
Migration of Mobile Agents in Ad-hoc, Wireless Networks

Migas N, Buchanan WJ and McArtney K

School of Computing, Napier University, EH10 5DT, Scotland, UK

n.migas, w.buchanan, k.mcartney{@napier.ac.uk}

Abstract

This paper focuses on the design and development of a

novel architecture called MARIAN, which utilises static

agents, mobile agents, and also a hybrid approach, in

order to perform routing, network discovery, and

automatic network reconfiguration, in wireless ad-hoc

networks. The paper shows that, in most cases, the static

agent approach is faster than the mobile agent approach

in retrieving data from a wireless remote database.

However, if the amount of data to be retrieved is

relatively large, such as in the gathering of data for

routing information, the mobile agents are more capable

of filtering data according to the required preferences. It

also shows that the time taken to gather routing

information can be significantly reduced using a mobile

agent approach, as compared with the static agent

approach.

1. Introduction

An ad-hoc network consists of mobile devices that have

no central administration, and thus form a temporary

network. It may therefore be necessary for one mobile

device to seek the aid of others in forwarding data packets

to their destination, due to the limited propagation range

of the device’s wireless transmissions [1]. Ad-hoc

networks have a vast number of applications, such as in

military operations, commercial, disaster relief,

conferencing, sensor networks, personal area networks,

and embedded computing applications [2].

Routing on mobile devices in wireless, ad-hoc

networks is a complex process due to factors including

mobility, limitations in processing power and reduced

battery capacity. Current routing protocols can be

grouped into two categories: proactive and reactive.

Proactive. These maintain a route to all nodes within

the network, including those to which no packets are

sent. They also react to dynamic topology changes,

even if these changes have no effect on the traffic.

Traditional network routing protocols like Destination

Sequenced Distance Vector (DSDV) [3] are proactive.

Reactive: these only react when a route is needed

between a source and a destination node, and do not

need to try and maintain routes to destinations that

they are not communicating with. This includes

routing protocols such as Dynamic Source Routing

(DSR) [4], Ad-Hoc On-demand Distance Vector

(AODV) [5], Ad-hoc On Demand Multipath Distance

Vector (AOMDV) [6].

The mobile agent paradigm is a relatively new technology

that has its origins in intelligent agents, and is proposed as

an alternative approach to client-server communications

model. A mobile agent is a software entity that inherits

some of the features of an intelligent agent and requires

an agent environment to execute. A mobile agent can

suspend its execution on a host computer, and then

transfer its code, data state, and possibly its execution

state (strong migration) to another host on the network

that must provide an agent environment, and resume

execution on the new host. The aim of an agent

environment [20] is to provide the appropriate

functionality to mobile agents to execute, communicate,

migrate, and use system resources in a secure way. In

general, a mobile agent comprises of an agent model, a

life-cycle model, a computation model, a security model,

a communication model, and finally a navigation model

[7].

This paper presents the migration process of mobile

agents in wireless ad-hoc networks were participating

nodes are mainly mobile devices, such as laptops and

PDAs. Section 2 presents background information on

Grasshopper micro-edition, which is a mobile agent

system capable of running in small Java-enabled devices

such as PDAs. Section 3 MARIAN, a potential routing

architecture which utilises static and mobile agents to

perform routing, network discovery, and automatic

network reconfiguration in wireless ad-hoc networks.

This is then built on, to present a database application

scenario in Section 4, which justifies MARIAN’s

architecture. Section 5, presents innovative experimental

results that further prove the applicability of agents in

wireless ad-hoc networks [8-12]. Section 6, concludes

this research work.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

2. Grasshopper micro edition for PDAs

Grasshopper is a Java-based mobile agent system

developed by IKV++ [13]. It builds on top of a

distributed processing environment and thus allows the

integration of the traditional client/server paradigm, and

mobile agent technology [14]. It is compliant with the

agent standard defined by the Object Management Group

(OMG), which is the Interoperability Facility (MASIF)

[15].

