHz

OH 0 NH-(CH')n-NHIBoc

~
~

(136) 0 OH

(±)8
~-(CH,)n-NH300CCF3

~
(138) 0 OH

OH 0 NH-(CH')n-OH

~
~

(137a) 0 OH
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4.2.6 Conjugation of Amino Acidsl Peptides to Anthraquinone Spacer Compounds

The foregoing sections outlined the scope and synthetic methods used to prepare nuclear

substituted and unsubstituted anthraquinone spacer compounds possessing either free

amino or alcohol groups that served as points of attachment of N-protected amino acids;

the following sections describe the selection, nature and methods used to obtain the library

ofwater-soluble amino acid conjugates.

4.2.7 Choice of Amino Acid or Peptide Motif

Amino acids were chosen to cover a wide range of neutral, polar, basic, hydrophobic,

hydrophilic, aliphatic and aromatic side chains which, as in the choice of spacer group,

could affect both drug uptake and delivery as well as affinity and specificity for DNA and

topoisomerase proteins. It was speculated that the inclusion of unnatural amino acids and

D-isomers (most proteolytic enzymes have greatly reduced activity against D-arnino acid

residues) would result in improved enzymatic stability in-vivo.

For efficient coupling of amino acids to the spacer compounds it was clearly important to

use N-protected derivatives that would require prior or in situ activation.

4.2.8 Amino Acid Protection and Deprotection

The success of synthetic organic reaction chemistry is very dependent on protection or

blocking of key functional groups to permit selective reaction at other sites in a

molecule and although some protecting groups have been used for some considerable

time, for example isopropylidene protection of 1,2-diols in sugars, modem protective

group chemistry has developed over the last 30 years (McOmie 1973). Several versatile

protecting group methods with facile deprotection have been developed for solution
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phase and solid phase reactions and have been applied to combinatorial peptide and

non-peptide libraries (lung 1996, Fenniri 2000).

A vast number ofN-a and (where necessary) side chain protected amino acids are now

commercially available. However, as these have been prepared principally for use in

solid phase synthesis, some of the harsh methods used for removal of many of the

protecting groups may not always be suitable for use with anthraquinone-peptide

conjugates (hydrogen bromide and acetic acid, for example, induces nuclear reactions).

Hydrogenolytic reductive methods were unsuitable due to facile reduction of the

quinone system (although it is conceivable that re-oxidation at a later stage may prove

feasible). In some cases, although removal of the amino acid side chain protecting group

was not performed, it was decided that the resulting partially protected conjugate may

be of interest due to the hydrophobic/ lipophilic nature of the group. The most

conveniently handled protecting groups for the a-ammo group were the widely

applicable N-tertiarybutoxycarbonyl (tBoc) and Fluorenylmethoxycarbonyl (Fmoc)

groups.

(i) N-tertiarybutoxycarbonyl (N}Boc) protection

o CH3
II I

RNH C-O-C-CH3
I
CH3

Wherever possible the amino acids used in this research programme were protected on the

a-amino group by the N-tertiarybutoxycarbonyl (N}Boc) group (Bodanszky and

Bodanszky 1994). After amino acid coupling, the 'Boc group was removed by dissolving

the protected product in trifluoroacetic acid for 0.25h at room temperature; evaporation and
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treatment of the residue with ethanolic diethyl ether with cooling conveniently afforded

solid or crystalline, water-soluble trifluoroacetate salts ofthe target conjugates.

(ii) Benzyloxycarbonyl (Z) protection

RNH ~ -0 IC-O-CHz ~ ;;

To prevent unwanted reaction on the E- amino group of the lysine side chain (and the b-

amino group of ornithine) double protection on both the a- and E- amino groups was

required. Where the a-amino protection was with the tBoc group, differential protection of

the s-group could be achieved by using the N-Benzyloxycarbonyl (Z) group (Bodanszky

1993), allowing selective removal of the tBoc group and possible subsequent addition of

further amino acids, or alternative modification, to the newly liberated a-amino terminus.

In the literature, the removal of the Z group is normally carried out using HBrl glacial

AcOH, however this method was found to give a mixture of products and considered too

reactive to the anthraquinone system. Fortunately, when used to protect the s-amino group

of lysine (or the b-amino group of ornithine), the Z group is slightly more acid labile than

normal and it was found that prolonged exposure to trifluoroacetic acid (48h) was

sufficient for cleavage of the Z protecting group to give clean reaction products.

(iii) Fluorenylmethoxycarbonyl (Fmoc) protection

o
II

RNH C-O-CHz
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The fluorenylmethoxycarbonyl (Fmoc) protecting group has also been used to provide

differential a-amino protection for amino acids such as hydroxyproline, asparagine and

histidine where side chain protection was achieved with (acid labile) O-tertiarybutyl,N-~-

trityl and N-im-trityl protection respectively. The Fmoc protecting group was removed

using 20% piperidine (by volume) in DMF (for approximately 5 minutes) and was

completely stable to trifluoroacetic acid (Carpino and Han 1972). It was necessary to

remove the Fmoc-piperidine adduct from the anthraquinone conjugate products by column

chromatography.

(iv) Trityl (Trt) protection

9RNH--C-{ >
6

The trityl (triphenylmethyl) group has been used very widely for the protection of primary

hydroxy groups in carbohydrate and nucleoside chemistry. This group was also

conveniently used here for N-protection of imidazole nitrogen in histidine and for the side

chain amide nitrogen function in asparagine. This protecting group could be easily

removed from anthraquinone conjugates of these amino acids by trifluoroacetic acid at

room temperature for the required number of hours (longer reaction times than for tBoc

removal).
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(v) Tertiarybutyl (tBu) protection

Tertiary butyl esters are often used as protecting groups for carboxylic acids including

amino acids and the hydroxy groups of serine, threonine and 4-hydroxyproline are reliably

protected in peptide synthesis as the O-tertiarybutyl (O-tBu) ethers. Here, examples of

anthraquinone conjugates incorporating these residues were successfully deprotected with

trifluoroacetic acid at ODC to room temperature over 12-24h.

4.2.9 Coupling of Amino Acids! Peptides to Anthraquinone Spacer Compounds

The synthesis of amide-linked anthraquinone peptide conjugates is outlined in Scheme

14. Pentafluorophenolate active esters of amino acids were prepared from

pentafluorophenol and a suitable N- (and if necessary side chain) protected amino acid in

dry ethyl acetate using dicyclohexy1carbodiimide (DCC) as the coupling agent. The

precipitated dicyclohexylurea (DCU) was filtered off and after evaporation, the residual

pentafluorophenolate ester was reacted with the appropriate spacer compound [for

example (138) and (139)] in DMF. Solvent extraction and column chromatography gave

an analytically pure sample of the protected intermediate (140). N-Deprotection and

conversion to the trifluoroacetates (or acetate) afforded the water soluble amide-linked

anthraquinone-amino acid conjugate salts (141) [the NU:UB library (amides)].
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Scheme 14:

Simplified Synthesis of Amide-Linked Anthraquinone-Amino Acid Conjugates

o N-+SPAa<R+NHz

~
~

(139) 0

DMF

R R
I 0 C.F,OH ~

GNH~g-O~F,~ 8NH COOH

~ Ethyl
Acetate

R

(OH) H 0 N-+SPACER+~NH0

C¢¢
(140) 0 H(OH)

Where

DCC=Dicyclohe~carbodiimide 1(i) N-deprotection
P=p-otecting group(usuallytuoeor Fmoc) (ii)TFA ~R
R =amino acid side chain W

(OH) H 0 N-+SPACER+ Ji$ocCFJ

C¢7
(141) 0 H(OH)

The synthesis of ester-linked anthraquinone-amino acid conjugates is outlined in Scheme

15. Spacer compounds terminating in a free hydroxy group (142) were coupled with the

appropriate N- (and if necessary side chain) protected amino acid in dry dichloromethane

using dicyclohexy1carbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP). The
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protected intermediates (143) were purified by solvent extraction and column

chromatography to give analytically pure samples. N-Deprotection, typically to remove

tBoc with TFA, afforded the water soluble ester-linked anthraquinone-amino acid

conjugate salts (144) [the NU:UB library (esters)].

Scheme 15:

Simplified Synthesis of Ester-Linked Anthraquinone-Amino Acid Conjugates

NfSPACFRfO"

(142)

° H(OIl)

R

1GNU-tH-CooH
CHzCI21
DMAP/DCC

R

NfsPACFRfo-c-bu-@
II

~ °
Where P = protecting group

(usually tBoc)
(143) ° H(OIl)

1N-deprotectionl TFA

(144) °

R-E I 8:)8
N SPACFRfO-C-CH-NlI.JOOCCF3

II
~ °

"(Oil)
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4.3 The NU:UB Library of Spacer-Linked Anthraquinone Amino AcidlPeptide

Conjugates: Synthesis and Characterisation

During this research programme, greater than 100 novel spacer-linked anthraquinone

amino acid/peptide conjugates (either in protected or salt forms) were prepared from

some fifteen anthraquinone spacer compounds. Due to the large number ofconjugates in

the compound library, this section necessarily discusses the synthesis and

characterisation of selected examples; the criteria for selection were: illustrations of the

scope of the reaction chemistry, protection and deprotection methods, diversity of amino

acid/peptide motif, variation in anthraquinone substitution pattern and spacer group,

conjugation via amide or ester groups, physical and spectroscopic (mass and nmr)

analysis. The full experimental procedures for the synthesis of all compounds in the

library and complete physical and chemical characterisation data are documented in

Chapter 9 (Experimental) and are preceded in Chapter 8 by a complete catalogue of

compound structures and their descriptors.

4.3.1 Example [A]: Amide-Linked (Nuclear-Unsubstituted) Aminoanthraquinone-

Mono-Amino Acid and Dipeptide Conjugates

Outline syntheses of example proline and serylproline (single amino acid and dipeptide

respectively) conjugates of aminoanthraquinones unsubstituted further in the nucleus

and with flexible spacer groups (spacers) (Example [AD, are shown in Scheme 16.

Notably, this category includes the propyl-spaced proline conjugate NU:UB 31 (208)

that was subsequently shown to be a dual inhibitor of topoisomerase I and the individual

isoforms of topoisomerase II and had in vivo antitumour activity.
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Scheme 16: Outline Synthesis Example [A]

l-Chloroanthraquinone

1 l,3-diaminopropane

AQfpROPYL SPACERtNH2
TFA-

1 Boc-PRO -0Pfp

AQfpROPYL SPACERtPRO -Boc

1 lFA

[NU:UB 31; (208)]AQ1PROPYL SPACERtPRO -~H2~OCCF3

1 Et3N/Boc- SER(O Bzl) - O Pfp

AQfpROPYL SPACERtPRO -SER(OBzl)-Boc

PfpOH
.. Boc-SER(OBzl)-OH

DCC

1 lFA

AQfpROPYL SPACERtPRO -SER(OBZI)-~H3'60CCF3

278

4.3.1.1 1-[(3-Aminopropyl)amino)anthraquinone (145)

(145)

l-Chloroanthraquinone was reacted with 1,3-diaminopropane in DMSO under reflux for

one hour. Cooling and addition of water gave a red precipitate of the title compound.

This was used without further purification since the product formed after reaction with a

tBoc protected amino acid was considerably more soluble and therefore easier to purify

than the free anthraquinone-spacer compound. The crude product was characterised by
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its CI (+) mass spectrum which showed a signal at m/z 281, corresponding to a relative

molecular mass of280 and by its subsequent reactions [Scheme 16].

4.3.1.2 1-[(3-Aminopropyl)amino]anthraquinone trifluoroacetate (146)

/(NU:UB 197)

(146)

An analytically pure sample of the spacer compound (145) was prepared as the water-

soluble trifluoroacetate salt (146). Compound (145) (crude) was purified by column

chromatography and dissolved in trifluoroacetic acid; the pure trifluoroacetate

precipitated with ether to give the title compound (146). The electrospray (+) mass

spectrum gave a signal at m/z 281 for the alkylammonium cation (RNH 3t .A signal at

m/z 113 in the electrospray (-) mass spectrum confirmed the presence of the

trifluoroacetate anion. This compound was required in a pure form for hplc monitoring

of the stability of amide-linked conjugates of this type because the anthraquinone spacer

(likely to be protonated at physiological pH) was a potential in vivo metabolite. Given

the latter it was also desirable to measure its cytotoxicity [Scheme 16].
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4.3.1.3 1-[3-(N-Tertiarybutoxycarbonyl-L-prolylamino)propylamino]-

anthraquinone (207)

(207)

Compound (207), the precursor to NU:UB 31 (208), was prepared by the reaction ofN-

Boc-proline-pentafluorophenolate with 1-[(3-aminopropyl)amino]anthraquinone (145)

in DMF. Purification of the crude product, firstly by partitioning between chloroform!

water and chloroform! aqueous sodium bicarbonate (to remove water soluble and acidic

impurities) and then column chromatography gave an analytically pure sample of the

title compound [Scheme 16]. The structure of (207) was confirmed by IH nmr

spectroscopy which showed, for example, the presence of the tBoc protecting group as a

9-proton singlet at 1.45ppm. The signals for 12 methylene protons were evident between

1.75 and 3.55ppm. The amino proton at C-1 of the anthraquinone gave a D20

exchangeable signal as a triplet at 9.75ppm. All remaining protons could be fully

assigned and the FAB (+) mass spectrum showed a signal at rn/z 478 (MHt

corresponding to a molecular mass of 477. Furthermore, elemental analysis was

consistent with that required for the title compound.
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4.3.1.4 1-[3-(L-Prolylamino)propylamino]anthraquinone trifluoroacetate (208)

/(NU:UB 31)

(208)

Deprotection of the N-protected proline conjugate (207) was carried out with

trifluoroacetic acid [Scheme 16]. A precipitate of the resultant salt (208) was obtained

from an ethanol! ether solution, the structure of which was confirmed by its IH nmr

spectrum (in d6-DMSO). This showed that the tBoc protecting group had been removed

by the absence of a 9-proton singlet at 1.45ppm, present in the spectrum of the protected

precursor (207). A one-proton triplet at 4.1Oppm was assigned to the a-methine proton

of the proline residue. The 2 protons of the NHz+ group were observed as an exchange-

broadened signal at 9.00ppm and the proton of the amide bond was seen as a triplet at

8.70ppm. The aromatic protons were all successfully assigned; H-2 and H-4 gave one

proton doublets at 7.25 and 7.45ppm respectively and H-3 a one proton triplet at

7.65ppm. The H-6 and H-7 protons were present at 7.80 and 7.95 ppm and the H-5 and

H-8 protons at 8.10-8.20 ppm. The FAB(+) mass spectrum had m/z 378 corresponding

to the complex proline cation RNHz+.
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4.3.1.5 1-[3-(N-Tertiarybutoxycarbonyl-O-benzyl-L-seryl-L-prolylamino)propyl-

amino)anthraquinone (277)

Mono-amino acid conjugate salts could be extended at the N-tenninus by further peptide

coupling reactions, exemplified by the O-protected serylprolyl adduct (277), to afford

elongated conjugate salts upon satisfactory deprotection.

/o~
D~

o NH~NHCO./'....NCO./'....NHCOOC(CH3h

(277)

The pentafluorophenolate ester of N-tBoc-O-benzyl-L-serine was prepared from the

reaction of pentafluorophenol and N-tBoc-O-benzyl-L-serine in dry ethyl acetate using

dicyclhexylcarbodiimide (DCC) as the coupling agent. The dipeptide conjugate (277)

was formed by the addition of N-tertiarybutoxycarbonyl-O-benzyl-L-serine-

pentafluorophenolate to a cooled stirred solution of the free base of the proline

conjugate (208) (liberated from the trifluoroacetate by triethylamine) [Scheme 16].

After twelve hours reaction time, solvent extraction and a single chromatographic

purification on silica gel gave the title compound (277) in an analytically pure form. The

compound was fully characterised by spectroscopy and elemental analysis. The IH nmr

spectrum showed a 9-proton signal at 1.40ppm and a 5-proton multiplet centred at

7.25ppm which were assigned to the N-tBoc and BzI protecting groups respectively. The

a-methine proton was assigned to a triplet at 4.65ppm and the serine u-methine-proton

to a quartet at 4.75ppm. The anthraquinone amino group gave a triplet at 9.70ppm. The

methylene protons of the propyl spacer group adjacent to the anthraquinone and C-
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terminus of the proline residue were identifiable two-proton multiplets at 3.60 and

3.25ppm respectively; the signal for the central methylene group of the spacer,

commonly a quintet, overlapped a J3-hydrogen of the proline ring system. A doublet at

5.45ppm was assigned to the amide proton of the tBoc group and a triplet at 6.80ppm to

the amide proton linking the spacer to the proline residue. Signals at 3.80 and 4.50ppm,

each integrating for 2 protons, were assigned to the J3 methylene protons of serine and

the methylene protons of the benzyl protecting group respectively.

Additionally, the proton-decoupled, 13C nmr spectrum showed signals for all carbon

environments. A DEPT experiment clearly differentiated the 14 (2 equivalent) methine

CH carbons, eight methylene CH2 carbons and three methyl CH3 carbon atoms with the

remaining 12 quaternary carbons being accounted for by difference. A signal at

28.35ppm was assigned to the 3 equivalent methyl carbons of the tBoc group with the

quaternary tBoc carbon appearing at 80.18ppm. The two chiral a-carbon atoms were

found (and confirmed by DEPT) at 51.31 and 60.54ppm. The low field quaternary

signals at 183.79 and 184.91ppm were assigned to the two quinone carbonyl carbons.

Both amide carbonyl groups were found at 170.44 and 171.04 ppm and a quaternary

signal at 155.15ppm was assigned to the carbamate carbonyl of the tBoc group.

Three aromatic methine carbon signals, corresponding to the (equivalent) ortho,

(equivalent) meta and para carbon atoms of the benzyl group were found in their

expected positions at 128.21 and 128.65ppm and the quaternary benzyl C-l atom was

located at 136.91ppm.

Furthermore, the FAB (+) mass spectrum showed a signal at mlz 655 corresponding to

MH+ confirming the molecular mass of 654 for (277). Elemental analysis gave good

correlation with the structure.
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4.3.1.6 1-[3-(O-Benzyl-L-seryl-L-prolylamino)propylamino]anthraquinone

trifluoroacetate (278) (NU:UB 41)

(278)

Compound (277) was partially deprotected, usmg TFA to remove the tBoc group

[Scheme 16]. The structure of compound (278) was confirmed by its IH nmr spectrum

which showed that the tBoc group had been successfully removed by the absence of a

signal at 1.40ppm, found in the spectrum of the protected precursor (277), and that the

BzI protecting group was still intact by the persistence of a signal at 7.20-7.45ppm. The

FAB(+) mass spectrum gave a signal at m/z 556 assigned to the anthraquinonyldipeptide

cation, RNH3+

4.3.2 Example [B]: Amide-Linked (Nuclear-Unsubstituted) Aminoanthraquinone-

Mono-Amino Acid Conjugates with Polar Side Chains

The butyl-spaced aminoanthraquinone conjugate (254), without further nuclear

substitution, was prepared by coupling an active ester of O-protected serine to the N-

terminus of the precursor spacer compound, followed by selective N- and 0-

deprotection of the serine residue of intermediate (253) [Scheme 17].

98



Scheme 17: Outline Synthesis Example [B]

l-Chloroanthraquinone

1 1,4-diaminobutane

AQfBUlYLSPAcmtNH2

1 Fmoc-Sm(tBu)-OSu

AQ f BUlYL SPAC m tsm(tBU ) - Fmoc

I DMF/Piperidine

+ lFA

4.3.2.1 1-[(4-Aminobutyl)amino]anthraquinone (147)

(147)

The (aminobutylamino)anthraquinone spacer compound (147) was prepared by the same

procedure as compound (145) except that the amine was 1,4-diaminobutane [Scheme

17]. The FAB(+) mass spectrum showed a signal at mJz 295, corresponding to a

molecular mass of 294. The (crude) compound was judged sufficiently pure for

subsequent reactions.
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4.3.2.2 1-[4-(N-a-Fluorenylmethoxycarbonyl-O-tertiarybutyl-L-serylamino)butyl-

amino]anthraquinone (253)

Use of the tertiary butyl protecting group (more acid labile than benzyl) in the

orthogonally-protected, activated serine derivative allowed the facile synthesis of the

seryl conjugate (254), later shown to be antitumour active in vivo, via the doubly

protected intermediate (253).

o

/C(CH3h
./0

~ ~ ~NHCO~NHCOO
NH- '-..../ '-..../

(253)

Compound (253) was prepared by the reaction of the butyl spacer compound (147) with

N-a-Fmoc-O-tBu-serine-N-hydroxysuccinimide in THF [Scheme 17]. The structure of

the compound was confirmed by its IH nmr spectrum. The tertiary butyl group gave a 9

proton singlet at Ll Sppm. Signals for the methylene protons of the butyl spacer group

together with H-9 of the Fmoc group were found between 1.65 and 3.45ppm. The chiral

methine proton was assigned to a quartet at 3.85ppm and the seryl methylene group gave

a two-proton multiplet at 4.20ppm. A two-proton doublet at 4.40ppm (vicinal coupling,

J value 6 Hz) was assigned to the Fmoc methylene protons. Signals for the carbamate

and amide NH protons were found at 5.85 and 6.65ppm, derived from the Fmoc group

and spacer-serine junction respectively. All signals in the aromatic region of the

spectrum were successfully assigned. H-2 of the anthraquinone skeleton gave a one

proton double doublet at 7.05ppm. Signals for H-3 and H-4 of the anthraquinone and H

I and H-8 of the Fmoc protecting group were found between 7.20 and 7.40ppm. Fmoc

H-2, -4, -5 and -7 protons gave signals at 7.50-7.65ppm. A 4-proton multiplet was
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assigned to the remaining Fmoc protons and H-3 and H-6 of the anthraquinone system.

The anthraquinone H-5 and H-8 protons were found at 8.20-8.30ppm and the arylamino

proton gave a characteristic one-proton triplet at 9.75ppm. The FAB(+) mass spectrum

had m/z 661 (MHt confirming a molecular mass of 660.

4.3.2.3 1-[4-(L-Serylamino)butylamino]anthraquinone trifluoroacetate/

(254) NV:VB 44

(254)

The Fmoc protecting group was removed from compound (253) using piperidine in

DMF. The crude product was purified by solvent extraction and silica gel

chromatography using a chloroform-methanol gradient. The partially deprotected

compound was dissolved in TFA for 24 hours to remove the tertiarybutyl group.

Conversion to the free base allowed purification by further chromatography using

initially chloroform and a chloroform-ethyl acetate-methanol (16:3:1) gradient. The

product was converted to the trifluoroacetate affording an analytically pure sample of

the title compound (254) [Scheme 17].

The IH nmr spectrum showed signals for the spacer group protons between 1.45 and

3.35ppm. The o-methine proton and the methylene protons of the hydroxymethylene

group gave signals between 3.70 and 3.85ppm. Two exchange-broadened signals at

5.55ppm and 8.45ppm were assigned to the hydroxy and amide protons respectively.
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The 3 protons of the NH3+ group were observed between 7.90 and 8.30ppm. All

aromatic protons were successfully assigned. The FAB(+) mass spectrum had a signal at

rn/z 382 for the species RNH/. Also, good correlation was obtained between the

determined and theoretical elemental composition.

4.3.3 Example [C]: Amide-Linked (Nuclear-Unsubstituted) Aminoanthraquinone-

Mono-Lysine Conjugates

The preparation of lysine conjugates was interesting from a number of points of view,

including the prospect of increased aqueous solubility as a consequence of bis-salt

formation on the <l- and E- amino groups. Lysine residues, in common with arginine are

normally protonated in the side chains and may possess increased DNA binding

potential; the lysine (K)-containing peptide motif, SPKK (without native DNA binding

properties) was coupled to an anilinoacridine in the design of hybrid intercalating and

groove binding agents. The SPKK unit, containing a beta-turn, was postulated to be

located in the minor groove with electrostatic bonds between E-N atoms of the lysine side

chains and DNA phosphate groups. However, the intercalative process for an SPKKSPKK

octamer hybrid anilinoacridine was hindered by binding of the peptide group resulting in

reduced DNA binding affinity and a corresponding reduction in biological activity (Bailly

1992). Here, mono- and bis- salts of lysine (and related ornithine) conjugates were

synthesised as illustrated in Scheme 18 for lysine compounds (238) and (244).
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Scheme 18: Outline Synthesis Example [C]

AQ BUlYL SPACER NHz

Boc-LYS(Z)-OSu

(i)TFA
I (ii) Et;JN
+ (iii) Glacial Acetic Acid

(238)

Boc- LYS(Boc)-0 Su

AQfBUlYLSPACER1LYS(BOC)-BOC

TFA

AQf BUlYL SPACER1LYS-«(l,& )bis-~H3~OCCF3

244

4.3.3.1 1-[4-(N-a-Tertiarybutoxycarbonyl-N-s-benzyloxycarbonyl-L-

lysylamino)butylamino]anthraquinone (237)

o
»<: »<: ~NHCO~NHCOOC(CH3h

NH' <:> <:»:

(237)

Compound (237) was prepared by the reaction of the butyl spacer precursor (147) with

N-a-Boc-N-E-Z-L-Iysine-N-hydroxysuccinimide ester in DMF. Purification by solvent

extraction, column chromatography and recrystallisation from absolute ethanol afforded

the title compound in an analytically pure form [Scheme 18]. The structure was

confirmed by both IH and l3C nrnr spectroscopy. The IH spectrum showed, for example,
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a signal for a 9-proton singlet at 1.45ppm confirming the presence of the tBoc group.

The amide proton was assigned to a one-proton triplet at 6.45ppm and the phenyl ring of

the N-E-Z group was seen as a 5-proton broad singlet at 7.30ppm. All other protons were

successfully assigned. Furthermore, a signal in the FAB(+) mass spectrum at m1z 658

(MH)+ corresponded to the required molecular mass of 657.

Additionally, all 37 carbon signals in the Be nmr spectrum could be accounted for. A

signal at 28.32ppm was assigned to the three equivalent methyl groups ofthe tBoc group

and the tBoc quaternary carbon gave a signal at 80.12ppm. Signals for the total of eight

methylene carbons of the butyl spacer group and the lysine side chain were found (and

confirmed by DEPT) at 22.56, 26.32, 27.24, 29.49, 31.85, 38.96, 40.38 and 42.43ppm

The lysine a-carbon gave a signal at 54.58ppm. The amide carbonyl carbon was

assigned to a peak at 172.25ppm with the tBoc and Z (carbamate) carbonyls giving

signals at 156.65 and 155.90ppm. The quaternary carbon of the phenyl group was

assigned to a peak at 136.58ppm and five other quaternary carbon signals were assigned

to the anthraquinone skeleton of (237).

There was also good correlation with the expected elemental analysis.
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4.3.3.2 1-[4-(N-E-benzyloxycarbonyl-L-lysylamino)butylamino]anthraquinone

acetate (238) (NU:UB 19)

(238)

The doubly protected compound (237) was partially deprotected using trifluoroacetic

acid to give 1-[4-(N-E-Z-L-Iysylamino)butylamino]anthraquinone trifluoroacetate as the

major product. Purification of this lysine conjugate was performed on the free base;

column chromatography was necessary to remove traces of the bis-deprotected

compound. The pure free base was converted to an analytically homogeneous sample of

the acetate salt (238) [Scheme 18]. The structure of the compound was confirmed by

elemental analysis and spectroscopic techniques. The IH nmr spectrum ofthe compound

showed, for example, a two proton quintet at 3.15ppm which was assigned to a

methylene group of the butyl spacer (adjacent to NHCO). The benzylic methylene group

gave a two-proton singlet at 4.95ppm and the amino proton was seen as a characteristic

triplet at 9.70ppm, together with full assignment of all other proton signals.

The BC nmr spectrum of (238) showed signals for the eight methylene carbons of the

butyl spacer group and the lysine side chain at 23.48,26.89,27.65,30.21,35.75,38.71,

41.10 and 42.72ppm with the benzylic carbon assigned to a signal at 65.92ppm.
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The electrospray (+) mass spectrum had m/z 557, corresponding to the lysyl (mono)

cation RNHt, and a signal at m/z 59 in the electrospray (-) spectrum confirmed the

presence of the acetate anion. Additionally, the elemental analysis was consistent with

theory.

4.3.3.3 1-[4-(N-(a,E)-Di-tertiarybutoxycarbonyl-L-Iysylamino)butylamino]

anthraquinone (243)

The bis-trifluoroacetate lysine conjugate (244) was conveniently prepared from the u.s

bis (tBoc) intermediate (243).

o
»<: /'... ~NHCO~NHCOOC(CH3h

NH - <:»: '""-./

o
(243)

The doubly protected intermediate was prepared by the reaction of N-(a,E)-di-tBoc-L

lysine-N-hydroxysuccinimide ester with the anthraquinone-butyl spacer compound

(147) in THF [Scheme 18].

The IH nmr spectrum of the compound showed unresolved signals, integrating to 20

protons, at 1.30-1.55ppm which confirmed the presence of the two tBoc protecting

groups along with the y-methylene protons of the lysine side chain. The signals for the

remaining 14 methylene protons were evident between 1.60 and 3AOppm. The chiral

methine proton was assigned to a one-proton quartet at 4.05ppm. The NH protons of the
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u- and E- tBoc (carbamate) protecting groups were found as two broad singlets at 5.15

and 4.60ppm, respectively, and the amide proton was assigned to a triplet at 6.35ppm.

All proton signals of the anthraquinone ring system were successfully assigned.

The FAB(+) mass spectrum had m/z 623 (MHt, confirming a molecular mass of 622,

with fragmentation peaks at m/z 523 and 423 that corresponded to the successive loss of

the tBoc protecting groups. Furthermore, elemental analysis was consistent with

calculated values.

4.3.3.4 1-[4-(L-Lysylamino)butylamino]anthraquinone bis-trifluoroacetate (244)

I(NU:UB 20)

ee
~"'OOCC:O;

(244)

Deprotection of compound (243) was carried out using trifluoroacetic acid [Scheme 18].

The structure of the resultant salt (244) was confirmed by IH, Be nmr and mass

spectroscopy. The IH nmr spectrum showed, for example, a signal for the amide proton

at 8.55ppm and the methylene protons for the butyl spacer and the lysine side chain

were evident between 1.30 and 3.40ppm. The amino proton on the anthraquinone was

assigned to a one-proton triplet at 9.65ppm.

The Be nmr spectrum of the compound showed 25 different carbon signals. A DEPT

experiment confirmed the presence of the eight methylene group carbons of the spacer
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residue and lysine side chain. The chiral methine carbon gave a signal at 52.64ppm. The

remaining seven methine carbon signals were assigned to the anthraquinone skeleton.

The electrospray (+) mass spectrum gave a signal at m/z 423 corresponding to the

species [R(NH2)NH3t. In general, bis-amine salts of lysine and analogous ornithine

conjugates consistently gave rise to the mono-cation/mono-free base ions in FAB and

electrospray mass spectra, rather than the doubly-charged ion. The presence of the

trifluoroacetate anion was confirmed by the electrospray (-) mass spectrum which

showed m/z 113.

4.3.4 Example [D]: Amide-Linked (Nuclear-Unsubstituted) Aminoanthraquinone-

Mono-Heteroaromatic Amino Acid [Histidine] Conjugates

Scheme 19: Outline Synthesis Example [D]

AQ PROPYL SPAcm NH2

l Fmoc-HIS(Trt)-OPfp

AQfpROPYLSPAcmtHIS(Trt)-FmOC

l DMF/ Piperidine

AQfpROPYL SPAcmtHIS(Trt)-NH2

1 lFA

AQfpROPYL sPAcmtHIs -~H3~OCCF3

257
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4.3.4.1 1-[3-(N-a-Fluorenylmethoxycarbonyl-N-im-trityl-L-histidylamino)propyl-

amino]anthraquinone (255)

Histidine conjugates were conveniently synthesised using the acid-labile trityl group to

protect the imidazole nitrogen of the heteroaromatic side chain with retention of the

base-labile Fmoc group at the alpha amino group.

o

(255)

This orthogonally bis-protected compound was prepared by the reaction of N-a-Fmoc

N-im-trityl-L-histidine pentafluorophenolate ester with the propyl spacer compound

(145) in THF. The crude product was purified by solvent extraction and column

chromatography. Recrystallisation from ethyl acetate gave the title compound in an

analytically pure form [Scheme 19]. The structure was confirmed by its FAB(+) mass

spectrum which gave a signal at m/z 882 for (MHt and 904 [(M+Natl corresponding

to a molecular mass of 881. Elemental analysis was consistent with that calculated for

the compound.
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4.3.4.2 1-[3-(N-im-trityl-L-histidylamino)propylylamino]anthraquinone (256)

(256)

The foregoing bis-protected intermediate (255) was treated with piperidine in DMF at

room temperature to remove the N-a-Fmoc protecting group. The crude product was

purified by solvent extraction and silica gel column chromatography afforded an

analytically pure sample of the partially deprotected histidine conjugate (256) [Scheme

19]. The compound was characterised by IH and l3e nmr spectroscopy. The IH nmr

spectrum gave a two proton signal at 2.10ppm for the NH2 group confirming the

successful removal of the Fmoc protecting group; full assignment of all other proton

signals was possible. The "c nmr spectrum of (256) showed 25 different signals.

Signals for four methylene carbons (propyl spacer and histidine residue) were found at

29.31,32.92, 36.99 and 40.68ppm. The chiral a- carbon gave a signal at 55.56ppm and

the quaternary trityl carbon was assigned to a signal at 75.32ppm. The FAB(+) mass

spectrum had a signal at m/z 660, confirming a molecular mass of 659.
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4.3.4.3 1-[3-(L-Histidylamino)propylylamino]anthraquinone trifluoroacetate (257)

/(NU:UB 30)

(257)

Treatment of compound (256) with TFA for 1 hour removed the trityl protecting group

and concomitantly gave the bis-trifluoroacetate salt of the target histidine conjugate

(257). This conjugate was purified by silica gel column chromatography on the free base

(derived by treatment with trithylamine) and re-conversion to the trifluoroacetate bis-salt

[Scheme 19]. The compound was characterised by 'n nmr and mass spectroscopy. The

IH nmr spectrum had, for example, signals for the 6 methylene protons of the spacer

group, comprised of a two proton quintet for the central methylene protons centred at

1.8Oppm and a four proton signal for the methylenes on each flank between 3.30 and

3.65ppm. The chiral methine proton and the amide proton were assigned to triplets at

4.05 and 8.60ppm respectively. All other protons were assigned. The electrospray (+)

mass spectrum had a signal at m/z 418 corresponding to the species [R(NH2)NH3+], the

mono-cation/mono-free base, rather than the doubly-charged ion, in common with the

bis-lysine conjugate (244). Furthermore, a signal at m/z 113 in the electrospray(-)

spectrum confirmed the presence ofthe trifluoroacetate counter anion.

111



4.3.5 Example [E): Ester-Linked (Nuclear-Unsubstituted) Aminoanthraquinone-

Mono-Amino Acid Conjugates

Entry to the ester-linked examples of the NU:UB library was easily achieved via the

(hydroxyalkyl)aminoanthraquinone intermediate spacer compounds, exemplified by the

hydroxybutylamino compound (150), upon esterification with the appropriately

protected amino acid derivative under DCC-mediated coupling conditions [Scheme 20].

Scheme 20: Outline Synthesis Example [E]

l-Chloroanthraquinone

1 4-amino-l-butanol

AQfBUroxy SPAcmtoH

1 Boc-ALA-OHIDCC IDMAP

AQfBUroXY SPAcmtALA-BOC

1 TFA

4.3.5.1 1-[(4-Hydroxybutyl)amino)anthraquinone (150)

o
»<: »<: ~OH

NH - <:»: <:»:

(150)

l-Chloroanthraquinone was aminated with 4-amino-1-butanol to afford the crude title

compound upon precipitation with water. The crude product was partially purified by

passing through a silica gel pad prepared with chloroform to remove unreacted 1-
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chloroanthraquinone. The title compound, eluting with chloroform-methanol (9:1), was

deemed sufficiently pure for subsequent reactions [Scheme 20]. The structure of the

compound was confirmed by its 1H nmr spectrum which had, for example, a two-proton

triplet for the methylene protons of the primary alcohol and a two-proton triplet at

3.35ppm for the methylene protons adjacent to the amino group; the centrally located

methylenes gave rise to an unresolved, four-proton multiplet between 1.65 and 1.95ppm.

Complete assignment of the anthraquinone ring system was possible. The electron

impact mass spectrum had signals at m/z 295 and m/z 277 for the molecular ion and

dehydration product, respectively.

4.3.5.2 1-[4-(N-Tertiarybutoxycarbonyl-L-alanyloxy)butylamino]anthraquinone

1(193)

Esterification of spacer compound (150) with N-tertiarybutoxycarbonyl -L-alanine gave

the protected intermediate (193), a key step towards the synthesis of the significantly in

vivo-active alanine conjugate NU:UB 73 (194) [Scheme 20].

o

~U3

»<: »<: ~oco~NUCOOC(CU3h
NU" <»: <;>

(193)

Esterification was conducted with dicyclohexylcarbodiimide (DCC) coupling, promoted

by 4-dimethylaminopyridine (DMAP) in dichloromethane over twelve hours.

Precipitated dicyclohexylurea was filtered off and the crude product was purified by

solvent extraction and column chromatography using toluene: ethyl acetate (4:1). The

structure of the compound was confirmed by its 1H nmr spectrum which included a shift
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in the two-proton triplet methylene protons (of the precursor hydroxymethyl group) to

4.40ppm, consistent with esterification of the hydroxy group. A twelve-proton

unresolved signal between 1.35 and 1.45ppm accounted for the additional alanyl methyl

group protons and those of the tBoc protecting group.

The strong signal at m/z 467 in the FAB(+) mass spectrum (MHt confirmed the

molecular mass of 466.

4.3.5.3 1-[4-(L-alanyloxy)butylamino]anthraquinone trifluoroacetate (194)

/(NUUB 73)

Standard deprotection of the intermediate (193) with trifluoroacetic acid gave the water-

soluble alanine conjugate NU:UB 73, that had good antitumour activity against

experimental solid tumour models.

(194)

Deprotection of compound (193) was necessarily performed during a controlled period

of no more than fifteen minutes otherwise some cleavage of the ester bond occurred

[Scheme 20]. The structure of (194) was confirmed by its IH nmr spectrum. The methyl

group of the alanine residue gave a 3-proton doublet at 1.35ppm (J 7Hz). The 2 central

methylene groups of the butyl spacer were found between 1.60 and 1.80ppm. The two

remaining methylene groups were assigned to signals at 3.40ppm (adjacent to N) and

4.10ppm (adjacent to 0) respectively. The chiral methine proton was a one-proton

multiplet at 4.20ppm. All of the aromatic protons were successfully assigned; H-2 and
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H-4 appeared as double doublets at 7.25 and 7.4ppm respectively, H-3 gave a multiplet

at 7.60ppm, H-6 and H-7 were found between 7.75 and 7.85ppm and H-5 and H-8 at

8.25-8.35ppm. A broad singlet centred at 8.1Oppm was assigned to the NH3+ group. The

arylamino proton was found as a familiar triplet at 9.70ppm.

The structure of the compound was also confirmed by FAB mass spectroscopy. A signal

at m/z 367 corresponded to the mono-cation (RNH3t .Elemental analysis gave good

agreement with theoretical values.

4.3.6 Example [F]: Ester-Linked (Nuclear-Unsubstituted) Aminoanthraquinone-

Mono-Amino Acid Conjugates with Chiral Spacer Groups

As part of widening the scope of the syntheses and systematic variation of the nature of

the spacer group, cyclic secondary amines were used in the nucleophilic amination of 1

chloroanthraquinone. Structurally hindered examples included the chiral prolinol

derived spacer (155), the precursor of the ester linked alanyl conjugate (271) [Scheme

21].
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Scheme 21: Outline Synthesis Example [F]

l-Chloroanthraquinone

1 L-prolinol

AQfL-PROLlNOL SPAcmtoH

1 Boc-ALA-OH/DCC IDMAP

AQfL-PROLlNOLSPAcmtALA-BOC

1 lFA

271

4.3.6.1 (2S)-I-[(2-Hydroxymethyl)pyrrolidinyl]anthraquinone (155)

~ OH

° "N~

(155)

When the relatively expensive L-prolinol was used as the amine in reaction with 1-

chioroanthraquinone, less than the usually large excess of amine was used; it was found

that yields of the desired product were boosted by addition of pyridine when heating in

DMSO. Precipitation with water gave the crude title compound which was used without

further purification [Scheme 21]. Its structure was confirmed by the FAB(+) mass

spectrum wherein the base peak at rn/z 282 for the ion MH+ corresponded to the

molecular mass of 281 Daltons.
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4.3.6.2 (2S)-2-[(9,10-Dioxoanthryl)pyrrolidin-2-yl]methyl (2S)-2-[(tertiarybutoxy)-

carbonylamino]propanoate (270)

(270)

(2S)-1-[(2-Hydroxymethyl)pyrrolidinyl]anthraquinone (155) was coupled to N-tBoc-L-

alanine, using Dee and DMAP in dichloromethane [Scheme 21]. The protected

intermediate (270) was isolated in a pure form by solvent extraction and

chromatography by an identical procedure (above) to that used for the related alanine

intermediate (193). The structure of (270) was confirmed by its IH nmr spectrum which

included a 3-proton doublet at 1.25ppm for the methyl group of the alanine residue. A 9-

proton singlet at 1.45ppm and a one-proton doublet at 5.40ppm (assigned to the

carbamate NH proton) confirmed the presence of the N-tBoc protecting group. All

methylene protons of the spacer pyrrolidine ring aromatic protons were resolved and the

anthraquinone system was successfully assigned.

The base peak in the FAB(+) mass spectrum at m/z 479 for the ion (MH)+ confirmed the

molecular mass of478 Daltons. Elemental analysis figures were consistent with theory.
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4.3.6.3 (2S)-2-[(9,10-Dioxoanthryl)pyrrolidin-2-yl]methyl (2S)-2-aminopropanoate

trifluoroacetate (271) (NU:UB 171)

(271)

Deprotection of intermediate (270) with trifluoroacetic acid [Scheme 21] gave the title

compound (271) whose structure was confirmed by its 1H nmr spectrum which showed

that the N-tBoc protecting group had been removed (by the absence of the 9-proton

singlet in the spectrum of the protected precursor). The spectrum showed, for example, a

3-proton doublet at 1.35ppm for the methyl group of the alanine residue in addition to a

two-proton multiplet at 4.30ppm for the methylene group adjacent to the ester bond. The

aromatic protons were all evident between 7.65 and 8.20ppm. Full assignment of all

other proton signals was possible in confirmation of the structure. The electrospray (+)

mass spectrum of the compound showed a peak at m/z 379 for the species RNH3".

The base peak in the electrospray (-) mass spectrum at m/z 113 confirmed the presence

of the trifluoroacetate anion. Elemental analysis data was consistent with that required

for the title compound.

4.3.7 Example [G]: Ester-Linked (Nuclear-Mono-Hydroxylated)

Aminoanthraquinone-Mono-Amino Acid Conjugates

Access to the 4-hydroxy-1-aminoanthraquinone system was achieved by controlled

amination of 1,4-dihydroxyanthraquinone (quinizarin), as illustrated with 3-

aminopropanol [Scheme 22].
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Scheme 22: Outline Synthesis Example [G]

1,4-Dibydroxyanthraquinone

t 3-Amino-t-propanol

4-0H-AQfpROPOXY sPAcmtoH

t Boc-GLY-OH/DCC IDMAP

4-0H-AQfpROPOXY sPAcmtGLY-BOC

t lFA

174

4.3.7.1 4-Hydroxy-l-[(3-hydroxypropyl)amino]anthraquinone (156) (NU:UB 58)

o NH~OH

(156)

1,4-Dihydroxyanthraquinone and 3-amino-I-propanol were heated in ethanol and THF

(1: I) over a steam bath for 1.75h with close monitoring by t.l.c., which showed that a

major purple product had formed, together with the emergence of the blue (presumed)

1,4-bis-substituted compound, at which point the reaction was stopped and immediately

subjected to silica gel chromatography to prevent further reaction [Scheme 22]. The

major product was eluted using toluene-ethyl acetate (4:1) and recrystallised from

ethanol to give the title compound (156). The structure of the compound was confirmed

by I H nmr and FAB(+) mass spectroscopy. A two-proton signal (quintet) in the IH nrnr

spectrum at 1.50ppm was assigned to the central methylene group of the propyl spacer.

119



The two remaining methylene groups of the spacer gave signals at 3.45ppm (CH2

adjacent to N) and 3.55ppm (CH2 adjacent to OH). The spacer hydroxy proton was a

triplet at 4.70ppm and the aryl hydroxy proton was a singlet at 13.65ppm. The aromatic

protons were all successfully assigned; H-2 and H-3 gave doublets at 7.30 and 7.45ppm

respectively, H-6 and H-7 protons were found between 7.80 and 7.90ppm and H-5 and

H-8 at 8.15-8.25ppm. The arylamino proton gave a triplet at 1O.70ppm. The base peak

in the FAB(+) mass spectrum at mlz 298 for the ion (MHt confirmed a molecular mass

of 297 Daltons.

4.3.7.2 4-Hydroxy-l-[3-(N-tertiarybutoxycarbonylglycyloxy)propylamino]

anthraquinone (173)

(173)

Esterification of 4-hydroxy-l-[(3-hydroxypropyl)amino]anthraquinone (156) with N

'Boc-glycine, by the same procedure adopted for (foregoing) protected conjugates (193)

and (270), afforded the title compound (173) which was analytically pure after

chromatography and precipitation from an ethyl acetate-pentane mixture (1:50) [Scheme

22]. The structure of the compound was confirmed by its IH nmr spectrum. A 9-proton

singlet at 1.45ppm together with a 1 proton broad singlet at 5.20ppm confirmed the

presence of the N-tBoc methyl and carbamate NH protons. The methylene group of the

glycine residue was assigned to a 2-proton doublet at 4.00ppm ( J 5Hz). Signals for the

3 methylene groups of the propyl spacer were found at 2.l0ppm (central CH2), 3.50ppm

(adjacent to N) and 4.35ppm (adjacent to 0). A one-proton triplet at 10.30ppm and a
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one-proton singlet at 13.60ppm were assigned to the arylamino and hydroxy protons

respectively. The anthraquinone protons were fully assigned. The base peak in the

FAB(+) mass spectrum at rnIz 455 for ion (MHt confirmed a molecular mass of 454.

The compound was further characterised by a satisfactory elemental analysis.

4.3.7.3 4-Hydroxy-l-[3-(glycyloxy)propylamino]anthraquinone trifluoroacetate

(174) (NU:UB 165)

(174)

Compound (173) was deprotected using trifluoroacetic acid [Scheme 22]. The structure

of the trifluoroacetate (174) was confirmed by nmr and mass spectroscopy and

elemental analysis. The IH nmr spectrum of the compound showed, for example, a two-

proton singlet at 3.90ppm for the methylene group of the glycine residue and a triplet at

10.30ppm, integrating to 1 proton, which was assigned to the arylamino proton. All

other signals were successfully assigned. A signal in the electrospray(+) mass spectrum

at rnIz 355 was assigned to the RNH3+ cation. The base peak in the electrospray(-) mass

spectrum at rnIz 113 corresponded to the trifluoroacetate anion, confirming a molecular

mass of 468 Daltons. Finally, there was good correlation with the expected elemental

analysis.
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4.3.8 Example [H]: Amide-Linked (Nuciear-Dihydroxylated)

Aminoanthraquinone-Mono-Amino Acid Conjugates

Regiospecific amination of leuco-l ,4,5-trihydroxyanthraquinone with primary diamines

gave access to nuclear-dihydroxylated aminoanthraquinone spacer compounds with a

terminal amino group for amino acid conjugation. The sequence is illustrated in Scheme

23 using the mono-protected 'Boc-diaminobutane to give the intermediate spacer

compound and the derived proline conjugate NU:UB 85 (225).

Scheme 23: Outline Synthesis Example [H]

Leuco-I,4,5-trihydroxyanthraquinone

!N-Boc-I,4-diaminobutane / O 2

4,8-di-OH-AQfBUlYL sPAcm+NH-Boc

ffi e
4,8-di-OH-AQfBUlYL sPAcm+NH3 00CCF3

! Et3N / Boc-PRO -OSu

4,8-di-0 H-AQ f BUlYL SPAC m + PRO - Boc
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4.3.8.1 4,8-Dihydroxy-l-[4-(N-tertiarybutoxycarbonylamino)butylamino]-

anthraquinone (159)

OH 0
»<: »<: ~NHCOOC(CH3h

NH' <:»: <:>

(159)

A solution of N-tBoc-l,4-diaminobutane
III dichloromethane was stirred with a

suspension of leuco-l,4,5-tyrihydroxyanthraquinone for 6 hours at room temperature.

After aeration the crude product was purified by silica gel chromatography using

initially dichloromethane then a dichloromethane-ethyl acetate (4:1) gradient [Scheme

23].

The CI mass spectrum of the major product (159) had a signal at m/z 427 (MHt

confirming the molecular mass of426 Daltons.

4.3.8.2 4,8-Dihydroxy-l-[(4-aminopropyl)amino]anthraquinone

trifluoroacetate(160)

(160)

Standard deprotection of compound (159) with trifluoroacetic acid [Scheme 23] gave

the resultant salt (160) whose structure was confirmed by its IH nmr spectrum. A signal

centred at 1.65ppm, integrating to 4 protons, was assigned to the 2 central methylene

groups of the butyl spacer. A triplet at 2.85ppm was assigned to the methylene group

adjacent to RNH3+. The remaining spacer methylene group gave a 2-proton quartet at
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3.45ppm. The aromatic protons were fully assigned; H-2 and H-3 to a 2-proton multiplet

between 7.20 and 7.35ppm, H-7 was seen as a doublet at 7.50ppm (J 10Hz) and H-5 and

H-6 gave a multiplet between 7.65 and 7.70ppm. A one-proton triplet at 9.85ppm was

assigned to the arylamino proton (J 4Hz). Further confirmation of the structure was

given by the FAB(+) mass spectrum which had a signal at m/z 327 corresponding to the

RNH3+ cation.

4.3.8.3 4,8-Dihydroxy-l-[4-(N-tertiarybutoxycarbonylprolylamino)butylamino]-

anthraquinone (224)

OH 0

D
»<: »<: ~NHCO./"'-..NCOOC(CH3h

NH' <;> <;»:

(224)

4,8-Dihyroxy-l-[(4-aminobutyl)amino]anthraquinone trifluoroacetate (160) was coupled

with N-tBoc-L-proline-N-hydroxysuccinimide ester in the presence of triethylamine in

THF at oce [Scheme 23]. Silica gel column chromatography and recrystallisation from

ethyl acetate gave the title compound (224) which was characterised by nmr and mass

spectroscopy. The IH nmr spectrum had, for example, a 9 proton singlet at 1.45ppm and

a one-proton broad singlet centred at 7.05ppm which were assigned to the tertiarybutyl

and carbamate protons respectively, confirming the presence of the N-tBoc protecting

group. The chiral methine proton gave a one-proton broad singlet at 4.25ppm. The

aromatic protons were fully assigned; H-2 and H-3 gave a 2-proton multiplet between

7.20 and 7.30ppm, H-6 was a triplet at 7.60ppm and H-5 a doublet at 7.80ppm. A triplet

at 9.90ppm was assigned to the arylamino proton. The two one-proton singlets 13.25
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and 13.85ppm were assigned to the 4-hydroxy and 8-hydroxy protons. The FAB(+) mass

spectrum had a signal at m1z 524 for the ion (MHt confirming the molecular mass of

523 Daltons.

4.3.8.4 4,8-Dihydroxy-l-[4-(prolylamino)butylamino]anthraquinone

trifluoroacetate (225) NV:VB 85

(225)

Compound (224) was deprotected usmg trifluoroacetic acid [Scheme 23] and the

resultant salt (225) was purified by silica gel chromatography using chloroform-ethanol

(2:1).

The IH nmr spectrum of (225) showed that the N-tBoc protecting group had been

successfully removed. A multiplet at 4.15ppm was assigned to the chiral methine

proton. The amide proton was a one-proton triplet at 8.60ppm and the arylamino proton

was found as a triplet at 9.85ppm. The base peak at m1z 424 in the electrospray(+) mass

spectrum corresponded to the species RNH3". There was a signal at m1z 113 in the

electrospray(-) mass spectrum for the trifluoroacetate anion, confirming the molecular

mass of537.
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4.3.9 Example [I]: Mixed Ester/Amide-Linked (Nuclear-Dihydroxylated)

Aminoanthraquinone-Peptide Conjugates

Additional amino acids were reliably added to the N-terminus of anthraquinone-amino

acid conjugates in the linear synthesis of peptide derivatives of either amide- or ester-

linked examples. Alternatively, preformed peptide fragments (suitably protected) could

be coupled directly to give elongated peptide motifs, illustrated for the complex

deriative (273) which contained a mixed ester and amide backbone [Scheme 24].

Scheme 24: Outline Synthesis Example [I]

Leuco-I,4,5-trihydroxyanthraquinone

! L-Phenylalaninol/0 2

4,S-di-OH-AQfL-PHENYLALANlNOL SPAcmJoH

! Boc-GLY-PRO-OH/DCC/DMAP

4,S-di-OH-AQfL-PHENYLALANlNOLSPACmTGLY-PRO-BOC

273
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4.3.9.1 4,8-Dihydroxy-l-{[(S)-2-hydroxy-l-benzylethyl]amino}anthraquinone

/(162)

OU 0 8~ '
ou

NU

(162)

The chiral spacer compound (162) was derived from L-phenylalaninol and leuco-I,4,5-

trihydroxyanthraquinone [Scheme 24] by a procedure analogous to that used for (159)

above. The structure of the compound was confirmed by its 1H nmr spectrum. A one-

proton triplet at 2.35ppm was assigned to the hydoxy group of the phenylalaninol

residue. Signals for the 2 methylene groups were found at 3.05ppm (adjacent to C6Hs)

and 3.85ppm (adjacent to OH) and the chiral methine proton gave a 1 proton multiplet at

4.05ppm. The protons of the anthraquinone chromophore were successfully assigned;

for example, H-6 gave a doublet at 7.55ppm (J8Hz). A one-proton doublet at 10.20ppm

was assigned to the arylamino proton. Two one-proton singlets at 13.20ppm and

13.80ppm confirmed the presence of the 4- and 8- hydroxy groups respectively. The

base peak in the FAB(+) mass spectrum at m/z 390 for the ion (MHt confirmed the

molecular mass of 389.

127



4.3.9.2 (2S)-2-[(4,8-Dihydroxy-9,10-dioxoanthryl)amino]-3-phenylpropyl (2S)-1{2-

[(tertiarybutoxy)carbonylamino]acetyl}pyrrolidine-2-carboxylate (272)

(272)

Esterification of 4,8-dihydroxy-1-{[(S)-2-hydroxy-1-benzylethyl]amino}anthraquinone

(162) with the protected dipeptide N-tBoc-glycyl-L-proline using standard Dee

coupling gave the N-protected intermediate (272) after solvent extraction and column

chromatography using toluene-ethyl acetate (4:1) [Scheme 24]. The title compound was

precipitated from an ethyl acetate-hexane solution to give a purple solid which was

characterised by nmr and mass spectroscopy and elemental analysis. For example, a 9-

proton singlet at 1.40ppm in the 1H nmr spectrum confirmed the presence of the tBoc

protecting group. Signals for the 3 methylene groups of the proline residue were found

as an unresolved 4-proton multiplet between 1.90 and 2.25ppm (p and y) and a 2-proton

multiplet at 3.60ppm (8). A two-proton doublet at 3.95ppm was assigned to the

methylene group of the glycine residue. The aromatic protons were all assigned to their

corresponding signals. H-2, H-3 and H-7 protons were seen together with the phenyl

protons between 7.15 and 7.35ppm. The H-6 proton gave a multiplet at 7.60ppm and H-

5 was seen as a double doublet at 7.85ppm. The amino proton gave a doublet at

1O.15ppm and the 2 aryl hydroxy groups were assigned to singlets at 13.20 and

13.85ppm. In the FAB(+) mass spectrum a signal at rn/z 644 was assigned to the ion
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(MH)+ confirming the molecular mass of 643. Good correlation with elemental analysis

additionally confirmed the structure.

4.3.9.3 (2S)-2-[ (4,8-Dihydroxy-9,1O-dioxoanthryl)amino]-3-phenylpropyl (2S)-I-(2-

aminoacetyl)pyrrolidine-2-carboxylate trifluoroacetate (273)

o
(273)

The tBoc compound (272) was deprotected using trifluoroacetic acid to give a purple

solid of the title compound [Scheme 24]. The IH nmr spectrum showed, for example, a

2 proton singlet at 3.85ppm for the methylene group of the glycine residue. Two

multiplets at 3.00 and 3.50ppm, each integrating to 2 protons, were assigned to the

methylene protons of the phenylalaninol side chain and the 8 protons of the proline

residue respectively. An unresolved 7 proton multiplet in the aromatic region of the

spectrum was assigned to H-2 and H-3 of the anthraquinone skeleton and the 5 phenyl

protons. The H-7 proton gave a one-proton doublet at 7.60ppm and H-5 and H-6 were

seen as a 2-proton multiplet at 7.75ppm. A one-proton doublet at 1O.15ppm was

assigned to the amino proton. The structure of the compound was further confirmed by

mass spectroscopy. A signal at rn/z 544 in the electrospray (+) mass spectrum

corresponded to the RNH3+cation. The base peak at rn/z 113 in the electrospray(-) mass

spectrum confirmed the presence of the trifluoroacetate anion.
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4.4 Biological and Biochemical Evaluation

The majority of spacer-linked anthraquinone amino acid! peptide conjugates prepared in

this research programme were evaluated for their growth inhibitory and cell killing effects

on a panel of human and animal tumour cell lines, either conducted in the host or

collaborating laboratory; selected conjugates were additionally screened in the National

Cancer Institute (NCI) 60 cell line in vitro assay (Monks et al1991). Selected conjugates

were investigated for their ability to interact with DNA topoisomerase enzymes, in

particular to identify catalytic inhibitory properties or poisoning action, and for limited

DNA-binding studies. Based upon their in vitro profile, a number of candidates were

selected for pre-clinical development in collaborating laboratories and progressed to in

vivo antitumour studies.

Within the scope of this thesis, the key data on a necessarily representative selection only

of leading candidate compounds is discussed. NU:UB 31 (208), NU:UB 51 (176) and

NU:UB73 (194), examples of nuclear-unsubstituted! amide-linked, nuclear

dihydroxylated! amide-linked and nuclear-unsubstituted! ester-linked aminoanthraquinone

classes of conjugate have emerged as significant lead compounds, the emphasis in the

ensuing discussion will be placed upon the promising proline conjugate NU:UB 31 (208).

4.4.1 In Vitro Chemosensitivity

Chemosensitivity was determined using the MTT assay. This was derived from the

original MTT assay method (Mosmann 1983) and adapted for cancer research by other

investigators (Plumb et al 1989). Some modifications were made because some cell

lines used were non-adherent.

This assay, a measure of cell survival, is based on the cleavage of the yellow tetrazolium

salt, MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] into a
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purple formazan crystalline product by metabolically active cells. This cellular reduction

is carried out by NADH and NADPH cofactors of the mitochondrial enzyme succinate-

dehydrogenase. The formazan crystals formed are solubilised and the resulting colour is

quantified spectrophotometrically at a wavelength of 580nm. The amount of formazan

produced is proportional to the number of viable cells present. The full assay protocol is

detailed in the experimental section [Chapter 9].

Figure 6: Metabolism of MTT to a formazan salt by viable cells

MTT

9
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N
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Formazan

4.4.2 Murine MAC15A Colon Adenocarcinoma Cell Line Sensitivity

The murine (MAC15A) colon cancer cell line (Double and de Castro 1978) was chosen as

a 'front-line' screen for evaluation of the cytotoxicity of spacer-linked

aminoanthraquinone amino acid/peptide conjugates because, in common with human

clinical disease, it is refractory to standard clinical agents, including topoisomerase

inhibitors, as the transplantable in vivo experimental tumour model (Laws et al 1995).

Potency in this model (in vitro and in vivo) was considered a stringent criterion for

compound selection. Cytotoxic potency against this cell line was expressed as ICsovalues,

the concentration of compound to effect 50% growth inhibition compared to untreated

control cells, using data from the MTT assay following a 96 hour exposure as standard.
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4.4.2.1 Amide-Linked (Nuclear-Unsubstituted) Aminoanthraquinone Mono-Amino

Acid and Dipeptide Conjugates/ MAC15A Chemosensitivity

Data against the MAC15A cell line for these conjugates are presented in Table 1.

Table 1: In vitro chemosensitivity of Amide-Linked (Nuclear-Unsubstituted)
Aminoanthraquinone Mono-Amino Acid and Dipeptide Conjugates against
the MAC15A Adenocarcinoma Cell Line*

NU:UB Structure Spacer Type Peptide Motif IC50~M#

Code Number
1 (163) PROPYL Gly-Boc 278

2 (164) PROPYL Gly-TFA 24
4 (182) PROPYL Ala-TFA 5.3
8 (227) PROPYL Lys(E-Z)a-TFA 37

16 (234) PROPYL Lys(a,E)-bis-TFA 18

18 (166) BUTYL Gly-TFA 22
19 (238) BUTYL Lys(E-Z)a-ACE 12

20 (244) BUTYL Lys(a,E)-bis-TFA 22

21 (184) PROPYL D-Ala-TFA 3.5
22 (252) PROPYL Ser(OBzI)-ACE 18
23 (276) PROPYL Gly-Lys(a,E)-bis-TFA 30

24 (236) PROPYL Orn(a,8)-bis-TFA 26

30 (257) PROPYL His-bis-TFA 32
31 (208) PROPYL Pro-TFA 2.5
33 (186) BUTYL Ala-TFA 5.5
41 (278) PROPYL Pro-Ser(OBzI)-TFA 19.5
42 (242) BUTYL Lys(E-ACE)a-Z 19

43 (215) BUTYL Pro-TFA 4.5
44 (254) BUTYL Ser-TFA 3
45 (233) PROPYL Lys(E-Boc)a-ACE 9.5

46 (210) PROPYL D-Pro-TFA 3.5
47 (229) PROPYL Orn(8-Z)a-ACE 24
48 (240) BUTYL Orn(8-Z)a-ACE 23
49 (250) PROPYL Asn-TFA 21
50 (213) PROPYL Hyp-TFA 15
72 (188) BUTYL D-Ala-TFA 3.2
99 (246) BUTYL Orn(a,8)-bis-TFA 29
197 (146) PROPYL Nil-TFA 25

* Chemosensitivity (cytotoxicity) as determined by MTT assay, 96 hour exposure.
# Expressed as ICsovalues [the concentration (f-LM) of compound to effect 50% growth
inhibition] and represents the mean of (at least) three separate experiments (standard
deviations were ± 5-20%); the complete protocol may be found in Chapter 9.
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Potency data for conjugates that retained the N-terminal protecting group and were not

in a salt form were relatively inactive, for example the Boc-protected glycine conjugate

NU:UB 1 (163) that had an ICso value of 278/-lM; other conjugates of this type behaved

similarly (data not shown). Lack of potency was not simply the result of decreased

aqueous solubility since these conjugates were adequately solubilized in DMSO/ tissue

culture medium.

The most active conjugates had ICso values in the low micromolar range and were

conjugates with small aliphatic relatively hydrophobic a-side chains in the amino acid

residue including alanines, prolines and (the somewhat more polar) serines. ICso values

ranged from 2.5 to 6/-lM. No significant differences were observed either for differently

spaced (C-3 vs C-4) conjugates of the same amino acid, or for substitution of the

unnatural D-isomer of a given amino acid.

Within a sub-series of lysine and analogous ornithine conjugates, ICso values were

consistently an order of magnitude greater than the most active compounds whether or

not these were partially protected on either the a- amino or side chain amino groups or

were the fully deprotected bis-salts. Furthermore, the histidine conjugate bis-salt

NU:UB 30 (257) was similarly lacking in potency. Strongly cationic side chains in

aminoanthraquinones had been found by Gatto et al (1996) to reduce cytotoxic potency

in a series of lysine containing agents which were inactive below 100/-lM in a number of

cell lines; these compounds, exemplified by (106) and (107) [Chapter 3], were,

however, symmetrically bis-substituted in contrast to the mono-substituted NU:UB

agents (average ICsovalues of20-30/-lM) which suggested that the greater the number of

charged residues, the greater the reduction in cytotoxic potency within the

anthraquinone series and underlines the lack of correlation between cytotoxic potency

and strong DNA binding.
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NU:UB 21 (184), NU:UB 31 (208), NU:UB 43 (215) and NU:UB 44 (254) were all later

shown to possess notable antitumour activity in vivo against MAC15A experimental

colon cancer.

4.4.2.2 Ester-Linked (Nuclear-Unsubstituted) Aminoanthraquinone Mono-Amino

Acid and Dipeptide Conjugates/ MAC15A Chemosensitivity

Data against the MAC15A cell line for these conjugates are presented in Table 2.

In common with their amide-linked counterparts, the majority of ester conjugates were

active in the MAC15A cell line at low micromolar concentrations. The most active

conjugates again had small aliphatic relatively hydrophobic a-side chains in the amino

acid residue including alanines, prolines, a and y aminobutyric acids, aminoisobutyric

acid and glycines. The least active compounds were sterically hindered at N-1 of the

anthraquinone, (158) and (271), or were branched in the spacer group (128). The

propoxy proline conjugate (219) was notably 4-fold more potent than its shorter ethoxy

homologue (217). The propoxy spaced dipeptide conjugates (281) and (283) were

notably amongst the most potent conjugates in the ester-linked category. The alanine

conjugate NU:UB 73 (194) and its D-isomer NU:UB 76 (196) were later shown to have

significant antitumour activity against MAC15A tumours in vivo.
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Table 2: In vitro chemosensitivity of Ester-Linked (Nuclear-Unsubstituted)
Aminoanthraquinone Mono-Amino Acid and Dipeptide Conjugates against

• • *the MAC15A Adenocarcinoma Cell Lme

NU:UB Structure SPACER TYPE PEPTIDE MOTIF ICso!lM

CODE Number MAC15A#

73 (194) BUTOXY Ala-TFA 2.6
76 (196) BUTOXY D-Ala-TFA 2.9

107 (192) PROPOXY D-Ala-TFA 6.9
108 (190) PROPOXY Ala-TFA 9.7
109 (170) PROPOXY Gly-TFA 10.6
110 (172) BUTOXY Gly-TFA 9.4
111 (219) PROPOXY Pro-TFA 8.3
112 (221) PROPOXY D-Pro-TFA 10.2
115 (217) ETHOXY Pro-TFA 33.5
116 (281) PROPOXY Pro-Gly-TFA 2.5
117 (168) ETHOXY Gly-TFA 3.5
120 (231) PROPOXY Orn(8-Z)-a-TFA 2.4
127 (283) PROPOXY Gly-Leu-TFA 1.2
128 (204) CH3~3 Ala-TFA 35

NH OH

156 (200) NH~OH Ala-TFA 4.7

157 (202) NH~OH D-Ala-TFA 3.4

158 (198)
NJ-OH

Ala-TFA 14.0

163 (259) BUTOXY Sar-TFA 7.2
166 (261) BUTOXY MeAla-TFA 4.8
167 (263) BUTOXY Abu-TFA 3.0
168 (265) BUTOXY y- Abu-TFA 4.5
169 (267) BUTOXY Aib-TFA 3.2
170 (269) L-Alaninol Ala-TFA 5.5
171 (271) L-Prolinol Ala-TFA 22

* Chemosensitivity (cytotoxicity) as determined by MTT assay, 96 hour exposure.
# Expressed as ICso values [the concentration (J.lM) of compound to effect 50% growth
inhibition] and represents the mean of (at least) three separate experiments (standard
deviations were ± 5-20%); the complete protocol may be found in Chapter 9.
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4.4.2.3 AmidelEster-Linked (Nuclear-Hydroxylated) Aminoanthraquinone Mono-

Amino Acid and Dipeptide Conjugates/ MAC15A Chemosensitivity

Data against the MAC15A cell line for these conjugates are presented in Table 3.

