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ABSTRACT Mobile cloud computing has emerged as a promising paradigm to facilitate computation-
intensive and delay-sensitive mobile applications. Computation offloading services at the edge mobile cloud
environment are provided by small-scale cloud infrastructures such as cloudlets. While offloading tasks
to in-proximity cloudlets enjoys benefits of lower latency and smaller energy consumption, new issues
related to the cloudlets are rising. For instance, unbalanced task distribution and huge load gaps among
heterogeneous mobile cloudlets are becoming more challenging, concerning the network dynamics and
distributed task offloading. In this paper, we propose ‘FairEdge’, a Fairness-oriented computation offloading
scheme to enable balanced task distribution for mobile Edge cloudlet networks. By integrating the balls-and-
bins theory with fairness index, our solution promotes effective load balancing with limited information at
low computation cost. The evaluation results from extensive simulations and experiments with real-world
datasets show that, FairEdge outperforms conventional task offloading methods, and it can achieve a network
fairness up to 0.85 and reduce the unbalanced task offload by 50%.

INDEX TERMS Mobile cloudlets, load balancing, edge computing, fair task offloading.

I. INTRODUCTION
In recent years, with the rapid development of mobile
computing technologies and pervasive proliferation ofmobile
devices, mobile traffic data has been growing at an unprece-
dented rate. According to a latest white paper released
by Cisco [1], the global mobile traffic data will increase
seven-fold between 2017 and 2022, reaching 77 exabytes
(1 exabyte = 1018 bytes) per month. Notably, of all IP traf-
fic in 2022, over 50% will be Wi-Fi and smartphones will
account for nearly 60% traffic offloading. While mobile
applications are aggressively demanding in computation
resources, mobile devices are still constrained by the limited
capacities in the batteries, memory, and processers. As a con-
sequence, the enlarging gap between resource-constrained
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mobile devices and computing-intensive applications has
become a great challenge [2]. Nevertheless, cloud computing
is the ultimate solution to deal with this challenge.

Generally, cloud computing allows mobile users to offload
computation tasks,1 i.e., the executable application phases,
on to cloud computing infrastructures (i.e., IaaS, PaaS, and
SaaS). In the scenario of mobile computing, by migrating
computing-intensive tasks to the cloud, mobile devices can
benefit from lower energy consumption and enjoy virtually
unlimited computing capacity. This is exemplified by a wide
range of cloud computing platforms, including Amazon Web
Services, Microsoft Azure, and Google Cloud [3]. These
cloud computing platforms provide computing services that
can be remotely accessed by mobile users. However, existing

1In the remaining of this paper, we will use the terms ‘‘task offloading’’
and ‘‘computation offloading’’ interchangeably unless otherwise stated.
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studies have shown the limitations of solely relying on
offloading tasks to remote clouds. Since mobile users access
remote clouds via a wide area network (WAN), they may
experience long latencies caused by congested transmission
over long distances between end devices and clouds [3].

Subsequently, the concept of mobile edge comput-
ing (MEC) has been proposed to provide mobile users with
in-proximate computing resources, such as cloudlets [2].
A mobile cloudlet is a trusted, resource-limited cluster of
computing servers, which is integrated with wireless local
area networks (WLAN). By offloading tasks to a nearby
mobile cloudlet, the demands of fast and interactive response
can be sufficiently satisfied with the low-latency, one-hop,
and high-bandwidth access. In comparison with remote cloud
computing resources, the mobile cloudlets at edge networks
can improve the task processing time significantly. As a
result, mobile users of computation-intensive applications [4]
(e.g., virtual reality, image processing, and augmented gam-
ing) can enjoy faster response and better Quality of Ser-
vices (QoS), and enhanced Quality of Experience (QoE) [5].

However, considering the capacity of each cloudlet is lim-
ited, a mobile cloudlet would become overloaded if it travels
in an area where too many mobile users offload computation-
intensive tasks to it. In that case, above QoS and QoE for
mobile users can be seriously impacted, making the com-
munication cost and delay even higher than offloading tasks
to a remote cloud. Therefore, it is of great importance to
maintain load balancing among all mobile cloudlets at edge
networks, so that each cloudlet’s computing resource can
be fully exploited, and mobile users can also have a quick
response on their offloaded tasks.

Unfortunately, most existing solutions to improve the per-
formance of edge networks have overlooked a fundamen-
tal issue, i.e., the fairness of task offloading among mobile
cloudlets. Indeed, it’s difficult to achieve fairness in task
offloading among mobile cloudlets, as the mobility of each
cloudlet is random, and the network is intermittently con-
nected. Moreover, as computation offloading behaviors of
mobile users are uncontrollable, the task load of each cloudlet
is highly dynamic, making it costly to probe the overall load
information in the cloudlet network for comparison and deci-
sionmaking. Accordingly, two challenges need to be formally
addressed.
• First, the load balancing should be achieved under the
collaboration among mobile cloudlets. As the mobility-
enhanced cloudlets opportunistically encounter each
other, it is important for them to collaboratively offload
tasks to each other for the benefit of overall load balanc-
ing in edge networks.