It also supports multiple communication protocols,

such as Remote Method Invocation (RMI), RMI SSL,

Plain Socket, Plain Socket/SSL, and IIOP. Supported

communication modes include synchronous,

asynchronous, dynamic, and multicast. The unique

feature of Grasshopper, and most important for this

research perspective, is that it can be executed on small

wireless devices such as PDAs, as long as they are, at a

minimum, Java 2 Micro Edition (J2ME)-enabled [16].

Grasshopper is an open source project, and, from our

experience in using Grasshopper micro edition, there are

a number of problems when executing software in PDAs

that are J2ME compliant [17]. When the graphical user

interface components are turned on, Grasshopper halts

execution and prints out a number of exceptions. This

may be due to the fact that Grasshopper’s graphical

components have been developed according to Swing

libraries [18], while J2ME only supports AWT 1.1 [19].

This can be fixed by manually disabling the graphical

components and work with the provided textual interface,

which effectively serves the same purpose.

In Grasshopper, the execution environment of static

and mobile agents is called an agency, which can be

subdivided in more than one place. In each agent-enabled

host, a running agency is necessary in order to execute

agents, and also provides services such as

communication, registration, management, transport,

security, and persistence. Each agency is aware of all

currently hosted agents and places for management

purposes, by the use of a registration service. Besides the

registration service, Grasshopper offers a region registry,

which maintains information on agents, agencies, and

places in the scope of a whole region. Thus, an agent may

ask the region registry for the location of a particular

service, and thus migrate there in order to benefit from

local interactions.

3. MARIAN routing protocol

Mobile Agents for Routing in Ad-hoc Networks

(MARIAN) is a research project that proposes to assess

different models of the usage of static and mobile agents

to determine the best route through ad-hoc networks [23,

24]. The routing process in wireless ad-hoc networks is a

complex one and requires research into the best metrics to

identify the best path, such as memory capacity, network

performance, processing capabilities, cost, and so on. One

model is to use a mixture of mobile and static agents to

gather relevant information. These agents could perform

important tests, which could be used to generate the best

route through a network. This research looks at different

models for the deployment of these agents, which balance

the usage of static and mobile agents. A number of

novelties are expected to emerge that will improve current

routing protocols. These include optimisation of network

performance, scalability, improved Quality of Service

(QoS), reconfigurability, and security.

The research effort has defined a general framework

that uses a mixture of static and mobile agents for routing,

network discovery, and automatic network

reconfiguration in wireless ad-hoc networks. It uses a

static agent, a mobile agent, and a hybrid agent approach,

in order to be suitable for a vast set of applications. Thus,

according to the application’s needs, the static, mobile, or

hybrid approach can be utilised. There are a number of

research projects that currently utilise the mobile agent

technology to perform network discovery, and routing in

ad-hoc networks. Chpudhury proposed a distributed

mechanism for topology discovery in ad-hoc wireless

networks using mobile agents [26]. Along the same

direction, Marwaha proposed a combination of the on-

demand routing protocol Ad-Hoc On Demand Distance

Vector (AODV) [27] with a distributed topology

discovery mechanism using ant-like mobile agents [28].

Their results, further support the thesis of this research

that mobile agent technology can be used for routing,

network discovery, and automatic network

reconfiguration, in an efficient, effective, and secure way.

An aim of MARIAN is to prove that mobile agents can be

migrated from small wireless devices using IEEE802.11b

standard, and that they provide a better solution to client-

server approach when filtering of data is used locally.

MARIAN’s architecture is based on the framework

developed by the authors of this paper and presented in

[25]. As a synopsis, the routing protocol groups mobile

devices into wireless domains. The principle is that

devices that are situated in the same wireless domain are

in direct communication range with each other. A mobile

device may belong to one or more wireless domains, and

thus a cluster is defined. A cluster is composed of more

than one wireless domain, where at least one device

belongs to all domains. Once the organisation of devices

into wireless domains and clusters is completed,

MARIAN chooses the strongest device of each wireless

domain to implement a region registry. Every other

device in the same wireless domain then registers with the

region registry. The device that implements the region

registry has knowledge of all other devices situated in the

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

same wireless domain, all agencies and places running in

each device, all static or mobile agents, and all services

that may be offered by mobile devices.