Table 3: In vitro chemosensitivity of AmidelEster-Linked (Nuclear-Hydroxylated)
Aminoanthraquinone Mono-Amino Acid and Dipeptide Conjugates against
the MAC15A Adenocarcinoma Cell Line*

NU:UB Structure SPACER TYPE Linkage" PEPTIDE ICsollM

CODE Number MOTIF MAC15A#

51 (176) PROPYL(AQ 4,8-di-OH) A Gly-TFA 2
83 (223) PROPYL(AQ 4,8-di-OH) A Pro-TFA 0.8
118 (206) PROPYL(AQ 4,8-di-OH) A D-Ala-TFA 1.7
61 (178) BUTYL(AQ 4,8-di-OH) A Gly-TFA 2.8
85 (225) BUTYL(AQ 4,8-di-OH) A Pro-TFA 2.1
129 (180) PROPOXY(AQ 4,8-di- E Gly-TFA 1.3

OH)
159 (273) L-Phenylalaninol E Pro-Gly-TFA 2.5

(AQ-4,8-di-OH)
58 (156) Hydroxypropyl E NIL >100

(AQ-4-0H)
165 (174) PROPOXY (AQ-4-0H) E Gly-TFA 0.3

*Chemosensitivity (cytotoxicity) as determined by MTT assay, 96 hour exposure.
• Where A and E are amide and ester-linked conjugates respectively
# Expressed as ICso values [the concentration (~M) of compound to effect 50% growth
inhibition] and represents the mean of (at least) three separate experiments (standard
deviations were ± 5-20%); the complete protocol may be found in Chapter 9.

All of the mono-amino acid and example dipeptide conjugates, whether amide- or ester-

linked were significantly cytotoxic below 3~M and were amongst the most potent

compounds in the NU:UB library. It should be noted that based on activity relationships

of the non-hydroxylated series, the (smaller) sub-set of hydroxylated conjugates had

amino acid/ peptide motifs drawn from proline, alanine and glycine. Notably, it was

later shown that the di-hydroxylated glycine conjugates (176) [NU:UB 51] and its

homologue (178) [NU:UB 61], and the propyl- and butyl- spaced proline homologues

(223) and (225) [NU:UB 83 and NU:UB 85 respectively] had significant in vivo activity.
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4.4.2.4 MAC15A Chemosensitivity Summary

Potency in the single amino acid conjugates required their salt forms and was

determined more so by the nature of the a- side chain residue than differences in

stereochemistry or spacer length. In the MAC15A cell line, ester-linked conjugates had

comparable potency to amide-linked analogues, although this relationship did not hold

in panels of human tumour cell lines [Tables 5 and 6]. In contrast to amide-linked

dipeptides, ester-linked dipeptide conjugates retained activity comparable to single

amino acid conjugates.

It was anticipated that the hydroxylated conjugates might be more cytotoxic than non

hydroxylated compounds and indeed all examples in this class were at least as potent or

more potent than any in the non-hydroxylated categories, however, orders of magnitude

differences observed in mitoxantrone (7) over non-hydroxylated derivatives were not

reflected in the NU:UB library of aminoanthraquinones.

4.4.3 Chemosensitivity in Resistant Cell Lines

Since resistance to current chemotherapeutics and especially topoisomerase inhibitors,

frequently develops as a result of active drug efflux mechanisms (P-glycoprotein or Pgp)

and/or altered topoisomerase resistance (at-MDR), it was considered important to

determine the cytotoxicity and pattern of cell kill by selected structurally diverse

NU:UB conjugates in cell lines with known levels of Pgp expression and known

differential topoisomerase expression. Suitable cell lines were considered to be the

MCF-7 breast cancer cell line and a doxorubicin resistant variant, and wild-type and

resistant variants of human (A2780 and A2780/ADR) and Chinese hamster (CHO K-I

and CHO/ADR-r) ovarian cells.

137



4.4.3.1 Cell Lines with Differential Topoisomerase Expression

Down-regulation of topoisomerases, or (compensating) up-regulation of a

topoisomerase enzyme that is not targeted by the drug, are mechanisms with

implications for the efficacy of topoisomerase inhibitors (Larsen and Skladonowski

1998; Pommier 1999; Whitaker et aI1997).

The highly Pgp-expressing, mutated Chinese Hamster Ovarian cell line, CHO/ADR-r

[14-fold resistant to doxorubicin (Hoban et al 1992)] showed 2.7-fold hypersensitivity

[Table 4] to NU:UB 31 (208) when compared to the wild-type CHO- K1 parent (Pgp

expression was measured by flow cytometry as the percentage of cells staining positive

with MRK-16 anti-Pgp antibody (21% and 91% for wild-type and resistant variant,

respectively). The data may suggest that NU:UB 31 is a poor substrate for the Pgp

protein efflux pump and given that its hydrophobic cationic properties permit cellular

uptake (Lampidis et al 1997), may facilitate early mechanisms of cell death induction, in

contrast to anthracyc1ines like doxorubicin, which although intrinsically more potent,

have slower onsets of cell death.

Additionally, the observed cell line hypersensitivity to NU:UB 31 may be correlated to

the topoisomerase protein expression in this highly resistant CHO/ADR cell line, which,

when compared with the wild-type was characterised as having a two-fold decrease in

topo IIa levels and concomitant increases (2.5-fold and 2-fold, respectively) in

topoisomerase IIJ3 and topoisomerase I proteins. The hypersensitivity may thus reflect

the demonstration that NU:UB 31 has here been shown to inhibit all three

topoisomerases [Section 4.4.5] (at least in vitro) whereas doxorubicin and other anti

topoisomerase II agents have been considered largely to target the alpha isoform, that is

down-regulated in this and other resistant cell lines.
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Furthermore, the resistant CHO/ADR-r cell line showed similar hypersensitivity (2.8

fold) to NU:UB 43 (215), the butyl-spaced homologue ofNU:UB 31, when compared to

the wild-type CHO-K1 parent. The dihydroxy1ated conjugates NU:UB 51 (176), NU:UB

83 (223) and NU:UB 85 (225) were the most potent in both the wild-type and resistant

cell lines, with the proline conjugates also being completely non cross-resistant to

doxorubicin. The greatest level of cell line hypersensitivity was observed with the ester

linked conjugate NU:UB 73 (194) which was approximately 8-fold more potent against

ADR-r than the parental cell line. Cell line hypersensitivity may be directly related to

the observation that NU: UB 73 selectively inhibited topoisomerase I and the ~-isoform

of topoisomerase II but had no effect on the u-isoform of topoisomerase II, in vitro

[Section 4.4.5]; the pattern of cell kill was thus consistent with cellular protein

expression.

The A2780/ADR human ovarian cancer cell line is widely considered to possess the

classic MDR phenotype (90% staining for Pgp) compared to the wild-type (negative for

Pgp). The cell line has 4-fold down-regulation of topo IIa expression, normal topo II~

levels and 1.5-fold overexpression of topo I. The cell line thus displays resistance

properties, characteristic not only ofMDR but also non-classical at-MDR (Cummings et

al1996)

The (l50-fold) doxorubicin-resistant A2780/ADR ovarian cell line was found, in this

laboratory, to be only 4.8-fold resistant to NU:UB 31 (208) when resistance levels were

compared to the wild-type A2780 parent cell line [Table 4].

Similarly, other NU:UB conjugates were only nominally cross-resistant to doxorubicin;

NU:UB 43 and NU:UB 51 were significantly cytotoxic below 2~M in the wild-type cell

line and retained low micromolar activity in the resistant variant [Table 4].
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Table 4: Summary of In Vitro Chemosensitivity Data for Selected Compounds in
Wild Type and Doxorubicin Resistant Ovarian Cell Lines

NU:UB Structure Spacer Peptide Motif A2780 A2780/ CHO-Kl CHO-
Code Number Type ICso~M ADR ICso~M ADR-r

ICsollM ICsollM

21 (184) Propyl D-Ala-TFA 7.4 18.7 N/D N/D

24 (236) Propyl Om-bis- 17.5 32.0 N/D N/D
TFA

31 (208) Propyl Pro-TFA 3.1 14.9 27.0 10.0

43 (215) Butyl Pro-TFA 1.6 2.2 50.4 18.1

51 (176) Propyl(4,8 Gly-TFA 0.6 1.1 2.7 5.4
-di-OH)

61 (178) Butyl(4,8- Gly-TFA N/D N/D 16.2 18.0
di-OH)

73 (194) Butoxy Ala-TFA N/D N/D 54.0 6.6

83 (223) Propyl(4,8 Pro-TFA N/D N/D 6.6 6.3
-di-OH)

85 (225) Butyl(4,8- Pro-TFA N/D N/D 4.1 4.1
di-OH)

DOXORUBICIN N/D N/D 0.1 1.4

4.4.3.2 Doxorubicin-Resistant Cell Lines

One major contributor to low potency of cytotoxic agents is drug resistance commonly

manifested through the expression of the MDRI gene product, P-glycoprotein, Pgp

(classical multidrug resistance phenotypes); furthermore, many standard topoisomerase

inhibitors are susceptible to Pgp- or the related MRP-mediated protein efflux

mechanisms (Larsen and Skladonowski 1998, Ueda et al 1999). As most known P-

glycoprotein drug substrates are weakly basic and positively charged at physiological pH

it would perhaps be expected that anthraquinone-peptide conjugates would be targets for

this resistance mechanism (Germann 1996). The anthraquinone NU:UB 31 (208),

however, was shown to be active in a number ofcell lines that are classically resistant to
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topoisomerase inhibitors [Table 5]; in the NCI screen, for example, NU:UB 31 showed

only 1.3-fold

Table 5: In vitro cytotoxicity of selected spacer-linked anthraquinone-peptide
conjugates against MCF7 wild type and Doxorubicin resistant breast cell lines

NU:UB Structure SPACER PEPTIDE MCF7 NCII Fold
CODE Number TYPE MOTIF GI50~M ADR-res Resistance (R)

GIso~M /Hyper-
sensitivity (H)

20 (244) BUTYL Lys-bis- 11.8 13.5 1.1 (R)
TFA

24 (236) PROPYL Om-bis- 11.2 14.3 1.3 (R)
TFA

31 (208) PROPYL Pro-TFA 6.17 7.76 1.3 (R)

43 (215) BUTYL Pro-TFA 4.84 14.1 2.9 (R)

44 (254) BUTYL Ser-TFA 3.63 12.9 3.6 (R)

73 (194) BUTOXY Ala-TFA 17.2 16.6 1.1 (H)

99 (246) BUTYL Om-bis- 13.4 16.6 1.2 (R)
TFA

107 (192) PROPOXY D-Ala-TFA 16.1 19.1 1.2 (R)

108 (190) PROPOXY Ala-TFA 16.6 20.1 1.2 (R)

110 (172) BUTOXY Gly-TFA 18.3 14.9 1.2 (H)

159 (273) L-Phenylalaninol Pro-Gly- 9.38 2.24 4.2 (H)
(AQ-4,8-di-OH)

TFA

171 (271) L-Prolinol Ala-TFA 60.2 12.9 4.7 (H)

DOXORUBICIN (1) 0.020 12.6 630 (R)

MITOXANTRONE (7) 0.004 4.0 1000 (R)

CAMPTOTHECIN (12) 0.013 0.013 1

TAXOL 0.003 3.0 1000 (R)

CISPLATIN 3.2 5.0 1.6 (R)

5-FLUOROURACIL 1.6 40.0 25 (R)
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resistance in the (doxorubicin-resistant) high Pgp-expressing NCIIADR-res cell line

when compared to the wild type MCF7 counterpart, whereas the anthraquinones,

doxorubicin and mitoxantrone were 630- and 1000-fold resistant, respectively.

Similarly, NCIIADR-res cell line hypersensitivity to other NU:UB conjugates [Table 5]

including the ester conjugates NU:UB 73 (194), NU:UB 110 (172), NU:UB 159 (273)

and NU:UB 171 (271) was observed, whilst nominal resistance patterns were observed

for several others.

4.4.4 Activity of NU:UB Conjugates in the NCI Anticancer Drug Screen

The National Cancer Institute (NCI) of the USA has been at the forefront of cancer drug

discovery and development since 1955. The current in vitro anticancer drug screen,

which has been operational since April 1990, consists of 60 human tumour cell lines

representative of common adult malignancies grouped into disease sub panels (Monks et

aI1991).

The in vitro testing results generated 0150, TOI and LCso values [a measurement of

growth inhibitory, cytostatic and cytotoxic (cell-kill) effects respectively] for each

compound against each cell line. Selected results are summarised in Table 6.

Presentation of the data in a mean graph format, where the behaviour of a particular cell

line is displayed graphically as a deflection from the calculated mean of the whole cell

line panel (to the right for sensitive cells and to the left for resistant cells) allows visual

comparison of the pattern of response of all cell lines to different anti-tumour agents.

The mean graphs and in vitro test data for selected NU:UB conjugates at the Olso, TOI

and LCso levels are given in Appendix 2. This sensitivity profile or 'fingerprint' can be

quantified using the COMPARE programme. The COMPARE programme ranks every
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compound from one of several databases (i.e. standard agents, synthetic molecules etc.)

in order of the similarity of its in vitro cell growth pattern to the in vitro cell growth

pattern of a selected seed or probe compound. The similarity of the pattern to that of the

seed is expressed quantitatively as a pairwise correlation coefficient (PCC). Compounds

with the highest PCC are most similar to the seed and may possess a similar mechanism

of action.

The data generated for the NU:UB conjugates in the 60 cell line screen was used (by the

NCI) to generate a COMPARE calculation, using the Standard Anticancer Agent

database, at the GIso, TGI and LCso concentration parameters. Example data at the LCso

level is given for the in vivo active, dual topoisomerase inhibiting [Section 4.4.5]

proline conjugates NU:UB 31 (208) and NU:UB 43 (215) in Tables 7 and 8.

Table 6: Mean GIso, TGI and LCsovalues (60 cell line panel)

NU:UB Structure SPACER PEPTIDE MEAN MEAN MEAN
CODE Number TYPE MOTIF GI50J.lM TGIJ.lM LC 50J.lM

20 (244) BUTYL Lys(a,E)-bis-TFA 11.5 26.3 55.0

24 (236) PROPYL Orn(a,o)-bis-TFA 11.5 26.3 56.2

31 (208) PROPYL Pro-TFA 5.37 16.2 46.7

43 (215) BUTYL Pro-TFA 3.80 12.3 29.5

44 (254) BUTYL Ser-TFA 5.37 16.2 45.7

73 (194) BUTOXY Ala-TFA 14.4 31.6 67.6

99 (246) BUTYL Om(a,o)-bis-TFA 14.1 31.6 64.6

107 (192) PROPOXY D-Ala-TFA 18.2 41.7 81.3

108 (190) PROPOXY Ala-TFA 18.6 39.8 75.9

110 (172) BUTOXY Gly-TFA 13.8 31.6 69.2

159 (273) L-Phenylalaninol Pro-Gly-TFA 6.17 28.8 79.4
(AQ-4,8-di-0H)

171 (271) L-Prolinol Ala-TFA 31.6 83.2 >100

There was broad agreement between the data obtained from the NCI panel and the 'in-

house' MACl5A frontline screen for the most potent conjugates. Low micromolar ICso
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values in the latter equated well with the GIso values (the most comparable parameter),

allowing for differences in exposure time and assay procedures. NU:UB 31 (208),

NU:UB 43 (215) and NU:UB 44 (254) were again the most potent and were

approximately 2-fold more active than examples of conjugate bis-salts of lysine and

ornithine [NU:UB 20 (244), NU:UB 24 (236) and NU:UB 99 (246)].

Whereas ester-linked conjugates had comparable activity to amide-linked analogues in

MAC15A cells, in the NCI screen esters were consistently 2- to 3-fold less potent than

corresponding amides, unless their potency was boosted by anthraquinone nuclear

hydroxylation [NU:UB 159 (273)]. Furthermore, steric hindrance at the anthraquinone

spacer [NU:UB 171 (271)] junction led to considerably reduced cytotoxic potency

[Table 6].

CaMPARE has proved valuable in providing insights into potential mechanisms of

action which may not have otherwise been considered. It is interesting to note that at

concentrations required to effect cell kill, the COMPARE analysis for NU:UB 31 (208)

gave correlations which included topoisomerase (I or II) inhibitors [correlation numbers

5 and 9, Table 7] but also a number of structurally diverse, yet mechanistically related

antimetabolites [correlation numbers 2 and 3, Table 7]. The butyl homologue NU:UB

43 (215) correlated well with the dual topoisomerase I and II inhibitor aclacinomycin A

(6) and other topoisomerase inhibitors [correlation numbers 1, 3 and 9, Table 8]. In

common with NU:UB 31, correlations with a common family of antimetabolites were

observed for NU:UB 43 [correlation numbers 4 and 10, Table 8]; This family (using

brequinar as a seed) is known to inhibit de novo pyrimidine biosynthesis at the fourth

enzyme, dihydroorotate dehydrogenase (McLean et al 2001). Inhibition of this

mitochondrial enzyme leads to a block in the formation of undine monophosphate;

investigation of the sub-cellular localisation of the NU:UB agents and further work
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would clearly be necessary to confirm potential antimetabolite contribution to the

cytotoxic activity for these compounds.

Table 7: COMPARE Correlation (LCso) for NU:UB 31

CORRELATION CHEMICAL NAME P.C.C.

NUMBERS

1 BLEOMYCIN 0.509

2 CYCLOPENTYLCYTOSINE 0.507

3 (DUP 785) BREQUINAR 0.486

4 PHOSPHOTRIENIN 0.473

5 N,N-DIBENZVLDAUNOMYCIN 0.472

6 ANGUIDINE 0.469

7 CCNU 0.452

8 METHYLCCNU 0.451

9 TOPOTECAN 0.439

10 D-TETRANIDINE 0.433

Table 8 : COMPARE Correlation (LCso) for NU:UB 43

CORRELATION CHEMICAL NAME P.C.C.

NUMBERS

1 ACLACINOMYCIN A 0.663

2 MITRAMYCIN 0.659

3 DEOXYDOXORUBICIN 0.653

4 5-AZACYTIDINE 0.645

5 CYTEMBENA 0.619

6 ANGUIDINE 0.612

7 BACTOBOLIN 0.607

8 PANCRATISTATIN 0.604

9 DAUNOMYCIN 0.598

10 (DUP 785) BREQUINAR 0.590

4.4.4.1 NCI Cancer Cell Line Sub-Panel Sensitivity

A major goal of the NCI anti-cancer screening programme is to identify compounds

with disease sub-panel specificity. This means that a compound is significantly more

toxic to cells in 1, 2 or 3 particular histological sub-categories (e.g. colon, melanoma
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etc.) than it is to the remainder of the tumour cell panel. A compound with significant

sub-panel specific toxicity may be of interest without regard to its mechanism of action.

Its novelty may even be more interesting if it does not share a mechanism of action with

any known agent as evaluated by COMPARE. The sensitivity of the colon and

melanoma sub-panels towards NU:UB 31 (208) and NU:UB 43 (215) are illustrated in

Figures 6 (a), 6 (b) and Figures 7 (a), 6 (b) respectively.

Figure 6(a): Comparison of Delta Values for the NCI Colon Cancer Sub-Panel
(plotted in log mean graph format)for NU:UB 31 (208)
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Figure 6(b): Comparison of Delta Values for the NCI Melanoma Cancer Sub-Panel
(plotted in log mean graph format)for NU:UB 31 (208)
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Figure 7(a): Comparison of Delta Values for the NCI Colon Cancer Sub-Panel
(plotted in log mean graph format)for NU:UB 43 (215)
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Figure 7(b): Comparison of Delta Values for the NCI Melanoma Cancer Sub-Panel
(plotted in log mean graph format)for NU:UB 43 (215)
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Figure 8(a): Comparison of Delta Values for the NCI Colon Cancer Sub-Panel
(plotted in log mean graph format) for the standard topoisomerase II
inhibitors, doxorubicin and mitoxantrone, and the topoisomerase I
poison camptothecin
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Figure 8(b): Comparison of Delta Values for the NCI Melanoma Cancer Sub-Panel
(plotted in log mean graph format) for the standard topoisomerase II
inhibitors, doxorubicin and mitoxantrone, and the topoisomerase I
poison camptothecin
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The mean graph presentations for the propyl-spaced proline conjugate NU:UB 31 (208)

and the homologous, butyl-spaced proline conjugate NU:UB 43 (215) at the GIso level

clearly showed significant disease panel specificity for colon and melanoma cell lines.

Breast cells (for both conjugates), and (for NU:UB 43) ovarian and non-small cell lung

cancer cell lines were particularly resistant [Appendix 2]. The very pronounced sub

panel specificity displayed by NU:UB 43 is relatively rare for compounds tested in the

NCI in vitro screen.

A quinocarmycin analogue DX-52-1 (NSC S607097) was found to be selective for 8

out of 9 melanoma cell lines at the LCso level (mean LCsofor 60 cell line panel 49 ~M;

mean for melanoma sub-panel 7.3 ~M) (Plowman et al 1995). The COMPARE

algorithm at the LCso level for DX-52-1 indicated that the pattern of differential

cytotoxicity most closely resembled actinomycin D, mithramycin and doxorubicin and

its analogues which would perhaps imply some form of topoisomerase mediated

cytotoxic mechanism. DX-52-1 was one of the first compounds to be selected for

preclinical development based on disease-panel sensitivity discovered in the NCI cancer

drug screen (Monks et aI1997).

The colon sub-panel sensitivity profiles for the two NU:UB conjugates contrasts starkly

with those of comparator, standard topoisomerase inhibitors, including the

anthraquinone topoisomerase II inhibitors, doxorubicin and mitoxantrone, and the topo I

poison camptothecin, across all three parameters [Table 8(a)J. Differential melanoma

sensitivity is also substantially different [Table 8(b)J to comparator agents at the GIso

level; NU:UB 43 is exceptional for the sensitivity across all three parameters in this

panel of cell lines. Furthermore, the patterns of cell line sensitivity for the NU:UB

conjugates was markedly different to other diverse compounds in the topoisomerase II

(etoposide and mAMSA) or dual (intoplicine) categories [Appendix 3].
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4.4.5 Biochemistry of DNA Topoisomerase Inhibition by NU:UB conjugates

The ability of topoisomerases to uncoil supercoiled plasmids provides the basis for

DNA gel electrophoresis methods to identify topoisomerase interacting compounds. By

monitoring changes in the electrophoretic mobility of supercoiled pBR322 DNA

plasmid, in the presence of topoisomerase I or II, with or without a candidate drug, it is

possible to identify inhibitors of the catalytic activity of either enzyme. Using an

appropriate range of concentrations, measurement of the ability of a compound to

inhibit enzyme-mediated relaxation of supercoiled plasmid may be made and referenced

to comparator compounds. Furthermore, use of higher (usually 5 to 10-fold)

concentrations of enzyme (necessary to effect discernible levels of cleavable complex

formation between DNA and enzyme) can identify poisoning activity as evidenced by

the formation of increased levels of open-circular (nicked) or linear DNA either with

topoisomerase I or II, respectively [full details of the electrophoresis protocols are given

in Appendix 1].

Additionally, a diagnostic test of the ability of a compound to inhibit topoisomerase II

relaxation activity is inhibition of decatenation (separation into 'mini-circles') of

kinetoplast (k-DNA) which is a process uniquely mediated by topoisomerase II (both

isoforms).

Summary data on relaxation, cleavage and decatenation effects by selected NU:UB

conjugates are presented in Tables 9 and 10.
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Table 9: Inhibitory Effects of NU:UB Conjugates on Topoisomerase Relaxation

and Decatenation Activities

NU:UB Structure I II a. II~ II a. II~

CODE Number RELAX. RELAX. RELAX. DECAT. DECAT.
21 (184) ++ ++ ++ N/D N/D

24 (236) +++ ++ + N/D N/D

31 (208) ++ ++ +++ ++ ++

43 (215) + +++ ++ ++ ++

44 (254) + + + + +

51 (176) ++ ++ +++ +++ +++

61 (178) +++ +++ +++ ++ ++

73 (194) ++ - ++ - N/D

83 (223) +++ +++ +++ ++ ++

85 (225) +++ +++ +++ ++ ++

Inactive
+ 25JlM < ICso ~ 50JlM
++ 10JlM < ICso ~ 25JlM
+++ ICsos lOJlM
N/D Not Determined
a and 13 refer to the individual isofonns of human (recombinant) topoisomerase II

Table 9 shows the relative abilities of selected NU:UB conjugates to inhibit the

catalytic activity of the enzymes, topoisomerase I or topoisomerase II (individual

isoforms). The selection was made on the basis that this group had shown not only

potent cytotoxicity in vitro against cancer cell lines, but also in vivo antitumour activity

against experimental colon cancer [see Section 4.4.8]

Unequivocal evidence was obtained to assert that conjugates, NU:UB 31, 43, 44,51,61,

83 and 85 were catalytic inhibitors of the alpha and beta isoforms of human topo II as
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demonstrated by their ability to inhibit enzyme-mediated decatenation of (the highly

catenated network in) kinetoplast DNA, whereas the ester-linked conjugate NU:UB 73

was shown to inhibit the beta-isoform only. Of this series, NU:UB 51 (176) and NU:UB

44 (254) were the most and least potent agents, respectively.

With the exception of NU:UB 73 (194) that inhibited the catalytic activity of the beta

isoform only of topoisomerase II to unwind supercoiled plasmid (relaxation), all

conjugates showed (dual) inhibitory activity against all three topo enzymes. The most

potent agents were the dihydroxylated, glycine conjugates [NU:UB 51 (176) and

NU:UB 61 (178)] and the homologous proline conjugates [NU:UB 83 (223) and

NU:UB 85 (225)] that efficiently inhibited the relaxation activity of topo I, IIa and IIJ3.

Table 10: Stimulation of Topisomerase (1-, IIa,J3-) Cleavable Complex Formation
b SI tdNUUBC .)yeece . onjugates.

NU:UB Structure 1 IIa IIJ3CODE Number

21 (184) Not Active Not Active Not Active

24 (236) Not Active N/D N/D

31 (208) Optimum 5 JlM Optimum 25 JlM Optimum 25 JlM

43 (215) Optimum 50 JlM Optimum 50 JlM Optimum 50 JlM

44 (254) Not Active Not Active Not Active

51 (176) Optimum 50 JlM Optimum 25 JlM Optimum 25 JlM

61 (178) Optimum 50 JlM Optimum 25 JlM Not Active

73 (194) Optimum 50 JlM. Not Active Optimum 25 JlM

85 (225) N/D Not Active Not Active
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Table 10 shows the data on the propensity of in vivo-active NU:UB conjugates to

stimulate topoisomerase I or II (a- and J3-) mediated cleavage of supercoiled plasmid

DNA as evidence of cleavable complex stabilisation or poisoning activity.

Poisoning activity was demonstrated for conjugates, NU:UB 31, 43, 51, 61 and 73

[(208), (215), (176), (178) and (194) respectively]. The most potent conjugate was

NU:UB 31 (208), judged by the maximum increases in the formation of either the open-

cicular (topo I) or linear (topo II) DNA bands on gel electrophoresis. Representative

DNA gel electrophoresis data is exemplified by Figures: 9 (inhibition of topo I

relaxation), 10 (topo I cleavage) and 11 [(a) and (b)] [inhibition of topo II (a and J3

respectively) relaxation] , by reference to the lead compound NU:UB 31 (208) only.

Figure 9: Inhibition of DNA-topoisomerase I-mediated relaxation of supercoiled
pBR322 plasmid DNA by NU:UB 31 (208).

1 2 3 4 5 6

Lane 1 - pBR322 DNA (200 ng)

Lane 2 - pBR322 DNA + topo I (3 units)

Lane 3 - pBR322 DNA + topo I + 5 JlM NU:UB 31

Lane 4 - pBR322 DNA + topo I + 10 JlM NU:UB 31

Lane 5 - pBR322 DNA + topo I + 25 JlM NU:UB 31

Lane 6 - pBR322 DNA + topo I + 50 JlM NU:UB 31

The capacity of NU:UB 31 (208) to inhibit topoisomerase I-mediated relaxation of

DNA was determined. When the plasmid DNA was treated with topoisomerase I
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enzyme, supercoils were removed, resulting in a more relaxed (conformationally

flexible) structure, which was retarded on the gel compared to the supercoiled DNA.

Figure 9 shows an assay of inhibition of plasmid relaxation by NU:UB 31. In lane 1

(DNA) the main band is the supercoiled plasmid DNA. In lane 2 (DNA + topoisomerase

I) relaxed DNA bands appeared, and the supercoiled DNA band disappeared. This

meant that topoisomerase I had converted the previously supercoiled DNA into relaxed

topoisomers, which were retarded to various degrees on the agarose gel. Treatment with

5~M or lO~M NU: UB 31 resulted in partial inhibition of the topoisomerase I mediated

DNA relaxation (lane 3 and 4). At concentrations of 251lM and 50llM NU:UB 31,

complete inhibition of topoisomerase I-mediated relaxation was observed. (lanes 5 and

6).

Figure 10: Stimulation of Topoisomerase I-Mediated Cleavage of pBR322 Plasmid

DNA by NU:UB 31 (208)
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The formation of drug-stabilised topoisomerase I-DNA cleavable complexes were

investigated with the topoisomerase I cleavage assay. Figure 10 shows a topoisomerase

I cleavage assay of NU:UB 31 using camptothecin as a positive control. Upon
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visualisation, supercoiled plasmid DNA appeared as one band, travelling far down the

gel due to its compact size (lane 1). For this assay, more topoisomerase was used than in

the relaxation assay in order to induce a high degree of cleavable complex formation. In

contrast to relaxation gels, the conditions for running the DNA gels under cleavage

conditions required the use of ethidium bromide in the gel matrix in addition to the

running buffer; in this way, the fully relaxed plasmid topoisomers migrated as a single

band ahead of the supercoiled band, thereby allowing resolution of the retarded nicked

plasmid from relaxed forms. Topoisomerase I-DNA complexes are trapped and

stabilized by anti-topoisomerase drugs, including the anti-topoisomerase I standard

agent camptothecin. Treatment with camptothecin resulted in increased levels of

cleavable complex formation, resulting in corresponding increases in intensity of open

circular (or nicked) DNA plasmids that were severely retarded on the gel (lane 3)

compared to the background cleavage with topoisomerase I treated DNA (lane 2).

Camptothecin increased the intensity of the open circular plasmid form by 3.9-fold,

compared to the background cleavage, which is equivalent to a complete conversion of

the pBR322-DNA. NU:UB 31 gave a 2.2-fold effect, equivalent to capturing more than

50% of the plasmid DNA in topo I-complexed form at 1O~M [lane 7]. At low

concentrations (O.1~M, l~M, 5~M and 10~M; lanes 4-7) NU:UB 31 showed

stimulation of topoisomerase I induced cleavage (optimum at 5 ~M), whereas at the

higher concentration (lOO~M) NU:UB 31 appeared to antagonise its own cleavage

reaction (lane 8).

The observation that NU:UB 31 antagonised its own topoisomerase I cleavage reaction

(i.e. 'self inhibition') with increased concentrations may be consistent with its properties

of being a catalytic inhibitor and poison vested in the same molecule. Precedent exists

for this type of behaviour and has notably been observed for the dual topoisomerase
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inhibitor, DACA (18) that like NU:UB 31 possesses a planar (acridine) chromophore

with a single, positively charged aminoalkyl side chain substituent (Bridewell et at

1999).

Nevertheless, NU:UB 31 significantly stabilised DNA-topoisomerase I cleavable

complexes in vitro thus, In common with camptothecin, NU:UB 31 produces

irreversible lesions in DNA. In contrast, NU:UB 31 does not suffer from the

disadvantage of the structural lability of the camptothecins.

In an analogous manner to the action of topoisomerase I, the individual isoforms (a and

~) of human topoisomerase II are capable of converting supercoiled plasmid DNA into

relaxed topoisomers. Inhibition of topoisomerase IIa or topoisomerase II~ mediated

relaxation of supercoiled plasmid DNA was investigated following NU:UB 31 (208)

treatments. Figure 11 (a) is representative of the assays of topoisomerase Ilo-mediated

relaxation of plasmid DNA by NU:UB 31. A NU:UB 31 concentration of lO~M was

sufficient to partially inhibit topoisomerase Iln-mcdiated DNA relaxation (lane 5). At

the higher concentrations 25~M and 50~M, complete inhibition of topoisomerase IIa

was evident (lane 6-7). Similarly, inhibition of topoisomerase Ilp-mediated DNA

relaxation was also observed following lO~M NU:UB 31 treatment (lane 4), with the

higher NU:UB 31 concentrations resulting in complete inhibition (lane 5-7) of

topoisomerase II~ catalytic activity [Figure 11 (b)]. NU:UB 31 alone did not effect

plasmid unwinding (enzyme free lane 8). Thus, NU:UB 31 is a dual inhibitor of the

catalytic activity of each of the isoforms of topoisomerase II in addition to

topoisomerase I.
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Figure 11:

(a) Inhibition of DNA topoisomerase IIa-mediated relaxation of supercoiled
pBR322 plasmid by NU:UB 31 (208).

Lane I - pBR322 DNA (200 ng)

Lane 2 - pBR322 + topo Ilu (5 units)

Lane 3 - pBR322 + topo Ilu + 1.0 JlM NU:UB 31

Lane 4 - pBR322 + topo Ilu + 5.0 JlM NU:UB 31

Lane 5 - pBR322 + topo lln + 10.0 JlM NU:UB 31

Lane 6 - pBR322 + topo lin + 25.0 JlM NU:UB 31

Lane 7 - pBR322 + topo II n+ 50.0 JlM NU:UB 31

Lane 8 - pBR322 + 50.0 JlM NU:UB 31

1 2 3 4 5 6 7 8

(b)Inhibition of DNA topoisomerase II~-mediated relaxation of supercoiled
pBR322 plasmid by NU:UB 31.

Lane I - pBR322 (200 ng)

Lane 2 - pBR322 + topo lIP (5 units)

Lane 3 - pBR322 + topo lIP + 5 JlM NU:UB 31

Lane 4 - pBR322 + topo lIP + 10 JlM NU:UB 31

Lane 5 - pBR322 + topo II P+ 15 JlM NU:UB 31

Lane 6 - pBR322 + topo lIP + 20 JlM NU:UB 31

Lane 7 - pBR322 + 50 JlM NU:UB 31

Figure 12: Immunoband depletion of Topoisomerase I in human HL-60 cells:
Evidence for drug-stabilised covalent Topo I-DNA complexes in
intact cells
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(Control Mr x 10-3 112-97)
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The inhibition of the religation step during the processing of DNA topoisomerases is

believed to be the molecular basis of the anti-tumour activity of topoisomerase I poisons

(Pommier 1999) including camptothecin (12) and its derivatives irinotecan (14) (CPT

11) and topotecan (13). Inhibition of religation can be detected in drug-treated cells by

immunoband depletion assays. Whereas topoisomerase will migrate at the molecular

mass of the topoisomerase molecule on SDS-polyacrylamide gels, the covalent

topoisomerase-DNA complexes are larger in size and will exhibit a lower mobility. In

untreated cells, there are few and probably short-lived covalent topoisomerase-DNA

complexes. Drug treatment of cells may however increase the number of covalent

topoisomerase-DNA complexes. Thus, the degree of topoisomerase I immunoband

depletion will reflect the drugs' capacity to stabilise topoisomerase I-DNA cleavable

complexes by depleting the Western blot (lOOkDa) topoisomerase I signal. HL60 cells

were treated with 30llM and 300llM NU:UB 31 (208) for 45 minutes [essentially

according to the method of Boege et al (1996)]. In the topoisomerase I band depletion

assay [Figure 12], 20llM camptothecin treatment (positive control) resulted in a weaker

topoisomerase I signal because the topoisomerase I enzymes became covalently trapped

by the drug. The extent of immunoband depletion by NU:UB 31 at 30llM was similar to

that obtained by camptothecin at 20IlM, providing evidence for drug stabilised

cleavable complex formation in intact cancer cells, in accord with the cell free topo I

cleavage assay data [Figure 10] [full protocol for immunoband depletion given in

Appendix 1].

4.4.6 DNA Binding Properties of NU:UB Conjugates

The DNA-binding properties of drug molecules are important factors that can contribute

to cytotoxic potency, mutagenicity, or the ability to interact with DNA-processing
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enzymes including topoisomerases. Indeed, direct targeting of DNA or DNA-associated

proteins have received great attention in the past and still figure prominently as viable

approaches in cancer therapy strategies (Hurley 2002).

DNA binding studies were not conducted as a component of this research programme

but rather formed a major part of parallel projects conducted by other research workers

in this and collaborating laboratories, therefore, brief inclusion only is made on NU:UB

31 in relation to its interaction with the DNA processing topoisomerases.

Reversible drug interactions with DNA take place in three primary ways: non-specific

interactions, involving electrostatic binding along the exterior of the helix; specific

groove binding, involving interactions with the edges of base pairs in the major or

minor grooves; DNA intercalation that relies on insertion of a planar or approximately

planar (aromatic) ring system between base pairs (Neidle 2002).

Strong correlations exist between chemical structure and DNA-binding properties.

Groove-binding molecules are generally crescent-shaped and incorporate an aromatic

ring such as benzene, or heteroaromatic ring such as pyrrole, that is able to twist into the

helical curve of the groove; netropsin (76), distamycin (77) and Hoechst dye 33258

(294) are typical minor groove binding molecules.

H

~N>-Qf'-..--N~~ \ '? NH

/N~ H <±lQMe N

H '\::
I

..-:
(294) OH

DNA intercalators typically display an aromatic ring system that is planar. Nucleic acid

conformation is changed when intercalation takes place, which favours insertion of the
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flat molecules into DNA. Mitoxantrone (7) and ethidium bromide are typical

intercalating molecules.

Competitive DNA-ethidium (or Hoechst dye) fluorescence quenching is a well

established technique that has been applied to structurally diverse DNA-binding ligands

to give a measure of the relative strengths of binding of small molecules to DNA.

(McConnaughie and Jenkins 1996). The methods used to probe the DNA binding

characteristics of NU:UB 31 in relation to mitoxantrone and netropsin, as comparator

molecules for intercalation and groove-binding, respectively, were essentially

adaptations of the procedures according to Bailly et al (1989).

The mode of DNA binding by NU:UB 31 (or comparative agent) was quantified by

determining the reduction in fluorescence of the reporter fluorophore upon treatment

with a given concentration of the analysed compound. A graph for each drug (NU:UB

31, mitoxantrone and netropsin) with each dye was plotted from the mean value (n=3)

of fluorescence intensity at each drug concentration. The measure of the ability to bind

to DNA was then expressed as Qso values: the concentration required to reduce the

fluorescence intensity of the DNA-bound ethidium bromide (QEso) or Hoechst stain

(QHso) complexes by 50%. The competitive displacement graphs were plotted as the

mean values of at least 3 separate experiments.

Mitoxantrone was determined to have a mean QEso value ofO.5~M whereas NU:UB 31

was found to have a mean value of 0.79~M that confirmed that an intercalative

component contributed to the process of DNA-binding by NU:UB 31 although it does

not bind so tightly as the comparator compound [Table 11]. This observation is

consistent with NU:UB 31 possessing a single cationic charge in contrast to the doubly

cationic mitoxantrone which through its two side chains has additional stabilisation of

the intercalated complex. It is proposed that NU:UB 31 has a mixed-modal (part
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intercalative, part groove-binding) mechanism of binding to DNA, given the potent

groove binding properties shown by the low mean QHso value of 0.42~M compared to

the groove-binding comparator netropsin which had a mean QHsovalue of 0.67~M.

Table 11: DNA Binding by NU:UB 31 (208) and comparator compounds

Compound DNA Binding Assay
QsoValues* (~M)

Mitoxantrone (7) QEso~ 0.50

Netropsin (76) QHso ~ 0.67

NU:UB 31 (208) QEso ~ 0.79

NU:UB 31 (208) QHso ~ 0.42

~

Q50 Values are the concentration ofcompound to diminish the
initial fluorescence of DNA-bound reporter complexes by 50%

Molecules with a planar chromophore (that can insert into the hydrophobic space

between base pairs in DNA) combined with positively charged side chains of

appropriate length and conformation have been shown to have groove-binding

contributions to the DNA-bound intercalation complex in which the charges act as

anchor points to the negatively charged phosphodiester backbone in the nucleic acid,

effectively slowing the dissociation kinetics and tethering the molecule firmly to DNA.

Empirical observations have noted that intercalating compounds, including the

anthracyclines and mitoxantrone, generally favour interaction with DNA topoisomerase

II and often function as poisons, whereas crescent-shaped, groove-binding molecules,

including the camptothecins and Hoechst 33258 (pibenzimol), interact with

topoisomerase I, also usually functioning as enzyme poisons. The mixed-modal DNA

binding behaviour of NU:UB 31 is thus consistent with its dual action on each of

topoisomerase I and II.
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[Independently, evidence to support the DNA binding properties of NU:UB 31 have

been provided by uv thermal melt analysis of thermal denaturation of DNA, wherein

NU:UB 31 produced concentration dependent increases in the melting temperature of

DNA and A'Irn values, in poly dA-dT DNA and calf thymus DNA, of 25.3°C and

11.3°C respectively, were recorded at equimolar (DNA/drug = 1) ratios (C. Bailly, L,

Bouvier, DJ Mincher, unpublished data)].

4.4.7 Summary of Dual Topoisomerase Inhibition by NU:UB Conjugates

As part of the present study, it has been shown that members ofa series of spacer-linked

anthraquinone amino acid/peptide conjugates are topoisomerase inhibitors that target

topo I and the individual (a and P) isoforms of human topo II, typified by NU:UB 31

(208). Across the NU:UB library, a spectrum of inhibitory action has been found,

ranging from pure catalytic inhibitors to poisons and examples which share each of

these properties. Broad agreement has been found between their topoisomerase

poisoning activity and enzyme levels in cancer cell lines with known expression.

NU:UB 31 (208)

Since altered topo expression may confer drug resistance independently to type I or type

II targeting drugs, it has been postulated that dual (topo I and topo II) inhibitors have the

potential to escape cross-resistance mechanisms to agents that target solely one type of

enzyme, although this remains to be proven clinically. Insufficient evidence has been

accumulated regarding the value of dual inhibition vested in the same molecule; opinion
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is divided, given that co-administration of topo I and II poisons has been shown to be

variously antagonistic whilst the demonstration of advantages of sequential

administration of type I and type II agents has enjoyed tumour type-dependent success

(Kancherla et aI2001).

The majority of topo II poisons, including doxorubicin, are believed to target principally

the a-isoform of the enzyme; topo IIa levels are tightly linked to the proliferative state

of cells and transcriptional downregulation of the a-isoform correlates with resistance to

anti-topo II agents in many cell lines and tumours. In contrast, topo II-P concentrations

are relatively constant over cell and growth cycles. Even though the physiological role

of topo II-P is less clearly defined, it was demonstrated that topo II-P, in addition to the

a- isoform, is an in vivo target for etoposide, mitoxantrone and mAMSA (Austin et al

1995). A chloroquinoxaline sulphonamide (295) with solid tumour activity was shown

recently shown to be a poison of both topo IIa and IIp (Gao et al 2000). It is interesting

to note that poisoning activity was only detected by using chaotropic protein

denaturants (such as guanidinium chloride) whereas the commonly used SDS

denaturant failed to uncover cleavable complex formation; this leads one to speculate

how many topo poisons have gone undetected in drug screening assays, if detection is

so dependent on the protein denaturant.

(295)

o

J8CN DO g'/ I ~ I" Y <,OH

~ A ~ CH3
CI N 0

(296)

Earlier (Gao et al 1999), a structurally similar topo II-P targeting quinoxaline XK469

(296) and the more potent phenanthridine alkaloid lycobetaine (297) (Barthe1mes et al
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2001) were reported for which topo I and II-a were not significant contributors to

cytotoxicity.

OH

The ester-linked, L-alanyl anthraquinone conjugate [NU:UB 73] (194) unequivocally

inhibited the 13- (but not a) isoform of topo II and topo I in vitro.

o

<;H3

~(±)e

NH~()(D N&lOOC<:F3

[NU:UB 73] (194)

Co-overexpression of topo I and topo II13 has been reported in ovarian tumour tissue

taken from clinical samples (Fukuoka et al 1992). It may be speculated that compounds

which co-target topo I and II13 may find clinical application in cases of development of

drug resistance in response to treatment with (principally) Ilo-targeting clinical agents.

Solid tumours frequently have large populations of cells in the G1 and Go phases of the

cell cycle in which levels of the non-proliferation dependent enzymes topo I and II13 are

high and levels of topo IIa are low; this may, in part, explain the solid tumour activity

of NU:UB 73 (194). The novel anti-topoisomerase inhibitory profile in vitro and

antitumour activity of (194) [NU:UB 73] justify the ongoing further evaluation against a

broader range of tumour types in order to fully establish targets in vivo; similar studies

on NU:UB 31 (208) have been instigated.
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4.4.8 In-Vivo Chemosensitivity

Several spacer-linked anthraquinone-amino acid conjugates from the NU:UB library

were selected for in-vivo evaluation (at the Clinical Oncology Unit, University of

Bradford) against subcutaneously implanted, refractory MAC15A munne

adenocarcinoma of the colon tumours [protocol is given in Appendix 1].

Very significant statistical differences were observed between treated and control

groups (in all cases p<O.01) for each of the NU:UB compounds tested. In each case

treatment was given as a single dose of drug (i.p.) at its MTD (maximum tolerated

dose).

The 4,8-dihydroxylated propyl and butyl spaced glycine conjugates, NU:UB 51 and 61

respectively were chosen for in-vivo evaluation on the basis of low in-vitro cytotoxic

potency against the MAC15A cell line and their dual topoisomerase I and II inhibitory

profile. Comparison of these compounds (Figure 13) clearly shows that lengthening of

the spacer between the anthraquinone and peptide motifs from propyl to butyl resulted

in a reduction in in-vivo potency at MTD; greater tumour volume reduction and growth

delay were achieved with NU:UB 51 at equitoxic doses.
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Figure 13: In Vivo Chemosensitivity against MAC15A colon adenocarcinonoma:
Comparison of NV:VB 51 (176) and NV:VB 61 (178)
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Four structurally related proline conjugates (differing only in spacer length and the

extent of anthraquinone hydroxylation) were selected for in vivo evaluation.

Surprisingly, the non-hydroxylated compounds NU:UB 31 (208) and 43 (215) (which

were marginally less active than NU:UB 83 and 85 in vitro) displayed better in vivo

profiles than their respective 4,8-dihydroxylated analogues. It is encouraging that the

level of tumour volume reduction given by NU:UB 31 and 43 can be achieved without

introduction of hydroxyl substituents into the anthraquinone ring system. The latter may

have been predicted to result in greater potency, but the potential for stronger DNA

binding (with an increased risk of associated mutagenic effects) and greater potential for

free radical production, are desirably avoided. The maximum growth delay at equitoxic

doses was observed with NU:UB 31.
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Figure 14:
In Vivo Chemosensitivity against MAC15A colon adenocarcinonoma: Comparison
of NU:UB 31 (208), NU:UB 43 (215) NU:UB 83 (223) and NU:UB 85 (225).
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Figure 15:
In Vivo Chemosensitivity against MAC15A colon adenocarcinonoma: Comparison
of NU:UB 73 (194), NU:UB 76 (196) and Mitoxantrone (7).
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Single (MTD) doses of the isomeric ester-linked L-alanine [NU:UB 73 (194)] and D-

alanine [NU:UB 76 (196)] conjugates produced the greatest initial tumour volume

reductions of any of the conjugates tested at equitoxic doses and a marginally greater

growth delay was sustained with the natural isomer. Data for the comparator compound

mitoxantrone has arbitrarily been plotted in Figure 15; a single dose at MTD was

utilised in each of the NU:UB conjugate anti-tumour evaluations. It is noteworthy that

mitoxantrone produces growth delay but does not shrink turnours in contrast to the

effects of the NU:UB conjugates.
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Figure 16: In Vivo Chemosensitivity against MAC15A colon adenocarcinonoma:
Comparison of NU:UB 21 (184), NU:UB 24 (236) and NU:UB 44 (254)
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Additionally, the amide-linked conjugates of D-alanine, ornithine and senne gave

approximately comparable tumour volume reductions and growth delays at equitoxic

doses.

All NV:VB conjugates were generally very well tolerated with few toxic deaths and on

the basis of the in vivo antitumour effects at single dose, merit dose scheduling and

extension to alternative tumour types and human xenograft studies.
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CHAPTER FIVE

[PART B]

MATRIX METALLOPROTEINASES AND CANCER:

PERSPECTIVES AND A NEW APPROACH



PARTB

5.1 Introduction

The clinical usefulness of many low molecular mass anticancer compounds is limited

because of their narrow therapeutic index. Rational drug design of new cancer

chemotherapeutics against identifiable molecular targets (that ideally are causal factors

in the pathogenesis of disease) has to date been relatively unproductive in affording

cures for most malignancies; this approach is further hampered by incomplete

identification of all the molecular targets responsible for the majority of these cancers.

An alternative approach is to capitalise on phenotypic rather than genetic differences

between tumour cells and normal cycling tissues (Mincher 2002a). Lack of selectivity

of chemotherapeutic agents is a major problem in cancer treatment; because highly toxic

compounds are used in chemotherapy, it is typically associated with severe side effects.

Drug concentrations that would completely eradicate the tumour cannot be reached due

to dose-limiting effects such as gastrointestinal tract and bone marrow toxicity. In

modem drug development the targeting of cytotoxic drugs selectively to the tumour site

can be considered one of the primary goals. In principle, the use of a prodrug (a non

toxic derivative of the cytotoxic drug) offers a promising approach to overcome side

effects and achieve a more tumour selective cancer treatment provided the prodrug can

be selectively activated to regenerate the toxic parent at the site of the tumour. Early

examples of prodrugs of cytotoxins failed to meet the criteria for phenotypic targeting

due to non-specific activation mechanisms, however, recent advances in the

development of tumour-activated prodrug therapies have shown substantial

improvements in antitumour activity; consequential improvements in therapeutic index

require demonstration in the clinical setting. Multiple targeting strategies for cancer

therapy have been comprehensively reviewed by Dubowchik (1999) and Schally
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(1999). A central feature of tumour activated prodrug therapy is the requirement for

properties that distinguish neoplastic from normal cells and differences in physiological

conditions (for example, pH and hypoxia), the presence of tumour specific receptors and

antigens, and the presence of tumour associated enzymes have received attention (de

Groot et al 2001). Merck (Research Laboratories) have reported a method of targeting

antitumour drugs to prostate tumours which utilises prostate-specific antigen (PSA), a

protease enzyme that is produced in elevated amounts in these tumours; although

systemic PSA levels are raised in the majority of prostate cancer patients, the circulating

form is protein-bound and catalytically inactive. Peptide-linked doxorubicin prodrugs

have been designed as PSA substrates with the objective of releasing the drug in

prostate tissue. While the prodrug provided selective delivery of doxorubicin to tumour

tissue, there was substantial non-PSA-specific formation of the drug in laboratory

animals, a factor that would limit the therapeutic gain of the prodrug (Wong et al 2001).

In another approach, the enzyme plasmin (a serine protease) that has been shown to play

a key role in tumour invasion and metastasis, has been the intended target of

anthracycline prodrugs (de Groot et al 1999) and later, prodrugs of paclitaxel (de Groot

et al 2000) which contained peptide residues designed to function as plasmin substrates.

The essential synthetic features of the construction of the anthracycline conjugates are

outlined in Scheme 25 A spacer-containing, activated (as the p-nitrophenolate) peptide

carrier was coupled to the amino group in the daunosaminyl sugar residue of

doxorubicin or daunorubicin, in the presence of triethylamine in N-methylpyrrolidine.

The prodrugs were obtained after N-deprotection of the allyloxycarbonyl (aloe)

protected D-ala and lys residues using mild conditions with

tetrakis(triphenylphosphine)palladium(O).

172



Scheme 25: Putative tumour associated plasmin-activated anthracycline prodrugs
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The proteolytically active form of plasmin is confined to the region of the tumour

because it is formed from an inactive proform plasminogen by urokinase-type

plasminogen activator produced by the cancerous and/or surrounding stromal tissue

(Hewitt and Dano 1996). Active plasmin is rapidly inhibited by endogenous inhibitors

such as uz-antiplasmin in the blood, and thus plasmin is a promising target to exploit in

tumour-specific prodrug monotherapy.
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The focus of the present study is the application of synthetic organic-peptide

conjugation chemistry to the design of tumour activated prodrugs that transport and

release the active agents by exploiting over-expressed matrix metalloproteinase

enzymes (MMPs) in the tumour environment.

5.2 Hypothesis

It was hypothesised that effective prodrugs of anticancer agents could be developed by

inverting the conventional thinking on targeting matrix metalloproteinases with

inhibitors, alternatively subverting their proteolytic capacity to cleave an active agent

from a suitable oligopeptide carrier. It was predicted that it should be feasible to design

in favourable MMP sensitive cleavage sites ('hotspots') in the peptide carrier and it was

anticipated that the prodrugs may show differential cleavage sensitivity in tumour

versus normal tissue, as a consequence of the differential expression of MMP proteins.

It was further supposed that following tissue-selective MMP-mediated cleavage at the

intended hotspot the active agent would be released from any residual peptide carrier

effected by non-specific protease action.

5.3 Aims

The long-term objective of the research is to develop non-toxic prodrugs of potent

anticancer agents that exploit the proteolytic capacity of over-expressed matrix

metalloproteinase proteins in the tumour environment to selectively release an active

and potent agent thereby reducing systemic toxicity and increasing the therapeutic

index.

The principal aims were:
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1. To extend the chemistry of spacer-linked anthraquinone-amino acid conjugates

(the NU:UB series) to oligopeptide conjugates (the PL series) designed as

putative MMP substrates and model prodrug systems.

2. To utilize the in vivo-active anticancer candidate NU:UB 31, developed in this

study, as the latent active agent ('warhead').

3. To incorporate MMP-sensitive cleavage sequences ('hotspots') in the peptide

motif focusing on MMP-9.

4. To evaluate the biochemical properties of the prototype prodrug candidates in

comparison with the active agent.

5.4 Matrix Metalloproteinases and Metastasis

The majority of cancer-related deaths are caused by the ability of cancer cells to

metastasise to critical organs in the body. The matrix metalloproteinases (MMPs) are a

group of zinc atom-dependent endopeptidases, which appear to playa major role in this

metastatic process (Stetler-Stevenson et al 1996, Westermarck and Kahari 1999).

MMPs degrade collagen and other components of the extracellular matrix (ECM)

allowing for tissue remodelling or cell migration; excessive breakdown of the ECM has

been associated with multiple pathologies including arthritis, cardiovascular disease and

cancer.

MMP activity is known to function at multiple stages of tumour progression affecting

tumour establishment, growth, neovascularization, intravasation! extravasation and

metastasis (McCawley and Matrisian 2000).

There are currently at least 26 members of the MMP family which have been classified

into different subfamilies according to their substrate specificity and cellular location.

These are the interstitial collagenases, the stromelysins, the gelatinases and membrane

type MMPs. That the enzymes were placed in arbitrary groups that originally arose
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from considerations of the substrates cleaved, was not a very sound basis because there

is insufficient information about the natural substrates of many of these enzymes. The

enzymes reported earlier (MMP-4, -5, -6) were later found to correspond to known

enzymes, so these three numbers have been discontinued and remain vacant; further

confusion arose as individual authors assigned numbers they believed came next

(Cossins et al 1996). The relationship of MMPs (or matrixins) to the broad class of

metalloproteinases, of which there are >200 examples (almost all dependent on zinc at

the active site for catalytic function), has recently been discussed (Woessner 1998). The

MMP numbers are convenient as shorthand when speaking or writing but their use is

diminished by the large number of protein species that are coming to light. The first

attempt to rationalise nomenclature was made in 1992 (Nagase et al 1992). It has been

difficult to define what an MMP is; an early definition was that an MMP was blocked

by chelators, had a latent form activated by organomercurials, was inhibited by TIMP

and acted upon at least one component of the ECM. The first criterion is too broad and

the second and fourth are not valid for all MMPs so only inhibition by TIMP remains.

Later criteria, including an extracellular site of function and possession of a cysteine

switch are still not sufficiently specific and inhibition by synthetic inhibitors (such as

hydroxamates) is no longer useful because, for example, the ADAMs (a disintegrin and

metalloproteinase) such as tumour necrosis factor-a (TNF-a) are effectively inhibited

by the same compounds (Moss et aI1997). The best current criterion would be sequence

similarity to collagenase (MMP-l), establishing an evolutionary relationship (Woessner

1998).
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Figure 17: Arrangement ofthe domain structures ofMMPs (matrixins)
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Figure 17 outlines the domain structure of matrix metalloproteinases, with MMPs

having similar domain structures grouped together. All MMPs sequenced to date have at

least three domains: a pro-domain containing a conserved cysteine residue, a catalytic

domain and a highly conserved zinc-binding active site. The two gelatinases, MMP-2

and MMP-9, each have a gelatin-binding domain inserted between the catalytic domain

and the active site domain and the six membrane-type MMPs, MMP-14, -15, -16, -17,-

24, and -25, have C-terminal transmembrane domains (Woessner and Nagase 2000)

MMPs are highly regulated with expression, secretion and activity levels kept under

tight control (Nagase and Woessner 1999). These enzymes are secreted in their inactive

latent forms (proforms or zymogens) that are activated upon cleavage of the prodomain

by a range of other proteases such as serine proteases and urokinase-type plasminogen

activator in an activation cascade (Van den Steen et al 2001). MMP activity is also

tightly controlled by a group of endogenous inhibitors , the tissue inhibitors of

metalloproteinases (TIMPs). The ratio ofMMP activity to TIMP expression is crucial in
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the metastatic process with low TIMP expression correlating with the metastatic

potential of murine and human tumour cell lines (Ponton et alI991).

Although studies to determine the relative contribution of individual MMP members to

the multiple stages of tumour progression is still at an early stage there have been many

reports on the over-expression of most MMPs in human tumours and adjacent stromal

cells (De Clerck et alI994).

Over-expression of the gelatinases, MMP-2 and MMP-9, in many malignant tissues has

been well documented. Levels of active MMPs (MMP-2 and MMP-9) and total MMP

activity (MMP-l, MMP-3 and TIMP-l) have been found to be significantly greater in

tumour tissue than in normal colon with over-expression of MMP-1 correlating with

advanced cancer progression (Baker et al2000). Over-expression ofMMP-2 and MMP

9 in primary pancreatic and colorectal carcinomas has also been associated with liver

metastasis; MMP-2 and MMP-9 activities were found to be significantly higher in

carcinomas with metastases than without (Matsuyama et al2002).

Increased expression of MMP-1, MMP-2 and MMP-9 in human melanoma cell lines

has been correlated with a highly invasive phenotype (Hofmann et al 2000).

More recently it has been recognised that interstitial collagenases, a sub family of

MMPs comprised ofMMP-1, MMP-13 and the membrane bound MMPs MMP-14, -15,

-16, -17, -24 and -25, may also contribute substantially to the later stages of tumour

dissemination with their over-expression being associated with more aggressive

tumours (Brinckerhoff et al 2000). For example, MTI-MMP, MT2-MMP and MT3

MMP mRNA expression was significantly higher in clinical specimens of renal cell

carcinoma than in normal renal tissues with increased levels of MTI-MMP in particular

correlating with the later stages of tumour invasion (Kitagawa et al 1999). Highly

invasive MDA-MB-231 human breast cancer cells over-express MMP-1, MMP-3,
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MMP-9 and MMP-13 whereas slightly invasive T47D, MCF-7 and BT-20 human breast

cancer cells do not (Balduyck et al 2000).

MMPs levels are also increased in haematological malignancies. MMP-2 and / or

MMP-9 were found to be expressed in acute myelogenous leukaemia bone marrow

samples and HEL, HL-60, K-562 and KG-l leukaemia cell lines whereas normal

(immature) bone marrow did not express either enzyme (Janowska-Wieczorek et al

1999).

5.5 Development of MMP Inhibitors as Cytostatic Agents

The current conventional approach to controlling metastatic disease has been to use

synthetic low-molecular weight inhibitors (MMPIs) to inhibit the activity of these

proteinases (reviewed in Whittaker et aI1999). The essential structural requirements for a

molecule to be an effective MMP inhibitor are

• The presence of a functional group capable of chelating the active-site zinc (II) ion

(e.g. carboxylic acid or hydroxamic acid).

• At least one functional group available to hydrogen bond with the enzyme backbone.

• One or more side chains which can undergo effective van der Waals interactions with

the enzyme subsites.

Two such inhibitors using MMPs as a therapeutic target are batimastat (298) (Wang et al

1994b) and marimastat (299)(Steward 1999). They have both been shown to inhibit the

metastatic spread of tumours in experimental models. The compounds are broad-spectrum

inhibitors ofMMP-l, MMP-2, MMP-8, MMP-9 and MMP-14 with ICso values in the low

nanomolar range and function by chelating the zinc ion present at the active site of each

MMPenzyme.
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Despite the considerable attention received from the pharmaceutical industry, MMPls have

been very disappointing in the clinic. Marimastat (299) has undergone extensive clinical

investigation, however, phase III trials in glioblastoma, breast, ovarian, and small and non-

small cell lung cancer have all been discontinued due to the failure of marimastat to show

superior efficacy over either standard chemotherapy or placebo (Drugs in Research and

Development 2003).

(298) (299)

Although it is unclear whether targeting individual MMPs would be advantageous over

broad spectum inhibition, the most serious side effect in human clinical trials of MMP

inhibitors has been severe joint pain. It has been speculated that this side effect could be

related to inhibitory activity against one (unspecified) subset of MMP family members

(McCawley and Matrisian 2000).

5.6 Substrate Specificity of Matrix Metalloproteinases

Studies on the sequence dependence of MMP-mediated cleavage of natural and

synthetic protein substrates gives clear evidence of differences in individual enzyme

substrate preferences; this specificity is exploitable in the design ofnew substrates.

Nagase et at (1994) characterised a fluorogenic substrate, selectively hydrolysed by

MMP-3, which participates in the activation of several MMP zymogens and has broad
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substrate specificity. For example the substrate: mca-arg-pro-Iys-pro-val-glu~nva-trp

arg-lystdnpj-Nl-l, was hydrolysed rapidly by MMP-3 and very slowly by MMP-9.

An alternative substrate: mca-arg-pro-Iys-pro-tyr-ala~nva-trp-met-Iys(dnp)-NH2 was

hydrolysed 60 times more rapidly by MMP-3 (and by MMP-9) than MMP-l. [mea = (7

methoxycoumarin-4-yl)acetyl] .

Other studies also indicate that it is likely that substrates may be designed which are

specific for individual MMPs. For example MMP-19, a novel MMP, proposed to

represent the first member of a new MMP sub-family has recently been reported to

hydrolyse not only the general MMP hexapeptide substrate mca-pro-leu-gly-dpa-ala

arg-NlI-, but also the heptapeptide substrate mca-pro-Ieu-ala-nva-dpa-ala-arg-NH2 with

unique specificity and rate enhancement (Stracke et al 2000).

Kridel et al (2001) have recently carried out an extensive study into the substrate

recognition specificity of MMP-9 using a phage-displayed peptide library of random

hexamers. MMP-9 was used to cleave substrates at any position within the hexamer,

allowing information on the substrate specificity on both sides of the scissile bond to be

obtained. Three substrate families were identified, the largest of which contained a Pro

X-X--1,-Hy-Serffhr motif (where X = an amino acid residue and Hy is a hydrophobic

residue) in positions P3-P2'. This corresponds to a general motif cleaved by a number of

MMPs and believed to represent a collagen-like substrate. However, certain substrates

within this group showed considerable selectivity for MMP-9 compared to MMP-13 or

MMP-7. Substrate selectivity by MMP-9 was conferred by subsite interactions outside

of the dominant P3 and PI I positions; MMP-9 has a unique preference for arg at both P2

and PI and a preference for ser/thr at P2'.

Similar studies were also carried out to determine substrate sequences selectively

cleaved by MMP-2. In particular, substrates containing consensus sequences L/I-X-X-
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.J..-Hy, Hy-S-X-.J..-L and H-X-X-.J..-Hy were between 8- to 200-fold more selective for

MMP-2 than MMP-9. Sequences containing the LII-X-X-.J..-Hy motif were up to 350

fold more selective for MMP-2 than MMP-7. The P2 residue was found to be crucial in

conferring selectivity for MMP-2 (Chen et at 2002).

The membrane type-1 matrix metalloproteinase (MT1-MMP) has been reported to

mediate the activation of pro MMP-2, associated with tumour invasion and metastasis

and is also known to have an ability to digest extracellular matrix components.

Substrate sequences have recently been identified, again, using a hexamer substrate

phage library consisting of a large number of randomized amino acid sequences.

(Ohkubo et at 1999) Consensus substrate sequences were deduced from the selected

clones and gave the preferred sequence pro-X-gly/pro-.J..-leu at the P3-PI' tetrapeptide

subsite.

This result is a departure from the usual requirement for gly in the PI position; in this

case tolerance and indeed enhancement of cleavage rates with proline in the PI position

allows a distinction to be made between membrane and non-membrane targets (shown

for MMP-2 and MT1-MMP). Additional studies by Kridel et at (2002) also showed a

unique substrate recognition profile for MT1-MMP. In contrast to the findings of

Ohkubo et al, proline in the P3 position was not required for selectivity rather, the

presence of arg in position P4 was found to be essential for both efficient hydrolysis and

selectivity. For example, a peptide containing an R-I-G-F-.J..-L-R sequence was cleaved

almost 40 times faster by MT1-MMP than MMP-9; the extent of hydrolysis, relative to

non-treated controls, was far greater by MT1-MMP (88%) than MMP-9 (18%).

182



CHAPTER SIX

[PART B]

DESIGN AND SYNTHESIS OF MMP-ACTIVATED

OLIGOPEPTIDE PRODRUGS:

RESULTS AND DISCUSSION



6.1 Design of PL 1

The design of the prototype MMP-substrate prodrug (PL 1) was based upon the

chemistry developed in this research programme for the synthesis of spacer-linked

conjugates of anthraquinones and amino acids. It was envisaged that expedient access to

oligopeptide prodrugs could be achieved by linear extension of the amino acid/ peptide

side chain in the NU:UB compound precursor.

The chemical structure ofPL 1 is given in Figure 18.

Figure 18: Structure of PL 1

o

The in vivo-active, dual topoisomerase I and II inhibitor NU:UB 31 containing an L-

proline residue was used as a starting point. The peptide carrier motif was assembled by

sequential coupling of individual amino acids to the extended N-terminus commencing

with NU:UB 31. It was recognised that prior assembly of a preformed peptide sequence

and subsequent coupling to an aminoalkylanthraquinone offered an alternative route that

was adopted in some later experiments.

The rational basis for the design of PL 1 was founded on the published work of

McGeehan et al (1994) (Glaxo Inc. Research. N. Carolina US) concerning substrate

specificities of MMP-1 and MMP-9. The McGeehan study started with a parent

substrate: dnp-pro-Ieu-gly~leu-trp-ala-(D)arg-NH2, a fluorogenic substrate reported

earlier (Stack and Gray 1989) and utilising 88 unique amino acid substitutions at each

position; over the 4 subsites (P2 through P2') 352 potential substrates were evaluated.
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Table 12 shows selected single amino acid substitutions made in the study; the figures

in parentheses refer to the relative rate of turnover by MMP-9 for each amino acid

substitution compared to the parent substrate dnp-pro-Ieu-gly~leu-trp-ala-(D)arg-NH2.

Combined results from the peptide mapping afforded an optimised substrate, dnp-pro-

cha-abu-smc-his-ala-flfjarg-Nllr (dnp=2,4-dinitrophenyl, cha=cyclohexylalanine,

abu=2-aminobutyric acid, smc=s-methylcysteine). This study, combined with results of

earlier work (Berman et at 1992), gave an extended profile of the substrate specificities

of both MMP-l and MMP-9 with emphasis on MMP-1.

This optimised peptide showed a 36-fold and 6-fold increase in turnover (kcat/km),

versus the parent substrate, by MMP-l and MMP-9 respectively.

It should be noted that the rate enhancements are valid for single ammo acid

substitutions, additive effects of multiple substitutions cannot be obtained from these

values; synergistic or antagonistic effects of greater than single point changes were thus

not determined.