• Second, it should be low-cost and light-weight to
achieve fairness in the mobile cloudlet network. There-
fore, a universal fairness metric should be adopted to
measure the fairness based on load information of each
cloudlet. The fairness metric should be further taken
into consideration when mobile cloudlets offload tasks
to each other.Moreover, the fairness value of the cloudlet

network should be updated in each time interval, as load
information of each cloudlet constantly changes.

In this paper, to deal with the above challenges, we propose
FairEdge, a Fairness-oriented task offloading scheme for col-
laborative mobile cloudlets at Edge networks. FairEdge inte-
grates the balls-and-bins theory [6] with fairness index [7] to
achieve effective load balancing in mobile cloudlet networks.
Particularly, under the FairEdge scheme, each cloudlet only
needs to query load information from two random neighbors
in each time interval. By comparing the task load and fairness
indexes of these two neighbors, each cloudlet can make a
practical decision on task offloading to preserve both load
balancing and fairness. Ultimately, the fairness of the mobile
cloudlet networkwill converge, and the fairness-oriented load
balancing can be achieved.

The main contributions of this paper are summarized as
follows.

• To the best of our knowledge, this work is the first
to investigate the fairness issue in mobile cloudlet net-
works. By jointly considering the balancing property
as well as the fairness index, we propose the FairEdge
scheme based on balls-into-bins theory and Jain’s fair-
ness index. The task load information of each cloudlet
is collected and compared in a low-cost manner, which
resolves the difficulty in information collection from
highly dynamic mobile edge networks.

• The Jain’s fairness index is integrated as a part of the task
offloading algorithm. By leveraging the task load infor-
mation and fairness index of two targeted neighbors,
the proposed FairEdge scheme enables a more reason-
able computation offloading decision for each cloudlet.
Fairness-oriented task offloading further contributes to
the overall load balancing and fairness of the mobile
cloudlet network.

• We evaluate the proposed FairEdge with simulations and
experiments based on two real-world trace datasets. The
evaluation results show that FairEdge can successfully
achieve load balancing with guaranteed performance,
with a near-optimal fairness index value of 0.85 and an
improvement of 50% in balancing tasks among mobile
cloudlets.

The rest of the paper is organized as follows. We introduce
the related works and preliminaries on investigated issues in
Section II and Section III, respectively. Then, we present the
system model and task offloading problem in Section IV.
We further propose the FairEdge algorithm with detailed
descriptions in Section V. In Section VI, we present com-
prehensive simulation studies with real-world datasets. At
last, we discuss the future trend of mobile edge computing
in Section VII and conclude the paper in Section VIII.

II. RELATED WORK
The comprehensive reviews on mobile edge computing can
be found in [8]. Particularly, Nayyer et al. [2] compared the
mobile augmentation approaches for resource optimization
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from the perspective of cloudlet-based networks. Generally,
existing studies for cloudlet load balancing can be categorized
into two groups, i.e., optimal cloudlet placement and compu-
tation offloading optimization.

For computation offloading optimization, the objects of
offloading algorithms include optimizing device energy [9],
cloud workload [10], and application latency [11]. For
instance, Sun and Ansari [12] proposed a latency-aware
workload offloading strategy to balance tasks from mobile
users to suitable cloudlets. Huang and Guo [13] and Huang
and Song [14] investigated service provisioning problems
under the cloudlet-based network and proposed an adaptive
update scheme to maximize a weighted profit for network
operators. Yang et al. [15] jointly considered security and
sustainability issues of cloudlet networks and proposed a
novel task offloading scheme to avoid DDoS attacks. Sim-
ilarly, Fan et al. [16] proposed CTOM, a collaborative task
offloading mechanism for mobile cloudlet networks.

For computation offloading in mobile edge comput-
ing scenarios, Du et al. [17] investigated the computa-
tion offloading problem in a mixed fog/cloud system by
jointly optimizing the offloading decisions and allocation
of computation resource, transmit power, and radio band-
width. Zhang et al. [7] studied the fair task offloading for
fog computing networks, where the task delay and cor-
responding energy consumption were formulated into the
performance index with fairness scheduling metrics. More-
over, Zhu et al. [18] formulated the fair resource allocation
problem in mobile edge computing as a Nash bargaining
resource allocation game. Meskar and Liang [19] designed a
multi-resource allocation mechanism by jointly considering
dominant resource fairness and external resources fairness.
Different from existing works, in this paper, we study the
fairness in a mobile edge network, where mobility-enhanced
cloudlets collaborate to offload computation tasks to each
other. We aim to achieve the fairness and load balancing for
the overall edge network of all mobile cloudlets.