Even though a mobile agent may migrate from one

device to another, the registry maintains a track to the

agent’s current location, so that communication is

handled transparently. When a registered device moves

away from the current wireless domain, the region

registry erases all references to that device, and informs

the rest of the devices that this particular device is no

longer reachable.

Figure 1, illustrates the organisation of mobile devices

into wireless domains and clusters.

Node C

Node E

Node F

Node B

Node A

WDF

WDE

WDD

WDC

WDB

WDA

Node D

Node G

Figure 1: MARIAN, organisation of mobile nodes into
clusters and domains

4. Application Scenario

An application scenario has been designed and

implemented in order to prove that migration of agents in

wireless ad-hoc networks consisting of PDAs and laptops,

using the IEEE802.11b standard for communications, is

achievable. The application also provides evidence that

the architecture of MARIAN routing protocol is feasible

and that it may be a better approach to traditional routing

protocols by providing a set of advantages such as

maximise network performance, scalability, dynamic,

Quality of Service (QoS), reconfigurability, and security.

Figure 2 illustrates four wireless devices, in which two

of them are PDAs and the other two are laptops. One of

the laptops maintains a public database of articles from

journals, conferences, workshops, and tutorials. It also

provides a simple search facility that once a query is

passed, it returns a number of hits that include the

article’s unique identification number, authors, summary,

and so on. A client PDAs wants to search laptop’s public

database, however, it is not in direct communication

range. Fortunately, the other devices (PDA and laptop)

are situated in between the client PDA and the database

laptop. Thus they are in direct communication range with

the client PDA, the database laptop, and one another.

WDB

WDA

Database Laptop

Node D

Gateway

Node C

Gateway & Region registry

Node B

Client PDA

Node A

Figure 2: Organisation of devices for the database
application scenario

In this case two wireless domains are identified (WDA

and WDB) and one cluster (CA (WDA WDB)), which

consists of both wireless domains (WDA and WDB). The

two PDAs, node B and C belong to both wireless

domains, and therefore can both act as bridges in order to

link both wireless domains together. In this way, node A

will be able to communicate with node D, through either

node B or C. We can assume that the strongest device of

both wireless domains (WDA and WDB) is node B.

Therefore node B was chosen to implement a region

registry. The application is thus designed in such a way

that node A asks the registry if there is a database service

available. The registry replays back with a positive

answer and provides the location and route to contact the

database laptop, which, in this case, is either A B D

(route 1) or A C D (route 2). By default, the

application selects the second route, which is through the

gateway PDA. Even though, MARIAN would select the

route consisting of the strongest devices (route 1), since

both routes require the same number of hops, the

application selects the weakest one (route 2) for testing

purposes.

The application scenario implements both a static and

mobile agent approach. Figure 3, illustrates the static

agent approach. Once the route is retrieved, a static agent

on node A transmits the query to the gateway agent on

node C, which then forwards it to the database static

agent on node D. The database agent processes the query

and then passes back the results to the gateway agent on

node C. Finally, an agent on node C passes the results

back to agent on node A.

According to the mobile agent approach, once the

route is retrieved, a mobile agent is created having set its

itinerary to the retrieved route and carries in its payload

the query string. The agent is then serialised (code and

data state) and transmitted to the first hop of its

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

destination, which is the gateway node. A new instance of

the client mobile agent is then created by the mobile agent

system of the gateway node. The mobile agent then

requests its migration to the next hop, which is the

database node. The agent is then serialised and

transmitted to the database node by the gateway’s mobile

agent system. A new instance of the agent is then created

to the database node. The agent then senses its arrival on

the database node and initiates communication with the

database agent. It passes the query to the database agent

and stores the results in its payload. After this it then asks

the mobile agent system to transmit it to the gateway

node. Upon arrival at the gateway node, the client agent

requests its transmission back home (client device). The

gateway’s node mobile agent system serialises the agent

and transmits it back home. Figure 4 illustrates the

solution according to the mobile agent approach.