Table 12: Relationship between amino acid substitution and rates of MMP-9
proteolytic cleavage of synthetic substrates

Parent
Substrate (1t

Optimised
Substrate

* Where erne = S-mereaptoethylcysteme, tha = thienylalanine, pfe = paraehlorophenylalnine.

P3 P2 PI PI' Pi P3' Pi
dnp-pro leu gly leu trp ala (D)arg-NH2

emc tha smc met
(3.3) (3) (4) (3)
tha" cha" nva ile
(3) (3) (2.3) (1.6)

pfc" nle leu
(2.3 (1.4) (1.6)

dnp-pro cha abu sme his ala (D)arg-NH2

# Numbers in parentheses refer to relative cleavage rates; parent substrate assigned the value 1.
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It is significant that inclusion of the D-isomers of amino acids in the P2-P2' subsite

tetrapeptide sequence, drastically reduced the ability of the enzymes to cleave the

substrate yet inclusion of unnatural amino acids of the L-configuration produced

substrates with increased cleavage sensitivity. The PI specific requirement for glycine

was virtually absolute. Largest enhancements at P2' were seen with sec and his (for

MMP-1) and with tyr and met (for MMP-9).

Furthermore, based on McGeehan's findings, the best PI' substituents may incorporate

straight chain residues at this position. Notable selectivity for y-S substituted cysteines

exists. Additionally, PI' chain length is an important determinant of selectivity.

The cleavage rate increased with increasing length of unbranched a-substituents at PI' .

Side chains at the P2-P2' positions, in common with PI' are known to project into deep

hydrophobic pockets in MMP-1 and MMP-9. Neither enzyme will tolerate N-a

substitutions or polar functionalities at these positions.

The P2 position gave noticeable differences between MMP-1 and MMP-9. Specifically,

a series of para-substituted phenylalanines were accommodated by MMP-9 but were not

hydrolysed readily by MMP-1. Five to ten fold differences in relative kcat/km at this

position could be exploited in the design of (gelatinase) MMP-9-specific substrates.

Figure 19 outlines the key structural features from the original dnp-pro-leu-gly-Ieu-trp

ala-fl))arg-NH2peptide which have been incorporated into PL1.
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Figure 19: DESIGN OF PL 1
BASED UPON A PREFERRED CLEAVAGE SUBSTRATE FOR MMP 9

(McGeehan et ai, J. BioI. Chern. 1994)

CLEAVAGE SEQUENCE

P3 P2 PI PI' P2' P3' P4'

GPRo-LEU-GLY- LEU- lRP- ALA-(D)ARG

I I I I
~ ~

WIDE TOLERANCE VALUABLE WIDE TOLERANCE
OF OTHER (though not optimal) OF OTHER

AMINO ACIDS SEQUENCE TO RETAIN AMINO ACIDS

GLY ESSENTIAL FOR
MMP-9 SELECTIVITY

REPLACED BY FULLY CONSERVED REPLACED BY

~~I
HN-(D)ALA- ALA-ALA - LEU-GLY-UU- pL-fSP A~

PL 1 preserved the consensus PI-PI' gly-Ieu cleavage site. Given the demonstrated wide

tolerance of P2' substituents and low levels of preference at the P3' and P4' positions for

cleavage specificity, it was proposed that the in vivo-active, experimental warhead

NU:UB 31 would span positions P2' through P4' (the proline residue occupying the P2'

position). The P5 position was shown to have negligible effect on cleavage specificity

although in PL 1 the D-isomer (of ala) was used to help prevent non-specific proteolytic

end-degradation of the heptapeptide motif. The reaction chemistry for the synthesis of

PL 1 is outlined in Scheme 26.
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6.2 Synthesis of PLI

The synthesis of the 'warhead' NU:UB 31 was reported in Section 4.3.1 Briefly,

nucleophilic displacement of chlorine from 1-chloroanthraquinone by 1,3

diaminopropane (in excess) in DMSO afforded the anthraquinone-propyl spacer

compound. Coupling of Nt-Boc protected, C-activated proline, followed by N

deprotection with TFA afforded, in high yield, the in vivo-active, spacer-linked

anthracenyl-proline trifluoroacetate salt NU:UB 31.

Linear peptide synthesis was carried out on the free amino terminus of NU:UB 31 using

N-tBoc-protected a-amino acids, C-activated as either the O-pentafluorophenolate or 0

succinimide active esters. Stepwise assembly afforded samples of the potential

metabolites of PL1 (as water-soluble N-tenninal trifluoroacetate salts), for biological

evaluation.
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Scheme 26: Outline Synthesis of the Prototype MMP-9 Substrate Prodrug PL I (293)
(Containing the Experimental Anticancer Agent ('Warhead') NU:UB 31)

ACTIVE AGENT

NU:UB 185
(286)

(i) Et,NI

Boc-GLY-os«

(ii) TFA

(i) Et,NI Boc-LEU-os.
(ii) TFA

AQfpROPYL SPACERtPRO -LEU-TFA

PRO-LEU-GLY-TFA

NU:UBI84 (285)

PfpOH
(i) Et,N/Boc-LEU-GLY-OPfp .. Boc-LEU-GLy-oH

(ii) TFA
DCC

(i) Et,N1

Boc-ALA-oS.
NU:UB204

(289)

AQ

(ii) TFA
r---------,

AQfpROPYL SPACERtPRO -LEU-GLY-LEU-TFA NU:UB 186 (288)

PfpOH
(i) Et,NI Boc-ALA-ALA-oPfP.. Boc-ALA-ALA-oH

(ii) TFA
DCC

AQ IpROPYLSPACER1PRO-LEU-GLY-LEU-ALA-ALA-TFA NU:UB 205"[ r (291)

j
(i) Et,NI Boc-(D)-ALA-OS.

(ii) TFA

(PL I) AQ tPROPYL SPACERtPRO -LEU-GLY-LEU-ALA-ALA-(D)-ALA -TFA

PL I (NU:UB 187 (293»)

CH'jCH, CH'7C H,

Q ' ,<;", ~", CH,

o NH~NHC~NC~NHC~NHC~NHC~NHC~NHC~N~'~OCC~

c¢6
II II II II II II II
0000000

r -...:::
~ I I h PLI

o PROTOTYPEPRODRUG
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6.2.1 1-[3-(N-Tertiarybutoxycarbonyl-L-Ieucyl-L-prolylamino)propylamino]anthra-

quinone (284)

The leucylprolyl motifwas introduced by standard N-terminal extension ofproline in the

experimental antitumour agent, NU:UB 31 (208) whose synthesis is described fully in

PART A [Section 4.3.1].

(284)

The protected dipeptide conjugate was formed by the reaction of N-IBoc-L-leucine-N-

hydroxysuccinimide ester with the free base of the propyl-spaced proline conjugate

NU:UB 31 (208) (liberated from the trifluoroacetate by triethylamine) in THF. After

twelve hours reaction time the crude product was purified by solvent extraction and

column chromatography to give the title compound (284) in an analytically pure form. The

structure was confirmed by its FAB(+) mass spectrum which gave a signal at rnIz 613 for

the species (M+Nat and the base peak at rnIz 591 (MHt corresponded to a molecular

mass of590.
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6.2.2 1-[3-(L-Leucyl-L-prolylamino)propylamino]anthraquinone trifluoroacetate

(285) (NU:UB 184)

(285)

Deprotection of compound (284) was carried out with trifluoroacetic acid. A precipitate

of the resultant salt (285) was obtained from an ethanol/ ether solution. The electrospray

(+) mass spectrum gave signals at m/z 513 for the species (RNH3+Nat and m/z 491 for

(RNH 3t .The presence ofthe trifluoroacetate anion was confirmed by a peak at m/z 113

in the electrospray (-) mass spectrum.

6.2.3 1-[3-(Glycyl-L-leucyl-L-prolylamino)propylamino]anthraquinone

trifluoroacetate (286) (NU:UB 185)

(286)

The N-tBoc protected derivative was prepared by the reaction of N-tBoc-glycine-N-

hydroxysuccinimide ester with the dipeptide conjugate (284) in THF and triethylamine.

The crude product was purified by solvent extraction and column chromatography and was
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deprotected using trifluoroacetic acid to give the title compound (286). The structure was

confirmed by its electrospray (+) mass spectrum which had signals at m1z 570 and 548

corresponding to the species (RNH3+Nat and (RNH 3t respectively.

6.2.4 1-[3-(N-Tertiarybutoxycarbonyl-L-leucyl-glycyl-L-leucyl-L-prolylamino)-

propylamino]anthraquinone (287)

(287)

The pentafluorophenolate ester of Ne'Boc-Ldeucylglycine was prepared from the reaction

of pentafluorophenol and N-tBoc-L-leucylglycine in dry ethyl acetate using

dicyclhexylcarbodiimide (DCC) as the coupling agent. The tetrapeptide compound (287)

was formed by the addition of N-tBoc-L-leucylglycine pentafluorophenolate to a cooled

stirred solution of compound (284) (the propyl spaced prolylleucine TFA conjugate) in

DMF and triethylamine. Purification by solvent extraction and column chromatography

afforded the title compound in an analytically pure form. The FAB(+) mass spectrum had

m1z 761 (MHt, confirming a molecular mass of 760 and a fragmentation peak at m1z661

corresponding to the loss of the tBoc protecting group.
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6.2.51-[3-(L-Leucyl-glycyl-L-leucyl-L-prolylamino)propylamino]anthraquinone

trifluoroacetate. (288)(NU: UB 186)

CH 3yCH3 CH CH
j 37 3o ~ ~ ~ e

o NH~NHC~NC~NHC~NHC~~H300CCF3
II II II II
o 0 0 0

o

(288)

Deprotection of compound (287) was carried out usmg trifluoroacetic acid. The

structure of the resultant salt (288) was confirmed by its mass spectrum which had a

peak at m/z 661 for the species (RNH3t. A fragmentation peak at m/z 378, which was

also the base peak, corresponded to the species (AQ-Propyl-Sp-Pro-NH2t.

6.2.6 1-[3-(L-Alanyl-L-Ieucyl-glycyl-L-Ieucyl-L-prolylamino)propylamino]-

anthraquinone trifluoroacetate (289) NU:UB 204

(289)

The N-tBoc protected derivative was prepared by the reaction of N-tBoc-alanine-N-

hydroxysuccinimide ester with the tetrapeptide conjugate (288) in THF and triethylamine.

The crude product was purified using solvent extraction and column chromatography and
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was deprotected using trifluoroacetic acid to grve the title compound (289). The

electrospray (+) mass spectrum gave signals at m1z 754 for the species (RNH3+Nat and

6.2.7 1-[3-(N-Tertiarybutoxycarbonyl-L-alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-

prolylamino)propylamino]anthraquinone (290)

CH3yCH3 CH CHJ 37 3o ~ ~ ~H3 ~H3

o NH~NHC~NC~NHC~NHC~NHC~NHC~NHCOOC(CH3h
II II II II II IIo 0 0 0 0 0

(290)

N-tBoc-L-Alanylalanine pentafluorophenolate ester was prepared from the reaction of

pentafluorophenol and N-tBoc-L-alanylalanine in dry ethyl acetate using

dicyc1hexylcarbodiimide (DCC) as the coupling agent. The title compound was formed

by the addition of Ns'Boc-Lulanylalanine pentafluorophenolate ester to a cooled stirred

solution of the tetrapeptide conjugate (288) to which triethylamine had been added to

liberate the free amine. After reaction completion, purification by solvent extraction and

column chromatography gave the title compound (290).
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6.2.8 1-[3-(L-Alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-prolylamino)propyl-

amino]anthraquinone trifluoroacetate (291) NU:UB 205

(291)

Standard deprotection of the intermediate (290) was carried out using trifluoroacetic

acid. The structure of the resultant salt (291) was confirmed by its electro spray (+) mass

spectrum which gave signals at m/z 825 for the species (RNH3+Nat and m/z 803 for

(RNH3t .The presence of the trifluoroacetate anion was confirmed by a signal at m/z

113 in the electrospray (-) mass spectrum.

6.2.9 1-[3-(N-Tertiarybutoxycarbonyl-D-alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-

prolylamino)propylamino]anthraquinone (292)

(292)

Compound (292) was prepared by the reaction of N-tBoc-D-alanine-N-

hydroxysuccinimide ester with the hexapeptide conjugate (291) in THF and triethylamine.

The crude product was purified by solvent extraction and column chromatography.
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6.2.10 1-[3-(D-alanyl-L-Alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-prolylamino)-

propylamino]anthraquinone trifluoroacetate (293) (NU:UB 187) PLI

(293)

Deprotection of the N-protected intermediate (292) was carried out using trifluoroacetic

acid. A precipitate of the resultant salt (293) was obtained from an ethanol/ ether

solution. The electrospray (+) mass spectrum gave signals at m/z 896 for the species

(RNH3+Nat and m/z 874 for (RNH3t .The base peak at m/z 113 in the electrospray (-)

mass spectrum confirmed the presence of the trifluoroacetate anion.
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6.3 Biological and Biochemical Evaluation

6.3.1 PL 1 (293) and Intermediates: MAC15A In Vitro Chemosensitivity

In vitro cytotoxicity against the MAC15A colon adenocarcinoma cell line was measured

after a 1 hour drug exposure by MTT assay. Several intermediate compounds from the

synthesis of PL 1 (293) were potential metabolites of PL 1 degradation in vitro or in

vivo and as such, were included in this assay with the 'warhead' NU:UB 31 (208). The

growth curves are depicted in Figure 20.

Figure 20: MAC15A Cells Exposed to PL 1 and Intermediates (1 hour exposure)
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Over the short exposure time, PL 1 (293) was essentially inactive (ICso» 1OO~M)

compared to the 'warhead' NU:UB 31 (208) that had an ICso value of 5~M. Notably,

the anthraquinone aminopropylamino spacer compound (146) was relatively inactive at

33~M [Table 13]. The potential metabolites, dipeptide pro-leu and tripeptide pro-leu-

gly intermediates (285) and (286), respectively were of comparable potency, some 2-3-

fold less potent than NU:UB 31. The tetrapeptide conjugate (288) was also relatively

inactive (ICso 30~M). It was clear that in this cell line, the extension of NU:UB 31

through addition of a hexapeptide motif, resulted in masking the cytotoxicity of the

active agent. Furthermore, over a 96 hour exposure PLI had an ICsovalue in excess of

30~M whereas NU:UB 31 had a value of 2.5. The reduction in intrinsic cytotoxic

potency of the oligopeptide prodrug was a prerequisite for success of a prodrug strategy.

The generality of this feature would require additional experiments using different cell

lines and extension to alternative 'warheads'.

Table: 13 Inhibition of topoisomerase I-mediated relaxation of pBR322 DNA
and in vitro cytotoxicity against MAC15A colon adenocarcinoma (lh
exposure)/ PL 1 and its intermediates

COMPOUND LEVEL OF TOPOISOMERASE MAC15A
I INHIBITION ICso(uM)

AQ-SP/ NU:UB 197 (146) Complete inhibition of relaxation at 33
25 liM

AQ-SP-P/NU:UB 31 (208) Complete inhibition of relaxation at 5
251lM

AQ-SP-P-LlNU:UB 184 (285) Complete inhibition ofrelaxation at 14
51lM

AQ-SP-P-L-G/ NU:UB 185 (286) Partial inhibition of relaxation at 13
50uM

AQ-SP-P-L-G-LI NU:UB 186 (288) No inhibition of relaxation between 30
1-100 liM

AQ-SP-P-L-G-L-A/ NU:UB 204 No inhibition of relaxation between Not Determined
(289) 1-100 IlM

AQ-SP-P-L-G-L-A-A/ NU:UB 205 No inhibition ofrelaxation between Not Determined
(291) 1-100 IlM

PL I (293) No inhibition ofrelaxation between »100
1-100 IlM
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6.3.2 PL 1 (293) and Intermediates: Topoisomerase Inhibition

A limited number of experiments were conducted to compare the anti-topoisomerase

properties of the prototype prodrug and potential metabolites with NU:UB 31; the

summary data is presented in Table 13 for the inhibitory effects upon topoisomerase 1-

mediated relaxation of supercoiled pBR322 plasmid DNA by gel electrophoresis.

Neither the prodrug nor the intermediate tetra-, pent- or hexa-peptide conjugates showed

inhibition of enzyme activity at concentrations up to 100J.lM; the tripeptide conjugate

(286) showed some weak inhibitory action at 50J.lM. Most notable was the relatively

potent inhibitory action of the dipeptide pro-leu conjugate (285) which was 5-fold more

potent than NU:UB 31 in this assay. Furthermore, the intact prodrug had no enzyme

poisoning activity and did not bind to DNA (data not shown). It was clear that

extending the peptide motif nullified topoisomerase enzyme interaction and imparted

substantially different biochemical properties to the active agent.

6.3.3 Incubation of PLI with Human Recombinant MMP-9

Purified prodrug PL 1 (293) [the ES(+) mass spectrum (m/z 874, RNH3l of which is

shown in Figure 21] containing the putative MMP-9 sensitive cleavage sequence was

incubated with recombinant enzyme and product extracts were analysed by HPLC/MS

methods.

Figure 21: ES(+) Mass Spectrum ofPL 1
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Figure 22: PLI Incubation with Recombinant MMP-9 [ES(+) Mass Spectrum]

I
BRA02L0 2 34 (3.765) Sm (SG. 2x0.40); Sb (1,20.00) ; Cm (30:36-1:21)

100

I
376.1

491.7

514.5

546.2
PLI incubl,ion

"ilh MMP·9

I"" 'I·· •.-~~

%1

364.4 431.1 II

~ J
467,1 I 521.6

373.3 409.5 5123 532.9 556.6
361.5 II 396.0 , 421. ~ 443.4 4603 486.2 ' 564.6 564 1 601.0 607.6 632.9636.2

I 0 · · · &M:Jv ~ .cry.,,~V':\f. &J --r ~l-~~~'~~tMWJ.%., .~j-~,,~ \~~,J,t\.. ~.\~ .#fi ~AN.~~ Dale I
L-- 360 360 400 _ 420_ 440 46ll 460 500 52.9_.540 _ 560_ 5l!Q. .600 620 640 _

LC-MS and MS-MS analysis of the metabolites resulting from incubation of PL 1 (293)

with human recombinant MMP-9 [protocol in Appendix 1] established that PL 1 was

cleaved, principally to the dipeptide pro-leu (285) and the tripeptide pro-leu-gly (286)

[m/z 548 RNH3+] intermediates at the predicted cleavage sites [Figure 22].

Furthermore, the parent ion spectra of the signal m/z 378 revealed that this breakdown

signal was derived from the principal products of in vitro metabolism, the parent

conjugates, rather than the presence of released active agent NU:UB 31 [Figure 23].

Figure 23: PLI Incubation with Recombinant MMP-9
[ES(+)Parent Ion Mass Spectrum]
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The mass spectral data and hplc traces (not shown) of the in vitro metabolites of the

incubation of the prototype prodrug PLI in comparison to pure standards (available by
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synthesis of the intermediates) thus, confirmed that the cleavage MMP-9 induced

cleavage pattern was consistent with prediction.

6.3.4 Incubation of PLI with Human Recombinant MMP-2

PL 1 (293) was similarly incubated with the closely related human recombinant

MMP-2; the ES(+) mass spectrum of the product extract is shown in Figure 24.

Figure 24: ES(+) Mass Spectrum ofPLl Incubation with Human
Recombinant MMP-2
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Despite the very similar substrate specificity of the two proteases and homology in the

catalytic site region, surprisingly, PL 1 was shown to be a poor substrate for MMP-2, at

least in vitro, and was largely unchanged with little or no evidence of prospective,

truncated peptide conjugate metabolites (after 24 h) [Figure 24]. This marked difference in

behaviour towards the closely homologous gelatinases MMP-2 and -9 strongly suggests

that it should be feasible to ' design in' molecular features for recognition by specific

metaUoproteinases.

63.5 Preliminary Pharmacokinetic Study of the Stability of PLI

In preliminary PK studies of the stability of prodrug PL1 (293) in mice, hplc studies and

mass spectra of samples extracted from plasma after an i.v. dose at 40mg/Kg «MTD),

confirmed that the predominant species was intact prodrug at 30 and 60 minute time

points [Figure 25]. Encouragingly, the significant presence of PLI indicated that it was

relatively long-lived which was a desirable feature in the prodrug design strategy.
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Parent ion spectra [Figure 26] also confirmed that none of the active agent had been

released and that breakdown signals were from the parent prodrug.

Figure 25: ES(+) Mass Spectrum ofPLl [40mg/Kg iv] Extracted from Plasma
at 30 minutes
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Figure 26: ES(+)Parent Ion Mass Spectrum of PLI [40mg/Kg iv] Extracted From
Plasma at 30 minutes ESI Mass
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6.3.6 Structural Modification of the Oligopeptide Motif

Clearly, the composition of the oligopeptide carrier can be varied in number of ways

that include alternative amino acid substitution patterns to PL I and/or changes to the

active agent or replacement of peptide bonds. In order to begin to probe the effects of

inclusion of amino acids with unnatural, D-isomer configurations, the warhead in PL 1

was replaced by the enantiomeric D-proline conjugate NU:UB 46 (210) (Mincher

2002b).

»<; »<: 5:)0
~ <;»: 'NHCO NH,OOCCF,

~
o

NU:UB 46
(210)

Retention of the hexapeptide sequence in PL 1 thus afforded the isomeric PL 2 (303).

PL2 (303)

The prototype conjugates PL 1 and PL 2 were studied by hplc and hplc/ms for their in

vitro metabolism [protocol in Appendix 1] in (diluted) tissue homogenates of a highly

MMP-9 expressing human fibrosarcoma, HTI080.

Both conjugates were rapidly metabolised; furthermore, the cleavage site specificity for

PL 1 mirrored that observed with human recombinant protein affording the residual
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anthraquinone di- and tri- peptide conjugates. Initial metabolism of PL 2 (303) was

similar giving principally the Dspro-gly-leu tripeptide conjugate metabolite (301) as

shown in Figure 27. In contrast to PL 1, over extended exposure times (24 hours)

proteolytic degradation to release the active agent did not extend to release of

anthraquinone-spacer (145), thus the presence of the D-isomer considerably stabilised

the spacer-(pro) amino acid junction whilst preserving the primary cleavage site.

Figure 27: PL 2 (303) in HTI080 homogenate (11500)
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6.3.7 Oligopeptide Prodrug Summary

For reasons of commercialisation restrictions and the sake of brevity, the discussion of

prototype prodrugs has been limited to preliminary work to establish that prototypes can

function as MMP substrates. It is clear that the inclusion of a gly-leu-gly sequence in

the peptide carrier facilitates cleavage by MMP-9. That MMP-2 does not, at least in

vitro, metabolise PL1 (293) in a directly analogous manner is as intriguing as it is

surprising and indicates that tailoring substrates to individual MMPs may be feasible;

this may not, however, be necessary or desirable since MMPs occur in 'gangs' and a

broad spectrum substrate may therefore be more effective. Encouragingly, recent work

has shown that the prototypes have shown differential tissue metabolism between

tumour and liver tissue (used as an indicator of normal tissue metabolism); this

differential applies not only to cleavage rates but also to differential selectivity for

cleavage sites in the oligopeptide carrier. Work is ongoing in parallel projects and in

collaborating laboratories to broaden the differential metabolism studies to a panel of

tissues, including heart, lung, and kidney. Pharmacokinetic and antitumour studies have

been instigated. Exploiting non-specific protease action has been used in the past to

effect release of active agents from short peptide conjugates, for example, doxorubicin

(1) from an N-succinyl-((3-alanyl-L-leucyl-L-alanyl-L-leucyl) derivative (Fernandez et

al 2001) and similar doxorubicin (and vinblastine)-peptide substrates of the protease,

prostate specific antigen (PSA) have been reported (DeFeo-Jones et al2000 and 2002).

Since patent applications were filed (earliest priority date 09-03-2001) based on work

arising from this research programme (Mincher et al 2002b), an MMP cleavage

sequence-containing peptide has been used to link doxorubicin to a human serum

albumin conjugate (Kratz et al 2001), illustrating the growing interest in tumour

activated prodrug therapy.
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CHAPTER SEVEN

CONCLUSIONS



7 Conclusions and Suggestions for Further Work

PART A

In this research programme, it was demonstrated that novel spacer-linked

anthraquinone-amino acid and peptide conjugates could be successfully synthesised by

the coupling of suitably N-protected amino acids (or peptides) as amides or esters (to

the free amino or hydroxy terminus, respectively) of precursor anthraquinone-spacer

molecules, followed by deprotection to give water-soluble amine salts.

A large library of conjugates [NU:UB], spacer compounds and intermediates was

prepared and characterised by spectroscopic methods, principally mass (EI, CI,

electrospray and FAB) spectrometry and nrnr spectroscopy; several conjugates were

shown to be cytotoxic in the low micromolar range in vitro against panels of human and

animal tumour cell lines. Key conjugates have progressed to preliminary in vivo

antitumour studies and have potent activity in tumour models that are refractory to

clinical agents, including the related anthraquinone topo II inhibitors doxorubicin and

mitoxantrone.

Selected conjugates were further studied for their interaction with topoisomerase

enzymes in vitro and concomitantly for their pattern of cell kill in a panel of Chinese

hamster ovarian (CHO) cell lines with altered topoisomerase expresion. For the lead

compounds, the pattern of cell kill was, at least in part, consistent with their inhibitory

and poisoning effects against topoisomerase enzymes over-expressed in these cell lines.

DNA binding studies showed that the amide-linked, propyl-spaced proline conjugate

NU:UB 31 (208) binds to DNA, via a mixed-modal, part-intercalative, part groove

binding mechanism that may correlate with its dual action on type I and type II

topoisomerase enzymes; a more detailed study of the relationship between mode of

DNA binding and topo inhibitory effects for this and related conjugates in the library
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would be necessary to devolve structure-activity relationships. The anti-topoisomerase

investigations here (and in parallel projects) established that NU:UB 31 and several

related conjugates interacted with DNA topoisomerase enzymes in in vitro assays using

plasmid DNA substrates as well as in intact (HL60) cancer cells. For NU:UB 31 both

inhibition of topo I-mediated DNA relaxation (catalytic inhibition) and cleavage

complex formation (poisoning) were observed. Additionally, anti-topo II (n and ~)

activities (catalytic inhibition and poisoning) were also revealed. Thus, there is

significant evidence to suggest that NU:UB 31 and other NU:UB compounds, merit

classification as dual topo 1- and II-targeting agents. These agents may be considered

non-classical inhibitors or poisons given their propensity to antagonise the cleavage

reaction at high drug concentrations. The ester-linked, butyl-spaced alanine conjugate

NU:UB 73 (194) is unique in its ability to inhibit topo I and the beta-isoform only of

topo II. Cytotoxic potency across the NU:UB series was determined by the a

substituent of the amino acid residue; optimum residues (and preferred dual topo

inhibitors) were small, hydrophobic residues which in proximity to the cationic charge

probably facilitates cellular uptake of the drug. Changes to absolute configuration at the

a-carbon did not significantly influence potency, whereas the structure of the spacer

group had a greater effect; in general, steric hindrance at the anthraquinone terminus or

branching typically diminshed activity 10-fold for a common amino acid residue. The

data generated is valuable in defining the structural requirements for dual enzyme

inhibition and for the design of new topo-targeting antitumour agents that are capable of

circumventing multi-drug resistance phenomena. It is recognised that many other

factors, beyond the scope of the present study, influence drug cytotoxicity; this project

has spawned others in which cell cycle dependence, p53 status and induction of

apoptotic mechanisms are now being studied for lead compounds from this project.
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PARTB

Part B comprised a novel approach to the design of anticancer prodrugs to selectively

deliver cytotoxic compounds to the site of a tumour.

The chemistry of spacer-linked anthraquinone-amino acid and peptide conjugates was

extended to include prototype oligopeptide prodrug substrates for the tumour-associated

protease matrix metalloproteinase (MMP-9), in which the in vivo-active lead compound,

NU:UB 31, was linked to a hexapeptide motif containing an MMP-9 cleavage 'hotspot'.

Incubation with human recombinant MMP-9 protein and MMP-9 over-expressing cell

lines confirmed that cleavage of the peptide carrier occurred at the intended gly-leu

cleavage site to release the active agent, after non-specific cleavage of residual peptide

carrier fragments, providing evidence that the approach to subvert the proteolytic

capacity ofMMPs is a viable one to improve tumour targeting.

The chemistry requires further extension to optimise the peptide carrier sequence and to

tailor the prodrugs to the proteolytic specificity of individual MMPs. Specifically,

efforts should be concentrated on the PI-PI' cleavage site, exploiting the deep

hydrophobic pocket in the SI' subsite in MMPs by introduction of long straight-chain

hydrophobic residues such as norvaline, norleucine etc to enhance cleavage rates and

site-specific cleavage; the latter may also be achievable by selective peptide bond

replacement (peptide mimics). Attachment of the peptide carrier served to inactivate the

intrinsic cytotoxic potency of the active agent ('warhead') NU:UB 31; in future work a

principal objective would be to investigate the generality of this outcome by substituting

the active agent with a more potent drug. If effective, the technology could be applied to

improve the therapeutic index of existing agents in the clinical setting.
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CHAPTER EIGHT

STRUCTURE LIBRARY

[OF COMPOUNDS SYNTHESISED IN THIS STUDY]
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PROLINE CONTAINING SPACER-LINKED ANTHRAQUINONE AMINO ACID
CONJUGATES

[SYNTHESIS REPORTED IN SECTIONS 3.6.1 TO 3.6.19)
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LYSINE AND ORNITHINE CONTAINING SPACER-LINKED
ANTHRAQUINONE AMINO ACID CONJUGATES

[SYNTHESIS REPORTED IN SECTIONS 3.7.1 TO 3.7.23]
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OTHER SPACER-LINKED ANTHRAQUINONE AMINO ACID CONJUGATES
[SYNTHESIS REPORTED IN SECTIONS 3.8.1 TO 3.8.19]
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CHAPTER NINE

EXPERIMENTAL

[PART A + PART B]



9.1 Experimental techniques

Elemental analysis

An N-Carlo-Erba 1160 elemental analyser was used for microanalysis of carbon, hydrogen

and nitrogen.

NMR

IH nmr spectra were obtained on either a Brucker WP250 (200 MHz), a Brucker DPX FT

multinuclear (400 MHz) or a Jeol JNM GMX (300 MHz) nmr spectrophotometer.

BC nmr spectra were obtained on a Brucker DPX 400 nmr spectrophotometer.

NOTE: In BC nmr spectral data the +ve and -ve signals correspond to a DEPT spectrum

and 'ab' corresponds to quaternary C signals which are absent in DEPT but appear in

normalBC spectra.

Mass spectrometry

FAB(+) mass spectra were recorded on either a VGIMS9 or a Micromass Autospec using

a FAB gun source. The sample was dissolved in 3-nitrobenzyl alcohol (NOBA) and its

spectrum subtracted from the sample spectrum.

Low resolution EI, CI and Electrospray mass spectra were recorded on a Micromass

Quattro II triple quadrapole instrument.
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Chromatography

Thin layer chromatography was carried out on Kieselgel 60 F254 pre-coated aluminium

plates. Most compounds synthesised absorb in the visible region, additional visualisation

where required, was by short-wave V.V. light.

Flash chromatography was carried out in columns packed with silica gel, particle size 40

631lm, with a positive pressure applied via an air pump.

Solvent systems used for thin layer chromatography

1. chloroform: methanol, 9:1

2. toluene: ethyl acetate, 4:1

3. butanol: glacial acetic acid: water, 4:5:1
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9.2 SYNTHESIS OF ANTHRAQUINONE SPACER COMPOUNDS

9.2.1 Method A

General method for the preparation of 'anthraquinone-spacer arm' compounds.

Applicable to hydroxyalkylamino- or aminoalkylamino-anthraquinones.

l-Chloroanthraquinone (40 mmol) was suspended in DMSO (15 cnr'); an u.o»

diaminoalkane or ro-aminoalkanol (200 mmol) was added and the mixture was heated for

30 min over a boiling water bath (or heated at reflux as appropriate). The solution was

cooled and added to a large excess of water (500 crrr'). The red precipitated solid was

filtered off, dried and used for subsequent reactions without further purification.

Analytically pure samples were prepared by column chromatography [chloroform :

methanol (9:1)] or recrystallisationfrom ethanol.

9.2.2 Method B

General method for the preparation of '4,8-dihydroxylated-anthraquinone-spacer

arm' compounds.

Applicable to hydroxyalkylamino-anthraquinones [Method B(i») or

aminoalkylamino-anthraquinones [2 stages Method B(i) and (ii»).

(i) Leuco-l,4,5-trihydroxyanthraquinone (3.90 mmol) was suspended III

dichloromethane (200 crrr'). An N-tBoc-a,ro-diaminoalkane or an ro-aminoalkanol

(3.90 mmol) was added and the mixture was stirred at room temperature for 6h

followed by the addition of triethylamine (2 crrr') and aeration for 2h. The solution

was concentrated to half volume (rotary evaporator) before applying to a silica gel

chromatography column (4x40 em) prepared with dichloromethane. The column
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was eluted firstly with dichloromethane to remove high running impurities before the

addition of ethyl acetate to give the spacer compound as a purple solid after

recrystallisation from ethanol.

The foregoing procedure afforded hydroxyalkylamino-anthraquinones directly;

isolation of aminoalkylamino-anthraquinones required the following deprotection

step.

(ii) N-tBoc-aminoalkylamino-anthraquinone was dissolved in trifluoroacetic acid (7

crrr') at room temperature. After 0.5h the solvent was evaporated and the residue was

re-evaporated from ethanol (3x10 cnr') before dissolving in a minimum volume of

ethanol (3 cnr'). Addition of ether (l00 cnr') gave a precipitate of the deprotected

anthraquinone-spacer compound as the trifluoroacetate salt which was filtered off

and dried.

9.2.3 (a) 1-[(3-Aminopropyl)amino]anthraquinone (145)

Compound (145) was prepared by the reaction of 1-chloroanthraquinone (lOg, 36 mmol)

with 1,3-diaminopropane (50 crrr', 590 mmol) [following method A]. T.l.c.(solvent system

1): Rr 0.00 (red) product, 0.90 (red), 0.95 (yellow) l-chloroanthraquinone. T.l.c.(solvent

system 3): RrOAO (red) product. Yield (9.5g)(82%).

Found: !!ill 106-108 °C.

(b) 1-[(3-Aminopropyl)amino]anthraquinone trifluoroacetate (146)(NU:UB 210)

Compound (145) was purified by column chromatography, eluting with butanol: glacial

acetic acid : water (4:5:1). 1-[(3-aminopropyl)amino]anthraquinone acetate was
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partitioned between chloroform and water and neutralised with triethylamine to give 1-[(3

aminopropyl)amino]anthraquinone. The chloroform extract was dried (NaS04), filtered,

evaporated to dryness and dissolved in a small volume of trifluoroacetic acid (2 crrr').

Addition of ether (100 crrr') afforded the title compound as a red solid. T.l.c.(solvent

system 3): Rf 0.35 (red) product.

Found: !!ill 196 °C.

ESMS(+)(Cone 20V) rn/z: 281 (100%)(RNH3t, 263 (20%), 102 (15%).

9.2.4 1-[(4-Aminobutyl)amino]anthraquinone (147)

l,4-Diaminobutane (30g, 340 mmol) was reacted with 1-chloroanthraquinone (lOg, 41

mmol) to give the title compound (147) [following method A]. T.l.c.(solvent system 1): Rf

0.00 (red) product, 0.90 (red), 0.95 (yellow) 1-chloroanthraquinone. T.l.c.(solvent system

3): RfO.65 (red) product. Yield (10.2g)(84%).

Found: !!ill 108-118 -c.

FABMS(+) rn/z: 295 (30%)(MHt, 277 (18%), 225 (37%), 89 (40%), 72 (100%). M, 294.

9.2.5 1-[(2-Hydroxyethyl)amino]anthraquinone (148)

Compound (148) was prepared using ethanolamine (70 cnr', 1130 mmol) and 1

chloroanthraquinone (8.0g, 33 mmol) [following method A]. T.l.c.(solvent system 1); R,

0.20 (red) product. Yield (6.94g)(79%).

Found: !!ill 124-130 °C.

ElMS rn/z: 267 (5%)(Mt, 249 (5%)[M - (H20)t, 236 (100%). M, 267.
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9.2.6 1-[(3-Hydroxypropyl)amino]anthraquinone (149)

Compound (149) was prepared by the reaction of3-amino-l-propanol (40 cnr', 530 mmol)

with l-chloroanthraquinone (7.5g, 31 mmol) [following method A]. T.l.c. [chloroform :

methanol (2:1)]: Rr 0.75 (red) product, 0.95 (yellow) l-chloroanthraquinone.Yield

(6.9g)(79%).

Found. mp 166°C.

9.2.7 1-[(4-Hydroxybutyl)amino]anthraquinone (150)

Compound (150) was prepared by the reaction of4-amino-l-butanol (5.0g, 56 mmol) with

l-chloroanthraquinone (3.0g, 12 mmol) [following method A]. T.l.c.(solvent system 1): Rr

0.10 (red) product, 0.95 (yellow) l-chloroanthraquinone. The crude product was partially

purified by dissolving in chloroform (200 cnr') and passing through a silical gel pad to

remove high running impurities. Yield (2.7g)(73%).

Found:!!!Q 114-124 °C.

IH nmr spectrum (CDC!], 200MHz) 8: 1.65-1.95 (5H, m, unresolved, CH2-Cfu-Cfu

CH2-OH); 3.35 (2H, t, Aq-NH-Cfu); 3.75 (2H, t, Cfu-OH, JHCCH 6Hz); 7.05 (lH, dd, H

2, h,3 8Hz, h,4 1.5 Hz); 7.45-7.55 (2H, m, H-3 and H-4); 7.60-7.75 (2H, m, H-6 and H-7);

8.15-8.25 (2H, m, H-5 and H-8); 9.60-9.90 (IH, br. s, Aq-NH).

ElMS m/z: 295 (12%)(Mt, 277 (5%)[M-(H20)t, 236 (100%), 165 (20%). M, 295.
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9.2.8 1-[(2-Hydroxytertiarybutyl)amino]anthraquinone (151)

2-Amino-2-methyl-l-propanol (50 g, 560 mmol) and l-chloroanthraquinone (10 g, 36

mmol) were heated under relux for 0.5h to give the title compound [following method A].

T.1.c.(solventsystem 1): RfO.30 (red) product. Yield (8.5 g)(80%).

Found: illQ 106-110 °C.

Accurate mass measurement EI peak match [M+H] (reference compound:

perfluorotributylamine): Calculated mass m/z: 295.1215. Measured mass m/z: 295.1208.

9.2.9 1-{[4-(2-Hydroxyethyl)phenyl]amino}anthraquinone (152)

2-(4-Aminophenyl)ethanol (lOg, 73 mmol) and l-chloroanthraquinone (2.0g, 8.5 mmol)

were heated under reflux for 0.5h to give the title compound (152) [following method A].

T.1.c.(solventsystem 2): RfO.lO (red) product. Yield (2.3g)(85%).

Found: illQ 148°C.

CIMS(+) m/z: 344 (8%)(MHt, 330 (8%), 72 (100%). M, 343.

9.2.10 1-(4-Hydroxypiperidyl)anthraquinone (153)

Compound (153) was prepared using 4-hydroxypiperidine (5.0g, 50 mmol) and 1

chloroanthraquinone (2.0g, 8 mmol) [following method A]. T.1.c.(solvent system 1): Rf

0.25 (red) product, 0.95 (yellow) l-chloroanthraquinone. Yield (2.0g)(80%).

Found: illQ 130-134 "C.

CIMS(+) m/z: 308 (8%)(MHt, 260 (100%). M, 307.
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9.2.11 (IS)-I-[(2-Hydroxyisopropyl)amino]anthraquinone (154)

Compound (154) was prepared using (S)-2-amino-1-propanol (5.0 crrr', 67 mmol) and 1

chloroanthraquinone (3.0g, 12 mmol). [following method A]. The crude product was

purified by column chromatography eluting with chloroform : methanol (20:1). Yield

(0.3g)(l0%). T.l.c.(solvent system 1): RfO.55 (red) product.

Found: mn 202 -c.

FABMS(+) m1z: 304 (lO%)(M+Nat, 282 (lOO%)(MHt M, 281.

9.2.12 (2S)-I-[2-(Hydroxymethyl)pyrrolidinyl]anthraquinone (155)

Compound (155) was prepared using L-prolinol (2.0g, 19 mmol), 1-chloroanthraquinone

(1.0g, 4.0 mmol) and pyridine (1 crrr') [following method A]. T.l.c.(solvent system 2): Rr

0.18 (red) product, 0.95 (yellow) 1-chloroanthraquinone.Yield (LOg, 78%).

Found: !!ill 134°C.

FABMS(+) m1z: 330 (15%)(M+Nat, 308 (lOO%)(MHt, 276 (40%). M, 307.

9.2.13 4-Hydroxy-l-[(3-hydroxypropyl)amino]anthraquinone (156)

1,4-Dihydroxyanthraquinone (2g, 8 mmol) was suspended in ethanol (50 cnr') and THF

(50 crrr') containing 3-amino-1-propanol (l5g, 200 mmol) and heated over a water bath

(at 95°C) for 1.75h. T.l.c. of the crude product (solvent system 2): Rf 0.00 (brown), 0.15

(blue) 1,4-bis substituted compound, 0040 (purple) product, 0.90 (orange) 1,4

dihydroxyanthraquinone. The solution was cooled and immediately applied to a silica gel

chromatography column using toluene: ethyl acetate (4:1) as the eluting solvent to give

compound (156) as a purple solid after recrystallisation of the residue from the major

fraction from ethanol. Yield (0.51g)(21%).
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Found: illQ 152°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.50 (2H, qn, CH2-Cfu-CH2) ; 3.45 (2H, q, Aq

NH-Cfu); 3.55 (2H, q, CfuOH); 4.70 (lH, t, OH); 7.30 (lH, d, H-2); 7.45 (lH, d, H-3);

7.80-7.90 (2H, m, H-6 and H-7); 8.15-8.25 (2H, m, H-5 and H-8); 10.70 (lH, t, Aq-NH);

13.65 (lH, s, 4-0H).

FABMS(+) m/z: 320 (lO%)(M+Nat, 298 (100%)(MH)+, 252 (20%). M, 297.

9.2.14 Attempted synthesis of 4,8-dihydroxy-l-[(3-aminopropyl)amino]-

anthraquinone

Leuco-1,4,5-trihydroxyanthraquinone (1.0g, 3.9 mmol) and 1,3-diaminopropane (0.29g,

3.9 mmol) were suspended in dichloromethane (250 cnr') and stirred at room temperature

for 6h followed by the addition of triethylamine (2 cnr') and aeration for 2h. During the

reaction time the mixture turned from orange to very dark purple and contained a large

amount of preciptated dark green sticky solid. T.l.c. examination (solvent system 3)

showed the presence of the (presumed) target compound [R, 0.30 (purple)] along with

1,4,5-trihydroxyanthraquinone [Rf 0.95 (orange)] and a large amount of dark green

baseline material. This was thought to be the unoxidised intermediate which, due to poor

solubility, was being precipitated from solution before oxidation could take place. The

reaction was abandoned at this point.
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9.2.15 4,8-Dihydroxy-l-[(3-aminopropyl)amino]anthraquinone trifluoroacetate (158)

/(NU:UB 59)

(i) 4,8-Dihydroxy-l-[3-(N-tertiarybutoxycarbonylamino)propylamino]anthraquinone

/(157)

Compound (157) was prepared using N-tBoc-l,3-diaminopropane (LOg, 5.7 mmol) and

leuco-l,4,5-trihydroxyanthraquinone (1.45g, 5.60 mmol) [following method B(i)]. T.l.c. of

the crude product (solvent system 1): RfO.OO (brown), 0.15 (pink), 0.50 (purple) product,

0.75 (pink), 0.90 (yellow) 1,4,5-trihydroxyanthraquinone. Yield (0.73g)(46%).

Found: !!ill 173°C.

IH nmr spectrum (CDCh, 200MHz) 0: 1.40 (9H, s, tBoc); 1.75 (2H, qn, CH2-Cfu-CH2) ;

3.10 (2H, q, CfuNHCO); 3.45 (2H, q, Aq-NH-Cfu); 6.95 (lH, t, NHCO); 7.30-7.40 (2H,

m, H-2 and H-3); 7.55 (lH, d, H-7); 7.65-7.75 (2H, m, H-5 and H-6); 10.00 (lH, t, Aq

NH); 13.40 (lH, s, 4-0H); 13.95 (lH, s, 8-0H).

FABMS(+) mlz: 413 (2%)(MHt, 149 (95%), 57 (100%). M, 412.

(ii) 4,8-Dihydroxy-l-[(3-aminopropyl)amino]anthraquinone trifluoroacetate (158)

/(NU:UB 59)

The tBoc protected derivative (157)(0.63g) was deprotected using trifluoroacetic acid

[following method B(ii)]. The product was recrystallised from an ethyl acetate/ethanol

(4:1) solution. T.l.c.(solvent system 3): RfO.65 (purple) product. Yield (0.44g)(68%).

Found: !!ill 128°C.

IH nmr spectrum (d6-DMSO, 200MHz) 0: 1.90 (2H, qn, CH2-Cfu-CH2) ; 2.95 (2H, t,

CfuNH/, JHCCH 8Hz); 3.50 (2H, q, Aq-NH-Cfu); 7.20-7.35 (2H, m, H-2 and H-3); 7.45

(lH, d, H-7, J6,7 10Hz); 7.60-7.70 (2H, m, H-5 and H-6); 9.80 (lH, t, Aq-NH).
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FABMS(+) rn/z: 313 (15%)(RNH3t ,279 (14%),176 (20%),149 (100%).

9.2.16 4,8-Dihydroxy-l-[(4-aminobutyl)amino]anthraquinone trifluoroacetate (160)

/(NU:UB 60)

(i) 4,8-Dihydroxy-l-[4-(N-tertiarybutoxycarbonylamino)butylamino]anthraquinone

/(159)

Compound (159) was prepared using N-tBoc-l,4-diaminobutane (LOg, 5.7 mmol) and

leuco-l,4,5-trihydroxyanthraquinone (1.5g, 5.8 mmol) [following method B(i)]. T.l.c. of

the crude product [chloroform: methanol (5:1)]: Rf 0.00 (brown), 0.15 (orange), 0.50

(blue), 0.80 (purple) product, 0.95 (yellow) 1,4,5-trihydroxyanthraquinone. Yield

(0.55g)(22%).

Found: mn 172°C.

CIMS(+) rn/z: 427 (20%)(MHt, 189 (60%), 115 (100%). M, 426.

(ii) 4,8-Dihydroxy-l-[(4-aminobutyl)amino]anthraquinone trifluoroacetate (160)

/(NU:UB 60)

Compound (159)(0.50g) was deprotected using trifluoroacetic acid [following method

B(ii)]. T.l.c. of the crude product (solvent system 1): Rf 0.10 (purple) product, 0.82

(purple)(AT74). An analytically pure sample of compound (160) was prepared by

recrystallisation from an ethyl acetate/ethanol (4:1) solution. Yield (0.36g)(69%).

Found: !!ill 186°C.

IH nmr spectrum (d6-DMSO, 200MHz) D: 1.55-1.75 (4H, m, unresolved, CH2-Cfu-Cfu

CH2) ; 2.85 (2H, t, CfuNH/); 3.45 (2H, q, Aq-NH-Cfu); 7.20-7.35 (2H, m, H-2 and H-3);
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7.50 (1H, d, H-7, J6,7 10Hz); 7.65-7.70 (2H, m, H-5 and H-6); 9.85 (1H, t, Aq-NH, JHNCH

4Hz).

FABMS(+) m/z: 327 (23%)(RNH3t ,257 (14%), 69 (100%). M, 440.

9.2.17 4,8-Dihydroxy-l-[(3-hydroxypropyl)amino]anthraquinone (161)

Compound (161) was prepared using 3-amino-l-propanol (0.59g, 7.9 mmol) and leuco

1,4,5-trihydroxyanthraquinone (2.0g, 7.8 mmol) [following method B(i)]. T.l.c. of the

crude product (solvent system 1): Rf 0.05 (yellow), 0.10 (green), 0.15 (yellow), 0.35

(blue), 0.45 (purple) product, 0.90 (orange) 1,4,5-trihydroxyanthraquinone. Yield

(0.51g)(21%).

Found: !!ill 168 DC.

C17HlSNOs requires: C 65.17, H 4.83, N 4.47 %. Found; C 65.07, H 4.72, N 4.45 %.

FABMS(+) m/z: 336 (5%)(M+Nat, 314 (55%)(MHt, 259 (15%),107 (100%). M, 313.

9.2.18 4,8-Dihydroxy-l-{[(S)-2-hydroxy-l-benzylethyl]amino}anthraquinone (162)

Compound (162) was prepared using (S)-2-amino-3-phenyl-l-propanol (L

phenylalaninol) (1.0g, 6.6 mmol) and leuco-l,4,5-trihydroxyanthraquinone (1.7g, 6.6

mmol) [following method B(i)]. T.l.c. of the crude product (solvent system 2): Rf 0.00

(green), 0.15 (purple) product, 0.85 (orange) 1,4,5-trihydroxyanthraquinone. Yield

(1.22g)(47%).

Found: mp 140 DC

IH nmr spectrum (CDCh, 200MHz) 8: 2.35 (1H, t, OH); 3.05 (2H, m, Cfu-phe); 3.85

(2H, m, CfuOH); 4.05 (1H, m, Aq-NH-CH); 7.05 (1H, d, H-2); 7.15-7.35 (7H, m,
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unresolved, C6H5, H-3 and H-7); 7.55 (lH, d, H-6, J5,6 8Hz); 7.75 (1H, d, H-5); 10.20 (lH,

d, Aq-NH, JHNCH 8Hz); 13.20 (lH, s, 4-0H); 13.80 (lH, s, 8-0H).

FABMS(+) m1z: 801 (1%)(2M+Nat, 779 (2%)(2M+Ht, 412 (2%)(M+Nat, 390

(100%)(MHt, 358 (10%)[M-(CH20H)t, 298 (80%). M, 389.

9.3 SYNTHESIS OF SPACER-LINKED ANTHRAQUINONE AMINO

ACID (PEPTIDE) CONJUGATES

AMIDE-LINKED Anthraquinone-Amino Acid (Peptide) Conjugates

9.3.1 Method C

General method for coupling of an N-a-protected-C-activated amino acid to a pre

formed anthraquinone-aminoalkylamino spacer compound.

The (aminoalkylamino)anthraquinone spacer compound (3.0 mmol) was suspended in

DMF (70cm3
) and stirred at O°C. An N-a-protected amino acid-O-pentafluorophenolate

ester (3.3 mmol) in DMF (30 cnr') [or an N-a-protected amino acid-N

hydroxysuccinimide ester (3.3 mmol) in THF (30 cm3
) ] was added drop-wise and the

reaction mixture was allowed to reach room temperature. Stirring was continued for a

further 12h.

The mixture was partitioned between chloroform and water. The chloroform extracts were

washed with saturated sodium bicarbonate(aq), then water, dried (MgS04) , filtered and

evaporated to a low volume (10 cnr'). The foregoing concentrated solution was then

applied to a silica gel chromatography column (4x30 em) prepared with chloroform: ethyl

acetate (4:1) and eluted initially in the same solvent mixture to remove a little coloured

highly mobile impurity. The major product was eluted using the same solvent containing
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increasing gradients of methanol (2-5% v/v). Fractions containing the major product were

combined, filtered and evaporated to give a red solid. Recrystallisation (or precipitation)

from a suitable solvent [typical solvents included: ethanol, methanol! hexane (1:50), ethyl

acetate/ hexane (1:50), ethyl acetate/ petroleum ether (1:100)] afforded the spacer-linked

anthraquinone (N-protected) amino acid conjugate in an analytically pure form.

9.3.2 Method D

General method for activation of an N-a-protected amino acid by conversion to a

pentafluorophenolate ester.

Pentafluorophenol (3.3 mmol) was added to a stirred solution of an N-protected amino

acid (3.0 mmol) in dry ethyl acetate (70 cnr') at O°C. A solution of

dicyclohexylcarbodiimide (3.6 mmol) in dry ethyl acetate (30 em") was added dropwise

and stirring was continued for 12h as the mixture was allowed to reach room temperature.

The precipitated dicyclohexylurea was filtered off and the solution evaporated to yield a

crystalline precipitate of the N-protected amino acid-O-pentafluorophenolate ester which

was used for subsequent reaction without further purification. (Analytically pure samples

could be obtained by recrystallisation according to published procedures; Bodanszky and

Bodanszky 1994).
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ESTER-LINKED Anthraquinone-Amino Acid (Peptide) Conjugates

9.3.3 Method E

General method for coupling of an N-a-protected amino acid to a pre-formed

anthraquinone-hydroxyalkylamino spacer compound.

Dicyclohexylcarbodiimide (DCC) (3.3 mmol) and 4-dimethylaminopyridine (DMAP)

(0.15 mmol) in dichloromethane (35 em") were added to a cooled stirred solution of a

hydroxyalkylaminoanthraquinone (3 mmol) and an N-a-tBoc-protected amino acid (3.3

mmol) in dichloromethane (35 cnr'). Stirring was continued for 12h as the mixture was

allowed to reach room temperature. The precipitated dicyclohexylurea (DCU) was

filtered off and the solution partitioned between chloroform and water (1:1, 100 cnr'),

washed with saturated sodium bicarbonate solution (2x50 cnr') and water (2x50 crrr'),

dried (MgS04) , filtered and evaporated to dryness. The residual solid was dissolved in

toluene, applied to a silica gel column and eluted with toluene/ethyl acetate (4:1) with

increasing gradients of ethyl acetate. Fractions containing the major product were

combined, evaporated, dissolved in ethyl acetate, cooled (0 °C for 12h) and filtered to

remove any remaining DCU. Recrystallisation (or precipitation) from a suitable solvent

[typical solvents included: ethanol, methanol/ hexane (1:50), ethyl acetate/ hexane (1:50),

ethyl acetate/ petroleum ether (l:100)] afforded the spacer-linked anthraquinone (N

protected) amino acid conjugate in an analytically pure form.
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Methods for deprotection of N-protected compounds

9.3.4 Method F

General method for the deprotection of N-tertiarybutoxycarbonyl (tBoc) protected

anthraquinone spacer (ester or amide) linked amino acid conjugates.

The tBoc protected compound (3 mmol) was dissolved in trifluoroacetic acid (7 cnr') at

room temperature. After 0.5h the solvent was evaporated and the residual solid re

evaporated with ethanol (3xl 0 crrr') before dissolving in a minimum volume of ethanol (3

crrr'). Addition of ether (100 cnr') gave a precipitate of the deprotected anthraquinone

spacer-linked amino acid conjugate as the N-terminal trifluoroacetate salt which was

filtered off and dried in vacuo.

9.3.5 Method G

General method for the deprotection of N-a-fluorenylmethoxycarbonyl (Fmoc)

protected anthraquinone spacer-linked amino acid conjugates.

The Fmoc protected compound (1 mmol) was dissolved in 20% (v/v) piperidine in DMF

(20 crrr') and stirred at room temperature for 5 min. The solution was partitioned between

chloroform and water (1:1, 100 crrr'), washed with water (3x50 crrr'), dried (Na2S04),

filtered and evaporated to a low volume before application to a silica gel

chromatography column [chloroform: methanol (19:1)] eluting with chloroform :

methanol, (increasing gradient.Ivt l-e-St l ). The fractions containing the product were

combined and evaporated to dryness to yield the free N-terminal amino compound.
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9.4 GLYCINE-CONTAINING SPACER-LINKED

ANTHRAQUINONE AMINO ACID CONJUGATES

9.4.1 1-[3-(N-Tertiarybutoxycarbonylglycylamino)propylamino]anthraquinone.

(163) (NU:UB 1)

N-tBoc-glycine was converted to its N-tBoc-glycine-O-pentafluorophenolate ester (0.60g,

1.80 rnmol) and reacted with 1-[(3-aminopropyl)amino]anthraquinone (145)(0.45g, 1.60

rnmol) [following methods C and D]. T.l.c.(solvent system 1): Rr 0.00 (red) spacer, 0.40

(red) product. The title compound was obtained as fine red crystals after recrystallisation

from ethanol (0.31g)(44%).

Found: !!ill 168°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.45 (9H, s, tBoc); 2.00 (2H, qn, CHz-Cfu-CHz);

3.40 (2H, q, CfuNHCO); 3.50 (2H, q, Aq-NH-Cfu); 3.85 (2H, d, Cfu-gly, JHCCH 6Hz);

5.45 (1H, br. s, NH-tBoc); 6.60 (1H, t, NH-gly); 7.00 (IH, dd, H-2, JZ,3 8Hz, Jz,4 1.5Hz);

7.45-7.60 (2H, m, H-3 and H-4); 7.70-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5

and H-8); 9.75 (lH, t, Aq-NH, exchangable).

Qz4fu7N30srequires: C 65.89, H 6.22, N 9.61 %. Found C 65.04, H 6.01, N 9.40 %.

FABMS(+) m/z: 438 (25%)(MHt, 236 (40%), 115 (50%), 57 (100%). M, 437.

9.4.2 1-[3-(Glycylamino)propylamino]anthraquinone trifluoroacetate (164)

/(NU:UB 2)

The 'Boc-glycine conjugate (163)(0.25g) was deprotected using trifluoroacetic acid

[following method F] giving the title compound (164) as a brownish-red powder

(0.23g)(88%). T.l.c. [chloroform: methanol (3:1)]: Rr0.20 (red) product.

Found: !!ill 177 DC.
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IH nrnr spectrum (d6-DMSO, 400MHz) 8: 1.80 (2H, qn, CH2-Cfu-CH2); 3.30 (2H,q,

Cfu); 3.40 (2H, q, Clli); 3.60 (2H, s, Cfu-gly); 7.25 (1H, dd, H-2); 7.40 (1H, dd, H-4);

7.60 (lH, m, H-3); 7.80 (2H, m, H-6 and H-7); 7.95-8.20 (5H, unresolved, H-5, H-8 and

Nfu+); 8.50 (1H, t, NHCO); 9.65 (1H, t, Aq-NH).

B C nrnr spectrum (d6-DMSO, 100MHz) 8: 29.33 (-ve, Aq-NH-CH2-CH2); [37.33 (-ve),

37.33 (-ve), 39.72 (-ve), 41.03 (-ve), Aq-NH-CH2-CH2-CH2-NHCO-Cfu-]; 112.90 (ab,

aromatic b); 115.90 (+ve, aromatic CH); 119.35 (+ve, aromatic CH); 127.09 (+ve,

aromatic CH); 127.23 (+ve, aromatic CH); 133.17 (ab, aromatic c); 134.30 (+ve, aromatic

CH); [134.78 (ab), 135.15 (ab), aromatic e and f]; [135.32 (+ve, aromatic CH), 136.46

(+ve, aromatic CH) 5 and 8]; 152.10 (ab, aromatic C-1); 166.84 (ab, NHCO); 183.67 (ab,

C=O); 184.83 (ab, C=O).

FABMS(+) m/z: 676 (1%)(2RNH3t ,360 (11%) (RNH2+Nat, 338 (100%)(RNH3)+, 236

(18%)(AqNHCH2t. M, 451.

9.4.3 1-[4-(N-Tertiarybutoxycarbonylglycylamino)butylamino]anthraquinone (165)

N-tBoc-glycine was converted to its N-tBoc-gly-O-pentafluorophenolate ester (1.3g, 3.8

mmol) which was subsequently reacted with 1-[(4-aminobutyl)amino]anthraquinone

(147)(1.0g, 3.4 mmol) [following methods C and D] to give the title compound (165).

Yield [precipitation from ethyl acetate/ hexane (1:50)] (0.60g)(39%). T.l.c.(solvent system

1): Rr 0.40 (red) product.

Found: illQ 119°C.

IH nrnr spectrum (CDC!], 200MHz) 8: 1.45 (9H, s, 'Boc); 1.60-1.85 (4H, m, unresolved,

Aq-NH-CH2-Cfu-Cfu); 3.35 (4H, m, unresolved, Aq-NH-Cfu-CH2-CH2-Cfu); 3.80 (2H,

d, Cfu-gly, JHCNH 6Hz); 5.30 (1H, br.s, NH-tBoc); 6.40 (lH, t, NH-Gly); 7.00 (1H, dd, H-
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2, Jz,3 8Hz, 12,4 1.5Hz); 7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.75 (2H, m, H-6 and H-7);

8.10-8.25 (2H, m, H-5 and H-8); 9.65 (IH, t, Aq-NH).

FABMS(+) m/z: 474 (4%)(M+Nat, 452 (10%)(MHt+, 57 (100%)[(CH3)3Ct. M,451.

9.4.4 1-[4-(Glycylamino)butylamino]anthraquinone trifluoroacetate (166)

/(NU:UB 18)

Treatment of the N-tBoc protected glycine conjugate (165)(0.50g) with TFA [following

method F] gave the title compound (166)(0.38g)(73%). T.l.c.(solvent system 1): Rr 0.00

(red) product, 0.40 (red)(AT8). T.l.c.(solvent system 3): Rr 0.50 (red) product.

Found: illQ 119°C.

IH nmr spectrum (d6-DMSO, 300MHz) 8: 1.50-1.75 (4H, m, unresolved, Aq-NH-CH2-

Cfu-Cfu); 3.20 (2H, q, Cfu-NHCO); 3.40 (2H, q, Aq-NH-Cfu); 3.55 (2H, s, Cfu-gly);

7.25 (IH, d, H-2); 7.45 (IH, d, H-4); 7.65 (1H, t, H-3); 7.80-7.95 (2H, m, H-6 and H-7);

8.05 (3H, s, RNfu); 8.05-8.20 (2H, m, H-5 and H-8); 8.40 (1H, t, NHCO); 9.75 (IH, t,

Aq-NH).

~22H22~05b requires: C 56.77, H 4.76, N 9.03 %. Found C 56.45, H 4.60, N 8.89 %.- - - -

FABMS(+) m/z: 352 (56%)(RNH3t ,225 (15%), 77 (45%),31 (100%). M, 465.

9.4.5 1-[2-(N-Tertiarybutoxycarbonylglycyloxy)ethylamino]anthraquinone (167)

Compound (167) was prepared from the reaction of 1-[(2-

hydroxyethyl)amino]anthraquinone (148)(0.75g, 2.81 mmol) with N-tBoc-glycine (0.50g,

2.85 mmol) [following method E]. T.l.c. [chloroform: methanol (7:1)]: Rr 0.90 (red)

product. Yield (from methanol) (0.57g)(48%).

Found: mp 122°C.
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IH nmr spectrum (CDCh, 200MHz) 8: 1.45 (9H, s, tBoc); 3.65 (2H, q, Aq-NH-Cfu); 3.95

(2H, d, Cfu-gly); 4.42 (2H, t, Cfu-OCO); 5.05 (1H, br.s, NH-tBoc); 7.08 (1H, dd, H-2);

7.55-7.65 (2H, m, H-3 and H-4); 7.70-7.80 (2H, m, H-6 and H-7); 8.15-8.30 (2H, m, H-5

and H-8); 9.85 (1H, t, Aq-NH).

~23fu4~06 requires: C 65.08, H 5.70, N 6.60 %. Found C 64.47, H 5.37, N 6.47 %.

CIMS(+) m/z: 425 (37%)(MHt, 236 (88%), 210 (100%). M, 424

Accurate mass measurement CI peak match [M+H] (reference compound:

perfluorotributylamine): Calculated mass m/z: 425.1712. Measured mass m/z: 425.1705.

9.4.6 1-[2-(Glycyloxy)ethylamino]anthraquinone trifluoroacetate (168) (NU:UB 117)

Deprotection of the 'Boc-glycine conjugate (167)(0.45g) using TFA [following method F]

afforded the title compound after recrystallisation from ethanol. T.l.c.(solvent system 1):

Rf 0.35 (red) product. Yield (0.36g)(78%).

Found: !!ill 180°C.

IH nmr spectrum (dt;-DMSO, 200MHz) 8: 3.70 (2H, q, Aq-NH-Cfu); 3.80 (2H, s, Cfu

gly, JHCCH 5Hz); 4.40 (2H, t, Cfu-OCO, JHCCH 6Hz); 7.30 (1H, dd, H-2); 7.40 (1H, dd, H

4); 7.60 (1H, m, H-3); 7.75-7.95 (2H, m, H-6 and H-7); 8.05-8.35 (5H, m, H-5, H-8 and

RNfu+); 9.75 (lH, t, Aq-NH).

ESMS(+)(Cone 50V) m/z: 325 (75%)(RNH3)+, 307 (15%), 250 (100%)(Aq-NH-CHr

CH2t
ESMS(-)(Cone -20V) m/z: 113(100%). M, 438.
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9.4.7 1-[3-(N-Tertiarybutoxycarbonylglycyloxy)propylamino)anthraquinone (169)

Compound (169) was prepared from the reaction of 1-[(3

hydroxypropyl)amino]anthraquinone (149)(0.75g, 2.63 mmol) with N-tBoc-glycine

(0.47g, 2.68 mmol) [following method E]. T.l.c. of the crude product (solvent system 1):

Rf 0.75 (red) product, 0.95 (yellow) 1-chloroanthraquinone. Yield [from methanol! ether

(1:5)](0.58g)(50%)

Found.jnp 84°C.

IH nmr spectrum (CDCh, 200MHz) D: 1.45 (9H, s, tBoc); 2.15 (2H, qn, CHz-Cfu-CHz);

3.45 (2H, q, Aq-NH-Cfu); 4.00 2H, d, Cfu-gly); 4.35 (2H, t, Cfu-OCO, JHCCH 5Hz); 5.20

(1H, br.s, NH-tBoc); 7.05 (1H, dd, H-2, Jz,3 8 Hz, Jz,4 1.5 Hz); 7.50-7.60 (2H, m, H-3 and

H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.80 (1H, t, Aq

NH).

~4fu6Nz06 requires: C 65.74, H 5.98, N 6.39 %. Found C 65.70, H 6.04, N 6.35%.

FABMS(+) m/z: 461 (l%)(M+Nat, 439 (4%)(MHt, 383 (14%), 57 (100%). M, 438.

9.4.8 1-[3-(Glycyloxy)propylamino)anthraquinone trifluoroacetate (170)

/(NU:UB 109)

The N}Boc protected derivative (169) (0.47g) was deprotected using TFA [following

method F] to give an analytically pure sample of the title compound (170). T.l.c.(solvent

system 3): RfO.60 (red) product. Yield (0.38g)(81%).

Found: !!!Q 198°C.

IH nmr spectrum (d<;-DMSO, 200MHz) D: 2.05 (2H, qn, CHz-Cfu-CHz); 3.50 (2H, q, Aq

NH-Cfu); 3.90 (2H, s, Cfu-gly); 4.30 (2H, t, Cfu-OCO); 7.25 (1H, dd, H-2); 7.40 (1H,

248



dd, H-4); 7.65 (lH, m, H-3); 7.80-7.95 (2H, m, H-6 and H-7); 8.00-8.45 (5H, m, H-5, H-8

and RNfu+); 9.75 (lH, t, Aq-NH).

~~21HI9~OQE3 requires: C 55.76, H 4.23, N 6.19 %. Found C 56.12, H 4.07, N 6.18 %.

FABMS(+) m/z: 379 (4%), 339 (100%)(RNH3t, 263 (20%), 236 (25%), 69 (40%). M,

452.

9.4.9 1-[4-(N-Tertiarybutoxycarbonylglycyloxy)butylamino]anthraquinone (171)

Compound (171) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150)(0.75g, 2.54 mmol) with N-tBoc-glycine (0.45g,

2.57 mmol) [following method E]. T.l.c. of the crude product (solvent system 1): Rr 0.75

(red) product, 0.95 (yellow) 1-chloroanthraquinone. Yield (from methanol)(0.49g)(43%)

Found: !!ill 66°C.

IH nmr spectrum (CDC!], 200MHz) 8: 1.45 (9H, s, tBoc); 1.85 (4H, m, unresolved, CH2

Cfu-Cfu-CH2) ; 3.35 (2H, q, Aq-NH-Cfu); 3.90 (2H, d, Cfu-gly); 4.20 (2H, t, Cfu

OCO); 5.00 (lH, br.s, NH-tBoc); 7.00 (lH, dd, H-2); 7.50-7.60 (2H, m, H-3 and H-4);

7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq-NH).

~5fu8~06 requires: C 66.36, H 6.24, N 6.19 %. Found C 66.24, H 6.17, N 6.04 %.

CIMS(+) m/z: 453 (l7%)(MHt, 439 (5%), 70 (100%). M, 452.

9.4.10 1-[4-(Glycyloxy)butylamino]anthraquinone trifluoroacetate (172)

I(NU:UB 110)

Treatment of the N-tBoc protected glycine conjugate (171)(0.44g) with TFA [following

method F] gave the title compound (172)(0.33g)(73%). T.l.c. (solvent system 3): Rr 0.65

(red) product.
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Found: W154 -c.

IH nmr spectrum (d<;-DMSO)(200MHz) 8: 1.65-1.85 (4H, m, unresolved, CH2-Cfu-Cfu

CH2); 3.40 (2H, q, Aq-NH-Cfu); 3.80 (2H, s, Cfu-gly); 4.20 (2H, t, Cfu-OCO); 7.20

(IH, dd, H-2); 7.40 (IH, dd, H-4); 7.60 (lH, m, H-3); 7.80-7.95 (2H, m, H-6 and H-7);

8.00-8.40 (5H, m, H-5, H-8 and RNH3+); 9.75 (lH, t, Aq-NH).

~2ful~OfiE3 requires: C 56.65, H 4.54, N 6.01 %. Found C 56.24, H 4.16, N 6.07 %.

ESMS(+)(Cone 20V) rn/z: 727 (1%)(2RNH2+Nat, 705 (2%)[(RNH2)RNH3)t , 353

(100%)(RNH3t, 74 (15%).

ESMS(-)(Cone 20V) rn/z: 113 (75%)(OOC.CF3f , 69 (100%)(CF3f .M, 466.

9.4.11 4-Hydroxy-l [-3-(N-tertiarybutoxycarbonylglycyloxy)propylamino]-

anthraquinone (173)

Compound (173) was prepared from the reaction of 4-hydroxy-l-[(3

hydroxypropyl)arnino]anthraquinone (156) (0.30g, 1.71 mmol) with N-tBoc-glycine

(0.50g, 1.68 mmol) [following method E]. T.l.c. of the crude product (solvent system 2):

Rf 0.00 (brown), 0.08 (purple) spacer, 0.25 (purple) product, 0.80 (yellow) 1,4,5

trihydroxyanthraquinone. Yield [from ethyl acetate/ pentane (l :50)](0.77g)(88%)

Found: W124 °C.

IH nmr spectrum (CDC!), 200MHz) 8: 1.45 (9H, s, tBoc); 2.10 (2H, qn, CHrCfu-CH2);

3.50 (2H, q, Aq-NH-Cfu); 4.00 (2H, d, Cfu-gly, JHCNH 5Hz); 4.35 (2H, t, Cfu-OCO,

JHCCH 6Hz); 5.20 (lH, br.s, NH-tBoc); 7.25-7.30 (2H, m, H-2 and H-3); 7.65-7.80 (2H, m,

H-6 and H-7); 8.25-8.35 (2H, m, H-5 and H-8); 10.30 (lH, t, Ar-NH); 13.60 (IH, s, 4

OH).

~4fu6lli07 requires: C 63.42, H 5.77, N 6.16 %. Found C 62.52, H 5.57, N 6.00 %.
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FABMS(+) m1z: 477 (22%)(M+Nat, 455 (100%)(MHt, 399 (77%), 355 (10%), 278

(44%),252 (80%). M, 454.

9.4.12 4-Hydroxy-l-[3-(gIycyloxy)propylamino]anthraquinone trifluoroacetate (174)

I(NU:UB 165)

The title compound (174) was obtained by deprotection of the 'Boc-glycine conjugate

(173) using TFA [following method F]. Yield (0.62g)(89%). T.l.c. (solvent system 1): Rf

0.2 (purple) product.

Found: !'!1Q 188°C.

IH nmr spectrum (46-DMSO, 200MHz) 8: 2.00 (2H, qn, CH2-Cfu-CH2); 3.55 (2H, q, Aq

NH-Cfu); 3.90 (2H, s, Cfu-gly); 4.30 (2H, t, Cfu-OCO); 7.35 (1H, d, H-2); 7.50 (1H, d,

H-3); 7.80-7.95 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 10.30 (1H, t, Aq

NH).

C21H19N207F3 requires C 53.85, H 4.09, N 5.98 %. Found C 53.45, H 3.96, N 5.93 %.

ESMS(+)(Cone 20V) m1z: 377 (2%)(RNH2+Nat, 355 (45%)(RNH3t , 129 (50%), 97

(100%).

ESMS(-)(Cone 20V) m1z: 113 (100%)(OOC.CF3f . M, 468.

9.4.13 4,8-Dihydroxy-l [-3-(N-tertiarybutoxycarbonylglycylamino)propylamino]-

anthraquinone (175)

N-1Boc-glycine-N-hydroxysuccinimide ester (0.15g, 0.55 mmol) was added to a cooled,

stirred solution of 4,8-dihydroxy-1-[(3-aminopropyl)amino]anthraquinone trifluoroacetate

(158)(0.20g, 0.47 mmol) and triethylamine (1 mmol) in THF [following method C]. T.l.c.

of the crude product (solvent system 1): RfO.04 (purple) spacer, 0040 (blue), 0.50 (purple)
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product, 0.95 (yellow) 1,4,5-trihydroxyanthraquinone. Recrystallisation from ethanol gave

(175) as purple solid (0.12g)(55%).

9.4.14 4,8-Dihydroxy-l-[3-(giycylamino)propylamino]anthraquinone trifluoroacetate

(176) (NU:UB 51)

The N- 'Boc protected compound (175) was deprotected with trifluoroacetic acid

[following method F]. The resultant salt was purified by column chromatography using

chloroform : methanol (9:1) as the eluting solvent. Recrystallisation from ethyl acetate

afforded the title compound (176) (0.056g)(46%). T.l.c. (solvent system 3): Rf 0.55

(purple) product.

Found: rrm 155°C.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 1.80 (2H, qn, CH2-Cfu-CH2); 3.25 (2H, q,

Cfu-NHCO); 3.35 (2H, m, Aq-NH-Cfu); 3.55 (2H, s, Cfu-gly); 7.15-7.25 (2H, m, H-2

and H-3); 7.35 (1H, d, H-7, h,,7 8Hz); 7.55-7.70 (2H, m, H-5 and H-6); 8.55 (1H, t,

NHCO); 9.85 (1H, t, Aq-NH).

FABMS(+) m/z: 370 (1O%)(RNH3t, 329 (15%),176 (45%),151 (20%),63 (100%). M,

483.

9.4.15 4,8-Dihydroxy-l-[4-(N-tertiarybutoxycarbonylgiycylamino)butylamin0]-

anthraquinone (177)

N-tBoc-glycine-N-hydroxysuccinimide ester (0.20g, 0.74 mmol) was reacted with 4,8

dihydroxy-l-](4-aminobutyl)amino]anthraquinone trifluoroacetate (160)(0.30g, 0.68

mmol) in THF (50 crrr') and triethylamine (1.5 crrr') [following method C].
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Recrystallisation from ethanol/ethyl acetate (1:1) afforded the title compound (177) as a

dark purple solid (0.09g)(27%). T.l.c. (solvent system 1): Rf 0.60 (purple) product.

Found: nm 205°C.

IH nmr spectrum (CDCh, 200MHz) D: 1.45 (9H, s, tBoc); 1.65-1.90 (4H, m, unresolved,

CH2-Cfu-Cfu-CH2); 3.35-3.50 (4H, m, unresolved, Aq-NH-Cfu-CH2-CH2-Cfu); 3.80

(2H, d, Cfu-gly, JHCNH 6Hz); 5.10 (1H, br.s, NHCQ}Boc); 6.20 (IH, br.s, spacer-NHCO

gly); 7.20-7.30 (3H, m, H-2, H-3 and H-7); 7.60 (1H, m, H-6); 7,85 (1H, dd, H-5, J5,6 8Hz,

J5,7 1Hz); 9.95 (1H, br. s, Ar-NH); 13.35 (1H, s, 4-0H); 13.90 (1H, s, 8-0H).

CIMS(+) mlz: 484 (42%)(MHt, 428 (12%), 246 (28%), 70 (100%). M, 483.

9.4.16 4,8-Dihydroxy-l-[4-(glycylamino)butylamino]anthraquinone trifluoroacetate

(178) (NU:UB 61)

Deprotection of the 'Boc-glycine conjugate (177)(0.60g) using TFA [following method F]

gave the title compound (178)(0.045g)(73%). T.l.c. (solvent system 3): Rf 0.55 (purple)

product.

Found: nm 192°C.

IH nmr spectrum (d6-DMSO, 200MHz) D: 1.50-1.80 (4H, m, unresolved, CH2-Cfu-Cfu

CH2); 3.20 (2H, q, Cfu-NHCO); 3.40 (2H, m, Aq-NH-Cfu); 3.60 (2H, s, Cfu-gly); 7.20

7.30 (2H, m, H-2 and H-3); 7.40 (1H, d, H-7); 7.60-7.75 (2H, m, H-5 and H-6); 8.40 (1H,

t, NHCO); 9.80 (1H, t, Aq-NH).

FABMS(+) m/z: 384 (9%)(RNH3t, 176 (11%),149 (27%), 69 (65%), 40 (100%). M, 497.
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9.4.17 4,8-Dihydroxy-l [-3-(N-tertiarybutoxycarbonylgiycyloxy)propylamino]-

anthraquinone (179)

Compound (179) was prepared from the reaction of 4,8-dihydroxy-1-[(3

hydroxypropy1)amino]anthraquinone (161) (0.35g, 1.12 mmol) with N-tBoc-glycine

(0.20g, 1.14 mmol) [following method E]. T.l.c. of the crude product (solvent system 1):

R f 0.05 (brown), 0.40 (purple) spacer, 0.60 (blue), 0.75 (purple) product, 0.95 (yellow)

1,4,5-trihydroxyanthraquinone. Yield [from ethanol! toluene (l :20)](0.47g)(89%).

Found: TIll 152°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.45 (9H, s, tBoc); 2.10 (2H, qn, CH2-Cfu-CH2);

3.50 (2H, q, Aq-NH-Cfu); 3.95 (2H, d, Cfu-gly); 4.35 (2H, t, Cfu-OCO); 5.05 (lH, br. s,

NH-tBoc); 7.10-7.25 (3H, unresolved, H-2, H-3 and H-7); 7.55 (lH, m, H-6); 7.75 (lH,

dd, H-5); 9.85 (lH, t, Aq-NH); 13.12 (lH, s, OH-4); 13.72 (lH, s, OH-8).

~4fu~08 requires: C 61.27, H 5.57, N 5.95 %. Found C 61.57, H 5.49, N 5.89 %.

FABMS(+) m/z: 493 (8%)(M+Nat, 470 (45%)(MHt, 415 (28%), 294 (46%), 268

(100%). M, 470.

9.4.18 4,8-Dihydroxy-l-[3-(glycyloxy)propylamino]anthraquinone trifluoroacetate

(180) (NU:UB 129)

Treatment of the 'Boc-glycine conjugate (179) with TFA [following method F] gave the

title compound (180)(0.38g)(86%). T.l.c. [chloroform: methanol (4:1)]: Rf 0.40 (purple)

product.

Found: TIll 196°C.

254



I H nmr spectrum (d6-DMSO, 200MHz) 8: 2.00 (2H, qn, CH2-Cfu-CH2); 3.50 (2H, q, Aq

NH-Cfu); 3.82 (2H, s, Cfu-gly); 4.25 (2H, t, Cfu-OCO); 7.25-7.35 (2H, m, H-2 and H

3); 7045 (lH, d, H-7); 7.60-7.70 (2H, m, H-5 and H-6); 9.85 (lH, t, Aq-NH).

!:alHI9:&Od~3 requires: C 52.07, H 3.95, N 5.78 %. Found C 51.83, H 3.73, N 5.70%.

ESMS(+)(Cone 80V) m/z: 741 (28%)[(RNH2)RNH3t, 371 (100%)(RNH3t M, 484.

9.5 ALANINE-CONTAINING SPACER-LINKED

ANTHRAQUINONE AMINO ACID CONJUGATES

9.5.1 1-[3-(N-Tertiarybutoxycarbonyl-L-alanylamino)propylamino]anthraquinone

1(181)

N-tBoc-L-alanine was converted to its N-tBoc-L-alanine-O-pentafluorophenolate ester

(0.94g, 2.65 mmol) [t.1.c. (solvent system 1): Rr0.30 (u.v. active) pentafluorophenol, 0.70

(u.v. active) 'Boc-ala-Opfp] and reacted with 1-[(3-aminopropyl)amino]anthraquinone

(145)(0.67g, 204 mmol) [following methods C and D]. T.1.c. of the crude product (solvent

system 1): Rr 0040 (purple), 0.60 (red) product, 0.95 (red). The title compound (181) was

obtained as fine red crystals from ethanol and deprotected in full (OA7g)(44%).

9.5.2 1-[3-(L-Alanylamino)propylamino]anthraquinone trifluoroacetate

1(182) (NU:UB 4)

Deprotection of the 'Boc-alanine conjugate (181)(OA7g) using TFA [following method F]

gave the title compound (182)(0.17g)(34%). T.1.c. (solvent system 1): Rr0.10 (red).

Found: mn 140°C.

IH nmr spectrum (d<;-DMSO, 200MHz) 8: 1.40 (3H, d, Cfu-ala); 1.85 (2H, qn, Aq-CH2-

Cfu); 3.25-3.50 (4H, m, unresolved, NH-Cfu-CH2-Cfu); 3.85 (lH, q, a-CH, JHNCH 6Hz);
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7.25 (1H, dd, H-2, J2,3 8Hz, h,4 1Hz); 7.45 (IH, dd, H-4); 7.65 (1H, m, H-3); 7.80-7.95

(2H, m, H-6 and H-7); 8.00-8.25 (5H, m, unresolved, H-5, H-8 and NH/); 8.50 (1H, t,

NHCO); 9.75 (1H, t, Aq-NH, JHNCH 4Hz).

ESMS(+) m/z: 703 (8%)[(RNH2)RNH3t ,374 (5%), 352 (100%)(RNH3t
ESMS(-) m/z: 113 (100%). M, 465.

9.5.3 1-[3-(N-Tertiarybutoxycarbonyl-D-alanylamino)propylamino]anthraquinone

/(183)

N-tBoc-D-alanine was converted to its N-tBoc-D-alanine-O-pentafluorophenolate ester

(2.80g, 7.89 mmol) and reacted with 1-[(3-aminopropyl)amino]anthraquinone

(145)(2.00g, 7.14 mmol) [following methods C and D]. The title compound was obtained

as fine red crystals from ethanol (1.38g)(43%). T.l.c. (solvent system 1): Rf 0.60 (red)

product.

Found: !!ill 176°C.

IH nmr spectrum (CDC!), 200MHz) 8: 1.35-1.45 (l2H, m, unresolved, tBoc and Clli-ala);

2.00 (2H, qn, CH2-Clli-CH2); 3.30-3.60 (4H, m, unresolved, Aq-NH-Clli-CH2-CH2

Clli); 4.20 (1H, qn, a-CH-ala); 5.20 (1H, br.d, NH-tBoc); 6.55 (IH, t, CH2-NHCO); 7.05

(1H, dd, H-2); 7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20

8.30 (2H, m, H-5 and H-8); 9.75 (1H, t, Aq-NH).

~5lli9N305 requires: C 66.50, H 6.47, N 9.31 %. Found; C 66.06, H 6.28, N 9.10 %.

CIMS(+) m/z: 452 (30%)(MHt, 338 (10%),210 (95%),58 (100%). M, 451.
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9.5.4 1-[3-(D-Alanylamino)propylamino]anthraquinone trifluoroacetate (184)

/(NU:UB 21)

The 'Boc-Dvalanine conjugate (184)(1.05g) was deprotected using TFA [following method

F] to give a red solid of the title compound (0.70g)(65%). T.l.c. (solvent system 3): Rr

0.45 (red) product.

Found: !'!'ill 137°C.

IH nmr spectrum (di;-DMSO, 200MHz) 3: 1.35 (3H, d, Cfu-ala, JHCCH 8Hz); 1.85 (2H, qn,

Aq-CH2-Cfu); 3.20-3.50 (4H, m, unresolved, NH-Cfu-CH2-Cfu); 3.85 (1H, q, a-CH);

7.20 (1H, d, H-2); 7.40 (1H, d, H-4); 7.60 (1H, m, H-3); 7.80-7.90 (2H, m, H-6 and H-7);

7.95-8.20 (5H, m, unresolved, H-5, H-8 and Nfu+); 8.50 (1H, t, NHCO); 9.70 (1H, t, Aq

NH, JHNCH 5Hz).

FABMS(+) m/z: 704 (2%)(2RNH3t, 374 (7%)(RNH2+Nat, 352 (77%)(RNH3t, 129

(55%),31 (100%). M, 465.

9.5.5 1-[4-(N-Tertiarybutoxycarbonyl-L-alanylamino)butylamino]anthraquinone

/(185)

N-tBoc-L-alanine was converted to its N-tBoc-L-alanine-O-pentafluorophenolate ester

(2.70g, 7.61 mmol) {t.l.c. [dichloromethane : methanol (8:1)]: Rf0.35 (u.v. active) PfpOH,

0.80 (u.v. active) 'Boc-ala-Opfp} and reacted with 1-[(4-aminobutyl)amino]anthraquinone

(147)(2.00g, 6.80 mmol) [following methods C and D]. T.l.c. (solvent system 1): R, 0.40

(red) product. The title compound was obtained as fine red crystals after recrystallisation

from ethanol (0.81g)(81%).

Found: mn 116°C.
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IH nmr spectrum (CDCh, 200MHz) 0: 1.35 (3H, d, Cfu-ala) 1.40 (9H, s, tBoc); 1.60-1.85

(4H, m, unresolved, CH2-Cfu-Cfu-CH2); 3.25-3.40 (4H, m, unresolved, Aq-NH-Cfu

CH2-CH2-Cfu); 4.15 (lH, qn, a-CH-ala); 5.10 (1H, d, NH-tBoc); 6.45 (1H, t, CHr

NHCO-ala) 7.00 (1H, dd, H-2); 7.45-7.55 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6

and H-7); 8.15-8.25 (2H, m, H-5 and H-8); 9.70 (1H, 1, Aq-NH).

~6ful1:f305 requires: C 67.08, H 6.71, N 9.03 %. Found C 66.57, H 6.80, N 8.76%.

CIMS(+) m1z: 466 (5%)(MHt, 179 (8%), 144 (8%), 91 (10%), 70 (100%). M, 465.

9.5.6 1-[4-(L-Alanylamino)butylamino]anthraquinone trifluoroacetate (186)

/(NU:UB33)

The title compound was obtained by deprotection of the 'Boc-alanine conjugate

(185)(0.50g) using TFA [following method F]. Yield (0.25g)(48%). T.l.c. (solvent system

3): Rf 0.40 (red) product.

Found: TIm 126°C.

IH nmr spectrum (d6-DMSO, 200MHz) 0: 1.35 (3H, d, Cfu-ala); 1.45-1.80 (4H, m,

unresolved, Aq-CH2-Cfu-Cfu); 3.25 (2H, q, Cfu-NHCO); 3.40 (2H, g, Ag-NH-Cfu);

3.75 (1H, g, a-CH); 7.25 (1H, d, H-2); 7.40 (1H, d, H-4); 7.65 (1H, t, H-3); 7.80-7.95 (2H,

m, H-6 and H-7); 8.00-8.30 (5H, m, unresolved, H-5, H-8 and Nful; 8.45 (lH, t, NHCO);

9.70 (IH, t, Ag-NH).

ESMS(+)(Cone 50V) m1z: 388 (30%)(RNH2+Nat, 366 (10%)(RNH3t , 95 (30%), 74

(100%). M, 479.
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9.5.7 1-[4-(N-Tertiarybutoxycarbonyl-D-alanylamino)butylamino]anthraquinone

1(187)

N-tBoc-D-alanine was converted to its N-tBoc-D-alanine-O-pentafluorophenolate ester

(1.50g, 4.23 mmol) and reacted with 1-[(4-aminobutyl)amino]anthraquinone (147)(1.13g,

3.84 mmol) [following methods C and D]. T.l.c. of the crude product [chloroform: ethyl

acetate (4:1)]: RfO.OO (red) spacer, 0.20 (red) product. The title compound was obtained as

fine red crystals from ethyl acetate (0.71g)(40%).

Found: illQ 112°C.

'H nrnr spectrum (CDCh, 200MHz) 0: 1.35 (3H, d, Cfu-ala) 1.45 (9H, s, tBoc); 1.60-1.85

(4H, m, unresolved, CH2-Cfu-Cfu-CH2); 3.25-3.40 (4H, m, unresolved, Aq-NH-Cfu

CH2-CH2-Cfu); 4.15 (1H, qn, a-CH-ala); 5.05 (lH, br.d, NH-tBoc); 6.40 (1H, t, spacer

NHCO-ala) 7.05 (1H, dd, H-2); 7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6

and H-7); 8.10-8.20 (2H, m, H-5 and H-8); 9.75 (1H, t, Aq-NH).

Q26fu,:tf30s requires: C 67.08, H 6.71, N 9.03 %. Found C 66.37, H 6.36, N 8.73 %.

CIMS(+) rn/z: 466 (5%)(MHt, 452 (7%), 210 (23%), 70 (77%), 44 (100%). M, 465.

9.5.8 1-[4-(D-Alanylamino)butylamino]anthraquinone trifluoroacetate (188)

I(NU:UB 72)

Deprotection of the above tBoc compound (187)(0.54g) using TFA [following method F]

afforded a red solid of the title compound (188)(0.25g)(45%). T.l.c. (solvent system 3): Rf

0040 (red) product.

Found: illQ 122°C.

'H nrnr spectrum (d6-DMSO, 200MHz) 0: 1.35 (3H, d, Cfu-ala); 1.50-1.85 (4H, m,

unresolved, Aq-CH2-Cfu-Cfu); 3.25 (2H, q, Cfu-NHCO); 3.40 (2H, q, Aq-NH-Cfu);

259



3.85 (1H, q, u-CH); 7.25 (1H, d, H-2); 7.40 (1H, d, H-4); 7.65 (1H, t, H-3); 7.75-7.95 (2H,

m, H-6 and H-7); 8.00-8.30 (5H, m, unresolved, H-5, H-8 and Nfu+); 8.45 (1H, t, NHCO);

9.70 (1H, t, Aq-NH).

ESMS(+) m/z: 366 (100%)(RNH3t ,143 (25%), 72 (10%).

ESMS(-) m/z: 113(100%). M,479.

9.5.9 1-[3-(N-Tertiarybutoxycarbonyl-L-alanyloxy)propylamino]anthraquinone

/(189)

Compound (189) was prepared from the reaction of 1-[(3

hydroxypropyl)arnino]anthraquinone (149) (0.75g, 2.67mmol) with N-tBoc-L-alanine

(0.49g, 2.59 mmol) [following method E]. T.l.c. of the crude product (solvent system 1):

RrO.60 (red) spacer, 0.75 (red) product, 0.95 (yellow) 1-chloroanthraquinone. Yield (from

methanol)(0.45g)(37%).

Found: ffiQ 60°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.35-1.45 (12H, m, unresolved, Cfu-ala and 'Boc);

2.15 (2H, qn, CH2-Cfu-CH2); 3.50 (2H, q, Aq-NH-Cfu); 4.25-4.45 (3H, unresolved, u

CH and Cfu-OCO); 5.25 (lH, d, NH-tBoc), 7.05 (1H, dd, H-2); 7.55-7.65 (2H, m, H-3

and H-4); 7.70-7.80 (2H, m, H-6 and H-7); 8.20-8.35 (2H, m, H-5 and H-8); 9.80 (1H, t,

Aq-NH).

~5fu8~06 requires; C 66.36, H 6.24, N 6.19 %. Found C 66.04, H 6.35, N 6.07 %.

FABMS(+) m/z: 475 (1%)(M+Nat, 453 (7%)(MHt, 397 (12%), 236 (15%), 57 (100%).

M,452
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9.5.10 1-[3-(L-Alanyloxy)propylamino]anthraquinone triOuoroacetate (190)

I(NU:UB 108)

The 'Boc-Lalanine conjugate (189)(0.40g) was deprotected using TFA [following method

F] to give a red solid of the title compound (0.31g)(76%). T.l.c. (solvent system 3): RfO.85

(red) product.

Found.jnp 128°C.

IH nmr spectrum (d<;-DMSO, 200MHz) 0: 1.20 (3H, d, Cfu-ala); 1.80 (2H, qn, CH2-Cfu

CH2); 3.30 (2H, q, Aq-NH-Cfu); 3.85 (lH, q, a-CH); 4.05 (2H, t, Cfu-OCO); 7.05 (lH,

d, H-2); 7.20 (lH, d, H-4); 7.45 (lH, t, H-3); 7.60-7.80 (2H, m, H-6 and H-7); 7.90-8.05

(2H, m, H-5 and H-8); 9.50 (lH, t, Aq-NH).

FABMS(+) m1z: 353 (l00%)(RNH3t , 282 (28%), 236 (30%), 69 (20%), 44 (79%). M,

466.

9.5.11 1-[3-(N-Tertiarybutoxycarbonyl-D-alanyloxy)propylamino]anthraquinone

1(191)

Compound (191) was prepared from the reaction of 1-[(3

hydroxypropyl)amino]anthraquinone (149) (0.75g, 2.67mmol) with N-tBoc-D-alanine

(0.49g, 2.59 mmol) [following method E]. Yield (from methanol) (0.51g)(42%). T.l.c.

(solvent system 1): Rf 0.75 (red) product.

Found: !!!Q 58°C.

1H nmr spectrum (CDCh)(200MHz) 0: 1.35-1.45 (l2H, m, unresolved, Cfu-ala and tBoc);

2.10 (2H, qn, CH2-Cfu-CH2); 3.45 (2H, q, Aq-NH-Cfu); 4.20-4.45 (3H, m, unresolved,

a-CH and Cfu-OCO); 5.20 (lH, d, NH-tBoc), 7.05 (lH, dd, H-2); 7.50-7.60 (2H, m, H-3
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and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.75 (1H, t,

Aq-NH).

haslli8lli06 requires: C 66.36, H 6.24, N 6.19 %. Found C 65.71, H 6.12, N 5.96 %.

FABMS(+) m/z: 475 (2%)(M+Nat, 453 (10%)(MHt, 353 (2%),397 (17%),57 (100%).

M,452.

9.5.12 1-[3-(D-Alanyloxy)propylamino]anthraquinone trifluoroacetate (192)

I(NU:UB 107)

Deprotection of the tBoc compound (191)(0.45g) using TFA [following method F]

afforded an analytically pure sample of the title compound (192)(0.28g)(61%). T.l.c.

(solvent system 3): Rr 0.85 (red).

Found: mn 132°C.

IH nmr spectrum (4;-DMSO, 200MHz) 8: 1.40 (3H, d, Cfu-ala); 2.02 (2H, qn, CH2-Clli

CH2); 3.50 (2H, q, Aq-NH-Clli); 4.15 (1H, q, a-CH); 4.30 (2H, t, Clli-OCO); 7.20 (1H,

d, H-2); 7.40 (1H, d, H-4); 7.60 (1H, t, H-3); 7.75-7.95 (2H, m, H-6 and H-7); 8.00-8.50

(5H, m, H-5, H-8 and RNfu1;9.70 (1H, t, Aq-NH).

ha2llilNzO§D requires: C 56.65, H 4.54, N 6.01 %. Found C 56.26, H 4.39, N 5.98 %.

FABMS(+) m/z: 706 (1%)(2RNH3t , 375 (1%)(RNH2+Nat, 353 (82%)(RNH3t , 282

(28%),236 (36%), 44 (100%). M, 466.

9.5.13 1-[4-(N-Tertiarybutoxycarbonyl-L-alanyloxy)butylamino]anthraquinone (193)

Compound (193) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (0.45g, 1.53mmol) with N-tBoc-L-alanine

(0.29g, 1.53 mmol) [following method E]. T.l.c. of the crude product (solvent system 1):
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R, 0.40 (red) spacer, 0.85 (red) product, 0.95 (yellow). Yield (from

methanol)(0.21g)(30%).

Found: !!ill 102°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.35-1.45 (12H, m, unresolved, Cfu-ala and tBoc);

1.80-1.95 (4H, m, unresolved, Aq-NH-CH2-Cfu-Cfu-); 3.40 (2H, m, Aq-NH-Cfu); 4.40

(2H, t, Cfu-OCO); 4.35 (1H, m, a-CH); 5.05 (1H, br. s, NH_t Boc), 7.05 (1H, dd, H-2);

7.45 (2H, m, H-3); 7.60-7.80 (3H, m, H-4, H-6 and H-7); 8.10-8.25 (2H, m, H-5 and H

8); 9.70 (1H, t, Aq-NH).

FABMS(+) m/z: 467 (30%)(MHt, 57 (100%). M, 466

9.5.14 1-[4-(L-Alanyloxy)butylamino]anthraquinone trifluoroacetate (194)

I(NU:UB 73)

The 'Boc-Lalanine conjugate (193)(0.19g) was deprotected using TFA [following method

F] to give a red solid of the title compound (0.15g)(75%). T.1.c.(solventsystem 3): Rf 0.75

(red) product.

Found: !!ill 64°C.

IH nmr spectrum (d6-DMSO, 200MHz): 8: 1.35 (3H, d, Clli-ala); 1.60-1.80 (4H, m,

unresolved, Aq-NH-CH2-Cfu-Cfu); 3.40 (2H, m, Aq-NH-Cfu); 4.10 (2H, t, Cfu-OCO);

4.20 (IH, m, a-CH); 7.25 (1H, dd, H-2); 7.40 (IH, dd, H-4); 7.60 (1H, m, H-3); 7.75-7.85

(2H, m, H-6 and H-7); 8.10 (3H, br. s, Nlli+); 8.25-8.35 (2H, m, H-5 and H-8); 9.70 (1H,

t, Aq-NH).

~3fu3lliOQb requires: C 57.50, H 4.83, N 5.83 %. Found C 57.18, H 4.70, N 5.66 %.

FABMS(+) m/z: 367 (100%)(RNH3t
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9.5.15 1-[4-(N-Tertiarybutoxycarbonyl-D-alanyloxy)butylamino]anthraquinone

/(195)

Compound (195) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (0.70g, 2.37 mmol) with N-tBoc-D-alanine

(0.45g, 2.38 mmol) [following method E]. Yield (from methanol) (0.35g)(32%). T.l.c.

(solvent system 1): Rf O.85 (red) product.

Found: TIm 100°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.40-1.45 (12H, m, unresolved, Clli-ala and 'Boc);

1.80-1.95 (4H, m, unresolved, Aq-NH-CH2-Cfu-Cfu-); 3.40 (2H, q, Aq-NH-Cfu); 4.20

4.40 (3H, m, unresolved, Cfu-OCO and a-CH); 5.05 (tH, d, NH_tBoc); 7.05 (lH, dd, H

2, h3 8Hz, h,4 1.5Hz); 7.40-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7);

8.20-8.30 (2H, m, H-5 and H-8); 9.75 (tH, t, Aq-NH).

FABMS(+) m1z: 489 (20%)(M+Nat, 467 (100%)(MHt, 410 (75%), 278 (87%), 149

(95%). M, 466.

9.5.16 1-[4-(D-Alanyloxy)butylamino]anthraquinone trifluoroacetate (196)/

(NU:UB 76)

Treatment of the N-tBoc protected D-alanine conjugate (195)(0.28g) with TFA [following

method F] gave a red solid of the title compound (O.l7g)(59%). T.l.c. (solvent system 3):

RfO.75 (red), product.

Found: TIm 62°C.

I H nmr spectrum (d6-DMSO, 200MHz) 8: 1.35 (3H, d, Clli-ala, JHCCH 7Hz); 1.65-1.80

(4H, m, unresolved, Aq-NH-CH2-Cfu-Cfu); 3.30 (2H, m, Aq-NH-Cfu); 4.10 (tH, m, a

CH,jHCCH 7Hz); 4.25 (2H, t, Cfu-OCO); 7.20 (lH, dd, H-2); 7.35 (tH, dd, H-4); 7.60

264



(lH, m, H-3); 7.75-7.95 (2H, m, H-6 and H-7); 8.05-8.20 (2H, m, H-5 and H-8); 8.25-8.50

(3H, br. s, Nfu+); 9.70 (lH, t, Aq-NH).

ESMS(+)(Cone 20V) m/z: 755 (30%), 733 (20%)[(RNH2)RNH3t , 389

(55%)(RNH2+Nat, 367 (l00%)(RNH3t

ESMS(-)(Cone -20V) m/z: 113 (50%)(CF3.COOr, 69 (l00%)(CF3f . M, 480.

9.5.17 1-(9,10-Dioxoanthryl)-4-piperidyl-(2S)-2-[(tertiarybutoxy)carbonylamino]-

propanoate (197)

Compound (197) was prepared from the reaction of 1-(4-hydroxypiperidyl)anthraquinone

(153) (0.50g, 1.63 mmol) with N-tBoc-L-alanine (0.31g, 1.64 mmol) [following method

E]. Yield [from ethyl acetate/ hexane (1:100)] (0.13g)(17%). T.l.c. (solvent system 1): Rf

0.75 (red) product.

Found: illQ 98°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.40-1.50 (12H, m, unresolved, Cfu-ala and tBoc);

2.10 (2H, m, H-3',3"); 2.20 (2H, m, H-5',5"); 3.15 (2H, m, H-2',2"); 3.35 (2H, m, H

6',6'); 4.30 (lH, qn, a-CH); 5.00-5.15 (2H, m, unresolved, NH_t Boc and CHOCO); 7.40

(lH, dd, H-4-Aq); 7.60 (lH, m, H-3-Aq); 7.70-7.85 [2H, m, (H-6 and H-7)-Aq]; 7.95 (lH,

dd, H-2-Aq); 8.20-8.30 [2H, m, (H-5 and H-8)-Aq].

FABMS(+) m/z: 501 (16%)(M+Nat, 479 (lOO%)(MHt, 423 (33%), 288 (63%), 133

(45%). M, 478.
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9.5.18 1-(9,1O-Dioxoanthryl)-4-piperidyl-(2S)-2-aminopropanoate trifluoroacetate

(198) (NU:UB 158)

Treatment of the N-tBoc protected alanine conjugate (197)(0.095g) with TFA [following

method F] gave the title compound (198)(0.065g)(68%). T.l.c. [chloroform : methanol

(2:1)]: RfO.75 (red) product.

Found: !!ill 102°C.

I H nmr spectrum (d6-DMSO, 200MHz) 8: 1.50 (3H, d, Cfu-ala); 1.95 (2H, m, H-3',3");

2.10 (2H, m, H-5',5"); 3.15 (2H, m, H-2',2"); 3.35 (2H, m, H-6',6'); 4.15 (lH, q, a-CH);

5.05 (lH, qn, CHOCO); 7.55 (lH, dd, H-2-Aq); 7.65-7.80 [2H, m, (H-3 and H-4)-Aq];

7.80-7.95 [2H, m, (H-6 and H-7)-Aq]; 8.10-8.20 [2H, m, (H-5 and H-8)-Aq]; 8.40 (3H, br.

s, Nful.

ESMS(+)(Cone 50V) m/z: 411 (1%)(RNH2+Nat, 379 (100%)(RNH3t ,290 (50%) 182

(10%).

ESMS(-)(Cone 20V) m/z: 113 (100%). M, 492.

9.5.19 2-{4-[(9,10-Dioxoanthryl)amino]phenyl}ethyl (2S)-2-[(tertiarybutoxy)-

carbonylamino]propanoate (199)

Compound (199) was prepared from the reaction of 1-{[4-(2

hydroxyethyl)phenyl]amino}anthraquinone (152) (0.50g, 1.46 mmol) with N-tBoc-L

alanine (0.28g, 1.48 mmol) [following method E]. Yield [from ethyl acetate/ hexane

(1:100)] (0.05g)(7%). T.l.c. (solvent system 2): Rf 0.35 (red) product.

Found: !!ill 124°C.

FABMS(+) m/z: 537 (30%)(M+Nat, 514 (64%)(MHt, 459 (30%), 326 (100%). M, 513.
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9.5.20 2-{4-[(9,10-Dioxoanthryl)amino]phenyl}ethyl (2S)-2-propanoate trifluoro-

acetate (200) (NU:UB 156)

The N-tBoc-L-alanine conjugate (199) (0.045g) was deprotected using TFA [following

method F] to give the title compound (200)(0.028g)(61%). T.l.c. (solvent system 3): Rf

0.75 (red) product.

Found: illQ 168°C.

ESMS(+)(Cone 20V) m/z: 437 (15%)(RNH2+Nat, 415 (100%)(RNH3t

ESMS(-)(Cone 50V) m/z: 113 (28%),69 (100%). M, 528.

9.5.21 2-{4-[(9,10-Dioxoanthryl)amino]phenyl}ethyl (2R)-2-[(tertiarybutoxy)-

carbonylamino]propanoate (201)

Compound (201) was prepared from the reaction of 1-{[4-(2

hydroxyethyl)phenyl]amino}anthraquinone (152) (0.50g, 1.46 mmol) with N-tBoc-D

alanine (0.28g, 1.48 mmol) [Method E]. T.l.c. of the crude product (solvent system 2): Rf

0.25 (red) spacer, 0.60 (red) product, 0.95 (yellow) 1-chloroanthraquinone. Yield [from

ethyl acetate/ pentane (1:50)] (0.06g)(8%).

Found: illQ 124°C.

FABMS(+) m/z: 537 (25%)(M+Nat, 514 (64%)(MHt, 459 (15%), 415 (5%), 326

(100%),312 (25%). M, 513.
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9.5.22 2-{4-[(9,10-Dioxoanthryl)amino]phenyl}ethyl (2R)-2-propanoate trifluoro-

acetate (202) (NU:UB 157)

Deprotection of the 'Boc-Dealanine conjugate (201)(0.055g) using TFA [following method

F] afforded a red solid of the title compound (0.035g)(63%). T.l.c. (solvent system 3): Rr

0.75 (red) product.

Found: W 168 -c,

ESMS(+)(Cone 50V) m/z: 433 (1%),415 (40%)(RNH3t, 326 (100%), 182 (15%), 104

(10%).

ESMS(-)(Cone 20V) m/z: 113 (100%). M, 528.

9.5.23 2-[(9,10-Dioxoanthryl)amino]-2-methylpropyl (2S)-2-[(tertiarybutoxy)-

carbonylamino]propanoate (203)

Compound (203) was prepared from the reaction of 1-[(2

hydroxytertiarybutyl)amino]anthraquinone (151) (1.00g, 3.39 mmol) with N-tBoc-L

alanine (0.64g, 3.39 mmol) [following method E]. T.l.c. of the crude product (solvent

system 1): Rf 0.40 (red) spacer, 0.75 (red) product, 0.85 (red), 0.95 (yellow) 1

chloroanthraquinone. Yield [from methanol! ether (1:20)](0.59g)(37%).

Found: W120 °C.

IH nmr spectrum (CDC!], 200MHz) 8: 1.35-1.45 (12H, m, unresolved, Cfu-ala and tBoc);

1.55 (6H, s, Aq-NH-C(Cfu)2); 4.20-4.40 (3H, m, unresolved, a-Cfu and Cfu-OCO); 5.10

(1H, d, NH-tBoc); 7.25 (IH, dd, H-2); 7.40-7.65 (2H, m, H-3 and H-4); 7.65-7.80 (2H, rn,

H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 10.25 (1H, s, Aq-NID.

~6fuo!:'h06 requires: C 66.94, H 6.48, N 6.01 %. Found C 66.92, H 6.54, N 5.98 %.
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CIMS(+) rnIz: 467 (90%)(MHt, 453 (25%), 367 (12%), 264 (50%), 244 (50%), 144

(95%),61 (lOO%). M, 466.

9.5.24 2-[(9,10-Dioxoanthryl)amino]-2-methylpropyl (2S)-2-propanoate trifluoro-

acetate (204) (NU:UB 128)

The 'Boc-Lalanine conjugate (203)(0.20g) was deprotected using TFA [following method

F] to give a red solid of the title compound (0.13g)(62%). T.l.c. [chloroform: methanol

(2:1)]: RrO.75 (red) product, 0.95 (red) AT124.

Found: !!ill 90°C.

IH nmr spectrum (d6-DMSO, 200MHz) 0: 1.40 (3H, d, Cfu-ala, JHCCH 8Hz); 1.55 (6H, m,

Aq-NH-C(Cfu)2); 4.15 (1H, q, u-CH, JHCCH 8Hz); 4.35 (1H, d, CH-OCO, JOEM lOHz);

4.55 (1H, d, CH'_OCO, JOEM lOHz); 7.45-7.65 (3H, m, unresolved, H-2, H-3 and H-4);

7.80-7.95 (2H, m, H-6 and H-7); 8.10-8.40 (5H, m, H-5, H-8 and Nfu+); lO.15 (1H, s,

Aq-NH).

ESMS(+)(Cone 20V) rnIz: 399 (2%), 367 (lOO%)(RNH3t ,278 (55%), 144 (35%).

ESMS(-)(Cone 20V) rnIz: 113 (lOO%).M, 480.

9.5.25 4,8-Dihydroxy-l [-3-(N-tertiarybutoxycarbonyl-D-alanylamino)propylamino]

anthraquinone (205)

N-Boc-D-alanine-N-hydroxysuccinimide ester (0.37g, 1.29 mmol) was reacted with 4,8

dihydroxy-l-[(3-aminopropyl)amino]anthraquinone trifluoroacetate (158) (0.50g, 1.17

mmol) in THF (70 cnr') and triethylamine (2 cm3
) [ following method C]. Recrystallisation

from ethyl acetate afforded the title compound as a dark purple solid (0.40g)(70%). T.l.c.

(solvent system 1): RrO.50 (purple) product.

269



Found: illQ 167°C.

~5.fu9N307reguires: C 62.10, H 6.05, N 8.69 %. Found C 61.66, H 6.13, N 8.34 %.

ElMS m/z: 483 (95%)(Mt, 427 (90%), 339 (90%), 41 (100%). M, 483.

9.5.26 4,8-Dihydroxy-1-[3-(D-alanylamino)propylamino]anthraquinone trifluoro-

acetate (206) (NU:UB 118)

The 'Boc-Dsalanine conjugate (205)(0.35g) was deprotected using TFA [following method

F]. The crude product was purified by column chromatography eluting with chloroform :

methanol (20:1 ~ 5:1) to give the title compound as a purple solid (0.11g)(31%). T.1.c.

(solvent system 3): RrO.60 (purple) product.

Found: illQ 164°C.

ESMS(+)(Cone 50V) m/z: 406 (3%),384 (100%)(RNH3t , 128 (55%).

ESMS(-)(Cone 50V) m/z: 113 (80%), 69 (100%). M, 497.

9.6 PROLINE-CONTAINING SPACER-LINKED

ANTHRAQUINONE AMINO ACID CONJUGATES

9.6.1 1-[3-(N-Tertiarybutoxycarbonyl-L-prolylamino)propylaminoanthraquinone

/(207)

N-tBoc-L-Proline-pentafluorophenolate ester (5.30g, 13.9 mmol) was reacted with 1-[(3

aminopropyl)amino]anthraquinone (145)(3.54g, 12.6 mmol) [following method C]. T.1.c.

of the crude product (solvent system 1): Rr 0.05 (red) spacer, 0.50 (purple), 0.60 (red)

product, 0.85 (red). The title compound was obtained as bright red crystals from ethanol

(3.98g)(66%).

Found: illQ 140°C.
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IH rum spectrum (CDCh, 200MHz) 8: 1.45 (9H, s, tBoc); 1.75-2.40 (6H, m, unresolved,

Aq-NH-CH2-Cfu, P-Cfu and y-Cfu); 3.25-3.55 (6H, m, unresolved, ArNH-Cfu-CH2-

Cfu and 8-Cfu); 4.25 (lH, t, a-CH ); 7.00-7.10 (2H, m, unresolved, NHCO and H-2);

7.50-7.65 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.25 (2H, m, H-5 and

H-8); 9.75 (lH, t, Aq-NH, exchangeable).

~7ful:N305 requires: C, 67.90, H,6.56, N,8.80%. Found C, 68.07, H,6.60, N,8.76%.- - -

FABMS(+) rn/z: 478 (7%)(MH)+, 378 (24%), 114 (17%), 70 (100%). M, 477.

9.6.2 1-[3-(L-Prolylamino)propylamino]anthraquinone trifluoroacetate (208)

/(NU:UB31)

The tBoc proline conjugate (207)(0.19g) was deprotected using trifluoroacetic acid .

[following method F], to give a red solid of the title compound (0.12g)(62%). T.l.c.

(solvent system 3): Rf 0.45 (red) product.

Found: !!ill 176°C.

IH rum spectrum (300MHz, d6-DMSO) 8: 1.80-2.05 (4H, unresolved, y-Cfu and Aq-NH-

CH2-Cfu); 2.30 (2H, m, ~-Cfu); 3.10-3.60 (6H, unresolved, 8-Cfu and ArNH-Cfu-CH2-

Cfu); 4.10 (lH, t, a-CH); 7.25 (lH, d, H-2); 7.45 (lH, d, H-4); 7.65 (lH, t, H-3); 7.80-

7.95 (2H, m, H-6 and H-7); 8.10-8.20 (2H, m, H-5 and H-8); 8.70 (lH, t, NHCO); 9.00

(2H, br s, Nfu+); 9.70 (lH, t, ArNH).

FABMS(+) rn/z 378 (12%)(RNH2t ,176 (31%), 89 (51%), 77 (80%), 31 (100%). M, 491.
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9.6.3 1-[3-(N-Tertiarybutoxycarbonyl-D-prolylamino)propylamino]antbraquinone

(209)

N-tBoc-D-Proline-pentafluorophenolate ester (1.00g, 3.57 mmol) was reacted with 1-[(3

aminopropyl)amino]anthraquinone (145)(0.85g, 3.04 mmol)[ following method C]. T.l.c.

of the crude product (solvent system 1): Rr 0.00 (red) spacer, 0.45 (purple), 0.55 (red)

product, 0.95 (red). Recrystallisation from ethyl acetate/ethanol (1:1) afforded the title

compound as a red solid (0.57g)(39%).

Found: !!ill 138°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.45 (9H, s, tBoc); 1.80-2.30 (6H, m, unresolved,

Aq-NH-CHz-Cfu, P-Cfu and y-Cfu); 3.30-3.55 (6H, m, unresolved, ArNH-Cfu-CH2

Cfu and 8-Cfu); 4.30 (lH, t, a-CH); 7.00-7.10 (2H, m, unresolved, NHCO and H-2);

7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5

and H-8); 9.70 (lH, t, Aq-NH).

~7fulN305 requires: C 67.91, H 6.54, N 8.80 %. Found C 67.68, H 6.57, N 8.73 %.

FABMS(+) m/z: 478 (l4%)(MHt, 378 (22%), 263 (35%), 114 (20%), 57 (100%). M,477.

9.6.4 1-[3-(D-Prolylamino)propylamino]antbraquinone trifluoroacetate (210)

/(NU:UB46)

Compound (209)(0.48g) was deprotected using trifluoroacetic acid [following method F]

to afford an analytically pure sample of the title compound (210)(0.44g)(90%). T.l.c.

(solvent system 3): Rr 0.45 (red) product.

Found: !!ill 177°C.

IH nmr spectrum (300MHz, d6-DMSO) 8: 1.70-2.00 (5H, m, unresolved, P-CH, y-Cfu

and Aq-NH-CH2-Cfu); 2.20 (lH, m, P-CH'); 3.20-3.50 (6H, unresolved, 8-Cfu and Aq-
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NH-Cfu-CH2-Cfu); 4.05 (1H, t, a-CH); 7.25 (1H, dd, H-2); 7.45 (IH, dd, H-4); 7.65 (1H,

m, H-3); 7.80-7.95 (2H, m, H-6 and H-7); 8.05-8.10 (2H, m, H-5 and H-8); 8.60 (1H, t,

NHCO); 9.00 (2H, br. s, Nfu+); 9.75 (IH, t, Aq-NH).

~4fu4~O~E3 requires: C 58.65, H 4.92, N, 8.55 %. Found C 57.84, H 4.76, N 8.35 %.

FABMS(+) m/z: 400 (4%), 378 (36%)(RNH3t ,263 ( 10%), 89 (30%), 70 (100%). M,

491.

9.6.5 1-[3-(N-Fluorenylmethoxycarbonyl-O-tertiarybutyl-L-hydroxyprolylamino)-

propylamino]anthraquinone (211)

N-a-Fmoc-O-tBu-trans-4-hydroxyproline was converted to its pentafluorophenolate ester

(2.80g, 4.87 mmol) and reacted with 1-[(3-aminopropyl)amino]anthraquinone

(145)(1.24g, 4.43 mmol) [following methods C and D]. The title compound was obtained

as fine deep red crystals from ethyl acetate! ether (1:10). Yield (1.27g)(43%). T.l.c.

(solvent system 1): R, 0.65 (red) product.

Found:!!!Q 112°C.

IH nmr spectrum (CDC!), 200MHz) 8: 1.20 (9H, s, tBu); 1.65-1.90 (3H, m, unresolved,

Aq-NH-CH2-Cfu- and (3-CH); 2.50 (IH, m, (3-CH'); 3.20-3.50 (5H, m, unresolved, Aq

NH-Cfu-CH2-CH2-Cfu and H-9-Fmoc); 3.65 (IH, m, 8-CH); 4.20 (1H, m, a-CH); 4.25

4.50 (4H, m, unresolved, Cfu-Fmoc, y-CH, and 8-CH'); 6.80-7.05 (2H, m, unresolved,

NHCO and H-2-Aq); 7.20-7.40 [5H, m, unresolved, H-3-Aq, (H-l, H-2 H-7 and H-8)

Fmoc]; 7.45-7.55 [3H, m, H-4-Aq, (H-4 and H-5)-Fmoc]; 7.60-7.75 [4H, m, (H-6 and H

7)-Aq, (H-3 and H-6)-Fmoc]; 8.15-8.25 (2H, m, H-5 and H-8); 9.65 (1H, t, Aq-NH).

FABMS(+) m/z: 694 (35%), 673 (92%)(MH)+, 391 (8%),263 (52%),179 (100%). M, 672
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9.6.6 1-[3-(0-Tertiarybutyl-L-hydroxyprolylamino)propylamino]anthraquinone

1(212)

The doubly protected compound (211) (1.17g) was dissolved in DMF/piperidine (4:1) and

stirred at room temperature for 5 minutes, selectively removing the N-a-Fmoc protecting

group, to give the title compound (0.38g)(48%).[following method G]. T.l.c. of the crude

product (solvent system 1): Rf 0.10 (red), 0.25 (red) product, 0.40 (red), 0.80 (u.v. active)

Fmoc-piperidine adduct.

Found: !!ill 106°C.

~J:LIN304requires: C, 69.46, H, 6.95, N, 9.34 %. Found C, 68.88, H, 6.80, N, 9.20 %.

9.6.7 1-[3-(L-Hydroxyprolylamino)propylamino]anthraquinone trifluoroacetate

(213) (NU:UB 50)

The partially deprotected compound (212)(0.27g) was dissolved in trifluoroacetic acid for

24 h at room temperature to remove the O-tertiarybutyl protecting group. The solvent was

evaporated and the solid re-evaporated with ethanol (3x1O crrr') and dissolved in a

minimum volume of ethanol (2 crrr'), Addition of a large excess of ether (150 crrr') gave a

red precipitate of the title compound which was filtered off and dried (0.26g)(85%). T.l.c.

[chloroform : methanol (3:1)]: Rf0.40 (red).

Found: !!ill 164°C.

IH nmr spectrum (200MHz, d6-DMSO) B: 1.75-2.00 (3H, m, unresolved, ~-CH and Aq

NH-CH2-Cfu); 2.25 (1H, m, ~-CH'); 3.10 (1H, m, B-CH); 3.25-3.50 (5H, m, unresolved

B-CH' and Aq-NH-Cfu-CH2-Cfu); 4.30 (1H, m, a-CH); 4.45 (1H, m, y-CH) 5.60 (1H, m,

OH); 7.35 (1H, dd, H-2); 7.45 (1H, dd, H-4); 7.65 (1H, m, H-3); 7.75-7.95 (2H, m, H-6
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and H-7); 8.10-8.25 (2H, m, H-5 and H-8); 8.70 (lH, t, NHCO); 9.25 (2H, hr. s, Nfu+);

9.75 (1H, t, Aq-NH).

FABMS(+) m/z: 416 (2%), 394 (68%)(RNH3t, 131 (10%),86 (100%). M, 507.

9.6.8 1-[4-(N-Tertiarybutoxycarbonyl-L-prolylamino)butylamino]anthraquinone

/(214)

N-tBoc-proline-N-hydroxysuccinimide ester (0.88g, 2.81 mmol) was reacted with 1-[(4

aminohutyl)amino]anthraquinone (147)(0.75g, 2.55 mmol) [following method C]. T.l.c. of

the crude product (solvent system 1): Rf 0.05 (red) spacer, 0.55 (purple), 0.65 (red)

product, 0.90 (red). Recrystallisation from ethyl acetate/ethanol afforded the title

compound as a red solid (0.46g)(37%).

Found: illQ 110°C.

IH nmr spectrum (CDC!], 200MHz) 3: 1.45 (9H, s, tBoc); 1.60-2.00 (8H, unresolved, Aq

NH-CH2-Cfu-Cfu, (3-Cfu-pro and y-Cfu-pro); 3.30-3.50 (6H, unresolved, Aq-NH-Cfu

CH2-CH2-Cfu and 3-Cfu pro); 4.30 (lH, hr. s, u-CH); 7.00-7.10 (2H, m, unresolved,

NHCO-pro and H-2); 7.50-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7);

8.20-8.30 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq-NH).

~8fu3!:'L05 requires: C 68.41, H 6.77, N 8.55 %. Found C 67.94, H 6.70, N 8.49 %.

FABMS(+) m/z: 492 (5%)(MHt, 392 (10%), 114 (15%), 70.0 (100%), 57 (55%). M,491.
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9.6.9 1-[4-(L-Prolylamino)butylamino]anthraquinone trifluoroacetate (215)

/(NU:UB 43)

Treatment of the N-tBoc protected proline conjugate (214) (0.39g) with TFA [following

method F] gave the title compound in an analytically pure form (0.21g)(53%). T.l.c.

(solvent system 3): Rr 0.50 (red).

Found: .!!ill 104 "C.

IH nmr spectrum (300MHz, df,-DMSO) 0: 1.55-1.90 (6H, m, unresolved, y-Cfu and Aq

NH-CH2-Cfu-Cfu); 2.40 (2H, m, P-Cfu); 3.05-3.55 (6H, unresolved, o-Cfu and Aq-NH

Cfu-CH2-CH2-Cfu); 4.05 (1H, t, a-CH); 7.25 (1H, d, H-2); 7.45 (1H, d, H-4); 7.65 (IH, t,

H-3); 7.80-8.00 (2H, m, H-6 and H-7); 8.10-8.20 (2H, m, H-5 and H-8); 8.55 (1H, t,

NHCO); 8.80 (2H, br s, NIhl; 9.70 (1H, t, Aq-NH).

FABMS(+) m/z: 392 (30%)(RNH2t , 149 (10%), 136 (10%), 105 (12%), 70 (100%). M,

505.

9.6.10 1-[2-(N-Tertiarybutoxycarbonyl-L-prolyloxy)ethylamino]anthraquinone (216)

Compound (216) was prepared from the reaction of 1-[(2

hydroxyethyl)amino]anthraquinone (148) (0.70g, 2.62 mmol) with N-IBoc-L-proline

(0.64g, 2.61 mmol) [following method E]. Yield [precipitated from chloroform! methanol

(1:100)] (0.50g)(41%). T.l.c. (solvent system 1): RrO.55 (red).

Found: .!!ill 120 -c.

FABMS(+) m/z: 465 (100%)(MH)+. M, 464.
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9.6.11 1-[2-(L-Prolyloxy)ethylamino]anthraquinone trifluoroacetate (217)

I(NU:UB 115)

Deprotection of the 'Boc-Lproline conjugate (216)(0.46g) using TFA [following method

F] gave the title compound as deep orange crystals ( 0.36g)(77%). T.l.c.(solvent system 1):

Rf 0.65 (red).

Found: illQ 137°C.

IH nmr spectrum (200MHz, d<;-DMSO) 8: 1.85 (2H, m, y-Cfu); 2.05 (lH, m, P-CH); 2.20

(lH, m, P-CH'); 3.20 (2H, m, 8-Cfu); 3.70 (2H, q, Aq-NH-Cfu); 4.30-4.60 (3H, m,

unresolved, a-CH and CfuOCO); 7.35 (lH, dd, H-2); 7.45 (lH, dd, H-4); 7.65 (lH, m, H

3); 7.75-7.95 (2H, m, H-6 and H-7); 8.00-8.20 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq

NH).

FABMS(+) m1z: 729 (4%), 365 (100%)(RNH2t ,130 (85%). M, 478.

9.6.12 1-[3-(N-Tertiarybutoxycarbonylprolyloxy)propylamino]anthraquinone

1(218)

Compound (218) was prepared from the reaction of 1-[(3

hydroxypropyl)amino]anthraquinone (149) (0.50g, 1.78 mmol) with N-tBoc-L-proline

(0.38g, 1.77 mmol) [following method E]. T.l.c. of the crude product [chloroform :

methanol (6:1)]: Rf 0.70 (red) spacer, 0.90 (red) product. Yield (from methanol)

(0.42g)(49%).

Found: illQ 121°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.45 (9H, tBoc); 1.85-2.35 (6H, m, unresolved,

CH2-Cfu-CH2, P-Cfu and y-Cfu); 3.40-3.60 (4H, unresolved, Aq-NHCfu and 8-Cfu);

4.20-4.40 (3H, unresolved, a-CH and CfuOCO); 7.10 (lH, m, H-3); 7.50-7.60 (2H, m, H-
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2 and H-4); 7.70-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.80 (lH, t,

Aq-NH).

ha7fuoN206 requires: C 67.77, H 6.32, N 5.85 %. Found C 67.14, H 6.49, N 5.99 %.

FABMS(+) m1z: 501 (40%), 479 (86%)(MHt, 422 (37%), 379 (47%), 263 (65%), 97

(100%). M, 478.

9.6.13 1-[3-(L-Prolyloxy)propylamino]anthraquinone trifluoroacetate (219)

I(NU:UB 111)

The 'Boc-Lproline conjugate (218) (0.36g) was deprotected using TFA [following

method F] to give the title compound as an orange/ brown powder (0.32g)(86%). T.l.c.

[chloroform: methanol (6:1)]: RfO.50 (red) product.

Found: mn 66 CC.

IH nmr spectrum(200MHz, d6-DMSO) 0: 1.80-2.10 (5H, m, unresolved, P-CH, y-Cfu and

CH2-Cfu-CH2); 2.30 (lH, m, P-CH'); 3.25 (2H, m, o-Cfu); 3.40 (2H, q, Aq-NH-Cfu);

4.25-4.55 (3H, m, unresolved, a-CH and Cfu-OCO); 7.25 (lH, dd, H-2); 7.40 (lH, dd,

H-4); 7.60 (lH, m, H-3); 7.75-8.00 (2H, m, H-6 and H-7); 8.10-8.25 (2H, m, H-5 and H

8); 9.65 (lH, t, Aq-NH).

ESMS(+)(Cone 50V) m1z: 401 (2%), 379 (100%)(RNH3t, 264 (50%), 236 (10%), 69

(30%).

ESMS(-)(Cone 20V) m1z: 113 (100%).
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9.6.14 1-[3-(N-Tertiarybutoxycarbonyl-D-prolyloxy)propylamino]anthraquinone

/(220)

Compound (220) was prepared from the reaction of 1-[(3

hydroxypropyl)amino]anthraquinone (149) (0.50g, 1.78 mmol) with N-IBoc-D-proline

(0.38g, 1.77 mmol) [following method E]. Yield (from methanol) (0.39g)(46%). T.l.c.

(solvent system 1): RfO.70 (red) product.

Found: illP 120°C.

IH nmr spectrum (CDCh, 200MHz) 0: 1.45 (9H, IBoc); 1.85-2.35 (6H, m, unresolved, Aq

NH-CH2-Cfu-CH2, ~-Cfu and y-Cfu); 3.35-3.65 (4H, m, unresolved, Aq-NH-Cfu and 0

Cfu); 4.25-4.40 (3H, unresolved, a-CH and CfuOCO); 7.10 (lH, m, H-3); 7.55-7.65 (2H,

m, H-2 and H-4); 7.70-7.85 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.80

(lH, t, Aq-NH).

~27llioN206 requires: C 67.77, H 6.32, N 5.84 %. Found C 67.54, H 6.50, 5.93 %.

FABMS(+) m/z: 501 (20%), 479 (lOO%)(MHt, 423 (35%), 379 (65%), 197 (85%). M,

478.

9.6.15 1-[3-(D-Prolyloxy)propylamino]anthraquinone trifluoroacetate (221)

/(NU:UB 112)

Deprotection of the 'Boc-Lproline conjugate (220)(0.35g) with TFA [following method

F] afforded the title compound in an analytically pure form (0.31g)(86%).

Found: illP 66°C.

IH nmr spectrum (200MHz, d6-DMSO) 0: 1.80-2.10 (5H, m, unresolved, ~-CH, y-Cfu

and CH2-Cfu-CH2); 2.30 (lH, m, ~-CH'); 3.25 (2H, m, o-Cfu); 3.40 (2H, q, Aq-NH

Cfu); 4.30-4.50 (3H, unresolved, a-CH and Cfu-OCO); 7.25 (lH, dd, H-2); 7.40 (lH, dd,
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H-4); 7.60 (IH, m, H-3); 7.80-8.00 (2H, m, H-6 and H-7); 8.10-8.20 (2H, m, H-5 and H

8); 9.70 (IH, t, Aq-NH).

ESMS(+)(Cone 50V) m/z: 757 (10%), 657 (15%), 379 (100%)(RNH3t, 130 (30%).

ESMS(-)(Cone 20V) m/z: 113 (100%). M, 492.

9.6.16 4,8-Dihydroxy-l-[3-(N-tertiarybutoxycarbonyl-L-prolylamino)propylamino]-

anthraquinone (222)

N-tBoc-L-proline-N-hydroxysuccinimide ester (0.66g, 2.12 mmol) was reacted with 4,8

dihydroxy-l-[(3-aminopropyl)amino]anthraquinone trifluoroacetate (158) (0.75g, 1.76

mmol) in THF (100 cnr') and triethylamine (3.5 mmol)[ following method C]. T.l.c. of the

crude product [chloroform: methanol (3:1)]: Rr 0.00 (purple) (Aq-spacer-TFA), 0.10

(purple) (Aq-spacer-NlL), 0.75 (purple) product. Recrystallisation from ethyl acetate

afforded the title compound as a dark purple solid (0.57g)(63%).

Found: mn 131°C.

FABMS(+) m/z: 532 (36%), 510 (100%)(MHt, 410 (31%), 295 (37%), 107 (98%). M,

509.

9.6.17 4,8-Dihydroxy-l-[3-(L-prolylamino)propylamino]anthraquinone trifluoro-

acetate (223)

The 'Boc-Lproline conjugate (222) (0.50g) was deprotected using TFA [following

method F]. The crude product was purified by column chromatography eluting with

chloroform: ethanol (2:1) to give a purple crystalline solid of the title compound

(223)(0.40g)(78%). T.l.c. [chloroform: methanol (3:1)]: Rr0.30 (purple) product.

Found: mn 104°C.
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IH nmr spectrum (200MHz, d<;-DMSO) 0: 1.70-1.95 (5H, m, unresolved, ~-CH-pro, y

Cfu-pro and CH2-Cfu-CH2) ; 2.25 (IH, m, ~-CH'-pro); 3.15 (2H, t, o-Cfu-pro); 3.25 (2H,

q, Cfu-NHCO); 3.45 (2H, q, Aq-NH-Cfu); 4.05 (lH, m, a-CH); 7.20-7.35 (lH, m, H-2

and H-3); 7.45 (IH, d, H-7, J6,7 8Hz); 7.60-7.70 (2H, m, H-5 and H-6); 8.60 (lH, t,

NHCO); 9.95 (IH, t, Aq-NH).

ESMS(+) m/z: 819 (3%), 410 (95%)(RNH3t ,155 (15%), 119 (35%), 87 (l00%).

ESMS(-) m/z: 113 (62%),69 (l00%)(CF3f .M, 523.

9.6.18 4,8-Dihydroxy-l-[4-(N-tertiarybutoxycarbonyl-L-prolylamino)butylamino]-

anthraquinone (224)

N-Boc-L-proline-N-hydroxysuccinimide ester (0.55g, 1.76 mmol) was reacted with 4,8

dihydroxy-l-[(4-aminobutyl)amino]anthraquinone trifluoroacetate (160) (0.65g, 1.47

mmol) in THF (l00 crrr') and triethylamine (3.0 mmol) [following method C]. T.l.c. of the

crude product [chloroform: methanol (3:1)]: Rr 0.10 (purple) (Aq-spacer-NlI-), 0.75

(purple) product. Recrystallisation from ethyl acetate afforded the title compound

(0.61g)(86%).

Found: illQ 128 -c.

IH nmr spectrum (CDC!), 200MHz) 0: 1.45 (9H, s, tBoc); 1.65-2.00 (8H, unresolved,

CH2-Cfu-Cfu-CH2, ~-Cfu-pro and y-Cfu-pro); 3.30-3.50 (6H, q, Ar-NH-Cfu-CH2-CH2

Cfu and o-Cfu-pro); 4.25 (lH, br. s, a-CH-ala); 7.00-7.10 (lH, br.s, NH-tBoc); 7.20-7.30

(2H, m, H-2 and H-3); 7.60 (lH, t, H-6); 7.80 (lH, d, H-5); 9.90 (lH, t, Aq-NH); 13.25

(lH, s, OH); 13.85 (lH, s, OH).

FABMS(+) m/z: 546 (35%), 524 (87%)(MHt, 424 (100%), 257 (48%), 149 (66%), 114

(54%). M, 523.
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9.6.19 4,8-Dihydroxy-1-[4-(L-prolylamino)butylamino]anthraquinone

trifluoroacetate (225) (NU: UB 85)

The 'Boc-Lproline conjugate (224)(0.50g) was deprotected using TFA [following method

F]. The crude product was purified by column chromatography eluting with chloroform :

ethanol (2:1) to give a purple solid of the title compound (0.49g)(84%).

Found: nm 178°C.

IH nmr spectrum (200MHz, df,-DMSO) 8: 1.45-1.70 (4H, m, unresolved, CH2-Cfu-Cfu

CH2); 1.75-1.95 (3H, m, unresolved, ~-CH and y-Cfu); 2.25 (1H, m, ~-CH'); 3.15-3.55

(6H, m, unresolved, Cfu-CH2-CH2-Cfu and 8-Cfu); 4.15 (1H, m, a-CH); 7.25-7.35 (1H,

m, H-2 and H-3); 7.45 (1H, d, H-7); 7.60-7.75 (2H, m, H-5 and H-6); 8.60 (1H, t, NHCO);

9.85 (1H, t, Aq-NH).

ESMS(+)(Cone 50V) m/z: 424 (100%)(RNH3t ,105 (54%).

ESMS(-)(Cone 90V) m/z: 113 (65%), 69(100%)(CF3f . M, 537.

9.7 LYSINE AND ORNITHINE CONTAINING SPACER-LINKED

ANTHRAQmNONE AMINO ACID CONJUGATES

9.7.1 1-[3-(N-a-Tertiarybutoxycarbonyl-N-E-benzyloxycarbonyl-L-lysylamino)-

propylamino]anthraquinone (226)

N-a}Boc-N-E-Z-L-lysine was converted to its O-pentafluorophenolate ester (5.75g, 10.5

mmol) [t.1.c. (solvent system 1): Rr0.30 (u.v. active) pentafluorophenol, 0.80 (u.v. active)

ester] and reacted with 1-[(3-aminopropyl)amino]anthraquinone (145)(2.68g, 9.60 mmol)

[following methods C and D]. The title compound was obtained as bright red crystals from

ethanol (3.50g)(57%). T.1.c. (solvent system 1): RrO.50 (red) product.
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Found: illQ 148°C.

IH nrnr spectrum (CDCh, 200MHz) 8: 1.35-1.60 (13H, m, unresolved, tBoc, y-Clli and 8

Clli); 1.85 (2H, m, ~-Clli); 2.00 (2H, qn, Aq-NH-CHz-Clli-CHz-); 3.15 (2H, q, s-Clli);

3.35-3.60 (4H, m, unresolved, Aq-NH-Clli-CHz-Clli); 4.05 (lH, q, a-CH); 4.85 (lH,

br.s, NH-Z); 5.10 (2H, s, O-Clli-Ph); 5.30 (lH, br. d, NH-tBoc); 6.50 (lH, t, spacer

NHCO-lys); 7.05 (lH, dd, H-2); 7.35 (5H, br.s, Ph); 7.45-7.60 (2H, m, H-3 and H-4);

7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq-NH).

~6H4zN407 requires; C 67.27, H 6.59, N 8.71 %. Found; C 66.95, H 6.60, N 8.61 %.

FABMS(+) m/z; 665 (6%)(M+Nat, 643 (8%)(MHt, 91 (lOO%)(PhCHzt, 77

(33%)(Pht M,642.

9.7.2 1-[3-(N-s-Benzyloxycarbonyl-L-lysylamino)propylamino]anthraquinone

trifluoroacetate (227) (NV:VB 8)

Compound (226)(3.40g) was dissolved in trifluoroacetic acid for exactly 0.25h to

selectively remove only the N-a-tBoc group [following Method F). Precipitation with

ether afforded the title compound (227) (2.42g)(70%).]. T.l.c. (solvent system 1): Rf 0.15

(red) product.

Found: illQ 161°C.

IH nrnr spectrum (d<;-DMSO, 200MHz) 8: 1.15-1.45 (4H, m, unresolved, y-Clli and 8

Clli); 1.65 (2H, m, ~-Clli); 1.85 (2H, qn, Aq-NH-CHz-Clli-CHz-); 2.95 (2H, q, s-Clli);

3.20-3.50 (4H, m, unresolved, Aq-NH-Clli-CHz-Clli-); 3.70 (lH, m, a-CH); 4.95 (2H, s,

OClli-Ph); 7.15-7.25 (2H, m, unresolved, H-2 and NHCO-Z); 7.30 (5H, br.s, Ph); 7.40

(IH, d, H-4); 7.65 (lH, t, H-3); 7.75-7.95 (2H, m, H-6 and H-7); 8.05-8.20 (5H,

unresolved, RNfu", H-5 and H-8); 8.55 (lH, t, NHCO-lys); 9.75 (lH, t, Aq-NH).
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FABMS(+) m/z: 565(5%)(RNH2+Nat, 543 (21%)(RNH3t ,91 (100%)(PhCH2t. M, 656.

9.7.3 1-[3-(N-a-Tertiarybutoxycarbonyl-N-3-benzyloxycarbonyl-L-ornithylamino)-

propylamino]anthraquinone (228)

N-a-tBoc-N-3-Z-omithine was converted to its O-pentafluorophenolate ester (1.45g, 2.73

mmol) and reacted with 1-[(3-aminopropyl)amino]anthraquinone (145)(0.69g, 2.46 mmol)

[following methods C and D] to give the title compound as bright crystals from ethanol

(0.76g)(49%). T.l.c. (solvent system 1): Rf0.40 (red) product.

Found: !!!l2 159°C.

IH nmr spectrum (CDC!], 200MHz) 3: 1.40 (9H, s, tBoc); 1.50-1.90 (4H, m, unresolved,

~-Cfu and y-Cfu); 1.95 (2H, qn, AQ-NH-CH2-Cfu-CH2-); 3.10-3.60 (6H, m, unresolved,

3-Cfu and Aq-NHCfu-CH2-Cfu); 4.25 (lH, br.s, a-CH); 5.05 (3H, m, unresolved, NH

COOCfu-Ph); 5.35 (lH, d, NHCO-tBoc); 6.75 (lH, t, spacer-NHCO-om); 7.00 (lH, dd,

H-2); 7.25 (5H, br.s, Ph); 7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.75 (2H, m, H-6 and H

7); 8.15-8.25 (2H, m, H-5 and H-8); 9.70 (lH, t, ArNH).

FABMS(+) m/z: 630 (4%)(MHt, 529 (5%), 149 (94%), 91 (60%)(PhCH2t, 57

(l00%)[(CH3)3Ct M, 629.

9.7.4 1-[3-(N-3-Benzyloxycarbonyl-L-ornithylamino)propylamino]anthraquinone

acetate (229) (NU:UB 47)

Compound (228) (0.50g) was dissolved in TFA for 0.25h to selectively remove the tBoc

protecting group [following method F]. Treatment with triethylamine followed by column

chromatography gave the free amine, 1-[3-(N-3-Z-ornithylamino)propylamino]anthra-
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quinone, which was dissolved in glacial acetic acid and evaporated to dryness to give the

title compound (229)(0.28g)(60%). T.l.c. (solvent system 3): R, 0.60 (red) product.

Found: nm 144°C.

~2fu6N407 requires: C 65.29, H 6.16, N 9.52 %. Found C 64.60, H 5.82, N 9.47 %.

FABMS(+) m/z: 551 (2%),529 (20%)(RNH3t, 279 (35%), 149 (100%). M, 588.

9.7.5 1-[3-N-a-Tertiarybutoxycarbonyl-N-E-benzyloxycarbonyl-L-omithyloxy)-

propylamino]anthraquinone (230)

Compound (230) was prepared from the reaction of 1-[(3

hydroxypropyl)amino]anthraquinone (149) (1.50g, 5.34 mmol) with N-a-tBoc-N-8-Z

ornithine (1.96g, 5.36 mmol) [following method E]. Yield [from ethyl acetate/ methanol

(l:50)](0.48g)(l5%). T.l.c. (solvent system 1): RfO.70 (red) product.

Found: nm 130°C.

I H nmr spectrum (CDCh, 200MHz) 8: 1.40 (9H, s, tBoc); 1.45-1.95 (4H, m, unresolved,

J3-Cfu and y-Cfu); 2.10 (2H, qn, Aq-NH-CH2-Cfu); 3.20 (2H, q, 8-Cfu); 3.40 (2H, q,

Aq-NH-Cfu); 4.25-4.45 (3H, m, unresolved, Cfu-OCO and a-CH); 4.95 (IH, t, NHCO

Z); 5.25 (2H, s, O-Cfu-Ph); 5.25 (lH, d, NH-tBoc); 7.05 (IH, dd, H-2); 7.35 (5H, br.s,

Ph); 7.55-7.65 (2H, m, H-3 and H-4); 7.70-7.75 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m,

H-5 and H-8); 9.80 (IH, t, Aq-NH).

~5fu9N308 requires: C 66.76, H 6.24, N 6.67 %. Found; C 66.83, H 6.30, N 6.64 %.

FABMS(+) m/z: 652 (27%), 630 (51%)(MHt, 530 (8%), 413 (10%), 391 (25%), 291

(10%), 107 (100%)(PhCH2t. M,629.
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9.7.6 1-[3-N-o-Benzyloxycarbonyl-L-ornithyloxy)propylamino]anthraquinone

trifluoroacetate (231) (NU:UB 120)

Compound (230) (0.30g) was dissolved in trifluoroacetic acid for precisely 0.25h to

selectively remove only the N-a-tBoc group [following method F]. The crude product was

purified by column chromatography eluting with chloroform : methanol (20:1~10:1).

Precipitation with ether afforded the title compound (231) (0.16g)(52%). T.l.c.

[chloroform: methanol (6:1)]: RrO.65 (red) product.

Found: illQ 80°C.

IH nmr spectrum (d6-DMSO, 200MHz) 0: 1.40-1.70 (4H, unresolved, y-Cfu and P-Cfu);

2.00 (2H, qn, Aq-NH-CH2-Cfu-CH2-); 3.00 (2H, q, o-Cfu); 3.45 (2H, m, Aq-NH-Cfu);

3.60 (IH, m, a-CH); 4.20 (2H, t, Cfu-OCO, JHCCH 4Hz); 5.00 (2H, s, Cfu-Z); 7.20-7.35

(6H, unresolved, H-2 and C6Hs); 7.40 (IH, d, H-4); 7.60 (IH, t, H-3); 7.75-7.95 (2H, m,

H-6 and H-7); 8.10-8.20 (2H, m, H-5 and H-8); 9.70 (IH, t, Aq-NH, JHNCH 4Hz).

ESMS(+)(Cone 20V) m1z: 552 (10%), 530 (I00%)(RNH3t , 129 (25%), 97 (45%).

ESMS(-)(Cone -20V) m1z: 113 (100%). M, 643.

9.7.7 1-[3-(N-a-Fluorenylmethoxycarbonyl-N-E-tertiarybutoxycarbonyl-L-Iysyl-

amino)propylamino]anthraquinone (232)

N-a-Fmoc-N-E-tBoc-lysine pentafluorophenolate ester (1.00g, 1.57 mmol) was reacted

with 1-[(3-aminopropyl)amino]anthraquinone (145) (OAOg, 1.43 mmol) to give the title

compound [following method C]. Yield [from ethyl acetate/ ether (1:50)] (0.80g)(77%).

T.l.c. (solvent system 1): RrO.70 (red) product.

Found: illQ 176°C

C43fu6N407 requires: C 70.67, H 6.34, N 7.67 %. Found C 69.95, H 6.18, N 7.54 %.
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FABMS(+) m/z: 732 (3%)(MHt, 632 (2%), 434 (2%), 279 (33%), 149 (100%). M, 731.

9.7.8 1-[3-(N-s-Tertiarybutoxycarbonyl-L-Iysylamino)propylamino]anthraquinone

acetate (233) (NU:UB 45)

Compound (232) was partially deprotected to selectively remove the N-a-Fmoc protecting

group. T.l.c. of the crude product (solvent system 1): RfO.50 (red) amine, 0.70 (red), 0.90

(u.v. active) [following method G]. 1-[3-(N-s-tertiarybutoxycarbonyl-L

lysylamino)propylamino]anthraquinone was dissolved in glacial acetic acid and

evaporated to dryness to give the title compound (0.28g)(59%). T.l.c. (solvent system 3):

Rf 0.55 (red) product.

Found: mn 106°C.

IH nmr spectrum (d<,-DMSO, 200MHz) 3: 1.20-1.50 (l4H, m, unresolved, tBoc, f3-CH, y

Cfu and 3-Cfu); 1.55 (lH, m, f3-CH'); 1.80 (2H, qn, Aq-NH-CHz-Cfu-CHz-); 1.90 (3H,

s, ClliCOO-); 2.85 (2H, q, s-Cfu); 3.15-3.30 (3H, m, unresolved, Cfu-spacer and a-CH);

3.40 (2H, q, Cfu-spacer); 6.80 (lH, t, NHCO-Boc); 7.20 (lH, d, H-2); 7.20 (lH, d, H-4);

7.65 (lH, t, H-3); 7.80-8.00 (2H, m, H-6 and H-7); 8.05-8.20 (5H, unresolved, H-5 and

H-8 and Nlli+); 9.70 (IH, t, Aq-NH).

FABMS(+) m/z: 531 (2%),509 (7%)(RNH3t, 409 (8%), 84 (60%), 57 (100%). M, 568.

9.7.9 1-[3-(L-Lysylamino)propylamino]anthraquinone bis trifluoroacetate (234)

/(NU:UB 16)

Compound (233)(0.25g) was dissolved in trifluoroacetic acid for 48h. The bis salt (234)

was precipitated as a purple solid (O.lg)(42%) by addition of a large excess of ether (200

cnr'). T.l.c. (solvent system 3): Rf 0.25 (red) product.
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Found: !!ill 202°C.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 1.30 (2H, m, y-Cfu); 1.50 (2H, m, 8-Cfu); 1.65

(2H, m, J3-Cfu); 1.75 (2H, qn, Aq-NH-CH2-Cfu-CH2-); 2.70 (2H, t, E-Cfu, JHCCH 7Hz);

3.30-3.60 (4H, m, unresolved, Aq-NH-Cfu-CH2-Cfu); 3.65 (lH, t, a-CH, JHCCH 7Hz);

7.25 (lH, d, H-2, h3 10Hz); 7.45 (lH, d, H-4); 7.65 (lH, t, H-3); 7.75-8.20 (lOH, m,

unresolved, H-5, H-6, H-7, H-8 and NRtx2); 8.60 (lH, t, NHCO); 9.75 (lH, t, Aq-NH).

~7fuoN407F6, requires: C 50.95, H 4.75, N 8.80 %. Found C 49.85, H 4.76, N 8.47 %.

FABMS(+) m/z: 431 (7%)[(R(NH2)2+Nat, 409 (69%) [(R(NH2)NH3t, 236

(13%)(ArNHCH2t ,84 (100%). M, 636.

9.7.10 1-[3-(N-a-Fluorenylmethoxycarbonyl-N-8-tertiarybutoxycarbony1-L-

ornithylamino)propylamino)anthraquinone (235)

N-a-Fmoc-N-8-tBoc-omithine was converted to its O-pentafluorophenolate ester, (2.04g,

3.29 mmol) using ethyl acetate/DMF (5:1) as the solvent, [t.1.c. (solvent system 1): RrO.35

(u.v. active) PfpOH, 0.80 (u.v. active) ester] and reacted with 1-[(3

aminopropyl)amino]anthraquinone (145)( 0.84g, 3.00 mmol) [following methods C and

D] to give the title compound. Yield [from ethanol! ether (1:50)] (0.52g)(24%). T.l.c.

(solvent system 1): Rr0.40 (red) product.

Found: mn 179°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.40 (9H, s, tBoc); 1.45-1.90 (6H, unresolved, J3

Cfu, y-Cfu and 8-Cfu); 2.00 (2H, qn, Aq-NH-CH2-Cfu); 3.0-3.65 (7H, m, unresolved, E

Cfu, Aq-NH-Cfu-CH2-Cfu-NH and H-9-Fmoc); 4.15 (lH, t, a-CH); 4.40 (2H, d, Cfu

Fmoc); 4.70 (lH, m, NH-tBoc); 5.80 (lH, hr. d, NH-Fmoc); 6.80 (lH, m, NHCO-Om);

7.05 (lH, d, H-2); 7.20-7.45 [4H, m, unresolved, (B-3, H-4)-AQ and (H-1, H-8)-Fmoc];
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7.50-7.65 [4H, unresolved, (H-2, H-4 H-5 and H-7)-Fmoc]; 7.70-7.80 [4H, m, (H-6, H-7)

AQ, (H-3 H-6)-Fmoc); 8.20-8.30 [2H, m, (H-5 and H-8)-AQ]; 9.75 (IH, t, Aq-NH).

FABMS(+) m/z: 717 (8%)(MHt, 617 (3%), 263 (40%), 155 (96%),44 (100%). M,716.

9.7.11 1-[3-(L-Ornithylamino)propylamino]anthraquinone bis trifluoroacetate (236)

/(NU:UB24)

The doubly protected compound (235) was dissolved in DMF/ piperidine (4:1) to remove

the N-a-Fmoc group. T.l.c. of the crude product (solvent system 1): Rr 0.25 (red) product,

0.40 (red), 0.95 (u.v. active) [following method G]. The resultant 1-[3-(N-o-tBoc-L

omithylamino)propyl-amino]anthraquinone compound was deprotected using TFA

[Method F] to give purple crystals of the title compound(0.15g)(43%). T.l.c. (solvent

system 1): RfO.05 (red) product.

Found: !!ill 144 "C.

IH nmr spectrum (dt;-DMSO, 200MHz) 0: 1.50-2.00 (6H, unresolved, 13-Cfu, y-Cfu and

Aq-NH-CH2-Cfu); 2.80 (2H, m, o-Cfu); 3.30-3.60 (4H, unresolved, Aq-NH-Cfu-CH2

Cfu); 3.70 (lH, t, a-CH); 7.25 (lH, dd, H-2); 7.45 (lH, dd, H-4); 7.65 (lH, m, H-3);

7.75-8.10 (5H, unresolved, H-6 and H-7 and Nlli+x2); 8.10-8.20 (2H, m, H-5 and H-8);

8.60 (lH, t, NHCO); 9.75 (lH, t, Aq-NH).

ESMS(+)(Cone 8V) m/z: 395 (100%)[R(NH)2NH3t, 87 (25%), 65 (10%).

ESMS(-)(Cone 20V) m/z: 113 (100%)(CF3COOf.
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9.7.12 1-[4-(N-a-Tertiarybutoxycarbonyl-N-E-benzyloxycarbonyl-L-Iysylamino)-

butylamino]anthraquinone.(237)

N-a-tBoc-N-E-Z-L-lysine-N-hydroxysuccinimide ester (l.25g, 2.60 mmol) was reacted

with 1-[(4-aminobutyl)amino]anthraquinone (147)(0.7g, 2.40 mmol)[ following method

C] T.l.c. of the crude product (solvent system 1): Rf 0.05 (red) spacer, 0.20 (purple), 0.45

(red) product, 0.90 (red). Recrystallisation from ethanol afforded the title compound as a

bright red solid (0.45g)(29%).

Found: nm 142°C.

IH nmr spectrum (CDCh, 400MHz) 0: 1.35 (2H, m, y-Cfu); 1.45 (9H, s, tBoc); 1.50 (2H,

m,o-Cfu); 1.60-1.85 (6H, m, unresolved, Aq-NH-CH2-Cfu-Cfu and P-Cfu); 3.15 (2H,

q, E-Cfu); 3.30-3.40 (4H, m, unresolved, Aq-NH-Cfu-CH2-CH2-Cfu); 4.05 (lH, m, a

CH); 4.95 (lH, t, NH-Z); 5.10 (2H, s, OCfuPh); 5.25 (lH, d, NHtBoc); 6.45 (lH, t,

NHCO-Iys); 7.00 (lH, d, N-2); 7.30 (5H, brs, C6HS); 7.45-7.60 (2H, m, H-3 and H-4);

7.70-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.70 (lH, t, Aq-NH).

B C nmr spectrum (CDCh, 100MHz) 0: 22.56 (-ve, y-CH2); 26.32 (-ve); 27.24 (-ve);

28.32 [+ve, C(CH3)3]; 29.49 (-ve); 31.85 (-ve); [38.96 (-ve), 40.38 (-ve), 42.43 (-ve),

Aq-NH-CH2-CH2-CH2-CH2 and E-CH2]; 54.48 (+ve, a-CH); 66.64 (-ve, O-CH2-Ph);

80.12 [ab, C(CH3)3]; 112.91 (ab, aromatic b); 115.73 [+ve, aromatic (Aq) CH]; 117.83

[+ve, aromatic (Aq) CH]; [126.64 (+ve, aromatic CH), 126.72 (+ve, aromatic CH), (AQ-6

and 7)]; [128.08 (+ve, aromatic CH), 128.50 (+ve, aromatic CH), Z-ortho, meta and para];

132.95 [+ve, aromatic (Aq) CH]; 133.05 (ab, aromatic c); 133.94 [+ve, aromatic (Aq)

CH]; [134.63 (ab), 134.96 (ab), aromatic e and d]; 135.38 [+ve, aromatic (Aq) CH];

136.58 [ab, aromatic (Z) C-l]; 151.67 [ab, aromatic (Aq) C-l]; 155.90 (ab, NHCOO);
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156.56 (ab, NHCOO); 172.25 (ab, spacer-NHCO-Iys); 183.76 (ab, C=O); 185.04 (ab,

C=O).

!:37HMN407requires: C 67.66, H 6.77, N 8.53 %. Found C 67.44, H 6.78, N 8.24 %.

FABMS(+) mlz: 680 (2%), 658 (5%)(MHt, 557 (5%), 149 (48%)(PhCH200CN)+; 91

(97%)(PhCH2t, 70 (54%); 57 (t00%) [(CH3)3Ct. M, 657.

9.7.13 1-[4-(N-E-Benzyloxycarbonyl-L-lysylamino)butylamino]anthraquinone

acetate (238) (NU:UB 19)

Compound (237)(0.35g) was dissolved in trifluoroacetic acid for 0.25h [following method

F] to give 1-[4-(N-E-Z-L-Iysylamino)butylamino]anthraquinone trifluoroacetate salt as the

major product which was treated with triethylamine prior to column chromatography,

eluting with chloroform methanol (20:1~10:1). 1-[4-(N-E-Z

lysylamino)butylamino]anthraquinone was dissolved in glacial acetic acid and evaporated

to dryness to give the title compound (0.09g)(26%). T.l.c. (solvent system 3): RrO.50 (red)

product.

Found: !!ill 104°C.

lH nmr spectrum (d6-DMSO, 400MHz) 8: 1.40-1.70 (lOH, m, unresolved, Aq-NH-CH2

Clli-Clli, ~-Clli, y-Clli and 8-Clli); 2.85 (2H, q, E-Clli); 3.15 (2H, qn, Clli-NHCO);

3.25-3.40 (3H, m, unresolved, Aq-NH-Clli and a-CH); 4.95 (2H, s, OClli-Ph); 7.15 (tH,

t, NHCO-Z); 7.25-7.35 (6H, unresolved, H-2 and C6HS); 7.40 (1H, d, H-4); 7.60 (tH, t, H

3); 7.75-7.90 (3H, m, H-6 and H-7 and spacer-NHCO-Iys); 8.10-8.25 (2H, m, H-5 and H

8); 9.70 (1H, t, Aq-NH).

B C nmr spectrum (d6-DMSO, 100MHz) 8: 23.48 (-ve, y-CH2); 26.89 (-ve); 27.65 (-ve);

30.21 (-ve); 35.75 (-ve); [38.71 (-ve), 41.10 (-ve), 42.72 (-ve), Aq-NH-CH2-CH2-CH2-
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CH2 and f>-CH2]; 55.55 (+ve, a-CH); 65.92 (-ve, O-CH2-Ph); 112.74 (ab, aromatic b);

115.85 [+ve, aromatic (Aq) CH]; 119.52 [+ve, aromatic (Aq) CH]; 127.12 [+ve, aromatic

(Aq) CH]; 127.26 [+ve, aromatic (Aq) CH]; [128.54 (+ve, aromatic CH), 129.18 (+ve,

aromatic) Z, ortho, meta and para]; 133.22 (ab, aromatic c); 134.30 [+ve, aromatic (Aq)

CH]; [134.79 (ab), 135.22 (ab), aromatic e and f]; [135.36 (+ve, aromatic, Aq-CH), 136.52

(+ve, aromatic, Aq-CH), 5 and 8]; 138.13 (ab); 152.25 [ab, aromatic(Aq) C-1]; 156.90 (ab,

NHCOO); 175.91 (ab, spacer-NHCO-Iys); 183.75 (ab, C=O); 184.86 (ab, C=O).

~4H4oN407 requires: C 66.21, H 6.55, N 9.09 %. Found C 65.91, H 6.32, N 9.33 %.

ESMS(+)(Cone 50V) m/z: 579 (15%), 557 (100%)(RNH3t ,513 (10%).

ESMS(-)(Cone 50 V) m/z: 59 (100%)(CH3COO} M, 616.

9.7.14 1-[4-(N-a-Tertiarybutoxycarbonyl-N-8-benzyloxycarbonyl-L-ornithyl-

amino)butylamino]anthraquinone (239)

N-a-IBoc-N-8-Z-L-ornithine was converted to its O-pentafluorophenolate ester (lA5g,

2.73 mmol), using ethyl acetate/ DMF (5:1) as the solvent, and reacted with 1-[(4

aminobutyl)amino]anthraquinone (147)( 0.73g, 2048 mmol) [following methods C and D]

to give the title compound. Yield [from ethyl acetate/ hexane (1:100)] (0.69g)(43%). T.l.c.

(solvent system 1): Rr 0040 (red) product.

Found: !!ill 130°C.

IH nmr spectrum (CDCh, 200MHz) 8: lAO (9H, s, IBoc); 1.50-1.85 (8H, m, unresolved,

Aq-NH-CH2-Cfu-Cfu, P-Cfu and y-Cfu); 3.05-3.25(2H, m, 8-Cfu); 3.25-3.45 (4H, m,

unresolved, Aq-NHCfu-CH2-CH2-Cfu); 4.20 (1H, d, a-CH); 5.05 (3H, m, NHCO-Cfu

Z); 5.25 (1H, d, NHIBoc); 6.55 (1H, t, spacer-NHCO-om); 7.00 (1H, dd, N-2); 7.25 (5H,
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brs, C6Hs); 7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.75 (2H, m, H-6 and H-7); 8.15-8.25

(2H, m, H-5 and H-8); 9.70 (IH, t, Aq-NH).

~6HuN407 requires: C 67.27, H 6.59, N 8.72 %. Found C 67.22, H 6.44, N 8.48 %.

FABMS(+) rn/z: 644 (1%)(MHt, 542 (2%), 91 (95%), 70 (57%),57 (100%). M, 643.

9.7.15 1-[4-(N-8-Benzyloxycarbonyl-L-ornithylamino)butylamino]anthraquinone

acetate (240) (NU:UB 48)

Compound (239) was selectively deprotected in the same manner as compound (230), the

analogous propyl spaced ornithine conjugate, to give a red solid of the title compound

(0.31g)(61%). T.l.c. (solvent system 3): RrO.65 (red) product.

Found: !!ill 98°C.

IH nrnr spectrum (d6-DMSO, 200MHz) 8: 1.30-1.80 (8H, unresolved, Aq-NH-CH2-Cfu

Cfu, P-Cfu and y-Cfu); 1.85 (3H, s, ClliCOO-); 3.00 (2H, q, 8-Cfu); 3.15 (3H,

unresolved, Cfu-NHCO and a-CH); 3.35 (2H, m, Aq-NH-Cfu); 4.95 (2H, s, OCH2-Ph);

7.15-7.35 (7H, unresolved, H-2, NHCO-Z and C6Hs); 7.40 (IH, d, H-4); 7.60 (1H, t, H-3);

7.80-7.95 (2H, m, H-6 and H-7); 8.00 (1H, t, spacer-NHCO-orn); 8.10-8.20 (2H, m, H-5

and H-8); 9.65 (IH, t, Aq-NH).

FAB(+) rn/z: 543 (15%)(RNH3t ,421 (1%),318 (5%),176 (19%), 91 (100%). M, 602.

9.7.16 1-[4-(N-a-Benzyloxycarbonyl-N-s-tertiarybutoxycarbonyl-L-Iysylamino)

butylamino]anthraquinone (241)

N-a-Z-N-E-1Boc-Iysine-N-hydroxysuccinimide ester (1.25g, 2.62 rnrnol) was reacted with

1-[(4-aminobutyl)amino]anthraquinone (147) (0.70g, 2.38 rnrnol)[ following method C].
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Recrystallisation from ethanol afforded the title compound as a bright red solid

(0.77g)(49%). T.l.c. (solvent system 1): Rf0.45 (red) product.

Found: illQ 126°C.

IH nmr spectrum (CDCh, 400MHz) 8: 1.35-1.55 (13H, m, unresolved, tBoc y-CH2 and 8

CH2); 1.60-1.80 (5H, m, unresolved, NH-CH2-Clli-Clli-CH2-NH and 13-CH); 1.90 (lH,

m, 13-CH'); 3.10 (2H, m, g-CH2); 3.25-3.40 (4H, m, unresolved, NH-Clli-CH2-CH2-Clli

NH); 4.15 (lH, m, a-CH2); 4.65 (lH, t, NH-tBoc); 5.10 (2H, s, Clli-Ph); 5.60 (lH, d, NH

Z); 6.40 (lH, t, spacer-NHCO-Lys); 7.0 (lH, d, H-2); 7.30 (5H, br s, C6H5) ; 7.45-7.60

(2H, m, H-3 and H-4); 7.65-7.75 (2H, m, H-6 and H-7); 8.15-8.25 (2H, m, H-5 and H-8);

9.70 (lH, t, Aq-NH).

BC nmr spectrum (CDCh, 100MHz) 8: 22.54 (-ve, y-CH2); 26.31 (-ve); 27.19 (-ve);

28.41 [+ve, C(CH3)3]; 29.65 (-ve); 31.98 (-ve); [39.02 (-ve), 39.77 (-ve), 42.42 (-ve),

Aq-NH-CH2-CH2-CH2-CH2 and g-CH2]; 55.03 (+ve, a-CH); 67.07 (-ve, O-CH2-Ph);

79.21 [ab, C(CH3)3]; 112.90 (ab, aromatic b); 115.73 [+ve, aromatic (Aq) CH]; 117.83

[+ve, aromatic (Aq) CH]; 126.64 [+ve, aromatic (Aq) CH]; 126.72 [+ve, aromatic (Aq)

CH]; [128.08 (+ve, aromatic, CH), 128.34 (+ve, aromatic, CH), 128.50 (+ve, aromatic,

CH), Z-ortho, meta and para]; 132.95 [+ve, aromatic (Aq) CH]; 133.05 (ab, aromatic c);

133.93 [+ve, aromatic (Aq) CH]; [134.62 (ab), 134.94 (ab) aromatic e and f]; 135.38 [+ve,

aromatic (Aq) CH]; 136.17 [ab, aromatic (Z) C-1]; 151.65 [ab, aromatic (Aq) C-1];

156.27 (ab, NHCOO); 156.42 (ab, NHCOO); 171.91 (ab, spacer-NHCO-lys); 183.74 (ab,

C=O); 185.04 (ab, C=O).

~7H44N407 requires: C 67.66, H 6.75, N 8.53 %. Found C 67.55, H 6.89, N 8.57 %.

FABMS(+) m/z: 680 (1%), 658 (l%)(RNH3t ,558 (6%),277 (5%), 91 (100%). M, 657
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9.7.17 1-[4-(N-a-Benzyloxycarbonyl-L-lysylamino)butylamino]anthraquinone

acetate (242) (NU:UB 42)

Compound (241) was partially deprotected to selectively remove the N-E-tBoc protecting

group in the same manner as for compound (237). 1-[4-(N-a-Z-Iysylamino)butylamino]

anthraquinone was dissolved in glacial acetic acid and evaporated to dryness to give the

title compound (0.10g)(29%). T.l.c. (solvent system 3): Rf0.45 (red) product.

Found: illQ 124°C.

IH nmr spectrum (d6-DMSO, 400MHz) 8: 1.15-1.70 (lOH, m, unresolved, Aq-NH-CH2

Cfu-Cfu, J3-Cfu, y-Cfu and 8-Cfu); 1.75 (3H, s, CfuCOO-); 3.15 (2H, m, E-Cfu); 3.35

(2H, m, Cfu-NHCO); 3.60 (2H, m, Aq-NH-Cfu); 4.95 (2H, m, OCfu-Ph); 7.20-7.40 (6H,

unresolved, H-2, and C6Hs); 7.40 (lH, d, H-4); 7.60 (lH, t, H-3); 7.75-7.85 (3H, m, H-6

and H-7); 8.00-8.20 (3H, m, H-5, H-8 and spacer-NHCO-Iys); 9.70 (lH, t, Aq-NH).

B C nmr spectrum (d6-DMSO, 100MHz) 8: 23.47 (-ve, y-CH2); 26.83 (-ve); 27.52 (-ve);

29.99 (-ve); 32.35 (-ve); [38.92 (-ve), 39.72 (-ve), 42.73 (-ve), Aq-NH-CH2-CH2-CH2

CH2 and E-CH2]; 55.59 (+ve, a-CH); 66.18 (-ve, O-CH2-Ph); 112.70 (ab, aromatic b);

115.83 [+ve, aromatic (Aq) CH]; 119.48 [+ve, aromatic (Aq) CH]; 127.08 [+ve, aromatic

(Aq) CH]; 127.23 [+ve, aromatic (Aq) CH]; [128.49 (+ve, aromatic CH), 128.57 (+ve,

aromatic CH), 129.14 (+ve, aromatic CH), Z ortho, meta and para]; 133.18 (ab, aromatic

c); 134.26 [+ve, aromatic (Aq) CH]; [134.74 (ab), 135.19 (ab), aromatic e and f]; 135.31

[+ve, aromatic (Aq) CH]; 136.47 [+ve, aromatic (Aq) CH]; 137.90 (ab); 152.20 lab,

aromatic (Aq) C-1]; 156.81 (ab, NHCOO); 172.75 (ab, spacer-NHCO-Iys); 183.70 (ab,

C=O); 184.80 (ab, C=O).

CIMS(+) m/z: 557 (20%)(RNH3t ,423 (100%). M, 616.
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9.7.18 1-{4-[N-(a,E)-Di-tertiarybutoxycarbonyl-L-Iysylamino]butylamino}anthra-

quinone (243)

N-a,E-di-tBoc-L-lysine-N-hydroxysuccinimide ester (l.3g, 2.90 mmol) was reacted with

1-[(4-aminobutyl)amino]anthraquinone (147)(0.75g, 2.55 mmol)[ following method C] to

give the title compound. Yield [from ethanol! ether (l :50)] (0.60g)(38%). T.l.c. (solvent

system 1): R, 0.55 (red) product.

Found: !!ill 108°C.

lH nmr spectrum (CDCh, 200MHz) 3: 1.30-1.55 (20H, m, unresolved, a-tBoc, s-Boc and

y-Cfu); 1.60-1.90 (8H, m, unresolved, Aq-NH-CH2-Cfu-Cfu, (3-Cfu and 3-Cfu); 3.10

(2H, q, E-Cfu); 3.30-3.40 (4H, m, unresolved, Aq-NHCfu-CH2-CH2-Cfu); 4.05 (lH, q,

a-CH); 4.60 (lH, br.s, E-NHBoc); 5.15 (lH, br.s, a-NHBoc); 6.35 (lH, t, spacer-NHCO

lys); 7.05 (lH, dd, N-2); 7.50-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7);

8.20-8.30 (2H, m, H-5 and H-8); 9.70 (lH, t, Aq-NH).

~4H46N407, requires: C 65.58, H 7.45, N 9.00%. Found C 65.07, H 7.67, N 8.89 %.

FABMS(+) m/z: 646 (l%)(M+Na)+, 623 (2%)(MHt, 523 (l%)(M-tBoct, 423

(13%)[R(NH2)NH3t 57 (100%)[(CH3)Ct. M, 622.

9.7.19 1-[4-(L-Lysylamino)butylamino]anthraquinone bis trifluoroacetate (244)

/(NU:UB20)

The N-protected lysine conjugate (243)(0.29g) was deprotected using trifluoroacetic acid

[following method F] to give a purple solid of the title compound (0.09g)(30%). T.l.c.

(solvent system 3): Rf 0.45 (red) product.

Found: !!ill 185°C.
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IH nmr spectrum (d6-DMSO, 400MHz) 8: 1.30 (2H, m, y-Cfu); 1.45-1.95 (8H, m,

unresolved, Aq-NH-CH2-Cfu-Cfu, J3-Cfu and y-Cfu); 2.75 (2H, m, E-Cfu); 3.15 (2H, q,

Cfu-NHCO); 3.40 (2H, Aq-NH-Cfu); 3.75 (lH, t, a-CH); 7.20 (lH, d, H-2); 7.40 (lH, d,

H-4); 7.60 (lH, t, H-3); 7.70-7.80 (2H, m, H-6 and H-7); 7.85-8.35 (8H,unresolved,

2xNlli". H-5 and H-8); 8.55 (lH, t, NHCO); 9.65 (lH, t, Aq-NH).

B C nmr spectrum (d<,-DMSO, 100MHz) 8: 21.80 (-ve, y-CH2); 26.56 (-ve); 27.00 (-ve);

27.04 (-ve); 31.05 (-ve); [38.97 (-ve), 39.39 (-ve), 42.36 (-ve), Aq-NH-CH2-CH2-CH2

CH2 and E-CH2]; 52.64 (+ve, a-CH); 112.41 (ab, aromatic b); 115.57 [+ve, aromatic (Aq)

CH]; 119.12 [+ve, aromatic (Aq) CH]; 126.80 [+ve, aromatic (Aq) CH]; 126.91 [+ve,

aromatic (Aq) CH]; 132.88 (ab, aromatic c); 133.99 [+ve, aromatic (Aq) CH]; [134.44

(ab), 134.86 (ab) aromatic e and f]; 135.03 [+ve, aromatic (Aq) CH]; 135.91 (ab); 136.19

[+ve, aromatic (Aq) CH]; 151.87 lab, aromatic (Aq) C-1]; 168.86 (ab, spacer-NHCO-Iys);

183.38 (ab, C=O); 184.55 (ab, C=O).

ESMS(+)(Cone 20V) m/z: 423 (100%)[R(NH)2NH3t, 161 (30%).

ESMS(-)(Cone 20V) m/z: 113 (100%)(CF3COO)-.

9.7.20 1-[4-(N-a-Fluorenylmethoxycarbonyl-N-8-tertiarybutoxycarbonyl-L-

ornithylamino)butylamino]anthraquinone (245)

N-a-Fmoc-N-8-tBoc-omithine was converted to its O-pentafluorophenolate ester (2.04g,

3.29 mmol), using ethyl acetate/DMF (5:1) as the solvent, and reacted with 1-[(4

aminobutyl)amino]anthraquinone (147)(0.88g, 3.00 mmol) [following methods C and D]

to give the title compound. Yield [from ethanol! ether (l :50)] (0.63g)(29%). T.1.c.(solvent

system 1): R, 0.50 (red) product.

Found: !!ill 168°C.
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FABMS(+) m/z: 754 (1%), 732 (5%)(MHt, 631 (9%) 179 (96%), 70 (100%). M, 731.

9.7.21 1-[4-(L-Ornithylamino)butylamino]anthraquinone bis trifluoroacetate (246)

I(NU:UB99)

The doubly protected compound (245) was dissolved in DMF/ piperidine (4:1) to

selectively remove the N-a-Fmoc group [following method G]. T.l.c. of the crude product

(solvent system 1): Rf 0.25 (red) amine, 0.52 (red), 0.95 (u.v. active). The resultant 1-[4

(N-S-tBoc-ornithyl-amino)butylamino]anthraquinone compound was deprotected using

TFA [following method F] to give purple crystals of the title compound (0.22g)(52%).

Found: mn 196 °C.

ESMS(+) (sample acidified with 0.2% formic acid) m/z: 409 (100%)[R(NH)2NH3t, 129

(65%),97 (87%), 65 (45%).

ESMS(-) m/z: 159, (100%), 113 (28%)(CF3COOr. M, 636.

9.7.22 4,8-Dihydroxy-l-[4-N-a.-tertiarybutoxycarbonyl-N-E-benzyloxycarbonyl-L-

lysylamino)butylamino]anthraquinone (247)

N-a-tBoc-N-E-Z-L-lysine-N-hydroxysuccinimide ester (1.20g, 1.76 mmol) was reacted

with 4,8-dihydroxy-l-[(4-aminobutyl)amino]anthraquinone trifluoroacetate (160) (1.00g,

1.47 mmol) in THF (150 em 3) and triethylamine (1 em 3)[following method C].

Recrystallisation from ethyl acetate/ ethanol afforded the title compound (0.49g)(31%).

T.l.c. [chloroform : methanol (3:1)]: RfO.60 (purple) product.

Found: !!ill 162°C.

FABMS(+) m/z: 711 (15%), 689 (7%)(MHt, 664 (10%), 413 (53%), 391 (37%), 107

(100%). M, 688.
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9.7.23 4,8-Dihydroxy-l-[4-N-E-benzyloxycarbonyl-L-lysylamino)butylamino]

anthraquinone trifluoroacetate (248)

Compound (247)(0.45g) was dissolved in trifluoroacetic acid for exactly 0.25h to

selectively remove only the N-a-tBoc group [following method F]. The crude product was

purified by column chromatography eluting with chloroform methanol

(10:1).Precipitation with ether afforded the title compound (248) (0.34g)(74%). T.1.c.

(solvent system 3): RfO.50 (purple) product.

Found: !'!ill 155°C

ESMS(+)(Cone 50V) m/z: 611 (lO%)(M+Nat, 589 (70%)(RNH3t , 545 (20%), 97

(100%).

ESMS(-)(Cone -50V) m/z: 113 (60%)(CF3COOr, 69 (100%). M, 702.

9.8 OTHER SPACER-LINKED ANTHRAQUINONE AMINO ACID

CONJUGATES

9.8.1 (a) Attempted synthesis of 1-[3-(N-a-tertiarybutoxycarbonyl-L-

asparagylamino)propylamino]anthraquinone

N-a-tBoc-L-asparagine was converted to its pentafluorophenolate ester (l.70g, 4.3 mmol)

and reacted with 1-[(3-aminopropyl)amino]anthraquinone (145)(1.09g, 3.9 mmol)

[following methods C and D]. T.l.c. examination of the crude solution showed a mixture

of products (solvent system 1): Rf 0.05 (red) spacer, 0.25 (red) trace, 0.35 (red) major

product, 0.45 (purple) trace, 0.75 (red) trace, 0.90 (red). The major product was isolated by

column chromatography [chloroform: ethyl acetate (4:1)]. Recrystallisation from ethanol

gave a red solid (0.25g). Structural determination of the solid by nmr and mass

spectroscopy showed that synthesis of the target compound had not been achieved.
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Found:

FABMS(+) rn/z: 477 (lO%)(MHt, 421 (20%),57 (100%). M, 476.

Required for title compound rn/z: 495. M, 494.

(b) 1-[3-(N-a-Fluorenylmethoxycarbonyl-N-(3-trityl-L-asparagylamino)propyl-

amino]anthraquinone (249)

N-a-Fmoc-(3-trityl-L-asparagine pentafluorophenolate ester (2.00g, 2.62 mmol) was

reacted with 1-[(3-aminopropyl)amino]anthraquinone (145)(0.68g, 2.43 mmol) [following

method C]. A red solid of the title compound was obtained from an ethyl acetate/ ether

solution (0.51g)(24%). T.l.c. (solvent system 1): Rr0.25 (red) product.

Found: !!ill 138°C.

IH nmr spectrum (d6-DMSO, 200MHz) 0: 1.80 (2H, qn, Aq-NH-CH2-Cfu); 2.60 (2H, m,

(3-Cfu-asn); 3.20 (2H, q, Cfu-NHCO); 3.30-3.45 (3H, m, unresolved, Aq-NH-Cfu and

H-9-Fmoc); 4.10-4.35 (3H, m, unresolved, a-CH and O-Cfu-Fmoc); 7.05-7.25 (17H, m,

unresolved, H-2-Aq, NHCO-Fmoc and C6HSx3); 7.25-7.45 [3H, m, unresolved, H-3-Aq

(H-1 and H-8)-Fmoc]; 7.50-7.75 [5H, m, unresolved, (H-4)-Aq and (H-2, H-4, H-5 and H

7)-Fmoc]; 7.75-7.95 [4H, m, unresolved, (H-6 and H-7)-Aq, (H-3 and H-6)-Fmoc]; 8.05

8.25 (3H, m, NH-Trt, H-5 and H-8); 8.55 (lH, br. s, spacer-NHCO-asn); 9.70 (lH, t, Aq

NH).

FABMS(+) rn/z: 882 (l%)(M+Nat, 860 (2%)(MHt, 460 (2%), 243 (100%), 89 (40%),

39 (50%). M,859.
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9.8.2 1-[3-(L-Asparagylamino)propylamino]anthraquinone trifluoroacetate (250)

I(NU:UB 49)

The doubly protected compound (249) (0.45g) was dissolved in DMFI piperidine (4:1) to

selectively remove the N-a-Fmoc group [following method G]. The trityl protecting group

was removed by dissolving the partially protected compound, 1-[3-(N-~-Trityl-L

asparagylamino)propylamino]anthraquinone (0.18g) in TFA (5 crrr') for 24h at room

temperature. Addition of water (150 cnr') gave a precipitate of triphenyl carbinol which

was filtered off. The filtrate was evaporated to dryness and re-dissolved in a minimum

volume of ethanol (3 cnr') before addition of ether (150 cnr') to give a precipitate of the

title compound (0.15g)(83%). T.l.c. (solvent system 3): Rf0.40 (red) product.

Found: mn 197°C.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 1.80 (2H, qn, Aq-NH-CH2-Clli); 2.65 (2H, m,

P-Clli); 3.20 (2H, q, Clli-NHCO); 3.45 (2H, m, Aq-NH-Clli); 4.00 (lH, t, a-CH); 7.25

(1H, d, H-2); 7.45 (1H, d, H-4); 7.65 (1H, t, H-3); 7.85-7.95 (2H, m, H-6 and H-7); 7.95

8.10 (3H, br. s, Nl:h1; 8.15-8.25 (2H, m, H-5 and H-8); 8.50 (1H, t, NHCO); 9.70 (1H, t,

Aq-NH).

FABMS(+) m1z: 418 (1%), 395 (25%)(RNH3t ,368 (8%), 137 (100%), 77.1 (57%), 29

(38%). M, 508.

9.8.3 1-[3-(N-Tertiarybutoxycarbonyl-O-benzyl-L-serylamino)propylamino]

anthraquinone (251)

N-tBoc-O-Bzl-serine was converted to its O-pentafluorophenolate ester (3.12g, 6.77

mmol), using ethyl acetatelDMF (5:1) as the solvent, and reacted with 1-[(3-amino

propyl)amino]anthraquinone (145)( 1.72g, 6.14 mmol) [following methods C and D].
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T.l.c. of the crude product (solvent system 1): Rr 0.30 (pink), 0.40 (purple), 0.55 (red)

product, 0.75 (purple). The title compound was obtained as fine red crystals from ethanol

(2.65g)(77%).

Found: !!ill 154°C.

IH nmr spectrum (CDCh, 200MHz) 6: 1.45 (9H, s, tBoc); 2.0 (2H, qn, Aq-NH-CH2-Cfu);

3.35 (2H, q, Cfu-NHCO); 3.50 (2H, q, Aq-NH-Cfu); 3.65 (lH, m, ~-CH-ser); 3.95 (lH,

m, ~-CH'-ser); 4.35 (lH, m, a-CH); 4.55 (2H, m, Cfu-Ph); 5.55 (lH, d, NH-tBoc); 6.70

(lH, t, NHCO-Ser); 7.00 (lH, dd, H-2); 7.25 (5H, br s, C6Hs); 7.50 (lH, dd, H-4); 7.60

(lH, m, H-3); 7.70-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.75 (lH,

t, Aq-NH).

~iliJSl':'b06 requires: C 68.92, H 6.33, N 7.54 %. Found C 68.59, H 6.36, N 7.45 %.

FABMS(+) m1z: 558 (4%)(MHt, 502 (4%), 458 (7%), 91 (100%). M, 557.

9.8.4 1-[3-(O-Benzyl-L-serylamino)propylamino]anthraquinone acetate (252)

/(NU:UB22)

Compound (251) was partially deprotected using TFA to remove the N-tBoc group

[following method F]. The resultant trifluoroacetate salt was dissolved in water, treated

with triethylamine and extracted into chloroform prior to column chromatography eluting

with chloroform : ethyl acetate (4:1). 1-[3-(O-benzylserylamino)propylamino]

anthraquinone was dissolved in glacial acetic acid and evaporated to dryness to give the

title compound (0.28g)(61%). T.l.c. (solvent system 3): RrO.50 (red) product.

Found: !!ill 96°C.

IH nmr spectrum (d6-DMSO, 200MHz) 6: 1.80 (2H, qn, Aq-NH-CH2-Cfu); 1.85 (3H, s,

CfuCOO-); 3.20 (2H, q, Cfu-NHCO); 3.35 (2H, q, Aq-NH-Cfu); 3.45-3.8 (3H, m,
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unresolved, a-CH and f3-Cfu-ser); 4.50 (2H, s, Cfu-Ph); 7.15-7.35 (6H, m, H-2 and

C6Hs); 7.40 (IH, dd, H-4); 7.60 (l H, m, H-3); 7.80-8.00 (2H, m, H-6 and H-7); 7.85-8.35

(3H, m, unresolved, H-5, H-8 and NHCO); 9.65 (lH, t, Aq-NH).

~9.fuI~06 requires: C 67.30, H 6.04, N 8.12 %. Found C 68.20, H 6.10, N 8.47 %

FABMS(+) m/z: 458 (25%)(RNH3t,236 (l4%), 91 (70%),39 (100%). M, 517.

9.8.5 1-[4-(N-Fluorenylmethoxycarbonyl-O-tertiarybutyl-L-serylamin0)butyl-

amino]anthraquinone (253)

N-a-Fmoc-O}Bu-serine-N-hydroxysuccinimide ester (l.OOg, 2.08 mmol) was reacted with

1-[(4-aminobutyl)amino]anthraquinone (147) (0.56g, 1.9 mmol) in THF (100 cnr')

[following method C]. A red solid of the title compound was obtained from an ethyl

acetate/ ether solution. Yield (0.62g)(49%). T.l.c. (solvent system 1): Rf 0.70 (red)

product.

Found: illQ 172°C.

IH nmr spectrum (CDCh, 200MHz) 3: 1.15 (9H, s, tBu); 1.65-1.90 (4H, m, unresolved,

Aq-NH-CH2-Cfu-Cfu); 3.35-3.45 (5H, m, unresolved, Aq-NH-Cfu-CH2-CH2-Cfu and

H-9-Fmoc); 3.85 (IH, q, a-CH); 4.20 (2H, m, f3-Cfu-ser); 4.40 (2H, d, Cfu-Fmoc, JHCCH

6Hz); 5.85 (lH, d, NHCO-Fmoc); 6.65 (lH, br.s, spacer-NHCO-Ser); 7.05 (lH, dd, H-2

Aq); 7.20-7.40 [4H, m, unresolved, (H-3 and H-4)-Aq, (H-l and H-8)-Fmoc]; 7.50-7.65

[4H, m, (H-2, H-4, H-5 and H-7)-Fmoc]; 7.70-7.80 [4H, m, (H-6 and H-7)-Aq, (H-3 and

H-6)-Fmoc]; 8.20-8.30 (2H, m, H-5 and H-8); 9.75 (IH, t, Aq-NH).

FABMS(+) m/z: 683 (l%),661 (8%)(MHt, 605 (6%), 179 (100%). M, 660.

303



9.8.6 1-[4-(L-Serylamino)butylamino]anthraquinone trifluoroacetate (254)

/(NU:UB44)

The doubly protected compound (253) (0.45g) was dissolved in DMF/ piperidine (4:1) to

selectively remove the N-a-Fmoc group [following method G]. 1-[4-(O-tertiarybutyl

serylamino)butylamino]anthraquinone was dissolved in trifluoroacetic acid (5 crrr') at

room temperature. After 24h the solvent was evaporated and the residue dissolved in water

(150 cnr') prior to the addition of triethylamine (0.5 cnr'). The resultant 1-[4

(serylamino)butylamino]-anthraquinone was extracted into chloroform (150 cnr'), dried

(Na2S04), evaporated to a low volume (5 cnr') and purified by column chromatography

[CHCh :Ethyl Acetate: MeOH (16:3:1)]. The appropriate fractions were combined,

evaporated, filtered, dissolved in TFA (5 em") and evaporated. The title compound

(0.22g)(79%) was obtained as a red solid from an ethanol/ether (1:50) solution. T.l.c.

(solvent system 3): Rf 0.35 (red) product.

Found: illQ 162°C.

IH nmr spectrum (d6-DMSO, 200MHz) 3: 1.45-1.80 (4H, m, unresolved, Aq-NH-CH2

Cfu-Cfu); 3.25 (2H, q, Cfu-NHCO); 3.35 (2H, q,Aq-NH-Cfu); 3.70-3.85 (3H, m,

unresolved, Cfu-OH and a-CH); 5.55 (1H, br. s, OH); 7.20 (1H, d, H-2); 7.40 (1H, d, H

4); 7.60 (1H, t, H-3); 7.75-7.85 (2H, m, H-6 and H-7); 7.90-8.30 (5H,unresolved, NHt,

H-5 and H-8); 8.45 (1H, br. s, NHCO); 9.65 (lH, t, Aq-NH).

~3fu4l'i10~f3 requires: C 55.76, H 4.88, N 8.48 %. Found C 55.19, H 4.87, N 8.34 %.

FABMS(+) m/z: 421 (2%)(RNH2+Kt, 382 (60%)(RNH3t , 176 (30%), 136 (32%), 39

(100%). M, 495.
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9.8.7 1-[3-(N-a-Fluorenylmethoxycarbonyl-N-im-trityl-L-histidylamino)propyl-

amino]anthraquinone (255)

N-a-Fmoc-N-im-trityl-L-histidine pentafluorophenolate ester (1.00g, 1.27 mmol) was

reacted with 1-[(3-aminopropyl)amino]anthraquinone (145) (0.32g, 1.14 mmol)[

following method C]. A red solid of the title compound was obtained from ethyl acetate

(0.35g)(35%). T.l.c. (solvent system 1): RrO.55 (red) product.

Found: !!:ill 137°C.

CS7RpNsOs requires: C 77.62, H 5.37, N 7.94 %. Found C 76.91, H 5.20, N 7.84 %.

FABMS(+) m/z: 904 (100%)(M +Nat, 882 (20%)(MHt, 638 (21%), 337 24%). M, 882.

9.8.8 1-[3-(N-im-trityl-L-histidylamino)propylamino]anthraquinone (256)

Compound (255)(0.34g) was partially deprotected [following method G], removing the N-

a-Fmoc protecting group, to give the title compound (0.21g)(84%). T.l.c. of the crude

product [chloroform: methanol (4:1)]: Rr0.20 (red) product, 0.75.

Found: !!:ill 146°C.

IH nmr spectrum (CDCh, 200MHz) s. 1.90 (2H, qn, Aq-NH-CHz-Cfu); 2.10 (2H, br. s,

NHz); 2.80 (lH, m, P-Cfu); 3.05 (lH, m, P-CH'z); 3.35-3.55 (4H, m, unresolved, Aq-NH-

Cfu-CHz-Cfu); 3.70 (lH, q, a-CH); 6.65 (lH, s, NHCO); 7.05 (lH, d, H-2); 7.20-7.45

(16H, m, unresolved, 3XC6HS and N-CR=CH-N); 7.50 (lH, t, H-3); 7.60 (lH, d, H-4);

7.70-7.80 (2H, m, H-6 and H-7); 7.85 [(lH, m, N=CH-N); 8.20-8.30 (2H, m, H-5 and H-

8); 9.80 (lH, t, Aq-NH).

13 IC nmr spectrum (CDC 3, 100MHz) s. 29.31 (-ve, Aq-NH-CHz-CHz); [32.92 (-ve),

36.99 (-ve), 40.68 (-ve), Aq-NH-CHz-CHz-CHz and P-CHz]; 55.56 (+ve, a-CH); 75.32

lab, C(Ph)3]; 113.08 (ab, aromatic b); 115.76 [+ve, aromatic (Aq) CH]; 117.77 [+ve,
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aromatic (Aq) CH]; 119.51 [+ve, aromatic (Aq) CH]; 126.72 [+ve, aromatic (Aq) CH];

[128.07 (+ve, aromatic CH), 129.71 (+ve, aromatic CH) Trt ortho, meta and para];

132.94 (+ve); 133.94 (+ve); 134.69 (ab); 134.98 (ab); 135.37 (+ve) 137.90 (ab); 138.51

(ab); 142.34 [ab, C-l-his]; 151.61 [ab, aromatic (Aq) C-l]; 174.70 (ab, NHCO); 183.80

(ab, C=O); 185.04 (ab, C=O).

FABMS(+) m/z: 660 (1%)(MHt, 243 (100%), 165 (21%). M, 659.

9.8.9 1-[3-(L-Histidylamino)propylamino]anthraquinone trifluoroacetate (257)

/(NU:UB30)

The partially deprotected compound (256)(0.205g) was dissolved in TFA (5 cnr') for lh at

room temperature. Addition of water (150 cnr') gave a precipitate of triphenyl carbinol

which was filtered off. Triethylamine was added to the filtrate (2 cnr') and the resultant 1

[3-(histidylamino)propylamino]anthraquinone was extracted into chloroform (150 cnr'),

dried (Na2S04), evaporated to a low volume (5 cnr') and purified by column

chromatography eluting with CHCb : Ethyl Acetate : MeOH (16:3:1). 1-[3

(histidylamino)propylamino[-anthraquinone was dissolved in TFA and evaporated to

dryness to give the title compound (0.10g)(50%). T.l.c. (solvent system 3): Rf 0.30 (red)

product.

Found: n:m 172 °C.

IH nmr spectrum (d6-DMSO, 200MHz) s. 1.80 (2H, q, Aq-NH-CH2-Cfu); 3.15 (2H, m,

j3-Cfu); 3.30-3.65 (4H, m, unresolved, Aq-NHCfu-CH2-Cfu); 4.05 (IH, t, u-CH); 7.25

(1H, d, H-2); 7.35 (1H, s, N-CR=CH-NH2+); 7.45 (1H, d, H-4); 7.60 (1H, T, H-3); 7.65

8.00 (2H, m, H-6 and H-7); 8.05-8.20 (2H, m, H-5 and H-8); 8.60 (1H, t, NHCO); 8.80

(IH, s, N=CH-NH/); 9.70 (IH, t, Aq-NH).
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ESMS(+)(Cone 50V) m/z: 418 (100%) [R(NH2)NH3t ,263 (5%), 110 (25%).

ESMS(-)(Cone 50V) m/z: 113 (100%). M, 645.

9.8.10 1-[4-(N-Tertiarybutoxycarbonylsarcosyloxy)butylamino]anthraquinone (258)

Compound (258) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (2.00g, 1.78 mmol) with N-1Boc-sarcosine

(1.30g, 1.77 mmol) [following method E]. T.l.c. of the crude product [toluene: ethyl

acetate (l :1)]: R, 0.25 (red) spacer, 0.55 (red) product, 0.90 (yellow) 1

chloroanthraquinone. Yield [from methanol! pentane (1:100)] (0.43g)(l4%).

Found: !!ill 90°C.

IH nrnr spectrum (CDCh, 200MHz) 0: 1.45 (9H, tBoc); 1.80-1.90 (4H, m, Aq-NH-CH2

Cfu-Cfu); 2.90 (3H, N-Cfu); 3.40 (2H, q, Aq-NHCfu); 3.95 (2H, d, Cfu-sar, J 15Hz);

4.25 (2H, t, CH2-OCO); 7.05 (lH, dd, H-2); 7.45-7.65 (2H, m, H-3 and H-4); 7.65-7.80

(2H, m, H-6 and H-7); 8.15-8.25 (2H, m, H-5 and H-8); 9.70 (lH, t, Aq-NH).

FABMS(+) m/z: 489 (30%), 467 (63%)(MHt, 411 (56%),278 (100%). M, 466.

9.8.111-[4-(Sarcosyloxy)butylamino]anthraquinone trifluoroacetate (259)

/(NU:UB 163)

The 'Boc-sarcosine conjugate (258) (0.38g) was deprotected using TFA [following method

F] to give the title compound as a bright red powder (0.36g)(92%). T.l.c. [toluene: ethyl

acetate (l :1)]: Rf 0.45 (red) product.

Found: !!ill 132°C.

IH nrnr spectrum (d6-DMSO, 200MHz) 0: 1.65-1.85 (4H, m, unresolved, Aq-NH-CH2

Cfu-Cfu); 2.55 (3H, s, N-Cfu); 3.45 (2H, q, Aq-NHCfu); 3.95 (2H, s, Cfu-sar); 4.30
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(2H, t, CHz-OCO); 7.25 (1H, dd, H-2); 7.45 (lH, dd, H-4); 7.65 (1H, m, H-3); 7.80-7.95

(2H, m, H-6 and H-7); 8.05-8.20 (2H, m, H-5 and H-8); 9.00 (2H, br.s, Nfut; 9.70 (1H, t,

Aq-NH).

ESMS(+)(Cone 20V) m/z: 367 (100%)(RNH3t, 115 (12%), 60 (4%).

ESMS (-XCone 50V) m/z: 113 (12%)(CF3COOr, 69 (100%). M, 480.

9.8.12 1-[4-(N-a-Tertiarybutoxycarbonyl-a-methyl-L-alanyloxy)butylamino]anthra-

quinone (260)

Compound (260) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (0.50g, 1.78 mmol) with N-a-1Boc-N-methyl-L

alanine (0.34g, 1.77 mmol) [following method E]. Yield [from ethyl acetate! petroleum

ether (1:100)] (0.08g)(1O%). T.l.c. [toluene: ethyl acetate (1:1)]: RrO.50 (red) product.

Found: nm 62°C.

I H nmr spectrum (CDCh, 200MHz) 8: 1.35-1.45 (12H, m, unresolved, lBoc and a-Cfu);

1.80-1.95 (4H, m, Aq-NH-CHz-Cfu-Cfu); 2.85 (3H, N-Cfu); 3.40 (2H, q, Aq-NH-Cfu);

4.20 (2H, t, CHz-OCO); 4.45 (0.5H, q, a-H rotamer); 4.80 (0.5H, q, a-H rotamer); 7.05

(1H, dd, H-2); 7.50-7.65 (2H, m, H-3 and H-4); 7.65-7.85 (2H, m, H-6 and H-7); 8.15

8.25 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq-NH).

FABMS(+) m/z: 503 (26%)(M+Nat, 481 (98%)(MHt, 425 (45%),278 (100%). M, 480.
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9.8.13 1-[4-(Methyl-L-alanyloxy)butylamino]anthraquinone trifluoroacetate

(261) (NU:UB 166)

The N-tBoc-protected methyl-L-alanine conjugate (260)(0.06g) was deprotected using

TFA [following method F] to give the title compound (0.045g)(73%). T.l.c. (solvent

system 3): Rf 0.50 (red) product.

Found: !!ill 84 °C.

IH nmr spectrum (46-DMSO, 200MHz) 8: 1.45 (3H, d, a-Cfu); 1.70-1.90 (4H, m,

unresolved, Ag-NH-CH2-Cfu-Cfu); 2.60 (3H, s, N-Cfu); 3.45 (2H, g, Ag-NHCfu); 4.10

(lH, g, a-CH); 4.70 (2H, t, Cfu-OCO); 7.30 (lH, d, H-2); 7.45 (lH, d, H-4); 7.70 (lH, t,

H-3); 7.80-7.95 (2H, m, H-6 and H-7); 8.10-8.25 (2H, m, H-5 and H-8); 9.05 (2H, br.s,

Nfu+); 9.70 (lH, t, Ag-NH).

ESMS(+)(Cone 8V) m/z: 381 (100%)(RNH3t

ESMS(-)(Cone 50V) m/z: 113 (100%)(CF3COOf. M, 494.

9.8.14 (S)-I-{4-[2-(N-Tertiarybutoxycarbonylamino)butanoyloxy]butylamino}-

anthraquinone (262)

Compound (262) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (0.50g, 1.78 mmol) with tBoc-L-2

aminobutanoic acid (0.34g, 1.77 mmol) [following method E]. Yield [from ethyl acetate/

petroleum ether (l:100)] (0.09g)(11%). T.l.c. (solvent system 1): Rf 0.65 (red) product.

Found: !!ill 58 -c.

IH nmr spectrum (CDCh, 200MHz) 8: 0.95 (3H, t, Cfu-abu); 1.45 (9H, s, tBoc); 1.60

1.95 (6H, m, unresolved, NH-CH2-Cfu-Cfu and Cfu-abu); 3.40 (2H, g, Ag-NH-Cfu);

4.15-4.35 (3H, m, unresolved, Cfu-OCO and a-H); 5.05 (lH, d, NH-Boc); 7.05 (lH, dd,
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H-2); 7.55-7.65 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m,

H-5 and H-8); 9.75 (tH, t, Aq-NH).

FABMS(+) m/z: 503 (17%),481 (66%)(MHt, 425 (78%),278 (100%). M, 480.

9.8.15 (S)-I-[4-(2-Aminobutanoyloxy)butylamino]anthraquinone trifluoroacetate

(263) (NU:UB 167)

The 'Boc-protected compound (262)(0.08g) was deprotected usmg TFA [following

method F] to give the title compound (0.035g)(43%). T.l.c. (solvent system 3): Rf 0.55

(red) product.

Found: mn l 18 DC.

ESMS(+)(Cone 8V) m/z: 381 (100%)(RNH3t, 179 (40%).

ESMS(-)(Cone 50V) m/z: 113 (100%)(CF3COOf. M, 494.

9.8.16 1-{4-[4-(N-Tertiarybutoxycarbonyl)butanoyloxy]butylamino}anthraquinone

/(264)

Compound (264) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (0.50g, 1.78 mmol) with 'Boc-q-aminobutanoic

acid (0.34g, 1.77 mmol) [following method E]. Yield [from ethyl acetate/ petroleum ether

(1:100)] (0.15g)(19%). T.l.c. [chloroform: ethyl acetate (4:1)]: RfO.55 (red) product.

Found: mn l OODC.

IH nmr spectrum (CDC!), 200MHz) 8: 1.45 (9H, s, tBoc); 1.75-1.95 (6H, m, unresolved,

NH-CH2-Cfu-Cfu-CH2-0CO-CH2-Cfu); 2.40 (2H, t, OCO-Cfu); 3.18 (2H, q, Cfu-NH

tBoc); 3.40 (2H, q, Aq-NHCfu); 4.20 (2H, t, Cfu-OCO); 4.65 (tH, br. s, NH-Boc); 7.05
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(lH, dd, H-2); 7.50-7.65 (2H, m, H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20

8.30 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq-NH).

FABMS(+) m/z: 503 (38%),481 (100%)(MHt, 425 (25%),278 (40%). M, 480.

9.8.17 1-[4-(Butanoyloxy)butylamino]anthraquinone trifluoroacetate (265)

I(NU:UB 168)

Treatment of the N-tBoc protected compound (264)(0.12g) with TFA [following method

F] gave the title compound (0.06g)(50%). T.1.c. (solvent system 3): RfO.50 (red) product.

Found: !!ill 111°C.

IH nmr spectrum (dti-DMSO, 200MHz) 8: 1.65-1.90 (6H, m, unresolved, NH-CH2-CHz

CHz-CH2-OCO-CH2-CHz); 2.40 (2H, t, OCO-CHz); 2.80 (2H, q, CHz-NH3+); 3.45 (2H, q,

Aq-NH-CHz); 4.10 (2H, t, CHz-OCO); 7.30 (lH, dd, H-2); 7.45 (lH, dd, H-4); 7.55-7.80

(4H, m, unresolved, H-3 and Nfu+); 7.80-8.00 (2H, m, H-6 and H-7); 8.10-8.25 (2H, m,

H-5 and H-8); 9.70 (lH, t, Aq-NH).

9.8.18 1-[4-(N-Tertiarybutoxycarbonylmethylalanyloxy)butylamino]anthraquinone

1(266)

Compound (266) was prepared from the reaction of 1-[(4

hydroxybutyl)amino]anthraquinone (150) (0.50g, 1.78 mmol) with N-a-tBoc-a

methylalanine (0.34g, 1.77 mmol) [following method E]. Yield [from ethyl acetate/

petroleum ether (1:100)] (0.11g)(l4%). T.l.c. [chloroform: ethyl acetate (4:1)]: Rf 0.70

(red) product.

Found: !!ill 112 °C.
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IH nmr spectrum (CDCh, 200MHz) 8: 1.40 (9H, s, 'Boc); 1.50 [6H, s, (Cfu)2-aib]; 1.80

1.90 (4H, m, unresolved, Aq-NH-CH2-Cfu-Cfu-CH2); 3.40 (2H, q, Aq-NH-Cfu); 4.20

(2H, t, Cfu-OCO); 5.05 (tH, br. s, NHCO-tBoc); 7.05 (tH, dd, H-2); 7.50-7.60 (2H, m,

H-3 and H-4); 7.65-7.80 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.75

(tH, t, Aq-NH).

FABMS(+) m/z: 503 (30%),481 (95%)(MHt, 425 (60%), 278 (100%). M, 480.

9.8.19 1-[4-(Methylalanyloxy)butylamino]anthraquinone trifluoroacetate (267)

I(NU:UB 169)

Treatment of the N-tBoc-protected conjugate (266)(0.095g) with TFA [following method

F] gave the title compound (0.085g)(87%). T.1.c. (solvent system 3): Rf 0.60 (red) product.

Found: mn 112°C.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 1.40 [6H, s, (Cfu)2-aib]; 1.75-1.85 (4H, m,

unresolved, Aq-NH-CH2-Cfu-Cfu-CH2); 3.40 (2H, q, Aq-NH-Cfu); 4.25 (2H, t, Cfu

OCO); 7.30 (tH, dd, H-2); 7.45 (tH, dd, H-4); 7.65 (tH, m, H-3); 7.80-7.95 (2H, m, H-6

and H-7); 8.10-8.25 (2H, m, H-5 and H-8); 8.50 (3H, br. s, Nfu1;9.70 (tH, t, ArNH).

ESMS(+)(Cone 8V) m/z: 783 (t%), 761 (2%), 413 (t%), 381 (100%)(RNH3t, 119

(20%).

ESMS(-)(Cone 8V) m/z: 113 (t00%)(CF3COOr. M, 494.
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9.9 CHIRAL SPACER-LINKED ANTHRAQUINONE AMINO ACID

CONJUGATES

9.9.1 (2S)-2-[(9,10-Dioxoanthryl)amino]propyl (2S)-2-[(tertiarybutoxy)carbonyl-

amino]propanoate (268)

Compound (268) was prepared from the reaction of 1-[«S)-2-hydroxy

isopropyl)amino]anthraquinone (154) (0.20g, 0.71 mmol) with N-IBoc-L-alanine (0.14g,

0.74 mmol) [following method E]. Yield [from ethyl acetate/ pentane

(I:20)](0.24g)(75%). T.l.c. (solvent system 1): RrO.75 (red) product.

Found: nm 127°C.

IH nmr spectrum (CDCh, 200MHz) 8: 1.30-1.45 (I5H, m, unresolved, Cfu-ala, en
spacer and IBoc); 4.00-4.15 (2H, m, unresolved, Aq-NH-CH and a-CH-ala); 4.40 (2H, m,

Cfu-OCO); 5.05 (IH, d, NHCO-IBoc); 7.20 (1H, dd, H-2); 7.55-7.65 (2H, m, H-3 and H

4); 7.65-7.85 (2H, m, H-6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.85 (IH, d, Aq

NH).

~5fu8N206 requires: C 66.35, H 6.24, N 6.19 %. Found; C 66.29, H 5.86, N 6.14 %.

FABMS(+) m/z: 475 (35%), 453 (66%)(MHt, 397 (70%), 251 (100%). M, 452.

9.9.2 (2S)-2-[(9,10-Dioxoanthryl)amino]propyl (2S)-2-propanoate trifluoroacetate

(269) (ND:DB 170)

Treatment of the N-IBoc protected alanine conjugate (268) (0.199) with trifluoroacetic acid

[following method F] gave a red solid of the title compound (0.09g)(47%). T.l.c. (solvent

system 1): Rr 0040 (red) product.

Found: nm 122°C.
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IH nmr spectrum (4;-DMSO, 200MHz) 3: 1.30-1.45 (6H, m, unresolved, Cfu-ala, en

spacer); 4.05-4.30 (3H, unresolved, Aq-NH-CH and CfuOCO); 4.40 (1H, q, a-CH-ala);

7.40-7.50 (2H, unresolved, H-2 and H-4); 7.70 (lH, t, H-3); 7.75-7.95 (2H, m, H-6 and H

7); 8.05-8.20 (2H, m, H-5 and H-8); 8.45 (3H, br.s, Nfu+); 9.00 (lH, d, Aq-NH).

ESMS(+)(Cone 20V) m/z: 375 (2%), 353 (100%)(RNH3t , 264 (60%), 149 (2%), 65

(2%).

ESMS(-)(Cone -20V) m/z: 113 (62%)(CF3COOr, 69 (100%). M, 466.

9.9.3 (2S)-2-[(9,10-Dioxoanthryl)pyrrolidin-2-yl]methyl (2S)-2-[(tertiarybutoxy)-

carbonylamino]propanoate (270)

Compound (270) was prepared from the reaction of 1-[(2S)-2

(hydroxymethyl)pyrrolidinyl]anthraquinone (155) (0.50g, 1.63 mmol) with N-tBoe-L

alanine (0.31g, 1.64 mmol) [following method E]. Yield [from ethyl acetate/ pentane

(1:100)](0.40g)(51 %). T.l.e. [chloroform: ethyl acetate (4:1)]: RfO.75 (red) product.

Found: rrm 110 °C.

IH nmr spectrum (CDCh, 200MHz) 3: 1.25 (3H, d, Cfu-ala); 1.45 (9H, s, tBoe); 1.75 (1H,

m, ~-CH); 2.00 (2H, m, y-Cfu); 2.35 (1H, m, ~-CH'); 2.55 (lH, dd, 3-CH); 3.80 (1H, m,

3-CH'); 4.20-4.45 (4H, m, unresolved, a-CH-pro, a-CH-ala and Cfu-OCO); 5.40 (1H, d,

NHCO-tBoe); 7.45-7.60 (2H, m, H-3 and H-4); 7.65-7.80 (3H, m, H-2, H-6 and H-7);

8.15-8.25 (2H, m, H-5 and H-8).

~7fuolli06 requires: C 67.77, H 6.32, N 5.85 %. Found; C 68.27, H 6.00, N 5.78 %.

FABMS(+) m/z: 501 (15%),479 (100%)(MHt, 423 (62%),276 (96%). M, 478.
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9.9.4 (2S)-2-[(9,10-Dioxoanthryl)pyrrolidin-2-yl]methyl (2S)-2-aminopropanoate

trifluoroacetate salt (271) (NU:UB 171)

Deprotection of the Boc-L-alanine conjugate (270) (0.34g) using trifluoroacetic acid

[following method F] afforded a red solid of the title compound (0.24g)(69%). T.l.c.

(solvent system 3): RfO.65 (red) product.

Found: !!ill 130 -c.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 1.35 (3H, d, Cfu-ala); 1.60 (lH, m, ~-CH);

1.95 (2H, m, y-Clli); 2.25 (lH, m, ~-CH'); 2.40 (lH, m, 8-CH); 3.60 (lH, m, 8-CH'); 4.10

(lH, q, a-CH-ala); 4.30 (2H, m, Clli-OCO); 4.45 (lH, m, a-CH-pro); 7.65 (3H, s, H-2,

H-3 and H-4); 7.80-7.95 (3H, m, H-6 and H-7); 8.05-8.20 (2H, m, H-5 and H-8); 8.40

(3H, br.s, Nfu+).

~4lli3~OQE3 requires: C 58.54, H 64.71, N 5.69 %. Found; C 58.39, H 4.41, N 5.63 %.

ESMS(+)(Cone 50V) m/z: 401 (1%),379 (38%)(RNH3), 308 (100%) 104 (70%).

ESMS(-)(Cone 20V) m/z: 113 (100%)(CF3COOr. M, 492.

9.9.5 (2S)-2-[(4,8-Dihydroxy-9,10-dioxoanthryl)amino]-3-phenylpropyl (2S)-1-{2-

[(tertiarybutoxy)carbonylamino]acetyl}pyrrolidine-2-carboxylate (272)

Compound (272) was prepared from the reaction of 4,8-dihydroxy-1-{[(S)-2-hydroxy-1

benzylethyl]amino}anthraquinone (162) (0.35g, 0.90 mmol) with N-tBoc-glycyl-L-proline

(0.46g, 0.92 mmol) [following method E]. Yield [from ethyl acetate/ hexane

(1:50)](0.46g)(79%). T.l.c. (solvent system 2): Rf 0.20 (purple) product.

Found: !!ill 100°C.

IH nmr spectrum (CDCI}, 200MHz) 8: 1.40 (9H, s, tBoc); 1.90-2.25 (4H, m, unresolved,

~-Clli and y-Clli); 3.00 (2H, m, Clli-phe); 3.60 (2H, m, 8-Clli-pro); 3.95 (2H, d, Clli-
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gly); 4.05-4.35 (3H, unresolved, Aq-NH-CH and Cfu-OCO); 4.55 (1H, m, a-CH-pro);

5.45 (lH, d, NHCO-tBoc); 7.15-7.35 (8H, unresolved, H-2, H-3, H-7 and C6HS); 7.60 (1H,

m, H-6); 7.85 (1H, dd, H-5, JS,6 8Hz, JS,7 1Hz); 10.15 (1H, d, Aq-NH, JHNCH 8Hz); 13.20

(1H, s, 4-0H); 13.85 (1H, s, 8-0H).

~S.fu7~Qgrequires: C 65.31, H 5.79, N 6.53 %. Found; C 65.10, H 5.60, N 6.25 %.

FABMS(+) m/z: 666 (17%), 644 (54%)(MHt, 413 (26%),391 (85%), 149 (100%). M,

643.

9.9.6 (28)-2-[(4,8-Dihydroxy-9,1O-dioxoanthryl)amino]-3-phenylpropyl (28)-1-(2-

aminoacetyl)pyrrolidine-2-carboxylate trifluoroacetate (273) (NU:UB 159)

The N-tBoc compound (272)(0.30g) was deprotected using trifluoroacetic acid [following

method F] to give a purple solid of the title compound (0.25g)(81%). T.l.c. (solvent system

1): Rf 0.15 (red) product. T.l.c. (solvent system 3): R, 0.60 (red) product.

Found: illQ 135°C.

lH nmr spectrum (d6-DMSO, 200MHz) 8: 1.75-2.00 (3H, m, unresolved, P-CH-pro and

y-Clli-pro); 2.15 (1H, m, P-CH'-pro); 3.00 (2H, m, Clli-phe); 3.50 (2H, m, 8-Clli-pro);

3.85 (2H, s, Clli-gly); 4.25 (2H, d, Cfu-OCO); 4.35-4.60 (2H, m, unresolved, Aq-NH-CH

and a-CH-pro); 7.15-7.40 (7H, unresolved, H-2 and H-3 and C6HS); 7.60 (lH, d, H-7);

7.75 (2H, m, H-5 and H-6); 10.15 (lH, d, Aq-NH).

ESMS(+)(Cone 50V) m/z: 566 (5%),544 (60%)(RNH3t ,87 (100%), 119 (95%).

ESMS(-)(Cone 20V) m/z: 113 (100%)(CF3COOf. M, 657.
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9.10 SPACER-LINKED-ANTHRAQUINONE DIPEPTIDES

9.10.1 1-[3-(N-a-tBoc-N-E-Z-lysyl-N-E-Z-L-lysylamino)propylamino]anthraquinone

/(274)

N-a-tBoc-N-E-Z-L-Lysine-N-Hydroxysuccinimide ester (0.35g, 0.70 mmol) in THF

(l Scrrr') was added drop-wise to a cooled (0_5°C), stirred solution of 1-[3-(N-E-Z

lysylamino)propylamino]anthraquinone trifluoroacetate (227) (0.38g, 0.60 mmol) and

triethylamine (0.2cm3
) [following method C]. The title compound was obtained as a bright

red solid from ethanol/ ether (l :100). Yield (0.15g)(30%). T.l.c. (solvent system 1): Rf

0.40 (red) product.

Found: illQ 188°C.

CSOH60N6010 requires: C 66.34, H 6.70, N 9.29%. Found C 65.97 H 6.53, N 9.91%.

FABMS(+) m/z: 928 (35%)(M+Nat, 906 (60%)(MHt, 806 (25%), 263 (100%). M, 905.

9.10.2 1-[3-{N-(a,E)-Di-tertiarybutoxycarbonyl-L-lysyl-glycylamino}propylamino]-

anthraquinone (275)

N-a,E-di-tBoc-L-lysine-N-hydroxysuccinimide ester (2.16g, 4.88 mmol) was reacted with

1-[3-(glycylamino)propylamino]anthraquinone trifluoroacetate (164)(2.00g, 4.43 mmol) in

THF (150 crrr') and triethylamine (2 crrr') [following method C]. T.l.e. of the erude

product (solvent system 1): Rf 0.05 (red) AT7, 0.60 (red) product. A red solid of the title

compound was obtained from an ethanol/ether solution. Yield (1.1Og)(49%).

Found: illQ 160°C.

IH nmr spectrum (CDC!), 200MHz) 0: 1.30-1.45 (20H, m, unresolved, a-tBoc, s-Boc and

y-Cfu); 1.65-1.90 (4H, m, unresolved, /3-Cfu and o-Cfu); 2.05 (2H, qn, Aq-NH-CH2

Cfu); 3.10 (2H, q, E-Cfu); 3.20-3.70 (4H, m, unresolved, Aq-NH-Cfu-CH2-Cfu); 3.90-
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4.05 (3H, m, unresolved, Cfu-gly and a-CH-Iys); 4.65 (1H, t, NHCO-~)Boc); 5.55 (1H, t,

NHCO-a}Boc); 7.05 (lH, dd, H-2); 7.20 (lH, t, spacer-NHCO-gly); 7.30 (lH, br.s, gly

NHCO-Iys); 7.50-7.60 (2H, m, H-3 and H-4); 7.70-7.85 (2H, m, H-6 and H-7); 8.20-8.30

(2H, m, H-5 and H-8); 9.80 (lH, t, Aq-NH, exchangeable).

~sRnNs08 requires: C 63.14, H 7.12, N 10.52 %. Found; C 63.01, H 7.46, N 10.42 %.

FABMS(+) m/z: 666 (3%)(MHt, 566 (3%), 466 (10%), 263 (20%), 84 (45%), 57 (100%).

M,665.

9.10.3 1-[3-(L-Lysylglycylamino)propylamino]anthraquinone bis trifluoroacetate

(276) (NU:UB 23)

Treatment of the N-tBoc protected dipeptide (275)(1.00g) with trifluoroacetic acid

[following method F] gave a purple solid of the title compound (0.60g)(58%). T.l.c.

(solvent system 3): Rf0.20 (red) product.

Found: mp 147°C.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 1.25-1.95 8H, m, unresolved Aq-NH-CH2

Cfu, 13-Cfu, y-Cfu, 8-Cfu); 2.75 (2H, t, E-Cfu); 3.25 (2H, q, CH2-Cfu-NHCO); 3.40

(2H, q, Aq-NH-Cfu); 3.70-3.90 (3H, m, unresolved, Cfu-gly and a-CH-Iys); 7.25 (1H, d,

H-2); 7.45 (1H, m, H-4); 7.60 (1H, m, H-3); 7.75-8.35 (11H, m, unresolved H-5, H-6, H

7, H-8, NHCO and 2xRNH3+); 8.80 (lH, t, NHCO); 9.75 (lH, t, Aq-NH).

FABMS(+) m/z: 488 (l%)[R(NH2)2+Nat, 466 (65%)[R(NH2)NH3t, 263 (20%), 84

(100%). M, 693.

318



9.10.4 1-[3-(N-Tertiarybutoxycarbonyl-O-benzyl-L-seryl-L-prolylamino)propyl-

amino]anthraquinone (277)

N-tBoc-O-benzyl-L-serine was converted to its O-pentafluorophenolate ester (t.03g, 2.23

mmol) and added to a cooled, stirred solution of 1-[3-(prolylamino)propylamino]

anthraquinone trifluoroacetate (208)(1.00g, 2.04 mmol) and triethylamine (I crrr')

[following method C] in DMF. A red solid of the title compound was obtained from an

ethanol/ether solution (1.02g)(77%). T.l.c. (solvent system 1): Rr0.35 (red) product.

Found: W 128 "C.

'H nmr spectrum (CDCh, 400MHz) 0: lAO (9H, tBoc); 1.65 (tH, m, ~-CH-pro); 1.80

(2H, m, y-Cfu-pro); 1.85-2.10 (3H, m, unresolved, ~-CH'-pro and Aq-NH-CH2-Cfu);

2.25 (tH, m, o-CH-pro); 2.90 (tH, m, o-CH'-pro); 3.25 (2H, m, Cfu-NHCO); 3.60 (2H,

m, Aq-NH-Cfu); 3.80 (2H, m, ~-Clli-ser); 4.50 (2H, m, Clli-Ph); 4.65 (IH, t, a-CH-pro);

4.75 (tH, q, a-CH-ser); 5045 (IH, d, NH-Boc); 6.80 (IH, t, spacer-NHCO-pro); 7.05 (tH,

dd, H-2); 7.15-7.35 (5H, m, C6HS); 7.50-7.60 (2H, m, H-3 and H-4); 7.70-7.80 (2H, m, H

6 and H-7); 8.20-8.30 (2H, m, H-5 and H-8); 9.70 (tH, t, Aq-NH).

BC nmr spectrum (CDCh, 100MHz) 0: 24.62 (-ve, y-CH2); 28.35 [+ve, C(CH3)3]; 28046

(-ve); 29.17 (-ve); [36.83 (-ve), 39.98 (-ve), 47.69 (-ve), (Aq-NH-CH2-CH2-CH2-CH2

and o-CH2) ] ; [51.31 (+ve), 60.54 (+ve), (a-CH-pro and a-CH-ser)]; [71.36 (-ve), 73.82

(-ve), CHrO-CH2-Ph); 80.18 lab, C(CH3)3] 112.98 (ab, aromatic b); 115.69 [+ve,

aromatic (Aq) CH]; 117.96 [+ve, aromatic (Aq) CH]; 126.70 [+ve, aromatic (Aq) CH);

127.34 [+ve, aromatic (Aq) CH]; 128.21 [+ve, aromatic (Bz) CH); 128.65 [+ve, aromatic

(Bz) CH]; 132.90 [+ve, aromatic (Aq) CH]; 133.02 (ab, aromatic c); 133.91 [+ve,

aromatic (Aq) CH]; [134.66 (ab), 134.99 (ab) aromatic e and f]; 135.32 [+ve, aromatic

(Aq) CH]; 136.91 lab, aromatic (Hz) C-1]; 151.65 lab, aromatic (Aq) C-1]; 155.15 (ab,
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NHCOO); [170.44 (ab), 171.04 (ab), NHCO and NCO]; 183.79 (ab, C=O); 184.91 (ab,

C=O).

!:37HnN407 requires: C 67.87, H 6.47, N 8.56 %. Found; C 68.18, H 6.71, N 8.60 %.

FABMS(+) m/z: 677 (3%)(M+Nat, 655 (4%)(MHt, 577 (1%), 555 (5%), 378 (5%), 263

(20%), 70 (100%). M, 654.

9.10.5 1-[3-(O-Benzyl-L-seryl-L-prolylamino)propylamino]anthraquinone trifluoro-

acetate (278) (NU:UB 41)

The above compound (277)(0.50g) was partially deprotected using trifluoroacetic acid,

removing the tBoc group, [method F] to give a red solid of the title compound

(0.23g)(45%). T.l.c. (solvent system 3): Rr0.45 (red) product.

Found: illQ 118°C.

IH nmr spectrum (d<;-DMSO)(200MHz) 8: 1.65-2.25 (6H, m, unresolved, P-CH-pro, y

en- and Aq-NH-CH2-Clli); 3.15 (2H, q, 8-CH-pro); 3.50 (2H, m, Clli-spacer); 3.60

3.90 (4H, m, unresolved, Clli-spacer and p-Clli-ser); 4.30 (IH, m, a-CH); 4.45 (1H, m,

a-CH); 4.55 (2H, m, Clli-Ph); 7.20-7.45 (7H, m, unresolved, H-2, H-4 and C6Hs); 7.65

(IH, m, H-3); 7.80-7.95 (2H, m, H-6 and H-7); 8.00 (1H, t, NHCO); 8.05-8.25 (2H, m, H

5 and H-8); 9.70 (1H, t, Aq-NH).

FABMS(+) m/z: 578 (2%), 556 (22%)(RNH3t ,236 (25%), 91 (100%). M, 669.

9.10.6 1-[3-(N-a-tertiarybutoxycarbonyl-E-benzyloxycarbonyl-L-lysyl-L-alanyl

amino)propylamino]anthraquinone (279)

N-a-tBoc-N-E-Z-L-lysine-N-hydroxysuccinimide ester (0.65g, 1.25 mmol) was added to a

cooled, stirred solution of 1-[3-(L-alanylamino)propylamino]anthraquinone
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trifluoroacetate (182) (0.50g, 1.08 mmol) and triethylamine (1 crrr'j] following method C]

in THF. A red solid of the title compound was obtained from an ethanol/ether solution

(0.25g)(35%). T.l.c. (solvent system 1): Rf0.35 (red) product.

Found: !!!l2 158°C.

~9Rd~508requires: C 65.62, H 6.64, N 9.81 %. Found; C 65.26, H 6.73, N 9.62 %.

FABMS(+) m/z: 736 (12%), 714 (5%)(MHt, 636 (5%), 109 (100%). M, 713.

9.10.7 1-[3-(N-E-Benzyloxycarbonyl-L-lysyl-L-alanylamino)propylamino]-

anthraquinone trifluoroacetate (280)

Compound (279)(0.15g) was dissolved in trifluoroacetic acid for exactly 0.5h to

selectively remove only the N-a-tBoc group [following method F]. Precipitation with ether

afforded the title compound (280) (0.065g)(43%). T.l.c. (solvent system 3): Rf 0.65 (red)

product.

Poundimp 150°C.

ESMS(+)(Cone 50V) m/z: 636 (30%), 614 (l00%)(RNH3t, 570 (10%), 119 (70%).

ESMS(-)(Cone 50V) m/z: 113 (50%)(CF3COOr, 69 (100%). M, 727.

9.10.8 1-[3-(Glycyl-L-prolyloxy)propylamino]anthraquinone trifluoroacetate (281)

/(NU:UB 116)

l-[3-(N-a-Tertiarybutoxycarbonylglycyl-L-prolyloxy)propylamino]anthraquinone was

prepared from the reaction of 1-[(3-hydroxypropyl)amino]anthraquinone (149) (0.52g,

1.78 mmol) with N-tBoc-glycyl-L-proline (0.50g, 1.77 mmol) [Method E] and was

deprotected in full [T.l.c. (solvent system 1): R, 0.40 (red) product] using trifluoroacetic
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acid [following method F] gave a red solid of the title compound (0.21g)(37%). T.l.c.

(solvent system 3): Rf 0.65 (red) product.

Found: IDQ 146°C.

IH nmr spectrum (d6-DMSO, 200MHz) 0: 1.60-2.00 (5H, m, unresolved, ~-CH, y-Clli

and -CH2-Clli-CH2-); 2.15 (lH, m, ~-CH'); 3.25-3.45 (4H, m, unresolved, Aq-NH-Clli

and o-Clli); 3.80 (2H, s, Clli-gly); 4.25 (2H, t, ClliOCO); 4.45 (lH, m, a-CH-pro); 7.25

(lH, dd, H-2); 7.40 (lH, dd, H-4); 7.60 (lH, m, H-3); 7.80-8.00 (2H, m, H-6 and H-7);

8.05-8.25 (2H, m, H-5 and H-8); 9.75 (lH, t, Aq-NH).

~6lli~07E3 requires: C 56.83, H 4.78, N 7.67 %. Found; C 65.16, H 4.60, N 7.54 %.
- - - -

ESMS(+)(Cone 50V) m1z: 871 (1%),458 (2%), 436 (100%)(RNH3t ,97 (45%).

ESMS(-)(Cone 20V) m1z: 113 (l00%)(CF3COOr. M, 549.

9.10.9 1-[3-(N-Tertiarybutoxycarbonyl-L-leucylglycyloxy)propylamino]-

anthraquinone (282)

Compound (282) was prepared from the reaction of 1-[(3-

hydroxypropyl)amino]anthraquinone (149) (0.49g, 1.74 mmol) with N-tBoc-L-

lycylglycine (0.50g, 1.74 mmol) [following method E]. Yield [from methanol! ether

(l:100)](0.29g)(30%). T.l.c. (solvent system 1): RfO.65 (red) product.

Found: IDQ86°C.

I H nmr spectrum (CDCh, 200MHz) 0: 0.85 [6H, m, (Cfu)2-leu]; 1.35 (9H, s, tBoc); 1.50-

1.70 (3H, m, unresolved, ~-Clli and y-CH); 2.05 (2H, qn, Aq-NH-CH2-Clli-CHr ); 3.40

(2H, q, Aq-NH-CH2); 4.10 (2H, d, Clli-gly); 4.15 (lH, m, a-CH-val); 4.40 (2H, t, Clli

OCO); 4.80 (lH, d, NHCO-tBoc); 6.80 (IH, t, gly-NHCO-Ieu); 7.00 (IH, dd, H-2); 7.45-
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7.60 (2H, m, H-3 and H-4); 7.60-7.80 (2H, m, H-6 and H-7); 8.15-8.25 (2H, m, H-5 and

H-8); 9.70 (1H, t, Aq-NH).

~Ofu7N307 requires: C 65.32, H 6.76, N 7.62 %. Found; C 65.35, H 6.89, N 7.71 %.

FABMS(+) m/z: 575 (65%), 553 (45%)(MHt, 497 (8%), 475 (17%), 453 (25%),236

(100%). M, 552.

9.10.10 1-[3-(L-Leucylglycyloxy)propylamino]anthraquinone trifluoroacetate (283)

I(NU:VB 127)

The N-tBoc-lysyl glycine conjugate (282)(0.25g) was deprotected using trifluoroacetic

acid [following method F] to give a red solid of the title compound (0.19g)(73%). T.l.c.

(solvent system 1): R, 0.35 (red) product.

Found: !!ill 100°C.

IH nmr spectrum (d6-DMSO, 200MHz) 8: 0.90 [6H, m, (Cfu)2-leu]; 1.45-1.85 (3H, m,

unresolved, f3-Cfu, y-CH); 2.00 (2H, qn, Aq-CH2-Cfu-CH2-); 3.45 (2H, q, Aq-NH-CH2);

3.80 (1H, t, a-CH-Ieu); 4.00 (2H, m, Cfu-gly); 4.25 (2H, t, CfuOCO); 7.30 (1H, dd, H-2);

7.45 (1H, dd, H-4); 7.65 (lH, m, H-3); 7.75-7.95 (2H, m, H-6 and H-7); 8.00-8.30 (5H,

unresolved, Nfu+, H-5 and H-8); 8.95 (1H, t, NHCO); 9.70 (1H, t, Aq-NH).

~7fuoN307b requires: C 67.34, H 5.35, N 7.43 %. Found; C 56.85, H 5.24, N 7.26 %.
- - - -

ESMS(+)(Cone 20V) m/z: 474 (4%), 452 (100%)(RNH3t ,119 (2%).

ESMS(-)(Cone 20V) m/z: 113 (100%)(CF3COOf. M, 565.
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PARTB

9.11 SPACER-LINKED-ANTHRAQUINONE OLIGOPEPTIDES

9.11.1 1-[3-(N-Tertiarybutoxycarbonyl-L-leucyl-L-prolylamino)propylamino)

anthraquinone (284)

N-tBoc-L-leucine-N-hydroxysuccinimide ester (1.60g, 4.88 mmol) was added to a cooled,

stirred, solution of 1-[3-(L-prolylamino)propylamino]anthraquinone trifluoroacetate (208)

(2.00g, 4.07 mmol) and triethylamine (2 cnr') in THF (150 cnr'j] following method C].

T.l.c. of the crude product (solvent system 1): Rf 0.25 (red) (NU:UB 31), 0.35 (red) free

NU:UB31, 0.75 (red) product. A red solid of the title compound was precipitated from a

chloroform! hexane solution (1:100). Yield (1.79g)(75%).

Found: !!!,Q78 DC.

FABMS(+) m/z: 613 (70%)(M+Nat, 591 (100%)(MHt, 513 (10%),491 (17%), 378

(35%),263 (75%). M, 590.

9.11.2 1-[3-(L-Leucyl-L-prolylamino)propylamino]anthraquinone trifluoroacetate

(285) (NU:UB 184)

The N-tBoc derivative (284)(1.66g) was deprotected using trifluoroacetic acid [following

method F] to give a red solid of the title compound. Yield (1.62g)(95%). T.l.c. (solvent

system 3): Rf0.25 (red) product.

Found: !!!,Q126 DC.

ESMS(+)(Cone 20V) m/z: 513 (4%)(RNH2+Nat, 491 (100%)(RNH3t , 119 (10%), 87

(30%),55 (2%).

ESMS(-)(Cone 50V) m/z: 113 (70%)(CF3COOr, 69 (100%). M, 604.
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9.11.3 1-[3-(Glycyl-L-Ieucyl-L-prolylamino)propylamino]anthraquinone trifluoro-

acetate (286) (NV: VB 185)

N-tBoc-glycine-N-hydroxysuccinimide ester (0.05g, 0.18 mmol) was reacted with 1-[3-(L

leucyl-L-prolylamino)propylamino]anthraquinone trifluoroacetate (285) (0.10g, 0.17

mmol) in THF (20 crrr') and triethylamine (0.2 cm3
) [ following method C] to give 1-[3-(N

tertiarybutoxycarbonylglycyl-L-Ieucyl-L-prolylamino)propylamino]anthraquinone

(0.090g) (82%) [T.l.c. (solvent system 1): Rr 0.40 (red) product]. The Boc-protected

compound was deprotected in full using trifluoroacetic acid [following method F] to give

a red solid of the title compound. Yield (0.065g)(64%). T.l.c. (solvent system 3): R, 0.30

(red) product.

Found: IDJ2 144-148 °C.

ESMS(+)(Cone 20V) m/z: 570 (15%)(RNH2+Nat, 548 (100%)(RNH3t, 239 (10%), 87

(75%),55 (5%). M, 661.

9.11.4 1-[3-(N-Tertiarybutoxycarbonyl-L-Ieucyl-glycyl-L-Ieucyl-L-prolylamino)-

propylamino]anthraquinone (287)

N-tBoc-L-leucylglycine (LOg, 3.47 mmol) was converted to its pentafluorophenolate ester

and added to a cooled, stirred, solution of 1-[3-(L-Ieucyl-L

prolylamino)propylamino]anthraquinone trifluoroacetate (284) (LOg, 1.66 mmol) and

triethylamine (0.5 crrr') in DMF (80 cnr') [following methods C and D]. The title

compound was precipitated from a chloroform! hexane solution (1:100). Yield

(0.95g)(75%). T.l.c. (solvent system 3): RrO.75 (red) product.

Found: IDJ2 112°C.
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FABMS(+) m/z: 783 (95%)(M+Nat, 761 (50%)(MHt, 683 (15%), 661 (4%), 378

(100%),263 (25%). M, 760.

9.11.5 1-[3-(L-Leucyl-glycyl-L-leucyl-L-prolylamino)propylamino]anthraquinone

trifluoroacetate. (288)(NU:UB 186)

The N-tBoc-protected derivative (287) (0.95g) was deprotected using trifluoroacetic acid

[following method F] to give a red solid of the title compound. Yield (0.92g)(95%). T.l.c.

(solvent system 3): Rr0.45 (red) product.

Found: rrm 144°C.

ESMS(+)(Cone 50V) m/z: 683 (10%)(RNH2+Nat, 661 (50%)(RNH3t, 491 (2%), 378

(100%), 155 (5%), 87 (35%). M, 774.

9.11.6 1-[3-(L-Alanyl-L-leucyl-glycyl-L-leucyl-L-prolylamino)propylamino]anthra-

quinone trifluoroacetate (289) (NU:UB 204)

N-tBoc-L-alanine-N-hydroxysuccinimide ester (0.02g, 0.07 mmol) in THF (5 cnr') was

reacted with 1-[3-(L-leucyl-glycyl-L-leucyl-L-prolyl-amino)propylamino]anthraquinone

trifluoroacetate (288) (0.05g, 0.065 mmol) in THF (20 cnr') and triethylamine (0.2 crrr')

[following method C] to give 1-[3-(N-Tertiarybutoxycarbonyl-L-alanyl-L-leucyl-glycyl-L

leucyl-L-prolyl-amino)propylamino]anthraquinone [(0.055g)(70%), T.l.c. (solvent system

3): Rr 0.75 (red) product]. The Boc-protected compound was deprotected in full using

trifluoroacetic acid [following method F] to give a red solid of the title compound

(0.035g)(63%). T.l.c. (solvent system 3): Rr 0.25 (red) product.

Found: rrm 168°C.
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ESMS(+)(Cone 20V) m/z: 754 (5%)(RNH2+Nat, 732 (45%)(RNH3t ,239 (15%), 119

(15%),87 (100%). M, 846.

9.11.7 1-[3-(N-Tertiarybutoxycarbonyl-L-alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl

L-prolylamino)propylamino]anthraquinone (290)

N-1Boc-L-alanyl alanine (0.25g, 0.95 mmol) was converted to its pentafluorophenolate

ester and reacted with 1-[3-(L-Leucyl-glycyl-L-Ieucyl-L-

prolylamino)propylamino]anthraquinone trifluoroacetate (288) (0.35g, 4.45 mmol) in

DMF (50 cnr') and triethylamine (0.5 crrr') [following methods C and D]. The title

compound was precipitated from a chloroform! hexane solution (1:100). Yield

(0.27g)(68%). T.l.c. (solvent system 3): RfO.75 (red) product.

Found: TIm 138 -c.

9.11.8 1-[3-(L-Alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-prolylamino)propyl-

amino]anthraquinone trifluoroacetate (291) NU:UB 205

The N-1Boc derivative (290)(0.27g) was deprotected using trifluoroacetic acid [following

method F] to give a red solid of the title compound (0.22g)(82%). T.l.c. (solvent system

3): Rf 0.20 (red) product.

Found: TIm 132 CC.

ESMS(+)(Cone 50V) m/z: 825 (12%)(RNH2+Nat, 803 (25%)(RNH3t ,378 (75%), 239

(5%), 119 (20%), 87 (100%).

ESMS(-)(Cone 50V) m/z: 113 (CF3COOr, 69 (100%). M, 917.
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9.11.9 1-[3-(N-Tertiarybutoxycarbonyl-D-alanyl-L-alanyl-L-Ieucyl-glycyl-L-Ieucyl-

L-prolylamino)propylamino]anthraquinone (292)

N-tBoc-D-alanine-N-hydroxysuccinimide ester (0.08g, 0.28 mmol) in THF (5 cnr') was

reacted with 1-[3-(L-alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-proly1

amino)propylamino]anthraquinone trifluoroacetate (291) (0.21g, 0.23 mmol)) in THF (20

crrr') and triethylamine (0.2 crrr') [following method C]. The title compound was

precipitated from a chloroform/ hexane solution (1:100). Yield (0.135g)(60%). T.1.c.

(solvent system 3): Rf 0.60 (red) product.

Found: nm 126°C

9.11.10 1-[3-(D-alanyl-L-Alanyl-L-alanyl-L-leucyl-glycyl-L-leucyl-L-prolylamino)-

propylamino]anthraquinone trifluoroacetate (293) (NU:UB 187) PL 1

The N-tBoc-protected conjugate (292)(0.l1g) was deprotected using trifluoroacetic acid

[following method F] to give a red solid of the title compound (0.10g)(90%). T.1.c.

(solvent system 3): Rf 0.20 (red) product.

Found: nm 166°C.

ESMS(+)(Cone 50V) m1z: 896 (25%)(RNH2+Nat, 874 (80%)(RNH3t ,497 (65%), 378

(100%)(Aq-Spacer-Pro-NH2t ,239 (10%), 87 (100%).

ESMS(-)(Cone 50V) m1z: 113 (100)(CF3COOf. M, 988.
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9.12 In-vitro Chemosensitivity: MTT Assay Protocol

MAC15A murine colon adenocarcinoma cell line

MAC15A cells were grown in RPMI 1640 medium supplemented with 10% foetal calf

serum containing a 1% antibiotic mixture under standard tissue culture conditions, and

were maintained at 37°C in a humidified atmosphere of 5% C02 in air. Cells were

harvested from a stock culture in exponential growth phase and plated in 96-well flat

bottomed plates (180~1 per well, lanes 2~12; 180~1 medium, lane 1) to achieve a final

density of 2x103 cells per well. After 2hr incubation 20~1 of either fresh medium

containing 0.5% DMSO (control, lanes 1 and 2) or medium containing NU:UB

compounds (diluted in DMSO and medium) was added to yield a range of final drug

concentrations from 100 to O.01~M.

Following 96hr continuous exposure to drug at 37°C (to allow sufficient time for cell

replication, drug induced death and loss of enzymatic activity), cells were incubated

with fresh drug-free medium immediately prior to addition of MTT solution (5mg/ ml).

Medium and MTT were removed after 4 hours and 150 ~l of DMSO was added. For

each plate, the aborbance of the resulting solution was measured at the analytical wave

length 580nm of formazan product, using a Labsystem Multiskan. ICso values were

obtained from growth curves of drug concentration against % survival and are expressed

in~M.
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Appendix 1

Biochemical and Biological Evaluation Protocols



(i) NCI In Vitro Anticancer Drug Screen: Chemosensitivity Assay

Cell suspensions (diluted according to the target cell densities of 5000-40,000 cells per

well, based on cell growth characteristics of the particular cell type) were added to 96

well plates (100 ul) and preincubated for 24 hat 37°C for. Test agents were added at

twice the intended test concentration in five lO-fold dilutions (highest well

concentration 100 J-lM) and incubated for 48 h in 5% CO2 atmosphere and 100%

humidity. Chemosensitivity was determined using the sulphorhodamine B (SRB) assay

(SRB, a protein binding dye, binds to the basic amino acids of cellular

macromolecules). A plate reader was used to read the optical densities which were

processed to give the special concentration parameters 0150, TOl and LCso and hence

generation ofmean graphs (Monks et a/1991).

(ii) Topoisomerase 1 and Topoisomerase 11# (a And P) Relaxation Assays

Stock solution, 100J!M and 1000J!M of NU:UB compound was made up III

DMSO/dH20. Plasmid pBR322 DNA, was diluted in dH20 to 40ng/J-l1. To make up a

total volume of 20J!l, buffer, DNA, dH20 and compound solution were added to

Eppendorf tubes as in Appendix Table 1.

DNA Topoisomerase lOJ!M 25JlM 50JlM
Control Control Compound Compound Compound

Buffer (lor II) 2 2 2 2 2

DNA 10 10 10 10 10

dH20 8 7.8 5.8 2.8 6.8

Topoisomerase - 0.2 0.2 0.2 0.2
(I, lIa or lIP)
Appendix Table 1 Topoisomerase 1and II relaxation assay components (volumes in ul)
# Topoisomerase II (a And ~) were a gift from Caroline Austin, University of Newcastle.



Finally, topoisomerase I (3 units) was added and the contents of the tubes were mixed.

Samples were incubated for 30 mins in a waterbath at 37°C. The reaction was

terminated by addition of 4~lloadingbuffer. The plasmid samples were separated on an

agarose gel (0.8%) by 1 x TBE at 50V for 2h, or overnight at 16V. DNA was stained in

ethidium bromide (lug/ml in 1 x TBE) for Ih and was then destained in dHzO water for

another hour to reduce background fluorescence. The gel was viewed in UV light and

photographed.

The topoisomerase II relaxation assay protocol was the same as the above

topoisomerase I relaxation assay protocol, but the topoisomerase I buffer was

exchanged for the topoisomerase II buffer and topoisomerase II (a or ~, 5 units)

replaced topoisomerase 1.

(iii) Topoisomerase II (a And P) Decatenation Assays

The topoisomerase II decatenation assay protocol was the same as the above

topoisomerase I relaxation assay protocol, but the topoisomerase I buffer was

exchanged for the topoisomerase II buffer, topoisomerase II (a or ~, 5 units) replaced

topoisomerase II and kinetoplast DNA (k-DNA) replaced pBR322 plasmid DNA



(iv)Topoisomerase 1 and Topoisomerase II (a And fJ) Cleavage Assays

NU:UB compound stock solutions were prepared. Plasmid pBR322 DNA was prepared at

4Ong/J!1. Buffer, DNA, dHzO and compound were added to an Eppendorf as depicted in

Appendix Table 2.

DNA Topoisomerase lOJlM 50JlM lOOJlM
Control Control Compound Compound Compound

Buffer (I or II) 2 2 2 2 2

DNA 10 10 10 10 10

dHzO 8 4 2 3 2

Compound - - 2 1 2
(at 100J!M) (at 1000J!M) (at 1000J!M)

Topoisomerase - 4 4 4 4
(I, IIa or IIfJ)
Appendix Table 2 Topoisomerase I and II cleavage assay components (volumes in ul)

Topoisomerase I (40units) was added and samples were left in a waterbath at 37°C for

45mins. SDS (10%), (2.2J!l) was added and samples left for 30 sec. Proteinase K

(5mg/ml), (2.4J!l) was added and the samples were incubated in the waterbath, at 37°C

for lh. Loading buffer, 4J!l was added to each sample. Samples were loaded onto an

agarose gel (0.8%). The gel was electrophoresed in I x TBE buffer with ethidium

bromide, O.5J!g/ml at 50V for 2h or overnight at 16V. The gel was de-stained in dHzO

for lh in darkness, viewed in UV light and photographed.

The topoisomerase II (a and ~) cleavage assay was performed by a similar procedure to

the topoisomerase I cleavage assay. The topoisomerase II buffer was used and suitable



topoisomerase II enzyme. Furthermore, following the addition of SDS, the tubes were

left for 30 seconds followed by the addition of 1.5JlI of 250mM Na2EDTA. Proteinase

K, 2JlI was then added at 0.8mg/ml and the tubes were incubated for lh at 45° C.

Loading buffer, 4JlI was added to each sample to terminate the reaction. The samples

were then separated on an agarose gel as described above. The electrophoresis was

performed in the absence of ethidium bromide and, under these conditions, evidence of

cleavable complex formation was detected by the formation of a band of linear DNA

that has previously been shown to run between the supercoiled plasmid and the retarded

nicked/relaxed DNA bands. The methods were adapted from Austin (1995).

(v)Topoisomerase I and II Immunoband Depletion Assays

The method was adapted from Boege (1996); briefly, 106 HL-60 cells were cultivated

for 45min with or without drugs. Reactions were terminated by sedimentation of the

cells (1000xg, 5min, 4°C) and subsequent lysis in PBS/NP40, RlPA buffer containing

pepstatin and leupeptin. Samples were subjected to SDS-polyacrylamide (8%) gel

electrophoresis and proteins that had entered the gel were electrophoretically transferred

to nitro-cellulose sheets by the semi-dry method. Immunstaining of immobilised

proteins was carried out using a polyclonal Ab of human topo I [Topogen], and

subsequently anti-human Ig biotinylated whole Ab (sheep)[Amersham], streptavidin

horse-radish peroxidase and the ECL system [Amersham]. When large proteins, such as

topoisomerase IIa and topoisomerase II~ were transferred, a greater transfer was

achieved by the addition of SDS (0.02%) to the transfer buffer. Western blotting using

human anti-human topoisomerase I antibody, mouse monoclonal anti-topoisomerase IIa

(Novocastra, Newcastle UK) or mouse monoclonal anti-topoisomerase II~ (Novocastra,



Newcastle UK) were performed and topoisomerase bands photographed and identified.

Band densities were quantified using a Syngene [Cambridge, UK] digital imaging

system and GeneSnap software.

(vi) MAC15A In Vivo Chemosensitivity

MACI5A cells were obtained from the peritoneum of a donor ascitic mouse. O.2ml

volumes of the cell suspension were then injected subcutaneously into the lower flank

region of each mouse. Approximately 10 mice were set up per treatment or control

group. Solid, measurable tumours developed after 3 days, at which point treatments

were commenced (Day 0). Tumours were measured daily using callipers and volumes

calculated from the formula: (A2 x b)/2. Where A is the smaller diameter and b is the

larger. Mice were given a single dose of each compound at its pre-determined (by dose

escalation) MTD (Maximum Tolerated Dose).

Growth curves were plotted for each group to compare mean relative tumour volume

(RTV) against time in days, the control experiment showing the uninhibited tumour

growth pattern without the addition of cytotoxic agent. Statistical analyses were also

carried out using the Mann Whitney Test which compares the time taken for each

tumour to reach RTV x 2 between control and treated cells.

(vii) HPLC Analysis MMP-9 Incubations and Tissue Metabolism of Prodrugs

Separation was achieved using gradient reversed phase HPLC on a Lichrospher (25 x 4

mm) column. Mobile phase A consisted of 10% acetonitrile: 90% TFA (0.05%) and

mobile phase B of 60% acetonitrile: 40% TFA (0.05%). Optimum detection was at the

"-max of 248 nm using a flow rate of 1.2 ml/min. The gradient profile was from 60%A



to 5% A over 25 mm. Sample preparation for HPLC was by simple protein

precipitation. Three volumes of methanol were added to one volume of sample

(typically lOOIl!) which was centrifuged at 3000g for 5 min. The supernatant was

injected directly onto the HPLC column.

(viii) In vitro Purified Enzyme Incubations

Compounds were incubated in vitro with purified recombinant enzyme (either MMP-9

or MMP-2) (Calbiochem, Nottingham, UK). Typically, compounds (drugs) were

incubated at 51lM concentrations using IOIlI of enzyme, IOIlI of drug and 90111 of buffer

at 25°C. The buffer used consisted of 200 mM NaCl, 50 mM Tris, 5 mM CaCh, 20 IlM

ZnS04 and 0.05% Brij35 at pH 7.6.

At various time points 20111 samples were taken and 60111 ofmethanol added to precipitate

proteins and the metabolism of the compounds was analysed by HPLC (as above).

(ix) In vitro tumour incubations

Solid tumour (HT1080 - excised from NCI-Nu mice under a Home Office Licence) was

homogenised (l :4) in MMP buffer. Tumour homogenates were incubated at 25°C and

compounds (drugs) were added to the homogenate to give a final concentration of

lOIlM or lOOIlM. Samples were taken at timed intervals and prepared for HPLC

analysis as described above.

Where metabolism was so rapid tumour homogenates required dilution (to 1:500)
before analysis.
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NBC: D- 709764 -Q 11 Experiment ID: 9907MD58-30 Test Type: 08 Units: Molar

Report Date: August 5. 1999 Test Date: July 6. 1999 QNS: MC:

COMI: NU:UB 20 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 Concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero ctrl -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

HL-60(TBI 0.246 0.773 0.977 1.040 0.962 0.412 0.048 139 150 136 31 -80 6.65E-06 1.91E-05 5.34E-05
K-562 0.157 1. 310 1.268 1. 228 1.156 0.938 0.162 96 93 87 68 0 1.B3E-05 >1.00E-04 >1.00E-04
MOLT-4 0.149 0.662 0.705 0.613 0.446 0.314 0.099 108 90 58 32 -34 2.00E-06 3.06E-05 >1.00E-04
SR 0.136 0.461 0.398 0.341 0.357 0.331 0.207 80 63 68 60 22 1. B2E-05 >1. 00E-04 >1.00E-04

Non-Small Cell Lung Cancer
A549/ATCC 0.198 0.937 0.917 0.931 0.920 0.579 0.022 97 99 98 52 -89 1. 03E-05 2.33E-05 5.27E-05
EKVX 0.630 1. 332 1. 327 1. 344 1. 364 1. 340 0.116 99 102 104 101 -82 1.90E-05 3.58E-05 6.72E-05
HOP-62 0.199 0.474 0.497 0.478 0.492 0.365 -0.002 1.08 102 107 60 -100 1.1GE-05 2.38E-05 4.88E-05
HOP-92 0.394 0.930 0.968 0.953 0.976 1.008 0.064 107 104 109 114 -84 2.11E-05 3.78E-05 6.75E-05
NCI-H23 0.301 0.907 0.881 0.862 0.849 0.553 0.008 96 93 90 42 -97 6.73E-06 1.99E-05 4.56E-05
NCI-H322M 0.427 1.278 1. 263 1.261 1.261 0.890 -0.007 98 98 98 54 -100 1.07E-05 2.25E-05 4.74E-05
NCI-H460 0.312 1.670 1.513 1.648 1.657 0.830 0.006 88 98 99 38 -98 6.38E-06 1.90E-05 4.43E-05
NCI-H522 0.262 0.614 0.627 0.662 0.649 0.537 -0.005 104 114 110 78 -100 1.44E-05 2.75E-05 5.24E-05

Colon Cancer
COLO 205 0.406 1. 335 1. 340 1.360 1.470 0.455 0.020 101 103 115 5 -95 3.90E-06 1.13E-05 3.55E-05
HCC-2998 0.360 0.674 0.591 0.654 0.650 0.338 -0.026 74 94 92 -6 -100 2.69E-06 8.67E-06 2.93E-05
HCT-116 0.254 1. 353 1. 432 1. 389 1.509 1. 204 -0.005 107 103 114 86 -100 1.57E-05 2.91E-05 5.39E-05
HCT-15 0.169 1.072 1.063 1.101 1.102 0.786 0.001 99 103 103 68 -100 1.28E-05 2.55E-05 5.06E-05
HT29 0.162 0.982 0.981 0.964 0.949 0.771 -0.017 100 98 96 74 -100 1.38E-05 2.67E-05 5.16E-05
KM12 0.286 1.103 1.167 1.123 1.205 0.894 0.001 108 102 112 74 -100 1.38E-05 2.68E-05 5.19E-05

CNS Cancer
SF-268 0.250 0 .972 0.989 1.009 0.993 0.861 0.018 102 105 103 85 -93 1.57E-05 3.00E-05 5.74E-05
SF-295 0.454 1 .262 1.268 1. 232 1. 243 0.869 0.027 101 96 9B 51 -94 1.02E-05 2.25E-05 4.98£-05
SF-539 0.568 0 .915 0.905 0.925 1.019 0.747 0.013 97 103 130 52 -98 1.02E-05 2.21E-05 4.79E-05
SNB-19 o .335 0 .958 0.965 0.950 . 0.934 0.757 0.022 101 99 96 68 -93 1.29E-05 2.63E-05 5.38E-05
SNB-75 0.265 o. 586 0.594 0.571 0.556 0.509 -0.008 102 95 90 76 -100 1.40E-05 2.70E-05 5.20£-05
U251 0.161 0 .903 0.838 0.900 0.859 0.715 -0.027 91 100 94 75 -100 1.38E-05 2.68E-05 5.17E-05

Melanoma
LOX IMVI 0.085 0.772 0 .780 0.791 0.795 0.548 0.005 101 103 103 67 -95 1.28E-05 2.61E-05 5.30E-05
MALME-3M 0.367 0.815 0 .876 0.914 0.935 0.378 0.008 114 122 127 2 -98 4.14E-06 1.06E-05 3.33E-05
M14 0.295 0.918 0 .930 0.903 0.795 0.545 0.020 102 98 80 40 -93 5.67E-06 2.00E-05 4.74E-05
SK-MEL-2 0.257 0.671 0 .633 0.660 0.687 0.542 -0.023 91 97 104 69 -100 1. 29E-05 2.56E-05 5.06E-05
SK-MEL-28 0.267 0.893 0 .B98 0.861 0.951 0.976 0.019 101 95 109 113 -93 2.03E-05 3.54E-05 6.19E-05
SK-MEL-5 0.428 1.461 1 .466 1.466 1.334 0.513 -0.028 100 100 88 8 -100 2.98E-06 1.19E-05 3.45£-05
I1ACC-257 0.554 1.173 1 .037 1.132 1.187 1. 047 0.027 78 93 102 80 -95 1. 48E-05 2.86E-05 5.52E-05
UACC-62 0.700 1.654 1 .646 1.571 1. 660 1. 432 -0.008 99 91 101 77 -100 1.42E-05 2.72E-05 5.21E-05

ovarian Cancer
IGROV1 0.110 0.744 0.799 0.761 0.746 0.582 0.041 109 103 100 74 -63 1.51E-05 3.48E-05 8.02£-05
OVCAR-3 0.446 0.757 0.769 0.767 0.758 0.675 0.082 104 103 100 73 -82 1.42E-05 2.97E-05 6.25E-05
OVCAR-4 0.265 0.710 0.714 0.726 0.741 0.659 0.062 101 104 107 88 -77 1.71E-05 3.43E-05 6.88E-05
OVCAR-5 0.774 1.690 1.698 1.689 1.734 1.767 0.040 101 100 105 108 -95 1.94E-05 3.41E-05 6.02E-05
OVCAR-8 0.121 0.845 0.832 0.869 0.851 0.679 0.024 98 103 101 77 -81 1.48E-05 3.08E-05 6.40E-05
SK-OV-3 0.281 0.507 0.533 0.507 0.525 0.474 0.038 111 100 lOB 85 -87 1.60E-05 3.13E-05 6.12E-05

Renal Cancer
786-0 0.226 0.846 0.898 0.796 0.847 0.604 -0.004 108 92 100 61 -100 1.17E-05 2.39E-05 4.89E-05
A498 0.848 1.356 1.409 1. 392 1. 493 1.410 0.044 110 107 127 III -95 1.97E-05 3.45E-05 6.05E-05
ACHN 0.237 0.868 0.919 0.868 0.856 0.653 -0.027 108 100 98 66 -100 1.25E-05 2.50E-05 5.00E-05
CAKI-1 0.454 0.999 1. 016 0.989 1.045 1.026 0.009 103 98 108 105 -98 1.86E-05 3.29E-05 5.79£-05
RXF 393 0.359 0.849 0.853 0.809 0.779 0.618 0.104 101 92 86 53 -71 1.05E-05 2.66E-05 6.75E-05
SN12C 0.377 0.920 0.933 0.951 0.994 0.785 0.037 102 106 114 75 -90 1.42E-05 2.85E-05 5.71£-05
TK-10 0.529 1.098 1. 061 1.165 1.184 1.082 0.031 93 112 115 97 -94 1.76E-05 3.22E-05 5.88£-05
110-31 0.242 0.626 0.634 0.573 0.531 0.657 0.012 102 B6 75 108 -95 1.93E-05 3.40E-05 6.00E-05

Prostate Cancer
PC-3 .189 0 .659 0.636 0.654 0.651 0.579 -0.026 95 99 98 83 -100 .51E-05 . B4E-05 5. BE-05
DI1-145 .211 0 .772 0.805' 0.762 0.776 0.622 -0.005 106 9B 101 73 -100 .36E-05 .65E-05 5.15E-05

Breast Cancer
MCF7 0 .245 0 .B51 0.B66 0.882 0.797 0.617 -0.026 102 105 91 61 -100 .18E-05 2.40E-05 4.90E-05
NCI/ADR-RES 0 .299 0 .752 0.770 0.756 0.710 0.620 0.030 104 101 91 71 -90 .35E-05 2.76E-05 5.64E-05
MDA-MB-231/ATCC 0 .322 0.900 0.867 0.889 0.819 0.771 0.005 94 98 B6 7B -99 .44E-05 2.76E-05 5.30E-05
MDA-MB- 435 0 .279 0.918 0.982 0.980 0.974 0.404 -0.011 110 110 109 20 -100 .56E-06 1.46E-05 3.82£-05
MDA-N 0.352 1.200 1.323 1. 293 1. 385 0.564 0.025 114 III 122 25 -93 5.51E-06 1.63E-05 4.32£-05
BT- 549 0.502 1.080 1.084 1. 053 1.108 1. 019 -0.025 101 95 105 90 -100 1.62E-05 2.97E-05 5.45E-05
T-47D 0.300 0.743 0.742 0.703 0.684 0.633 0.151 100 91 87 75 -50 1.59E-05 4.00E-05 >1.00E-04
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National Cancer Institute Developmental Therapeutics Program NSC: D- 709764 -Q I 1 Units: Molar SSPL: OB6Z Exp. lD:9907MD58-30

Mean Graphs Report Date: August 5,1999 Test Date: July 6, 1999

PandlCeR Une Log "GlSO 0150 Log. TGI TGJ LOll LCSD LCSO

Leukemia
HL-6O(TB) ·518 -4.72 -4.27
K·562 -4.74 > -4.00 > -4.00
MOLT·4 ·5.70 ·4.51 > -4.00
SR ·4.74 > -4.00 > -4.00

Non-Small Cell LW1~ Cancer ............................................................. ...................-......................... ..............................................__............. ............................................. ............................................................. ...........................................
A5491ATCC ·4.99 .4.63 -4.28
EKVX -4.72 -4.45 -417
HOP-62 -4.94 -4.62 -4.31
HOP-92 -4.68 -4.42 -4.17
NCI·H23 -5.17 -470 -4.34
NCI-H322M -497 -465 -4.32
NCI-H460 -520 -472 -4.35
NO·H522 -4.84 ·456 ·4.28

Colon Cancer ............................................................. ............................................. ............................................................. .............................................. ............................................................. ............................................
COLO 205 -541 ·4.95 -4.45
HCC-2998 ·557 -5.06 -4.53
HCT-1I6 -480 ·4.54 -4.27
HCT·15 -489 -459 -4.30
HT29 ·486 -457 -4.29
KMI2 ·4.86 -457 -4.28

CNS Cancer ............................................................. ............................................. .............................................................. ............................................. ............................................................. ..............................................
SF-268 -480 -4.52 -4.24
SF·295 -499 -4.65 -4.30
SF-539 -499 -4.66 -4.32
SNB·19 -4.89 -4.58 -4.27
SNB·75 -485 -457 -4.28
U251 -4.86 ·457 ·4.29

Melanoma ............................................................. .... ........................................ ......................................... u ••••••••••••••••••• ............................................. ............................................................... ............................................
LOX IMVI -489 -458 -4.28
MALME-3M I ·538 ·497 -4.48
MI4 ·525 ·470 -4.32
SK·MEL-2 -4.89 ·459 -4.30
SK-MEL-28 -4.69 -445 -4.21
SK-MEL-5 ·553 -492 -4.46
UACC-257 -483 -454 -4.26
UACC-62 -485 -457 -4.28

Ovarian Cancer ............................................................. ..................................-........... ............................................................. ............................................
IGROVI -4.82 -446 -4.10
OVCAR-3 -485 -453 -420
OVCAR-4 -4.77 -446 -4.16
OVCAR-5 -471 -4.47 -4.22
OVCAR-8 ·483 -4.51 ·4.19
SK·OV-3 -4.80 -4.50 -4.21

Renal Cancer .............................. .......................... ............................................. ............................................................. ...........................................
786-0 -493 -462 -4.31
A498 ·471 -446 -4.22
ACHN -4.90 -4.60 -4.30
CAKI-I ·473 -448 -4.24 ll·
RXF 393

,
-498 -4.58 -4.17

SNI2C -485 -455 -4.24
TK-1O -475 ·449 -4.23
UO-31 ·471 -447 -4.22

ProstateCancer .................... ............................................................. ............................................. ............................................................. ...........................-...............
PC-3 -482 -455 -4.27
DU-145 -487 ·458 ·4.29

BreastCancer ............................................................. ............................................. ............................................................. ...........................................
MCF7 ·4.93 -4.62 -4.31
NCI/ADR-RES -487 -456 -425
MDA·MB·23 IIATCC -484 ·456 .4.28
MDA-MB-435 -534 -4.84 -4.42
MDA·N ·5.26 -4.79 -4.36
BT·549 -479 ·453 -4.26
T-47D -4.80 -4.40 > -4.00

...... ............................................................. ............................................. .............................................................. ..................................._......
MG.MID -494 -458 -4.26
Della 076 048 0.27
Range 1.02 1.06 0.53
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709765 -R / I Experiment 10: 9907MD58-31 Test Type: 08 Units: Molar

Report Date: August 5, 1999 Test Date: July 6, 1999 QNS: MC:

COMI: NU:UB 24 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 Concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero Ctr1 ~8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

CCRF-CEM 0.107 0.456 0.396 0.365 0.368 0.235 0.022 83 74 75 37 -79 4 . 44E~06 2.06E~05 5.57E-05
HL-60 (TB) 0.246 1.197 1. 021 1. 090 1.145 0.778 0.048 81 89 95 56 ~80 1.11E-05 2.57E-05 5.98E-05
K-562 0.157 1.369 1. 279 1.465 1.366 0.842 0.085 93 108 100 56 -46 1.16E-05 3.56E-05 >1.00E-04
MOLT-4 0.149 0.640 0.635 0.644 0.653 0.281 0.062 99 101 103 27 -58 4.96E-06 2.07E-05 7.97E-05
SR 0.136 0.415 0.410 0.456 0.405 0.284 0.208 98 115 96 53 26 1.29E-05 >1.00E-04 >1. 00E-04

Non-Small Cell Lung Cancer
A549/ATCC 0.198 1.042 1.063 1. 016 1.034 0.776 0.030 1D3 97 99 69 -85 1 . 32E~05 2.79E-05 5.91E-05
EKVX 0.630 1.291 1. 253 1. 241 1. 238 1.031 0.056 94 92 92 61 -91 1.17E-05 2.51E-05 5.35E-05
HOP-62 0.199 0.476 0.458 0.483 0.447 0.345 0.028 93 102 89 52 -86 1.04E-05 2.39E-05 5.48E-05
NCI-H23 0.301 0.903 0.914 0.915 0.886 0.760 0.044 102 102 97 76 -86 1.45E-05 2.96E-05 6.03E-05
NCI-H322M 0.427 1.290 1.270 1.147 1.278 0.911 -0.006 98 83 99 56 -100 1.09E-05 2.29E-05 4.78E-05
NCI-H460 0.312 1. 646 1.660 1.620 1.632 1. 019 0.025 101 98 99 53 -92 1.05E-05 2.32E-05 5.12E-05
NCI-H522 0.262 0.804 0.797 0.822 0.813 0.530 0.021 99 103 102 49 -92 9.72E-06 2.23E-05 5.04E-05

Colon Cancer
COLO 205 0.406 1.511 1. 424 1. 481 1.427 0.891 -0.007 92 97 92 44 -100 7.46E-06 2.02E-05 4.49E-05
HCC-2998 0.360 0.772 0.720 0.730 0.697 0.556 -0.017 87 90 82 48 -100 8.46E-06 2.10E-05 4.58E-05
HCT-1l6 0.254 1.411 1. 386 1.570 1. 376 0.818 0.006 98 114 97 49 -98 9.42E-06 2.15E-05 4.72E-05
HCT-15 0.169 1.108 1.198 1.159 1.119 0.871 0.015 110 105 101 75 -91 1.41E-05 2.82E-05 5.65E-OS
HT29 0.162 0.995 0.992 0.916 0.946 0.583 0.005 100 90 94 50 -97 1.01E-05 2.20E-OS 4.79E-05
KM12 0.286 1.186 1.139 1.197 1.150 0.915 0.044 95 101 96 70 -85 1.34E-05 2.83E-05 5.96E-05
SW-620 0.066 0.457 0.430 0.436 0.417 0.245 -0.001 93 95 90 46 -100 8.04E-06 2.06E-05 4.54E-05

CNS Cancer
SF-268 0 .250 1.052 1. 058 .076 1 .066 0.816 0.064 101 103 102 71 -74 1.39E-05 3 .07E-05 6.79E-05
SF-295 0 .454 1.188 1.195 .231 1 .161 0.895 0.081 101 106 96 60 -82 1.18E-05 2 .64E-05 5.94E-05
SF-S39 0 .568 1. 051 0.981 .034 1 .063 0.750 -0.008 85 96 102 38 -100 6.45E-06 1. 88E-05 4.33E-05
SNB-19 0 .335 1. 015 1. 050 1.082 1 .097 0.728 0.038 105 110 112 58 -89 1.l3E-05 2 .48E-05 5.44E-05
SNB-75 0 .265 0.572 0.561 0.581 0 .590 0.497 0.035 96 103 106 75 -87 1.44E-05 2 . 92E-OS 5.93E-05
U251 o. 161 0.972 0.956 0.934 0 .958 0.616 -0.017 98 95 98 56 -100 1.09E-05 2 .29E-05 4.78E-05

Melanoma
MALME-3M 0.367 0.861 0.873 0.898 0 .945 0 .903 0.036 102 107 117 109 -90 .97E-05 3 .52E-05 6 .28E-05
M14 0.295 1.043 1. 044 1. 058 1 .075 0 .931 0.031 100 102 104 85 -90 1.59E-05 3 .07E-05 5.93E-05
SK-MEL-2 0.257 0.729 o .738 0.702 0 .714 0 .617 0.006 102 94 97 76 -98 1.42E-05 2 .74E-05 5.31E-05
SK-MEL-28 0.267 0.960 0.911 0.953 0 .936 O. 869 0.010 93 99 97 87 -96 1.59E-05 2 .98E-05 5.59E·05
SK-MEL-5 0.428 1.658 1.526 1.514 1 .562 1 .236 -0.003 89 88 92 66 -100 1.24E~05 2 .49E-05 4.99E-05
UACC-257 0.554 1.147 1.184 1.125 1 .156 1 .030 0.084 106 96 102 80 -85 1.53E-05 3 .06E-05 6.15E-OS
UACC-62 0.700 1.598 1.514 1. 665 1 .516 1 .405 0.049 91 107 91 79 93 1.47E-05 2 .87E-05 5.61E-05

Ovarian Cancer
OVCAR-3 .446 0 .779 .766 0 .767 0 .743 0 .670 0 .103 96 96 89 67 -77 .32E-05 .92E-05 .50E-05
OVCAR-4 .265 0 .729 0.639 0 .734 0 .690 o. 592 0 .094 81 101 92 70 -65 .42E-05 .32E-05 .78E-05
OVCAR-5 .774 1 .636 1.580 1.155 1 .595 1 .466 0 .040 94 44 95 80 95 .87E-05 .54E-05
SK-OV-3 .281 0 .506 0.491 0.496 0 .474 0 .407 0 .030 93 96 86 56 -89 1. 10E-05 .42E-05 .36E-05

Renal Cancer
786-0 0 .226 0 .792 .740 0 .894 0 .847 O. 560 0.005 91 118 110 59 -98 1- 14E-05 2.38E-05 4 .96E-05
A498 0 .848 1 .398 .347 1 .432 1 .397 1 .240 0.009 91 106 100 71 -99 1 .33E-05 2.62E-05 5 .15E-05
ACHN 0 .237 0 .828 .852 0 .867 0 .796 0 .532 0.002 104 107 95 50 -99 9. 97E-06 2.16E-05 4 .67E-05
CAKI-1 0 .454 1 .077 .950 1 .010 0.927 0 .756 0.016 80 89 76 48 -96 8 .73E-06 2.16E-05 4 .78E-05
RXF 393 0 .359 0 .824 .788 0 .840 0.840 0 .598 0.041 92 103 103 51 -89 1 .02E-05 2.33E-05 5 .30E-05
SN12C 0 .377 1 .016 1- 029 1 .025 0.974 o. 644 0.056 102 101 94 42 -85 6 .94E-06 2.l3E-05 5 .29E-05
TK-10 0 .529 1- 129 1.150 1 .135 1.135 O. 892 -0.002 103 101 101 61 ·100 1. 16E-05 2.38E-05 4 .88E-05
UO-31 0 .242 0 .694 0.696 o. 658 0.618 0 .458 0.029 100 92 83 48 -88 8 .62E-06 2.25E-05 5 .25E-05

Prostate Cancer
PC-3 .189 0 .725 . 692 .710 0 .707 0 .546 0.005 94 97 97 67 -97 .26E-05 .55E-05 5 . HE-OS
DU-145 .211 0 .776 .712 .788 0 .799 0 .651 -0.007 89 102 104 78 -100 .43E-05 .74E-05 5 .23E-05

Breast Cancer
MCF7 0 .245 0 .888 0 .832 0 .902 0 .741 O. 616 0.004 91 102 77 58 98 .12E-05 2 .34E·05 4 .90E-05
NCI/ADR-RES 0 .299 0 .739 0 .794 O. 812 0 .781 0 .620 0.076 112 117 109 73 - 7 5 .43E-05 3 .l2E-05 6 .81E-05
MDA-MB-231/ATCC 0 .322 0 .937 0 .923 0 .889 o. 839 0 .666 -0.003 98 92 84 56 100 .09E-05 2 .28E-05 4 .78E-05
HS 578T 0 .106 0 .466 0 .464 0 .466 0 483 0 .374 0.055 99 100 105 74 -49 .58E-05 4 .02E-05 >1 .00E-04
MDA-MB·435 0 .279 0 .952 0 .860 O. 941 0 .915 0 .770 0.013 86 98 94 73 -95 37E-05 2 .71E-05 5 .38E-05
MDA-N 0 .352 1 .246 1 .233 1 .292 1 .397 1. 154 0.031 99 105 117 90 -91 .66E-05 3 .l3E-05 5 .91E-05
BT-549 0 .502 1 .099 1 .098 1 .127 1 077 O. 912 0.036 100 105 96 69 - 9 3 .30E-05 2 .66E-05 5 .42E-05
T-47D 0 .300 0 .716 0 .681 0 .688 0 .701 0 .574 0.153 92 93 96 66 -49 .37E-05 3 .73E-05 >1 .00E-04
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National Cancel' Institute Developmental Therapeutics Program NSC: D- 709765 -R / 1 IUnits: Molar SSPL: OB6ZIExp. ID:9907MD58-31

Mean Graphs Report Date: August 5,1999 Test Date: July 6,1999

PonelICell LIne Log,n G1S0 GISO Log'n TGI TGI Log n LCSO LCSO

Leukemia
CCRF-CEM -535 i- -4.69 10 -4.25
HL-6O<TB) -495 ·459 -4.22
K-562 -4.94 ·4.45' > ·4.00 ..
MOLT·4 -530 1- -468 ~ -4.10 •
SR ·4.89 > -4.00 - > ·4.00 ..

Non-Small Cell Lung Cancer ---.--------- -- - --.-- --.- --- .. ----- __ .. . __ __ .. _ . .. __ . __ - ._.__ .. __ .. ---- ._ .. __ . __ . __ ----.. --.-- ---- --.--.------ --.. --.--.--.-.--.---- .. --.. ----.--.. -- ----.---- .

AS49/ATCC -4.88 -455 -4.23
EKVX -4.93 -4.60 -4.27
HOP-62 -498 ·462 -4.26
NCI-H23 -4.84 • -453 ·4.22
NCI-H322M -4.96 -464 -432
NCI-H460 -4.98 -463 -429
NCI-H522 -501 -465 -430

Colon Cancer .--.-- -- --.---.. -- -- --.--.. -.--.-- _ __ . __ . .. _ __ __ __ .. __ _ __ __ -- ------ ------ -- -- --------.--.-- -- --.-- -- ----.. -- ----.---- .
COLO 205 -513 i'" -4.69 ~ .435
HCC-2998 ·507 ~ -468 -434
HCT·II6 -5.03 -467 -4.33
HCf·15 -4.85 '-455 ·4.25
HT29 ·5.00 -466 -4.32
KM12 -4.87 .455 ·4.22
SW-620 -509 "-469 -434

CNS Cancer .--.-- -------- ----- ---- --- .. -- ----.--- -- --------- -.. -- -- --.. - -- -----.- --.. - -- --.---- -.. -.--.. -- .. -- .---- -- _.. . __ .. _ -------.. ------------ ----.. -.. ---- - ---.. -- -- -------- ..
SF-268 -486 ·451 -4.17
SF-295 -4.93 -458 ·423
SF-539 ·519 III -473 10 ·436
SNB·19 .495 -4.61 -4.26
SNB-75 -4.84 -453 -4.23
U251 -4.96 -464 -4.32

Melanoma -- -.....................................................................•...............................................................................•......

MALME·3M -471 -445 • -4.20
MI4 ·480 • -451 ·4.23
SK-MEL-2 -4.85 -4.56 -4.27
SK·MEL-28 ·4.80 • -453 -4.25
SK·MEL-5 -4.91 ·4.60 ·4.30
UACC-257 -4.82 • -4.51 -4.21
UACC·62 -483 • -454 -4.25

OvarianCancer ..•.....•...........•....... _ - " ....•... - - - ' .....•.. "'-' ...•...•.................. ,•........... -......•.... -........•........•....••..............•...•....•....••...•..........••.•••....•.•-....•••...•......••..•.....•.....•.••....•...... '" .
OVCAR-3 -4.88 ·453 -4.19
OVCAR-4 -4.85 -4.48 -4.11.
OVCAR-5 ·454 ·4.26
SK-OV-3 -4.96 ·4.62 ·4.27

Renal Cancer -- - --.. -- --.-- -- --- -- - -.. -- --.. ----.--.. -- --' -- -.-- -- -- -- -- -- -- -- -- -- -- -- ..
786·0 -494 -462 -4.30
A498 -4.88 -458 ·4.29
ACHN -5.00 -467 I. ·4.33
CAKI-I -506 io -4.67 -4.32
RXF 393 -499 -463 -4.28
SN12C -516 "'" -467 Ii -4.28
TK·lO ·494 -4.61 -4.31
UO·31 -506 io -465 .428

Prostate Cancer ..

PC·3 ·4.90 -4.59 -4.29
OU·145 -4.84 ·456 ·4.28

Breast Cancer - __ _ - - .

MCF7 -4.95 -4.63 ·4.31
NCI/ADR·RES ·4.84 -451 -417
MDA·MB·23I IATCC -4.96 -4.64 ·4.32
HS 57ST -4.80 • -4.40 • > ·4.00 ...
MDA-MB·435 ·4.86 -4.57 ·4.27
MDA-N ·4.78 • -4.50 ·4.23
BT-549 -4.89 ·4.58 ·4.27
T·.70 -4.86 ·4.43. > ·4.00 -

..............................- - .
MG_MlD -4.94 ·4.58 -4.25
0e1111 041 I-m 015 Po 0.12 '"

Range 0.65 I 1 I ..10- I I I 0.73 I I I _10 I I I 0.36 I I -10 1 I I

+3 +2 +1 0 -I ·2·3 +3 +2 +1 0 ·1 ·2·3 +3 +2 +1 0 ·1 ·2 .J
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709766 -S I 1 Experiment ID: 9907MD59-21 Test Type: 08 Units: Molar

Report Date: August 6, 1999 Test Date: July 12, 1999 QNS: MC:

COMI: NU:UB 31 Stain Reagent: SRB Dua1-P SSPL: OB6Z

Log10 concentration
Time Mean Optical Densit.ies Percent Growth

Panel/Cell Line Zero Ctrl -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

CCRF-CEM 0.300 0.776 0.841 0.816 0.769 0.284 0.083 114 108 99 -6 -72 2.93E-06 8.85E-06 4.63E-05
HL-60ITBI 0.939 2.432 2.420 2.778 2.252 1.808 0.200 99 123 88 58 -79 1.15E-05 2.66E-05 6.17E-05
K-562 0.157 0.916 0.934 0.939 0.890 0.083 0.028 102 103 97 -47 -82 2.11E-06 4.70E-06 1.21E-05
MOLT-4 0.423 1. 390 1. 382 1. 437 1.378 0.411 0.063 99 105 99 -3 -85 3.02E-06 9.38E-06 3.742-05
SR 1.084 2.934 2.930 2.985 2.998 1.136 0.247 100 103 103 3 -77 3.40E-06 1.08E-05 4.57E-05

Non-Small Cell Lung Cancer
A549/ATCC 0.272 1. 342 1.365 1. 374 1.314 0.720 0.026 102 103 97 42 -90 7.14E-06 2.07E-05 4·95E-05
EKVX 0.307 0.761 0.771 0.751 0.717 0.537 0.013 102 98 90 51 -96 1.01E-05 2.21E-05 4.86E-05
HOP-62 0.362 0.815 0.829 0.812 0.781 0.529 0.051 103 99 92 37 -86 5.79E-06 1.99E-05 5.102-05
HOP-92 0.506 0.763 0.751 0.731 0.728 0.569 0.057 95 87 86 25 -89 3.87E-06 1.65E-05 4.542-05
NCI-H226 0.788 0.987 1.000 1.022 1.017 0.781 0.081 107 118 115 -1 -90 3.65E-06 9.81E-06 3.51E-05
NCI-H23 0.291 0.877 0.902 0.934 0.889 0.614 0.028 104 110 102 55 -91 1.08E-05 2.39E-05 5.27E-05
NCI-H460 0.341 1.989 2.019 1.912 1.981 0.788 0.075 102 95 100 27 -78 4.83E-06 1.81E-05 5.4-2E-05
NCI-H522 0.267 0.811 0.825 0.853 0.837 0.441 0.024 103 108 105 32 -91 5.66E-06 1.82E-05 4.63E-05

Colon Cancer
COLO 205 0.553 1.568 1. 612 1.637 1.551 0 .682 0.027 104 107 98 13 -95 3.66E-06 1. 31E-05 3.81E-05
HCC-2998 0.333 0.889 0.900 0.913 0.896 0 .487 0.087 102 104 101 28 -74 4.96E-06 1.87E-05 5.802-05
HCT-116 0.119 0.991 0.948 0.929 0.938 O. 218 0.002 95 93 94 11 -98 3.40E-06 1.27E-05 3. 63E-05
HCT-15 0.084 0.493 0.523 0.523 0.508 O. 143 0.003 107 107 104 14 -97 4.00E-06 1.35E-05 3.79&:-05
HT29 0.381 1. 555 1.581 1. 495 1.526 0 .492 0.029 102 95 98 9 -93 3.46E-06 1.24E-05 3.83E-05
KM12 0.279 1.027 1.030 0.936 0.957 O. 486 0.029 100 88 91 28 -90 4.41E-06 1.72E-05 4.582-05
SW-620 0.081 0.497 0.475 0.511 0.456 O. 176 0.043 95 103 90 23 -48 3.94E-06 2.11E-05 >1.002-04

CNS Cancer
SF-268 0.251 1.025 1. 043 1 .047 1 .043 0 .729 0.085 102 103 102 62 -66 1.23E-05 3.03E-05 7.452-05
SF-295 0.622 1.767 1.829 1 .816 1 .721 1 .146 0.076 105 104 96 46 -88 8.22E-06 2.20E-05 5.21E-05
SNB-19 0.387 1.080 1. 067 1 .058 1 .036 0 .665 0.014 98 97 94 40 -97 6.53E-06 1.97E-05 4.572-05
SNB-75 0.418 0.615 0.660 0 .668 0 .651 0 .476 0.205 123 127 118 29 - 51 5.84E-06 2.31E-05 9.702-05
U251 0.268 1. 377 1. 304 1. 342 1. 308 O. 807 0.013 93 97 94 49 -95 9.31E-06 2.18E-05 4.85E-05

Melanoma
[,OX IMVI 0.226 1.160 1.136 1. 146 1.081 0.100 0.023 97 98 92 -56 -90 1.91E-06 4.18E-06 9.142-06
HALME-3M 0.319 0.795 0.822 0 .811 0.816 0.667 0.031 106 103 104 73 -90 1.39E-05 2.80E-05 5.672-05
M14 0.402 1.514 1. 484 1 .408 1.472 0.137 0.043 97 90 96 -66 -89 1.93E-06 3.92E-06 7.962-06
SK-MEL-28 0.220 0.705 0.693 0 717 0.674 0.148 0.038 97 102 94 -33 -83 2.21E-06 5.49E-06 2.19B-05
SK-HEL-5 0.703 1. 609 1. 653 1 .669 1.610 0.898 105 107 100 21 -100 4.34E-06 1.50E-05 3.88E-05
UACC-257 0.615 1.520 1.568 1 .497 1.559 0.491 0.096 105 97 104 -20 -84 2.73E-06 6.89E-06 2.91E-05
UACC-62 0.457 1. 603 1.587 1 .484 1.609 0.349 0.017 99 90 101 -24 -96 2.55E-06 6.45E-06 2.312-05

Ovarian Cancer
IGROV1 0.279 0.952 0.930 0 .896 0 .832 0 .449 0.007 97 92 82 25 -97 3.67E-06 1.61E-05 4.102-05
OVCAR-3 0.534 0.815 0.808 0 .822 O. 774 O. 525 0.072 97 102 85 -2 -87 2.54E-06 9.56E-06 3.712-05
OVCAR-4 0.510 1.231 1.212 1 .244 1 .111 0 .736 0.037 97 102 83 31 -93 4.37E-06 1.79E-05 4.522-05
OVCAR-5 0.596 1. 300 1. 337 1 .341 1. 315 O. 974 0.015 105 106 102 54 -97 1.06E-05 2.27E-05 4.85E-05
OVCAR-8 0.230 0.755 0.753 0 .729 0 .727 0 .395 0.019 100 95 95 31 -92 5.08E-06 1.80E-05 4.57E-05
SK-OV-3 0.356 0.790 0.761 a .766 0 .753 O. 564 0.052 93 94 91 48 -85 8.90E-06 2.28E-05 5.42E-05

Renal Cancer
786-0 0.429 1.712 1.689 .707 1 .654 .904 0.012 98 100 95 37 -97 5.99E-06 1.89E-05 4.45E-05
A498 0.991 1.665 1.634 .648 1 .624 1.308 0.095 95 97 94 47 -90 8.63E-06 2.20E-05 5.08E-05
ACtiN 0.341 1. 273 1.270 1.260 1 .186 0.582 -0.003 100 99 91 26 -100 4.23E-06 1.60E-05 4.00E-05
CAR1-l 0.413 1.112 1.052 1.055 1 .021 0.752 0.015 91 92 87 48 -96 9.11E-06 2.16E-05 4.78E-05
RXF 393 0.583 1.244 1.242 1.184 1 .152 0.802 0.196 100 91 86 33 -66 4.79E-06 2.15E-05 6.84E-05
SNl2C 0.302 0.931 1.002 0.940 O. 941 0.511 0.009 111 101 102 33 -97 5.69E-06 1.80E-05 4.36E-05
TK-10 0.520 1.308 1.324 1.287 1.396 0.901 0.092 102 97 111 48 -82 9.41E-06 2.34E-05 5.652-05
UO-31 0.526 1. 220 1. 238 1. 205 1.147 0.627 0.016 103 98 90 14 -97 3.36E-06 1. 35E-05 3.79E-05

prostate Cancer
PC-3 0 .293 0.977 0.986 1 .008 a .948 a .538 0.011 101 104 96 36 -96 5.80E-06 1.87E-05 4.46E-05
DU-145 0 .265 0.790 0.800 0 .774 0 .779 0 .466 0.059 102 97 98 38 -78 6.35E-06 2.14E-05 5.76E-05

Breast Cancer
MCF7 0 .316 1. 590 1.581 1 .490 1 .557 a .793 0.059 99 92 97 37 -81 6.17E-06 2.06E-05 5.44E-05
NCI/ADR-RES 0 .282 0.759 0.773 a .800 a .785 a .488 0.057 103 109 106 43 -80 7.76E-06 2.24E-05 5.72E-05
MDA-MB- 231/ ATCC a .391 0.888 0.909 a .924 0 839 0 .548 0.060 104 107 90 32 -85 4.84E-06 1.87E-05 5.03E-05
HS 578T 0 .225 0.850 0.890 0 .879 0 .877 a .691 0.165 106 105 104 74 -27 1.75E-05 5.45E-05 >1.00E-04
MDA-MB-435 O. 297 1.132 1.080 1. 100 1 .067 a .483 0.026 94 96 92 22 -91 4.01E-06 1.57E-05 4.32E-05
MDA-N 0.691 2.289 2.406 2 .517 2 .470 1 .773 0.012 107 114 111 68 -98 1.28E-05 2.56E-05 5.12E-05
BT-549 0.304 0.723 0.760 O. 750 O. 734 0.560 0.018 109 107 103 61 -94 1.18E-05 2.48E-05 5.19E-05
T-47D 0.433 0.999 1. 006 0 .969 0 .938 0.795 0.226 101 95 89 64 -48 1. 33E-05 3.73E-05 >1.00E-04
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National Cancer Institute Developmental Therapeutics Program NBC: 0- 709766 -5/ 1 . Units: Molar BSPL: OB6Z Exp, lD:9907MD59-21

Mean Graphs Report Date: August 6, 1999 Test Date: July 12, 1999

PnneVCell Line Log I G1S0 GISO Log ,TGI TGI Log LCSO LCSO

Leukemia
CCRF·CEM -553 -505 ·433
HL·6O(TB) ·494 -4.58 ·421
K·562 -5_68 ·533 -4.92
MOLT-4 -552 ·503 -4.43
SR -547 -497 ·4.34

Non-Small Cell Lung Cancer ............................................................. ............................................. ........-......................................-............. ..............._.............-....._~.....
A5491ATCC -515 ·4.68 ·431
EKVX ·500 ·4.66 ·431
HOP·62 ·5.24 ·470 ·4_29
HOP·92 -541 ·478 ·4.34
NCI·H226 -5.44 ·5.01 -4.45
NCl·H23 ·4.97 -462 ·4.28
NCI·H460 -532 -4.74 ·4.27
NCI-H522 -525 -4.74 -433

Colon Cancer ir·········:;·~~······································ ..... ............................................. ............................................................. ............-................................ .••••••••••••••••••••..•••••...•..•••••••••••••••••1.•••••••• • ••••••••••••••••••••••••••••••••••••••• u ..

COLO 205 -488 -4.42
HCC·2998 -530 -473 -4.24
HCT·1I6 -547 -490 -4.44
HCT·15 ·540 ·487 -4.42
HT29 ·546 -491 -4.42
KM12 -536 ·476 -434
SW·620 -5.40 ·468 .> -4.00

CNS Cancer .......................... -_........................................ ............. -............. -.........
SF-268 ·4.91 -4.52 ·413
SF·295 ·5.09 ·466 ·428
SNB-19 -519 -471 -434
SNB· 75 -523 -464 -401
U251 -5.03 ·466 -431

Melanoma .............................. .................................. ............................................................. ...........................................
LOXIMVI -5.72 -538 -5.04
MALME-3M ·486 -455 -4_25
MI4 ·571 -541 -5.10
SK-MEL-28 -5.66 -526 -4.66
SK-MEL-5 -5.36 -482 -4.41 ,
UACC·257 -556 -5.16 -454
UACC-62 -5.59 -519 -4.64

Ovarian Cancer ............................................................ ............................................. ............................................................. ............................................. ............................................................. ...........................................
(GROVI ·5.44 -4.79 -4.39
OVCAR-3 -560 ·5.02 -443
OVCAR-4 ·536 -4.75 -4.34
OVCAR-5 ·4.97 -464 -431
OVCAR·8 ·529 ·4.74 -4.34
SK-OV·3 ·505 -464 ·4.27

RenalCancer ............................................................. ............................................. ............................................................. ............................................. ............................................................. ...........................................
786-0 -522 -4.72 -4.35
A498 -5.06 -4.66 ·4.29
ACHN -537 -480 ·440
CAKI·I ·5.04 ·467 -432
RXF 393 ·5.32 ·467 -4.16
SNI2C -5.24 ·4.74 -4.36
TK·IO ·5.03 -4.63 -4.25
UO-31 -547 -4.87 -4.42

ProstateCancer ........................ ................................ ... ............................................. ............................. ............................... ............................................. ............................................................. ......................................._..
PC·3 -5 24 ·473 -4.35
DU-145 ·520 -467 ·4.24

BreastCuncer ............................................................. ............................................. ............................ ................................ ............................................. ............................................................. ..........................--..~............
MCF7 -521 -4_69 -4.26
NCUADR·RES ·5.11 -465 -4.24
MDA·MB·23IIATeC -532 -4.73 -4.30
HS578T ·476 -4.26 ~ ·4.00
MDA·MB·435 ·5.40 ·4.80 -4.36
MDA·N ·4.89 -459 -4.29
BT·549 ·493 ·4.61 ·4.28
T...nD -4.88 -4.43 ~ -4.00

MG_MID -5.27 ·4.79 -4_35

Della 045 0.62 0.75
Range 0.96 1.14 1.10

+3 +2 +\ 0 .\ ·2 +3 +2 +\ 0 .\ ·2 ·3 +2 +\ 0 .\ .2' .J
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709778 -H I 1 Experiment ID~ 9908RM73-52 Test Type: 08 Units: Molar

Report Date: October 7, 1999 Test Date: August 30, 1999 QNS: MC:

COM!: NU:UB 43 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 Concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero Ctr1 - 8 .0 - 7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 ·4.0 GI50 TGI LC50
Leukemia

K-562 0.076 0 .472 .496 0 .462 0 .294 0.233 0.188 106 97 55 39 28 2 .08E-06 >1 .00E-04 >1.00E-04
MOLT-4 0.282 1 .050 .024 0 .944 O. 581 0.370 0.291 97 86 39 11 1 5 .83E-07 >1 .00E-04 >1. 00E-04
RPMI-8226 0.176 0 .785 .630 0 .491 0 .353 0.322 0.250 74 52 29 24 12 1 .19E-07 >1 .00E-04 >1.00E-04

Non-Small Cell Lung Cancer
A549/ATCC 0.148 1 .285 1 309 1 .320 1 .314 0.566 -0.007 102 103 103 37 -100 .28E-06 1 .86E-05 4.31E-05
EKVX 0.369 0.892 0 .876 O. 890 0 .870 0.679 -0.007 97 100 96 59 -100 .l4E-05 2 .36E-05 4.85E-05
HOP-62 0.285 0.551 0 .535 0 .587 0 .561 0.275 0.040 94 114 104 -4 -86 .17E-06 9 .24E-06 3.66E-05
HOP- 92 0.219 1.006 1 .004 0 .972 0 .979 0.835 0.038 100 96 97 78 -83 1.50E-05 3.06E-05 6.25E-05
NCI-H23 0.464 1.311 1 .320 1 .315 1 .301 1. 031 0.042 101 100 99 67 -91 1.28E-05 2.65E-05 5.50E-05
NCI-H322M 0.378 1.005 1 .026 1 .048 1 .016 0.352 -0.018 103 107 102 -7 -100 2.99E-06 8.62E-06 2.90E-05
NCI-H460 0.232 1.517 1 .590 1 .442 1 .414 0.120 0.019 106 94 92 - 48 -92 1.99E-06 4.53E-06 1.10E-05
NCI-H522 0_309 0.920 0 .942 0 .952 0 .967 0.494 0.001 103 105 108 30 -100 5.55E-06 1. 71E- 05 4.l4E-05

Colon Cancer
COLO 205 0 .396 1.586 1 .661 1 .387 1 .530 0.025 -0.001 106 83 95 -94 -100 1.74E-06 .19E-06 5.87E-06
HCC-2998 O. 369 0.983 1 .001 1. 014 0 .928 0.029 0.017 103 105 91 -92 -95 1.67E-06 3.l4E-06 5.88E-06
HCT-116 0 .145 1.250 1 .064 1 .153 1 .026 0.070 -0.012 83 91 80 -52 100 1.68E-06 4.04E-06 9.70E-06
HCT-15 0 .281 1.661 1 .691 1 .724 1 .642 0.201 0.009 102 105 99 -29 -97 2.41E-06 5.96E-06 2.05E-05
HT29 O. 163 0.963 0 .954 0 .976 0 .947 0.121 -0.012 99 102 98 -26 -100 2.44E-06 6.16E-06 2.11E-05
KM12 0.278 1.547 1 .519 1 .541 1 .526 0.488 0.096 98 100 98 17 -66 3.90E-06 1.59E-05 6.45E-05
SW-620 0.118 0.515 0 .477 0 .554 O. 527 0.153 0.029 90 110 103 9 -75 3.66E-06 1. 27E-05 4.99E-05

eNS Cancer
SF-268 0 .376 .473 1.519 1 .508 1 .481 1.027 0.049 104 103 101 59 -87 1.l6E-05 2 .54E-05 5 .59E-05
SF-295 0 .588 .379 1. 393 1 .435 1 .364 0.352 0.031 102 107 98 -40 -95 2.23E-06 5 .12E-06 1. 51E-05
SF-539 0 .269 .430 0.408 0 .379 0 .381 0.004 -0.005 87 69 70 -99 -100 1.31E-06 2 .60E-OG 5 .15E-06
SNB-19 0 .279 1. 314 1. 310 1 .294 1.280 0.644 -0.009 100 98 97 35 ·100 5.75E-06 1 .82E-05 4.27E-05
SNB-·75 0 .245 0.543 0.511 O. 519 0.485 0.391 0.037 89 92 80 49 -85 9.29E-06 2 .32E-05 5.49E-05
U251 0 .212 0.978 1. 019 1 .033 0.955 0.261 0.009 105 107 97 6 -96 3.30E-06 1 .15E-05 3.55E-05

Melanoma
LOX IMVI 0.145 1.449 .439 .456 1.436 0.065 0 .061 99 100 99 -55 -58 2.08E-06 .39E-06 9.26E-06
MALME-3M 0.489 1.142 .153 .178 1.200 0.883 0.007 102 106 109 60 -99 1.l6E-05 2.39E-05 4.94E-05
Ml4 o. 543 2.067 2.082 .151 2.043 0.058 -0.008 101 105 98 -89 -100 1.81E-06 3.34E-06 6.17E-06
SK-MEL-2 0.615 1.248 1. 261 .329 1.219 0.232 0.014 102 113 95 -62 -98 1.94E-OG 4.03E-OG 8.36E-06
SK-MEL-28 0.464 1.116 1.114 .140 1.123 0.139 0.031 100 104 101 -70 -93 1.99E-06 3.89E-OG 7.G3E-OG
SK-MEL-5 0.425 1.516 1. 469 .367 1.549 0.091 -0.006 96 86 103 -79 -100 1.96E-06 3.69E-OG 6.95E-06
UACC-257 0.665 1.501 1.509 1. 474 1.411 0.054 0.009 101 97 89 -92 -99 1.65E-06 3.11E-06 5.87E-OG
UACC-62 o . 543 1. 631 1. 660 1.650 1.681 0.073 0.022 103 102 105 -87 -96 1.93E-06 3.52E-06 6.43E-06

Ovarian Cancer
IGROV1 0 .123 1 .168 .180 .154 1 .150 0 .792 .016 101 99 98 64 -87 .24E-05 2.65E-05 5.G9E-05
OVCAR-3 0 .482 0 .752 .737 .771 0 .745 0.379 0.031 94 107 97 -21 -94 2.50E-06 6.60E-06 2.48E-05
OVCAR-4 0.446 1 .424 .375 .366 1 .334 0.995 0.041 95 94 91 56 -91 1.10E-05 2.41E-05 5.28E-05
OVCAR-5 0.463 1 .144 .137 .175 1 .146 0.767 -0.008 99 105 100 45 -100 8.01E-06 2.04E-05 4.51E-05
OVCAR-8 0.116 0 .931 .956 .966 0 .953 0.433 0.041 103 104 103 39 -65 6.70E-06 2.37E-05 7.22E-05
SK-OV-3 0.436 0 .736 .716 .738 0 .683 0.513 0.024 93 101 82 26 -94 3.72E-06 1.64E-05 4.26E-05

Renal Cancer
A498 0.535 .357 .351 1 .310 1 .308 0 .472 0.055 99 94 94 -12 -90 2.61E-06 7.74E-06 3.09E-05
ACHN 0.386 .532 .538 1 .509 1 .491 0 .840 0.036 100 98 96 40 -91 6.55E-06 2.01E-05 4.87E-05
CAKI-l 0.389 .868 .817 1 .794 1 .757 0.835 0.057 97 95 92 30 -85 4.80E-06 1.82E-05 4.94E-05
RXF 393 0.435 .110 .088 1 .087 1 .057 0.446 0.090 97 96 92 2 -79 2.92E-06 1.05E-05 4.33E-05
SN12C 0.440 .000 .902 0 .866 0 .886 0.557 -0.005 83 76 80 21 100 3.19E-06 1. 49E-05 3.86E-05
TK-10 o .631 .361 1.340 1 .223 1 .247 0.981 0.012 97 81 84 48 -98 8.75E-06 2.13E-05 4.68E-05
UO-31 0.159 .744 0.671 0 .748 0 .787 0.057 -0.003 88 101 107 -64 -100 2.16E-06 4.22E-06 8.24E-06

Prostate Cancer
PC-3 .192 .959 .985 .021 o. 904 0 .470 0.003 103 108 93 36 -98 .72E-06 .86E-05 4.37E-05
DU-l45 .236 039 .050 .040 1 .062 0 .739 0.026 101 100 103 63 -89 .21E-05 .59E-05 5.53E-05

Breast Cancer
MCF7 0 .233 1.141 1 .148 1 .079 1 .164 0 .583 0 .053 101 93 103 39 -77 6 .62E-06 2.15E-05 5.82E-05
NCI/ADR-RES 0 .419 1.081 1 .189 1 .206 1 .136 0 .794 0 .210 116 119 108 57 -50 1 .l6E-05 3.40E-05 >1. 00E-04
MDA-MB-231/ATCC 0 .433 0.954 0 .912 0 .968 0 .922 0 .548 0 .021 92 103 94 22 -95 4 .07E-06 1.54E-05 4.11E-05
HS 578T 0 .585 1.380 1 .421 1 .394 1 .380 0.988 O. 116 105 102 100 51 80 1 .01E-05 2.44E-05 5.87E-05
MDA-MB-435 0 .332 1.578 1 .513 1 .569 1. 572 0.261 0 .070 95 99 99 -21 ·79 2 .57E-06 6.65E-06 3.13E-05
MDA-N 0 .210 0.904 0 .907 0 .904 0 .877 0.053 -0 .013 101 100 96 -75 -100 1 .86E·06 3.64E-06 7.14E-06
BT- 54 9 0 .640 1.475 1 .515 1 .520 1 .536 1.280 0 .037 105 105 107 77 -94 1 .43E-05 2.81E-05 5.51E-05
T-47D 0 .379 1.003 0 .995 0 971 0 .956 0.727 O. 113 99 95 92 56 -70 1. llE-05 2.77E-05 6.91E-05
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Mean Graphs Report Date: October 7, 1999 Test Date: August 3Q, 1999 -
Panel/Cell Lin. Log. GISO GI56 Log II TGI TGI Log 0 LCSO LCSO

.
Leukemia

K-562 -568 > -4.00 '> -4.00
MOLT-4 -623 > -4.00 > -4.00
RPMI-8226 -692 .> -4.00 > -4.00

'von-Small Cell LungCancer .. - ......................................

A5491ATCC ·520 -473 -4.37
EKVX -494 -463 -431
HOP-61 -550 -5.03 -4.44
HOP-92 -482 -451 -4.10
:-<Cl-I{13 ·489 -458 -4.26
NCI-H321M -5.52 -5.06 -454
NCI-H460 -570 -5.34 -496
NCI-H522 -526 -477 -4.38

Colon Cancel ........... ...... ...........

COLO 105 -576 -550 -523
HCC-2998 ·578 -550 -523
HCT-116 -577 -5.39 -5.01
HCT-15 -562 -5.22 -4.69
HT29 -561 -52\ -468
KMll -541 -480 -4.19
SW-620 -544 -4.90 -4.30

eNS Cancer
SF-268 -494 -4.60 -4.15
SF-195 -565 -5.29 -482
SF·539 ·588 -559 -529
SNB-19 -5 24 -4.74 -437
SNB-75 -503 -4.63 -426
U151 -548 -4.94 -4.45

Mcl.nunna .............

LOX IMVI -568 -536 -503
MALME-3M -4.94 -4.61 -431
MI4 -574 -548 -511
SK-MEL-2 -571 -539 -508
SK-MEL-28 -570 -5.41 -5.11
SK-MEL-5 -5 71 -5.43 -5.16
UACC-257 -578 -5.51 -513
UACC-62 -571 -5.45 -519

Ovarian Cancer ...........................

IGROVI -4.91 -4.58 -4.24
OVCAR-3 -560 -5.18 -4.61
OVCAR-4 -4.96 -4.62 -4.28
OVCAR-5 -5\0 -4.69 -4.35
OVCAR-8 -517 -463 -4.14
SK-OV-3 -5.43 -4.79 -437

Rena!Cancer .. - ...................... ..... . ......... - ..... - ........ - ..... ..................... -

A498 -558 -5 II -4.51
ACHN -5.18 -4.70 -4.31
CAKI-I -5.32 -4.74 -4.31
RXF 393 -5.53 -498 -4.36
SNI2C -550 -483 -4.41
TK·1O -5.06 -467 -433
UO-31 -567 -5.37 -5.08

Prosrarc Cancer .....................

Pc. 3 -5.24 -473 -4.36
DU-145 -492 -4.59 -4.26

Breast Cancer ..............................

MCF7 -5.18 -4.67 -4.24
NCIIADR-RES -4.94 -4.47 '> -4.00
MDA-MB-231IATCC -539 -48\ -4.39
HS 57ST -500 -4.61 -4.23
MDA-MB-435 -5.59 -518 -4.50
MDA-N -573 -5.44 -5.15
BT-549 -484 -455 -4.26
T-47D -495 -456 -4.16

..................................

MG_MID -542 -4.91 -4.53
Dell<l 1.51 0.67 0.75
Range 210 159 129
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709767 -T I 1 Experiment In: 9907MD59-22 Test Type: 08 Units: Molar
~

Report Date: August 6, 1999 Test Date: July 12, 1999 QNS: MC:

COMI: NU:UB 44 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero Ctrl - 8. ,0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

CCRF-CEM 0.300 0.776 0.701 0.738 0.683 0.250 0.115 84 92 80 -17 -62 2.05E-06 6.71E-06 5.49E-05
HL-60(TBI 0.939 2.432 2.349 2.526 1.667 1. 232 0.202 94 106 49 20 -79 9.52E-07 1.58E-05 5.12E-05
K-562 0.157 0.916 0.884 0.865 0.860 0.180 0.050 96 93 93 3 -68 2.99E-06 1.10E-05 5.52E-05
MOLT-4 0.423 1. 390 1.415 1. 383 1. 375 0.412 0.102 103 99 98 -3 -76 3.01E-06 9.40E-06 4.43E-05
SR 1.084 2.934 2.954 2.864 2.969 1.148 0.411 101 96 102 3 -62 3.37E-06 1.13E- 05 6.53E-05

Non - Sntall Cell Lung Cancer
A549/ATCC 0.272 1.342 1.411 1.375 1. 312 0.641 0.027 106 103 97 35 -90 5.66E-06 1.89E-05 4.76E-05
EKVX 0.307 0.761 0.750 0.749 0.754 0.494 0.008 97 97 98 41 -97 6.98E-06 1.98E-05 4.55E-05
HOP-62 0.362 0.815 0.778 0.811 0.830 0.537 0.048 92 99 103 39 -87 6.67E-06 2.03E-05 5.08B-05
HOP-92 0.506 0.763 0.789 0.760 0.757 0.695 0.087 110 99 98 73 -83 1.41E-05 2.95E-05 6.16E-05
NCI-H226 0.788 0.987 0.999 1.011 1.079 0.895 0.228 106 112 146 54 -71 1.07E-05 2.69E-05 6.77B-05
NCI-H23 0.291 0.877 0.860 0.847 0.817 0.529 0.036 97 95 90 41 -88 6.44E-06 2.07E-05 5.09E-05
NCI-H460 0.341 1.989 1.896 1.990 1.925 0.555 0.087 94 100 96 13 -74 3.58E-06 1.41E-05 5.25E-05
NCI-H522 0.267 0.811 0.816 0.808 0.807 0.472 0.025 101 99 99 38 -91 6.29E-06 1.96E-05 4.82E-05

Colon Cancer
COLO 205 0.553 1.568 1. 593 1.574 1. 639 0.310 0.046 102 101 107 -44 -92 2.38E-06 5.11E-06 1.34E-05
HCC-2998 0.333 0.889 0.820 0.845 0.705 0.244 0.056 87 92 67 -27 -83 1.5lE-06 5.18E-06 2.58E-05
HCT-116 0.119 0.991 1.007 1.001 1.024 0.205 -0.001 102 101 104 10 -100 3.73E-06 1.23E-05 3.50E-05
HCT-15 0.084 0.493 0.488 0.482 0.473 0.119 0.014 99 97 95 9 -83 3.32E-06 1. 24E-05 4.34E-05
HT29 0.381 1.555 1.591 1.541 1.588 0.355 0.038 103 99 103 -7 -90 3.03E-06 8.66E-06 3.30E-05
KM12 0.279 1.027 1.024 1.092 1. 028 0.364 0.090 100 109 100 11 -68 3.67E-06 1.39E-05 5.94E-05
SW-620 0.081 0.497 0.505 0.487 0.492 0.179 0.053 102 98 99 23 35 4.45E-06 2.51E-05 >1.00E-04

CNS Cancer
SF-268 0.251 1 .025 1 .053 1 .026 0.987 0.785 0.090 104 100 95 69 -64 1 .39E-05 3 .30E-05 7.83E-05
SP'-295 0.622 1 .767 1. 691 1. 728 1. 602 0.864 0.042 93 97 86 21 -93 3 .56E-06 1.53E-05 4.19E-05
SNB-19 0.387 1 .080 1 .135 1 .111 1.117 0.477 0.029 108 104 105 13 -93 3 .97E-06 1.33E-05 3.95E-05
SNB-75 0.418 0 .615 0 .630 0 .616 0.624 0.497 0.058 107 101 105 40 -86 7 .02E-06 2.08E-05 5.17E-05
U251 0.268 1 .377 1 .197 1 .311 1.333 0.610 0.039 84 94 96 31 -86 5 .08E-06 1.84E-05 4.94E-05

Melanonta
LOX IMVI 0.226 1 .160 1 .185 .148 1.104 0 .216 0 .020 103 99 94 -4 -91 .80E-06 9 .02E-06 3.34E-05
MALME-3M 0.319 0 .795 O. 827 0.820 0.735 0 .229 0 .059 107 105 87 -28 -82 .10E-06 5 .70E-06 2.56E-05
M14 0.402 1 .514 1. 449 1. 480 1.363 0 .619 0 .023 94 97 86 19 -94 .50E-06 1 .48E-05 4.08E-05
SK-MEL-28 0.220 0 .705 0.689 0.701 0.730 0 .517 0 .048 97 99 105 61 -78 .20E-05 2 .75E-05 6.28E-05
SK-MEL-5 0.703 1 .609 1. 631 1.626 1.219 0 .139 0 .021 102 102 57 -80 -97 .12E-06 2 .60E-06 6.02E-06
UACC·257 0.615 1 .520 1. 470 1.504 1.495 1 .112 0 .057 95 98 97 55 -91 .08E-05 2 .38E-05 5.25E-05
UACC-62 0.457 1 .603 1. 461 1.631 1.612 0 .784 0 .048 88 102 101 29 -90 .05E-06 1 .74E-05 4.62E-05

ovarian Cancer
IGROVI 0 .279 0.952 0 .947 .927 0 .872 .492 0 .021 99 96 88 32 -93 4 . 72E· 06 1.80E-05 4.54E-05
OVCAR-3 0.534 0.815 0 .772 .795 0 .756 0.386 0 .038 85 93 79 ·28 -93 1. 86E-06 5.49E-06 2.20E-05
OVCAR-4 0.510 1. 231 1 .169 .187 1 .155 0.907 0 .114 91 94 89 55 -78 1 .09E-05 2.60E-05 6.18E-05
OVCAR-5 0.596 1. 300 1 .279 .259 1 .304 1.077 0 .002 97 94 101 68 ··100 1 .28E-05 2.55E-05 5.05E-05
OVCAR-8 0.230 0.755 0 .785 .810 0 .800 0.387 0 .011 106 110 109 30 -95 5. 56E-06 1.73E-05 4.34E-05
SK-OV-3 0.356 0.790 0 .714 .748 0 .693 0.589 0 .041 82 90 78 54 -88 1 .06E-05 2.38E-05 5.36E-05

Renal Cancer
786-0 0 .429 .712 1 .709 1 .723 1 .771 0.725 0 .021 100 101 105 23 - 9 5 4 .67E-06 .57E-05 4.15E-05
A498 0 .991 .665 1 .557 1 .644 1 .640 1.536 0 .156 84 97 96 81 -84 1 .54E-05 3.0n-05 6.20E-05
ACHN 0 .341 .273 1 .231 1 .276 1 .166 0.690 0 .003 95 100 88 37 -99 5 .66E-06 1.88E-05 4.36E-05
CAKI-l 0.413 .112 1 .141 1 .154 1 .173 0.766 0 .036 104 106 109 50 -91 1 .01E-05 2.27E-05 5.11E-05
RXF 393 0.583 .244 1 .251 1 .230 1 .204 0.928 0 .196 101 98 94 52 -66 1 .04E-05 2.76E-05 7.28E-05
SN12C 0.302 .931 0 .954 O. 979 0 .996 0.563 0 .004 104 108 110 41 -99 7 .51E-06 1.97E-05 4.49E-05
TK-I0 0.520 .308 1 .239 1 .348 1. 373 1.121 0 .045 91 105 108 76 -91 1 .43E-05 2.85E-05 5.66E-05
UO-31 0.526 220 1 .250 1 .258 1 .228 0.962 0 .014 104 105 101 63 -97 1 .20E-05 2.47E-05 5.06E-05

Prostate Cancer
PC-3 .293 0 .977 .917 .958 0 .942 .570 .026 91 97 95 40 -91 .68E-06 .03E-05 .86E-05
DU-145 .265 0 .790 .823 .822 0 .807 .472 .026 106 106 103 39 -90 .83E-06 .02E-05 .90E-05

Breast Cancer
MCF7 O. 316 1. 590 .437 1. 507 1. 459 O. 556 0 .091 88 93 90 19 - 71 .63E-06 1 .62E-05 5 .80E-05
NCI/ADR-RES 0 .282 0 .759 .769 0 .784 0.775 0 .588 0 .103 102 105 103 64 -64 .29E-05 3 .18E-05 7 .82E-05
MDA-MB-231/ ATCC 0 .391 0.888 .813 0 .841 0.817 0 .578 0 .070 85 90 86 38 82 .50E-06 2 .06E-05 5 .39E-05
HS 578T 0 .225 0.850 .889 0 .893 0.894 0 .630 0 .186 106 107 107 65 -17 .51E-05 6 .15E-05 >1 .00E-04
MDA-MB-435 0 .297 1.132 .110 1 .139 1.134 0 .230 0 .043 97 101 100 -23 -86 .56E-06 6 .53E-06 2 .72E-05
MDA-N 0 .691 2.289 .573 2 .435 2.419 0 .074 -0 .002 118 109 108 -89 -100 .97E-06 3 .53E-06 6. 32E-06
BT-549 O. 304 0.723 .729 0 .735 0.720 0 .595 0 .039 101 103 99 70 -87 .33E-05 2 .77E-05 5 . ?BE-OS
T-47D 0 .433 0.999 .979 1 .009 0.979 0 .876 0 .224 96 102 97 78 -48 .67E-05 4 .1GE-05 >1 .00E-04
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Na.tional Cancer Institute Developmental Therapeutics Program NSC: D- 709767 -T / 1 Units: Molar SSPL: OB6Z Exp. lD:9907MD59-22

Mean Graphs Report Date: August 6, 1999 Test Date: July 12,/1999

PnneVCen Line Log" GISO GISO Log" TGI TGi LogLCSO LeBO

Leukemia
CCRF-CEM ·569 ·517 -4.26
HL-60(TBJ -6.02 -480 -4.29
K-562 -552 ·4.96 -4.26
MOLT-4 ·552 -503 -4.35
SR -547 -495 -4.19

Non-Small Ceil LungCancer ....... - --"-"" - ................................ -- --_ ..................... --_ ........... ................................... - ............. - ......... . ............................................ ............................................................. ..••.••.•••.••••.•••• u •••.•..•.•••••••••••

A549/ATCC -525 ·4.72 -4.32
EKYX -5 16 -4.70 -4.34
HOP-62 -5 18 .4.69 -4.29
HOP-92 -4.85 -453 -4.21
NCI-H226 -4.97 -457 -4.17
NCI-H23 -519 -4.68 -4.29
NCI-H460 ·545 -4.85 -4.28
NCI-H522 -520 ·4.71 -4.32

ColonCancer
COLO 205 -562 -5.29 -4.87
HCC-2998 -582 -529 -4.59
HCT-116 -543 -4.91 -4.46
HCT-15 -548 -4.91 -436
HT29 -552 -5.06 -4.48
KMI2 -5.44 -4.86 -4.23
SW-620 -5.35 -4.60 > -400

CNS Cancer ......... . - ............ -.- ..... . ......... ............................................................. ............................................. ............................................................. ••••••••••••••••••••••••••••••••••••&.u •••

SF-268 -4.86 -448 -4.11
SF-295 ·545 -4.82 -4.38
SNB-19 -5.40 -488 -4.40
SNB-75 -515 -4.68 -4.29
U251 -529 -4.74 -4.31

Melanoma .......................... - ...................................._.. _- .... ......................... _................................... ............................................. ............................................................. .........................................
LOXIMYI -5.55 -5.04 -4.48
MALME-3M -568 -5.24 -4.59
MI4 -5.46 -4.83 -4.39
SK-MEL-28 -4.92 -4.56 -420
SK·MEL-5 ·595 -5.59 -522
UACC-257 -497 -4.62 -4.28
UACC-62 -5.30 -4.76 -4.34

Ovarian Cancer
IGROYI -533 -4.74 -4.34
OYCAR-3 -573 -526 -4.66
OYCAR-4 ·4.96 ·4.59 -4.21
OYCAR-5 -4.89 -4.59 -4.30
OVCAR-8 -525 -4.76 -4.36
SK-OY-3 -4.97 -4.62 -427

Renal Cancer ...... .•.•..... ......... ............................................................. ............................................. ............................................................. ...........................................
786-0 -5.33 -480 -4.38
A498 -4.81 ·4.51 -4.21
ACHN -525 -473 -4.36
CAKI-I -500 -464 -4.29
RXF 393 -498 ·456 -4.14
SNI2C ·512 -4.71 -4.35
TK-IO -484 -4.55 -4.25
UO-31 ·4.92 -4.61 -4.30

Prostate Cancer ................................................ ........................................ ............................................................. ............................................. ............................................................. ...................................--~
PC·3 ·518 -4.69 -4.31
DU-145 -517 -469 -4.31

BreastCancer ............................. - ............... - ............. ............................................. ............................................................. ............................................. ............................................................. .............................................
MCF7 -544 -479 -4.24
NCUADR-RES -4.89 -4.50 -4.11
MDA-MB-231/ATCC -526 -4.69 -4.27
HS 578T -482 -4.21 > -4.00
MDA-MB-435 -5.59 -5.19 -4.57
MDA-N -5.71 -5.45 -5.20
BT-549 -4.88 -4.56 -4.24
T-47D -478 -4.38 > -4.00

MG_MID ·5.27 -4.79 -4.34
Del'a 075 0.79 0.88
Range 1.24 137 1.22
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709768 -U I 1 Experiment In: 9907MD59-23 Test Type: 08 Units: Molar

Report Date: August 6, 1999 Test Date: July 12, 1999 QNS: MC:

COMI: NU:UB 73 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero Ctr1 -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LCSO
Leukemia

CCRF-CEM 0.300 0.738 0.718 0.750 0.695 0.584 0.055 95 103 90 65 -82 1.26E-05 2.77E-05 6.08E-05
HL-60(TB) 0.939 2.785 2.676 2.590 2.563 2.014 0.130 94 89 88 58 -86 1.14E-05 2.53E-05 5.62E-05
K-562 0.157 0.917 0.917 0.907 0.864 0.602 0.233 100 99 93 58 10 1.49E-05 >1.00E-04 >1.00E-04
MOLT-4 0.423 1. 352 1. 376 1. 356 1.324 1.016 0.141 103 100 97 64 -67 1.28E-05 3.08E-05 7.45E-05
SR 1. 084 2.814 2.674 2.697 2.761 1.976 0.214 92 93 97 52 -80 1.03E-05 2.46E-05 5.89E-05

Non-SIna11 Cell Lung Cancer
A549/ATCC 0.272 1.156 1.165 1.149 1.126 0.989 0.059 101 99 97 81 -78 1. 57E-05 3.23E-05 6.64E-05
EKVX 0.307 0.788 0.796 0.794 0.759 0.623 0.076 1D2 101 94 66 -75 1.29E-05 2.92E-05 6.62E-05
HOP-62 0.362 0.887 0.915 0.901 0.894 0.822 0.130 105 103 101 88 -64 1.77E-05 3.78E-OS 8.07E-05
HOP-92 0.506 0.777 0.778 0.760 0.794 0.720 0.150 100 94 106 79 -70 1.57E-05 3.38E-05 7.30E-05
NCI-H226 0.788 1.073 1. 098 1. 007 1.085 0.965 0.201 109 77 104 62 -75 1.22E-05 2.84E-05 6.61E-05
NCI-H23 0.291 0.931 0.985 0.986 0.980 0.894 0.026 108 108 108 94 -91 1.73E-05 3.22E-05 6.00E-OS
NCI-H460 0.341 1.964 1.968 1.963 1.968 1.603 0.120 100 100 100 78 -65 1.56E-05 3.51E-05 7.86£-05
NCI-H522 0.267 0.830 0.855 0.831 0.816 0.694 0.082 104 100 98 76 -69 1.51E-05 3.33E-05 7.36£-05

Colon Cancer
COLO 205 0.553 1.737 1.760 1.658 1.752 1.517 0.030 102 93 101 81 -95 1.51E-05 2.90E-05 5.58£-05
HCC-2998 0.333 0.868 0.867 0.849 0.897 0.828 0.037 100 96 105 93 -89 1.72E-05 3.23E-05 6.10E-05
HCT-1l6 0.119 1.002 0.982 0.963 1.006 0.765 0.004 98 96 101 73 -97 1. 37E-05 2.70E-05 5.31E-05
HCT-15 0.084 0.536 0.519 0.524 0.541 0.378 -0.015 96 97 101 65 -100 1.23E-05 2.48E-05 4.98E-05
HT29 0.381 1.766 1.774 1. 838 1.824 1.493 0.010 101 105 104 80 -97 1.48E-05 2.83E-05 5.41E-05
KM12 0.279 1.183 1.084 1.058 1.080 0.845 0.065 89 86 89 63 -77 1.23E-05 2.81E-05 6.42E-05
SW-620 0.081 0.488 0.476 0.439 0.462 0.362 0.055 97 88 94 69 -32 1.55E-05 4.82E-05 >1.00E-04

CNS Cancer
SF-268 0.251 1.044 1.015 1 .062 1.053 0 .928 0 .131 96 102 101 85 -48 1. 84E-05 4.36E-05 >1.00E-04
SF-295 0.622 1. 959 1.974 2 .025 1.969 1 .721 0 .089 101 105 101 82 -86 1.55E-05 3.09E-05 6.13E-05
SNB-19 0.387 1.014 0.975 1 .002 0.968 O. 814 0 .095 94 98 93 68 -75 1.34E-05 2.98E-05 6.65E-05
SNB-75 0.4l8 0.628 0.644 0 .636 0.623 0 .547 0 .155 107 104 98 61 -63 1.23E-05 3.11E-05 7.87E-05
U251 0.268 1. 358 1.293 1 .276 1.271 1 .006 0 .038 94 92 92 68 -86 1.30E-05 2.76E-05 5.83E-05

Melanoma
LOX IMVI 0.226 1. 280 1 .229 1 .229 1 .264 0 .934 0 .081 95 95 99 67 -64 1.35E-05 3.25E-05 7.80E-05
MALME-3M 0.319 0.803 0 .808 0 .797 0 .791 0 .768 0 .111 101 99 98 93 -65 1.86E-05 3.86E-05 8.00E-05
M14 0.402 1.267 1 .239 1. 310 1 .303 1 .203 0 .068 97 105 104 93 -83 1.75E-05 3.37E-05 6.48E-05
SK-MEL-28 0.220 0.679 0 .677 0.686 0 .679 0 .600 0 .067 100 101 100 83 -70 1. 64E-05 3.49E-05 7.44E-05
SK-MEL-5 0.703 1.676 1 .708 1. 616 1 .747 1 .571 0 .005 103 94 107 89 -99 1.61E-05 2.97E-05 5.4811:-05
UACC-257 0.615 1.482 1 .498 1. 497 1 .510 1 .480 0 .117 102 102 103 100 -81 1.89E-05 3.57E-05 6.7411:-05
UACC-62 0.457 1. 630 1 .651 1.666 1 .567 1 .328 0 .029 102 103 95 74 -94 1.39E-05 2.77E-05 5.50E-05

Ovarian Cancer
IGROV1 0.279 1.021 .029 .992 .005 0 .790 0 .068 101 96 98 69 -76 1.35E-05 2.99E-05 6.63E-05
OVCAR-3 0.534 1.026 1.065 .046 .024 0 .840 0 .111 108 104 100 62 -79 1.22E-05 2.75E-05 6.21E-05
OVCAR-4 0.510 1. 249 1.252 1.269 1 .178 0 .941 0 .131 100 103 90 58 -74 1.16E-05 2.75E-05 6.56E-05
OVCAR-5 0.596 1. 335 1. 338 1.407 1.406 1. 254 0 .062 100 110 110 89 -90 1.65E-05 3.15£-05 6.00E-05
OVCAR-8 0.230 0.832 0.821 0.795 0.792 0.662 0 .077 98 94 93 72 -67 1.44E-05 3.30E-05 7.57E-05
SK-OV-3 0.356 0.852 0.853 0.882 0.840 0.743 0 .119 100 106 97 78 -67 1.56E-05 3.46E-05 7.67E-05

Renal Cancer
786-0 0.429 1. 538 1.608 .532 .574 .293 0 .098 106 99 103 78 -77 1.51E-05 3.18E-05 6.68£-05
A498 0.991 1. 682 1.738 .669 .641 .446 0 .014 108 98 94 66 -99 1.25E-05 2.51E-05 5.06£-05
ACHN 0.341 1.309 1.271 .305 .275 .851 0 .020 96 100 96 53 -94 1.04E-05 2.28E-05 5.00E-05
CAKI-1 0.413 1.217 1.171 1.183 1.106 0.870 0.133 94 96 86 57 -68 1.13E-05 2.85E-05 7.18£-05
RXF 393 0.583 1.220 1.180 1.139 1.139 0.927 0.226 94 87 87 54 -61 1.08E-05 2.94E-05 7.99E-05
SN12C 0.302 1.001 0.990 0.970 1.033 0.827 0.045 98 96 105 75 -85 1.43E-05 2.94E-05 6.04£-05
TK-10 0.520 1. 310 1.328 1.389 1.405 1.141 0.080 102 110 112 79 -85 1.50E-05 3.03E-05 6.13£-05

prostate Cancer
PC-3 0.293 0 .904 0.930 0.931 0.932 .812 0.039 104 104 105 85 -87 1.60E-05 3.12E-05 6.11E-05
00-145 0.265 0 .833 0.833 0.766 0.808 .610 0.082 100 88 96 61 -69 1.21E-05 2.93E-05 7.11E-05

Breast Cancer
MCF7 0 .316 1.580 1.599 1. 481 1.538 1 .470 0.054 102 92 97 91 -83 1.72E-05 3.34E-05 6.46E-05
NCI/ADR-RES 0 .282 0.814 0.830 0.818 0.814 O. 726 0.090 103 101 100 83 -68 1.66E-05 3.55E-05 7.60E-05
MDA-MB-231/ATCC 0 .391 0.833 0.813 0.860 0.829 0 .721 0.074 95 106 99 75 -81 1.44E-05 3.01E-05 6. HE-OS
HS 578T 0 .225 0.899 0.910 0.883 0.938 0 .876 0.148 102 98 106 97 -34 2.27E-05 5.47E-05 >1.00E-04
MDA-MB-435 0.297 1.271 1.246 1. 217 1.165 O. 971 0.019 97 95 89 69 -94 1.31E-05 2.66E-05 5.40E-05
MDA-N 0.691 2.314 2.292 2.214 2.478 2. 194 0.012 99 94 110 93 -98 1.67E-05 3.06E-05 5.59E-05
BT-549 0.304 0.746 0.745 0.714 0.767 0 .698 0.050 100 93 105 89 -84 1.69E-05 3.28E-05 6.3911:-05
T-47D 0.433 1.026 0.970 0.994 o. 942 0 .818 0.210 91 95 86 65 -52 1.34E-05 3.61E-05 9.69E-05
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National Cancer Institute Developmental Therapeutics Program NSC: D- 709768 -U I 1 ,,' Units: Molar SSPL: OB6ZIExp. ID:9907MD59-23

Mean Graphs Report Date: August 6, 1999 Test Date: July 12, 1999

Panel/Cell LiM Log" GISO GISO Log II TGI TGI Log u LCSO LCSO

Leukemia
CCRF·CEM ·490 -4 56 -4.22
HL-60\TB) -494 -460 -425
K-562 ·483 > -400 -. > -4.00 ..
MOLT-4 -4.89 ·451 -413
SR -499 Ie -461 -423

Non-Small Cell Lung Cancer -..............................•......................•.......................................... - -.................••.......•••.••••

A5491ATCC -4.80 -4.49 -4.18
EKVX -489 -4.53 -4.18
HOP-62 -475 -4.42 -4.09
HOP-92 -4.80 -4.47 -414
NCI·H226 -4.91 -4.55 -4.18
NC]·H23 -4.76 -4.49 -4.22
NCI·H460 -481 -4.45 -4.10
NCI·H522 -482 -4.48 .4.13.

Colon Cancer :1~················· """ " ,.. ,.. ,.. ,.. , .
COLO 205 -4.82 -454 -4.25
HCC-2998 -476 -449 -421
HCT·116 -486 -457 -4.27
HCT-15 -491 -461 -430 ~
HT29 ·4.83 -4.55 -4.27
KMI2 -4.91 -455 -4.19
SW-620 -4.81 -432" > -4.00 •

CNS Cancer - - .

SF-268 -4.74 • -4.36 • > -4.00 •
SF-295 -4.8 I -45 I -4.21
SNB·19 -487 -453 -4.18
SNB· 75 -4.91 .451 -4.10
U251 -489 -456 -423

Melanomu ...............................................................................................................•........ -........................................................................................•....•................................•.......................•..............................••....•••••..•
LOX IMVI -4.87 -449 -4.11
MALME·3M -4.73 -441 -4.10
MI4 -4.76 -447 -4.19
SK·MEL-28 -479 -446 -413 I
SK·MEL-5 -479 ·453 -4.26
UACC·257 -4.72 -445 -4.17
UACC·62 -4.86 .4.56 -426

Ovarian Cancer ......................................................................................................................................................................................................................•........................................................................•.........•...........•..••..

1GROVI -4.87 .452 -4.18
OVCAR·3 -491 -4.56 -421
OVCAR-4 -4.94 -4.56 -4.18
OVCAR·5 -478 -4.50 -422
oveAR-8 -484 -4.48 -412
SK-OV-3 -481 -446 -4.12

RenalCancer .
786-0 -4.82 -450 -4.18
A498 -4.90 -4.60 -4.30·
ACHN ·498 ~ -464 • -4.30 ..
CAKI·\ -495 -4.55 -4.14
RXF 393 -4.97 • -4.53 -4.10
SNI2C -484 ·453 -4.22
TK·IO -482 -4.52 ·4.21

Prostate Cancer ..

PC-3 -480 -451 -4.21
DU·145 -4.92 -4.53 -4.15

BreastCancer '" ...........................•..•.....•.............._..........•...•.•...•.......•.....•..........._ - .

MeF7 -4.76 -448 -4.19
NCUADR·RES -478 -445 -4.12
MDA·MB-23I1ATCC -4.84 -4.52 -4.20
HS 51ST -4.64 .. ·4.26 III > -4.00 ..
MDA-MB-435 -4.88 -4.58 -4.27
MDA-N --4.78 --4.51 -4.25
BT-549 -4.77 -4.48 -4.19
T·47D -4.87 -4.44 -4.01-

•••••••••_ •••••••• _ ••••••••••••••••• _ ••••••••••••••••• _ •••••••••••••••••••~ ••••••••••••••••••••••••• u _ _ ~ - .

MG_MID -4.84 -4.50 I.. -4.17
Della 0.15 ~ 0.15 .. 0.13 ill
Rang. 0.34 I I 1 ..1- I I 0.64 I I I -Ia I I 0.30 I I I -I- I I I

+3 +1 +1 0 ·1 -1·3 +3 +2 +1 0 ·1 -2.3 +3 +2 +1 0 ·1 ·2 .]
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D-709772 -y I 1 Experiment ID: 9907MD58-34 Test Type: 08 Units: Molal

Report Date: August 5. 1999 Test Date: July 6, 1999 QNS: MC:

COMI: NU:UB 99 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 concentration
Time Mean Optical Densities Percent Growth

panel/Cell Line Zero Ctrl ·8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 G150 TG1 LC50
Leukemia

CCRF-CEM 0.107 0.447 0.447 0.413 0.379 0.188 0.093 100 90 80 24 -14 3.41E-06 4.34E-05 >1.00E-0,
HL-60ITBJ 0.246 1. 066 1.146 1.090 0.926 0.399 0.117 110 103 83 19 -53 3.25E-06 1.82E-05 9.18E-0'
K-562 0.157 1. 250 1.209 1. 212 1.121 0.808 0.048 96 97 88 60 -70 1.18E-05 2.89E-05 7.03E-0'
MOLT-4 0.149 0.635 0.636 0.613 0.592 0.400 0.055 100 95 91 52 -63 1.03E-05 2.81E-05 7.64E-0'

Non-small Cell Lung Cancer
AS49/ATCC 0.198 0.999 1. 012 1.002 1. 002 0.833 0.034 102 100 100 79 -83 1.52E-05 3.0SE-OS 6.27E-0
EKIIX 0.630 1. 370 1. 393 1.379 1.385 1. 338 0.090 103 101 102 96 -86 1.78E-05 3.37E-05 6.3SE-0
HOP-62 0.199 0.534 0.545 0.503 0.524 0.449 0.059 1'03 91 97 75 -71 1.48E-05 3.26E-OS 7.21E-0
HOP-92 0.394 0.919 0.941 0.945 0.965 0.903 0.166 104 105 109 97 -58 2.01E-05 4.23E-OS 8.90E-0
NC1-H23 0.301 0.946 0.903 0.966 0.931 0.722 0.003 93 103 98 65 -99 1.24E-05 2.4911:-05 5.03E-0
NC1-H322M 0.427 1. 358 1. 365 1. 344 1.376 1.118 -0.005 101 99 102 74 -100 1. 38E-05 2.67E-05 5.17E-0
NC1-H460 0.312 1. 582 1. 464 1.580 1. 623 1.191 0.028 91 100 103 69 -91 1.32E-05 2.70£-05 5.55E-0'
NC1-H522 0.262 0.690 0.724 0.718 0.711 0.584 0.026 108 106 105 75 -90 1. 42E-05 2.84E-OS 5.71E-0'

Colon Cancer
COLO 20S 0.406 1. 459 1. 405 1.378 1.417 0.857 0.007 95 92 96 43 -98 7.33E-06 2.01E-OS 4.54E-0'
HCC-2998 0.360 0.667 0.648 0.707 0.721 0.478 0.008 94 113 118 38 -98 7.16E-06 1.92E-05 4.4SE-0'
HCT-1l6 0.254 1.538 1. 550 1.520 1.487 1. 234 0.041 101 99 96 76 -84 1.46E-05 2.99E-OS 6.l3E-0'
HCT-15 0.169 1.142 1.155 1.154 1.131 0.965 0.009 101 101 99 82 -95 1.5lE-05 2.91E-OS 5. S8E-0~
HT29 0.162 0.999 1. 035 0.966 0.994 0.853 0.002 104 96 99 83 -99 1.51E-05 2.85&-05 5. 38E-0~
KM12 0.286 1.218 1.214 1.166 1.213 1.079 0.091 100 94 100 85 -68 1.69E-05 3.59&-05 7.5911:-0'
SW-620 0.066 0.525 0.546 0.473 0.495 0.401 0.080 104 89 93 73 3 2.12E-05 >1.00E-04 >l.OOE-O'

CNS Cancer
SF-268 0.250 0.940 0.954 0.975 0.931 0.818 0.042 102 105 99 82 -83 1.57E-05 3.14E-OS 6.29E-0'
SF-295 0.454 1.326 1.308 1.249 1. 259 1.017 0.080 98 91 92 64 -82 1.25E-05 2.75&-05 6. OlE-O~
SF-539 0.568 1. 040 1. 005 1. 004 1.075 0.971 0.011 93 92 107 85 -98 1.56E-05 2.92E-OS S. 47E-0~
SNB-19 0.335 1.023 1.072 1.052 0.997 0.841 0.060 107 104 96 74 -82 1.42&-05 2.97&-05 6.22&-0:
SNB-75 0.265 0.600 0.610 0.570 0.597 0.586 0.026 103 91 99 96 -90 1.76E-05 3.27E-05 6.07&-0:
U251 0.161 0.857 0.818 0.854 0.810 0.716 -0.003 94 100 93 80 -100 1.46E-05 2.78E-OS 5. 27E-0~

Melanoma
LOX 1MV1 0.085 .817 0.781 0.816 0.881 0.694 0 .049 95 100 109 83 -43 1.83E-05 4.5611:-05 >1.00E-0,
MALME-3M 0.367 .773 0.803 0.838 0.889 0.647 0.037 107 116 128 69 -90 1.32E-05 2.71&-05 5.60E-0'
M14 0.295 1.065 1.059 1. 052 1.065 0.735 0.025 99 98 100 57 -92 1.12E-05 2.42E-05 5.26&-0'
SK-MEL-2 0.257 0.701 0.615 0.677 0.654 0.585 0.007 80 94 89 74 -97 1.38E-05 2.70E-05 5.29E-0'
SK-MEL-28 0.267 1.070 1.045 1.020 1.090 1.099 0.126 97 94 103 104 -53 2.20E-05 4.60E-OS 9.59E-0'
SK-MEL-5 0.428 1. 634 1.613 1.547 1.571 1.076 -0.014 98 93 95 54 -100 1.06E-05 2.24E-OS 4. HE-O'
UACC-257 0.554 1.129 1.041 1.138 1.134 1.100 0.048 85 102 101 95 -91 1.74E-05 3.23E-05 5.99E-0'
UACC-62 0.700 1.699 1.649 1.613 1.682 1.592 0.025 95 91 98 89 -96 1.63E-05 3.03E-05 5.62E-0'

Ovarian Cancer
1GROV1 0.110 0.786 0.812 0.790 0.846 0.622 0.069 104 101 109 76 -38 1.68E-05 4.65E-OS >1.00&-0'
OVCAR-3 0.446 0.828 0.834 0.816 0.839 0.769 0.137 102 97 103 84 -69 1.67E-05 3.54E-05 7.48E-0:
OVCAR-4 0.265 0.816 0.803 0.822 0.803 0.740 0.102 98 101 98 86 -62 1.76E-05 3.83E-OS 8. 36E-0~
OVCAR-5 0.774 1.725 1.760 1.701 1.748 1.778 0.036 104 97 102 106 -95 1.89E-05 3.35E-OS 5. 94&-0~
OVCAR-8 0.121 0.875 0.857 0.885 0.869 0.634 0.065 98 101 99 68 -47 1.44E-05 3.92E-05 >1.00E-0,
SK-OV-3 0.281 0.561 0.582 0.568 0.582 0.551 0.072 107 102 108 97 -74 1.87E-05 3.67E-OS 7.20E-0'

Renal Cancer
786-0 0.226 0.877 0.859 0.853 0.850 0.749 0 .027 97 96 96 80 -88 1.51E-05 3.00E-OS S.94E-0'
A498 0.848 1. 443 1. 440 1. 425 1.450 1.434 0 .132 99 97 101 98 -84 1.84E-05 3.45E-05 6.48E-0'
ACHN 0.237 0.853 0.860 0.835 0.861 0.720 101 97 101 78 -100 1.44E-05 2.75E-05 5.2SE-0
CAKI-l 0.454 1.154 1.136 1. 096 1.143 1. 042 0.134 97 92 98 84 -70 1.6GE-05 3.49E-OS 7.37E-0'
RXF 393 0.359 0.823 0.792 0.777 0.779 0.688 0.083 93 90 90 71 -77 1.38E-05 3.01E-OS 6.57E-0'
SN12C 0.377 0.972 0.991 0.935 0.944 0.798 0.051 103 94 95 71 -86 1.36E-05 2.82E-OS S .8GE-0'
TK-I0 0.529 1.127 1. 033 1.143 1.150 1. 044 0.043 84 103 104 86 -92 1.S9E-05 3.0SE-OS 5.82&-0'
UO-31 0.242 0.661 0.663 0.615 0.551 0.603 0.031 100 89 74 86 -87 1.61E-05 3.13E-OS 6. 09E-0~

Prostate Cancer
PC-3 0.189 .653 0 .630 .606 0.636 .553 -0 .006 95 90 96 78 -100 1.44E-05 2.75E-OS 5.25&-0'
DU-145 0.211 .787 0 .766 .756 0.774 .683 0 .020 96 95 98 82 -91 1.53E-05 2.99E-05 5.82E-0'

Breast Cancer
MCF7 0.245 .911 O. 880 0 .902 0.894 0.718 0 .013 95 99 97 71 -95 1.34E-05 2.68E-05 5.36E-0
NC1/ADR-RES 0.299 .889 0 .866 0 .916 0.898 0.774 0 .126 96 105 102 80 -58 1.66E-05 3.81E-05 8.75E-0
MDA-MB-231/ATCC 0.322 .871 0 .799 0 .823 0.806 0.753 0 .010 87 91 88 79 -97 1. 45E-05 2.80E-05 5.40E-0
HS 578T 0.106 .465 0.476 0 .452 0.469 0.401 0.057 103 96 101 82 -47 1.78E-05 4.34E-05 >1.00E-0
MDA-MB-435 0.279 .011 1.004 0 .973 0.997 0.813 0.052 99 95 98 73 -82 1. 41E-05 2.97E-05 6.25E-0
MDA-N 0.352 .370 1.357 1 .349 1.366 0.921 0.032 99 98 100 56 -91 1.10E-05 2.40E-05 5.2GE-0
BT-549 0.502 .171 1.161 1 .186 1.210 1.187 0.023 99 102 106 102 -96 1.84E-05 3.29E-05 5.89E-0
T-47D 0.300 .725 0.711 0 .678 0.674 0.575 0.121 97 89 88 65 -60 1.31E-05 3. HE-OS 8.34E-0
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National Cancer Institute Developmental Therapeutics Program NSC: D- 709772 -Y I 1 '1 Units: Molar SSPL: OB6Z IExp. ID:9907MD58-34 ~

Mean Graphs Report Date;.. August 5, 1999 Test Date: July 6, 1999
/

PaneUc.n Un. Lal,n G1S0 GISO Loll,. TGI TGI Log,n LCSO LCSO

Leukemia
CCRF-CEM -5.47 /- -4.36 • > -4.00 ..
HL-60lTB) -5.49 """"'"' -474 .. -4.04 a
K-562 -4.93 -4.54 -4.15
MOLT-4 -499 '" -4.55 -4.12

Non-Small Cc:11 Lung Cuncer .....••........•..•..............•.••.....•..•..•.•........•..•.....•.......•••.•.....•.•...••.•........•.•..•..••••..•..•...•....••.•..............•..•..•......... _•......•....••.•..•.....•...•...•..••.••..•.••....•.••..•••••...•.•....••••.....•.....••.•....•...•.•...•..•.....•...•••....•••...•••••u •••••~ .

A549JATCC -482 -4.51 -4.20
EKVX -475 -4.47 -4.20
HOP-62 -483 -4.49 -4.14
HOP-92 -4.70 • -4.37 • -4.05 •
NCI-H23 -491 -4.60 -4.30 ~
NC\-H322M -486 -4.57 -4.29
NC\-H460 -4.88 -457 -4.26
NCI-H522 -485 -455 -424

Colee Cancer - - - ..

COLO 205 I -5 I) -470 -4.34' Ie
HCC-2998 1 -515 -472 -435 Ie
HCT-116 -484 -452 -4.21
HCT·15 -482 -454 -425
HT29 -482 -455 -4.27
KM 12 ... 77 -4 H -412
SW-620 -467 II > -400 .-. > -400 ..

eNS Cancer -.................................................................................................................................•......•......

SF-268 -.. 80 -450 -4.20
SF-295 -490 -456 -4.22
SF-539 -481 -453 -4.26
SNB-19 -4.85 -453 -4.21
SNB-75 -475 -4.49 -4.22
U251 -484 -4.56 -4.28

Melunomu ...........•...........•..........................•......•.•....•..••.•..•.•••.........•••...-......•.........•••••..•.•.........•..•...........•.••...........•.....•.......•.••...•.•...•.......•....••..••.•.•••..•....•....•.•.•••.•••.•.••......•....••••..•••..••..••••.•••••.••••....••........•..•••••••••••••••••••

LOX IMVI -474 -434 II > -4.00 ...
MALME-3M -488 -4.57 -4.25
M 14 -4.95 -4.62. -4.28
SK-MEL-2 -486 -457 -4.28
SK-MEL-28 -4.66 .. -434 .. -4.02 I ..
SK-MEL-5 -497 • -4.65 .. -4.33 II
UACC-257 -476 -449 -4.22
UACC-62 -4.79 -4.52 -425

OvuriuuCUI1t:t:f .

IGROV 1 -477 -4.33" > -4.00 ..
OVCAR-3 -478 -4.45 -4.13
OVCAR-4 -475 -4.42 -4.08
OVCAR-5 -4.72 • -4.47 -4.23
OVCAR-8 -4.84 -4.41 > -400 ..
SK-OV-3 -473 ~ -4.44 -4.14

Renal Cuucer ..

786-0 -4.82 -4.52 -4.23
A498 -4.74 • -4.46 -4.19
ACHN -4.84 -456 -4.28
CAKI-I -478 -4.46 -4.13
RXF 393 -486 -452 -4.18
SNI2C -487 -4.55 -4.23
TK-IO -480 -4.52 -4.24
UO-31 -4.79 -450 -4.22

PrnSIU!C' Cancer .............•............. -...........................................•.................... -.....................••......................................•........•.............••....•..•..•....•..•.•••.••..••••••..•.••..••.••••.•••••........••..•.•..••.•..•..••••....••.•.•••••.••..••••..••.•.•••••.••••••••.•••••

PC-) -484 -4.56 -4.28
DU-145 -482 -4.52 -4.24

Breast Cancer _........•.....................-........•..•........•.............................•••.............••........•.....••......•.................•.....•.•••......•...•.....••.•..•••.•.••.•••......••...•..•.••..•...•.••...•...•..•••.•.•..•...••..•..•.••.....••..•....••.••••.•••.••••••••••

MCF7 -487 -457 -4.27
NCIJADR-RES -4.78 -4.42 -4.06'
MOA-MB-231/ATCC -4.84 -4.55 -4.27
HS 578T -475 -4.36' > -4.00 ..
MDA-MB-435 -4.85 - -4.53 l. -4.20
MOA-N -4.96 ~ -4.62 .. -4.28
BT-549 -4.74 -4.48 -4_23
T-47D -4.88 -4.48 -4.08

.................................................................................................................._ ••••••••••••••~ _ n .

MG_MID -4.85 I- -4_50 ~ -4.19
O.ltu 0.63 !-- 0_24 I- 0.16 I-
Rung. 0.83 I , , .. I 0_74 I I I - I J 0.35 I -I- I , I

., c, ~, n _, _2.' +3 +2 +\ 0 -I -2·3 +3 +2 +1 0 -I .2 ·3

~
~
~
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709773 -Z I 1 Experiment 10: 9907MD59-25 Test Type: 08 Units: Molar

Report Date: August 6, 1999 Test Date: July 12, 1999 QNS: MC:

COM!: NU:UB 107 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero Ctrl -8 .0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 Gl50 TGl LC50
Leukemia

CCRF-CEM 0.300 0.738 0.810 0.835 0.808 0.658 0.206 116 122 116 82 -32 1.90E-05 5.27E-05 >1.00E-04
HL-60ITBI 0.939 2.831 3.100 3.169 2.966 2.247 0.405 114 118 107 69 -57 1.42E-05 3.54E-05 8.82E-05
K-562 0.157 1.022 1.099 1.083 1. 037 0.777 0.088 109 107 102 72 -44 1.54E-05 4.15E-05 >1. 00E-04
MOLT-4 0.423 1.485 1.576 1. 650 1.559 1. 234 0.172 109 115 107 76 -59 1.56E-05 3.65E-05 8.52E-05
SR 1.084 3.005 3.109 3.193 3.106 2.766 0.463 105 110 105 88 -57 1.82E-05 4.02E-05 8.90E-05

Non-SlIlall Cell Lung Cancer
A549/ATCC 0.272 1.387 1. 449 1. 486 1.440 1.364 0.113 105 109 105 98 -59 2.02E-05 4.22E-05 8.81E-05
EKVX 0.307 0.749 0.791 0.814 0.770 0.517 0.190 110 115 105 48 -38 9.06E-06 3.59E-05 >1.00E-04
HOP-62 0.362 0.911 0.994 0.993 0.984 0.882 0.152 115 115 113 95 -58 1.96E-05 4.16E-05 8.84E-05
HOP-92 0.506 0.825 0.867 0.855 0.838 0.794 0.291 113 109 104 90 -43 2.01E-05 4.78E-05 >1.00E-04
NCl-H226 0.788 1.141 1. 236 1.279 1.210 1.211 0.280 127 139 119 120 -65 2.39E-05 4.46E-05 8.34&-05
NCl-H23 0.291 0.920 0.997 1.023 0.980 0.927 0.002 112 116 109 101 -99 1.80E-05 3.19E-05 5.66&-05
NCl-H460 0.341 1. 982 2.072 2.000 2.031 1. 657 0.186 106 101 103 80 -46 1.74E-05 4.34E-05 >1.00E-04
NCl-H522 0.267 0.870 0.929 0.935 0.884 0.766 0.169 110 III 102 83 -37 1.88E-05 4.92E-05 >1.00E-04

Colon Cancer
COLO 205 0.553 1.802 1.890 1. 938 1 .934 1.733 0.172 107 III III 94 -69 1.87E-05 3.79E-05 7.66E-05
HCC-2998 0.333 0.863 0.896 0.901 0 .910 0.827 0.083 106 107 109 93 -75 1.80E-05 3.58E-05 7.09&-05
HCT-116 0.119 1.067 0.986 0.988 1 .016 0.864 0.041 92 92 95 79 -66 1.58E-05 3.51E-05 7.80E-05
HCT-15 0.084 0.603 0.635 0.612 0 .613 0.482 0.008 106 102 102 77 -90 1. 44E-05 2.87&-05 5.73E-05
HT29 0.381 1. 815 1. 812 1. 863 1 .812 1. 614 0.082 100 103 100 86 -78 1.66E-05 3.33E-05 6.71E-05
KM12 0.279 1.185 1.191 1.152 1. 151 0.929 0.104 101 96 96 72 -63 1. 45E-05 3.41E-05 8.02E-05
SW-620 0.081 0.552 0.557 0.519 O. 542 0.457 0.089 101 93 98 80 2 2.40E-05 >1.00E-04 >1.00&-04

eNS Cancer
SF-268 0.251 1.061 .158 .142 .154 1.012 0.296 112 110 112 94 6 3.14E-05 >1. 00E-04 >1.00E-04
SF-295 0.622 1.863 .949 .950 .938 1.795 0.059 107 107 106 95 -91 1.74E-05 3.24E-05 6.04E-05
SNB-19 0.387 1.120 .200 .173 .233 1.073 0.338 III 107 115 94 -13 2.57E-05 7.58E-05 >1.00E-04
SNB-75 0.418 0.589 .608 .624 0.627 0.578 0.201 III 120 122 93 -52 1.99E-05 4.38E-05 9.68E-05
U251 0.268 1.297 .272 .241 1. 262 1.184 0.097 97 94 97 89 -64 1.80E-05 3.82E-05 8.12E-05

Melanoma
LOX lMVl 0.226 1.186 1 .247 .324 .338 .064 .139 106 114 116 87 -39 1.98E-05 4.93E-05 >1.00&-04
MALME-3M 0.319 0.788 0 .856 .862 .881 .870 .205 115 116 120 118 -36 2.75E-05 5.83E-05 >1.00E-04
M14 0.402 1.454 1 .480 .512 .525 .569 .323 102 106 107 III -20 2.92E-05 7.06E-05 >1. 00E-04
SK-MEL-28 0.220 0.712 0 .766 .743 .749 .704 0.096 111 106 108 98 -56 2.06E-05 4.32E-05 9.10E-05
SK-MEL-5 0.703 1.697 1 .854 .950 .903 .779 0.002 116 125 121 108 -100 1.91E-05 3. HE-OS 5.762-05
UACC-257 0.615 1.459 1 .507 .484 .543 .503 0.212 106 103 110 105 -66 2.11E-05 4.13E-05 8.112-05
UACC-62 0.457 1. 646 1 .799 .726 .710 .529 0.028 113 107 105 90 -94 1.65E-05 3.09E-05 5.782-05

Ovarian Cancer
lGROVl 0.279 1.087 .104 .085 1.062 O. 834 0 .100 102 100 97 69 -64 1.38E-05 3.29E-05 7.82E-05
OYCAR-3 0.534 1.182 .223 .217 1.167 1 .059 0.156 106 105 98 81 -71 1.60E-05 3.42E-05 7.30E-05
OYCAR-4 0.510 1.191 1.230 .230 1.191 1.080 0.182 106 106 100 84 -64 1.69E-05 3.68E-05 8.00E-05
OVCAR-5 0.596 1.272 1. 415 .427 1.424 1.284 -0.005 121 123 123 102 -100 1.8lE-05 3.19&-05 5.65&-05
OVCAR-8 0.230 0.838 0.887 .877 0.856 0.761 0.225 108 106 103 87 -2 2.61E-05 9.46E-05 >1.002-04
SK-OV-3 0.356 0.875 0.918 .944 0.923 0.787 0.119 108 113 109 83 -67 1.66E-05 3.58E-05 7.73E-05

Renal Cancer
786-0 0.429 1. 357 1. 454 .369 1 .438 1.310 0 .004 111 101 109 95 -99 1.71E-05 3.09E-05 5.592-05
A498 0.991 1.569 1.726 .696 1 .615 1.549 0 .485 127 122 108 97 -51 2.07E-05 4.51&-05 9.83E-05
ACRN 0.341 1. 323 1.344 .347 1 .303 1.002 0 .033 102 102 98 67 -90 1.29E-05 2.67E-05 5.54E-05
CAKl-1 0.413 1.184 1.232 .280 1 .202 1.046 0 .134 106 112 102 82 -68 1.64E-05 3.53E-05 7.622-05
RXF 393 0.583 1.085 1.166 1.198 1 .165 0.909 0 .295 116 123 116 65 -49 1.35E-05 3.70E-05 >1.002-04
SN12C 0.302 0.848 0.863 0.866 0 .859 0.813 0 .143 103 103 102 93 -53 1.98E-05 4.35E-05 9.57E-05
TK-10 0.520 1.261 1.397 1.276 1 .300 1.100 0 .025 118 102 105 78 -95 1.45E-05 2.82E-05 5.49E-05
UO-31 0.526 1.214 1. 256 1.294 1 .273 1.033 0 .178 106 112 109 74 -66 1. 48E-05 3.36E-05 7.66&-05

Prostate Cancer
PC-3 0.293 0.980 .936 .958 .924 .891 0 .039 94 97 92 87 -87 1.63E-05 .17E-05 6.14E-05
OU-145 0.265 0.809 .808 .811 .822 .686 0 .039 100 100 102 77 -85 1.47E-05 .99E-05 6.07E-05

Breast Cancer
MCF7 0.316 1.596 .672 1 .589 .542 1 .248 0 .196 106 99 96 73 -38 1.61E-05 .54E-05 >1.00E-04
NCl/AOR-RES 0.282 0.856 .918 0 .923 .897 0 .771 0 .170 111 112 107 85 -40 1.91E-05 .80E-05 >1.00E-04
MOA-MB-231/ATCC 0.391 1.031 .038 1 .099 .029 O. 944 0 .091 101 111 100 86 -77 1.67E-05 .39E-05 6.86E-05
KS 578T 0.225 0.936 .067 1 .029 1.003 0 .940 0 .297 118 113 109 100 10 3.62E-05 >1.00E-04 >1.00&-04
MOA-MB·435 0.297 1.166 1. 238 1 .242 1.211 1. 100 0.140 108 109 105 92 -53 1.96E-05 4.33E-05 9.56&-05
MOA-N 0.691 2.522 2.654 2 .499 2.665 2 .529 0.353 107 99 108 100 -49 2.17E-05 4.70E-05 >1.00E-04
BT-549 0.304 0.739 0.797 0 .789 0.772 0 .772 0.059 113 111 108 107 -81 2.02E-05 3.72E-05 6.86E-05
T-470 0.433 0.891 0.878 0 .910 0.878 0 .783 0.088 97 104 97 76 -80 1.47E-05 3.08E-05 6.45E-05

~

~@e
o NH~OCO NH:;0OCU3

NU:UB 107
(192)



National Cancer Institute Developmental Therapeutics Program NSC: D- 709773 -Z I 1 " Units: Molar SSPL: UB6Z Ill:xp. lD:99U7MD59·25

Mean Graphs Report Date: August 6,1999 Test Date: July 12, 1999

PanellCell Line Log," GISO GISO Log,. TGI TGI Log II LOO LCSO

Leukemia
CCRF·CEM -472 -428 l > -400
HL-60(TBJ -485 ~ -4.45 -405
K-562 -4.81 -4.38 > -4.00
MOLT-4 -481 -444 -407
SR -474 -HO -4.05

Nou-SmultCell Lung Cancer - - _ _..........................................................•...........................................................................•........•........•...•. u •••• *' •••••

A5491ATCC -469 -437 -4.06
EKYX -504 I- -444 > -4.00
HOP-62 -471 -4.38 -4.05
HOP-92 -470 -432 > -4.00
NCI·H226 -462 • -435 -4.08
NCI-H23 -4.74 -450 ~ -425 Ioi
NCI·H460 -476 -4.36 > ·4.00 •
NCI·H522 -473 ·431 > ·400 •

Colon Cancer "if ...........................................................................................................................................................................................................•.•.............•....•..............................••...! .
COLO 205 -4.73 ·4.42 -4.12
HCC·2998 -474 ·445 ·415
HCT-116 -4.80 ·4.45 ·4.11
HCT·15 -4.84 -454 '" ·4.24 i-
HT29 -4 78 ·4.48 iI .417
KMI2 -484 ·4.47 ·4.10
SW·620 -462 • > .400 .... > -4.00

CNS Cancer - -...............................................................•.....•.......•.....•.........................•................•............•........•...••.•.......••_ •••

SF·268 ·4.50 '" > -4.00 .... > ·4.00
SF·295 ·4.76 ·4.49 .4.22 m
SNB·19 ·459 • ·4.12 '" > ·4.00
SNB·75 -470 -436 ·4.01
U251 ·474 ·442 -4.09

Melanoma ............................................•................••......••.•..•.••.....•..••.-•....•....•.....•...•....•.•.........•.••.......................•.....••••......•••......•...•.•...•.....••.••...••••-..••••••••.•.•••...•.•...•..•.....•..•.••...••..••.•.•.•.....-•.•..•.••.••••.••.....••...••.••••••••••••••

LOX [MYI ·470 -431 > ·4.00
MALME·3M ·4.56 " -4.23 • > ·400
M14 ·453 .. -4.15 .. > ·4.00
SK·MEL·28 ·469 ·436 ·4.04
SK·MEL·5 ·472 ·448 ·4.24 I"
UACC·257 ·468 ·438 -4.09
UACC·62 ·4.78 -4.51' ·4.24 •

OvarianCancer .. -..............•..•..................................................•...•......••....•..•........•.......................................................................................•..•.......••.....•..•....•.•••....•...•.•...•.•.......•...•......•...••....••..•..•.•.....•..•••..•.....••.••..••••••••••••••••
lGROYI -4 86 ~ ·448 ·411
OyeAR·3 -4 80 ·4.47 ·4. 14
OYCAR·4 -477 -4.43 .4.10
OYCAR-5 -4.74 ·4.50 -4.25·
OYCAR·8 -4.58 '" -402 - > ·4.00
SK·OY·3 ·478 -445 ·4.11

RenalCancer ............................................................................................................................................................................................................................................................•........................................•........•.....••••~.a
786·0 -4.77 .451. ·4.25 "
A498 ·468 -435 ·4.01
ACHN -489 • ·457 .. ·4.26 '"
CAKI·I -479 -445 ·4.12
RXF 393 ·4.87 • ·443 > ·4.00
SNI2C ·470 -436 ·4.02
TK·IO -4.84 ·4.55" .4.26 II

UO·31 ·4.83 ·447 ·4.12
Prostate Cancer ..............................................................................................................................................................................................................•...............................•................................•.•.....•.....•...........•••...•.••.•••- •••

PC·3 -4.79 ·450. .4.21 •
DU·145 ·4.83 ·4.52· ·4.22 •

BreastCancer .....................................................................................................................................................................•.....................•.............................•.........•..•..............•.......................•.•.......................•.....•..•..••••.••
MCF7 -479 ·4.34 > -4.00 '
NCIIADR·RES -4.72 ·4.32 > ·4.00
MDA-MB·23I/ATCC -478 ·447 ·4.16
HS 578T -4.44 ... "> ·4.00 - > ·4.00
MDA·MB-435 -4.71 ·4.36 -4.02
MDA·N ·4.66 .4,33 > ·4.00
BT·549 ·4.69 ·4.43 L ·4.16
T-47D ·4.83 -4.51" ·4.19....................................................................................................................................................................................................................•...._ _..

MG_MID ·4.74 ·4.38 -4.09
Della 0.30 ~ 0.19 ~ 0.17 •

Range 0.60 I I I ...1- I I I 0.57 Itt - I 1 I 0.26 1 I I '" 1 I I

+3 +2 +1 0 ·1 -2·3 +3 +2 +\ 0 ·1 -2·3 +3 +2 +1 0 -) -2 ·3
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NBC: D- 709774 -A / 1 Experiment ID: 9907MD59-26 Test Type: 08 Units: Molar

Report Date: August 6, 1999 Test Date: July 12, 1999 QNS: MC:

COMI: NU:UB 108 Stain Reagent: SRB Dual-P SSPL: OB6Z
-

Log10 Concentration
Time Mean Optical Densities Percent Growth

Pane1/Cell Line Zero Cn1 -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 Gl50 TGl LC50
Leukemia

CCRF-CEM 0.300 0 .738 .751 0.878 0.829 0.729 0.221 103 132 121 98 -27 2.43E-05 6.12E-05 >1.00E-04
HL-60(TBI 0.939 2 .831 .167 3.224 3.097 2.635 0.289 118 121 114 90 -69 1.78E-05 3.67E-05 7.56E-05
K-562 0.157 1 .022 .047 1.022 0.972 0.865 0.096 103 100 94 82 - 3 9 1.83E-05 4.76E-05 >1.00E-04
MOLT-4 0.423 1 .485 .569 1.541 1.521 1. 241 0.184 108 105 103 77 -57 1.59E-05 3.77E-05 8.94E-05
SR 1.084 3 .005 .288 3.398 3.296 2.904 0.440 115 120 115 95 -59 1.95E-05 4.12E-05 8.68E-05

Non-Small Cell Lung Cancer
A549/ATCC 0.272 1.387 1. 459 1. 436 1. 464 1. 318 0.084 106 104 107 94 -69 1.86E-05 3.76E-05 7.63E-05
EKVX 0.307 0.749 0.790 0.792 0.783 0.509 0.174 109 110 108 46 -43 8.53E-06 3.26E-05 >1.00E-04
HOP-62 0.362 0.911 1.024 0.965 0.974 0.918 0.175 120 110 111 101 -52 2.16E-05 4.59E-05 9.75E-05
HOP-92 0.506 0.825 0.849 0.846 0.855 0.783 0.273 108 107 109 87 -46 1.89E-05 4.50E-05 >1.00E-04
NCl-H226 0.788 1.141 1.144 1.207 1.208 1. 089 0.352 101 119 119 85 -55 1.78E-05 4.04E-05 9.16E-05
NCl-H23 0.291 0.920 0.974 0.974 1.013 0.896 0.003 109 108 115 96 -99 1.72E-05 3.11E-05 5.60E-OS
~Cl - H460 0.341 1.982 1.985 2.313 2.066 1.674 0.144 100 120 105 81 -58 1.68E-05 3.84E-05 8.79E-05
~Cl-H522 0.267 0.870 0.828 0.817 0.811 0.750 0.075 93 91 90 80 -72 1.57E-05 3.36E-05 7. 16E-05

Colon Cancer
COLO 205 0 .553 1.802 .757 1.845 1.794 .588 0.009 96 103 99 83 -98 1.52E-05 2.86E-05 5.40E-05
HCC-2998 0 .333 0.863 .822 0.919 0.833 .842 0.021 92 110 94 96 -94 1.75E-05 3.20E-05 5.88E-05
HCT-116 0 .119 1.067 .135 1.179 1.117 .986 -0.006 107 112 105 92 -100 1.65E-05 3.00E-05 5.48E-05
HCT-15 0 .084 0.603 .592 0.628 0.600 .483 -0.011 98 105 99 77 -100 1.42E-05 2.72E-05 5.22E-05
HT29 0 .381 1.815 .889 1.896 1.881 .708 0.016 105 106 105 93 -96 1.68E-05 3.10E-05 5.71E-05
KM12 0 .279 1.185 .262 1.299 1.290 .000 0.111 108 113 112 80 -60 1.63E-05 3.71E-05 8.45£-05
SW-620 0 .081 0.552 .573 0.575 0.549 .484 0.072 104 105 99 85 -11 2.33E-05 7.67E-OS >1.00E-04

eNS Cancer
SF-268 .251 .061 1 .165 1.153 1.126 0.981 0 .256 113 III 108 90 1 .80E-05 >1.00E-04 >1.00E-04
SF-295 .622 .863 1 .973 1.870 1.845 1.747 0 .022 109 101 99 91 -96 .65E-05 3.05E-05 5.64E-05
SNB-19 .387 .120 1 .173 1. 212 1. 215 1.112 0 .139 107 113 113 99 -64 .00E-05 4.04E-05 8.18E-05
SNB-75 .418 .589 0 .682 0.678 0.671 0.655 0 .261 154 152 148 138 -38 .18E-05 6.11E-05 >1.002-04
U251 .268 297 1 .336 1.361 1. 317 1.235 0 .053 104 106 102 94 -80 .79E-05 3.46E-05 6.69£-05

Melanoma
LOX lMVl .226 .186 1 .237 1. 233 1.232 1 .007 0 .065 105 105 105 81 -71 .60E-05 3.41E-05 7.26E-05
MALME-3M .319 .788 0 .836 0.849 0.846 0 .817 0 .380 110 113 112 106 13 4. OlE-OS >1.00E-04 >1. 00E-04
M14 .402 .454 1 .469 1.505 1.654 1 .628 0 .123 101 105 119 117 -70 2.28E-05 4.23E-05 7.8SE-05
SK-MEL-28 .220 .712 0 .768 0.766 0.775 0 .735 0 .084 111 111 113 105 -62 2.13E-05 4.25E-05 8.49E-05
SK-MEL-5 .703 .697 1 .659 1.682 1.664 1 .593 0 .008 96 99 97 90 ·99 1.62E-05 2.99E-05 5.50E-05
UACC-257 .615 .459 1 .394 1. 473 1.497 1 .446 0 .131 92 102 104 98 -79 1.88E-05 3.59E-05 6.88E-05
UACC-62 .457 .646 1 .697 1.732 1.679 1. 517 0 .025 104 107 103 89 -95 1.63E-05 3.05E-05 5.72E-05

Ovarian Cancer
lGROVl .279 .087 1 .125 .100 1 .066 O. 842 0.168 105 102 97 70 -40 .51E-05 .32E-05 >1.00E-04
OVCAR-3 .534 .182 I .241 .234 1 .223 1 .117 0.032 109 108 106 90 -94 .65E-05 .08E-05 5.76E-05
OYCAR-4 .510 .191 1 .316 .262 1 .261 1 .091 0.220 118 110 110 85 -57 .77E-05 3.98E-OS 8.93E-05
OVCAR-5 .596 .272 1 .440 .427 1. 377 1 .281 0.004 125 123 116 101 - 9 9 .80E-05 3.20E-OS S.68E-05
OYCAR-8 .230 .838 0 .892 .927 0 .914 0 .767 0.113 109 115 113 88 - 51 .88E-05 4.30E-OS 9.82E-05
SK-OV- 3 .356 .875 0 .897 .884 0 .884 0 .799 0.060 104 102 102 85 -83 .62E-05 3.21E-05 6.36E-OS

Renal Cancer
786-0 .429 .357 .475 1.596 .513 .383 0.008 113 126 117 103 -98 .83E-05 3.25E-05 5.76E-05
A498 .991 .569 .630 1.635 1.623 .523 0.462 111 111 109 92 -53 .94E-05 4.29E-OS 9.48E-05
AC~ .341 .323 .308 1.349 1.288 .000 0.049 98 103 96 67 -86 .29E-05 2.75E-05 5.84E-05
CAKI -1 .413 .184 .253 1.234 1. 255 1.069 0.096 109 106 109 85 -77 .65E-05 3.36E-05 6.83E-05
RXF 393 .583 .085 .283 1. 245 1.292 1.086 0.232 140 132 141 100 -60 .06E-05 4.21E-05 8.63E-05
S~12C .302 .848 .936 0.963 0.929 0.867 0.091 116 121 115 103 -70 .03E-05 3.95E-05 7.68E-05
TK-10 .520 .261 .253 1.274 1.276 1. 037 0.045 99 102 102 70 -91 1.32E-05 2.71E-05 5.54E-05
UO-31 .526 .214 .260 1.300 1.334 1.037 0.130 107 113 117 74 -75 1.45E-05 3.14E-05 6.78E-05

Prostate Cancer
PC-3 .293 .980 .993 .010 .011 1.014 .014 102 104 104 105 -95 .88E-05 3.34E-05 5.94E-05
OU-145 .265 .809 .892 .858 .848 0.756 .105 115 109 107 90 -61 .85E-05 3.97E-05 8_51E-05

Breast Cancer
MCF7 0 .316 1 .596 1 .520 1 .561 1.542 1.330 0 .149 94 97 96 79 -53 1 .66E-05 3.98E-05 9.52E-05
~Cl/AOR-RES 0 .282 0 .856 0 .909 0 .906 0.899 0.784 0 .180 109 109 108 88 - 3 6 2 . OlE-OS 5.10E-05 >1.00E-04
MOA-MB-231/ATCC D. 391 1 .031 1 .077 1 .050 1.044 0.962 0 .100 107 103 102 89 75 1 .74E-05 3 .51E-05 7.08E-05
HS 578T 0 .225 0 .936 0 .996 O. 958 0.944 0.882 0 .328 108 103 101 92 14 3 .49E-05 >1.00E-04 >1.00E-04
MOA-MB-05 0 .297 1 .166 I .245 1.221 1.290 1.166 0 .099 109 106 114 100 -67 1 .99E-05 3.98E-05 7.93E-05
MDA-~ 0 .691 2 .522 2 .708 2.783 2.738 2.642 0 .041 110 114 112 107 -94 1 .91E-05 3.40E-05 6.03E-05
BT-549 0 .304 0 .739 0 .793 0.806 0.776 0.780 0 .003 112 115 108 109 -99 1 .93E-05 3.35E-05 5.82E-05
T-47D 0 .433 0 891 1 .036 0.927 0.964 0.918 0 .308 131 108 116 106 -29 2 .59E-05 6.10E-05 >1. 00E-04
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National Cancer Institute Developmental Therapeutics Program NSC: D- 709774 -A I 1 runits: Molar SSPL: OB6ZIExp. lD:9907MD59·26

Mean Graphs Report Date: August 6. 1999 Test Date: July 12, Y999
PaneVCell Line Log II G1S0 GISO Log II TGI TGI Log II LCSO LCSO

Leukemia
CCRF·CEM ·4.61 ·421 .. > ·4.00 •
HL-60<TBl ·4.75 ·4.44 ·412
K·562 ·474 ·432 > ·4.00 •
MOLT·4 -480 ·4.42 ·405
SR ·4.71 ·439 ·4.06

Non·S11Ii.l1l Cell Lung Cancer ......................................................... ..................................... ...... .. ..................... ...... -......................................................... -.............. ............................................................. .......................................~-
A549/ATCC ·4.73 ·4.42 ·4.12
EKYX -507 - ·4.49 > ·4.00 :HOP·62 ·4.67 ·434 ·4.01
HOP·92 -472 ·435 > ·400
NC(·H226 ·475 ·4.39 ·404
NCI·H23 ·476 ·4.51 F ·425 "NCI·H460 ·4.77 ·4.42 ·4_06
NCI·H522 ·4.80 ·4.47 ·415

Colon Cancer --·r·--·-----·······················-·················...... ............................................. ............................................................. ............................................. , ........................................................................................................
COLO 205 l -4.82 ·454 .. ·427

!HCC·2998 ·4.76 -4.49 ·423
HCT·116 ·478 ·452 1m ·426
HCT·15 -485 ·457 .. ·4.28
HT29 -477 -451 -4.24
KMI2 -479 ·443 ·4.07
SW·620 ·463 • -412 ... > ·400 •

CNS Cancer .......................................................... .... ............................... ........ .......................................................... ............................................ ............................................................. ...........................•...............
SF-268 ·4.55 .. > -4_00

-~ > ·4.00 ••SF· 295 -4.78 -452 ·425
SNB·19 ·4.70 -439 -4.09
SNB·75 ·450 .. ·4.21 .. > ·4.00 •
U251 -475 ·446 ·4.17

MelanomOl. ............................................................ ......... .................................. ................................... ......................... ............................................. ............................................................. ................. .........................~
LOX1MVI ·480 ·4.47 -4.14
MALME-3M -4.40 - > ·4.00 .... > -4.00 •
MI4 ·464 -4.37 -4.11
SK·MEL-28 ·4.67 ·4.37 ·4.07
SK-MEL·5 ·4.79 ·4.52 • ·4.26 I '"UACC·257 -4.73 ·4.44 ·4.16
UACC·62 ·4.79 ·452 ·4.24 •

Ovarian Cancer ............................................................. ............................................. ............................................................. ............................................. ............................................................. ..........................................
IGROVI ·4.82 ·436 > ·4.00 •
OVCAR·3 -478 ·451 F ·4.24
OVCAR·4 ·475 ·4.40 ·405
OVCAR·5 ·4.74 ·4.49 P -425 •
OYCAR·8 ·473 ·4.37 -4.01
SK·OY·3 ·4.79 ·4.49 II ·4.20

RenalCancer ............................................................. ............................................. ............................................................. ............................................. ............................................................. ............................................
786·0 ·474 ·449 ·4.24 "A498 ·4.71 ·4_37 ·402
ACHN ·489 .. ·456 .. ·4.23 II
CAKI·I ·478 -4.47 -417
RXF 393 -4.69 ·438 -406
SNI2C -4.69 -440 -4.11
TK·IO -488 101 ·457 .. ·4.26 101

UO·31 ·484 ·450 ·4.17
Prostate Cancer ....................... "'." .............................. ............................................ ......................... ................... ............... . ........................................... ............................................................. ...........................................

PC·3 -473 ·4.48 ·4.23
DU·145 ·473 ·4.40 -4.07

Breast Cancer .......................................................... ............................................. .... ................... .................................... .... ........................................ ............................................................. ...........................................
MCF7 478 ·440 ·4.02
NCIIADR·RES -470 ·429 > ·4.00 •
MDA·MB·23I/ATCC -476 -445 ·4.15
HS 578T ·4.46 ... > ·400 - > -4.00 •
MDA·MB-435 ·4.70 ·4.40 ·4.10
MDA·N ·4.72 ·4.47 -4.22
BT-549 ·4.71 ·4.47 ·4.24
T-47D ·4.59 • ·4.21 .. > -4.00 •............................................................. ............................................. ............................................................. ............................................. ..............-............................................... .............................................

MG_MID ·4.73 -4.40 -4.12
Della 034

=
0.16

-=
0.16 .:Range 0.67 - 0.57 0.28
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National Cancer Institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: D- 709775 -C I 1 Experiment ID: 9907MD59-27 Test Type: 08 Units: Molar

Report Date: August 6, 1999 Test Date: July 12, 1999 QNS: MC:

COMI: NU:DB 110 Stain Reagent: SRB Dual-P SSPL: OB6Z

Log10 Concentration
Time Mean Optical Densities Percent Growth

Pane1/Cell Line Zero Ctr1 -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

CCRF-CEM 0.300 0.757 0.751 0.801 0.769 0.565 0.137 99 110 103 58 -54 1.18E-05 3.28E-05 9.15E-05
HL-60ITBI 0.939 3.020 3.068 2.942 2.919 2.002 0.507 102 96 95 51 -46 1.03E-05 3.36E-05 >1.00E-04
K-562 0.157 0.938 0.972 0.957 0.952 0.534 0.021 104 102 102 48 -87 9.28E-06 2.27E-05 5.33E-OS
MOLT-4 0.423 1.476 1.509 1.548 1.432 1. 063 0.146 103 107 96 61 -66 1.22E-05 3.02E-OS 7.52E-05
SR 1.084 3.075 3.141 3.142 3.026 2.307 0.444 1b3 103 98 61 -59 1.24E-05 3.23E-05 8.4lE-05

Non-Small Cell Lung Cancer
A549/ATCC 0.272 1. 236 1. 285 1. 266 1. 235 1.055 0.042 105 103 100 81 -85 1.54E-05 3.09E-05 6.1SE-OS
EKVX 0.307 0.730 0.735 0.734 0.286 0.599 0.100 101 101 -7 69 -68 7.43B-OS
HOP-62 0.362 0.844 0.8S0 0.851 0.8S1 0.762 0.092 101 101 101 83 -75 1.62E-05 3.36E-OS 6.981':-OS
HOP-92 0.506 0.79S 0.788 0.774 0.771 0.740 0.145 97 93 92 81 -71 1.601':-05 3.40B-05 7.241':-05
NCI-H226 0.788 1.013 0.997 1.074 1.044 0.938 0.292 93 127 114 66 -63 1.34E-05 3.26B-OS 7.941':-05
NCI-H23 0.291 0.926 0.960 0.952 0.940 0.844 0.002 105 104 102 87 -99 1. S8E-05 2.931':-05 S.43E-OS
NCI-H460 0.341 2.010 1.968 1. 949 1. 909 1. 528 0.192 97 96 94 71 -44 1.53E-05 4.l6E-OS >1. 00E-04
NCI-H522 0.267 0.842 0.876 0.875 0.846 0.699 0.083 106 106 101 7S -69 1.49E-05 3.32E-OS 7.37E-OS

Colon Cancer
COLO 205 0.553 1.708 1. 658 1 .709 1.632 1. 468 0.027 96 100 93 79 -95 1.47E-05 2.85E-OS 5.S1E-OS
HCC-2998 0.333 0.923 0.913 0 .963 0.885 0.840 0.118 98 107 94 86 -65 1.73E-OS 3.72E-OS 7.991':-OS
HCT-116 0.119 1.110 1.123 1. 138 1.113 0.754 0.018 101 103 100 64 -8S 1.24E-05 2.68E-OS S.801':-OS
HCT-15 0.084 0.565 0.566 O. 577 0.573 0.366 -0.029 100 103 102 59 -100 1. 13E-05 2.34E-OS 4.84E-05
HT29 0.381 1. 669 1. 484 1 .738 1.114 1.383 -0.001 86 105 57 78 -100 1.43E-05 2.74E-OS S.23E-05
KM12 0.279 1. 227 1.148 1 .144 1.114 0.885 0.040 92 91 88 64 -86 1.24E-05 2.67E-05 S.77E-OS
SW-620 0.081 0.538 0.519 0 .532 0.498 0.430 0.047 96 99 91 76 -43 1.66E-05 4.38E-OS >1.00E-04

CNS Cancer
SF-268 0.251 1.103 .112 .105 .068 940 0.140 101 100 96 81 -44 1.76E-OS 4.42E-05 >1. 00E-04
SF-295 0.622 1.887 .823 .871 .856 .629 0.071 95 99 98 80 -89 1. SOE-05 2.97E-OS 5.90E-OS
SNB-19 0.387 1. 028 .034 .997 .066 0.887 0.070 101 95 106 78 -82 1.50E-OS 3.07E-OS 6.32E-OS
SNB-75 0.418 0.646 .655 .656 .661 0.632 0.161 104 105 106 94 -61 1.92E-05 4.02E-OS 8.44E-OS
U2S1 0.268 1.182 .135 .151 .250 0.950 0.026 95 97 107 75 -90 1. 41E-05 2.83E-OS 5.69E-05

Melanoma
LOX IMVI 0.226 1.208 1. 220 1 .226 .215 0.948 0.016 101 102 101 74 -93 1.38E-OS 2.77E-OS 5.S2E-OS
MALME-3M 0.319 0.807 0 .772 0 .764 .773 0.754 0.116 93 91 93 89 -64 1.80E-05 3.83E-OS 8.12E-OS
M14 0.402 1.426 1 .525 1 .518 .537 1.374 -0.006 110 109 111 95 -100 1.70E-05 3.07E-OS 5.S4E-OS
SK-MEL-28 0.220 0.710 0 . 707 O. 718 0.676 0.616 0.137 99 102 93 81 -38 1.82E-05 4.8lE-OS >1. 001':-04
SK-MEL-5 0.703 1.591 1 .567 1 .537 1.S15 1.403 0.023 97 94 91 79 -97 1.46E-05 2.8lE-OS S.42E-OS
UACC-257 0.615 1.532 1 .537 1 .484 1.S06 1.533 0.175 101 95 97 100 -72 1.96E-05 3.83E-05 7.49E-OS
UACC-62 0.4S7 1.703 1 .678 1 .605 1.601 1.277 0.098 98 92 92 66 -79 1.29E-OS 2.86E-05 6. HE-OS

Ovarian Cancer
IGROVI 0.279 1. 028 0.997 1 .071 1 .032 0.802 0.026 96 106 101 70 -91 1.33E-05 2.72E-OS S.57E-05
OVCAR-3 0.534 0.866 0.849 0 .854 0 .860 0.686 0.082 95 96 98 46 -85 8.24E-06 2.24E-OS S.42E-OS
OVCAR-4 0.S10 1.369 1. 372 1 .302 1 .184 1.003 0.173 100 92 79 S7 -66 1.15E-OS 2.91E-OS 7.40B-OS
OVCAR-5 0.S96 1.294 1.2S6 1. 346 0 .916 1.184 0.054 9S 108 46 84 -91 3.03E-OS 5.83E-OS
QVCAR-8 0.230 0.886 0.873 0 .852 0 .868 0.699 0.026 98 95 97 71 -89 1.36E-05 2.79B-OS S.72E-OS
SK-OV-3 0.3S6 0.776 0.738 O. 758 0 .766 0.642 0.096 91 96 98 68 -73 1.34E-05 3.04E-OS 6.87E-OS

Renal Cancer
786-0 0.429 1 .749 .692 1 .777 .725 1.267 0.117 96 102 98 63 -73 1.26E-05 2.92E-OS 6.81E-OS
A498 0.991 1 .620 .565 1 .514 .520 1.392 0.266 91 83 84 64 -73 1.26E-05 2.92E-OS 6.77E-OS
ACIIN 0.341 1.331 .246 1. 196 .223 0.819 0.071 91 86 89 48 -79 9.09E-06 2.39E-OS S.90E-OS
CAKI-l 0.413 1. 228 1.171 1 .220 .16S 0.902 0.100 93 99 92 60 -76 1.18E-OS 2.76E-05 6.4SE-OS
RXF 393 0.583 1.013 0.985 1 .006 1.002 0.807 0.252 93 98 97 52 -S7 1. 04E-OS 3. OlE-OS 8.6SE-OS
SNl2C 0.302 1.002 0.988 1 .010 1.008 0.807 0.068 98 101 101 72 -77 1.40E-05 3.03E-05 6.SSE-05
TK-IO 0.520 1. 281 1.236 1 .271 1.283 1. 068 0.213 94 99 100 72 -59 1.47E-OS 3.54E-OS 8.S3E-OS
UO-31 0.526 0.962 0.969 0 .928 0.910 0.666 0.064 101 92 88 32 -88 4.77E-06 1.85E-OS 4.83E-OS

Prostate Cancer
PC-3 0.293 0 .897 .867 .840 .890 0 .800 .003 95 91 99 84 -99 1.53E-05 2.88E-OS S.40E-05
DU-145 0.265 0 .829 .816 .818 .801 0 .634 .078 98 98 95 65 -71 1.30E-05 3.03E-05 7.06E-05

Breast Cancer
MCF7 0.316 1 .535 1.563 1 .481 1 .426 1 .421 0 .115 102 96 91 91 -64 1.83E-05 3.87E-05 8.l6E-05
NCI/ADR-RES 0.282 O. 830 0.828 O. 840 O. 820 O. 694 0 .083 100 102 98 75 -71 1.49E-05 3.27E-05 7.21E-OS
MDA-MB-231! ATCC 0.391 O. 917 0.886 0 .906 0.978 0 .839 0 .103 94 98 112 85 -74 1.66E-05 3.44E-OS 7.10E-OS
HS 578T 0.225 0 .976 0.985 0 .969 0.996 0.891 0.197 101 99 103 89 -13 2.4lE-OS 7.S0E-OS >1.00E-04
MDA-MB-435 0.297 1 .249 1. 236 1 .247 1.180 1.052 0.039 99 100 93 79 -87 1.S0E-OS 3.00E-OS S.99E-OS
MDA-N 0.691 2.549 2.648 2 .786 2.864 2.413 0.056 lOS 113 117 93 -92 1.70E-OS 3.18E-OS S.92E-OS
BT-S49 0.304 0.732 0.747 0 .755 0.746 0.693 0.066 103 105 103 91 -78 1.74E-05 3.44E-OS 6.79E-OS
T-47D 0.433 0.836 0.792 0 .821 0.813 0.705 0.224 89 96 94 67 -48 1.41E-05 3.83E-05 >1. 00E-04
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National Cancer Institute Developmental Therapeutics Program NSC: D- 7U9775 -C I 1 "I Units: Molar ~SPL: UtltlL.1 !!.xp. HJ:~l)U 1M1J:lY-:.U

Mean Graphs Report Date: August 6, 1999 Test Date: July 12, 1999
PaneVCtll Line Log" GI50 GISO Log",TGI TGI Log,,, LC50 LCSO
Leukemia

CCRF-CEM -493 -448 -4.04 •
HL-60ITB) -499 ~ ·447 > -4.00 \K-562 -503 .. -4.64 ~ -4.27
MOLT-4 ·491 -4.52 -4.12
SR -491 -449 -408

Ncn-Stnatl Cell Lung CJllCCr ....................... - ................................• . ................................ ............ ............................. -.............................. ......................-...................... ............................................................. ••••••••••••••••••••••••••• _ ........... a •••

A549/ATCC ·481 -451 -4.21
EKYX -4.13
HOP-62 ·479 -447 -4.16
HOP-92 -480 -447 ·4.14
NCI-H226 ·487 -4.49 -4.10
NCI-H23 -480 -453 -4.27
NCI-H460 -4.82 -4.38 • > -4.00 II

NCI-H522 -4.83 -4.48 -4.13
Colon Cancer ............................................................. ............................................. ............................................................. ............................................. ..................................................,.......... .....................................•.-...

COLO 205 ;1 -4.83 -455 -426
HCC-2998 ·476 -443 -4.10
HCr·116 ·491 ·457 -4.24
HCr·15 -495 -4.63 ~ ·4.32

'"HT29 -484 ·456 -428 ..
KMI2 -4.91 -457 ·4.24
SW-620 -4.78 -4.36 • > -4.00 •

CNS Cancer ...'.' .................................................... ............................................. ............................................................. ............................................. ............................................................. ...........................................
SF-268 -4.75 , -4.35 • > -4.00 •
SF-295 -482 -453 -4.23
SNB-19 -482 -451 -420
SNB-75 -472 • -4.40 -4.07
U251 -485 ·455 -4.24

Melanoma ............................................................ ............................................. ................................... ...... .................. ............................................. ............................................................. ...........................................
LOX IMYI ·486 ·456 -4.26
MALME-3M -4.74 -4.42 -409
MI4 -4.77 -451 -4.26
SK-MEL-28 -474 -4.32 OJ > -4.00 •
SK-MEL-5 -484 -455 -427 I
UACC·257 -4.71 • -4.42 -4.13
UACC-62 -489 -454 -420

Ovarian Cancer ............................................................. ............................................. ............................................................. ............................................. .......................................................Os ••• • ...........................................
IGROYI -488 -457 -4.25
OYCAR-3 -508 I- ·465 I" -427
OYCAR-4 -4.94 -454 -413
OYCAR-5 -452 -423
OYCAR-8 -487 -455 -4.24
SK·OY-3 -4.87 -452 -416

Renal Cancer ............................................................. ............................................. ................................... ......................... ............................................. ••••••••••••••••••••••••••••••••••••••••••••••••••••• u •••••• ...........................................
786-0 -490 ·453 -417
A498 -4.90 -453 ·4.17
ACHN -5.04 i"' -4.62 ~ -4.23
CAKI-I -493 -456 -419
RXF 393 -498 ~ -4.52 -4.06 •
SNI2C -485 -452 -4.18
TK-IO -4.83 -4.45 -407 •
UO-31 -532 ~ -473 1000 -4.32 Ia

Prostate Cancer ............................................................ ............................................. ............................................................. ............................................. ............................................................. ..........................................
PC-3 -482 -454 -4.27 ~
DU-145 -4.89 -452 -4.15

Breast Cancer .......................................................... ............................................. ............................................................. ............................................. ............................................................. ...........................................
MCF7 -4.74 • -4.41 -4.09
NCIIADR-RES -483 -4.49 -4.14
MDA-MB-23IIATCC -4.78 -4.46 -4.15
HS 578T -462 .. -4.12 - > -4.00 II

MDA-MB-435 -4.82 -452 -4.22
MDA·N -477 -4.50 -4.23
BT-549 -4.76 -4.46 -4.17
T-47D -4.85 -4.42 > ·4.00 •............................................................. ............................................. ......................_..................................... ............................................. ............................................................. •••••••••• n ........................ _ ••••••

MG_MID ·4.86 -4.50

=
-4.16

Delta 0.47 = 0_23 0.15 .:Ran~e 0.70 ..
1 I

0.61
I - I I I

0.32
I .I I I 1I 1
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National Cancer Institute Developmental Therapeutics Program
In-Vitro TestiDg Results

NSC: D-725552 11 Experiment ill: 021ONS71-18 Test Type: 08 Units: Molar

Report Date: October 31, 2002 Test Date: October 7. 2002 QNS: MC:

COM!: NU:UB 159 (16860) Stain Reagent: SRB Dual-Pass SSPL: OJQS

LoglO concentration
Time Mean Optical Densities percent Growth

Panel/Cell Line Zero Ctrl -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

CCRF-CEM 0.875 2.091 2.072 2.063 1.749 0.836 0.161 98 98 72 -4 -82 1.93£-06 8.74£-06 3.89£-05
HL-60ITB) 0.743 2.544 2.691 2.581 2.308 0.988 0.220 108 102 87 14 -70 3.19£-06 1.45£-05 5.72£-05
K-562 0.563 1.245 1.231 1.351 1.195 0.417 0.099 98 116 93 -26 -83 2.29£-06 6.04E-06 2.66£-05
MOLT-4 0.717 0.958 1.178 1.266 1.050 0.580 0.107 192 228 138 -19 -85 3.64£-06 7.56E-06 2.94£-05
Rl'HI-8226 1. 546 2.483 2.523 2.443 2.390 1.503 0.452 104 96 90 -3 -71 2.70E-06 9.33E-06 4.94£-05

Non-Small Cell Lung Cancer
A549/ATCC 0.254 1.233 1.327 1.343 1.224 0.710 0.243 110 111 99 47 -4 8.60£-06 8.22£-05 >1.00£-04
EItVX 0.497 0.892 0.970 1.005 0.923 0.712 0.427 120 129 108 54 -14 1.16E-05 6.23£-05 >1.00B-04
HOP-62 0.624 1.332 1.326 1.294 1.234 0.917 0.231 99 95 86 41 -63 6.41E-06 2.492-05 7.50B-05
HOP-92 0.388 0.954 0.973 0.959 0.938 0.746 0.405 103 101 97 63 3 1.66£-OS >1.002-04 >1.002-04
NCI-H226 0.556 1.120 1.098 1.061 0.962 0.672 0.465 96 89 72 20 -16 2.67£-06 3.59£-05 >1.00E-04
Net-H23 0.710 1.282 1.206 1.242 1.171 0.877 0.225 87 93 81 29 -68 3.93£-06 1.99£-05 6.48B-OS
NCI-H322M 0.451 0.733 0.790 0.788 0.733 0.567 0.230 120 120 100 41 -49 7.06£-06 2.86£-05 >1.0ez-04
Nl'::t-H460 0.277 1.800 1.867 1.842 1.651 0.680 0.168 104 103 90 26 -39 4.27E-06 2.522-05 >1.00£·04
NCI-HS22 0.229 0.949 1.014 1.068 0.937 0.657 0.208 109 117 98 59 -9 1.37£-05 7.31£-05 >1.00£-04

Colon Cancer
COLO 205 0.288 1.129 1.150 1.239 1.174 0.496 0.159 102 113 105 25 -45 4.86£-06 2.26£-05 >1.008-04
BeT-U6 0.160 0.541 0.546 0.521 0.438 0.182 0.007 101 95 73 6 -96 2.20B-06 1.14£-05 3.552-05
1lC'1'-15 0.144 1.611 1.622 1.527 1.043 0.625 0.365 101 94 61 33 15 2.49B-06 >1.00E-04 >1.00£-04
ll'1'29 0.168 1.107 1.179 1.195 1.061 0.514 0.118 108 109 95 37 -30 5.95£-06 3.588-05 >1.002-04
BH12 0.534 1.990 2.027 1.931 1.842 0.824 0.186 103 96 90 20 -65 3.71£-06 1.71£-05 6.63£-05
SW-620 0.197 0.754 0.821 0.797 0.817 0.356 0.161 112 108 111 28 -19 5.50£-06 4.032-05 >1.00£-04

CNS Cancer
SF-268 0.437 1.492 1.541 1.530 1.442 0.962 0.581 105 104 95 SO 14 9.86£-06 >1.00£-04 >1.00£-04
SF-295 0.462 '1.241 1.231 1.222 1.216 0.756 0.193 99 98 97 38 -58 6.20E-06 2.472-05 8.19£-05
S1'·539 0.540 LOU 1.091 1.093 1.101 0.719 0.128 U7 117 119 38 -76 7.10£-06 2.15£-05 5.89£-05
SII!!-19 0.304 0.927 0.854 0.954 0.888 0.486 0.252 88 104 94 29 -17 4.772-06 4.25£-05 >1.00£-04
SII!!- 75 0.493 0.819 0.868 0.904 0.835 0.668 0.238 US 126 105 54 -52 1.082-05 3.232-05 9.632-05
1I1!l1 0.248 0.939 0.936 0.967 0.791 0.415 0.155 100 104 79 24 -38 3.342-06 2.45£-05 >1.002-04

Me1anOll\8.
LOX IMVI 0.325 1. 331 1.440 1.419 1.325 0.550 0.115 111 109 99 22 -65 4.37£-06 1.81£-05 6.792-05
1IlII.lm-3M 1.007 1.403 1.448 1.459 1.449 1.261 0.729 111 114 111 64 -28 1.42£-05 4.99£-05 >1.00£-04
SK-HEL-2 0.062 0.788 0.897 0.936 0.815 0.654 0.362 115 120 104 82 41 6.07£-05 >1.00£-04 >1.00£-04
SK-Hlilt.-28 0.352 0.812 0.831 0.823 0.805 0.659 0.180 104 103 98 67 -49 1.40£-05 3.77£-05 >1.00£-04
SlHIEL-5 0.510 1.460 1.546 1.621 1.386 0.761 0.117 109 117 92 26 -77 4.37£-06 1.80£-05 5.47£-05
UACC-257 1. 033 1.876 1.946 1.939 1.950 1.614 0.834 108 107 109 69 -19 1.642-05 6.04£-05 >1.002-04
UACC-62 0.617 1. 306 1.442 1.355 "1.244 0.733 0.217 120 107 91 17 -65 3.57£-06 1.61£-05 6.58E-05

Ovarian Cancer
IGl<OV1 0.083 0.481 0.524 0.487 0.480 0.325 0.175 111 101 100 61 23 1.93£-05 >1.00E-04 >1.00£-04
OVCAR-3 0.612 1.200 1.205 1.190 1.132 0.733 0.243 101 98 88 21 -60 3.68E-06 1. 79£-05 7.442-05
OVCAR-4 0.665 1.537 1.563 1.580 1.509 0.875 0.487 103 105 97 24 -27 4.40£-06 2.98£-05 >1.00E-04
OVCAR-5 0.495 0.814 0.813 0.840 0.799 0.672 0.212 100 108 95 56 -57 1.12£-05 3.U£-05 8.64£-05
OVCAR-8 0.385 1.145 1. 236 1.229 1.220 0.767 0.316 112 111 110 SO -18 1.01£-05 5.44£-05 >1.00E-04
SK-OV-3 0.368 0.959 0.926 0.963 0.985 0.348 0.201 94 101 104 -5 -45 3.13E-06 8.92£-06 >1.00E-04

Renal Cancer
786-0 0.415 1.570 1.565 1.580 1.497 0.850 0.104 100 101 94 38 -75 6.028-06 2.16£-05 6.00E-05
ACHN 0.358 1.185 1.180 1.186 1.120 0.610 0.148 99 100 92 30 -59 4.828-06 2.20£-05 8.00E-05
CAlCI-1 0.679 1.374 1.415 1.443 1.319 0.687 0.258 106 110 92 1 -62 2.91£-06 1.04£-05 6.44E-05
RXF 393 0.447 1.551 1.489 1.520 1.430 1.225 0.682 94 97 89 70 21 2.60£-05 >1.00£-04 >1.00B-04
SN12C 0.522 0.804 0.822 0.798 0.763 0.423 0.097 106 98 85 -19 -82 2.18£-06 6.58£-06 3.13E-05
TK-l0 0.977 1.528 1.547 1.547 1.414 1.140 0.465 103 103 79 30 -52 3.87£-06 2.29£-05 9.332-05
00-31 0.127 1.278 1.402 1.365 1.242 0.970 0.605 111 108 97 73 42 5.41£-05 >1.00£-04 >1.00E-04

prostate Cancer
PC-3 0.157 0.553 0.511 0.524 0.500 0.291 0.064 89 92 86 34 -59 4.918-06 2.30£-05 7.95£-05
OO-14S 0.292 0.839 0.883 0.914 0.886 0.608 0.163 108 114 109 58 -44 1.19£-05 3.68£-05 >1.00£-04

Breast Cancer
MCF7 0.142 1.379 1.398 1.360 1.295 0.745 0.319 102 98 93 49 14 9.38E-06 >1.00E-04 >1.00£-04
NCI/ADa-RES 0.708 1.010 1.027 1.001 0.975 0.557 0.246 106 97 88 -21 -65 2.24E-06 6.39£-06 4.48£-05
MDA-MB-231/ATCC 0.493 0.952 0.977 0.950 0.865 0.592 0.286 105 99 81 22 -42 3.32E-06 2.18£-05 >1.008-04
HS 578T 0.799 1.209 1.411 1.423 1.300 0.956 0.514 149 152 122 38 -36 7.23£-06 3.29£-05 >1.00B-04
MDA-MB-435 0.644 1. 683 1.762 1. 747 1.616 0.686 0.313 108 106 94 4 -51 3.06E-06 1.18£-05 9.41E-05
BT-549 0.683 1.261 1.340 1.382 1.342 1.215 0.550 114 121 114 92 -20 2.38E-05 6.68E-05 >1.00E-04
T-47D 0.634 1.177 1.149 1.142 1.099 0.800 0.536 95 94 86 31 -16 4.43E-06 4.60£-05 >1.00E-04
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National Cancer institute Developmental Therapeutics Program
In-Vitro Testing Results

NSC: 0-725553 11 Experiment In: 021ONS71-34 Test Type: 08 Units: Molar

Report Date: October 31. 2002 Test Date: October 7. 2002 QNS: MC:

COMl: NU:UB 171 (16861) Stain Reagent: SRBDual-Pass SSPL: OJQS

Log10 Concentration
Time Mean Optical Densities Percent Growth

Panel/Cell Line Zero Ctr1 -8.0 -7.0 -6.0 -5.0 -4.0 -8.0 -7.0 -6.0 -5.0 -4.0 GI50 TGI LC50
Leukemia

CCRF-CEM 0.875 1.653 1.717 1.683 1.701 1.790 0.758 108 104 106 118 -13 3.28E-05 7.90E-05 >1.00E-04
HL-60 (TB) 0.743 1.734 1.913 1.801 1.603 1.522 0.556 118 107 87 79 -25 1.88E-05 5.71E-05 >1.00E-04
K-562 0.563 0.882 0.957 1.022 1.091 0.979 0.305 123 144 165 130 -46 2.86E-05 5.49E-05 >1.00E-04
MOLT-4 0.717 0.899 0.953 0.877 0.949 0.996 0.403 130 88 127 154 -44 3.35E-05 5.99E-05 >1.00E-04
RPMI-8226 1. 546 1.996 1.975 1.932 2.042 1.993 0.785 95 86 110 99 -49 2.15E-05 4.66E-05 >1.00E-04

Non-Sl\1all Cell Lung cancer
A549/ATCC 0.254 1.093 1.133 1.178 1.137 1.060 0.318 105 110 105 96 8 3.32E-05 >1.00E-04 >1.00E-04
EKVX 0.497 1.132 1.166 1.169 1.138 1.171 0.665 105 106 101 106 26 5.05E-05 >1.00E-04 >1.00E-04
HOP-92 0.388 1.005 0.891 0.845 0.870 0.849 0.503 82 74 78 75 19 2.75E-05 >1.00E-04 >1.00E-04
NCI-H23 0.710 1.179 1.085 1.081 1.098 1.048 0.633 80 79 83 72 -11 1.85E-05 7.39E-05 >1.00E-04
NCI-H322M 0.451 0.831 0.869 0.724 0.723 0.758 0.418 110 72 72 81 -7 2.24E-05 8.24E-05 >1. 00E-04
NCI-H460 0.277 1.800 1.904 1.867 1.786 1.809 0.561 107 104 99 101 19 4.14E-05 >1.00E-04 >1.00E-04
NCI-H522 0.229 0.943 0.997 1.063 0.996 0.990 0.479 108 117 107 107 35 6.17E-05 >1.00E-04 >1.00E-04

Colon Cancer
COLO 205 0.288 1. 095 1.104 1.143 1.181 1.102 0.393 101 106 111 101 13 3.79E-05 >1.00E-04 >1.00E-04
1iCT-15 0.144 1.316 1.117 1.227 1.214 1.123 0.309 83 92 91 84 14 3.04E-05 >1.00E-04 >1.00B-04
HT29 0.168 0.953 0.946 0.949 0.959 0.893 0.217 99 99 101 92 6 3.10E-05 >1.00E-04 >1.00B-04
KM12 0.534 2.023 1.914 1.893 1.773 1.506 0.278 93 91 83 65 -48 1.36B-05 3.77E-05 >1.00E-04
SI'I-620 0.197 0.762 0.776 0.734 0.780 0.780 0.189 102 95 103 103 -4 3.13E-05 9.17E-05 >1.00B-04

CNS Cancer
SF-268 0.437 1.489 1.432 1.511 1.444 1.372 0.766 95 102 96 89 31 4.73E-05 >1.00E-04 >1.00E-04
SF-295 0.462 1.204 1.122 1.121 1.182 1.116 0.486 89 89 97 88 3 2.81E-05 >1.00B-04 >1.00E~04

SF-539 0.540 1.366 1.389 1.397 1.430 1.493 0.606 103 104 108 115 8 4.06E-05 >1.00B-04 >1.008-04
SNll-19 0.304 0.832 0.849 0.896 0.872 0.733 0.447 103 112 108 81 27 3.78E-05 >1.00E-04 >1.00E-04
SNB-75 0.493 0.895 0.908 0.910 0.899 0.849 0.454 103 104 101 89 -8 2.51E-05 8.26E-05 >1.00E-04
U2S1 0.248 0.921 0.887 0.898 0.856 0.857 0.260 95 97 90 90 2 2.86E-05 >1.00E-04 >1.00E-04

Melanoma
LOX IMVI 0.325 1.331 1.273 1. 330 1. 301 1.256 0.372 94 100 97 93 5 3.05E-05 >1.00E-04 >1.00E-04
Ml\toME-3M 1.007 1.339 1.315 1.267 1.266 1.300 0.864 93 78 78 88 -14 2.36E-05 7.26E-05 >1.00S-04
SK-HEL-2 0.062 0.721 0.771 0.840 0.800 0.804 0.463 108 118 112 113 61 >1.00E-04 >1. 00E-04 >1.00&-04
SK-MEL-28 0.352 0.967 0.922 0.960 0.951 0.937 0.490 93 99 97 95 22 4.17E-05 >1.00E-04 >1.00S-04
Slt-MEL-5 0.510 1.797 1.843 1.829 1.828 1.879 0.518 104 102 102 106 1 3.41E-05 >1.00E-04 >1.00E-04
tJACC-257 1. 033 1. 712 1.E94 1.738 1.739 1.745 1.010 97 104 104 105 -2 3.25E-05 9.53E-05 >1.00B-04
UACC-62 0.617 1.429 1.445 1.500 1.337 1.319 0.608 102 109 89 86 -1 2.60E-05 9.63E-05 >1.00E-04

Ovarian Cancer
IGROV1 0.083 0.740 0.728 0.759 0.751 0.735 0.285 98 103 102 99 31 5.23E-05 >1.00E-04 >1.00B-04
OVCAR-3 0.612 0.974 0.996 0.972 0.944 0.903 0.382 106 99 92 80 -38 1.80E-05 4.79E-05 >1.00B-04
OVCAR-4 0.665 1.522 1.567 1.600 1.596 1.563 0.946 105 109 109 105 33 5.76E-05 >1.00E-04 >1.00E-04
OVCAR-5 0.495 0.825 0.790 0.795 0.778 0.729 0.454 90 91 86 71 -8 1.83E-05 7.86E-05 >1.00E-04
OVCAR-8 0.385 1.072 1.038 1.040 1.070 1.052 0.323 95 95 100 97 -16 2.60E-05 7.19E-05 >1.00E-04
SK-OV-3 0.368 0.884 0.905 0.939 0.951 0.987 0.340 104 III 113 120 -8 3.54E-05 8.72E-05 >1.00E-04

Renal Cancer
786-0 0.415 1.295 1.175 1.146 1. 046 0.954 0.367 86 83 72 61 -12 1. 43E-05 6.94E-05 >1.00E-04
ACIlN 0.358 1.105 1.087 1.098 1.040 1.035 0.526 98 99 91 91 22 3.95E-05 >1.00E-04 >1.00E-04
CAKI-1 0.679 1.180 1.153 1.027 1.218 1.173 0.436 95 69 108 98 -36 2.30E-05 5.41E-05 >1.00E-04
RXF 393 0.447 1.712 1.685 1.605 1.675 1.545 1.075 98 91 97 87 50 9.78E-05 >1.00B-04 >1.00E-04
TIt-I0 0.977 1.702 1.713 1.600 1.557 1.595 0.757 101 86 80 85 -23 2.12E-05 6.18E-05 >1.00E-04
00-31 0.127 1.161 1.167 1.190 1.186 1.143 0.501 101 103 102 98 36 5.98E-05 >1.00E-04 >1.00E-04

prostate Cancer
PC-3 0.157 0.566 0.497 0.469 0.490 0.448 0.149 83 76 81 71 -5 1. 89E-05 8.50E-05 >1.00E-04
DO-US 0.292 1.051 1.064 1.113 1.120 1.140 0.616 102 108 109 112 43 7.84E-05 >1.00E-04 >1.00B-04

Breast Cancer
MeF7 0.142 1.433 1.465 1. 473 1.445 1.422 0.609 102 103 101 99 36 6.02E-05 >1.00E-04 >1.00E-04
MDA-MB-231/ATCC 0.493 0.844 0.821 0.771 0.706 0.699 0.395 94 79 61 59 -20 1. 29E-05 5.59B-05 >1.00E-04
HS 578T 0.799 1.239 1.253 1.258 1.249 1. 223 0.668 103 104 102 96 -16 2.57E-05 7.14E-05 >1.00£-04
MDA-MB-435 0.644 1.537 1.522 1.623 1.376 1. 344 0.438 98 110 82 78 -32 1. 81E-05 5.12E-05 >1.00B-04
BT-549 0.683 1.545 1.556 1.612 1.580 1. 578 0.843 101 108 104 104 19 4.28E-05 >1.00E-04 >1.00£-04
T-47D 0.634 1. 033 1.057 1.101 1.072 1.016 0.599 106 117 110 96 -6 2.83E-05 8.82E-05 >1.00E-04
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National Cancer Institute Developmental Therapeutics Program
Mean Graphs

NSC: D- 725553 I 1 IUnits: Molar SSPL: OJQS IExp. ID:021ONS71-34
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Appendix 3

Comparison of Delta Values for the NCI Colon and Melanoma

Cancer Sub-Panels



Comparison of Delta Values for the NCI Colon Cancer Sub-Panel (plotted in log
mean graph format) for the topoisomerase II inhibitors, etoposide and mAMSA,

and the dual topoisomerase I and II inhibitor intoplicine
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Comparison of Delta Values for the NCI Melanoma Cancer Sub-Panel (plotted in
log mean graph format) for the topoisomerase II inhibitors, etoposide and

mAMSA, and the dual topoisomerase I and II inhibitor intoplicine
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