III. PRELIMINARY
A. COMPUTATION OFFLOADING IN MOBILE EDGE
NETWORKS
With the proliferation of mobile devices and advances in
wireless communication technologies, mobile computing has
experienced a major shift from centralized cloud computing
to mobile edge computing [8]. In a typical mobile edge
network, edge cloud servers (e.g., cloudlets) are deployed at
fixed locations or enhanced with mobility to provide comput-
ing services for nearby mobile users with proximate, high-
speed and wireless access. Subsequently, mobile users can
offload computation-intensive and latency-sensitive tasks to
edge cloud servers for processing, thus saving both energy
and computation resources on their own devices [2]. How-
ever, computation offloading in mobile edge networks also
brings new challenges in how to efficiently utilize edge
computing resources and enhance the overall performance

of cloudlets. In this work, we investigate how to improve
resource sharing via cooperation and collaboration among
mobile cloudlets based on the assumption that computation
tasks can be offloaded from one cloudlet to others for more
efficient processing. In particular, we adopt balls-into-bins
theory for task distribution among mobile cloudlets, to opti-
mize the offloading decisions in a distributed manner with
low communication and computation cost.

B. TWO-CHOICE BALLS-INTO-BINS PROCESS FOR
FAIRNESS-ORIENTED MOBILE EDGE CLOUDLETS
Balls-into-bins is a classic process to model task distribution
among a group of uniform servers [6]. In this study, we adopt
the load balancing theory of balls-into-bins process to assist
the fairness-oriented task offloading for IoT applications in
mobile cloudlet networks. The original goal of balls-into-bins
processes is to allocate m balls into n bins, with each ball to
be thrown into a uniformly and randomly selected bin at a
probability of 1

/
n. Based on this allocation process, the key

criterion of load balancing in a balls-into-bins process is the
maximum load, i.e., the largest number of balls in any binM.
Firstly, when m = n and the task offloading is random, with
high probability, the expectation of maximum loadM is [20]:

E(M) = 2(
log n

log log n
). (1)

Meanwhile, if each ball has a chance to query the load
information from d random selected bins and then makes
allocation decisions based on load comparison of above d
bins, the maximum load can be dramatically decreased. By
comparison, if each ball is allocated to the least loaded of
among d bins, the maximum load can be reduced to [20]:

E(M) =
log log n
log d

+2(1). (2)

Similarly, a more general case is when m � n, if the task
offloading is random, with high probability, the maximum
load is [20]:

E(M) =
m
n
+2(

√
m log n
n

). (3)

If the task offloading is based on the load comparison of d
random choices, with high probability, the maximum load is
reduced to [20]:

E(M) =
m
n
+

log log n
log d

+2(1). (4)

In this study, we use the balls-into-bins process to model
load balancingwith computation tasks (e.g., balls) andmobile
cloudlets (e.g., bins), and we explicitly adopt the ‘two-
choice’ paradigm for low-cost communication and compu-
tation. Accordingly, suppose that m user tasks are distributed
into n mobile cloudlets, each task can be offloaded into the
least loaded of d = 2 cloudlets independently and uniformly.
When m = n, the maximum load of any cloudlet is with high
probability at [21]:

E(M) = 2(log log n). (5)
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Whenm� n, the maximum load of any cloudlet is with high
probability at [21]:

E(M) =
m
n
+2(log log n). (6)

Consider amobile edge networkwhere user tasks follow an
arrival rate λ are allocated into n mobile cloudlets, the balls-
into-bins process perfectly models the distributed computa-
tion offloading in a mobile edge cloudlet network. With the
random choice in task offloading, the maximum load under
an arbitrary round t is [22]:

E(M) = O(
1

1− λ
· log

n
1− λ

), (7)

where λ = λ(n) < 1. As we mainly focus on the task
redistribution among all mobile cloudlets, we further specify
the number of random choices as 2 to enhance the adapt-
ability and scalability of balls-into-bins theory. Accordingly,
when selecting a target for computation task offloading, each
mobile cloudlet can randomly and independently choose 2
nearby cloudlets within its inter-contact range as candidates.
As a result, with a fixed arbitrary round t , the theoretical
maximum load of any cloudlet becomes as [22]:

E(M) = O(log
n

1− λ
), (8)

where λ = λ(n) ∈ [1
/
4, 1).

IV. SYSTEM MODEL AND PROBLEM DEFINITION
In this section, we consider amobile edge network for cooper-
ative task offloading. First, we model the mobile cloudlet and
user task offloading. Then, we formulate the fairness-oriented
load balancing problem for a mobile edge network.

A. EDGE CLOUDLET MODEL
In this study, we consider a mobile edge network in an
urban area, which consists of: (1) a group of edge mobile
cloudlets that are integrated with AP for data transmission
and task processing, and (2) a number of mobile users that
periodically send computation tasks to nearby cloudlets for
task processing. First, we denote K edge mobile cloudlets
by {1, 2, . . . , k}, the location for each cloudlet as (xi, yi),
and each mobile cloudlet is enhanced with random mobility
to have opportunistic encounters with other cloudlets and
mobile users. Moreover, we model each cloudlet i as an
M/M/n queue by referencing [23], i.e., each cloudlet i has
ni servers with the service rate µi. Specifically, a cloudlet i
stores the offloaded tasks as a FIFO queue, with the length
of qti at time t . In the edge cloudlet network, computation
offloading by mobile users to each cloudlet i is modeled as
a Poisson process with task arrival rate λi, as the number of
tasks would constantly change at each time interval. During
time interval t , the response time of a cloudlet i can be
calculated as

⌈
qti+λi
µi

⌉
. Moreover, each cloudlet i also stores

information on the number of tasks offloaded to another
cloudlet j as sj,i.

B. TASK TRANSMISSION MODEL
In this paper, we assume that each cloudlet can contact with
other nearby cloudlets to exchange load information and redi-
rect tasks. As some mobile cloudlets may be overloaded with
user tasks, the tasks stored in them could experience long pro-
cessing delays, which would degrade the service experience
for the corresponding mobile users. Therefore, the task trans-
mission model is formulated for mobile cloudlets to perform
computation offloading for load balancing collaboratively.
From the perspective of cloud service provides, it is also
important to enhance the performance of mobile cloudlets
to make the edge network more efficient and sustainable.
The task transmission model is formulated to address the
above issues with the following two considerations. First,
only when the distance between two cloudlets is within an
inter-contact range R, they can establish an intermittent con-
nection. Second, based on [24], the connecting probability of
two cloudlets i and j is computed as:

Pi,j(ta, tb) = e
−

1
αi,j
·t
, t ≥ 0, (9)

where αi,j is the pairwise connection rate of an exponential

distribution as f (t) = 1
αi,j
· e
−

1
αi,j
·t
. Then, based on the Jain’s

fairness index [7], we calculate the value of fairness index for
each cloudlet i as:

f t (i) =

(
k∑
j=1

stj,i)
2

K
k∑
j=1

(stj,i)
2
, (10)

where K is the total number of edge cloudlets. Likewise,
we further calculate the value of fairness index for the mobile
edge network as:

F =

(
k∑
i=1

qti )
2

K
k∑
i=1

(qti )
2
, (11)

where qti is the number of loaded tasks in cloudlet i at time t .

C. PROBLEM DEFINITION
The fairness-oriented load balancing problem in a mobile
cloudlet network is defined as follows. Given a set of K
mobile edge cloudlet {1, 2, . . . , k}, where each cloudlet iwith
service rate µi. Each cloudlet performs a random walk to
collect random user tasks with arrival rate λi, which follows a
Normal distribution. Meanwhile, for each mobile cloudlet i,
it has a fairness index value f t (i) during time interval t . When
two cloudlets encounter with each other, they collaboratively
share load information and fairness values, then, they would
perform fairness-oriented task offloading to enhance the load
balancing of the mobile edge network.
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1) LOAD BALANCING PROBLEM
The objective of fairness-oriented task offloading is to min-
imize the differences among task queues of all cloudlets
so that the user tasks can be processed with the maximum
utilization rate of edge cloudlet computing resources. Here,
we formulate the optimization function with each cloudlet’s
task queue by:

minimize max
i=[1,k]

{‖ qi − q̄ ‖ }, (12)

where q̄ is the averaged value of the task queues of all mobile
cloudlets.

2) FAIRNESS OPTIMIZATION PROBLEM
Maximizing the fairness value for each mobile cloudlet can
further enhance the efficiency and sustainability of a mobile
edge network. Note that the lowest fairness value in a task
offloading process among K mobile cloudlets is 1

K . On the
contrary, the highest fairness index value is 1, corresponding
to the most balanced task offloading result that all mobile
cloudlets hold the same number of user tasks for processing.
The fairness optimization problem is as follows:

maximize min
i=[1,k]

{f t (i), f t (i) ≥
1
K
}, (13)

where f t (i) is the fairness value of cloudlet i during time
interval t , based on Equation 10.

V. ALGORITHM DESIGN
A. OVERVIEW
To tackle the load balancing problem and fairness opti-
mization problem in mobile cloudlet networks, we pro-
pose a heuristic algorithm called FairEdge. The major issue
of achieving fairness-oriented computation offloading for
mobile edge networks is the opportunistic encountering of
mobile cloudlets. It would be costly in both computation and
communication to control and regulate the task offloading
process for all mobile cloudlets in a centralized manner. In
contrast, a distributed task offloading scheme is more desir-
able, since each mobile cloudlet can collaboratively share
its load information and fairness value nearby cloudlets.
Moreover, with new incoming tasks at each cloudlet, the
load information of the edge network constantly changes. To
collect the above information and broadcast it to all mobile
cloudlets could result in intensive overhead for the edge
networks. Last but not least, for each mobile cloudlet, it
only needs load information from nearby and contactable
targets when making computation offloading decisions. To
address above concerns, we are inspired by the ‘balls-into-
bins’ theory and further adopt the ‘two-choice’ paradigm to
design the FairEdge algorithm.