Registry Region

Registration with

the region

Registration with

the region

Database

agent

Gateway

agent

Gateway

agent Client

agent

Database

Communication

flow

Communication

flow

Not in direct
Communication

range

Figure 3: Accessing the database, static agent

Client mobile

agent

Migration

Not in direct

Communication

range

Database

agent

Database

Client mobile

agent

Region Registry

Migration

Gateway

agent

Client mobile

agent

Registration with

the region

Registration with

the region

Figure 4: Accessing the database, mobile agent

In addition to the static and mobile agent models, a

filtering mobile agent model has also been implemented

and tested. The filtering mobile agent model follows the

same principles as the one without filtering, however, the

client mobile agent maintains preference information on

articles that its user is most interesting in. Once the client

mobile agent, retrieves the results from the database,

instead of just storing them to its payload, it first filters

the data locally according to its user’s preference, and

thus stores only a small amount of the total results. For

instance, according to the current implementation of the

application scenario, the agent knows that its user is only

interesting in recent articles from journals only, written

by a set of authors, which their keywords match with the

keywords supplied. The agent interprets the word

“recent” to papers written between years 2002 and 2003,

and considers articles that were published in journals only

by a list of specific authors with keywords that match the

supplied ones.

5. Results

Initially, the results from the database were set to be

100KBits in size which then increased to 200KBits and

finally to 300KBits. Both static and mobile agent

approaches were tested against the amounts mentioned

above in respect to time. Thus, the time it takes for the

client to contact the region, retrieve the route, and get the

results from the database was measured. All experiments

were iterated 20 times. Figure 5, illustrates the time taken

for the client to retrieve 100KBits, 200KBits, and

300KBits according to static agent approach. The

horizontal axis represents the iterations that took place (in

this case, 20) while the vertical axis represents the time

measured in seconds to complete the process.

Figure 6, illustrates the time taken for the client to

retrieve 100KBits, 200KBits, and 300KBits according to

mobile agent approach. The horizontal axis represents the

iterations that took place (in this case, again, it is 20)

while the vertical axis represents the time measured in

seconds to complete the process. Different sizes have a

noticeable effect on time. As expected, size of 100Kbits

achieves the best time with an average of 44 seconds,

while size of 200Kbits achieves an average of 50.5

seconds and size of 300Kbits achieves an average of 63.5

seconds. Therefore, there is approximately an increase of

15 seconds for an added size of 100Kbits. In the first

iteration of the data size 100Kbits and 200Kbit there is a

glitch, which as mentioned above, may be caused by

either the JVM, or the operating system.

Figure 7, presents the average times of the static and

mobile agent approach against 100Kbits, 200Kbits, and

300Kbits sizes of data. It thus contrasts the static and

mobile agent approach to retrieve data of size 100Kbits,

200Kbits, and 300Kbits. It can seen that the static agent

approach performs significantly better in respect to time.

The overall average time for the static agent approach is

approximately five seconds while the average time for the

mobile agent approach is approximately 50 seconds.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

15 Mbits, Static

15 Mbits, Mobile

Therefore, the static agent approach performs nearly 10

times better than the mobile agent approach. The delay in

the mobile agent approach is based on the fact that the

JVM needs to serialise the mobile agent (code and state)

in order to transmit it, deserialise it to the destination, and

then create a new instance of the agent at the destination

node. In the application scenario, this process happens

four times, exactly as the migrations of the mobile agent.

Thus, the overhead in the mobile agent approach is

approximately 45 seconds.

Figure 8 illustrates the time taken to retrieve data of

15Mbits based on the filtering mobile agent approach and

contrasts the results to the time taken to retrieve the same

amount of data (15Mbits) from the static approach. This

shows a significant improvement of the filtering mobile

agent approach in contrast to the static agent approach.

The average time taken to retrieve data of size 15Mbits,

based on the static agent approach, is approximately 62

seconds while the average time taken to retrieve the same

amount of data based on the filtering mobile agent

approach is approximately 42 seconds..

Figure 7: Time taken to retrieve 100KBits, 200KBits, and
300Kbits according to the mobile agent approach

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

15 Mbits, Static

15 Mbits, Mobile Filtering

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

300 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

100 Kbits

200 Kbits

300 Kbits

Figure 8: Average times to retrieve 100KBits, 200KBits,
and 300Kbits of data

Therefore, the filtering approach is nearly one third faster

than the static approach. This is due to the fact that the

mobile agent retrieves the data from the database, which

are of size 15Mbits, and performs filtering of data locally

according to its user’s preferences, which, in this case,

reduces the data from 15Mbits to only 56Kbits, which

then stores to its payload. The static agent approach has

no filtering capabilities, and thus retrieves the full amount

of data

Figure 5: Time taken to retrieve 100KBits, 200KBits, and
300Kbits according to the static agent approach

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16 18 20

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16 18 2

100 Kbits

200 Kbits

300 Kbits

0

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16 18 20

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16 18 2

100 Kbits

200 Kbits

300 Kbits

0

6. Conclusions

This paper provides background information on wireless

ad-hoc networks, traditional and innovative routing

protocols, and mobile agent technology. It introduces

Grasshopper mobile agent system, which is currently the

only system that is capable of executing to small wireless

devices such as PDAs, although, problems may arise

when grasshopper executes on J2ME-enabled devices. A

database application scenario has been designed and

implemented according to MARIAN’s architecture and
Figure 6: Time taken to retrieve 100KBits, 200KBits, and
300Kbits according to the mobile agent approach

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

experimental results prove that migration of agents in

wireless ad-hoc networks consisting of PDAs and laptops,

using the IEEE802.11b standard for communications, is

achievable, and can be a better approach to static only if

local filtering of data is supported. Also, results proved

that the proposed architecture of MARIAN routing

protocol is feasible and that is may be a better approach to

traditional routing protocols, since it utilises both a static

and mobile agent approach to suit a vast majority of

applications.

7. References

[1] Hassanein, H. and Zhou, A., 2001. Routing with load

balancing in wireless Ad-Hoc Networks. Proceedings of

the 4th ACM International Workshop on Modelling,

Analysis, and Simulation of Wireless and Mobile Systems.

Rome, Italy. pp. 89-96.

[2] Perkins, C. E., 2001. Ad-hoc networking: an introduction.

Ad-hoc networking. Published by Addison-Wesley. ISBN:

0201309769.

[3] Perkins C. and Bhagwat, P, 1994. Highly Dynamic

Destination-Sequenced Distance-Vector Routing (DSDV)

for Mobile Computers. Proceedings of the ACM

SIGCOMM'94 Conference on Communications

Architectures, Protocols and Applications. London, UK.

pp. 234-244.

[4] Johnson D. B., et. al., 2002. The Dynamic Source Routing

protocol for Mobile Ad Hoc Networks (DSR). Internet

Engineering Task Force (IETF), Mobile Ad Hoc

Networking working group (MANET) Official Internet

Draft. http://www.ietf.org/internet-drafts/draft-ietf-manet-

dsr-07.txt.

[5] Perkins C, et. al., 2002. Ad-hoc On-demand Distance

Vector Routing. Internet Engineering Task Force (IETF),

Mobile Ad Hoc Networking working group (MANET)

Official Internet Draft. http://www.ietf.org/internet-

drafts/draft-ietf-manet-aodv-12.txt.

[6] Marina, M. K. and Das, S. R., 2001. On-demand

Multipath Distance Vector Routing for Ad Hoc Networks.

In Proceedings of the International Conference for

Network Protocols (ICNP). Riverside, USA. pp. 14-23.

[7] Harrison, C. G. et al, 1995. Mobile Agents: Are they a

good idea. Technical Report. IBM T.J. Watson Research

Centre.

[8] Baumann, J. et. al., 1998. Mole concepts of a mobile agent

system. World Wide Web. Vol. 1, No. 3. pp.123-37.