In general, we have three basic assumptions over the
mobile edge network. First, each cloudlet i receives user tasks
that follow a Poisson process of λi, meanwhile, these tasks are
executable and offloadable to any other mobile cloudlet for
processing. Second, we assume that the mobility trajectory

of each cloudlet follows a random walk process within the
edge network area. In each time interval, a mobile cloudlet
is contactable to any other cloudlet within its communication
range. Third, according to [25], the duration of time interval is
long enough for each mobile cloudlet to perform a complete
computation offloading.

With the above considerations, according to the models in
Section IV, we devise an algorithm that enables each mobile
cloudlet i to randomly select d target cloudlets within its com-
munication range for computation offloading in each time
interval. By probing and comparing load information from
d nearby cloudlets, each mobile cloudlet i selects the least
loaded one as the target for computation offloading. Then,
the fairness index value of the target cloudlet will be com-
puted based on Equation 10 and further compared with the
fairness index value of the overall mobile cloudlet network.
The computation offloading decision will be made based on
the above comparison result. In the following, we formally
present FairEdge, the fairness-oriented computation offload-
ing algorithm for mobile cloudlet networks in Algorithm 1.

B. FairEdge ALGORITHM DESIGN
The FairEdge algorithm is proposed to achieve fairness-
oriented task offloading in mobile cloudlet networks. To
begin with, we define the input and output of FairEdge
according to the edge cloudlet model and task transmission
model. Next, the algorithm initializes the task queue qi and
record of task offloading Si for each cloudlet i as well as the
time interval t . Starting from the first time interval, FairEdge
generates a random location for each cloudlet i and calculate
each cloudlet’s corresponding task load qi at current time
interval. At this stage, the fairness index value f of the
mobile edge network is also calculated using the updated
load information of all cloudlets. Next, each cloudlet i will
send a probing message and add other cloudlets within com-
munication range into its contact list ci. To adopt balls-into-
bins process for task offloading, FairEdge uses the d-choice
policy to select d potential offloading targets in its contact
list ci randomly, and further chooses the least loaded one as
the computation offloading target. By comparing the fairness
index value fchoicei of the chosen target with f , FairEdge will
decide whether to allow cloudlet i to perform task offloading
to choicei or not. If fchoicei ≥ f , the task offloading will
be executed, and the attributes of cloudlet i and the target
cloudlet will be updated.

The above process will iterate for each mobile cloudlet i
and repeatedly execute for T time intervals. Finally,
the FairEdge will output the ultimate task queue qi and
fairness index value fi for each cloudlet i as well as the
ultimate fairness index value of the mobile edge network.
Note that, the d-choice here is presented for general com-
putation offloading with balls-into-bins theory. In practice,
to reduce the communication cost and computation cost
in the task offloading process, we apply the ‘2-choice’
paradigm. Thereby, the FairEdge algorithm will only allow
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Algorithm 1 FairEdge Algorithm
Input:

Number of cloudlets k , time slots T , random choices d ;
servers, task arrival/service rates of cloudlet i: ni, λi, µi;
boundaries: a and b, contact range: r .

Output:
Each cloudlet’s: contact list ci, task load qi, fairness
index fi, overall fairness index: f , offload target: choicei,
offloading record: Si = s1,i, . . . , sk,i.

1: Initialize qi = 0, Si = ∅, t = 0;
2: while t ≤ T do
3: Generate random location for each cloudlet i as:

(xi, yi), where 0 < xi < a, 0 < yi < b;
4: Calculate task load qi for i with m, µi and λi;
5: Calculate fairness index f with Equation 11;
6: Select offloading targets for each cloudlet i:
7: while j ≤ K do
8: if (xi − xj)2 + (yi − yj)2 < r2 then
9: add j into ci as c

j
i = 1;

10: end if
11: end while
12: if ||ci|| ≥ d then
13: do: randomly choose d cloudlets from ci;
14: choicei is the least load in d chosen cloudlets;
15: else if 0 < ||cij|| < d then
16: choicei is the least load in ||cij|| cloudlets;
17: else if ||cij|| = 0 then
18: skip task offloading for cloudlet i in this round;
19: end if
20: if fchoicei ≥ f then
21: cloudlet i performs task offloading to choicei;
22: end if
23: j = choicei;
24: sj,i = sj,i + 1, qj = qj + 1;
25: update fi and fj;
26: t = t + 1;
27: end while
28: return task load qi, offloading record Si.

each cloudlet i randomly choose 2 contactable cloudlets for
load comparison in each time interval.

At last, we briefly discuss the theoretical performance of
FairEdge. First, as have been discussed in Section III-B, the
mobile cloudlet network fits the case where user tasks follow
an arrival rate λ into k cloudlets. With the random choice in
task offloading, the maximum load under an arbitrary round
t would be E(M) = O( 1

1−λ · log
k

1−λ ), where λ = λ(n) < 1.
For the 2-choice process, if λ = λ(n) ∈ [1

/
4, 1), the maxi-

mum load of any cloudlet becomes as E(M) = O(log k
1−λ ).

Second, by leveraging the ‘2-choice’ paradigm for selecting
the target for computation offloading, FairEdge only probes
load information from two contactable neighboring cloudlets
for comparison. According to [26] and [24], such a process
would significantly reduce the complexity overhead to O(1)
compared with greedy offloading’s O(n) complexity.

FIGURE 1. The fairness values of all mobile cloudlets in task offloading
collaborations.

VI. EXPERIMENTAL STUDIES
In this section, we evaluate the performance of FairEdge with
simulations and trace-driven evaluations. We first introduce
the basic setups of simulation experiments and then present
the evaluation results.

A. SIMULATION STUDY
1) SIMULATION SETUP
According to the mobile edge network model in Section IV
and FairEdge Algorithms in Section V, we develop a simula-
tion environment by referencing [16]. The fairness-oriented
task offloading scheme is simulated in a 20 km2 region,
and we set the number of mobile cloudlets as 100, the total
number of time slots as 600, and the contact range of mobile
cloudlets as 20 meter. For each cloudlet i, we set the number
of its server ni by sampling the Poisson distribution with a
mean of 2 as well as its service rate µi by sampling from the
Normal distribution N (2, 1) > 0. Meanwhile, mobile user’s
task arriving rate at cloudlet i is sampled from the Normal dis-
tribution N (4, 2) > 0. We adopt three baseline methods for
comparison, including random task offloading, proportional
task offloading [26] and greedy task offloading [24]. We run
the simulation codes on a Dell laptop with Intel Core i5 CPU,
8GBRAM. Each simulation is executed for 100 times and we
report the final average results as follows.

2) EVALUATION OF FAIRNESS INDEX
We first evaluate the fairness of task offloading by calcu-
lating the fairness index of individual mobile cloudlet using
Equation 10. The fairness index ranges from 0 to 1, with 0 as
the most unfair case and 1 as the purely fair case. As shown
in Figure 1, under the random offloading scheme and propor-
tional offloading scheme, most of the fairness index values
of mobile cloudlets are below 0.6 and 0.7, respectively. In
comparison, the proposed FairEdge and greedy algorithm
achieve an average value of fairness index over 0.8, showing
that the task distribution is well-balanced across all mobile
cloudlets. The greedy algorithm applies node traversal on
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FIGURE 2. Comparison of task offloading results in a simulation study.

each cloudlet when finding the least loaded and contactable
neighbors for task offloading. Therefore, it ensures both
the balance and fairness of task offloading at high commu-
nication costs. Meanwhile, the proposed FairEdge adopts
balls-into-bins theory with the ‘d-choice’ scheme in task
offloading. It achieves a close-to-greedy performance in fair-
ness values while significantly reduces computation com-
plexity to o(1), as each cloudlet only needs to probe load
information from two random neighbors andmake a one-time
comparison. Moreover, the fairness index values of FairEdge
at some cloudlets are higher than those greedy offloading. In
summary, the FairEdge can achieve network fairness up to
0.85 and reduce the unbalanced task offload by up to 50% in
comparison with other baseline methods.

3) EVALUATION OF TASK DISTRIBUTION
Second, we evaluate the task distribution results under dif-
ferent task offloading algorithms. The bar plot of Figure 2
shows the final task distribution after all offloading time
intervals. Obviously, under both random task offloading and
proportional offloading schemes, there are huge gaps (up
to 30) among different mobile cloudlets. In random task
offloading, a group of mobile cloudlets (number 15 to 50)
are processing much more tasks than other cloudlets (e.g.,
number 60 to 90). Meanwhile, under proportional offloading,
the overloaded mobile cloudlets are distributed more dispers-
edly. The above unbalance in task distribution would not only
harm the fairness of mobile cloudlet network but also degrade
the user experience, as cloudlets need more time to process
all tasks. In comparison, the proposed FairEdge successfully
enhances the balance in task offloading, as most cloudlets
have nearly 10 tasks to process. The greedy method achieves
the best performance in balancing task distribution at the cost
of high communication and computation overheads, where
most cloudlets are offloaded with less than 10 tasks and no
cloudlet is idle.

To make a further comparison, we present the empir-
ical cumulative distribution results of task offloading

in Figure 2(b). Here, the performance of FairEdge is very
close to that of greedy offloading, where over 90% of mobile
cloudlets are offloaded with less than 10 tasks. In contrast,
the task offloading result by the proportional method shows
that almost 20% of cloudlets are offloaded with more than
15 tasks. Besides, over 20% of mobile cloudlets have more
than 20 tasks to process under random offloading. The above
evaluation results validate the effectiveness of FairEdge, as it
manages to balance the task distribution by using the fairness
index and ‘2-choice’ paradigm. In the following, we further
evaluate the FairEdge in real-world scenarios by using mobil-
ity trace datasets for simulation.

B. EVALUATION ON REAL-WORLD TRACE DATASETS
To explore the feasibility of FairEdge in real-world scenar-
ios, we conduct trace-driven studies of mobile computation
offloading with two real-world mobility trace datasets. In
brief, the two trace datasets contain Bluetooth encounter
records of mobile nodes that can be used to emulate the
communications among mobile cloudlets at edge networks.
The reasons for using two different trace datasets for evalua-
tions are: 1) to test the performance of FairEdge in different
network scenarios, where cloudlets have different patterns
of mobility; 2) to examine the scalability of FairEdge with
mobile cloudlet networks in different scales. We present the
details of each dataset and corresponding evaluation results
of mobile computation offloading in the following.

1) MOBICLIQUE DATASET
a: BASIC SETUPS
We adopt a real-world mobility dataset called ‘Mobi-
Clique’ [27] to emulate the random mobility of mobile
cloudlets for task sharing and computation offloading. This
dataset contains encountering records collected by a mobile
network software called MobiClique. MobiClique lever-
ages opportunistic contacts (e.g., Bluetooth encounters)
between smartphones to form a decentralized ad-hoc net-
work for information sharing. The trace data of MobiClique
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FIGURE 3. Nodes and encountering records in the MobiClique [27]
dataset.

was collected with 76 participants during the SIGCOMM
2009 conference in Barcelona, Spain. We process the Mobi-
Clique dataset as an edge mobile cloudlet network and visu-
alize it in Figure 3. Here, each vertex represents a mobile
cloudlet, an edge between two vertices represents a contact,
and the color of a vertex shows its active level in the network.
In total, there are 76 mobile cloudlets and 69,186 contacts in
the MobiClique dataset. Moreover, the timestamp of the first
contact is 30 seconds, and the timestamp of the last contact is
320,684 seconds. Based on the above, we set the length of a
time slot for computation offloading as 200 seconds, so that
there are 1,604 time slots in total. For each cloudlet i, we set
its number of servers, service rate, and task arriving rate the
same as the previous simulation setup.

b: TASK OFFLOADING RESULTS
We conduct the mobile cloudlet task offloading with Mobi-
Clique dataset for 100 times and take the average values of
task distributions and standard deviations as the final task
offloading results. The baseline methods include random
task offloading, proportional task offloading, and greedy task
offloading. As shown in Figure 4, under random offloading
and proportional offloading, some particularly active mobile
cloudlets are extremely overloaded (e.g., offloaded with over
150 and even 200 tasks). While proportional offloading par-
tially reduces the number of overloaded cloudlets, the over-
all task distribution is still highly imbalanced. In contrast,
the proposed FairEdge scheme and greedy offloading scheme
show remarkable performance in balancing the task distribu-
tions over the entire network, where the task load of each
cloudlet is under 50. Also, by combining the ‘2-choice’
paradigm from balls-into-bins theory with Jain’s Fairness
index, FairEdge further achieves a slightly lower task load
on each cloudlet throughout the task offloading process.

The empirical cumulative distribution of task offload-
ing results with the MobiClique dataset is presented
in Figure 4(b). More than 80% of mobile cloudlets in
FairEdge and greedy schemes are offloaded with less than
25 tasks. Meanwhile, more than 20% of mobile cloudlets in

random and proportional schemes have more than 30 tasks.
The above evaluation results show the effectiveness of
fairness-oriented task offloading scheme in a real-world sce-
nario. FairEdge can effectively achieve balanced task offload-
ing on a real-world mobility trace dataset, where different
cloudlets have great disparities in active levels of mobility.

2) HAGGLE DATASET
a: BASIC SETUPS
We further evaluate the performance of FairEdge in a larger
mobility trace dataset, i.e., Haggle dataset [28]. The Haggle
dataset is under the project of Koblenz Network Collection
(KONECT) [29] for systematic study on diverse networks. In
short, the Haggle dataset contains mobility and connectivity
traces that were generated from iMote devices. The iMote
devices are small portable devices to capture Bluetooth sight-
ings (encounters) of their carriers. We process and visualize
the contact graph of the Haggle dataset in Figure 5, where
all 274 vertices are with 28,244 edges. Similar to the Mobi-
Clique dataset, each vertex in the contact graph represents
a mobile cloudlet, an edge between two vertices represents
a contact and the color of each vertex shows its active level
in the network. Different from the MobiClique dataset, the
vertices in the Haggle contact graph are more distributed,
where a small number of vertices form a ‘contact center’
(1-77) that links the rest edge vertices with sparse contacts.
In the following evaluations, all basic setups are the same
as the evaluations with the MobiClique dataset, except for
the time interval. In the Haggle dataset, the beginning and
ending timestamps are 20,733 seconds and 364,094 seconds,
respectively. As the overall duration in the Haggle dataset is
much longer than that of MobiClique, we set the length of
a time slot as 3,600 seconds (i.e., 1 hour) for computation
offloading simulation.

b: TASK OFFLOADING RESULTS
In evaluations with the Haggle dataset, we also conduct task
offloading with mobile cloudlets for 100 times. We take the
average values of task distributions and standard deviations as
the final results. As shown in Figure 6, a group of cloudlets
with high contact level take themajority of tasks in theHaggle
network. This is due to that the rest of each mobile cloudlet
only has several contact opportunities for task offloading, and
target cloudlets in these contacts are all in the group of the
‘contact center’ (cloudlets 1-77). As the cloudlets of number
80-274 have very few encounters with others, most of them
are offloaded only a few tasks or even none. Tomake it clearer
for performance comparison, we only provide the offload-
ing results for cloudlets 1-77. The random task offloading
shows the worst performance in balancing the task load in
the contact center, as some cloudlets are overloaded with
nearly 100 tasks. While proportional task offloading slightly
improves the task distribution result, there still exist huge
gaps (over 90 tasks) among cloudlets in the contact center.
In contrast, FairEdge and greedy task offloading schemes
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FIGURE 4. Comparison of task offloading results in trace-driven evaluations with the MobiClique dataset.

FIGURE 5. Nodes and encountering records in the Haggle [28] dataset.

significantly enhance the balance in task distribution over all
cloudlets in the contact center, wheremost of the cloudlets are
offloaded with less than 50 tasks. Besides, for the cloudlets

with low contact level, FairEdge still preserves their fair-
ness by re-balancing tasks from overloaded cloudlets to oth-
ers. The empirical cumulative distribution of task offloading
results with the Haggle dataset is presented in Figure 6(b).
This CDF figure reveals that even there are huge gaps in
contact level among different mobile cloudlets, FairEdge can
still achieve balanced task offloading with the close perfor-
mance to the greedy algorithm, showing the effectiveness of
preserving fairness in mobile computation offloading.

VII. THE FUTURE DIRECTION
With the arrival of 5G, Mobile Edge Computing (MEC)
is regarded as a promising technology for future commu-
nication systems, which brings the computing and storage
resources to the proximity of mobile users [30].While mobile
users can save energy on their devices and reduce latency
by offloading computation-intensive tasks to nearby edge
computing servers, the task offloading problems in MEC
remain as NP-hard [31]. Such problems are generally formu-
lated with typical network settings and further solved with

FIGURE 6. Comparison of task offloading results in trace-driven evaluations with the Haggle dataset.
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task offloading strategies based on heuristic algorithms [32].
However, for the coming 5G networks, a typical mobile
edge node is expected to have more than 2000 configurable
parameters [33]. In that sense, with the explosive growth of
mobile data, existing heuristic algorithms are not capable
and scalable to tame the complexity in the highly dynamic
computation offloading environment.

To address the above challenges, the future direction to
optimize computation offloading in mobile edge computing
networks is to apply deep learning. The Deep Reinforce-
ment Learning (DRL) approaches can essentially eliminate
the need for solving combinatorial optimization problems in
MEC task offloading, thereby significantly reducing the com-
putational complexity. For example, Huang et al. [34] pro-
posed DROO, a Deep Reinforcement learning-based Online
Offloading (DROO) framework that can learn binary offload-
ing decisions from the past experiences and update offloading
policy. Similarly, Li et al. [35] designed a DRL-based opti-
mization framework with Q-learning for multi-use computa-
tion offloading and resource allocation in MEC. Moreover,
Ning et al. [36] proposed a distributed DRL-based solution
to minimize the offloading cost while satisfying the latency
constraints of users in 5G-enabled vehicular networks. To this
end, the above recent works have shown a significant new
future direction of combining MEC with deep learning for
emerging 5G networks.

VIII. CONCLUSION
In this paper, we have proposed FairEdge, a Fairness-oriented
task offloading scheme to enable balanced task sharing and
computation offloading for mobile Edge cloudlet networks.
The FairEdge integrates balls-into-bins theory and Jain’s
fairness index for distributed task offloading among mobile
cloudlets. We have developed the system model of com-
putation offloading in edge mobile cloudlet networks, and
formulated the load balancing problem together with fair-
ness optimization problem. By adopting the ‘two-choice’
paradigm and using calculated fairness index values for
cloudlets and the network, we have further proposed algo-
rithm design of FairEdge and conducted extensive evaluation
studies with simulations and experiments on real-world trace
datasets. The experimental results have shown that FairEdge
successfully achieved load balancing with guaranteed perfor-
mance, with a near-optimal fairness index of up to 0.85 and
an improvement of 50% over conventional baseline methods.
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