[9] Tcl, Developer, 2003. Tcl language. http:// www.tcl.tk/.

[10] Gosling, J. et. al., 2000. The Java Language Specification,

2nd edition. The Java Series. Published by Addison-

Wesley. USA. ISBN: 0201310082.

[11] Lindholm, T. and Yellin, F., 1999. The Java Virtual

Machine Specification, 2nd edition. The Java Series.

Published by Addison-Wesley. USA. ISBN: 020163452X.

[12] Funfrocken, S., 1998. Transparent Migration of Java-

Based Mobile Agents. Proceedings of the Second

International Workshop on Mobile Agents (MA'98).

Stuttgart, Germany. pp. 26-37.

[13] IKV++, Inc., 2003. Grasshopper mobile agent system.

Grasshopper Documentation. http://www.grasshopper.de.

[14] Grasshopper Documentation, 2001. Basics and Concepts

2.2. http://www.grasshopper.de

[15] OMG, MASIF, 1997. Mobile Agent Facility Specification.

Object Management Group (OMG).

http://www.omg.org/docs/orbos/97-10-05.pdf.

[16] Sun, Microsystems, 2003c. JavaTM 2 Micro Edition

(J2METM). Sun Community Source Licensing (SCSL).

http://wwws.sun.com/software/communitysource /j2me.

[17] Sun Microsystems, 2003a. Java™ 2 Platform, Micro

Edition. http://java.sun.com/j2me/j2me-ds.pdf.

[18] M. Robinson and P. Vorobiev, 2000. Swing introduction.

http://developer.java.sun.com/ developer/Books/swing2/.

[19] Sun Microsystems, inc, 2002b. Abstract Window Toolkit

(AWT). http://java.sun.com/j2se/1.4.1/ docs /guide/awt/.

[20] Silva, A. R. et. al., 2001. Towards a reference model for

surveying mobile agent systems. Autonomous Agents and

Multi Agent Systems. Vol. 4, No. 3. pp.187-231.

[21] Hadjiefthymiades, S. et. al., 2002. Supporting the WWW

in wireless communications through mobile agents.

Mobile Networks & Applications. Vol. 7, No. 4. pp. 305-

313.

[22] Braun, P., 2002. The migration process for Mobile Agents,

Implementation, Classification, and Optimisation. PhD

thesis. Fiedrich Schiller University of Jena. Germany.

[23] Samaras, G. and Panayiotou, C., 2002. Personalized

Portals for the Wireless User based on Mobile Agents.

International Conference on Mobile Computing and

Networking, Proceedings of the second International

Workshop on Mobile Commerce. Atlanta, USA. pp. 70-

74.

[24] Migas N. et al, 2003a. Mobile Agents for Routing,

Topology Discovery, and Automatic Network

Reconfiguration in Ad-Hoc Networks. 10th IEEE

International Conference and Workshop on the

Engineering of Computer Based Systems. Huntsville,

USA, pp. 200-206.

[25] Migas N. et al, 2003b. MARIAN: A Framework using

Mobile Agents for Routing in Ad-hoc Networks. IADIS

International Conference on WWW/Internet, Algarve,

Portugal.

[26] Chpudhury, R. R. et. al., 2000. A distributed mechanism

for topology discovery in ad-hoc networks using mobile

agents. Proceedings of 1st Annual Workshop on Mobile

Ad-Hoc Networking Computing, MobiHOC Mobile Ad-

Hoc Networking and Computing. Boston, USA.

[27] Perkins, C. E. and Royer, E. M., 1999. Ad-hoc On-

Demand Distance Vector Routing. Proceedings of the 2nd

IEEE Workshop on Mobile Computing Systems and

Applications. New Orleans, USA. pp. 90-100.

[28] Marwaha, S., 2002. Mobile Agents based Routing

Protocol for Mobile Ad-Hoc Networks. In Proceedings of

IEEE Global Telecommunications Conference

(GLOBECOM'02). Taipei, Taiwan. pp. 17-21.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

	footer1:

