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ABSTRACT 

Condensation related dampness and the subsequent mould formation, resulting from the lack of 
ventilation, in airtight buildings lead to significant health problems inside dwellings. Delivering sufficient 
ventilation rates for energy efficient modem buildings is a necessity. In cold climates, in order to avoid 
energy losses, this ventilation air must be preheated before being admitted to the house. Due to the 
continuous depletion of oil resources and the escalating impact of the greenhouse effects on global 
climate it is necessary to econon-iise energy consumption. Solar energy offers itself as a means for 

preheating ventilation air. Solar ventilation preheating is an emerging technology not only in countries 
with cold climates but also in warm climates where it is used for drying crops. 

The newly developed roof-slate based solar ventilation preheater makes use of the existing roof 
slates as a solar collector. A photovoltaic-driven fan draws warm air through the spaces between the slates 
and delivers it via a flexible duct into the house underneath for ventilation. The photovoltaic module acts 
as a quick response sensor, which allows the fan to operate only when the slates are warm. A model for 

predicting the flow rate of air in the system as a function of irradiance, ambient temperature and wind 
speed in addition to the photovoltaic, fan and duct specifications was developed. The model predicts the 
fan's speed and the system's flow rate with an accuracy of 92% and 88% respectively. 

The model was employed for system optimisation with respect to the maximum volume of air 
delivered. The optimum system comprises a 24 V DC, 9.5 W fan with a free flow capacity of 69 1/s. This 
system delivers 9.6 x 104M3 of warm air (a constant 9.2 Ils on a continuous basis which meets the 
ASHRAE recommendations for a 100-rr? room with one occupant). Ile optimum system can also 
potentially deliver 161 kWh energy with a solar fraction of 11% during the heating season. The optimum 
system was found to be optimum in several respects including maximising volume, efficiency, solar 
savings, and minimising payback period (13 years). This system can contribute to C02 savings by as 
much as 100 kg annually. 

Recommendations to further maximise the utilisation of the maximum power of the PV module 
included using an optimum motor constant so that the fan operates in the maximum power vicinity for 

most of the year. A new method for obtaining the photovoltaic current-voltage characteristic was 
developed. This method predicts the maximum power of the photovoltaic module with 92% accuracy. 
The optimum motor constant was expressed directly as a function of irradiance and module temperature. 
The yearly output of the PV module employing the optimum system is 10.4 kWh. Using a fan with the 
optimum motor constant would increase the energy utilised by 14 %. Furthermore, an optimum length of 
duct (8 rn) would maximise pneumatic output and deliver higher overall flow efficiencies. 

Upon comparative testing, it was found that a cooling effect was associated with an early start of 
the optimum system. This can be overcome by delaying the start of the fan until the slates are warm 
enough or by enhancing the properties of the slates (using dark paint or anti-reflective coating) so that 
they warm up synchronously with the fan starting time. 
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1. INTRODUCTION 

1.1 INDOOR COMFORT AND HEALTH IN SCOTLAND 

In modem, western societies, people spend more than 90% of their time indoors 

and so it is necessary to provide both a comfortable and healthy internal living 

environment. The ASHRAE comfort standard 55 (ASHRAE, 1981) defines an 

acceptable level of comfort as that provided by an envirom-nent in which 80 % of all 

occupants are, by their own definition, comfortable. Building designers and engineers 

should be familiar with both thermal and air quality requirements necessary to achieve 

an acceptable level of comfort for the majority of occupants. This necessitates an 

awareness of the factors affecting comfort inside the house. These include temperature, 

humidity, air movement, and air quality. It is very important to keep room temperature, 

humidity, and air movement constant for comfort inside the house to be achieved. These 

three parameters are well recognised as the direct indices for describing the environment 
inside a house, (Awbi, 1991). Controlling ventilation rates inside the house contributes 

to maintaining these factors at a comfortable level. In addition to these environmental 
factors, the quality of indoor air with regard to odor, dust, and bacteria also influences 

human comfort. Until recently, the control of indoor air quality came about naturally by 

infiltration through the building structure. The indoor air quality question has become 

rather important as a result of the energy crisis in the early 1970s when construction of 

airtight energy-efficient buildings became a pattern (Awbi, 1991). 

The sources of indoor pollutants can be external or internal. Outdoor air is 

considered a source of pollution because it contains pollutants from automotive 

exhausts and other industrial sources. Recently, problems have arisen from 

contaminants generated by the building and its contents. It is reported that air pollution 
in the average American home, as measured by the Environmental Protection Agency 

(EPA), is usually 2 to 5 times worse than outdoors (U. S. Environmental Protection 

Agency, 1995). Examples of indoor pollutants include argon, asbestos, tobacco smoke, 

and dust mites. Poor indoor air quality causes 50% of all illnesses and can lead to a host 

of health problems for people of all ages. 

In addition to the aforementioned indoor contaminants, water vapor is also 

considered a pollutant (NuAire Group, 2004). Water vapor is produced by day-to-day 
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activities such as bathing, cooking and washing and it soon dissolves in air and travels 

throughout the house. When moist air comes into contact with a cold surface, such as 

windows and internal walls, condensation occurs if the surface temperature is equal to, 

or below, the dew point. The relation between air temperature, relative humidity, and 

percentage saturation of the water vapor-air mixture is usually presented graphically by 

the Psychrometric chart. For a given level of humidity, the dew point is readily 

determined from this chart. 

Increased humidity and condensation dampness can cause discomfort and, in the 

long term, create and maintain an environment, which can support the growth of 

harmful species. High humidity can cause thermal discomfort through reducing the rate 

of sweat evaporation through the skin. Furthermore, dust mites, who are very harmful to 

the respiratory system, breed best in humid environments. It is clinically proven that 

more than 80 % of asthmatics are allergic to the faeces of dust Mites (Johnston, 2002). 

Condensation can also cause degradation of the wall and furniture fabric. It is estimated 

that the cost of repairing the damage caused by timber decay in the UK housing stock is 

presently L 400 M per annurn (Singh, 1995 as reported by Strathclyde Energy Systems 

Research Unit, 2004). Moreover, increased humidity can cause stuffiness and smell and, 
if prolonged, can result in fungal growth. 

Dampness and mould growth, resulting from condensation, are recognised as 

major problems affecting about 2.5 million houses in the UK (0.25 million in Scotland) 

(Scottish Homes, 1993). Data from the 1991 Scottish housing condition survey reveal 

that about 12 % of all houses are affected. In 1996, similar studies showed that 25 % of 

houses in Scotland (534,000) are affected. Given suitable humidity conditions and 

nourishment, spores of mould and fungi can germinate and grow on surfaces over a 

wide range of temperatures and certainly between 0 and 20* C. Some mould spores can 

germinate at 80 - 85 % relative humidity and can spread if the humidity is over 70 % 

for long periods (Wilkinson, 1999). 

Well-established research in the field of environmental health shows that there is 

a strong relationship between both dampness and mould and ill health inside the house. 

Many moulds in damp houses are allergenic and provide a food supply for dust mites. 
At some stages of their life cycle, some fungi become toxic. A 1984 World Health 

Organisation Committee report suggested that up to 30 % of new and remodelled 
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buildings worldwide suffer from poor air quality. A Scottish study in Edinburgh and 
Glasgow (Martin et al, 1987, as reported by Wilkinson, 1999) concluded that mould 
allergy is a cause of ill health for both children and adults. Symptoms of illness included 

vomiting, blocked nose, breathlessness, backache, fainting and bad nerves. Another 

study in Glasgow (Williamson et al, 1997) demonstrated links between dampness and 

asthma. The above study found that people living in damp, houses were two to three 

times more likely to have asthma. 

Poor heating is also a problem for housing in Britain. While, in Britain, high 

humidity, and consequently dampness and mould growth is commonly associated with 
cold temperatures, a body of research has focused on the effects of air temperature on 
health. Studies showed that for each degree Celsius by which the winter is colder than 

the average, there are an excess of 8000 deaths (Wilkinson, 1999). From January to 
March, there are typically 20,000 more deaths in the UK than the average rate for the 

year. A report on health in the Lothians estimated that the number of excess winter 
deaths in Scotland is 4,000 to 7, SOO (a greater proportion per capita) (Zealey, 1991 as 
reported by Wilkinson, 1999) 

1.1.1 Summary 

In consideration of the situation when internal surfaces may be at, or below the 
dew point, the preceding discussion detailed the potential health risks posed by both 

poor heating and condensation dampness as a result of water vapor accumulation inside 

the house. It is concluded that, in order to achieve comfort in houses, it is important to 

prevent condensation dampness. The build-up of moisture indoors can be reduced by 

ventilation because outdoor air normally has lower moisture content particularly in the 

winter (Strathclyde Energy Systems Research Unit, 2004). 
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1.2 VENTILATION 

Ventilation of a building performs two functions: provision of fresh air and 

dilution or extraction of contaminants. Ventilation can be performed either 

mechanically or using natural ventilation. The amount of outdoor air required for 

ventilation is dependent on the rate of contaminant generation and the maximum 

acceptable contaminant level. ASHRAE standard 62 (ASHRAE, 1988) defines 

acceptable air quality as ambient air in which there are no known contaminants at 
harmful concentrations and with which substantial majority of occupants do not express 
dissatisfaction. When the outdoor air contaminant levels exceed the values provided by 

ASHRAE, the air must be treated of offending contaminants. Indoor air quality is 

considered acceptable when the recommended ventilation rates of acceptable outdoor 

air are provided. According to ASHRAE standards, for residential spaces, the 

recommended outdoor air requirement for ventilation is 0.35 air changes per hour 
(ACH) but not less than 7.5 Us per person (ASHRAE, 2001). Misunderstanding of the 
factors affecting required ventilation rates can lead to delivering excessive quantities of 
outdoor air and thus loss of energy. 

1.2.1 Natural ventilation 

The most common form of natural ventilation is using openable windows. The 

driving force for natural ventilation is either wind or thermally (stack) generated 

pressure difference between indoors and outdoors (Liddament, 1996). In the former 

type, wind causes a positive pressure on the windward side and a negative pressure on 

the leeward side of buildings as shown in Fig. 1.1. To equalize pressure, fresh air will 

enter any windward opening and be exhausted from any leeward opening. In summer, 

wind is used to supply as much fresh air as possible while in winter, ventilation is 

normally reduced to levels sufficient to remove excess moisture and pollutants. 

In the case of "stack pressure, " a pressure difference will exist due to the density 

gradient caused by temperature difference. If the inside air temperature is higher than 
the outside air temperature, ventilation air enters through openings at the bottom and 

escapes through openings at a higher level. 
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Fig. I. I: Natural ventilation with wind as the driving force. 

In recent years, the concept of a solar chimney for enhancing natural ventilation 

has been introduced. A solar chimney can be either south facing or it can be the roof of 

a building. South-facing chimneys are constructed of concrete or masonry walls. The 

outer south-facing wall is replaced with glazing and the interior of the other walls is 

blackened and the exterior insulated. After being warmed by solar energy, air rises 

through the chimney and leaves at the upper opening thus inducing fresh air to enter the 

house as shown in Fig. 1.2. Several researchers showed that natural ventilation rate 

increased with chimney wall temperature (Bouchair, 1994). Khedari et al (1997) added 

a photovoltaic-driven DC fan in the structure of a roof solar collector to enhance the rate 

of natural ventilation. Ventilation rates were 2-4 times higher than those obtained when 

no fan was used. 

Natural ventilation is most suited to buildings in climates with mild to moderate 

outdoors average temperatures. For climates with severe weather conditions, such as in 

Northern Europe and Canada, outside air temperatures are usually too cold and average 

wind speeds too high for natural ventilation to be energy efficient. Natural ventilation is 

also suitable to buildings away from inner city locations where outdoors air is more 

polluted. So, even though it is inexpensive, when compared to mechanical ventilation, 

natural ventilation can cause indoor air quality problems and excessive heat loss. 

Furthermore, cleaning and filtration of incoming air in not usually practicable when 

natural ventilation is used. 
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Fig. 1.2: A solar chimney for enhancing natural ventilation. 

1.2.2 Mechanical ventilation 

A mechanical ventilation system comprises various components including fans, 

ducts, and grills. They are appropriate for providing controlled ventilation to a house 

and they are most appropriate for severe climatic regions. Mechanical ventilation 

systems can either operate in an extract mode (negative-pressure) or supply mode 
(positive pressure) as discussed later in this section. 

Unlike natural ventilation systems, mechanical ventilation systems allow the 

control of ventilation rates. Moreover, through the use of filters and dehumidifiers, they 

reduce the risk of pollutant ingress into occupied spaces and the risk of moisture 

entering walls. Furthermore, they allow heat recovery from the exhaust air stream. 
These systems, however, are more "pensive and require higher operational and 

maintenance costs. In airtight buildings with a ventilation system, 50 % of energy used 
is by fans and so mechanical ventilation can considerably add to the energy cost. 
Liddament (1996) states that good mechanical ventilation systems require electrical 

power at IW or less for each litre/s of airflow. 
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1.2.2.1 Negative-pressure mechanical ventilation 

In a negative-pressure mechanical ventilation (NPMV) system, a fan is used to 

mechanically remove air from a space. This process induces a "suctioe' thus promoting 

outdoors air to flow into the living space through provided air inlets. Optimum 

operational efficiency is achieved by designing the NPMV system so that it always 

operates at slightly higher pressures than those induced by weather (i. e. natural 

ventilation). 

1.2.2.2 Positive-pressure mechanical ventilation 

In positive-pressure mechanical ventilation (PPMV) systems, the air is 

mechanically introduced into the system where it either mixes with or completely 

replaces air in the living space. This process induces a positive pressure forcing stale air 

to leave the living space through provided infiltration openings as shown in Fig. 1.3. If 

the system is well designed and the building is airtight, a PPMV system inhibits the 

ingress of infiltrating air and thus allows inlet air to be pre-cleaned and thermally 

conditioned. 

Outside air = 

Extract 
I 

Fig. 1.3: Positive pressure mechanical ventilation systern. 

Extract 
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Since the incoming air can be pre-cleaned by filtration, PPMV systems are 

extremely useful in areas with highly polluted outdoor air. Furthermore, these systems 

can also be used in residences where allergy control is required. In this case, care is 

needed to prevent moisture, generated in the dwelling, from penetrating and condensing 

in the building fabric. This can be achieved by placing the grilles and extractors in these 

areas. 

PPMV systems have several advantages over NPMV systems. In the former 

type, the risk of flue back-draughting is reduced and entry of outside pollutants and soil 

gases such as Radon is inhibited. Moreover, in PPMV systems, good air control is 

possible and outdoor air can be cleaned and conditioned. However, in PPMV systems, 

heat recovery is not possible as is the case with NPMV systems. 

1.2.3 Summary 

The previous discussion shows that a mechanical ventilation system is most 

appropriate for Scotland where adverse weather conditions usually exist. Furthermore, 

PPMV is advantageous because it allows for elimination of outside contaminants. For 

adverse weather conditions, however, if ventilation rates are increased then heating bills 

also rise, as extra heat must be supplied to warm up the cooler incoming air. The use of 

fan in mechanical ventilation systems can also add to the energy cost. This extra cost 

can be minimised if solar energy is used as a thermal energy source to preheat 

ventilation air, and also, through the use of photovoltaic (PV) modules as a source of 

electrical energy to run the fan. The following section discusses the potential for solar 

energy utilisation at higher latitudes. 

8 



1.3 SOLAR ENERGY AT HIGHER LATITUDES 

The utilization of solar energy for domestic and industrial use has become one of 

the fastest growing areas of research. This accelerated interest in solar energy is 

attributed to the increase in oil prices, depletion of oil resources, and growing 

environmental pollution consciousness. Figure 1.4 indicates future predictions for 

depletion in oil and gas resources. While these sources are depleting, it is predicted that 

by the year 2020 the energy demand worldwide will increase by 50 % (International 

Energy Outlook, 2004). This necessitates searching for other sources of energy. 

The sun is an inexhaustible and clean source of energy. It can be calculated that 

as much solar energy falls on the surface of Earth in one hour as the world's nations 

consume as fuel in the course of a whole year. Even in cloudy northern countries there 

is more than enough solar energy to meet the demand. The total falling on the UK over 

a year, for example, exceeds over twenty fold the countries current annual requirement 
for energy. If widely adopted, solar technology can dramatically decrease C02 

emissions from oil, gas and electricity production by displacing a significant proportion 

of these fuels. 

Figure 1.5 (for the UK) indicates that a very large portion of the heat 

requirement goes into the domestic sector. Thus, it is very important to make use of 

solar energy for purposes such as domestic water heating and space heating. However, 

the amount of solar energy available at higher latitudes is less than that generally 

available at locations closer to the equator. It is reported by Page and Lebens (1986) 

that, for the UK, the average annual irradiation falling on a south-facing surface tilted at 

450 is approximately 1000 kWhr/m2. Moreover, Strathcylde's Energy Systems Research 

Unit (ESRU) has calculated that each south facing roof in Scotland receives between 

700-1100 kWlVm2 each year. For locations closer to the equator this can reach up to 

2500 kWlVm2. However, as temperatures to the north (i. e. Northern Europe) are 

generally lower and, consequently, the heating season is longer, solar generated heat 

may be better utilised at higher latitudes. For example, the use of solar water heating 

systems as the primary heat source for heating both domestic hot water and under floor 

heating systems is becoming very common in Northern Europe (Renewable Energy 

World, 2002). 
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In Scotland, as well as in other North-European countries, solar water heating 

technologies are increasingly developing. A recent report by Solar Twin Ltd shows that 

in Britain, solar energy can economically provide 30 - 70 % of the energy needed for 

heating water for schools and homes. The report shows that temperatures of water can 

reach up to 70 C on sunny days. A solar water heating system installed by Solar Energy 

Systems in the west of Scotland was so efficient that it produced two cylinders of water 

each at a temperature of 98 C. Furthermore, it is reported by Scottish Renewables 

(2004) that a solar water heating system in Scotland can provide C02 savings of over 
2000 kg per year depending on the type of fuel that has been displaced. Such systems 

can significantly contribute to the Government's targets for greenhouse gas emission 

reduction. 

The above discussion shows the possibility for utilising solar energy in North 

European countries. Other technologies, which are increasingly developing in Scotland 

and worldwide, are photovoltaic (PV) technology and solar ventilation preheating 
technology. 

1.3.1 Photovoltaic technology 

Photovoltaic systems convert sunlight (photons) to electricity by means of semi- 

conductors (usually silicon) embedded within the PV modules. The interest in 

photovoltaic cells was heightened by the oil embargo of the early 1970s. In the last five 

years, the photovoltaic industry has grown at a rate of 30 % per annum. corresponding to 

a quadrupling of annual production over the same period (Green, 2004) as shown in Fig. 

1.6. 

In the past, photovoltaics were used for remote area applications where 

electricity was expensive. The main application of PV in Scotland is to provide some 

electricity for remote houses, cabins, boats and caravans (Scottish Solar Energy Group, 

2005). In such circumstances, PV electricity can be more attractive than the alternative 

of a diesel or petrol generator. An inverter can be used with PV modules to convert the 
battery low voltage DC to the normal 230 V AC, which home appliances need. 

It is also possible to have a PV system on dwellings which have a mains power 
supply. In that case, no battery is needed and the direct current (DC) supplied by the PV 
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can be changed to the alternating current (AC) of the mains, so the two systems can be 

interconnected. If the PV module is generating more electricity than needed, the surplus 

is transported to the grid/mains. If the electrical needs are greater than the PV supply, 

the difference is supplied by the mains as normal. 

350 

300 

250 

200 

Cc 150 
P 

a- 100 

50 

0 

Fig. 1.6: Growth in PV market (1990 - 200 1). Adapted from Green, 2004. 

Even though there are no subsidies available for solar water heating systems in 

Scotland, the Government has introduced a grant aid scheme to encourage the 

installation of PV panels for households. A total of E20 million will be available in an 

effort to encourage people to switch to Renewable energy. A scheme, which was 

launched in 2002 by the Department of Trade and Industry (DTI) and is run by the 

Energy Saving Trust (EST), gives home owners the opportunity to save up to 50% of 

the cost of solar electric systems between 0.5 and 5 kWp in size. Up to date, about 82 % 

of applications were approved with OAM granted and 820 kWp installed. 

1.3.2 Solar ventilation preheating 

Solar air heaters (SAHs) offer some advantages over solar water heaters. In 

SAHs, freezing or boiling of the fluid does not occur and they run at small fluid 

pressure. In addition, even though leaks decrease the thermal performance, they do not 
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disable the system as a whole. However, solar air heaters are limited in their thermal 

performance due to low density, small volumetric heat capacity and small heat 

conductivity of air (Pottler et al., 2000). 

Generally, a solar air heater consists of an absorber plate, a front cover and a 
back insulation. The air flows in the gap between the absorber plate and the back 

insulation. In order for high thermal efficiencies to be achieved, heat has to be 

transferred efficiently from the absorber to the flowing air. Furthermore, in order to 

reduce the electrical power necessary to pump the air through the collector, the pressure 
drop across the heater has to be minimised. According to Pottler et al. (2000), 

optimisation of solar air heating systems should address both heat transfer and pressure 
drops. 

Solar energy provides a free source of energy, which can be effectively utilised 
for preheating ventilation air. In cold climates, such as in Scotland, solar air heaters can 
be used for this purpose. In so doing, they reduce the amount of space heating needed to 
keep buildings comfortable on cold days. Otherwise the cold outdoor air necessary for 

ventilation has to be heated to indoor temperatures by the existing conventional heating 

system thus incurring higher cost as mentioned above. It is estimated that 30 % of 

energy in OECD countries, most of which are located in cold climates, is consumed in 

buildings and that 42 % of this energy is dissipated through ventilation (International 

Energy Agency, 2001). It is suggested that the energy loss through ventilation can be 

reduced to 4% by ensuring that the need for ventilation within dwellings is met with the 

minimum of energy consumption (AIVC, 2002). However, attempts to minimise 

ventilation energy loss can result in poor indoor air quality and comfort problems. 

1.3.2.1 Transpired solar collectors 

Solar ventilation air preheating technology existed since the early 1990s as a 

result of research supported by the U. S. Department of Energy (DOE). The 

commercially available transpired solar collectors (TSC) exemplified by Fig. 1.7 is 

widely used in the U. S. and Canada for both residential and commercial buildings. 

These collectors consist of a dark, perforated metal-plates installed over a building's 

south-facing wall or on the roof. An air space is created between the old wall (or rooo 

and the new fagade. A fan or blower draws ventilation air through the tiny holes in the 
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collector and up through the space between the building wall (or roof) and the collector 

before delivering it into the house. The solar energy absorbed by the collectors warms 

the incoming air by as much as 30 C. A summer bypass damper is included to allow 

outdoor air to enter the building directly and avoid overheating the ventilation air on 

wann days. 
A 

v ;V <3 > 
4174. fe n 

I 
. 

To distribution system 

Air space 

Perforated absorber 

South wall of building 

Fig. 1.7: A transpired (perforated) solar collector for preheating ventilation air. 

Such systems can only be used to preheat incoming fresh ventilation air and they 

cannot be used to warrn recirculated indoor air as can be done with other solar heating 

systems. It is reported by (U. S. Department of Energy, 1998), that, due to the 

elimination of glass covers, the TSC collects 80 % of solar radiation and has an 

efficiency of over 70 %. It costs about L63/m2 of collector area and has a payback 

period of 3- 12 depending on the climate and the type of fuel displaced. The system 
has no moving parts (except the fan) and so requires no maintenance. In 1995, the 

system was recognised by R&D Magazine as one of the 100 most important technology 

innovations. 

This system can also play an important role in warm climates for drying indoor 

crops such as tea, coffee, fruit, beans, rice, spices, rubber, cocoa, and timber (Conserval 
Engineering Inc., 2005). 
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The cost, performance, and economics of transpired solar collectors and SAHs 

in general can be assessed using the RETScreen software (Carpenter and Meloche, 

2002). Software, SWIFT (Solar Wall International Feasibility Tool), can also be used 
for job quotations and system design of applications for nearly all air-based solar 

collectors. Using weather data inputted from a specified file, or using built in files 

containing average weather data, the software predicts the amount of heat gathered from 

solar energy, the resulting air temperature inside the building, and the amount of energy 

used by conventional heating systems that has been avoided as a result of using the 

TSC. The next section introduces a newly developed concept for preheating ventilation 

air. 

1.3.2.2 Roof slate based collectors 

The simplest way to use solar energy for heating ventilation air is to use the 

existing roof surface (e. g. south facing slates or tiles) as a solar collector as shown in 

Fig. 1.8 Such a system does not need any solar panels, as with TSCs because the existing 

roof serves as a solar collector and so the extra cost of buying a solar collector is 

eliminated. 

V, AV 
> sarking board 

Well sealed wooden 
v <30.4c 

7 a) .r box constructed 

south-facing 
between the joists 

roof slates 

Fan 
ducting 

To distribution 
system 

Fig. 1.8: A roof slate-based (RSB) solar ventilation preheating systern. 

Research shows that dark color commercial tiles have absorptivity values over 
0.8 and reflectance less than 0.25. Red brick interlocking tiles, for example have an 
absorptivity of 0.88 and a reflectance of 0.12 (HK-OTTV, 1995). Thus, the temperature 
of the roof tiles can be many degrees higher than the surrounding ambient temperature 
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due to the solar energy falling on them. In bright sunshine, dark coloured slates can be 

up to 40 C warmer than the outdoor air and can heat the incoming air by up to 30 C 

(Scottish Solar Energy Group, 2004). In Scotland, slate temperatures can exceed 50 C 

depending on the time of the day, the time of the year, the wind speed and the type of 

slates. The energy absorbed by the slates can be either transferred to the attic or it can be 

lost to the surrounding atmosphere by convection and radiation. A mechanical 

ventilation system can be designed to utilise the energy of the slates to preheat outdoor 

air and deliver it into the house for ventilation. The benefits should include a warmer 
house, lower heating bills, a reduction in dampness and condensation, and an 
improvement in air quality. 

The idea to utilise roof slates as solar ventilation preheaters has been introduced 

at Napier University in Edinburgh in 1996 and deployed by Berwickshire Housing 
Association. Several of these systems have been constructed in Edinburgh. Ten houses 

with dampness were identified and studied. The houses were divided into three groups 
(no ventilation, solar ventilation, ventilation from attic) and were monitored for a year, 
The results showed that all seven houses with ventilation enjoyed reduced levels of 
dampness. The four houses with solar ventilation enjoyed warmer temperatures with 
two of them reporting a reduction in respiratory problems such as asthma and other 
health improvements. 

The current thesis is concerned with studying the potential of these roof-slate 
based (RSB) systems as solar ventilation preheaters. Chapters 6,7 and 8 then give 
conclusions about these systems regarding ventilation rates, heating potential, 
anticipated monetary and environmental (C02) savings, solar fractions and payback 
period . The following section gives a detailed description of the PV-driven RSB 

mechanical ventilation system under investigation. Next the specific objectives of this 
thesis with regard to these systems are outlined. 
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1.4 PRESENT WORK 

1.4.1 System description 

The procedure for constructing an RSB system is described in chapters 4 and 7. 

A summary is given here. The space between the joists is used to build a well-sealed 
box. 10-cm holes are drilled in the sarking board and felt underneath the slates. A fan, 

situated on a board and driven by a photovoltaic module on the roof, constitutes the 

front cover of the box. A flexible duct is extended across the attic from the fan box to 

the room ceiling underneath. 

The fan draws air through the spaces between the slates and through the holes in 

the sarking board before delivering it into the duct. As air is drawn past the warm slates, 
it absorbs the energy stored before being delivered through the flexible duct into the 
house. The system utilises solar energy in two ways: both to generate heat and 

electrically. Solar energy is used to both warm the slates which serve as a solar collector 

and also to run the fan via the PV module and so, generally, air is only delivered when 
the slates are warm. 

The effectiveness of these ventilation preheating systems is judged by their 

potential as solar air preheaters. An optimum system is that which maximises the 

amount of heat delivered in a given period of time. The instantaneous heat delivered by 

the system, on the other hand, depends on both the temperature difference (delivered - 

ambient) and the flow rate of air delivered to the house. The RSB mechanical system 
described above can be considered as two interacting subsystems. A thermal system, 

comprising the roof slates (heat gain) and the duct, in addition to the attic and the house 

underneath (heat loss). The slate temperature directly influences the temperature of air 
delivered. For a given flow rate of air, modelling of this subsystem can lead to the 

estimation of the outlet air temperature. The other subsystem is a'flow system, which 

consists of the PV module, the motor/fan combination, and the duct. The modelling of 
this subsystem leads to the prediction of flow rate at the outlet of the duct as a function 

of the environmental factors in addition to PV module, motor/fan and duct 

specifications. 
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1.4.2 Factors affecting the performance of the system 

A brief account of the effect of the different factors on air outlet temperature and 

flow rate is given below. These are summarised in Fig. 1.9. 

1.4.2.1 Enviromnental factors 

These include irradiance, ambient temperature, spectral variation, and wind 

speed over the roof where the system is installed. Environmental factors directly affect 
both the slate temperature (which is directly related to the air outlet temperature) and 
PV module electrical output. The latter influences the outlet flow rate. This is discussed 

in detail in chapter 3. A brief account of these effects is given below. 

2 Irradiance (G, WIM ) 
Irradiance has a direct effect on the PV module output. An increase in 

irradiance, increases the PV output and so higher flow rates are produced. Irradiance 

also affects the slate and PV module temperatures, which are both directly proportional 

to irradiance. While higher slate temperatures necessitate higher delivered temperatures, 

increasing the PV module temperature reduces the operational voltage of the fan and so 
less flow rates are produced. This is discussed in detail in chapter 2 and 3. 

U. Ambient temperature (Tamb, Q 

Both the slate temperature and PV module temperature are also directly 

proportional to ambient temperature. As discussed in (i), the module temperature affects 

its output. This will be discussed in detail in chapter 3. 

W. Wind speed (ws, m1s) 
Wind speed also influences the slate and PV module temperature. In cold 

weather, as wind speed increases, both the slate temperature and the PV module 

temperature decrease. Furthermore, high wind speeds may disturb the region over the 

roof thus affecting the performance of the system. 

iv. Spectral variation 

The spectral variation, from one season to another, has an effect on the PV 

module performance as will be discussed in section 2.2.4. 
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1.4.2.2 Component specifications 

The RSB system described above consists of four main components, namely: the 

slates, the PV module, the motor/fan combination, and the duct. Only the slate and duct 

properties affect modelling of the thermal subsystem. Modelling of the flow system, on 

the other hand is affected by the performance of all four components. 

Slate properties 
The three heat transfer mechanisms (conduction, convection, radiation) show a 

presence in the modelling of the temperature of the slates. The amount of heat lost by 

radiation and convection to the surrounding outdoors environment is determined by 

ambient temperature and wind speed. The thermal properties of the slates determine the 

maximum heat absorbed and thus available for the RSB system. Dark slates, for 

instance, are expected to absorb more energy than light color ones under similar 

environmental conditions. Furthermore, the dimensions (primarily thickness) and type 

of material of the slates determine the amount of heat transferred to the fan box and that 
delivered. 

The slates can also have an effect on the flow system. Depending on their 

structure and the pattern of installation on the roof, the slates can impose a resistance to 
the flow of air underneath them. Slates with a high "packing" effect, affect the system 

head-flow characteristic (AP. -Q), and thus reduce the flow rate. 

ii. PV module specifications 
Under similar environmental conditions, different PV modules give different 

electrical output. The PV module performance is described by several parameters, 

which are discussed in detail in chapters 2 and 3. The flow rate delivered by the PV- 

driven fan depends on the interaction between the PV module and motor/fan 
combination. 

iii. Motor, ýfan specifications 
The motor electrical characteristics and the fan IV characteristics affect the speed 

of the fan. The flow rate in the system is affected by the fan head-flow characteristic 
(APf-Q), which is a function of the fan speed. This will be discussed in detail in chapters 
2 and 3. 
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iv. The ductpropertles 

The duct properties (length, diameter and roughness) affect (AP. -Q) and, 

consequently, the flow rate of air in the system. This will be discussed in chapter 3. 

1.4.3 Research objectives 

The cur-rent work focuses on the flow subsystem mentioned above. So the effect 

of factors relating to the thermal performance of the system (i. e. thermal properties of 
the slates, heat loss to the outdoors or to the attic) are not accounted for. However, the 
heating potential of the system is investigated using measured slate and air outlet 
temperatures, which, when used with the modelled flow rates, the heat delivered, can be 

estimated. 

Even though more than a hundred RSB solar ventilation preheating systems 
have already been installed in Scotland, no optimisation studies have been done yet. The 

main purpose of the current work is to optimise these systems for Edinburgh. The 

optimisation process is carried out for a limited selection of PV modules, fans and duct 
diameters as will be discussed in section 3.3.7. The ground on which the component 

selection is made is discussed in terms of previous findings in chapter 2 (sections 2.2.1, 

2.3.2,2.3.3 and 2.4.3) 

The optimum system is then comparatively tested with other systems and the 

potential of RSB systems as solar ventilation preheaters is investigated. However, as 

can be inferred from the discussion above, in order to achieve these goals, a model for 

predicting the flow rate of air in the system, which can then serve as a means for 

predicting the heat delivered, is to be developed. Moreover, since the optimisation 

process must based on long-ten-n weather data, which is usually horizontal data, a model 
for predicting slope irradiance is to be introduced and validated for Edinburgh. The 

relationship between these different objectives is clarified in Fig. 1.10. 

The next chapter (chapter 2) introduces the background literature review related 
to modelling of PV-driven systems and that related to slope irradiance modelling. 
Literature review related to optimisation of PV systems is included in chapter 6 while 
that related to testing of solar systems is included in chapter 7. 
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Chapter 3 introduces the mathematical model of the system. The modelling 

methodology and experimental strategy are introduced in detail. The model for each of 

the individual components is given and validated experimentally. Chapter 4 introduces 

the programming strategy and describes the computer algorithms used for determining 

the flow rate of air in the system. In this chapter, the flow rate model as a whole is also 

validated by comparing measured flow rates (and fan voltages) to predicted values. 
Furthermore, model-based simulations of flow rate and efficiency vs. irradiance are also 

given at the end of chapter 4. These simulations are useful tools for both predicting and 

explaining the optimisation results. 

Chapter 5 introduces the datasets considered for optimisation. Two datasets, a 
log-term hourly dataset and a one-year 5-min data, are considered for comparison 

purposes. A north-European anisotropic model for slope irradiance is first checked 

against the isotropic model and then validated with measurements taken at a tested 

house at Wiston, Scotland. 

Chapters 3 and 4 Chapter 5 

A model for predicting flow rate A model for predicting slope Irradiance 
of air In the system from available horizontal global 

Irradlance data 

......................... .............................................. ............................... % 

Optimise RSB PV-drIven solar 
ventilation system Chapter 6 

Chapter 7 Chapters 6 and 7 

Install and test optimum system Study potential of RSB solar ventilation 
systems as preheaters 

.................................................... ....... 0 ............... 
t 

.............. 0 ............. 
Temperature measurements on different 

types of slates 

Fig. 1.10: Relating the different objectives of the thesis. 
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Chapter 6 makes use of the two models developed in chapters 3,4 and 5 for 

system optimisation. The optimisation strategy is described in detail and the 

optimisation results are then reported and explained in terms of utilisability and the 

model-based simulations described in chapter 4. Next, the optimum system is studied in 

detail and conclusions are made with respect to the ventilation, heating and economic 

potential of this system. 

Chapter 7 introduces a few case studies. The optimum system is installed and 

comparatively tested with another RSB system. The methodology for testing the system 
is given and the results are reported in terms of volume and heat delivered, solar 
fraction, and effectiveness. In addition, the optimum system is compared in different 

roof sections with different types of slates. Finally, the RSB system is then compared to 

the transpired solar collector. 

23 



REFERENCES 

Air Infiltration and Ventilation Centre (AIVC), (2001), Air Information Review, 
Evaluation and Demonstration of Domestic Ventilation Systems, Volume 22, No 
3, http: //www. aivc. org/fraineset/frameset. html 

American College of Allergy, Asthma and Immunology, ACAAI Online, 
http: //www. acaai. org/public/advice/dust. htm 

ASHRAE Standard 55-1981 (1981) Thermal Environmental Conditions for Human 
Occupancy, American Society of Heating Refrigerating and Air Conditioning 
Engineers, Atlanta. 

ASHRAE (1988), Handbook of Equipment, Chapter 10: Air cleaners for particulate 
contaminants, American Society of Heating Refrigerating and Air Conditioning 
Engineers, Atlanta. 

ASHRAE, (2001), Handbook of Fundamentals, American Society of Heating 
Refrigerating and Air Conditioning Engineers, Atlanta. 

Awbi, H. B., (199 1), Ventilation of Buildings, Clays Ltd, Suffolk, UK. 

Bouchair, A., (1994), Solar Chimney for Promoting Cooling Ventilation in Southern 
Algeria, Building Services Engineering Research and Technology 15 (2), 81-93. 

Concannon P., Air Infiltration and Ventilation Centre (AIVC), (2002), AIVC Technical 
Note 57, pp70, Code TN 57 

Environmental Protection Agency, (2005), Indoor Air Quality Home Page, 2005, 
http: //www. cpa. gov/iaq. 

Green, M. A., (2004), Recent developments in photovoltaics, Solar energy, 76, pp3-8. 

HK-OTTV Standard, (1995), Overall Thermal Transfer Value in buildings, Hong Kong, 
http: //www. arch. hku. hk/research/BEER/hkottv/hkottv. htm#Table*/ý204 

International Energy Outlook, (2004), World Energy and Economic Outlook 
http: //www. eia. doe. gov/oiaf/ieo/World. html 

Johnston, M., (2002), We're far too clean for our children's comfort, New Zealand 
Herald, http: //www. malaghan. org. nz/aboutus/news/2002/06.05. werefartooclean. h 
tm 

Khedari, J., Ingkawanich, S., Waewsak, J. and Hirunlabh, J., (2002), A PV System 
Enhanced the Performance of Roof Solar Collectors, Building and Environment, 
37, pp 1317-1320. 

Liddament M. W., (1996), A Guide to Energy Efficient Ventilation, Air Infiltration and 
Ventilation Centre, Coventry, UK. 

Martin, C., Platt, S., Hunt, C., (1987), Damp Housing, Mould Growth and Symptomatic 
Health State, BMJ, 298. 

24 



Nuaire Group, (2004), Home ventilation, Drimaster, Caerphilly, United Kingdom, 
www. iluaire. co. uk 

Page, J. and Lebens, R., (1986), Climate in the United Kingdom, HMSO Pubs., 
Department of Energy, 1986. 

Pottler, K., Sippel, C. M., Beck, A. and Fricke, J., (2002), Optimised finned absorber 
geometries for solar air heating collectors, Solar energy, 67(1-3), pp 35-52. 

Scottish Homes, (1993), Scottish Housing Condition Survey 1991 (Edinburgh: Scottish 
Homes). 

The Scottish Office, Central Research Unit, (1999), Poor Housing and III Health: A 
Summary of Research Evidence, 
littp: //www. scotIand. gov. uk/cru/documents/poor-housing-05. htm 

Scottish Solar Energy Group. (2001), Solar ventilation, examples: Burdiehouse, 
Edinburgh, Edinburgh, United Kingdom, littp: //www. sseg. org. uk/ 

Scottish Solar Energy Group, (2001), Solar ventilation, examples: Burdiehouse, 
Edinburgh, Edinburgh, United Kingdom, http: //www. sseg. org. uk/ 

Sick, F., (1996), The Solar Resource. In Photovoltaics in Buildings: A design Handbook 
for Architechts and Engineers, Sick F. and Erge T. (eds), pp. 9-12. 

Singh, J., (1995), The Built Envirom-nent and the Developing Fungi, Building 
Mycology, 21. 

Stephen, R., (1999), Low energy positive input ventilation in dwellings, BRE. 

Strathclyde Energy Systems Research Unit, (2004), http: //www. esru. strath. ac. uk/ 
Courseware/Class-16458/ýotesta. pdf 

Thermsaver Heating Solutions, (2005), Heat Recovery Ventilation, Some Frequently 
Asked Questions, bttp: //www. theniisaver. co. uk/hrv/fiq. litml#5a 

Unison Scotland, (2000), Seminar Report: Keeping Scotland warm, www. unison- 
scotlaiid. org. uk/energy/nrg. 

Wilkinson, D, (1999), The Scottish Office Central Research Unit. Poor Housing and ill 
health: A summary of research evidence. 

Williamson, I. J., Martin, C. J., McGill, G., Monie R. D., and Fennerty, A. G, (1997), 
Damp Housing and Asthma: A Control Case Study, Thorax, 52, pp 229-234. 

25 



2. REVIEW OF PREVIOUS WORK 

2.1 INTRODUCTION 

As discussed in chapter 1, in order to simulate, and hence define optimum 

system performance, two submodels are required. The first, necessarily predicts system 

flow rate as a function of environmental parameters in addition to PV module, 

motor/fan and duct specifications. The second requires predicting slope irradiance as a 

function of time of day and day of year, in addition to orientation and tilt. Chapter 2 

presents a review of the literature related to modelling of flow rate in PV-driven 

systems and that related to slope irradiance modelling. In addition, a brief background 

on optimisation of PV-driven systems is also given. More detailed discussion of 

previous work related to optimisation is given in chapters 6. , 

In PV-driven systems, the different components: the PV module, the motor and 

the mechanical load are modelled separately. Section 2.2 discusses previous work 

related to measuring the performance and modelling of photovoltaic modules. Section 

2.3 then considers the coupling of motors to PV modules. A review of the different 

types of motors and their associated motor equations is presented. In this manner, a 

rationale for selecting the best PV module-motor combination is considered. 

Section 2.4 describes the previous work on modelling of flow rate of water in 

PV pumping systems. In section 2.5, a review of slope irradiance modelling is 

presented. Section 2.6 starts a discussion of strategies for optimisation of PV-driven 

systems. This discussion is then continued in chapter 6 after the current strategy for 

optimisation is introduced. The background related to testing of ventilation preheating 

systems is given in section 7.2. In the current chapter, section 2.7 summarises the 

conclusions drawn from previous work and states the importance and uniqueness of the 

current work. 
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2.2 MODELLING OF PHOTOVOLTAIC OUTPUT 

2.2.1 Introduction 

Early handmade photovoltaic cells in the 1950s were less than 5% efficient and 
had outputs of a few milliwatts. In 1990, laboratory produced cells were reported as 
having efficiencies of over 30 %. In addition, the cells produced in the world in that 

year had an aggregate peak generating capacity of about 50 MW (Green, 2004). 

Nowadays, solar cells can be used in a range of applications from powering calculators 
to charging batteries for communication systems. 

The most common PV cells are made of silicon, as it is a semi-conducting 

element. Silicon PV cells are usually connected in series to form a PV module. 
Furthermore, PV modules can be connected in series or in parallel to form an array. 
Silicon PV cells are either monocrystalline, polycrystalline or amorphous. According to 
Markvart (2000), most commercially available PV modules are manufactured from 

polycrystalline silicon wafers. While their efficiency is lower than their monocrystalline 

counterparts, their reduced cost makes them more common. 

2.2.2 The PV IV characteristic 

An assessment of the operation of solar cells and the design of power systems 
based on solar cells must be based on their electrical output. The electrical output of PV 

modules is given by their current-voltage (IV) characteristic. A precise IV characteristic 

of PV modules is necessary to accurately estimate their performance, select appropriate 

components, and improve the efficiency of PV systems. The equivalent circuit, defining 

the electrical characteristic of a PV cell, as presented by Green (1982), is given in Fig. 

2.1. Using Kirchhoff s law, the current produced by this cell is calculated as follows: 

1 ý- 'G - ID - ISh (2.1) 

where Io is the light-generated current (A), ID is the diode current (A) and ISh is the 

current through the shunt resistance branch (A). 
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In mathematical terms, the diode current, ID, is approximated by the following 

equation as shown by Markvart (2000) 

V+ I-RS 
ID = 10 (e A (2.2) 

where 1ý is the reverse saturation current (A), Rs is the series resistance (Q) of the PV 

cell and A is a curve fitting parameter (V). Substituting Eq. 2.2 into 2.1, the current 
from the solar cell can be calculated from Eq. 2.3 

V +I RSV+I 
Rs IG - Io (e A I) -(R 

sh 
(2.3) 

The last term in Eq. 2.3 is often neglected as RSh. for most modem cells, is very 
large, (Rauschenbach, 1980). Thus Eq. 2.3 reduces to the following 

V+IR 
IG (e A (2.4) 

A typical IV curve as derived from Eq. 2.4 is shown in Fig. 2.2. The short circuit 

current, Isc (A), the open circuit voltage, Voc (V), the maximum power point, P. (W) 

and the filling factor, FF, are the main features of a PV IV curve. 
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Figure 2.1: An equivalent circuit of a PV cell. 
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Figure 2.2: IV characteristic of a PV cell. 

A PV IV curve can be experimentally constructed by measuring a series of 

voltage/current values. Isc represents the current at zero voltage while Voc is the 

voltage at zero current. P.. is the power when the product (TV) is a maximum (i. e. 

P. = I. -V. ) where I,,, and V. are respectively the current and voltage at 

maximum power. The maximum power can only be evaluated after the IV curve has 

been determined. The filling factor is a measure of how rectangular the IV curve is and 

can be defined by the equation 

FF 
P (2.5) 

ISC VOC 

The higher the value of FF, the closer to a rectangle the shape of the IV curve 

becomes (Green, 1982). A higher FF value indicates a more ideal PV cell or PV module 

since the series resistance, Rs, in Eq. 2.4 becomes closer to 0. This is considered in 

more detail in section 2.2.5.4. 

The simplest equivalent circuit of a photovoltaic cell consists of a diode and a 

current source in parallel. In this case, Rs =0 and so the electrical characteristic is an 

explicit function of I in V. This simplified circuit, however, does not give an optimal 

representation of the electrical process in a photovoltaic cell. Even though the 

equivalent circuit depicted in Fig. 2.1 introduces a better account of the electrical 

process encountered in PV cells, it is more complex since I is an implicit function of V. 

Therefore, a numeric method such as the Newton-Raphson has to be applied to obtain 

the IV curve. 
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2.2.3 Alternative models for describing the PV IV characteristic 

Several attempts have been made to simplify the IV characteristic given by Eq. 

2.4. Jacobson et al (2000) fitted measured (IV) curves to fourth, fifth, seventh and ninth 

degree polynomials. The maximum power output was then estimated from these best-fit 

curves. However, even though, these polynomial fits give reasonably accurate 

approximations of the maximum power vicinity and the lower section of the IV 

characteristic, they oscillate considerably at lower voltages and thus do not give 

accurate predictions of Isc. 

Akbaba and Alattawi (1995), on the other hand, introduced a new model, which 

has an advantage over the traditional model in Eq. 2.4 in that it related the module 

current explicitly to voltage so that the IV characteristic can be evaluated in a single 

step. The Akbaba model compared favourably with the traditional model in Eq. 2.4 and 

provided a simple closed form solution for P.,,, I,, and V,,,. This original version of the 

model, however, was based on parameters, which were only irradiance dependent, and 

so the effect of PV module temperature on its IV characteristic was not accounted for. 

Dyk and Meyer (2004) introduced a new equivalent PV cell model consisting of 

two diodes. Equation 2.1 was therefore rewritten as 

U -2 IG - IDI - 'D2 - ISh ) with both ID, and ID2 calculated from Eq. 2.2 

using different I. values. This new model, however, adds to the complexity of defining 

the PV IV characteristic especially when solved simultaneously with other equations. 

2.2.4 Factors affecting PV characteristic 

The present section gives a summary of the literature related to the effect of each 

of the environmental factors (section 1.4.2.1) on PV performance. The IV characteristic 

shown in Fig. 2.2 is a function of both irradiance and module temperature as depicted in 

Fig. 2.3. As irradiance increases, Isc increases linearly while Voc increases 

logarithmically, Buresch (1983) and Mallick et al (2004). An increase in PV module 

temperature, on the other hand, results in a slight linear increase in Isc coupled with a 

significant linear decrease in Vcc. Although there is an increase in current with 

temperature, the overall effect of increased temperature is a decrease in power due to 
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the larger decrease in voltage. In addition to open circuit voltage, P,,,, V. and FF are also 
inversely and linearly proportional to temperature. 

Due to the fact that the effect of temperature on current and that of irradiance on 

voltage are small, several researchers simplified their work by ignoring both or one of 

these effects. Jacobson et al (2000), for example, simplified their work by ignoring the 

effect of temperature on Isc and that of irradiance on Voc. Chamberlin et al (1995), on 

the other hand, ignored the effect of temperature on current but included a linear rather 

than logarithmic term for the effect of irradiance on Voc. The effect of temperature on 
PV module performance is, however, significant, and subsequent studies have shown 

that, if a high degree of accuracy is required, it cannot be ignored. 

0- 1000 Wlm2 &T- 20 C 

lcq 

Voltage, V 

Figure 2.3: Ile effect of irradiance and module temperature on PV IV characteristic. 

Parretta et al (1998) reported that 7% of all energetic losses are due to the 

temperature effect. In addition, Dyk et al (2000) considered the aforementioned 
temperature effect on module performance. They reported that at ambient temperatures 

of 25 C, PV modules will be operating at temperatures well above ambient and can lose 

up to 14 % of their potential energy production. Furthermore, in order to estimate the 

annual output of the system in actual operating environment, Nishioka et al (2003) 

analysed the dependence of PV output on PV efficiency temperature coefficient. They 

found that the annual output energy of their PV system increased by about I% for an 
improvement of 0.1 % in efficiency temperature coefficient. In conclusion, they stated 
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that it is very important to consider the temperature characteristics in solar cell 

development. 

The PV module temperature is dependent on irradiance, ambient temperature, 

and wind speed. This will be discussed in detail in section 2.2.5.1. In addition to 

irradiance and the effect of module temperature, the PV output is also a function of the 

solar spectrum. Hirata et al (1995) found that the ratio of available spectral solar 

radiation to global spectral solar radiation changes from season to season by 5% for 

crystalline silicon and 14% for amorphous silicon. Also, they found that the 

accumulated output of PV modules changes seasonally in the same way. For crystalline 

Si, the output ratio was 4% while that for amorphous Si was 20 %. They concluded that 

spectral solar radiation should be taken into account for optimum photovoltaic systems. 

Berman et al (1999) also demonstrated that the variation in long-term performance of 

PV modules is caused by seasonal spectral changes in the received sunlight, 

Corrections for spectral variations can be applied through correction for air mass 

(AM). Durisch et al. (2000) developed a formula for correcting the PV efficiency for 

irradiance, module temperature, and air mass (AM =I where 0 is the incidence 
Cos 0 

angle) from Standard Test Conditions (G = 1000 W/rný, T,,, (, d = 25 C, AM = 1.5 global 

spectrum). They stated that the maximum efficiency was obtained at AM = 1.5 which 

occurs relatively rarely in actual operation. The authors stated, however, that knowledge 

of the spectral composition of the solar radiation (for the whole air mass range) in 

typical climatic areas is necessary for optimising PV systems. 

In measuring the PV IV characteristic, the irradiance, PV module temperature, 

and (V, I) data points must be defined. However, for modelling purposes, the IV 

characteristic must be represented mathematically, as in Eq. 2.4. Thus, the four cell 

parameters in Eq. 2.4 (i. e. Iý, lo, Rs and A) must be evaluated by non-linear regression 

(NLR) using measurements of (V, I) data points, Chamberlin et al (1995) and Ikegami 

et al (2000). Hsiao and Blevins, (1984) and Hadi et al (2003) explained that these 

parameters can also be determined by curve fitting to an experimentally measured curve 

for a given irradiance and module temperature. 
Using a single IV curve, the parameters A, Io, Ir, and Rs are calculated so that Eq. 

2.4 can now be used for modelling. The following section introduces the experimental 
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techniques associated with measurement of the PV IV characteristic and those necessary 

for estimating the module temperature, the temperature coefficients, and the series 

resistance. Section 2.2.6 then discusses the methods available for adapting Eq. 2.4 to 

different environmental conditions of irradiance and module temperature for modelling 

purposes. 

2.2.5 Measurement of PV module performance 

When purchased, PV modules are usually accompanied by a manufacturer's data 

sheet typically specifying Isc, Voc, Pm, Vm, I.. and FF at some reference conditions of 

temperature, irradiance and air mass. These reference conditions, usually known as 

Standard Test Conditions (STC) as given above, are simulated indoor conditions. 

Parretta et al (1998) and Durisch et al (2000) stated that the operating efficiency of an 

installed PV module is not predicted by its manufacturer's data sheet related to STC. 

According to the authors, these reference conditions are hardly attainable in the field as 

they combine the irradiance of a clear sky summer day, with the module temperature of 

a clear winter day and the spectrum of a clear spring day. In order to accurately describe 

the performance of PV modules, measurements must be taken under realistic weather 

conditions. The following subsections introduce the experimental data required to 

completely describe the performance of PV modules. 

2.2.5.1 PV module temperature 

Under normal operating conditions, PV module temperature is primarily 

dependent on irradiance ambient temperature, and wind speed. It is necessary to 

estimate the PV module temperature as a function of these parameters in order to predict 

performance. According to Hsiao and Blevins (1984), PV module temperature can be 

estimated from the empirical equation 

T. w =T wnb 
+ 0.02 G+a (ws ) (2.6) 

where (x (ws) is the larger number of (ws, 0.03 x(IO-ws)). 

Alternatively, the manufacturer's datasheet can sometimes include the nominal 

operating cell temperature (NOCT, Q. Duffie and Beckman (1991) define NOCT as the 
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temperature of the PV module when ambient temperature is 20 C, irradiance is 800 

W/mý, wind speed is I m/s and no load is connected. Dyk et al (2002) reported that, 

usually, for the above conditions, the NOCT is in excess of 40 C. According to Eq. 2.6, 

a value of 37 C for NOCT is obtained which suggests that Eq. 2.6 is specific to the 

configuration and circumstances it was obtained under. 

Davis et al (2001) reported that the NOCT is based on the assumption that the 

overall heat transfer coefficient is constant. The heat transfer characteristics of a rack- 

mounted PV module can be quite different from building integrated PV modules. They 

presented a new technique for evaluating NOCT for building integrated PV (BIPV) 

modules using a one-dimensional transient heat transfer model. Menicucci (1986) 

described an experimental method for the determination of NOCT. By subjecting a 

single module of the type to be used in the PV array to the conditions described above 

(i. e. G= 800 W/M2 , T..,, b = 20 C, ws =1 m/s) and measuring the steady state cell 

temperature, the NOCT can be determined. The author also stated that, since the heat 

exchange parameters vary for different module designs, the NOCTs also vary and so he 

used a model, which predicted NOCT as a function of irradiance, ambient temperature, 

wind speed, and mounting configuration. 

With NOCT known, for a given irradiance and ambient temperature, Tmw can be 

estimated from Eq. 2.7 as follows 

T 
nwd = 

Tamb +G (NOCT - 20 (2.7) 
800 

2.2.5.2 Temperature coefficients 

The classic term of a temperature coefficient of a parameter relates to the change 

in that parameter when only temperature is varied and all other parameters held 

constant. King (1997) explained that temperature coefficients of Isc, Voc, Pm, Vin, Im, 

FF and efficiency can be experimentally determined. Duffie and Beckman (1991), on 

the other hand, presented an alternative method whereby the temperature coefficients of 

V., Ln, FF, P,,, and efficiency (ij) can be given in terms of those for Isc and Voc. 

Moreover, Green (1982), reported that the temperature coefficients of Isc (ýLisc), Voc 

(pvoc), and Pm (ýLpn, ) can be roughly estimated as fixed percentages of, respectively, Isc, 

Voc or P, According to Green (1982), for example, Pn decreases at a rate of 0.4 % per 
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*C (i. e. pp. = -0.4 % of Pn, ). King (1997), on the other hand, reports that P., decreases at 

-0.25 % per OC for amorphous Si and -0.5% per IC for crystalline Si. As reported by 

Berman et al (1999), in order to measure a temperature coefficient, the module is shaded 

to reach a temperature near ambient, then it is quickly uncovered and current-voltage 

measurements are recorded as the module warms to operating temperature. 

2.2.5.3 IV curves 

In order to measure the IV characteristic of a PV module, it is connected in 

parallel to a variable resistor. An ammeter is connected in series with the PV module 

while a voltmeter is connected across both the resistor and the PV module. As the 

resistance changes, readings of current and voltage are taken and the IV curve is 

constructed. Chamberlin et al (1995) measured the IV curves using a 0.1 F capacitive 

load and a data acquisition system sampling at 100 Hz. Sequential measurements of less 

than 10 mA apart were removed to eliminate redundant observations. Irradiance was 

measured using an Eppely Precision Pyranometer while temperature was measured 

using a thermocouple at the center of the back of the PV module. Observed 

temperatures ranged from 35 to 56 C. Cromer (1983), on the other hand, used two HP 

digital multimeters and a variable resistance load box built at Florida Solar Energy 

Center for PV IV detennination. 

2.2.5.4 Series resistance 

As the series resistance increases, the slope of the IV curve to the right of P.. is 

expected to be steeper (such that the shape of the curve becomes more rectangular). If 

the shunt resistance term was included in Eq 2.4, then the part of the IV characteristic to 

the left of P.. is expected to be at a slope rather than levelled off (this implies that Isc 

will be larger for smaller RSh), Dyk et al, 2002. Using measured data, and based on 

minimising the sum of squared residuals, Rs and RSh can be easily determined, Eckstein 

et al, 1990 and Chamberlin et al, 1995). Dyk et al (2002) stated that these can be 

determined from the slope of the parts of the PV IV curve at low voltage (close to Isc) 

and at high voltage. 

Townsend (1989) proposed a method for the determination of Rs from 

manufacturer's data. If both gisc and ýivoc are known, then Townsend showed that Rs 
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can be determined by equating the manufacturer's value of ýLvoc with the value 

determined from the analytical expression for the derivative, dV Oc 
dT 

voc `A ftf T,,,. d 'u + In Isc e. q 
-- 3 (2.8) 

Tnw, y[I sc 10 KBT.. d 

I 

where e is the band gap energy for Silicon (1.1 eV), q is the electron charge constant 

(1.6 x 10'19 Coulombs) and K13 is the Boltzmann's constant (1.38 x 10"23 j/K). The 

series resistance does not appear explicitly in Eq. 2.8 but the values of I. and A depend 

on Rs as will be shown in section 3.2.1 (Eqs. 3.2 - 3.4). So a value of Rs is assumed and 

values of Isc, I. and A are calculated and substituted in Eq. 2.8 to detennine poc. This 

calculated value is then compared to the manufacturer's value or to a measured value. 

The acceptable value of Rs is that which minimises the error between the measured and 

calculated livoc. Eckstein (1990) stated that Rs is independent of temperature and the 

value determined by Eq. 2.8 at some given values, can be assumed constant. 

2.2.6 Adapting PV IV characteristic to different levels of irradiance and temperature 

Considering Fig. 2.3, it is seen that the IV curve is a function of G and T,,, w. 
This means that the four cell parameters in Eq. 2.4 (i. e. IG, Io, Rs and A) are functions of 

irradiance and PV module temperature. To provide a versatile and more broadly 

applicable model, researchers are not only interested in evaluating these four cell 

parameters at a specific set of environmental conditions (G and Tn,. d), but are also 

interested in predicting the IV curve at any other conditions. Many models are available 

in the literature for correcting the PV characteristic. Two of these models, the 

SANDSTROM model, and the Townsend model are considered for discussion here. 

In the SANDSTROM model, by Buresch (1983), an IV curve is generated from 

a reference curve by correcting every single (V, I) data point for temperature and 
irradiance. It can be described by the following equations: 

V V_f +p voc 
(Td 

- Tw, 
,fRsAI 

(2.9a) 

I Iref + AI (2.9b) 

where 
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G )(T 
-T 

G'. 
Al = pisc )+(G 

'Zý .d md. rey G 
(2.9c) 

where V (V) and I (A) are respectively the voltage and its corresponding current on the 
IV curve at the desired values of G and Tn.,,, d, the subscript "re: f' represents 

measurements at reference conditions (i. e. G,. f and Td, ,, f) and pvoc (V/C) and 

, u1sc (A/C ) are respectively the open-circuit voltage and short-circuit current 

temperature coefficients. The series resistance, Rs, is assumed constant. The equations 
above also assume that the voltage and current temperature coefficient are constant and 

equal to p voc and p Isc respectively. 

The SANDSTROM model for generating IV data from reference conditions 
provides highly accurate predictions when compared to measurements. However, since 
extrapolated points correspond directly to measured values, any irregularities in the 

measured reference data will be carried on to the new curve. Hsiao and Blevins (1984) 

and, later, Chamberlin et al (1995) also considered this approach of correcting for single 
points rather than for the key cell parameters presented in Eq. 2.4. 

Eckstein et al. (1990), through considering the earlier work of Townsend (1989) 
introduced equations of IG as a function of both irradiance and temperature, and of 10 

and A as functions of temperature only. 

G [I 
"e _T . +, u 

(T 
0 G�f G, la w -. d�f (2.1 Oa) 

Tniod 
3 

exp[cq( (2.1 Ob) Tnmd, 
ref k T., 1. �f 

ýW 

A= Aref - 
Tniod 

(2.10c) 
Tn, 

dxLref 

Lawrence and Wichert (1994) also used the equations developed by Townsend (1989) 
to describe IV characteristics at any set of conditions. 

The SANDSTROM and Townsend methods described by Eqs. 2.9 and 2.10 are 
based on the traditional IV characteristic described by Eq. 2.4. The common feature 
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among these two methods, and all other methods in the literature, is that the 
detennination of Pn, can be carried out only after the IV characteristic is generated. This 

is done by searching for the point where the (T V) product is a maximum. 

2.2.7 Summary 

Accurate estimation of the PV IV characteristic as a function of environmental 
factors such as irradiance and ambient temperature is an integral part in modelling of 
PV-driven systems. In the literature, authors usually start by presenting the model they 

are using for describing this characteristic. The vast majority of models are based on the 

equivalent circuit, shown in Fig. 2.1. In most cases, researchers use Eq. 2.4, which is a 
simplified version of Eq. 2.3. The critical task here is to adapt the manufacturer's IV 

characteristic at STC conditions to different levels of irradiance and different ambient 
temperatures. This renders it necessary to predict the PV module temperature as a 
function of ambient temperature and irradiance. Moreover, knowledge of the PV 

module series resistance and temperature coefficients of the measured parameters is 

required for this task to be carried out. In section 3.2.2 a new method for adapting the 
PV IV characteristics to levels different from the reference conditions is introduced and 

validated by comparison to measurements and to the SANDSTROM and Townsend 

models. The advantages of the new method are also outlined. 

As will be discussed in section 2.3, in coupling PV-motor systems, it is 

necessary to estimate the maximum power point of the PV module. The closeness of the 

operational point of a motor to the maximum power point is of interest to many 

researchers. In the literature, most researchers tend to first estimate the PV IV curve 
from which P. can then be determined. However, an analytical expression of P.. in 

terms of irradiance and PV module temperature can be very useful. Khouzam et al 
(1991), Zaki and Eskandar (1996) and Akbaba et al (1995) found the derivative of 
power with respect to voltage and equated it* with zero to find Pn in terms of cell 
parameters. In section 3.2.2, an empirical relationship of P. as a function of G and Tnw 
is introduced. 
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2.3 PHOTOVOLTAIC-MOTOR COUPLING 

2.3.1 Characteristics of permanent magnet motors 

The two major parts of motors (DC and AQ are described in Textbox 2.1. 

"BrusW' DC motors have several drawbacks including relatively high manufacturing 

cost and short life expectancy if not maintained. However, Newborough and Probert 

(1990) reported that, when compared with AC motors, traditional DC "brush" motors 

offer several advantages including higher efficiency, larger starting torque and a simpler 

means for regulating rotational speed. As reported by Singh et al (1998), in spite of their 

limitations, DC motors are used extensively in PV pumping systems because they can 
be coupled directly to the PV module giving a simple and inexpensive system. 

Depending on the way the armature is connected to the field, DC motors can 

either be separately excited, series or shunt motors. In the latter two, as the name 
implies, the armature is either in series or in parallel with the field. In separately excited 
DC (SEDC) motors, on the other hand, the field and armature are supplied from 

independent voltage sources so they are not connected to each other (Fig. 2.4). This 

configuration offers the advantage of better speed regulation. Another advantage of 
SEDC motors is that the wound field can be replaced by a permanent magnet (PM). 

According to Edwards (1991), PMDC motors are advantageous because less 

maintenance is required, and, also, they have higher efficiency as no energy is lost in the 

field windings. During the last 30 years, several improved magnetic materials which are 

usually made from rare Earth element alloys were developed for high performance PM 

motors. 

The performance of DC motors is described by their speed-torque ((oT) 

characteristic. A typical ((oT) curve for PM motors is shown in Fig. 2.5. This curve is 

linear in the case of permanent magnets because, for this type of motors, the magnetic 
flux is constant. In the case of series or shunt DC motors, on the other hand, the speed- 
torque relationship is nonlinear (Say, 1980). 

The operation of a PMDC motor under steady state conditions is governed by the 
following equations (Anis and Metwally, 1994): 
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Textbox 2.1: Types of motors 

The two major parts of a motor are a stationary part (called a stator) and a rotating part (called a 

rotor). The driving torque of motors results from the interaction of magnetic fields in the stator and 

rotor. 
'Mere are two major categories of electric motors: alternating current (AQ and direct current (DC) 

motors as shown in the figure below. In AC motors, the current source is AC current which is 

supplied to the stator in either single phase or three-phase power. The two major types of AC motors 

are the synchronous motor and the induction motor. In the synchronous motor, the rotor can either be 

a wound field (WF) or a permanent magnet. The VVT rotor is supplied with direct current and so its 

polarity is fixed. In AC induction motors, on the other hand, the rotor is always WF and the current is 

induced by the magnetic fields of the stator magnets. 
Classical DC motors are "brush" motors which consist of a WF stator and a WF rotor where the 

supply voltage for both is a DC source. Another type of DC motors is the brushless DC motor where 

the brushes are eliminated and the WF stator is electronically controlled (section 2.3.2). 

AC motors DC motors 

Synchronous Induction Classical Permanent magn: t 
motor motor brush motors 

I 
brushless motor 

Wound fleld Permanent Series Shunt Iseparetely I 
rotor magnetrotor motor motor excited motor 

Wound field Permanent 
I stator magnet stator 

Ein =Km co (2.11) 

V=E. +R, I (2.12) 

Tm = Km 1 (2.13) 

where o) is the speed of the motor (r/min or rad/s), I is the current through the an-nature, 
Tm is the motor torque (Nm) and K. is the motor constant (Vs"). 
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Figure 2A Circuit diagrams of two separately excited DC motors where (a) the field is wound (b) the 

field is a permanent magnet. 
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Figure 2.5: Speed-torque characteristic of a permanent magnet DC motor. 
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2.3.2 Permanent-magnet brushless DC motors 

A recent development of PMDC motors is the permanent magnet brushless 

(PMBL) DC motor. In such a motor, the brushes are eliminated and the WF stator is 

electronically commutated. While in "brusV DC motors, the direction of the current is 

switched manually via the motion of the rotor itself, in PMBLDC motors; the 

commutation is achieved electronically using a rotor position detector. Unlike in 

conventional "brush" PM DC motors, the rotor in PMBLDC motors is the permanent 

magnet. 

Until recently the major barrier discouraging the employment of a PMBLDC 

was the cost of its electronic components and magnetic rotor (Singh et al, 1998). 

PMBLDC motors consist of a wound field stator, a PM rotor, and a control circuit. With 

this physical arrangement of their components, PMBLDC motors have several 

advantages of conventional DC motors. Singh et al (1998) stated that the high operating 

efficiency, the brushless construction, and the maintenance-free operation has given a 

scope to the demand of PMBLDC motors in water pumping applications operated by 

PV-array, particularly in remote villages. Furthermore, Langridge et al (1996) reported 

that, due to their high torque to weight ratio (and hence relatively low volume), 
PMBLDC motors are most suitable for solar applications. According to Langridge et al 
(1996), efficiencies (electrical to mechanical) of this type of motors can reach 80 - 90 
%. The authors stated that, in PV pumping systems, there is a significant starting torque 
due to the static friction of the pump. The suitability and advantages of PMBLDC 

motors for PV pumping systems was also recognised by several other authors, (Swamy 

et al, 1995 and Benlarbi et al, 2004). 

2.3.3 PV-motor coupling 

The PV-motor system operation point is determined by the intersection of the 

electrical characteristics of both the PV module and the motor (Fig. 2.6, point e). The 

figure also shows the hysteresis effect encountered in starting/stopping the motor. 

Under stalled conditions, the motor does not produce a back EMF and thus it 

will draw stalled rotor current until sufficient armature current is present to overcome 
the starting torque. The irradiance level at point (b) is just enough to produce this 
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current and the operating point then jumps to point (d). As the irradiance increases, the 

operating point moves towards point (e). Between points (d) and (e), even though the 

PV IV characteristic varies with irradiance and ambient temperature, as discussed in 

section 2.2, the motor characteristic is not affected. When irradiance decreases, the 

motor performance follows the motor characteristic to point (c) after which it stalls and 

the operating point jumps to point (a). 

I 
Vokage, V 

Figure 2.6: IV characteristic of a PV-driven load. 

In order to obtain as much energy as possible from the PV module, it is desirable 

to operate the fan at the module's maximum power point so that most of the PV output 
is utilised. Figure 2.7 shows the power vs. voltage curves for a PV module at different 

irradiance levels. It is seen that there is one point on the PV IV curve at which the PV 

module produces maximum power. The maximum power trajectory is also shown. The 

ideal load is that which operates in the vicinity of the maximum power trajectory. 

A more detailed discussion of the methods for PV module-motor matching is 

given in section 2.6.2. Presently, a general overview of early studies considering the 

coupling of different types of motors (DC and AC motors) to PV modules is given. 
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Figure 2.7: PV power vs. voltage curves and PV maximum power trajectory. 

2.3.3.1 Optimum motor selection 

Many researchers have investigated the design and performance of directly 

coupled PV systems. Most of this research has focused on the matching between DC 

motors and PV modules for maximising efficiency. Roger (1979) studied the direct 

coupling between PV modules and series, shunt and separately excited PM motors. The 

torque for each motor type was expressed as a function of motor current. 'Results 

showed that, as the PM motor presented the highest starting torque it therefore gave the 

best match when coupled to PV modules. The author further reported that direct 

coupling is interesting for fans, especially when forced ventilation is needed. In the 

cases of PV-fan systems, the starting process is completely autonomous and does not 

necessitate a special procedure as in the case of a constant voltage source or mains 
driven applications. 

Appelbaum and Bany (1978) and Appelbaum (1981) discussed the coupling of 

separately excited (including PM), series and shunt motor coupling with PV modules in 

three planes: the motor (u), T) and (o), I) planes and the PV converter's (I, V) plane. The 

points of operation were transformed from one plane to another. The efficiency of the 

system was determined by the closeness of the system's operating line to the maximum 
power line. Their results showed that the utilisation efficiency varied throughout the day 

and reached its peak (100 %) twice: in the morning- and in the afternoon. The array 
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output was well utilised for more than 75 % of the day (more than 12 hours). Speed 

variation, on the other hand, was found to be rather small and stayed within limits (±300 

r/min). Moreover, it was also reported that the ventilator type load (in their case a 

centrifugal pump with a quadratic IV characteristic) fits very well the PV converter (i. e. 

operates in the vicinity of P .. ) in contrast to a constant load (a horizontal IV 

characteristic). 

Other researches studied the relationship between the PV maximum power point 
and the point of maximum mechanical power. Zinger and Braunstein (1981) concluded 
that the maximum power point of the PV module is different from that point for 

maximum mechanical power. They stated that the maximum mechanical power point 
(Pmechanical "2 CO-T) is affected by the speed-torque relationship in addition to the motor 
type and parameters. 

Alghuwainem (1992) calculated the maximum mechanical output for two types 

of DC motors: the separately excited and series motors. It was found that the separately 
excited motor delivers a greater output mechanical power than the series motor and that 
the difference is more significant at radiation levels below 30 % and above 70 % of full 

sun. 

Zaki and Eskandar (1996) compared the gross mechanical power produced in 

PV pumping systems. One system comprised a SEDC motor and the second, an AC 
induction motor. It was found that the separately excited motor provided better 

utilisation of the PV module's maximum power. It was also concluded that the DC 

motor was more advantageous because it was directly coupled to the PV module, while 
in the case of the induction motor an inverter was required. The output of the PV system 
with the SEDC motor was controlled by controlling the field excitation while that with 
the i8nduction motor was controlled by controlling the inverter frequency. Eskandar and 
Zaki (1997) further investigated matching induction motors to PV modules by 

controlling the water discharge flow rate. 

2.3.3.2 Start up characteristics of PV-coupled motors 

Singer and Appelbaum (1986) studied the starting characteristics of different 

types of motors. It was reported that the starting time of the PV-coupled motor depends 
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on the inductance of the armature. The shortest starting time was found for separately 

excited motors. 

The start-up characteristics can drastically affect the volume of air delivered by a 

PV-driven system in a given period of time. This will be discussed in detail in section 

6.2.1. 

2.3.4 Summary 

The discussion above reveals the following facts: 

1. The PM motor has the highest starting torque among the different motor types 

2. The separately excited motor provides better utilisation of P,,,. 

3. The PV module utilisation is strongly dependent on the load type. Motors with 

variable IV characteristics (as opposed to those with constant load) provide a 
better match for PV modules meaning that they operate closer to P. at different 

irradiance levels. 

4. The PV maximum power point is different from the point of maximum 

mechanical power. 

In summary it can be stated that PM separately excited DC motors are most 

suitable for coupling with PV modules. Furthermore, PMBLDC motors are also 

reported to be most appropriate for solar applications. This type of motors, although 

more expensive than other types of motors, requires less maintenance and operates at 
higher efficiencies. 

As will be discussed in the next section, the motor equations described by Eq. 

2.11 to 2.13 are necessary for the determination of the motor operational point. For 

these equations to be applicable, the motor constant and armature resistance must be 

known. Laboratory measurements can be used to determine these constants as described 

in Textbox 2.2. 
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Textbox 2.2: Evaluation of motor parameters. 

The motor constant (K,,,, V. s/rad) and armature resistance (Q) are usually supplied by 

manufacturers. In cases where they are not given, they can be determined from experimental 
measurements or from other manufacturer's data. This is explained below. 

Rewriting Eq. 2.13 for I and substituting it with Eq. 2.11 into Eq. 2.12 and rearranging we arrive 

at the equation 

V 
_R 'T 2 Km Km 

which, for a fixed voltage, defines the off characteristic of the motor as shown by Fig. 2.5 for a 
RV 

PM motor. The slope of the characteristic is ') and the intercept is ( ). If the K2K 
MM 

manufacturer supplies this characteristic at a given voltage, then it is possible to obtain the 

parameters R. and K.. If the off characteristic is unavailable; these two parameters can be 

obtained from special cases of the equation above. 
I, can be obtained from stall conditions. In this case, the speed of the motor is zero and there is 

no back emf, so Eq. 2.12 reduces to 

V= Ra I 

Measurements of voltage and current from a locked-rotor test are sufficient for the determination 

of F,. 
At maximum speed, ca., the torque is zero as shown by Fig. 2.5 for a PM motor. 7be above 

equation reduces to 

CO Max = 
V... 

The manufacturer usually supplies the maximum speed of a motor at the rated voltage. From this 
information, it is possible to determine Kn, 
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2.4 MODELLING OF FLOW RATE IN PV-DRIVEN SYSTEMS 

2.4.1 Introduction 

Modelling of flow rate in PV-driven systems requires knowledge of the PV IV 

characteristic as a function of environmental factors. The literature review for this has 
been discussed in section 2.2. Section 2.3 introduced PV-motor coupling in addition to 
the relevant motor equations required for modelling. The current section discusses the 
literature review related to flow rate modelling in PV pumping system. 

Most available literature on flow rate modelling of PV-driven systems is on 

water pumping applications. Water pumping is an important factor in the development 

of rural and remote areas in developing countries. Firatoglu et al (2004) stated that since 

solar energy is usually high in and and dry locations where water is most needed, PV 

energy is much more suitable for pumping water. Moreover, War (2000) stated that 

using PV modules for pumping water is specifically advantageous because no storage 
batteries are required. 

The first stage in modelling PV-driven systems is the determination of the 
operational voltage, current and speed of the motor. The literature review related to this 

subject with regard to water pumping systems is discussed in section 2.4.2. The 

modelling of pressure-flow characteristics of fluid moving machines (i. e. pumps and 
fans) is discussed in section 2.4.3. Section 2.4.4 discusses the modelling of system 

pressure-flow characteristics. Finally, section 2.4.5 gives a general review of flow rate 

modelling in PV-driven systems. 

2.4.2 Motor voltage and rotational speed 

In order to solve for the voltage and the speed of the fan, the PV parameters 
shown in Eq. 2.4 and the motor parameters (K,,, and F, ) shown in Eqs. 2.11-2.12 must 
be known. Section 2.2.5 outlines both the experimental and analytical methods for 
determining the PV parameters. Textbox 2.2 above explains how the motor parameters 
can be experimentally determined. 
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In PV pumping systems, different methods were used in the literature in order to 

solve for the pump voltage and rotational speed. The intersection of the PV and load IV 

characteristics, as shown in Fig. 2.6, is the operational point. 

Hsiao and Blevins (1984) reduced the motor equation to a single one relating 

voltage to current in terms of armature resistance, motor constant and torque and 

angular speed at some reference conditions. This equation was solved with the PV IV 

characteristic simultaneously using the Newton's iteration method. 

Anis and Metwally (1994) studied the steady state behaviour of PV coupled 

systems. The torque of the load (a centrifugal pump), TL, was expressed as a function of 

the speed of the motor, co, according to the relationship, 

TL =K fw2 (2.14) 

where Kf (Kg. m2/rad 2) for a given load (pump or fan) is a constant which can be 

determined from reference values of speed and torque. Neglecting the motor-load 

coupling losses, they equated both motor and load torques so that 

Kf w2 = Km. I 

With irradiance as a parameter, the authors then used the Newton-Raphson method to 

solve the PV IV curve with Eqs. 2.11,2.12, and 2.15 for the operational voltage, current 

and speed of the pump. The authors stated that the use of the Newton-Raphson method, 

which is usually used for solving non-linear simultaneous equations, was found to be 

satisfactory where no convergence problems have been observed. The computation time 

was short and in most cases the solution was reached in 30 iterations. The accuracy of 

the solution could be improved at the expense of increasing the computation time. 

In their analysis, Anis and Metwally (1994) used extreme days of the year where 

for each day, the period between sunrise and sunset was divided into 6-min intervals so 

that the irradiance does not change significantly during this period and hence G can be 

considered constant. The steady state parameters of current, voltage and rotational speed 

where computed for each of these intervals. 
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Most researchers used the motor equations for the determination of the 

operational point. A few others, however, treated the motor/load as a single unit and 

used measured IV characteristics to solve for the operational voltage and current of the 

fan. This reduces the number of iterative equations to be solved in order to determine 

the motor's rotational speed and thus simplifies the model. Cromer (1983) and Hadj 

Arab et al (2004) used measured pump IV characteristics to describe the motor/pump 

electrical behaviour. These characteristics were then solved simultaneously with the PV 

module IV characteristic to solve for operational voltage of the pump. Hadj Arab 

(2004), however, reported that the IV characteristic of the pump changes with pressure 

across the pump and so it must be expressed in terms of the pump-piping characteristics. 

This will be discussed in more detail in section 3.7. 

2.4.3 Head-flow performance characteristics 

In addition to the motor modelling equations given in section 2.3.1 above, the 

head-flow characteristic (AP-Q) of the fluid-moving device (whether a pump or a fan) is 

also of interest in modelling of PV pumping systems. Figure 2.8 shows a typical head- 

flow (AP-Q) characteristic of a centrifugal pump. It is important to note that at any fixed 

speed, the pump will operate along this curve and at no other points. For a given pump, 

in addition to speed, the fluid temperature also affects the AP-Q characteristic. 

Figure 2.8: Head-flow characteristic of a centrifugal pump or fan. 
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A single AP-Q curve is usually supplied by manufacturers for specific operating 

conditions of speed and fluid temperature. The performance at other operating 

conditions is usually obtained through the affinity laws as shown in the equations 

below: 

Q2 =Q, 
C02 (2.16) 
0), 

±J2 
)2(P2 

(2.17) AP2 AR 
W1 A 

3 
012 

(2.18) p- 
2 

Pw 
I O)l 

) (P2 

A 

Where p is the fluid density (k g/m 3), P,, is power (W) and other symbols are as defined 

above. 

In PV-driven systems, the PV output and consequently the speed of the motor 

vary continuously. For modelling purposes, it is important to be able to predict the 

pump's or fan's AP-Q characteristic for any given PV module output. The use of 

affinity laws is only useful if a reference AP-Q curve is known at some reference 

operational conditions. Several researchers considered different ways of describing this 

reference curve. 

Eckstein et al (1990) approximated the centrifugal pump head at a given speed 

as a function of flow rate by a quadratic equation. Using this kind of relationship and 

using affinity laws, the authors generated the pump AP-Q characteristic at 3500 r/min 

from that at 3000. Errors of 2% were obtained. 

Other researchers corrected the AP-Q curve by expressing the pressure across 
the pump as a function of both flow rate and speed. Moussi et al (1985) and Benlarbi et 

al (2004), however expressed the pressure across a centrifugal pump by a quadratic 

equation in speed and flow rate as shown below 

2_C ( AP = C, 0) 2 J)Q_C 3 Q2 (2.19) 
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2.4.3.1 Axial flow fans 

Osborne (1977) stated that axial flow fans are most suitable for high flow rate 

low pressure systems. They are commonly used for removing heat from computers as 

reported by Lin and Chou (2004). Another common use of such fans is in air-cooled 
heat exchangers (Meyer and Kroger, 1997). 

It was mentioned above that PMBLDC motors are most suitable for coupling 

with PV modules. Furthermore, Newborough and Probert (1990) reported that single- 

phase PMBLDC motors are commonly employed for driving axial fans and that they 

can achieve efficiencies exceeding 40 %. So it can be concluded that a PMBLDC axial 

flow fan is appropriate for PV applications where high flow rates are required. 

The AP-Q characteristic for an axial flow pump (or fan) is different for that for a 

centrifugal pump (or fan). A typical AP-Q characteristic of an axial flow fan is shown in 

Fig 2.9. In axial flow fans, the flow of air is parallel to the axis of the impeller. An axial 

flow fan's AP-Q characteristic is characterised by a discontinuity region (Fig. 2.9) 

corresponding to the stalling conditions on the blade aerofails. Osborne (1977) stated 

that it is preferable not to operate the fan in this region or at lower flow rate. The 

affinity laws described by Eqs 2.16 to 2.18 are also applicable for axial flow fans. 

ow characteristic P Power (PW-Q) characteristic 
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f Discontinuity region 

Flow rate, Its 

point of mWimum 
pneumatic power 

Fan AP-Q chuacteristic 

Figure 2.9: AP-Q and P,, -Q characteristics of an axial flow fam 
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The pneumatic power curve (P,,,, -Q) is also shown in Fig 2.9. The amount of 

useful work that a fan performs is the product of flow rate through it and the total 

pressure differential measured before and after the fan. The first of these quantities is 

usually referred to as the capacity while the second is commonly known as the head. 

The capacity, usually provided by the manufacturer as (m3/hr) or (1/s), is a measure of 

the maximum flow rate of air that can be delivered by a fan under certain conditions. 

The fan head can be either total head or static. 

2.4.4 System characteristics 

The system AP-Q curve is a quadratic function of AP in Q as shown by the 

following equation: 

AP=KQ2 (2.20) 

where the coefficient K is a function of duct properties and density of air as shown in 

Darcy's equation 

8f pL 
Ir 

2 D' 
(2.21) 

where the friction factor, f, is a function of Reynolds number ( 
4p L9 ) and roughness 
; rpD 

of the duct (k, mm) and can be obtained by Colebrook equation (Perry and Green, 

1997) 

1= 
-4 log 

kID 
+ 

1.256 ], 
NRý > 4000 

J[3.7 NRO Vf 
(2.22) 

The Colebrook Eq. is implicit in f and so the solution of Eq. 23 requires an 
iterative method such as the Newton-Raphson method. This will be discussed in more 
detail in section 3.2.5. 

Eckstein et al (1990) stated that the system head profile can be obtained either 
by measurement or analytically by knowledge of the piping system components. 
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Knowing the roughness (k, mm), the diameter, (mm) and the length of duct in addition 
to the fluid density and viscosity, Eqs. 2.20 - 2.22 can be used to determine AP as'an 

analytical function of Q. Alternatively, a single measurement of AP and Q for a given 

system can be used to generate the full'AP -Q curve using the affinity laws. Eckstein et 

al (1990) stated that the affinity laws are applicable f6r moderate changes in speed but 

even for large changes in speed, the error is acceptably low. 

In analysing and designing pumping or fan-duct systems, it is useful to impose 

the system characteristic on the pump or fan characteristic as shown in Fig 2.10. The 

operating point (Q, AP) is the intersection of the system and the pump or fan curves. 

to 
IL 

0: I 
a chaxacteristics 

Flow rate, Us 
Figure 2.10: Fan and system ANQ characteristics. 

2.4.5 Flow rate modelling 

Jafar (2000) stated that it is impractical for a manufacturer to supply system 
output data for infinite combinations of a PV pumping system components and so it is 

necessary to develop a model for a particular system that can predict the output for any 
combination of head and iffadiance. Empirical relationships of flow rate as a function of 
iffadiance at different pumping heads were developed and the coefficients of these 

quadratic relationships were further expressed as functions of head. Bione et al (2004) 

also showed a quadratic relationship between flow rate and iffadiance in a PV-driven 

water-pumping system. Hadj Arab et al. (2004) expressed the flow rate of water as a 
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quadratic function of the pump voltage. The parameters of this quadratic relationship 

were obtained by an iterative Newton technique based on measurements of flow rate 

and voltage. Hadj Arab et al. (2004) stated that the motor-pump IV characteristic is 

solved simultaneously with the PV module IV characteristic. The operational voltage 

obtained is then used in the flow rate - voltage relationship to solve for flow rate of 

water at any irradiance and temperature. The approaches above, as they do not account 
for the different variables associated with the piping system, are specific, thus limiting 

their range of application. Other researchers, on the other hand, through considering the 

properties of the piping system in their models, have broadened their range of 

applications. Eckstein et al (1990) and Moussi et al. (1999) described the pump pressure 

as a function of flow rate and fan rotational speed, which is, in turn, a function of 
irradiance. The system pressure was expressed as the sum of static head and friction 

head. 

Eckstein et al (1990) described the system by two equations relating flow rate 
and pump rotational speed at a given torque. The first equation represented the 
difference between the pump head and system head as a function of speed and flow rate, 
which was equated to zero. The second equation represented the pump efficiency, 
defined as the ratio of hydraulic power to mechanical power. Efficiency was expressed 
as cubic function of (flow rate / speed). The two equations were solved simultaneously 
for flow rate and speed and so head and efficiency were calculated. 

2.4.6 Summary 

The literature review above reveals that most researchers, in modelling of flow 

rate in PV-driven systems, consider the system as three components: the PV module, the 

motor and the load. Determination of the flow rate in the system then requires solving 
the equations for all the components simultaneously using a computer program. In 

addition, many researchers solved for the intermediate values of the voltage of the fan 
but not the rotational speed. A few researchers, however, directly expressed the flow 

rate as a function of irradiance falling on the PV module. This approach is general 
because it does not allow for the inclusion of other factors affecting the system such as 
temperature. Furthermore, simulations of flow rate vs. irradiance (when all other factors 

are held constant) can be obtained from a computer program, which considers all these 
factors. 
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The head-flow characteristics of fans are similar to those for pumps. For a given 
fan, these characteristics are influenced by the rotational speed of the fan and the 

temperature of the fluid. Manufacturers usually supply a AP-Q characteristic at some 

given conditions of fan speed and fluid temperature. Most researchers use affinity laws 

to transform the AP-Q characteristic to a new level of speed and temperature. Others, 

however, ignore the effect of temperature and use equations, which directly relate head 

to flow rate and speed. 

Most researchers base their modelling on 'manufacturer's data. However, 

modelling can also be made using measured performance of the different components. 
In this case, the errors associated with the model will depend significantly on the 
instruments and techniques used. Nevertheless, using measured parameters in the model 

rather than manufacturer's data makes it more representative of the actual performance 

of the system. Furthermore, for modelling purposes, it is necessary to express the AP-Q 

characteristic of the fan at a given speed and temperature, as an analytical function of 
AP in Q. 
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2.5 SLOPE IRRADIANCE MODELLING 

2.5.1 Introduction 

In order to predict the performance of solar processes in the future, past 

measurements of solar radiation at the location in question or from a nearby similar 
location are used. This section describes the methods available in the literature for 

estimating solar radiation on a sloped surface from widely available data. Procedures for 

calculating extraterrestrial radiation and estimating horizontal beam and diffuse 
irradiation from horizontal global data are first presented. Slope irradiance is calculated 
from these beam and diffuse values. In addition, section 2.5.3 gives a brief summary of 
the instruments used for solar measurements. 

Solar radiation data is available in different forms. The word irradiance refers to 

the instantaneous measurement of radiation while the word irradiation refers to those 

values integrated over some period of time (an hour or a day). Most available solar data 

are global horizontal data (beam plus diffuse). Two types of data are widely available. 
The first is monthly average daily total radiation on a horizontal surface. The second is 

hourly total radiation on a horizontal surface for each hour for extended periods of time 

such as one or two years. 

2.5.2 Extraterrestrial radiation 

As a result of the way the earth orbits around the sun, the distance between the 
two varies by 1.7 %. However, the radiation emitted by the sun and its spatial 

relationship to the earth result in a nearly fixed intensity of solar radiation outside the 

earth's atmosphere. The solar constant is defined as the solar energy per unit time 

received on a unit area of surface perpendicular to the direction of the radiation, at mean 
sun distance, outside of the atmosphere. 

Several types of radiation calculations are done using normalised radiation 
levels, that is the ratio between the available solar radiation to the theoretically possible 
radiation if there were no atmosphere. For these calculations, a method for estimating 
extraterrestrial radiation is required. The extraterrestrial radiation incident on a 
horizontal surface is given by the Eq. 
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Ex G,, 
(1 

+ 0.033 cos 
360 n) (Cos ý cos S cos w, + sin ý sin 45 (2.23) 
365 

where G, ý is the solar constant (13 67 W/in 2 ), n is the day number, 0 is the latitude of the 

location of interest, 8 is the declination and co, is the sun hour angle. 

2.5.3 Measurement of solar radiation 

2.5.3.1 Pyranometers 

Measurements of solar radiation on a horizontal surface are usually undertaken 
by a specialised agency such as the national meteorological office. Most of the available 
data on solar radiation are measured using pyranometers. These are instruments used for 

measuring total (beam and diffuse) solar radiation. The detectors for pyranometers are 

thermal detectors covered with one or two hemispherical glass covers to protect them 

from extraneous effects. 

Several factors must be considered in designing pyranometers. First the 

detectors must be independent of the wavelength of radiation over the solar energy 

spectrum. In addition these detectors must have a response independent of the angle of 
incidence of the solar radiation. Furthermore, the covers should be uniform in thickness 

so as not to cause uneven distribution of radiation on the detectors. The double glass 

construction minimises temperature fluctuations and reduces thermal radiation losses to 

the atmosphere. Weekly cleaning is recommended because the glass covers can collect 
debris. Furthermore, silica gel crystals in the body of the pyranometer can prevent 

moisture. 

The CM22 is regarded as the standard reference pyranometer due to its accuracy 

and stability. In these instruments, a black disk absorbs the radiation falling on the 

pyranometer. The heat generated flows through a thermal resistance and the resulting 
temperature difference across this resistance is converted to voltage, which can be read 
by a data logger or a computer. 
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Diffuse irradiance is measured by placing a shadow band over a pyranometer as 

shown by Fig. 2.11. The adjustment of this shadow band is required periodically. An 

account of these adjustments and the associated errors are discussed by Coulson (1975). 

Figure 2.11: Using a shade ring for measuring diffuse irradiance. 

2.5.3.2 Errors associated with pyranometers 

The most significant errors associated with pyranometers are shown in Fig. 2.12. 
Instrumental errors arise from the sensors and their construction. The cosine effect is the 

most common and well-recognised error of pyranometers. This is the sensor's response 
to the angle at which radiation strikes the sensing area. This error will be greatest at 
sunrise and sunset when the angle of the sun is very acute. This can be dealt with by 

excluding data at sunrise and sunset (altitude angles below V). 

The azimuth and temperature errors are -inherent, manufacturer errors. The 
azimuth error results from imperfections in the glass domes. Temperature errors arise 
from temperature fluctuations of the instrument and they can be reduced by adequately 
ventilating the instrument. The spectral selectivity is dependent on the spectral 
absorptance of the black paint and the spectral transmission of the glass. Finally, the 
deterioration of the cells results aI% change in the full-scale measurement per year. 
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Figure 2.12: The most significant errors associated with pyranometers 

Another set of errors associated with measurement of solar radiation are 

operational errors as shown in Fig. 2.12. These are errors and problems related to the 

operation of the instrument. The shade-ning misalignment is the most significant of 

these errors. 

2.5.3.3 Delta-T sunshine sensors 

The common approach for measuring global and diffuse radiation has been to 

use two sensors. The shade ring (Fig. 2.11), which can be adjusted to match the track of 

the sun across the sky for a certain day, is usually used with one of the sensors, to 

measure the whole sky apart from the sun. 

Figure 2.13 shows a newly developed Delta-T BF3 sensor, which allows for the 

simultaneous measurement of both horizontal global and diffuse irradiation. The BF3 

sensor consists of a system of photodiodes and a shading pattern. The shading pattern is 

such that it allows at least one photodiode to be always exposed to full solar beam and 

another to be always completely shaded. Furthermore, all photodiodes receive an equal 

amount of diffuse light from the sky hemisphere. The shading pattern was designed 

with the help of a computer program. 
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Figure 2.13: Delta-T BF3 sensor for measuring both global and difiluse radiation. 

2.5.4 Estimation of horizontal beam and diffuse components frorn global irradiance 

The performance of this sensor was evaluated by Woods et al (2003) at the 

school of Engineering at Napier University. Horizontal global and diffuse 

measurements were collected by the BF3 sensor. Two Kipp and zonen CM II sensors, 

one with a shade ring, were set up beside the BF3 sensor on the same roof to allow for 

cross checking. The global irradiance measured by the BF3 showed values 4.7 % higher 
2 

with a standard error of 16.5 W/m . Diffuse valLies were 1.4 % higher with a standard 

error of 13.4 %. 

In this section, a method for estimating the fractions of the total horizontal 

radiation that are diffuse and beam is presented. The split of global radiation into its 

beam and diffuse components is important because methods for calculating total 

radiation on sloped surfaces from data on horizontal surfaces require separate treatments 

of these two components. 

The usual and most common approach is to correlate Id/l, the fraction of the 

hourly radiation that is diffuse, with kT. the clearness index. The clearness index is 

defined as the ratio of global radiation on a horizontal surface to extraterrestrial 

radiation. In mathematical terms, the clearness index can be written as 
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kT =I 
E, 

(2.24) 

where I is the global radiation (W/m 2) and E,, is the extraterrestrial radiation (W/m2). A 

typical plot of diffuse ratio vs. kT is shown in Fig. 2.14. In order to obtain Id/I vs. kT 

correlations, measurements of diffuse and global radiation in addition to time, date and 

location must be taken. The three latter parameters are used to calculate extraterrestrial 

radiation as shown by Eq. 2.23 and a plot similar to that in Fig 2.14 is obtained. Early 

work in this area by Orgill and Hollands (1977) which was based on data from 

Canadian stations, Erbs et al (1982) which was based on data from U. S. stations and 

Reindl et al (1990) which used data from both U. S. and European stations all showed 

nearly identical correlations of diffuse ratio as a function of clearness index. However, 

Muneer et al (1983) through developing a correlation for New Delhi and comparing it to 

other locations reported that these correlations are location dependent. 
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Figure 2.14: A dr vs. kT envelope for Bracknell, UK. 

2.5.5 Estimation of slope irradiance 

As mentioned above hourly horizontal global and diffuse irradiation data can be 

used to estimate slope irradiance provided R, the ratio of global irradiation on a slope 

surface to that on a horizontal surface is known. The ratio, R can be mathematically 

expressed as 
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R (2.25) 

where Itilt is the total irradiation on the tilted surface and can, for an ideally non- 

reflecting foreground, be expressed as 

Ili,, = Rb Ib + Rd ld (2.26) 

where Ib and Id are horizontal beam and diffuse irradiation respectively, Rb is ratio of 
beam irradiance on the sloped surface to that on a horizontal surface and it can be 

calculated as explained in section 2.5.5.1, Rd is the ratio of diffuse irradiance on the 

sloped surface to that on the horizontal surface and it can be calculated as shown in 

section 2.5.5.2. 

2.5.5.1 Estimating beam irradiance on a tilted surface 

The calculation of beam irradiation on a tilted surface from horizontal beam is a 

geometric problem (Muneer et al, 2000). It depends on the latitude of the location (ý), 

the slope of the surface (a) in addition to the declination (8) and hour angle (o). ). The 

beam component of irradiation on the sloped surface is simply (R. - Ib ). For sloped 

surfaces, Liu and Jordan (1963) have shown that Rb can be calculated from the 

following equation: 

Rb = 
cos( 0- a) cos( 3) cos( co, ) + sin( 0- a) sin( 5) (2.27) 

cos( 0) cos( 8) cos( co, )+ sin( 0) sin( 8) 

The beam irradiance on the tilted surface is then calculated from 

= Rb 1 (2.28) 

2.5.5.2 Estimating diffuse irradiance on a tilted surface 

Diffuse radiation on a sloped surface consists of three parts. The first is an 
isotropic part, received uniformly from the entire sky dome. The second is a circumsolar 
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diffuse, resulting from forward scattering and concentrated in the sky around the sun. 

The third is horizon brightening that is concentrated near the horizon and is most 

pronounced in clear skies. If only isotropic diffuse is considered, the calculation of 

diffuse irradiation on a tilted surface from horizontal diffuse is a simple task and can be 

calculated as follows: 

Rd + cos(a) 
2 

(2.29) 

However, the isotropic model described by Eq. 2.29, tends to underestimate Itilt as 

explained by Duffle and Beckman (1991). Improved models have been developed 

which take into account the two other components of diffuse radiation. Hay and Davies 

(1980) considered the part of diffuse which is circumsolar but ignored horizon 

brightening. Reindl et al (1990) added a term for horizon brightening to the Hay and 

Davies model. 

2.5.6 Summary 

In order to estimate the long-term performance of PV-driven systems, irradiance 

data is required. This data is usually available as horizontal global data for many 
locations all over the world. Horizontal diffuse can be easily obtained from global data 

using the common approach of relating diffuse ratio to clearness index. Several 

researchers use generalised equations of dr vs. kT. These relationships are, however, 

location dependent and must be determined for the location of interest. 

Slope irradiance can be determined from horizontal diffuse and beam values. 
The isotropic model does not fully account for diffuse irradiance and so it tends to under 

predict irradiance on a sloped surface. Several anisotropic models for predicting slope 
irradiance were developed as will be discussed in section 5.3. These models, however, 

are also general and can be location dependent. 
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2.6 OPTIMISATION OF PHOTOVOLTAIC-DRIVEN SYSTEMS 

2.6.1 Introduction 

Different optimisation strategies can be considered in order to improve the 

overall efficiency of a PV-driven system. A number of studies have been done on the 

optimum matching analysis of directly coupled PV systems. Most of these studies have 

focused on the ratio between the input electrical energy of the motor and the available 

maximum power of the PV module. Other authors have extended this matching analysis 

to the generated mechanical power of the motor with respect to the maximum available 

power of the PV module. Koner (1995) stated that, since the ultimate goal of PV 

pumping systems is to pump water, it is necessary to extend this matching analysis to 

the hydraulic power with respect to the maximum available power of the PV module. 

Other optimisation techniques are concerned with optimising the configuration of PV 

modules or maximising the volume of water delivered in a PV pumping system. 

2.6.2 PV-motor matching 

The importance of operating PV-driven systems near the maximum power point 

of the PV module has already been discussed in section 2.3.3. Maximum power 

operation, however, is a challenging task, since it requires that the motor be capable of 

using all power available at all times. This means that the motor must adjust itself rather 

quickly on the appearance and disappearance of a cloud cover. This requires that the IV 

characteristic of the ideal motor intersects the locus of maximum power points on the 

PV IV characteristics for varying irradiation levels. For this purpose, an electronic 

maximum power tracker (MPT) can be used between the PV module and the motor. 

Langridge et al (1996), for example, used an MPT strategy, which operates the PV array 

at a fixed percentage of the open circuit voltage. However, the inclusion of a matching 
device can be expensive. 

Directly connecting the PV module to the motor and choosing an optimum 

motor constant so that, for most of the year, the motor is utilising most of the available 

energy leads to a simple and inexpensive system. Saied (1982) and Kolhe et al (2000) 

stated that the important parameter of PMDC motors is the magnetic field constant. A 

method for determination of optimum magnetic field constant of a PMDC motor, when 
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powered by PV, has been developed. The optimum magnetic field constant was 

obtained as a function of current at the maximum power point of the PV module. It was 

found that the maximum output is available at output-energy-weighted average value of 

magnetic field constant. 

Khouzam et al (1991) suggested that MPT can be eliminated if optimum 

matching is achieved. They defined a matching factor as the ratio of the load energy to 

the maximum available energy of the PV module. The matching factor depends on the 

load parameters since the maximum available PV module energy is fixed for a given 

irradiance and temperature profiles. Optimum matching was achieved by determination 

of optimal PV module parameters with respect to load parameters using direct-search 

techniques. They found that the theoretical optimum matching factor for ohmic loads is 

94.34 % and that for an electrolyte load is 99.83 %. 

Akbaba et al (1998) studied matching between separately excited DC motors 

and PV modules. They developed an expression of the motor current as a function of 

the PV module's maximum power point current and voltage. It was shown that by 

adjusting the field current according to the developed expression, the motor was forced 

to follow the maximum power locus of the PV module. At any available irradiance 

level, the input power of the motor was always equal to the maximum output power of 

the PV module. However, for that study the effect of temperature was neglected. 

Another optimisation method for directly coupled PV water pumping systems is 

the reconfiguration of PV modules under different solar irradiation levels. Saied and 

Jabori (1989) examined the maximum values of annual output of mechanical energy 

under several possible combinations of PV modules and motor constants. Salameh and 

Liang (1990) used a multistage electric array reconfiguration where the optimum 

switching point was based on the simulated performance of each component. 
Furthermore, Faldella (1989) studied the electrical coupling efficiencies of a pump load 

by changing the configuration of PV modules using a switching controller. Koner et al 
(1991) determined the switching points (cut-off irradiances) for the reconfiguration of 
PV modules for any centrifugal pump-series DC motor combination using an analytical 

solution of the PV-motor-pump system. 
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Koner (1995) studied three different optimisation techniques for a PV driven 

centrifugal pump-series dc motor system. The three optimisation techniques studied are 

(i) optimised motor constant (ii) reconfiguration of PV modules and (iii) changing the 

water head. The calculation procedure for the optimum motor constant, the "cut-off' 

solar irradiance for the different configurations of PV modules and the "cut-off solar 

irradiance" for changing the water head have been studied for several systems. It is 

concluded that all optimisation techniques are not viable for all existing pump sets. 

2.6.3 Maximising volume delivered 

Another strategy for optimisation of PV-driven systems is maximising the 

volume delivered. The literature review with respect to this will be given in section 6.2 

where the optimisation criteria for the present study are discussed. 

2.7 GENERAL CONCLUSIONS 

The main purpose of chapter 2 has been to review the literature available on 

modelling of flow rate in PV-driven systems. All of the literature discussed in this 

chapter is related to PV-driven water pumping applications since this practise is well 

established particularly in developing countries. In chapter 1, it was stated that the 

present study is the first quantitative study on RSB solar ventilation preheating systems. 

In chapter 2, another aspect of the uniqueness of the present study has been shown. The 

importance of the present study lies with the fact that it is the first study on modelling of 

PV-driven fan systems. The principles for modelling both PV-driven pumping and PV- 

driven fan systems are the same and so the literature review in this chapter is relevant. 

The discussion in this chapter clarified that in modelling of PV-driven systems 

the models for the different components are treated separately. In the case of the PV 

module, it is not only important to be able to obtain all parameters necessary to describe 

the IV characteristic at a given irradiance and PV module temperature, but also to be 

able to adapt this characteristic to different levels. Two models for adapting the PV IV 

characteristic were discussed. In chapter 3, a new method will be introduced and 

validated and its advantages in comparison with other methods will be outlined. The 

procedures for measuring the IV characteristic of a PV module and those for measuring 

the temperature coefficients were introduced. The methods for estimating the cell 
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parameters in Eq. 2.4 were also reviewed. Chapter 3 introduces a new procedure for 

estimating the series resistance of a PV module. 

Two methods for describing the motor/fan characteristics are given in the 

literature. In the first, the motor equations are used while in the other measured current- 

voltage and speed-voltage characteristics of the motor/fan as a single unit are used. The 

next chapter will also present two methods for describing the fan's head-flow 

characteristic. In the next chapter, where more than one method exists, only one will be 

selected for modelling. The equations for describing the system's head-flow 

characteristic where also presented. In the literature, the flow rate of a PV-driven system 

was expressed as a function of irradiance. This approach, however, is specific and does 

not account for the PV module temperature or the duct properties effectively. 

A review of modelling of slope irradiance from horizontal data was also given. 
In order to obtain slope irradiance, both horizontal global and diffuse data are required. 
The method for estimating diffuse irradiance from global irradiance was also reviewed. 
In the current chapter, the isotropic model for predicting slope irradiance was presented. 
However, in chapter 5a more general anisotropic model will be considered and results 
from both models will be compared. 

Finally, an overview of optimisation strategies for PV-driven systems was given. 
For PV pumping systems, the strategy has been to optimise by either maximising 

efficiency or volume of water delivered. In the former case, the optimisation can be 

achieved by utilising the maximum power of the PV module, the mechanical power of 

the load, or the hydraulic power of the pumping system. More literature review on 

optimisation related to maximising volume delivered is given in chapter 6. 
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3. SYSTEM SIMULATION 

3.1 INTRODUCTION 

As discussed in chapter 1, the optimisation of the PV-driven RSB system 

requires developing a model for predicting the flow rate of air. It was concluded in 

chapter I that the current research is unique because it is the first quantitative study on 

the newly developed PV-driven RSB solar ventilation preheating system. Chapter 2 

presented a review of relevant previous work in respect of modelling and optimisation 

of PV systems. The present optimisation study is intended to improve the performance 

of PV-driven RSB systems and study their value as solar air heaters. More importantly, 

however, the current research is unique because, as can be seen from the literature 

review in chapter 2, all research on modelling of flow rate and optimisation of PV 

systems is related to water pumping applications. Here, a model for a system that 

consists of a PV module and a fan-duct system is to be developed. The present chapter, 

which goes in parallel with chapter 2, focuses on developing the mathematical model 
for the system and on the experimental methodology undertaken for building this 

model. Chapter 4 presents the computer algorithms associated with predicting the fan 

operational point and the flow rate in the system. The model is then experimentally 

validated by comparing computer simulations to flow rate measurements in a roof 

section constructed at Napier University. 

Chapter 2 introduced the equations governing the performance of each of the 

components comprising the system. As was mentioned in section 2.4, in order to 

estimate the flow rate in the system, these equations must be solved simultaneously. 
These equations, however, contain parameters that are component specific and thus they 

must be obtained either from manufacturer's data or experimentally. The main objective 

of the current chapter is to present and evaluate the parameters necessary for estimating 
the performance of each of the components. The equations in chapter 2 are extended 

and manipulated and the mathematical model for the system is presented. In cases 

where several methods for describing the perfon-nance of each of the components are 

available, the selection of one of these methods is justified. 

A new method for modelling the PV characteristic is introduced and validated. 
Two methods for describing the motor/fan performance were presented in chapter 2. In 
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the present chapter, the method based on dealing with the motor/fan as a single unit (i. e. 

using fan IV and coV characteristics) is considered for modelling. A general discussion 

of the quantities measured and the instruments used is given in section 3.3. Since the 

development of the model is based on measurement of performance of each of the 

components, the predicted flow rates will be associated with error. This error is a result 

of operational and instrumental errors. The error analysis methodology undertaken for 

this work is discussed in section 3.3. 

Sections 3.4 through 3.6 outline the experimental measurements undertaken to 

estimate the key parameters for each of the components. In these sections, the analysis 

of data and the validation of the individual models for each of the components are also 

presented and discussed. 

3.2 MATHEMATICAL MODEL 

The key feature of the present mathematical model is that it is based on three 

sets of reference measurements from which the component characteristics at any set of 

conditions are derived. The reference data include the following 

1. data from which the PV IV characteristic at any sets of conditions can 
be derived, 

2. data from which the fan AP-Q characteristic at any conditions of 
speed and air temperature can be derived. 

3. and data from which the system's AP-Q characteristic for any duct 

specifications (i. e. length, diameter and roughness) can be derived. 

This approach is very effective because it generalises the model, broadens its 

application, and minimises the experimental effort required to build the model. The 

problem of modelling flow rate in the system is reduced to the task of evaluating several 
component parameters. 

In the case of the PV model, a new procedure for correcting the reference 

parameters is presented in this section and validated in section 3.4. A new method for 

estimating the series resistance from reference measurements is also given. For 

modelling the electrical characteristics of the motor/fan combination, the method 
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considered here is based on measured IV and coV characteristics of the motor/fan 
combination. This approach is considered because it reduces the number of equations to 
be solved simultaneously. Furthermore, the current section presents methods for 

expressing APf as an analytical function of Q at reference conditions. The procedure 
for updating this function for different fan speeds and air densities is also discussed. 

Finally, the present section outlines three methods for obtaining the fan/duct system AP- 
Q characteristic from reference conditions. Each of these methods requires the 

estimation of certain parameters. These methods are compared in section 3.6. 

3.2.1 A reference PV IV characteristic 

As discussed in section 1.4, the environmental factors of irradiance, ambient 
temperature and wind speed affect the performance of the PV module. The output of the 
PV module is described by Eq. 2.4, which can be rewritten in an explicit form as 
follows; 

A In 
IG -, + 10 

1R 

io 
(3.1) 

At any irradiance and PV module temperature, the parameters A, Ir,, Io and R, 

can be determined by NLR as discussed in section 2.2.4. Alternatively, equations of IG, 
A and Io in terms of the measurable quantities Isc, Voc, Vn and I. in addition to Rs can 
be easily obtained as shown below. 

It is usually assumed that the light generated current, 1ý, is equal to the short 
circuit current Isc, as explained by Green (1982) and Akbaba and Alattawi (1995) 

'G = isc 
(3.2) 

At open-circuit conditions, V= Voc and I=0, and since Io is very small compared to 
QG-I), the following equation can be derived from Eq. 3.1 (Eckstein et al 1990) 

VOC 
Io = Isc eA (3.3) 
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where Isc has been substituted for IG (Eq. 3.2). 

The measured pair at maximum power (V., W can be substituted in Eq. 3.1 

along with Io from Eq. 3.3 and Ir, from Eq. 3.2. Again, since Io is very small compared 

to QG-I), the following equation of A, the curve fitting parameter, as a function 

of measurable quantities, is obtained (Duffle and Beckman, 1991) 

V. - Voc + I. R, 

In I- 
I' 
isc 

(3.4) 

If Rs is known, Eq. 3.2 to 3.4 can be used to calculate IG, A and Io based on a measured 

IV curve. Consequently, Eq. 3.1 can now be used to construct the IV curve for the 

measured (V, 1) data at reference conditions (i. e. G,, f and Tr,, w,,, f). 

A single set of (V, I) measurements at known reference conditions (not 

necessarily manufacturer's data) is satisfactory to fully describe the performance of the 

PV module. This measured characteristic can be used to determine Rs (amongst other 

parameters) using NLR and most importantly it serves as a reference from which any 

other IV curve for the same PV module is derived as will be discussed in section 3.2.2. 

3.2.2 A new method for adapting the PV IV characteristic 

As discussed in section 2.2.6, in order to adapt the IV characteristic to different 

levels of irradiance and PV module temperature, researchers usually express the 

parameters in Eq. 2.4 in terms of irradiance and module temperature. In the 

SANDSTROM model, (Buresch, 1983), (V, I) data points are corrected for individually. 

In the method by Townsend (1989), the corrections are carried out for the cell 

parameters in Eq. 2.4 as shown in Eq. 2.10. The disadvantages associated with each of 

the two methods are discussed in section 2.2.7. The current work considers a new 

approach for correcting the PV IV characteristic. The most important feature of this 

method is that it provides a simple and direct means for estimating P,,, from irradiance 

and module temperature. 
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The new method can be surnmarised as follows. At any values of G and T w, 
the measured parameters of Isc, Voc, Pn,, V.. and I,,, are corrected from reference 

measurements. The parameters A, IG, and Io are then determined in terms of the 

corrected values at the new conditions (of G and Tnw) using Eqs 3.2 to 3.4. 

Consequently, the IV characteristic at new conditions is constructed. The series 

resistance can be determined at reference conditions and assumed constant as discussed 

in section 2.2.5.4. 

The new method introduces equations for correcting the main features of the IV 

characteristic (Eq. 3.5). This approach can be useful, especially when P,,,, V.. and Voc 

are to be directly determined. The dependence of P, " on irradiance and temperature is 

similar to the Isc dependence reported by Townsend (1989). In addition, the dependence 

of Voc and V. on irradiance is accounted for by the addition of a logarithmic term 

Cv In --2- where Cv can be either Cv. or Cvn,. 
G_f 

ISC 
G[I 

sc ftf +u Ic 
(Tw 

- T,,. d, ,. f G ftf 

pmG[ Po", 
ref 

+P 
o" 

(Tnwd 
-Tn*d. ref G _f 

Voc Voc,, f + pvý, (Tw - 
Tn, 

4 mf 
+C 

, In G 
G ref 

V. Vm. 
ref +pv,. (Tw - T.. d. ,, f )+C. In -2-- G ref 

Pl. 

v. 

(3.5) 

All temperature-dependent coefficients (p) are assumed constant and are 

evaluated at reference conditions. ýtv,. and p. are assumed equal, Duffie and 
Beckman, 1991. The maximum power temperature coefficient, ýt., can be estimated 
from the following expression, which is based on the assumption that, the filling factor, 
FF is independent of temperature. 

78 



PM = 
P. 

, "f -(Isc., "f Pv.., + Voc,,.,, f PI. 
J (3.6) 

lsc"f Voc, 
mf 

p 
where the term """f is the filling factor at reference conditions. The constants ISC. 

refVOC, ref 

Cv. and Cv,,, are module-specific and can be determined from plots generated at 

constant temperatures for different irradiances. 

As can be seen from the equations above, this new method provides a useful 

way for predicting P. without having to generate the whole IV curve. This is especially 

useful in PV-motor matching where an optimum motor constant (K. ) is to be expressed 

as a function of PV module parameters. This will be discussed in detail in chapter 6 

(section 6.5.4). 

3.2.3 PV module temperature 

For modelling purposes, the available data is usually irradiance and ambient 
temperature. The PV module temperature must be experimentally expressed as a 
function of these two parameters in order to be able to use Eq. 3.5. Considering that 

NOCT is known, the PV module temperature can be calculated from Eq. 2.7. For 

purposes of the current research, the NOCT values for the PV modules studied are not 

supplied by the manufacturer. A relationship between T,, W, T. mb and G, which takes 

account of the mounting configuration, has to be developed. The following approach is 

considered. 

The solar energy absorbed by the PV module is converted into both thermal 

energy and electrical energy. The electrical energy (P. 1) is calculated from the 

operational point of the load (i. e. P,, =I-V). The thermal energy is dissipated by a 

combination of heat transfer mechanisms, which can be represented by a heat transfer 

coefficient U (W/C). An energy balance on the PV module can be written as; 

ra -G'= Pl +U (Tw -T amb 
) (3.7) 
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where G' (W) is the irradiance falling on the area of the PV module (i. e. G' = G. a), 'r is 

the transmittance of the glass cover of the PV module, a is the fraction of solar radiation 
incident on the surface of the PV module that is absorbed, and i1c is the light-electricity 

conversion efficiency of the PV module. The term ra in Eq. 3.7 is not generally 
known but according to Duffle and Beckman (1991) an estimate of 0.9 can be used for a 

single cover collector. Using measurements of Td, T. mb, G and load current and 

voltage, a plot of (ra 
-G '- Pj ) vs. ( T.. d - T.,. b ) should give a straight line 

with the coefficient, U, as the slope. 

The loss coefficient U includes losses by the different mechanisms from top and 
bottom of the module to the ambient. For a given configuration and wind speed and 

assuming a constant value of U, the PV module temperature can be calculated from Eq. 

3.8, which can be obtained by rearranging Eq. 3.7 

T.. d = 
Tamb + 

Ta 
-G'. 1- 17 C) 

u ra 
(3.8) 

The value of U is a function of ws and so Eq. 3.8 is valid for the wind speed at 

which U was determined. In order to use Eq. 3.8 at a different value of (ws), the loss 

coefficient must be corrected as discussed in chapter 6 (section 6.3.1.1). Alternatively, 

an average value of U can be determined if the collected measurements are obtained for 

a range of wind speeds. 

3.2.4 Fan characteristics 

As discussed in section 2.4.1, the first stage in modelling a PV system is to solve 
for the operational voltage and speed of the PV-coupled motor. This necessitates 
solving Eq. 2.11,2.12 and 2.15 given in section 2.3.1 and 2.4.2 simultaneously with Eq. 
3.1. By treating the motor/fan as a single unit (i. e. black box), the input is taken as the 

voltage supplied by the PV module and the output is the speed of the fan. This is 

achieved by making use of the measured IV and (W characteristics of the fan as 
discussed in the next section. By determining the speed of the fan, the APj-Q 

characteristic can be determined. 
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3.2.4.1 Fan IV and coV characteristics 

The motor/fan's IV and coV characteristics are both linear as shown by the 

equations below 

I= Av V+ Bv (3.9) 

AN V+ Bv (3.10) 

If measurements of V, o), and I are available, then constants A,, B,, A., and B. can be 

evaluated from the slopes and Y-intercepts of the IV and (W characteristics 

respectively. This approach of describing the motor/load characteristics simplifies the 

problem and reduces the number of equations to be solved simultaneously with the PV 

IV characteristic. 

3.2.4.2 Fan AP-Q characteristic 

As discussed in section 2.4.3, the fan APf-Q characteristic is significantly 

dependent on the fan's rotational speed and to a lesser extent on the air temperature. 

While the relationship between APf and Q for a centrifugal fluid moving device is 

quadratic, as shown by Fig. 2.8, that for an axial flow fan is not, specially because of the 

dip in the curve, as shown in Fig. 2.9. Manufacturer's data on axial flow fans is usually 
in the form of APf-Q curves. For modelling purposes, APf must be expressed 

analytically as a function of Q. Two different approaches were considered for 

describing the APf-Q performance characteristic of the axial flow fans under 
investigation. 

In order to simplify the APf-Q relationship of an axial flow fan, the curve can be 

segmented into three straight lines as shown in Fig. 3.1. The slope and intercept of each 
of these line segments, as well as the limiting flow rates Q, and Q2, are functions of 
speed. The head can be expressed as a function of speed and flow rate by the following 

equation: 

Ap f= SI, j 1)2 + S2. 
j(J) 

Q+ S3J + S4J Qj=1,2,3 (3.11) 
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Fig. 3.1: Linear segmentation of the APrQ characteristic. 

where the S terms are constants and the "j" subscript corresponds to one of the three 

segments. Thus, for the lower section of the APf-Q curve, j=3 and the constants Si, 3 (for 

i=I to 4) are used only if the flow rate Q is larger than Q2. These constants are fan- 

specific and can be determined using the affinity laws by generating several curves at 
different motor speeds from a single curve which can be either a measured curve or a 

manufacturer's curve. For a single fan, the number of parameters that need to be 

evaluated here is 14. 

An alternative approach is to express APf as a function of Q. Measurements 

show that this function is of the third degree as shown by the equation 

3 AP. =wQý +xQ' +yQ,., f +z (3.12) i ref 

where the constant w, x, y and z are fan-specific and can be determined from the 

reference curve. The constants w, x, y and z can be determined as functions of speed as 
described above for the constants Sjj in Eq. 3.11. Alternatively, corrections for speed 

can be carried out on Q,, f and APf using the following equations 
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(3.13) 
[T. 

1, + 273.15] Qlle 

2 p2 Co 
a (M [W Qr3 d +XQ2 .e ef n 

Apf = c2 
[ 

(T. 
1, +2 73.1 i)7 ýf +YQ, +Z] (3.14) 

Determination of the constants Cl, C2, w, x, y and z is sufficient to generate the APrQ 

fan characteristic at any speed, air temperature and atmospheric pressure. 

For the current thesis, this second approach is used for modeling. The advantage 

of this approach in comparison to the one described by Eq. 3.11 is two-fold. First, the 

number of parameters needed to fully describe the characteristic is reduced from 14 to 

6. In addition, the effect of temperature, even though negligible, can be easily 
incorporated. 

3.2.5 System AP-Q characteristic 

The system characteristic, APs-Q, is solved simultaneously with the fan APf -Q 
characteristic to obtain the flow rate in the system as shown in Fig. 2.10. The equations 

necessary for defining the system AP-Q characteristic are given in section 2.4.4. For a 

given flow rate, NReis calculated and the value of "f 'is iteratively determined from the 
Colebrook equation. With length, diameter, and density known, AP, can be calculated 
for different flow rates. The iterative determination of 'V requires a lot of 
computational effort especially if the calculation is to be carried out for a large set of 
data. In order to save computational time, an explicit form of Eq. 2.22 is required. 
Muneer et al (2003) stated that the following equation produces 'T' values with an 

accuracy of 98 % when compared to values obtained from the Colebrook equation 

1.325 
(k/D)+L74 

In 
0.9 0 3.7 R 

(3.15) 

For the RSB system described in section 1.4, and due to the limited space in the 

attic, it is convenient to use a flexible duct for delivering air. Using a flexible duct will 
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add to the complexity of obtaining the system characteristic. For a flexible duct, the 

roughness (k) is a function of extension (or compression). Thus, the AP. -Q curve 
depends on how extended or compressed the duct is in addition to its diameter and 
length. 

Abushakra et al. (2002) introduced a pressure drop correction factor (PDCF) for 

flexible ducts as a linear function of compression ratio. This factor is defined as the ratio 
between two pressure drops for two different extensions of the same length of duct. This 

method, however, is only useful for pressure loss determination and not for generating 

the AP, -Q at a given extension. 

If reference data of AP, and Q are measured at some reference duct and air 

properties, several methods can be used to detennine the APs-Q curve at different 

properties as shown in Fig. 3.2. These methods require that the new curve be derived 
from the reference AP, -Q at the same duct extension. In method IA, a relationship 
between the friction factor and Reynolds number can be developed based on measured 
(Q, AP, ) data points for a given extension as shown by Eq. 3.16 

V, e`INP- (3.16) 

where the parameters VI and V2 are different for different extensions. Using Eqs 3.16 

and the expression for NR, in Eqs. 2.21 and 2.22, the following equation can be derived 

4V2 pQ 

AP, = 
8V, pL e- jrju DQ2 (3.17) 
Yr2D' 

Looking up the values of V, and V2 corresponding to the required extension and using 
Eq. 3.17, the AP, -Q can be detennined at any length and diameter of duct and density of 

air. 

Method IB is basically that described in section 2.4.4 except that Eq. 3.15 is 

used instead of Eq. 2.23. The reference data is used to determine an average value of k, 
the roughness coefficient, corresponding to a fixed extension. With this predetermined 
value, the AP, -Q can be derived at any other duct length and diameter. Different curves 
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can be measured and so different values of k can be determined for different duct 

extensions. Equation 3.15 can be used with Eqs. 2.21 and 2.22 to obtain the following 

equation; 

AP, =- 
10.6 pLQ2 

; r2 D5 In 
k+1.4 guD [3.7D 

c 

(3.18) 

In method 2, the idea is that the term J=A. 
P, Ds, for a given flow rate, remains 
pL 

constant for a constant extension (i. e. a fixed k value and so a constant value of 0. Thus 

for the same flow rate and same extension, a new value of AP, can be obtained for a 
different length, diameter and density from the equation 

AR -8pL 
)at 

new eonditions 
s J(D' (3.19) 

Practically, for method 2, the AP. -Q curve for reference length, diameter and 
density can be fitted to a quadratic regression of the forni 

AP. =T Q' +T2Q (3.20) 
s ref I 

and the value for AP, can be calculated for any length, diameter and density from 

Ap Ap re 

(pL) 
ý 

157) at new conditions 

The three methods are compared in section 3.6. 
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3.2.6 Summary of mathematical model 

The model developed above is based on reference data. It consists of several 

parameters that are component specific as shown in Table 3.1. These constants can be 

either derived from manipulations of manufacturer's data or they can be determined 

experimentally. The motor/fan IV and coV characteristics are linear and can be used for 

obtaining the fan's voltage and speed. A cubic fit of the reference APf-Q characteristic 

accounts for both speed and temperature effect and requires the determination of 6 

parameters. Finally, the system AP. -Q characteristic can be determined from a reference 

curve in one of three ways. The different methods will be compared in section 3.6. 

The discussion above introduced a new method for evaluating the PV IV 

characteristic from a reference IV curve. The method is based on corrections, which are 
directly applied to measured data. The method is useful because it provides the means 
for evaluating Pm directly from irradiance and module temperature. The discussion 

above explained that the series resistance can, among other parameters, be determined 
by NLR. In section 3.4.2, a method for estimating the series resistance, Rs, from a 
measured IV curve is introduced. 

In order to fully predict the PV IV characteristic from reference conditions, Tw 

must be obtained in terms of G and T,,,, b. In order to account for the effect of wind 

speed, the loss coefficient, U must be evaluated. 

The purpose of sections 3.4 through 3.6 is to outline the experimental 

procedures for measuring the reference data necessary for the determination of the 

constants in Table 3.1. The analysis procedures and the results are also presented. The 

next section gives a general introduction to the experimental and error analysis 
methodology. In addition, the next section lists the components considered for the 

optimisation process (to be discussed in chapter 6). 
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Table 3.1: Parameters required for the mathematical model. 

Parameter Units Data required for determination 

PV module 
U W/C Irradiance, temperature, current and voltage 
Rs Q Reference PV IV curve 

PISC mA/C Isc and temperature 

9VOC V/C Voc and temperature 

Isc, r, f mA/C Reference PV IV curve 
Voc"f V/C Reference PV IV curve 
Pm, ref w Reference PV IV curve 
Vm, ref V/C Reference PV IV curve 
Cv'C V Reference PV IV curve 
CvM V Reference PV IV curve 

Motor/fan 
A, 0-1 Post start-up IV data 

B, A Post start-up IV data 

A. rad V. s Post start-up o)V data 

B. rad s Post start-up coV data 

Cl C. Pa". (rad/s)" 
Reference speed and temperature for AP-Q 

curve 

C2 C2. pa72. (rad/S)-2 
Reference speed and temperature for AP-Q 

curve 

w Pa. (I/S), 3 Reference AP-Q curve 

x Pa. (I/S), 2 

-- 
Reference AP-Q curve 

y Pa. (1/s)'r Reference AP-Q curve 

z Pa Reference AP-Q curve 
Duct (Parameters necessary for all three methods of determining AP, -Q. Only one method is required) 
VI AP and Q data at a given extension of duct 
V2 AP and Q data at a given extension of duct 
k mm AP and Q data at a given extension of duct 
T, Pa. (I/S)-2 AP and Q data at a given extension of duct 
T2 Pa. (I/s)" AP and Q data at a given extension of duct 
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3.3 EXPERIMENTAL METHODOLOGY 

This section introduces the measurements and the instruments required in order 
to determine the parameters listed in Table 3.1. The instruments used and the errors 

associated with them are listed in Table 3.2. Determination of the constants in Table 3.1 
is based on reference measurements. The reference measurements required for 

estimating the PV module performance are irradiance, voltage, current, and temperature. 
For the motor/fan combination, measurements of voltage, current, rotational speed, 
temperature, pressure and flow rate are required. In order to determine the parameters 
associated with the fan/duct system characteristic, measurements of temperature, 

pressure and flow rate are required. The instruments used for measuring each of these 

quantities and the errors associated with them are also shown in Table 3.2. Appendix A 
lists the description and serial numbers of the instruments used for the current work. 
The following discussion briefly describes each of these instruments. 

3.3.1 Irradiance 

As discussed in section 2.5.3, pyranometers are the typical instrument for 

measuring global irradiance. Unless associated with a value of irradiance, a PV W 
curve is meaningless. Furthermore, as discussed above, adapting the PV IV 

characteristic to different levels of irradiance requires knowledge of the reference 
irradiance. 

The errors associated with pyranometers were discussed in section 2.5.3.2. For 

purposes of measuring the PV performance, a Kipp and Zonen pyranometer (Fig. 3.3) 

with a calibration factor of 5.17 x 10-6 V M2/ W is used. The instrument is sent back to 
the manufacturer for calibration on a yearly basis. As given by the manufacturer, this 
instrument has an accuracy of 3 %. 

When measuring a PV IV curve, irradiance is measured at regular intervals to 
ascertain its stability. For a single IV curve, irradiance is averaged and a standard 
deviation is determined. Measurements are obtained in millivolts (mV) by connecting 
the pyranometer to a data logger. The tolerance in the voltage measurement of the data 
logger (± 0.05 mV) causes a± 9.7 W/m2 error in irradiance measurement. 
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Table 3.2: Quantities to be measured, instn=ents to be used, and instrurnental errors. 
I Symbol Unit Instrument Error* 

PV measurements 
Global irradiance G W/M2 Kipp & Zonen 

Pyranometer 

± 9.7 
W/M2 

Temperature T C k-type thermocouples 0.1 C 

Voltage V V Multimeter 0.01 V 

Current I A Multimeter I mA 

Fan characteristics 
Voltage V V Multimeter 0.01 V 

Current I A Multimeter I mA 
Rotational speed (0 rad A Handheld tachometer 1% 

Temperature T C k-type thermocouples 0.1 C 

Pressure AP Pa Airflow development 

inclined manometer 

0.86 

Flow rate Q I/S Manometer or 

ultrasonic anemometer 

2.7 Ils 

System characteristics 
Temperature T C k-type thermocouples ±0.1 C 

Pressure AP Pa Airflow development 0.86 

inclined manometer 

Flow rate Q I/S Manometer or +2.71/s 

ultrasonic anemometer 
* The errors reported here are those caused by tolerance of the instrurnents used 

3.3.2 Temperature 

Temperature measurements are taken using k-type thermocouples with a 
tolerance of ±0.1 C. For the PV module, ambient and PV module temperature 

measurements are required. For modelling the APf-Q and APs-Q characteristics, 
however, the temperature of air in the duct is measured. 
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Fig. 3.3: Kipp and Zonenpyranomelci uscd thioughout the picscnt icscuich. 

3.3.3 Voltage and current 

In measuring the PV IV characteristic, measurements of voltage and current are 

taken using the two multimeters listed in Appendix A. The voltage measurement is 

±0.01 V accurate while that of current is ±I mA accurate. Errors in the measured values 

of voltage and current, when combined with errors in G, f and Tnx)d, ref, will cause errors 
in the estimated parameters in Eq. 3.5. This will then translate into errors in estimating 

the curve fitting parameter, A, and the diode saturation current, 10. Thus, the measured 

reference IV characteristic will have an upper and a lower limit of error, and, 

consequently, the APj-Q characteristic will be predicted with error. 

3.3.4 Rotational speed 

The speed ofthe fan is measured using a handheld optical tachometer (Fig. 3.4) 

with an accuracy of I %. Without an associated value of rotational speed, the fan's APt- 

Q characteristic is meaningless. So, whenever, this characteristic is measured, the speed 

of the fan in addition to the temperature of the air in the duct and the atmospheric 

pressure must also be measured. During the measurement of the characteristic, the speed 
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might change so it must be measured at regular intervals and a correction must be 

applied according to the fan affinity laws. 

3.3.5 Pressure 

In order to measure the fan AP-Q curve, measurements of static pressure and 

velocity pressure (or flow rate) are required. The total pressure is equal to the sum of 

these two pressures. The three pressures can be measured using an inclined manometer 

with Pitot static tubes. The configurations for measuring each of these pressures are 

shown in Fig. 3.5. 

The static pressure describes the difference between the inside and outside 
disregarding any motion in the system. It is equal to the pressure on a surface which 

moves with the fluid. So the pressure on a surface parallel to the direction of flow must 

be measured and thus the opening of the Pitot static tube (Fig. 3.5 (b) is on the side of 

the tube rather than at the tip (see the small openings in the tube in Fig. 3.5(b)). It is 

preferable to measure the static pressure as shown in Fig. 3.5 (a). However, the 

configuration in Fig 3.5 (b) is also acceptable, (Perry and Green, 1997). The total 

pressure is measured with the opening facing the flow as in Fig. 3.5(c). The velocity 

pressure at a location is the difference between the total and static pressure at that 

location as seen from Fig. 3.5(d). 
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(a) 

(c) 

(b) 

(d) 

Fig. 3.5: Pitot static tube locations for measuring (a) and (b) static pressure, (c) total pressure and (d) 
velocity pressure. 

In the current study, pressures were measured using an inclined manometer (Fig. 

3.6) with a liquid which has a density of 880 k g/M3 . The manometer must be levelled 

off and set to zero using the knobs at the bottom. In the figure, each cm corresponds to 

8.62 Pa and so the reading in the figure below is 36.20 Pa. The uncertainty in taking a 
pressure reading is Imm, which corresponds to 0.86 Pa. 
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Reading = 42 mm of liquid 

A knobj6r levelling the 
manometer A knob for zeroing 

Fig. 3.6: Airflow development inclined manometer used in the present research for measuring 
pressure. 

3.3.6 Flow rate 

The velocity pressure (Pv) as measured by Fig. 3.5(d) can be translated into 

velocity (m/s) using the equation 

(3.22) 
p 

where p is the density of air (kg/m 3) 

This measurement, however, represents the local velocity at the exact location 

where the pressure was measured. If an average velocity is required, it is necessary to 

perform a Pitot traverse of the duct. This involves taking measurements at various 

positions across the duct at least 10 duct diameters downstream from the fan. So for 

each flow rate measurement, a set of at least 12 measurements at different distances 
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from the centreline is required. An average velocity can be determined by finding the 

weighted average of these measurements. In the current study, this cumbersome 

approach was not taken. Instead, a method for correcting for average velocity from a 

single measurement of maximum velocity at the centreline was adopted (McCabe et al, 

1985) as discussed below. 

The centreline velocity pressure is converted to velocity v.., using Eq. 3.22. 

This velocity is then substituted in Eq. 3.23 to obtain the average velocity, v 

(3.23) 

I+3 . 75 
Lf 1-2 

Equation 3.23 is valid for turbulent flow. Furthermore, it does not take account of the 

low velocities of the fluid layers near the wall and so it gives average velocities which 

are 2% higher the actual values (McCabe et al, 1985). The friction factor, & in Eq. 3.23 

is a function of roughness, k and Reynolds number. An average value of "f' can be 

determined for the range of the Reynolds numbers experienced in the duct used for 

measurement. This will be discussed in detail in section 3.5.4. 

3.3.7 Component selection 

As mentioned in chapter 1, the system is to be optimised with respect to selected 

components. For the purposes of this research, two PV modules, three fans, and two 

different duct diameters were selected. The components selected are shown in Table 

3.3. Combinations of PV modules and fans in parallel and in series are also considered 

as discussed in chapter 6 (section 6.1.3). 

As explained in chapter 2, polycrystalline silicon PV modules are expected to 

have higher efficiencies than amorphous silicon modules. However, they are less 

efflicicnt but are also less expensive than monocrystalline silicon modules. The modules 

used consist of 36 polycrystallinc silicon cells. The modules were of small peak power 
(i. e. 4.5 Wp and 10 Wp) in comparison to modules used in water pumping applications 

since, for fan applications the energy required for moving air is much less than that 

required for moving water. 
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The fans used are BLDC motor axial flow fans, which are, as mentioned in 

chapter 2, most suitable for high flow rate low-pressure applications. In addition, in the 

present study, since the ultimate objective is ventilating the house, then it is desired to 

deliver air at high flow rates and so the axial flow type of fans is most suitable. 

Furthermore, this type of fan can be easily mounted into the ducting system and so they 

are well suited to the RSB solar ventilation preheating system described in chapter 1. 

The fans were selected based on their rated power and voltage. For example, it was 
initially estimated that Fan2 (see Table 3.3 for PV module and fan nomenclature) would 

utilise most of the energy made available by PV2 at high irradiances while FanI would 

utilise the maximum energy at low irradiances. FanO was chosen for comparison 

purposes. 

The duct chosen for delivering air was Thennaflex Aliflex flexible ducting with 

a multiple layer aluminium/polyester laminate. In addition to having the advantage of 
being cheaper, flexible ducting can be easily controlled in the tight space of an attic. 

The parameters in Table 3.1 are to be measured for each of the components. The 

optimisation of the system in Chapter 6 is based on the configurations that can arise 
from the different combinations. The optimisation process also considers PV modules 

and fans connected in parallel or series. This will be discussed in detail in chapter 6. 

Table 3.3: Corrmonents considered for svstem oDtimisation (manufacturer's data). 

Component Speciflcation 

Pv1 At STC. - Pm 4.5 W, Isc = 290 rnA, Vcc = 20.5 V, Vm = 16.5 V 

PV2 At STC., P. 10 W, Isc = 600 mA, Voc = 21.1 V, V .. = 17.1 V 

FanO Rating: 12 VDC/ 9.5 W with a free flow capacity of 69 I/s' '9 
Fanl Rating: 24 VDC/ 9.5 W with a free flow capacity of 69 Ils' 

Fan2 Rating: 24 VDCI 20.3 W with a free flow capacity of III Ils 

Ductl Diameter = 102 nun, different lengths and degrees of extension 
Duct2 Diameter = 152 mm, different lengths and degrees of extension 

Manulacturer's data 

3.3.8 Error analysis methodology 

In Table 3.2, the errors caused in each of the readings due to instrument 

tolerance are given. These values are used to calculate errors in the predicted values 
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through propagation of error. This type of calculation is difficult since some equations 
have to be solved iteratively. The approach taken here is to run the computer programs 
developed, not only for the measured values but also for their lower and upper limits. 

For example, for a measured irradiance of 400 W/M2' the program is run for 391.3,400 

and 409.7 W/M2 ) and the three predicted values for, say fan speed, are used to calculate 

error in fan speed. This requires understanding of whether a given parameter will 
increase or decrease the predicted values. 

Throughout this thesis, whenever predicted values are compared to 

measurements, the calculated errors are simply a representation of how far the 

calculated value is from measurements. So errors are calculated as the difference 

divided by the measured value (see section 4.2.2 for example). 
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3.4 PHOTOVOLTAIC MODEL 

The performance of a PV module is predicted from three sets of measurements. 

First, a single reference IV curve can be used to evaluate Rs and can also be a source for 

obtaining the reference values required in Eq. 3.5. Secondly, measurements of G, fan 

voltage and current and ambient and module temperatures are used to determine an 

average U value which can then be used to evaluate T .. w for any environmental 

conditions. Thirdly, in order to be able to use Eq. 3.5, temperature coefficients (namely 

pl,, and pv. ) must be determined. The coefficient p. can be determined from these two 

using Eq. 3.6. 

3.4.1 Reference IV characteristic 

A reference IV characteristic was measured for each of the two modules shown 
in Table 3.3. The two modules were placed side-by-side at 45* tilt and facing 15* East 

of South on the roof of Napier University in Edinburgh (Latitude 55.95 * and longitude 

3.3 *). Measurements were taken during the months of February and March of 2003. 

For periods of constant irradiance, measurements of module voltage and current 

were recorded for different selected resistive loads. The resistance was varied manually 

using a high power rheostat. Two multimeters were used for current and voltage 
measurements. Irradiance measurements were obtained using the aforementioned Kipp 

and Zonen pyranometer directly connected to a data logger. Two k-type thermocouples 

placed in the middle at the back of each of the PV modules, as described by Berman et 

al (1995) were used for temperature measurements. The thermocouples were connected 
to the data logger from which temperature readings were obtained at the beginning and 
at the end of (V, 1) measurement trials to ascertain the stability of the temperature 
throughout the measurement period. 

The measured reference curves and the corresponding power-voltage curves are 
shown in Fig 3.7 and surnmarised in Table 3.4. The reference conditions for each of the 

modules were chosen arbitrarily. The uncertainty associated with each of the reference 
measurements is also shown. 
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Table 3.4: reference measurements 

Pvl PV2 

Gret, W/M2 725 ± 9.8 750 ± 9.8 

Tmd, 
reft 

C 2810.1 31± 0.1 

Lc, f, MA 211 ±1 471 ±I 

Im. mf, MA 183 ±1 422 ±I 

Voc, ref, V 20.40 ± 0.01 20.40 0.01 

Vm, ref, V 15.90 ± 0.01 16.10 0.01 
Pm, 

ref, W 2.93 0.05 6.76 ± 0.05 

FFref 0.68 0.001 0.70 ± 0.001 

3.4.2 Estimation of PV module parameters at reference conditions 

Using the reference data in Table 3.4, the parameters in Eq. 3.1 were determined 

by NLR. Table 3.5 shows the values obtained. The use of Eqs. 3.2-3.4 to evaluate the 

cell parameters is limited because Rs must be known in advance. The series resistance 

of the PV module is an immeasurable quantity but it can be determined from 

measurements. As reported by Green (1982), a rule of thumb is that a single PV cell has 

a resistance of 0.05 Q. So the PV modules studied here are expected to both have a 

series resistance of 36 x 0.05 = 1.8 C). 

'r. Wol ýq- PV rnntlillo- r%nrnmptpr t-cfi'mnt; nn hv tlirpp. mpthnciq 

PVI PV2 

Townsend NLR IF plot Townsend NLR IF plot 
IG, reft mA 211 211 211 471 471 470 

Aref, V 0.97 2.17 2.09 0.99 1.78 1.70 

mA 1.70e-7 1.68e-2 1.30e-2 5.10 E-7 4.68e-3 2.80e-3 

R,, Q 13.83 1.01 1.50 5.08 1.00 1.20 

As discussed in section 2.2.5.4, Townsend (1989) proposed a method for Rs 

determination by comparing a calculated [tv. (Eq. 2.8) to a measured value. So in order 

for Rs to be determined, pl,,. and pv., which are usually supplied by the manufacturer, 

must be first known. Figure 3.8 shows the Excel sheet used for Rs determination using 

Townsend method and using the manufacturer's value of ýtv.. 
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31 
G,., (W/m 2) 

Isc. rot. A 0.471 
V 20.4 

Im. ref iA 
0.422 
16.02 

AJOC 0.00039 
9VAC 

-0.0800 

CONSTANTS 
Band-gap energy for Si, 9 (9V) 1.12 

Electron charge, _Q, _ 
(coulomb) 

const ant, k (J/K) Boltz man n's 
1.60E-19 
1.3BE-23 

- CALCULATED PARAMETERS 
Assume a value for Rs (0) 6.08 

Calculate lo (A) from Eq. 3.2 0.471 

C-alculate-lo (A) from Eq. 3.3 5.10E-10 

Calculate AM from Eq. 
_ 
3. 0.99 

CORRECTION (Using Eq. 2.10) 
Tmod C 25 

1000 

Corrected light generated current, IL (A) 0.625 

Corrected curve fitting parameter, A 
Corrected diode saturation current, lo (A) 

0.97 
2.03 E- 10 

Calculate dVoc / dT and compare to measured 

Calculated temp. coefficient of Voc ,d Voc / dT (VID C) 

Calculated pvo,, (Eq. 2.0) -0.0798 
IF difference is unacceptable, change Rs and do all over again_ 

% Differencel 0.19 

Acceptable parameters (Those values which mlnlmlso difference) 
JL'- A- 
10, A -- 

0-. 62- 
---- 2.03 E- 10 

- A, V 
IRS. a 

0.9ý 
6.08 

Fig. 3.8: Townsend method for Rs determination. 

The values obtained by the Townsend method are shown in Table 3.5. These 

values are based on the temperature coefficients supplied by the manufacturer (-80 

rnV/C for both PV modules). The large difference between these values and the values 

obtained by NLR suggests that the temperature coefficients of the PV modules are 

significantly different from those of the manufacturer's. By trial and error, it is found 

that the Townsend method (using Eqs. 2.10 and 3.2 - 3.4 as described in section 

2.2.5.4), can lead to the same Rs values obtained by NLR, if a value of gv. = -247 to - 

255 mV/C for PVI and liv. = -189 to -192 mV/C for PV2 are used. While the objective 

of the Townsend method outlined by Eq. 2.10 is to iteratively determine Rs, it can also 

serve as a method of estimating the actual temperature coefficients of the PV module if 

the series resistance is known by a different method such as NLR. 
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A new approach for determining the series resistance is suggested here. In this 

section, it is shown that Rs can be estimated from measured (V, I) 'data points without 

the need for any further measurements. For any given set of (V, 1) measurements, the 

V+I. RS 
current I is plotted against the exponential term, F= (e A As seen 

from Eq. 2.4, the plot is expected to be a negative-sloped straight line with a slope of Io 

and intercept of Isc. A value for Rs is assumed, A is calculated from Eq. 3.4, the 

exponential term, F, is calculated for each point (V, 1) and a plot of I vs. F is 

constructed. The most accurate value of Rs is that which produces a best-fit line with a 

coefficient of regression closest to unity. "IF" plots for both modules are shown in Fig. 

3.9. Using this method, values of Rs=1.2 Q for the 10 Wp module and Rs=1.5 

C1 for the 4.5 Wp module are obtained as shown in Table 3.5. These values are 

compared with values obtained by NLR in Table 3.5. 

This new method for the determination of Rs is useful because, if Rs is known, it 

can be used as a quality control tool. Data which lies far from the best-fit line can be 

considered as erroneous data. 

The series resistance, Rs, is a weak function of temperature and it can be 

assumed independent of both temperature and irradiance, (Eckstein, 1990). An 

estimated value of Rs at reference conditions can be safely applied to describe module 
IV characteristics at other conditions. 
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3.4.3 Temperature coefficients 

Manufacturer's values of temperature coefficients were used for the current 

work (see Table 3.6). It is assumed that ýiv.. is equal to pvoc (Duffle and Beckman, 

1991). A value of pp. is calculated using Eq. 3.6 and based on the reference data in 

Table 3.4. As stated in chapter 2, temperature coefficients can be assumed constant for 

any conditions of irradiance and module temperature. 

Table. 3.6: Temperature coefficients and U values 

PVI PV2 

mA/C 0.19 0.39 

pm mv/c -80 -80 

pm, MV/C -80 -80 

ýtp,,,, MW/C -10 -22 
U, W/C 1.5310.04 1.90: b 0.04 

3.4.4 Loss coefficient, U 

A load (1.85 Q resistor) was connected to each of the PV modules and 

measurements of T .. w, T.,,, b, 1, V and G were obtained for the configuration described in 

section 3.4.1. Assuming a ra value of 0.9, plots of ra-G'-IV vs. 

(Tmd - Tamb ) were constructed for both PV modules as shown in Fig. 3.10. The U 

values for both modules with their associated errors are summarised at the bottom of 

Table 3.6. 

These coefficients are valid for the specific configuration described here. The 

measurements must be repeated and U recalculated whenever the PV modules are 

installed at a different location. However, since in this case the back of the PV modules 

is covered, the configuration can be a resemblance to BIPV module configurations. In 

this case, the same U values can be used. 
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3.4.5 Model validation 

Using the predetermined values of R,, U and temperature coefficients in addition 

to the reference values of Isc, P., Voc, Vn, the IV characteristic at any conditions of 
irradiance and ambient temperature can be estimated. The PV module temperature is 

calculated for any given T., nb and G values using Eq. 3.8 and the U values given in 

Table 3.6. This value of T,,, Od is then used with irradiance and the reference values in 

Table 3.4 in equation 3.5 to determine new corrected values from which a new IV curve 

can be generated. 

In order to check the validity of this method, several IV curves were measured 
for both PV modules. One full set of (V, I) measurements can be obtained in 

approximately five minutes. For this reason, measurements were taken on relatively 
clear sky days so that iffadiance and temperature stayed relatively constant over the 5- 

minute period. The stability of iffadiance and temperature was verified by observation 

of the recorded quantities. Due to the relatively rapid acquisition of data, measurements 
can also be made on cloudy days with periods of stable irradiance and temperature. 
Results obtained from measurements on clear-sky days, however, can also be validated 
for overcast days because the output of the module is a function of how much radiation 
falls on it rather than the state of the sky (clear or overcast). 

Measurements were taken around solar noon and extended to a maximum of two 

hours so that the beam incidence angles were less than 30*. This allowed for 

measurements at several irradiance levels without the need for transmittance correction, 

which can be considerable for large incidence angles as explained by Dufflie and 
Beckman (1991). During these tests, module temperatures varied from 24 C to 53 C 

while irradiance varied from 415 W/m2 to 950 W/m2. Using the reference data of G and 
T,,,, d, a program written in Visual Basic for Applications (VBA) was used to determine 

the PV IV characteristic. Figures 3.11 - 3.13 show comparisons between measured and 

predicted data. A program was also written in, VBA for the SANDSTROM and 
Townsend methods for predicting the IV characteristic. Figure 3.14 shows a comparison 

of the curves predicted by each of the three methods at G= 1000 W/m2 and T,,,,, d = 40 

C. Furthermore, Table 3.7 shows the predicted values of Isc, I., Voc, Vn and P. for 

PV2 as calculated by the different methods described in chapter 2. 
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Table 3.7: Predicted parameters compared to measurements and to other methods for PV2. 

$ý 
0 

G, W/ml 415 540 860 947 
Tmodq C 36 24 53 48 
Isc, mA 
Measured 267 341 544 595 
SANDSTROM 260 -2.6 336 -1.5 548 0.7 602 1.2 
Townsend 264 -1.1 340 -0.3 552 1.5 606 1.8 
Akbaba 261 -2.2 340 -0.3 541 -0.6 597 0.3 
New method 264 -1.1 340 -0.3 552 1.5 606 1.8 
VOC9 v 
Measured 19.1 20.6 18.7 18.9 
SANDSTROM 19.6 2.6 20.7 0.5 18.9 1.1 19.4 2.6 
Townsend 19.2 0.5 21.0 1.9 18.1 -3.2 18.8 -0.5 
Akbaba 19.2 0.5 19.5 -5.3 19.9 6.4 20.0 5.8 
New method 19.5 2.1 20.7 0.5 18.9 1.1 19.4 2.6 
P" W 
Measured 3.4 4.8 6.7 7.4 
SANDSTROM 3.5 2.9 5.0 4.2 7.0 4.5 7.9 6.8 
Townsend 3.7 8.8 5.2 8.3 6.4 -4.5 7.3 -1.4 
Akbaba 3.2 -5.9 4.3 -10.1 6.1 -9.0 6.8 -8.1 
New method 3.6 5.9 5.0 4.2 7.0 4.5 8.0 8.1 
V,, v 
Measured 15.1 16.3 13.8 14.5 
SANDSTROM 16.2 7.3 16.8 3.1 14.6 5.8 14.7 1.4 
Townsend 15.0 -0.7 16.7 2.5 12.9 -6.5 13.5 -6.9 
Akbaba 15.5 2.6 15.8 -3.1 16.3 18.1 16.4 13.1 
New method 15.0 -0.7 16.1 -1.2 13.8 0.0 14.3 -1.4 

3.4.6 Summary 

The new method developed here for obtaining the PV IV characteristic at any 
conditions of irradiance and ambient temperature is sufficiently accurate. The method 

compares well with the SANDSTROM model because both methods are directly based 

on corrections of measurements. Generating the PV IV characteristic by the Townsend 

model, on the other hand, is based on corrections of the theoretical cell parameters (i. e. 
A, Io and Icj). 
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The method for predicting the series resistance of the PV module is also accurate 

enough. The value of Rs obtained compares well with the value obtained from NLR- 

Using the experimentally determined values of the temperature coefficients, the loss 

coefficient, U, and the series resistance, the PV IV characteristic can be confidently 

determined. This characteristic is then solved with the motor/fan characteristic to 

determine the fan operational point. 

The errors in each of the experimentally estimated parameters causes an error in 

the predicted PV IV characteristic which will cause an error in the estimated fan 

operational point, the fan APs-Q characteristic and, ultimately, the flow rate in the 

system. For the G and T,., w range of (0 to 1000 W/m2 and 0 to 60 Q, analysis reveals 

that the maximum error is about 2% for Isc (up to ± 17 mA), 5.3 % for Voc and V,,,, (up 

to ± 0.96 V), 7.1 % for I.. (up to ± 34 mA) and 1.4 % for P.. (up to ± 0.14 W). 
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3.5 MOTOR/FAN CHARACTERISTICS 

3.5.1 Determination of motor parameters 

Laboratory measurements of current and voltage were obtained for the three fans 

in Table 3.3. For each of the fans, the voltage was varied using a power pack and the 

current was recorded. The locked rotor IV curves are shown in Fig. 3.15. The end points 

of these curves, which are summarised in Table 3.8, are the start-up points of the fans 

(V, and 1. ). According to Eq. 2.12, the intercept of these lines must be equal to zero but 

this is not the case here. This suggests that some of the voltage supplied to the motor is 

dissipated in its electronic components. This dissipated voltage (V, ) is the voltage of the 

fan when current is zero and so it can be taken as the X-intercept of the graphs in Fig. 

3.15. The armature resistance is then the slope of each of these lines. The values of V. 

and 14 for each of the motors are also shown in Table 3.8. 

--a FanO 

600 1-- Fanl 

500 

400 

Fan2 

4 
E 300 - 

200 - 

100 - 

0 

d, 0 
do, .. P 

4 
V, v 

Fig. 3.15: Locked rotor IV characteristics of the fans in Table 3.3. 
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Table 3.8: Motor parameters as estimated from measurements. 

Fan0 Fanl Fan2 
vs, v 2.66 0.05 6.78: b 0.07 5.72 ± 0.05 
I� niA 311 1 174 1 488: LI 
v, v 1.90 0.05 3.32 0.07 2.79 ± 0.05 
Vma., V IT 24* 24* 
Ir �, mA 792* 396* 846* 

rad/s 298 *3 298: E 3 371 d: 4 
R., L2 2.8 20.4 6.0 
K�� V. s/rad 0.040 * 0.06 10.079 ± 0.011 0.064 ± 0.07 
Kf, V. s/ra 2.5 e-7 12.4 e-7 4.9 e-7 

Manufacturer's data 

Assuming that V, is independent of current so that it is a fixed value, the voltage 

term, V, in Textbox 2.2, should be written as (V-V. ). Measurements of speed were 

obtained at the maximum voltage of each of the fans using the aforementioned handheld 

optical tachometer. The motor constants, K,,,, were then calculated using Eq. 3.11 (after 

replacing V with V-V, ). The motor-fan coupling constant, Kr, can be determined from 

Eq. 3.12 using measurements of current and speed and the pre-calculated motor 

constant. 

3.5.2 Speed-torque characteristics 

Typical (oT characteristics for all three fans at V= 12 V are shown in Fig. 3.16 

(See Textbox 2.2 for coT equation). It is observed that at this voltage, the 12 V fan 

reaches a maximum speed of 2850 r/min. Figure 3.17 shows these characteristics for 

Fanl and Fan2 at three different voltages. Such curves are usually supplied by the 

manufacturer and they can be used for motor parameter determination. As mentioned 

above, in the current work, the model is based on motor/fan IV and o)V characteristics. 

3.5.3 IV and coV characteristics 

The IV and (oV characteristics can be used to determine the operational voltage 

and speed of the fan when coupled to the PV module. They are determined from 

measurements of V, (o and I after start-up of the fan. Figure 3.18 shows these 

characteristics for each of the fans. Using the running IV characteristics; the parameters 
A, and B, for each of the fans can be determined. These are summarised in Table 3.9. 
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Fig. 3.16: Speed-torque characteristics for all three fans at V- 12 V. 
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Fig. 3.17: Speed-torque characteristics for FanI and Fan2 at three voltages. 
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Fig. 3.18: Fan IV characteristics. 

Table 3.9: Motor/fan parameters estimated from measurements 

Fan0 Fanl Fan2 
0.0604 d: 0.0002 0.0144: t 0.0002 0.0393 ±- 0.0002 

B, A -0.105: h 0.002 -0.012 d: 0.002 -0.131 ± 0.06 
A., r/rnin. V 227.66: k 2.3 131.77 d: 1.3 159.04 +-1.6 
B�� r/min -128.53 :k 10.2 -365.58: k 3.0 -3 84.23 :k3.2 

3.5.4 Fan AP-Q characteristics 

The APf-Q characteristic of the fan changes with fan speed and air temperature 

as discussed above. By measuring a single fan performance curve at a known speed and 

air temperature, the characteristic at any other speed and temperature can be derived 

from this curve using the affinity laws for fans. Measurements were performed on each 

of the fans. The APf-Q curve measurement was done according to the procedure 
described in the ASHRAE Handbook of Equipment (ASHRAE, 1988). A simple 
instrument was constructed for measuring fan APj-Q characteristics as shown in Fig. 

3.19. The instrument consisted of a 2.5 m long, 141 mm painted steel pipe with a 
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restriction valve at the end. The fan was fixed at the inlet of the duct and the static 

pressure across the fan was measured with an error of 0.86 Pa using the aforementioned 

manometer and a Pitot static tube as shown in the figure. The Pitot static tube was 

inserted in the pipe at the centre about 30 cm from the fan. The pressure measured was 

taken as an average value of static pressure even though it was measured at a single 

point. The flow rate of air was measured using another inclined manometer about 1.4 m 

away from the fan with the Pitot static tube at the centreline of the pipe. A reference 

APt-Q was obtained for the different fans at 2000 r/min (209.4 rad/s) and 18 'C. 

The speed of the fan was kept constant by keeping the voltage constant. The 

opening of the valve was varied to change the pressure. Starting from a fully open 

valve, readings of flow rate, pressure, air temperature, and speed were recorded. As the 

valve was closed, pressure increased while the flow rate decreased. 

Since the flow rates were measured only at the center of the pipe and no 
"traverse" was applied, then as mentioned in section 3.3, a correction was required 

using Eq. 3.23. The Reynolds numbers for all flow rate measurements in the pipe 

ranged from 3000 to 40000 (D = 0.141 in, p=1.2 kg/m 3, ýi = 1.76 x 10-5 kg/m. s). Using 
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a roughness coefficient for steel pipe of k=0.046 mm, (McCabe, 1985), the friction 

factors for this range of Reynolds numbers and the correction factor were calculated as 

shown in Fig. 3.20. A correction factor of 0.75 was applied to all flow rate 

measurements in order to obtain an average value of velocity, (McCabe, 1985). 

-f 
Correction factor In EQ. 3.23 

4- 
x 

N 

1.5576 

1.5574 

1.5572 

1.5570 

1.5568 

1.5566 

1.5564 

1.5562 

1.5560 
0 0.1 0.2 0.3 0.4 

lo's x Np, 

0.751 
0.751 
0.751 

0.751 

0.751 
0.751 
0.751 

0.751 
0.751 

-4 0.751 
0.5 

Fig. 3.20: Friction factor and correction factor (Eq. 3.23) for the measured (Q, APf) data points. 

As the opening of the valve was altered, the speed and temperature slightly 

changed. Pressure and flow rate readings were corrected to the same speed and 

temperature. The (Q, APf) measurements at the reference conditions of 2000 r/min and 
18 C are shown in Fig. 3.21. It is noticed that, even though their electrical 

characteristics are different, FanO and Fanl have very similar APf -Q characteristics. 

Using the reference values of speed and temperature, constants C1 and C2 are 
calculated for each of the fans. Furthermore, fitting the data points to a cubic regression 
as shown in Fig. 3.22, the constants w, x, y and z were obtained for each of the fans. 
The values are summarised in Table 3.10. The errors in each of the parameters are due 

to error in the measurement of pressure and flow rate, which will then cause uncertainty 
in the APf -Q characteristic. 
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Table 3.10: Parameters estimated from reference (Q, APf) data for use in Eqs. 3.13 and 3.14. 

Fan0 Fanl Fan2 
Ci 1.92e-4 1.92e-4 1.92e-4 
C2 3.67e-8 3.67e-8 3.67e-8 
w -0.002 e-3 -0.002 e-3 -0.0006 
x 0.15 ± 0.02 0.15 ± 0.02 1 0.058 ± 0.006 
Y- - 3.98 ± 1.0 - 3.98 ± 1.0 - 2.39 j: 0.4 
Z 57.4 d: 12.5 57.4: h 12.5 62.4 ± 6.6 

3.5.5 Model validation 

After solving for the speed of the fan, the APrQ curve can be generated. The 
flow rate and pressure are corrected using the parameters listed in Table 3.10 and Eqs. 

3.13 and 3.14. Different APj-Q curves were measured at various speeds for Fanl and 
Fan2. The measured curves were compared to curves predicted according to Eqs. 3.13 

and 3.14. The results are shown in Figs 3.23 and 3.24. In Fig. 3.25, manufacturer's 

curves are compared to curves at the same rotational speed but derived from measured 
data. 

3.5.6 Summary 

The modelling of the motor/fan characteristics has been achieved in two stages. 

First, the parameters for describing the IV and coV characteristics were determined. 

These parameters are used to solve for the motor operational voltage and speed as will 

be shown in Chapter 4. The errors associated with the parameters in Table 3.8 and Table 

3.9 add to errors in the PV IV characteristic leading to errors in estimating the fan 

operational voltage and speed as will be discussed in chapter 4. Using the calculated 

speed, the fan's AP-Q characteristic can be determined. The reference parameters (Table 

3.10) for each of the fans were determined and used in Eqs. 3.13 and 3.14 to detennine 

the APj-Q characteristic for any conditions of sPeed and air density. This characteristic 
can then be solved with the system's characteristic to determine the flow rate in the 

system as will be shown in chapter 4. Errors in the parameters listed in Table 3.10 will 

cause errors in estimating the APf-Q characteristic. This will consequently lead to error 
in predicting the flow rate in the system. The following section describes the 

experimental work undertaken to determine the parameters needed for obtaining the 

system characteristic (APs-Q). 
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3.6 SYSTEM AP-Q CHARACTERISTIC 

Reference measurements were performed on a3m long 152 mm diameter 

flexible duct for two degrees of extension (100 % and 80 %). The duct was extended 
horizontally and measurements of static pressure across the fan and flow rate at the 

outlet of the duct were obtained. The flow rate was measured using an ultrasonic air 

flow meter (Fig. 3.26) with an accuracy of ± 2.7 I/s. The flow rate reading was obtained 

by averaging twenty 5-sec measurements. The reference curves for each of the two duct 

extensions are shown in Fig. 3.27. The curves obtained show a quadratic relationship 
between pressure and flow rate which gives confidence in the measurement technique 

used. 

Fig. 3.26: The ultrasonic flow meter used tor measuring tluw ratc. 

Using these reference measurements, the parameters V I, V2 (method I A), k 

(method I B) and T1 and T2 (method 2) were determined as shown in Table 3.11. The 

parameters T, and T2 are the parameters in the quadratic best-fit equations in Fig. 3.27. 

Figure 3.28 shows the f-NRe relationships for 80 % and 100 % extension. The 

parameters in Table 3.11 can now be used to obtain the system's AP-Q characteristic for 

any duct length and dianicter at the same extension. 

121 



Table 3.11: Parameters estimated from reference data for 80 % and 100 % duct extensions. 

80 % extension 100 % extension 

vi 0.1064 0.0606 

V2 -le-5 -6e-6 
k, mm 9.6 J: 1.5 2.5 ± 1.2 

TI, Pa. (I/s)'2 0.0018 0.0013 

T2. Pa. (I/s)" 0.0419 0.0237 

14 ] 80 % extension loo % extension 
y, 0.0018X2 + 0.0419x y=0.0013X2 + 0.0237x 

R2 = 0.9867 R 2,0.9901 

12 

10 

m8 

4 

2 

* 80 % extesnion 

* 100 % extension 

0iiIIIIIII 
0 10 20 30 40 50 60 70 80 

Q, I/S 

Fig. 3.27: Reference (Q, APJ data for two duct extensions. 
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Fig. 3.28: f vs. NR. curves obtained from reference data for two duct extensions. 

3.6.1 Model validation 

In order to validate the model for predicting the AP, -Q characteristic from the 

three methods discussed in section 3.2.5 (using Eqs. 3.17,3.18 and 3.19), measurements 
were obtained for different duct lengths and diameters at 80 % and 100 % extension. 
The measurements are checked against predicted values by the three methods as shown 
in Fig. 3.29. It is seen that methods IA and 113 give more accurate predictions. These 

two methods are compared against measurements for a duct with 102 mm. diameter and 
5m length at 80 % extension in Fig. 3.30. The values of the parameters V1, V2 and k in 

Table 3.11 can be considered accurate enough to predict the AP, -Q characteristic. For 

the model in chapter 4, method IB will be used. More comparisons based on the values 
of k in Table 3.11 are shown in Fig. 3.3 1. 

For the current work methodlB is used because it is the most general of the 
three methods. The input parameters are length, diameter and degree of extension. 
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Fig. 3.30: Comparing methods IA and ID to measurements for a5m long, 102 nun diameter at 80 % 
extension. 
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3.7 EFFECT OF "SLATE PACKING" ON APi-Q CHARACTERISTIC 

The "slate packing" affects the system AP -Q characteristic. Thus flow rate - 
irradiance (Q - G) profiles are different for different slate types even if the same PV - 
fan - duct combination is used. Moreover, It is reported that, for pumping systems, the 

fan IV and (oV linear relationships change as the pressure across the pump changes 

(Hadj Arab, 2004). This leads to the conclusion that the speed of the fan and 

consequently its AP -Q characteristic may also be affected by the "slate packine' thus 

affecting the flow rate. 

The effect of pressure on IV and (W characteristics of fans was experimentally 

investigated in the apparatus in Fig. 3.19. Opening and closing the valve alters the 

pressure across the fan. Fixing the pressure at a desired value and varying the voltage 

(using a power supply), readings of current and speed for different voltages are 

obtained. However, as voltage is increased, pressure in the system also increases. By 

adjusting valve position every time voltage was increased, the pressure across the fan 

was maintained nearly constant. IV and coV curves were obtained for different pressures 

across the fan. Results of (W curves for Fan2 are shown in Fig. 3.32. 

It is seen that, even though pressure is expected to affect speed, voltage and 

current individually, it has negligible effect on the coV and IV characteristics of the fan. 

This effect is more significant in pumping systems because of the associated higher 

system pressures (meters of water rather than centimetres). The model can thus be 

simplified by neglecting the pressure dependence of IV and COV characteristics. The 

64slate packing" will have an effect on the system's AP-Q characteristic and so in order 

to account for this effect, the system's curve must be experimentally measured in the 

roof section. This curve can then be incorporated into the model. This will be discussed 

in chapter 4 and 7. 
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Fig. 3.32: Effect of slate "packing" on fan AP-Q Characteristic. 

3.8 ERROR ANALYSIS 

Since the component-specific constants used in the model are determined 

experimentally, the predicted flow rate is expected to have some error. Sources of error 
include the determination of the PV module reference curve, the coefficients in the fan 

IV, coV and APf-Q characteristics and the roughness coefficient of the duct. Considering 

all sources of error in measurements, the model predicts the PV IV characteristic with 

an error of (4 to 9 %), the rotational speed of the fan with a maximum error of 8% and 

the flow rate with a maximum error of 12 %. This high value of error is basically 

attributed to the significant error in measuring the flow rate in the system. 
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4. MODEL VALIDATION AND PERFORMANCE SIMULATIONS 

4.1 INTRODUCTION 

In Chapter 2 the basic characteristic equations for each of the main components 

of the present system were given. In chapter 3, these equations were manipulated, and 
the mathematical model for the system developed. The parameters necessary for 

predicting the individual performance of each of the components were experimentally 
determined. In addition, the individual models f6r each of the components have been 

tested and validated. Through the consideration of the above models, chapter 4 focuses 

on developing a computer program necessary for modelling system flow rate. 

A flow chart of the model is shown in Fig. 4.1. For any given irradiance and PV 

module temperature, and starting from the reference conditions of the PV module, the 

model predicts the PV module's electrical output. This, when solved simultaneously 

with the fan's electrical characteristic, calculates the operational voltage and rotational 

speed of the fan. The fan AP-Q characteristic is determined at this calculated speed 

while that of the fan-duct system as a whole is evaluated at the given duct properties 
(length, diameter and degree of extension). System flow rate is then determined by 

solving the fan and system AP-Q characteristics simultaneously. Using the equations 

presented in chapter 3, and the experimentally determined reference conditions and 

parameters, a program was written in Visual Basic for Applications (VBA) to calculate 

system flow rate. The model was validated through comparison with experimental 

measurements. 

4.2 THE FAN OPERATIONAL POINT 

Figure 4.2 shows fan and PV IV characteristics as generated by the prograrn. In 

this section the program for calculating the fan operational voltage, current and 
rotational speed is presented and discussed. The values, as predicted from this code for 

certain PV-fan combinations, are then compared to measurements of voltage and speed 
obtained at preset conditions of irradiance and ambient temperature. 
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Fig. 4.2: Fan IV characteristics and (a) PV I and (b) PV2 IV characteristics. 
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4.2.1 Computer program 

The first step in running the program is to choose the PV module and the fan as 

depicted by the code in Appendix Bl. The command "Inputbox" is where the user 

enters a number for the PV module and fan selected. Based on this choice, the program 

selects the appropriate parameters, which were experimentally determined in chapter 3 

(Table 3.1). For a given PV-fan combination and desired irradiance and ambient 

temperature, the program calculates and solves simultaneously the PV and fan IV 

characteristics. The PV IV characteristic, determined from Eq. 3.5, depends on T,,,. d, 

which is, in turn, dependent on efficiency (in addition to other parameters as shown by 

Eq. 3.8). By assuming a value for il, T. w can be calculated, and the PV IV 

characteristic determined. After solving for the fan operational 

point, the assumed value of 11 can be checked using Eq. 4.1 below, as shown by the flow 

chart in Fig. 4.3. 

Ile = 

G 
(4.1) 

The inner loop in Fig. 4.3 (green boxes) represents the sequence for calculating 

the fan operational voltage and current. The approach here is to assume the PV current 
(I = Ipv), calculate the fan current and then compare the two. An acceptable 
solution is that which minimises 81 = Ipv - It.,, as shown in Fig. 4.4. The value of Ipv is 

calculated from Eq. 4.2 

py i"- I sc - 
(N -1 sc 

h 
(4.2) 

where the limits for N are 1 to I +h (N =1 at Ipv = Isc and 1+ h at V= Voc) and 
ISC 
h 

is a fixed step in current. The choice of the value of h is crucial to the iteration process 

as detailed in Textbox 4.1. 
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Fig. 4.3: Flow chart for detennination of the fan operational voltage. 
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C. ) 

Voltage 

Fig. 4A Solving for the fan operational voltage and current. 

As discussed in section 3.2, the explicit form of the PV IV characteristic, as 

represented by Eq. 3.1, has an advantage over the implicit fon-n represented by Eq. 2.4. 

Iteration, using Eq. 2.4, requires that the voltage is assumed and the current is 

determined. However, solving for current from Eq. 2.4 requires another iteration loop, 

adding to the complexity of the problem, and increasing the calculation time. The 

program for calculating fan operational voltage, current, and speed, using the method 
described in Fig. 4.3, is given in Appendix B2. 

In the program shown in Appendix D2, the fan speed is obtained directly from 

the voltage after the outer loop had exited. This method, as discussed in chapter 3, 

assumes that the motor/fan is a single unit and is based on the coV characteristics of the 

fans. The fan operational speed can also be solved for within the loop by solving the 

motor equations with the PV IV characteristic. In this case, the inner loop shown in 

Appendix B2 is replaced by the code shown in Appendix B3. In this case, fan speed is 

solved for within the loop and not after the loop is finished. 
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Textbox 4.1: Selection of iteration step values for Eq. 4.2. 

"h" is the inverse of the step of iteration. The value of "h" affects the accuracy of the iteration 

process significantly. It is desired to reduce the value of h as much as possible in order to reduce 

computational time. However, a small value of h (say 10000) at low irradiances can sometime lead 

to misleading results. This is clear from the figure below where it can be seen that if, for example 

for FanO, h=Ix 10" then the predicted flow rates at irradiances below 200 W/m2 are not accurate. 

FanO requires larger values of h (i. e. smaller steps of iteration) because as can be seen from Fig. 

4.2, the intersection between the PV and fan IV characteristics is usually at I Isc. 

20 
18 
16 
14 
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10 
8 
6 FanO. h=1 OA6 

4- -Fanl, h= 1OA4 

2 
Fan2, h=1 OA5 

0- 
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It is determined by trial and error than an h value of Ix 10" for FanO, Ix 105 for Fanl and IX 107 

for Fan2 are satisfactory to produce accurate results. However, these values do not have to be 

maintained throughout the full irradiance range, as this will, especially for a large dataset, 

considerably increase the computational time. The following conditions, which will lead to 

accurate results, were determined for each of the fans by trial and error 

If fan =0 Then 
If G <= 500 Then h=Ix 10' 
Else h= IX 104 

If fan =I Then 
If G <= 300 Then h=Ix 105 
Else h=IX 104 

If fan =2 Then 
If G <= 200 Then h=Ix 107 

Else h=IX 104 
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4.2.2 Validation 

Measurements of irradiance, ambient temperature, and fan voltage were 

obtained for each of the fans with thelO Wp PV module (PV2). Measurements were 

recorded with the outlet of the fan open to the atmosphere (i. e. no duct connected). 

Typical readings are shown for the systems PV2-Fanl and PV2-Fan2 in Fig. 4.5. It is 

seen that the operational voltage closely follows the irradiance profile for both days of 

measurement and that it is, as expected, more affected by irradiance than PV module 

temperature. 

Using the algorithm described in section 4.2.1, and using the measured values of 
irradiance and module temperature, the fan operational voltage was calculated. Figure 

4.5 shows a comparison between the measured and predicted voltage profiles obtained 

for the systems PV2-Fanl and PV2-Fan2. Average error (loo x predicted -measured 
measured 

over the full range shown in Figs. 4.5(a) and 4.5(b)) for predicting the voltage for the 

PV2-FanI system is 4.9 % while that for the PV2- Fan2 system is 7.7 %. Considering 

instrumental and operational errors, the algorithm provides relatively accurate 

predictions of fan voltage. 

The measured and predicted efficiency profiles for both systems for the days of 

measurement are shown in Fig. 4.6. Depending on the radiation available, the efficiency 

of the PV-fan combinations can reach up to 13 %. A lower efficiency is an indication of 

a lower utilisation of P. and vice versa. Simulations of efficiency-irradiance profile are 
discussed in section 4.4.2. 

Using the VBA program, voltage profiles are generated for different irradiances 

at a constant ambient temperature as shown in Fig. 4.7. It is seen that the voltage of 
Faril at high irradiances is more affected by temperature than is Fan2. This can be 

explained by reference to Fig. 4.2 where is it seen that a slight change in the PV module 
temperature affects the lower part of the PV IV characteristic where Fanl is usually 

operating. It is thus expected that the effect of temperature on the voltage of FanO is 

negligible since the temperature effect on Isc is very small. 

137 



0 (D ul C) Ln C0 CD Lo (D Ul) C: ) 
0 LO ee CI) CY) C, 4 04 T-- T-- 

(D) PJL -10 (A) 06eN0A UL'=l 

c1r) 
T2 

> 

0 
a, 

0 

0) 

Cf) 

Ir 0) 

0 Lf) 0 LO 0 U') 0 LO 0 LO 0 LO 0 

(D LO U) 'I t Cf) Cf) CN N v- v- 

(0) PO-JL JO (A) 06eNO, % ue=i 

00 m 

cl 

ZLUM 

LO 0 

z wmýD 

LO 0 

4-- 11 



'0 

cc 

V 
0 

0 
1 

N CD 00 (D C, 4 0 00 (D C, 4 CD 
CN C'4 Y-- T-- Y-- r-- 

0/ 6 Lt 
0 

ce) 
'r- 

04 

0 

C, 4 C) Co (D le N CD 00 (D e (N CD 
N CN T-- T- 

0/ 0 
LI 



25 -Tamb =09 Tamb =5 
x Tamb=10 ? Tamb = 20 

20 - 

15 - 

10 - 

5- 

Is 

0iIIII 

0 200 400 600 800 1000 

G, WIM 2 

Fig. 4.7: The effect ofPV module temperature on the operational voltage of the fan t1or Fan I and Fan2. 

Figure 4.8 shows a plot of speed ratio vs. irradiance for each of tile fails. Tile 

speed ratio is defined by the equation 

(4.3) 
0) 

max 

where w(i is the speed at a given irradiance and is the maximum speed achievable 
by the fan. The maximum speed of a fan corresponds to the capacity (i. e. the maximum 
flow rate) of that fan. From Fig. 4.8, it is seen that Fanl, for example, delivers 70 % of' 
its capacity (i. e. 0.7 x 69 I/s = 49 I/s) at G= 500 W/M2 . FanO and fan2, on the other 
hand, will start delivering this flow rate at 750 W/m 2 and 600 W/M2 respectively. This 

leads to the conclusion that, for purposes of maximising the flow rate, Fanl is 
preferable to FanO at G< 750 W/m 2 and preferable to Fan2 at G< 600 Wrn 2. This will 
be useful in the optimisation of the system and will be discussed in detail in chapter 6. 

Figure 4.9 shows the wG profiles for the different fans at Tanib =5C. It is seen 

that the profile for FanO is linear; that for Fanl is of the third order and that for Fan. 2 is 

quadratic. The polynomial regressions are shown in the figure. The coefficients of these 
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polynomials change if temperature changes. Temperature, however, has a pronounced 

effect in the case of FanI only as discussed earlier (Fig. 4.7). As a result, these 

regressions can be used for predicting speed directly from irradiance without having to 

iteratively solve for the fan's operational point. Even though, this approach, which has 

been, as discussed in chapter 2, used by other researchers (Jafar, 2000), will 

considerably save calculation time, it is specific for a given PV-fan combination. A 

more general approach is that which solves for the fan operational voltage and speed 
iteratively. 
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4.3 FLOW RATE 

4.3.1 Computer program 

The program thus far described, calculates fan speed. For this speed, the APj-Q 

characteristic can be evaluated from the measured reference curve (discussed in sections 
3.2.4.2 and 3.5,4). The flow rate in the system is obtained by solving the two non-linear 

AP-Q characteristics shown in Fig. 2.10 simultaneously. The fan characteristic is 

obtained at the predetermined speed and measured air temperature and atmospheric 

pressure. The two latter quantities have negligible effect on air properties (At I atm, a 

change of temperature from 5 to 25 C will change density from 1.26 to 1.18 kg/M3 

while a 30 mm, Hg decrease in atmospheric pressure at 5 C, changes density from 1.26 

to 1.21 k g/m 3) and consequently on the APjýQ characteristic. Nevertheless, for 

generality and accuracy purposes, their effect will be accounted for in the current work. 
As discussed in sections 2.4.4 and 3.2.5, the APS-Q characteristic can be defined by a 

simple quadratic equation. The quadratic system characteristic is obtained for the 

specified duct properties and is also a function of air properties. 

Using the reference parameters C, and C2 and the fan specific parameters w, x, 

y, z, as in section 3.5.4, the fan AP-Q curve can be determined. The relevant section of 

the program for determining the APj-Q characteristic is shown in Appendix B4. Notice 

that the program here starts with a request for entering fan speed and air temperature in 

the duct. In the complete program, however, the speed of the fan is obtained according 
to the code in section 4.2. 

4.3.1.1 Effective duct length 

In practical application of the present system, where the duct will generally 

extend from the fan box downwards (section 1.4), the degree of extension is not fixed. 

An exact k value is not obtainable. The three methods described in section 3.2.5 and in 

Fig. 3.2 apply for horizontal situations. Fortunately, any system characteristic can be 

translated into a corresponding horizontal situation. This is done as follows. 
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A AP, -Q characteristic (AFý = T, . Q2 + T2 - Q) is measured in the roof section 

using a manometer (Fig 3.6). The static pressure is measured across the fan with two 

Pitot static tubes, one in the fan box and the other in the duct. The flow rate is measured 

at the duct outlet. A single point of (Q, APJ or (V, AP. ) is sufficient for generating the 

system curve. This will be discussed in detail in section 7.3.2. 

Using the same duct diameter in the roof section and assuming a value for the 

degree of extension, an effective horizontal length of duct can be determined. Effective 

duct length (L,, ff) is defined as the horizontal length of duct (at a given % extension and 
duct diameter), which has the same AP, -Q curve as the one measured in the roof section. 

Alternatively, instead of determining an L, ff, the measured curve (AFý = T, - Q' + T2 -Q) 

can be used directly (Appendix B5). 

4.3.2 Validation of flow rate model 

4.3.2.1 Methodology 

Validation of the flow rate model was performed by comparing predicted 

performance with that measured for a roof section constructed at the School of 
Engineering at Napier University in Edinburgh. Predicted flow rates were based on 

measured values of irradiance, PV module temperatures and in-duct air temperatures. 

Since PV module temperature is measured directly, there is no need for efficiency 
iteration and so the code described in the previous section can be simplified by directly 

defining the PV module characteristic from G and T,,, w measurements. 

The roof section shown in Fig. 4.10(a) was constructed from interlocking 

concrete tiles. The interlocking type of the slates causes a minimal suction pressure at 
the inlet side of the fan and thus imposes negligible resistance to the flow rate of air 

comingthrough. 10-cm diameter holes were drilled in the sarking board underneath the 

slates (Fig. 4.10(b)) and a well-sealed fan box was constructed, (Fig. 4.10(b) and 
4.1 O(c)). The fan-duct system was installed in the box (Fig. 4.1 O(c)) and connected to 

the 10 Wp PV module (PV2). 
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Measurements of G, Tnw, T. i,, and Q were taken for periods of constant 
irradiance to ensure stability of flow rate readings corresponding to that irradiance. 

Irradiance was measured with an accuracy of 3% using a Kipp and Zonen 

pyranometer (Fig. 3.3) placed in the same plane with the PV module and roof tiles, and 
directly connected to a data logger. Incidence angles were calculated (Azimuth: -15*, 
Tilt: 45% Latitude: 55.95% Longitude: 3.31) for the time and date of measurement and, 

whenever necessary, transmittance correction for irradiance falling on the PV module 

was applied (Duffle and Beckman, 1991). Two k-type thermocouples, one placed in the 

middle at the back of the PV module and the other placed at the outlet of the duct, were 

used for temperature measurements with an accuracy of ± 0.1 T. The thermocouples 

were connected to the data logger and irradiance and temperature readings recorded for 

the duration of each flow rate measurement to ascertain the degree of temperature 

stability. 

Flow rate measurements were carried out at the centre outlet of the duct as 

shown in Fig. 4.1 o(d) and were corrected for by the method described in section 3.3-6. 

The four systems outlined in Table 4.1 were tested. Two duct systems with different 
Leff, 80 %& 152 rm (where the subscript means that the effective duct length is evaluated for 

a duct diameter of 152 mm and extension of 80 %) were tested. The AP, -Q curves were 

measured in the roof section. 

Table 4.1: Svstems tested for model validation. 
PV module Fan Leff, 80 %& 152 mms M 

System I PV2 Fanl 8.5 ±2 

System 2 PV2 Fan2 8.5 ±2 

System 3 PV2 FanI 11.5 :h1.5 
System 4 PV2 Fan2 11.5 d: 1.5 

In order to measure the system curves, the pressure across the fan, the pressure 
in the fan box and the flow rate were recorded at different fan speeds (i. e. fan voltages). 
Pressure measurements were carried out with an accuracy of ± 0.5 Pa using the Airflow 

Developments inclined manometer mentioned above (section 3.3.5) and two Pitot static 
tubes: one placed in the fan box (through a side hole in the joist) and the other 
downstream from the fan. 
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The voltage and speed of the fan were manually altered using a Weir 4000 

power supply. The two measured system curves are shown in Fig. 4.11 along with three 

simulated system curves for different lengths of duct. The effective length of duct was 
determined in Excel using the method of minimising the sum of residual errors. 

13 Measured- Longer duct 
so- - ýLeff w 11.5 m- Simulated 
45 .... .... Lw 15 m- Simulated 
40 - - ýL-8.5 m- Simulated 
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Fig. 4.11: Measured data in the roof section for (a) longer duct (Lff - 11.5 m) and (b) shorter duct 
(L. fr - 8.5 m). 

Considering errors in the measured AP, -Q curve (i. e. errors in pressure and flow 

measurements), the effective duct lengths are also determined with errors as shown by 

the values in Table 4.1. 
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As mentioned above, the measured data shown in Fig. 4.11 (the single points) 
follows a quadratic trend passing through the origin. Thus, this quadratic equation can 

be solved simultaneously with the fan APf-Q characteristic for flow rate. The equation is 

(AFý = 0.0036 - Q' + 0.1783 - Q) for the 8.5 m long duct and 

(AFý = 0.0 116. Q' - 0.0 163 -Q) for the 11.5 m long duct. 

A program was written to calculate flow rate for the measurements obtained in 

the roof section shown in Fig. 4.10. The flow rate is solved for in a similar fashion to 

that used for solving the fan operational point. A value of (Qf) is assumed, APf is 

calculated as shown by the code in Appendix B4 and AP, is calculated using the code in 

Appendix B5 either using predetermined Lff values or by directly using the two 

quadratic equations given above. An acceptable solution is that which minimises the 

change in AP = (APf - AP, ) as shown in Fig. 4.12. 
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Fig. 4.12: Solving for system flow rate. 

4.3.2.2 Results 

Appendix B6 outlines the program for determining system flow rate. The 

program was run for all the measurements described above. The values obtained by the 

program were then compared to measurements. The results are shown in Fig. 4.13. The 

solid line with a slope of 0.9873 and a coefficient of determination (R) of 0.9417 
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represents the best-fit line for all data points. The predicted values shown in the figure 

are within 10 % of measured flow rates. 
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Fig. 4.13: Predicted vs. measured flow rates for the four systems tested. 

For comparison purposes, each of Figs. 4.14 to 4.17 shows flow rate vs. 

irradiance (Q-G) profiles for two of the four systems. Considering experimental sources 

of error inherited by the model and those attached to the measured flow rate, there is 

good agreement between measurements and predicted values. 

As seen from Figs. 4.14 and 4.15, for a given level of irradiance, a higher flow 

rate developed with a shorter length of duct. This is expected because for shorter 
lengths, the system is working against less resistance to flow. 
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In Figs. 4.16 and 4.17, both predictions and measurements reveal that Fan2 

provides a lower flow rate than Fanl at low irradiances, but starts producing higher flow 

rates at some inflection irradiance (G = 580 and 520 W/m2 for the 11.5 and 8.5 m 
length, respectively). 

4.3.2.3 Error analysis 

The predicted flow rate profiles in Figs. 4.14 - 4.17 are based on measurements 

of G and Td. The errors associated with these readings are as given in Table 3.2. 

Moreover, PV, fan, and duct parameters were determined experimentally and so they 

too are associated with error. Furthermore, the system characteristics measured in the 

roof section and consequently the estimated Iff values have error. As a result, the 

predicted flow rates are also associated with error inherited from these measurements. 

Running the model with the lower and higher limits of the measurements, a flow 

range can be estimated. It is found that, depending on irradiance, the flow rate is 

estimated with errors between 4 and 12 %. The predicted values in Figs. 4.14 - 4.17 are 

within 10 % of measurements. 
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4.4 MODEL-BASED SIMULATIONS 

Model based simulations of flow rate vs. irradiance (Q-G) and efficiency vs. 
irradiance (, q-G) are essential for understanding the optimisation results in chapter 6. 

They are also necessary for understanding the performance of the system in general. 
These simulations are independent of the weather data and they can help in predicting 

the performance of the system for any location. A flow chart of the simulation 

algorithm, which is based on the results from chapter 3 and the programs in the previous 

sections of this chapter, is shown in Fig. 4.18. 

For a range of irradiance values, the model calculates flow rate, PV-fan 

efficiency (i7pv_F,. = 
I. V ) and fan-duct efficiency (Wa. 

-Duct = 
AP'12). For 

G. a I. V 

convenience, the subscript (PV-Fan) indicates that the efficiency represents the PV-Fan 

system (as a whole) as opposed to i7p, which indicates the maximum efficiency that 

can be reached by the system (i. e. 77p, -= 
P" ). The simulations in sections 4.4.1 and G. a 

4.4.2 are carried out for an extension of 80 % and for an ambient temperature of 10 C. 

4.4.1 Q-G simulations 

Figure 4.19 shows model-based Q-G simulations for three systems. It is clear 

that systems with the larger duct diameter are expected to produce higher flow rates. At 

a fixed extension, the friction factor in the duct is only slightly affected by the increase 

in diameter. Nevertheless, an increase in diameter will decrease pressure loss in the 

ducting system and thus the flow rate of air will increase. So, if the volume delivered is 

to be maximised, in this case, it is preferable to use Duct2 rather than Ductl (refer to 
Table 3.3 for symbols). In section 6.5.3, it is shown that there exists a critical (or 

optimum) duct diameter after which the volume of air delivered in a given period of 
time does not increase any more. 

Figure 4.19 also shows that, as expected, the larger PV module (PV2) is 

preferable to PVI if higher flow rates are to be achieved. At G= 300 W/m2, systems 

with PV2 can deliver 2.5 times as much air as systems with PV I. 
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Fig. 4.18: A tlowchart of the simulation program. 
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Fig. 4.19. Q-G simulations for three [PV - Fan - Duct diameter] systems for a duct length of 5 m. 

Figure 4.20 shows a comparison of simulations for two systems of PV2 with 
different fans at two different duct lengths. It is seen that a 15 m increase in length can 
cause a reduction of up to 14 I/s for Fanl and 20 Us for Fan2. Also, it is clear that, as 
discussed above, for irradiances below the inflection point, p (G - 580 W/M 2) 

, Fan I 

produces higher flow rates than Fan2. At point p, Fanl utilises 60 % of its free flow 

capacity (i. e. 69 l1s) while Fan2 utilises only 37 % of its capacity. The inflection 
irradiance is only slightly affected by the length of the duct as seen in Fig. 4.20 but is 

significantly influenced by the PV module used as seen from Fig. 4.21 which shows Q- 
G simulations for systems with PVl. For systems with PVl, Fanl produces higher flow 

rates than Fan2 does because it operates at significantly higher voltages and speeds and 
so utilises a higher percentage of its free flow capacity. 

155 



50- w. 
, 

wl 

40- 
44 

Ige ÄZI- 
je 

14 OOPO 
20- *f 

j 
_p" 

(b) -PV2 - Fanl - 152 mm 10- PV2 - Fan2 - 152 mm 

019e%b 
0 200 400 600 800 1000 

G, Wknl 

Fig. 4.20: Q-G simulations for (PV2 -Fan - 152 nun) systems with a duct length of (a) 5m (b) 20 m. 

40 - 

35- 

30- 

25 - 

20- 
CY 

Is- 

10- 

5- 

04 
0 

-PVI - Fenl - 152 mm 

---- PVI Fen2.152 mm 

Fig. 4.21: Q-G simulations for (PV I -Fan -152 nun) systems with a duct lengtlý of 5 m. 

,0 
/ 

4, 

.. 0 

156 

200 400 600 800 1000 

G, Wfin2 



4.4.2 il -G simulations 

For discussion in this section and subsequent chapters, the efficiency defined by 

Eq. 4.1 will be referred to as TIPV-I: an. In addition, the efficiency of the fan-duct system is 

defined as 

AP-Q Wan-Durt - 1. v 
(4.4) 

while (i7p, 
-,,,,,, ' 

Wan-Duct ) is the overall flow efficiency of the systern. 

4.4.2.1 Flow rate and efficiency 

Maximising system flow rate does not necessarily mean that the PV-Fan 

efficiency and/or Fan-Duct efficiency are maximised. As irradiance increases, the 

voltage and speed of the fan and consequently the flow rate increase. For Fanl, an 

increase in flow rate implies lower efficiencies as can be inferred from Fig. 4.22 and Fig 

. 4.23(a). For Fan2, on the other hand, an increase in flow rate results in better utilisation 

of the PV modules P,,, but a decrease in the utilisation of the maximum pneumatic 

power possible as can be seen from Fig. 4.22 and Fig. 4.23(b). 
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Fig. 4.22: Fan IV characteristics and PV maximum power trajectory for PV2 at Tamb ý 10 C- 
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For given system characteristics, as irradiance increases, the overall efficiency 
for Fanl decreases while that for Fan2 may either increase or decrease. So, depending 

on the basis for optimisation, either volume or overall flow efficiency may be 

maximised. For example, if the optimisation is based on maximising volume delivered 

over a period of operation, then it may be possible that one fan will maximise the 

volume but another fan will maximise efficiency. The optimisation strategy in section 
6.1.3 explains that the current work considers optimisation based on maximum volume 
delivered. An optimum motor constant for the fan's motor and an optimal duct length 

can then be chosen in order to maximise PV and pneumatic output respectively. 

4.4.2.2 IJPV-Fan-G simulations 

Simulations of qpv-Fan vs. irradiance for three systems with Duct2 are shown in 

Fig. 4.24. The peak of the individual efficiency curves is the point when the fan is 

operating at the maximum power of the PV module. Thus, for the PV2-Fanl 

combination, the fan will utilise a 100 % of the electrical power made available by the 
PV module at 400 W/M 2. These curves show a trend similar to that observed by Q-G 

curves. There exists an inflection point (in this case 580 W/M 2) below which the PV2- 
FanI combination is always giving the highest efficiencies possible thus utilising more 
of P.. For irradiances above this point, the PV2-Fan2 combination becomes favourable. 
For PV I systems, Fan I is always favourable for G> 200 W/M 2. 
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Fig. 4.24: Tj PV -Fan -G simulations for different PV2 - fan combinations. 
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4.4.2.3 IlFan-Duct-G and -qo,,,.. II-G and simulations 

Simulations Of TIF,,, -D,,, t-G show that for the full irradiance range, Fan2 produces 
the highest efficiencies. This can be explained by reference to Fig. 4.23. However, for 

the range 200 - 580 W/M 2, since Fig. 4.24 shows that FanI produces higher PV-fan 

efficiencies, and Fig. 4.25 shows that the two fans nearly produce equal efficiencies, it 

can be concluded that for the same range, FanI produces higher overall efficiencies as 
seen from Fig. 4.26. 
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4.5 SUMMARY 

The mathematical model of the system described in chapter 3 has been modified 

into a computer program where the equations for the different components are solved 

simultaneously. Different modules within the computer program are shown in Appendix 

B. Even though each of these modules stands on its own for a specific purpose, they can 
be integrated to form a single program as shown in Appendix B6. The iteration step has 

to be chosen carefully in order to produce accurate results (especially at low irradiances) 

but without drastically affecting the computational time. VBA programming proves to 

be very simple and efficient in obtaining solutions for the present system. 

The flow rate model developed was validated. A roof section was constructed 

and measurements of irradiance, temperature, and flow rate were collected for several 

systems. While chapter 3 (section 3.8) attaches a 12 % error to the predicted flow rate 

based on cumulative error in the measured performance of each of the components, the 

validation shows that measurements are within 10 % of the predicted values. 

Model simulations show that different PV-fan combinations are associated with 

optimum intervals of operation. The interval 200 - 580 W/m2 , for instance, is the 

optimum interval for Fanl. In this range, Fani delivers higher flow rates and higher 

PV-Fan efficiencies. Simulations also reveal that, even though it does not maximise 

pneumatic output, Fanl is expected to deliver the highest overall efficiencies. 

The Q-G and il -G simulations given in this chapter do not take start-up and 
"cease" irradiances into account. In section 6.3.4, these limits are considered. Moreover, 

in chapter 6, systems with PV modules and fans in parallel and series are considered for 

optimisation and the results are explained in terms of Q-0 and il -G simulations. An 

updated version of the model, which accounts for all these effects in addition to the 

large files of weather data, is introduced in section 6.3. In chapter 5, the Edinburgh 

weather data to be used for optimisation is described and a slope irradiance model is 

introduced. 
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5. WEATHER DATA AND SLOPE IRRADIANCE MODELLING 

5.1 INTRODUCTION 

Accurate long-term weather data is extremely important for appropriate design 

and, hence, optimised performance of PV-driven systems since power output from the 

PV array depends on solar radiation and ambient temperature. The current chapter 

presents the weather data available for Edinburgh. The means for manipulating this data 

for use in the optimisation process is introduced. As discussed in chapter 2, most widely 

available irradiance data are in the form of global horizontal irradiance. In order to 

optimise the PV-driven RSB system under consideration, global irradiance on the roof 

of the house is needed. The current chapter introduces an anisotropic model for 

predicting slope irradiance. Measurements on a sloped roof are taken and compared to 

predictions by both the isotropic (section 2.5.5) and anisotropic models. 

For the current research, two datasets, which are equally useful, are available. 
The first (datasetl) is a 27-year dataset of hourly data for horizontal global and 
horizontal diffuse radiation in addition to ambient temperature and wind speed. Such a 
large dataset is very crucial for the optimisation process and for predicting the long-term 

performance of the system. However, in order to accurately describe the performance of 

the system, and, account for start-up characteristics of the different systems, a more 
detailed dataset is required. The second dataset (dataset 2) comprises I-year, 5-min 

horizontal global irradiance data. The optimisation procedure discussed in chapter 6 is 

undertaken with both datasets, and the results compared. 

Datasetl consists of both global and diffuse horizontal irradiance and so it can 
be directly used for predicting slope irradiance. The available ambient temperature and 

wind speed data can be input directly into the model discussed in chapters 3 and 4 to 
define the PV IV characteristic, From datasetl, three-dimensional plots of hourly 

irradiance, ambient temperature, and wind speed for all days of the year are shown, as 

an example, in Fig. 5.1, for the year 1976. The model presented in chapter 3 does not 

account for wind speed (ws, m/s) and assumes that the loss coefficient, U (W/C), is 

constant. Incorporating the effect of wind speed into the model is a straightforward 

matter, as will be discussed in section 6.3. LL 
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In order to be able to use dataset2 (a single year of data, 1992) for predicting the 

long-term performance of the system, it must be shown that this data represents that for 

a typical year for the location considered. As reported by Duffle and Beckman (1991), 

Klein (1976) developed the concept of a design year. He used heating season data for 9 

months (Sep. through May) for 8 years of data. For each of the months, the month (for 

the design year) was selected that had the radiation closest to the 8-year average. The 

annual contribution calculated from simulations using the design year showed good 

agreement with that obtained from simulations based on the full 8 years. Hall et al. 
(1978) introduced the concept of a typical meteorological year JMY). For their work, 
the TMY data have been used for solar heating system simulations, with results 

compared to simulations based on the full 23 years of data. Both sets of data indicated 

very similar solar contribution indicating that the TMY is satisfactory. 

For the current work, the procedure is simplified by comparing the averages 

obtained from both datasetl and dataset2 to 29 years (1941 to 1970) of monthly 

averaged hourly-data (MAHD) for Edinburgh. The results are shown in Fig. 5.2. For 

MAHD, the calculation is based on the recommended average days for the months 
(Klein, 1977). Generally, it can be seen that dataset2 is a representative set of data 

except for July of that year (i. e. 1992) where radiation was considerably less than the 
long-term averages. 

MAHD: 1941 - 1970 
Dataset2: averages of 1992 
Detasetl: 27-year average 
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Fig. 5.2: Monthly averaged horizontal irradiance data from three datasets for Edinburgh. 
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A disadvantage of utilising dataset2, however, is that it lacks diffuse data, which 
is necessary to obtain an accurate estimate of slope irradiance. Thus, to use this data, the 

methods discussed in chapter 2 (section 2.5.4) must be applied to predict horizontal 

diffuse irradiance. Moreover, ambient temperature data is also not available for 

dataset2. The present chapter introduces already available methods for predicting 
diffuse irradiance and ambient temperature in order to complete dataset 2. The wind 

speed is not predicted in this case and so the loss coefficient U is assumed constant. 
This additional work for predicting diffuse irradiance and ambient temperature is 

justified since it is desired to optimise system design with detailed 5-min data. This is 

expected to produce more accurate and representative results than using hourly data. 

The percentage of data points, which are higher than a given irradiance for both dataset I 

and dataset2, is plotted against irradiance in Fig. 5.3. It can be seen that with the 5-min 

data, 1.6 % (729 data points) are over 800 W/m 2 while for the hourly data; this is only 
0.62 % (61 data points for the best year: 1977). As shown in Table 3.8, the start-up 

current for Fan2 is 488 mA, which corresponds to 800 W/m 2 for the PV2-Fan2 system. 
If simulations are carried out with datasetl rather than dataset2, the model would predict 
that less annual volume would be produced by the PV2-Fan2 systems, which can be 

misleading. 
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Fig. 5.3: Percentage of data points higher than G for data sets I and 2. 
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5.2 ESTIMATION OF AMBIENT TEMPERATURE 

Hourly ambient temperatures throughout a day can be estimated from available 
daily maximum and minimum values using the ASHRAE hourly temperature model 
(ASIIRAE, 1993). According to this model, the temperature at any hour of the day is 

estimated from the maximum and minimum temperatures of that day using Eq. 5.1 

below 

T=T- pr'(T. 
ax, day -T., in, day amb, hour inax, day (5.1) 

where "pr" is a percentage corresponding to any hour of the day and can be obtained 
from Fig. 5.4. 

100 

80 

60 

40 

20 

0 

Hour of day, hr 

Fig. 5A The percentage "pr " in Eq. 5.1 as a function of hour of the day (ASIIRAE, 1993). 

The ASIIRAE model predicts that the lowest ambient temperatures occur 
around 4 AM and that the highest temperatures occur around 3 PM. The validity of this 
model is checked for daily data for a warm and a cold day in Edinburgh as shown in 
Fig. 5.5. As can be seen, there is good agreement between measured and predicted data. 

For dataset2, the ambient temperature needs to be calculated every 5 minutes. 
However, since maximum and minimum temperatures are not available on a 5-min 
basis, it is assumed that T,, inb stays constant throughout a given hour. Thus Eq. 5.1 along 
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with Fig. 5.4 and the extreme temperatures shown by Fig. 5.6 can be used for estimating 

the ambient temperature for dataset2. 
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Fig. 5.5: Validation of the ASHRAE model for Feb. 16 and July 29,2004 in Edinburgh. 
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Fig. 5.6: Long-term (16 years) averaged daily maximum and minimum ambient temperatures for Edinburgh. 
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5.3 ESTIMATION OF SLOPE IRRADIANCE: DATASET1 

As mentioned above, for datasetl, the estimation of global slope irradiance is 

made easier by the availability of horizontal diffuse irradiance. The isotropic model 

discussed in section 2.5.5 only accounts for diffuse radiation received uniformly from 

the sky dome. However, diffuse radiation can also be circurnsolar diffuse or horizon 

brightening as can be seen from Fig. 5.7, (Duffle and Beckman, 1991). The former 

results from forward scattering of solar radiation that is concentrated in the part of the 

sky around the sun while the latter is concentrated near the horizon. 

Beam 

sky 

T 
" isotropic 
diffuse 

) 

. 10 "\ 

from skyr 

\\' 

dome circumsobr 
diffuse 

diffuse from horizon 

"---V "Ground" 

Ground reflected 

Fig. 5.7: Beam, diffuse and ground-reflected radiation on a tilted surface. Adapted from Duffle 
and Beckman (199 1). 

Several models, which account for either two, or all three parts of diffuse 

radiation, have been developed (Hay and Davis, 1980, Reindl et al, 1990). Reindl et al 
(1990) indicated that the results obtained by their anisotropic model lead to slightly 
higher estimates than those produced by the isotropic model. Their model, however, 

does not account for horizon brightening. 

The Northern European anisotropic model developed by Muneer et al. (1987) 

treats the shaded and sunlit surfaces separately and further distinguishes between 
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overcast and non-overcast conditions of the sunlit surfaces. Under overcast sky, the 

diffuse irradiance incident on the sloped surface is calculated from 

Idaill = Id [TF] 

while for non-overcast conditions, the following equation is used 

Id., 
jj, = Id [TF(I 

- FIR) + Fljt - Ro ] 

Where TF, the surface tilt factor, is defined as 

(5.2) 

(5.3) 

TF = cos'(E) + 
2b 

sina -a cosa -; rsin 2(a) (5.4) 
2 ; r(3 + 2b) 

(2) 

The te.... 
2b is location specific and depends on sky and azimuthal conditions. 

ir(3 + 2b) 

This term is a function of the clearness function F,,, =I- 
Id 

. For Northern Europe, the 
E, 

following Equation is used 

2b 
- 0.00333 - 0.415 - FIR- 0.6987 - Fj' (5.5) 7(3 -+2b) ý* R 

Therefore, in order to calculate Idtill , FIR is first calculated, then used to 

determine the term 
2b for Northern Europe. The tilt factor, TF is then calculated 

ir(3 + 2b) 

from Eq. 5.4 and substituted with Rb, from Eq. 2.27 (section 2.5.5.1) 

R, b = 
cos( ý- a) cos( 8) cos( o), ) + sin( 0- a) sin( 8) 

cos( 0) cos( 8) cos( co, )+ sin( 0) sin( 8) 

in Eq. 5.3 to detennine diffuse on the tilted surface. This calculated diffuse and the 
bearn irradiance (from Eqs. 2.28) are substituted in Eq. 2.26 to calculate global slope 
irradiance. 
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Using the 27-year hourly horizontal global and diffuse irradiance data, the slope 

irradiance was calculated by both the isotropic and anisotropic models for different 

slopes. Figure 5.8 shows the total yearly slope radiation as calculated by both models. It 

can be seen that the isotropic model, consistently, predicts, lower values. It is also seen 

that the optimum slope for Edinburgh, as predicted by the anisotropic model is about 

4541. 
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Fig. 5.8: Total yearly radiation in kWhr/m2 for different collector slopes for Edinburgh at an 
azimuth of 1800 by both the isotropic and anisotropic models based on datasetl. 

5.4 ESTIMATION OF SLOPE IRRADIANCE: DATASET2 

5.4.1 Estimation of horizontal diffuse irradiance 

As discussed above, in order to be able to use the 5-min global horizontal data, a 

(dr = 
'd 

vs. kT) relationship is to be obtained. In order to obtain such a relationship, I 

measurements of horizontal global and diffuse irradiance are required. Measurements 

were obtained at Wiston (latitude = 55.62% longitude = 3.54 *), Scotland about 59.5 km 

from Edinburgh. The model derived from the experimental data obtained at Wiston is 

assumed applicable to Edinburgh. In chapter 7, the installation and testing of an RSB 

solar ventilation air preheating system at a house in Wiston is discussed. A solar 

measuring station (Fig. 5.9) for measuring horizontal and vertical global irradiance as 
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well as diffuse irradiance was established at the site about 20 meters from the house. A 

quintuple pyranometer set (QPS) was used for global solar data collection while two 

Delta-T sunshine sensors were used for diffuse measurements. The following sections 

describe the experimental set-up of the measuring station. 

04- 9 

XI 

Fig. 5.9: Solar station for measuring horizontal global, vertical global and horizontal diffuse irradiance at 
Wiston. 

5.4.1.1 The quintuple pyranometer set 

The QPS is shown in Fig. 5.10. The purpose of measuring vertical data (east, 

south, west and north) is to verify the slope irradiance model. The five pyranometers 

and their connections were tested before installation. The calibration factors are shown 

in Table 5.1. A typical day of measurement of horizontal and vertical (all sides) 

irradiance is shown in Fig. 5.11 for a clear-sky day at Wiston in September, 2004. The 

slope irradiance is measured at the roof of the house. The effect of shading on the slope 

sensor as well as on the west vertical sensor can be seen from the figure. 
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Fig. 5.10: Quintuple pyranometer set for measuring horizontal and vertical global irradiance. 
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Fig. 5.11: Measurements for Sep. 7,2004. 
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5.4.1.2 Calibration of Delta T sunshine sensors 

For comparison purposes, two Delta T sunshine sensors were used for diffuse 

measurements. The Delta T sensors (sensor I and sensor 2) were first calibrated for 

global and diffuse readings against two Kipp and zonen pyranometers. For global 

reading calibration, readings of voltage from both the two pyranometers and the two 

Delta Ts were logged at 10-second intervals for 5 minutes. For diffuse reading 

calibration, a shade ring was held over one of the pyranometers while readings of 
voltage from all four instruments were recorded for another 5 minutes. The global 
horizontal readings for the two pyranometers were found to be within 3.6 % of each 

other. The pyranometer readings were averaged and the Delta Ts were calibrated for 

global readings against these average values. The diffuse measurements (in Volts) were 

also plotted against the measured diffuse from the pyranometer and the calibration 
factors were obtained. The calibration factors are shown in Table 5.1. 

Table 5.1: Delta T and QPS calibration factors. 
Calibration factor, V/W. m" 

Sensor I- Global 2.30 E-3 

Sensor I- Diffuse 3.40 E-3 

Sensor 2- Global 1.20 E-3 

Sensor 2- Diffuse 1.68 E-3 

QPS - horizontal 4.72 E-4 

QPS - East 4.64 E-6 

QPS - South 4.62 E-6 

QPS - West 4.65 E-6 

QPS - North 4.66 E-6 

The diffuse and global measurements from both sunshine sensors were 

compared to each other for the months of July and November 2003, as shown in Fig. 

5.12. Furthermore, the global irradiance as calculated from the calibration coefficients 
in Table 5.1 for sensorl was compared to measurements from the Kipp and Zonen 

pyranometer in Fig. 5.13. The relatively high correlation coefficients give confidence in 

the calibration factors and in the readings of the Delta T sensors. 
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Fig. 5.12: Comparison of global and diffuse irradiance according to the predetermined calibration factors 

for (a) July, 2004 (1-sec data: July 5- July 7) and (b) November, 2004 (5-min data: Nov. I- Nov. 24). 
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Fig. 5.13: Comparison between global iffadiance for sensor I (based on the predetermined calibration 
factors) and that for the Kipp and Zonen pyranometer. 

5.4.1.3 Diffuse ratio vs. clearness index relationship for Wiston 

Data were collected for the month of July 2003 at five-minute intervals. A 

program (Appendix B7) was written in VBA for calculating extraterrestrial radiation, 

clearness index and the corresponding diffuse ratio for all measurements. These 

calculations are straightforward as shown by the flow chart in Fig. 5.14. After 

performing these calculations, the VBA program applies two levels of filtration (to deal 

with erroneous measurements) as shown on the right hand side of the flow chart. The 

program was first tested with datasett as shown by the different stages of the filtration 

process for 1976 in Fig. 5.15. 

The program was then applied to the "Wiston" data. The dr-kT envelope 

obtained after secondary filtration is shown in Fig. 5.16. The dr-kT Plot for Wiston is 

compared to that obtained from hourly data in Fig. 5.17. The small difference between 

the two plots emphasises the fact that the dr-kT relationship is location specific and so 

this justifying the need for collecting site-specific data. The shape of the envelope at kT 

> 0.7 is caused by periods of high beam irradiation from the sun and high diffuse 

irradiation caused by the clouds. These are periods when the sun shines brightly from 

behind the cloud 
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Fig. 5.16: 5-min data for Wiston after secondary filtration. 
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Fig. 5.17: A comparison of (dr vs. kT) plots as derived from hourly data for Edinburgh and from 5- 

min data for Wiston. 
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The curve for the 5-min data in Fig. 5.17 was divided into three segments and 
best-fit lines were obtained for each of them. This approach for describing the dr-kT 

relationship has been adopted by several researchers. While Orgill and Hollands (1977) 

adopted a linear regression for the middle segment, Erbs et al. (1982) used a 40' degree 

polynomial to describe the same section. For the current work, a cubic regression with a 

correlation coefficient of 0.9977 for the middle section is found satisfactory as seen 
from Fig. 5.18. Thus, for dataset2, the diffuse irradiance can now be predicted from 

global irradiance using the following Equation 

Id 
= 0.9635 - 0.1739 kr kr < 0.25 

1 

= 7.341 Ik' - 12.171k' + 4.985kr + 0.3139 0.25: 5 kr :50.78 

0.0291 + 0.3478 kr 

1.0 

0.9 

0.8 

0.7 

0.6 

.b0.5 
0.4 

dy - 09635-0.1739 kT 

9 kr > 0.78 

dr-73411krl. 12.171 krl + 4985kr+ 03139 
W-0.9977 

0.3 - 
0.2 - dr - 0.0291+0 3478 kr 
0.1 - 

0.0 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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Fig. 5.18: The diffuse ratio vs. clearness index relationship for Wiston. 
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5.4.1.4 Validation of Northern European anisotropic model for Wiston 

Irradiance on the roof (tilt = 401) of the south facing house at Wiston (i. e. 

azimuth = 0') was measured using a calibrated Kipp and Zonen pyranometer (5.17 x 10-6 

V/W. M-2) . The slope measurements were compared to those predicted from the 

horizontal measurements obtained by the solar station shown in Fig. 5.9. Predictions 

obtained by both the isotropic model and the anisotropic model for Northern Europe 

were tested, as shown in Fig. 5.19. 

Anisotropic-NE model 

isotropic 

1200 - 

1000 - 

800 

600 

400 

200 - 

0 

Isotropie 
y-0.6694x 
R2 - 0.8835 

9 

,u 

I 

Air 
Ise 

Ardsotropic 
y-0.9962x 
R2 0.91 

9 jo 
00% 

. 

&" tk, ýý ,.. -,, 105 

200 400 600 800 1000 1200 

Measured on roof, W/M2 

Fig. 5.19: Comparison of slope irradiance measurements and predictions by both the isotropic 
and anisotropic models for August 2004. 

It is clear that the isotropic model under predicts measurements. The anisotropic 

model, on the other hand, is close enough to measurements so that the NE model can be 

assumed accurate for Wiston. Shading, caused by the surrounding trees, causes the 

scattering of the points as shown in the figure. For example, for predictions between 

800 and 1000 W/M2' some measured irradiances are only between 200 and 400 W/m 2 

indicating that there is a shading effect. In other cases, the irradiances are significantly 

under predicted (around 600 W/m 2 on the x-axis) which can be explained by the high 

reflection and diffuse irradiance caused by the surrounding trees. The shading effect is 
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also observed from Fig. 5.11 with the curve for slope irradiance. It is seen that at about 

4 pm the pyranometer on the roof does not receive any more radiation due to excessive 

shading to the west of the house. 

5.5 SUMMARY 

The current chapter introduced two datasets to be used for optimisation. These 

two datasets are complimentary since the first is a dataset of long-term hourly data 

while the other is a 1-year dataset of more detailed 5-min data. They are both 

considered in chapter 6. The first dataset is necessary for predicting the long-term 

performance of the system while the second is necessary for accurately describing the 

performance of the system especially when start-up characteristics are to be accounted 
for. However, even though the first dataset (i. e. hourly data) is complete, the second 
dataset contains only horizontal global irradiance data and methods for predicting 

ambient temperature and horizontal diffuse, which is required to predict slope 
irradiance, are required. 

The discussion in this chapter described a method for predicting ambient 

temperature. A model for predicting 5-min horizontal diffuse data from global data was 

developed based on measurements (of global and diffuse) at the testing location where 

the system in chapter 7 is to be installed. This model can now be used along with the 

slope irradiance model to predict global slope irradiance for the site. 

A North European anisotropic model for predicting slope irradiance was 

experimentally verified and compared to the isotropic model. Results show that the 
isotropic model under predicts slope irradiance and so the North European model is to 
be used for optimisation since it is more comprehensive. 
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6. OPTIMISATION OF SYSTEM OUTPUT AND ECONOMIC EVALUATION 

In the current chapter, the model developed in chapter 3 and 4 is used with the 

weather data in chapter 5 to optimise the system based on maximum volume of air 

delivered. First the literature review in section 2.6 is extended. Next, the basis for 

selecting maximum volume delivered as the main criterion for optimisation is 

discussed. Details of the procedure for updating the model to cope with optimisation 

objectives are then given. The optimisation results are then presented and explained in 

terms of the model-based simulations given in section 4.4. Finally, the optimum system 

is discussed and further analysis with respect to efficiency, solar savings, and cost is 

carried out. Recommendations for duct length in order to maximise efficiency and 

diameter in order to maximise volume are also given. 

6.1 INTRODUCTION 

6.1.1 Previous work on optimisation of PV-driven systems 

Different optimisation strategies can be considered in order to improve the 

overall performance of a PV-driven system. Maximum power tracking leads to the more 

effective utilisation of a PV module's power and thus would increase the PV module- 

fan efficiency. However, the inclusion of a matching device can be expensive. A 

simpler and less expensive system is obtained by directly coupling the PV module to the 

motor and choosing an optimum motor constant so that the annual output of the PV 

module is maximised (Kolhe et al, 2000). Although most optimum matching studies 

have, thus far, focused on the ratio between the electrical input to the fan and the 

available maximum power of the PV module, (Alghuwainem, 1992 and Eskandar and 

Zaki, 1997), other studies have extended the matching analysis to the motor's 

mechanical output with respect to the available maximum power of the PV module 
(Saied, 1988). Furthermore, other authors have considered hydraulic output of a 

pumping system with respect to maximum power (Koner, 1995). Other optimisation 

techniques for PV pumping systems are concerned with optimising the configuration of 

PV modules (Firatoglu, 2004) or maximising the volume of water delivered (Betka et al, 
1999). 
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6.1.2 Maximising volume delivered 

In designing solar energy systems in general, it is of interest to find the lowest 

cost system. Systems utilising solar energy processes are generally characterised by 

high first installation cost and low operating costs (Duffie and Beckman, 1991). The 

basic economic problem in solar processes is to compare the initial known investment 

with estimated future operating costs. Most solar energy processes require an auxiliary 

energy source so that the annual loads are met by a combination of both conventional 

and solar sources. In PV-driven systems, while the capital cost is comparatively high, 

the operating cost is very small. 

In economic analysis, it is convenient to express the solar energy contribution to 

the total load in terms of fractional reduction in the amount of energy that must be 

purchased. If the purchased energy with a fuel only system is Lo (kWhr), the auxiliary 

energy purchased is LA (kWhr) and the solar energy delivered is Ls (kWhr), then for the 
Ph month, the fractional reduction of purchased energy when a solar energy system is 

used is 

Lo, 
j - LA., Ls., 

Lo, j 
= Lo., 

On an annual basis with energy quantities integrated over the year 

Z sfi. L.., 
F= yea" (6.2) 

Z LQ, j 
year 

The solar fraction for alternative systems can be calculated, and that with the 

higher solar fraction implemented. In optimising a PV-driven system, the solar fraction 

should be maximised so that the purchased auxiliary energy is minimised. In 

considering the present system, the monthly heat delivered to the house, E., gh (J), for a 

given period of time is 

E. 
Onth =C-Z Q-A T 

month 

( 

(6.3) 
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where C is a constant (assuming the specific heat capacity of air is independent of 

temperature), and AT is the difference between the delivered air temperature and 

ambient temperature. Maximising the heat delivered to the house requires maximising 

both the flow rate and air delivery temperature. Delivery temperature is dependent on, 

among other factors, the amount of heat absorbed by and stored in the slates. Chapter 7 

considers the estimation of heat delivered by the system using calculated flow rates 

(according to the model presented in chapters 3 and 4) and measured temperatures of air 

delivered. For the present work, the optimisation process is based on two major 

assumptions: 

1. For a given month, the temperature difference (AT.,, th 'ý ATdclivered - T.,,, b) is 

taken as a constant (the average (AT) for the month). 

2. System flow rate has no significant effect on the temperature of the slates. 

The two assumptions above necessitate that 

C -AT.., * - 
2: Q 
Monsh 

(6.4) 

where the term I: Q is proportional to the monthly volume of air delivered. Equation 
1"onth 

6.4 reveals that if different systems are compared, the optimum system is the one which 

delivers the maximum volume of air. 

6.1.3 Current optimisation strategy 

The main objective of the present chapter is to employ the experimentally 

validated flow rate model (chapters 3 and 4) along with the slope irradiance model 
(chapter 5) to optimise the system. The optimum system is defined as that which 
delivers the maximum monthly (and consequently annual) volume of air. It was 
mentioned in section 4.4 that maximising the volume delivered does not necessarily 
imply maximising efficiency. For the current work, the optimum PV-fan system which 

maximises the volume delivered is first identified. The optimum system is then 

modified in order to maximise flow efficiency. Even though maximising efficiency will 
slightly decrease the volume delivered, it is desirable in order to utilise most of the solar 
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energy available to the PV module and that given by the fan (in terms of pneumatic 

output). In order to maximise efficiency, parameters such as duct length (section 

6.5.2.2), duct diameter (section 6.5.3) and motor constant (6.5.4) are considered. 

In designing an RSB ventilation preheating system, the objective can typically 

be to identify the components, which will deliver at least recommended ventilation rates 

at the lowest cost. This requires that the designers select from commercially available 

components. In this case, the input parameters will be different and the model flow chart 

will also differ from that shown in Fig. 4.1. This will be discussed briefly in Chapter 8 

(Future work). In the current work, however, as discussed in section 3.3.7, the system is 

optimised with respect to a range of previously selected components (Table 3.3). 

In PV-driven systems, the equipment is sufficiently expensive that investment 

costs dominate the life cycle costs and so, over designing the system, is to be avoided. 
In order to minimise initial cost, the optimisation procedure is applied to systems with 

single components (i. e. single PV, single fan) only. The optimum system is then 

compared to systems with PV and fan parallel, and series combinations. The possible 

combinations of PV modules and fans in series and in parallel are shown in Fig. 6.1. 

The optimum system is compared to other systems in several ways including the 

volume delivered, the overall efficiency, the solar fraction, the potential savings, and the 

payback period. The results of the optimisation process are presented and explained in 

terms of the model-based theoretical (Q-G) and (ij-G) simulations in chapter 4 (section 

4.4). 
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6.2 ESTIMATING VOLUME DELIVERED 

Several PV pumping system studies used the total volume of water delivered as 

a basis for optimisation since it is desired to maximise the volume of water pumped. 

The volume delivered in a PV pumping system between times t, and t2 is calculated as 

12 

V= fQdt (6.5) 
ta 

Navarre et al (2000) derived the following expression for the daily volume of water 

delivered 

V 
12 P.,, ý( -G '17A '17UP 

dt 
11 

2.725 - Gref , HT 
(6.6) 

where Pm,, f is the rated power of the PV module at STC, G,, f is the irradiance, at STC, 

IIA is the PV array performance factor considering wiring and mismatch losses, 11mp is 

the efficiency of the motor-pump unit and HT is the total head in the system. As the 

parameters Pm refs IjAv rlmp and HT are all functions of irradiance, ambient temperature 

and wind speed, the task of integrating Eq. 6.6 is, in practice, clearly complex. 
Alternatively, since irradiance, ambient temperature and wind speed data are available 
in tabulated form; the flow rate and efficiency can be calculated for each row and the 

sum, over a given period of time, determined. The volume delivered over the smallest 

time interval (i. e. I hr for datasetl and 5-min for dataset2) is calculated from Eq. 6.7, as 

can be inferred from Fig. 6.2 

(Q, + 
01+1 - I) 2 

(6.7) 

where V is in m3Q is in m 3/S 
, and At = ti+l - tj is 300 for 5-min data and 3600 for I-hr 

data. 
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QI 1I 

c 

Fig. 6.2: A portion of the flow rate profile for a given day. 

So in Fig. 6.2, the total volume delivered (assuming the fan starts at tj and stops at t5) is 

calculated as 

V =. 
ýt- 

-(Q, +2Q2 +2Q3 +2Q4+ Q5). 2 

Clearly, the threshold irradiances (start-up and cease) of the PV-fan system 

significantly affect the volume of air delivered. From Fig. 6.3 it can be seen that, 

according to irradiance data available, the fan is operating at t5 but it ceases to operate at 

some point between ts and t6. If threshold irradiances are not accounted for, the fan will 

still be operating at t6 delivering a flow rate Of Q6, as shown. The shaded area in Fig. 6.3 

corresponds to the extra volume that would have been predicted if the threshold 

irradiances were not considered. Considering start-up characteristics, the model will 

give a zero flow rate at t6 (or will virtually skip the calculation for that irradiance) since 
there is not enough irradiance to re-start the fan after it had ceased to operate. Assuming 

the fan starts at tj and ceases to operate at t8, if start-up characteristics are not accounted 
for, then the total volume delivered between tj and t8 is calculated as 

V= A- 
- (Q, +2 Q2 +2 Q3 + 2Q4 +2 Q5 +2 Q6 +2 Q7 + Qg)* 

2 

However, if start-up characteristics are accounted for (i. e. the flow rate at t6 equals 

zero), then the volume between tj and t8 is (V-2Q6) where the volume delivered 

between t5 and t6 is V= ýý - (Q5). This calculation of V5.6 assumes that the fan stops 2 
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half way between t5 and t6. As a result, it is seen that the smaller the time interval, the 

better the prediction of the volume delivered. 

Vi 

Fig. 6.3: A flow rate profile showing the extra volume that can be predicted if start-up characteristics are not 
accounted for (the shaded area). 

6.2.1 Effect of start-up characteristics on the volume delivered 

A start-up characteristic is a determinant factor in the operation of a PV system. 
Bione ct al (2004) stated that the water volume pumped by a PV pumping system 

depends significantly on the minimum cut in irradiance level to start the operation of the 

system. The fraction of solar radiation collected above a given threshold irradiance, IT,, 
is defined as utilizability (Duffie and Beckman, 1991). That is, useful energy is 

produced only for solar radiation levels larger than the threshold value. The fraction of 

an hour's total energy that is above the critical level is the utilizability for that particular 

hour, as defined by Eq. 6.8 

(IT 
- IT, 

c 
IT (6.8) 

where ýh can have values between 0 and 1. The 'Y' sign indicates that the utilizable 
energy can be zero or positive but not negative. The utilizability for a single hour is not 
useful. However, utilizability for a particular hour for a month of N days (for example 
12 prn to I pm in January) in which the hour's average radiation is ITis useful. This can 
be found from Eq. 6.9 
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I- IT, 
c :, v 

(IT 

IT 
(6.9) 

The monthly average utilizable energy for the hour is the productI. -ý.. The 

calculation can be done for individual hours and the result can be summed for the whole 

month to get the month's utilizable energy. 

Loxsorn and Durongkaverdi (1994) used a superposition methodology to 

determine utilizability for PV pumping systems. They divided the non-linear curve to 

two, straight, linear segments to apply the utilizability concept and then added 

contributions of these two regions. Kiatsiriroat et al (1993) used the concept of 

utilizability for estimating the long-term performance of direct-coupled PV water 

pumping systems. A modified utilizability function, based on radiation statistics, was 

developed, and the monthly average daily amount of water was estimated. 

Firatoglu et al (2004) stated that utilizability can be defined in terms of either 

PV module power output or pumped water rate. They used the former because, as they 

stated, the volume delivered is linearly related to PV module output. The authors then 

used this utilizability concept to optimise the system. A three-step optimisation 

methodology was considered. Firstly, the optimal PV array slope was detennined using 

a linear search method based on 16-year data for Sanliurfa, Turkey. The authors 

proposed a simple manual tracking system such that the array slope was adjusted, 

mechanically, only once a month. Secondly, the optimal solar radiation interval was 

determined by the utilizability method. A utilizability factor was defined as the ratio of 

monthly peak-power outputs from a single PV module at a selected radiation interval to 

that at all radiation levels. Thirdly, the optimum number of PV panels and their 

optimum electrical configuration in the array were determined by a non-linear search 

method based on a statistical parameter. 

For the current work, it is necessary to update the model described in chapter 3 

and 4 for start-up characteristics. This will be discussed in detail in section 6.3.4. 
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6.3 OPTIMISATION PROGRAM 

The flow rate model presented in chapters 3 and 4 is valid for a single data point 

of irradiance and ambient temperature and so it must be updated in order to cope with 
datasetl and dataset2, described in chapter 5. A flow chart of the optimisation process is 

shown in Fig. 6.4. For given duct specifications and air properties, the model calculates 

the monthly volume, efficiency, and utilisability for each of the combinations shown in 

Fig. 6.1. The data for a given month is selected from the database and values of 
instantaneous flow rate are calculated. The slope irradiance and flow rate models are run 
for each line of data. The volume is then calculated for the whole month and entered 
into a cell in Excel. 

The first update to the model presented in chapter 3 was adapting the program 

such that the large datasets could be easily handled. Due to the large amount of data in 

datasetl, it is not possible to handle it in Excel. The data was, therefore, processed in 

SPSS (the Statistical Package for Social Sciences) software and saved in (. pm) format 

and a simple code (Appendix B8) for opening the file, extracting and delivering the data 

(irradiance, ambient temperature and wind speed) corresponding to the required month 

was developed and presented. 

In order to be useful for optimisation, the model presented in chapters 3 and 4 is 

updated with respect to several parameters. The input parameters necessary for running 
the updated model are environmental parameters (G, Tw, ws), a number code for each 

of the PV modules and fans, and start-up characteristics. These are discussed in sections 
6.3.1 through 6.3.4. In section 6.3.5, the assumptions used for implementing the 

optimisation model are outlined. 

6.3.1 Envirorunental parameters 

For datasetl, irradiance, ambient temperature and wind speed are available while 
for dataset2, only irradiance is available. It was shown in chapter 5 that ambient 
temperature can be predicted for dataset2. The model developed in chapters 3 and 4 

does not account for wind speed and assumes that the loss coefficient, U is constant for 

different wind speeds. A correction term for the effect of wind speed on the loss 

coefficient can be incorporated as discussed below. 
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Fig. 6A A flow chart of the optimisation process. 
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6.3.1.1 Effect of wind speed 

Both the roof slates and the PV module can be treated as a flat plate collector. 

The rate of heat loss from flat plates exposed to outside winds affects their temperature, 

and, consequently their performance. The wind speed over the PV module affects the 

loss coefficient, U, which is related to PV module temperature. Thus, wind speed 
indirectly affects the performance of the PV module. McAdams (1954) reported that the 

loss coefficient from a flat plate is related to wind speed by the equation 

U' = 5.7 + 3.8 x ws (6.10) 

where ws is in nVs and U' is in W/M 2 C. The coefficient in Eq. 3.8 is in W/C and so the 
coefficient obtained from Eq. 6.10 must be multiplied by the area of the PV module 
before being used in Eq. 3.8. As a result, Eq. 3.8 then accounts for the effect of 
irradiance, ambient temperature, and wind speed on PV module temperature. The effect 

of wind speed is considered if datasetl is used for optimisation. On the other hand, if 

dataset2 is used, only the effect of irradiance and ambient temperature on PV module 
temperature are accounted for. In this case, the value of U is assumed constant (Table 

3.6). 

In order to account for the effect of wind speed, the flow chart in Fig. 4.3 is 

updated by including Eq. 6.10 after the box "Assume il"and using the value of U' for 

calculating T,.. d. 

6.3.2 PV module selection 

The optimisation process considers different parallel and series combinations of 
the two PV modules listed in Table 3.3. A code is assigned for each of these 

combinations as shown Table 6.1 below. A choice of a certain number code directs the 

model to a database where specifications such as Isc, Voc, P,,, V"', Rs, U in addition to 
the temperature coefficients and start-up irradiances are selected. The PV equations 
presented in chapter 3 are for a single PV module. These equations can be easily 
adapted for parallel and series combinations. The IV characteristics for PV2 modules in 

series and in parallel, as generated by the new method (section 3.2.2) are shown in Fig. 
6.5. 
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In cases where two PV modules are connected in series, the operational voltage 

can be very high and such cases are not considered for optimisation. Furthermore, 

simulations for FanO were carried out only with PV2. 

Table 6.1: Codes for PV and fan combinations to be used in the optin-dsation model. 

PV module Fan 

I A single PV 1 0 A single FanO 

2 Two PV I in parallel I A single FanI 

3 Two PVI in series 2 A single Fan2 

4 A single PV2 3 Two FanO in parallel 

5 Two PV2 in parallel 4 Two FanO in series 

6 Two PV2 in series 5 Two FanI in parallel 
6 Two FanI in series 

Single PV2 
1.4 - Two PV2 in Parallel 

....... Two PV2 in s erie s 
1.2 - 
1.0 - 
0.8 - 
0.6 - 
0.4 - 
0.2 1 

0.0 
05 10 15 20 25 30 35 40 

V, v 
Fig. 6.5: Two PV2 modules in series and in parallel for 0- 1000 W/m2 andTw-35C. 

6.3.3 Fan selection 

The optimisation process also considers different parallel and series 

combinations of FanO and Fant. A code is assigned for each of these combinations as 

shown in Table 6.1. The specifications for single fans include the constants listed in 

Tables 3.9 and 3.10, while those for fan combinations can be inferred from basic 
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electrical theory as seen in Fig. 6.6. A brushless DC motor fan can also be expensive 

and it will add to the cost, so, systems with a single fan are preferable. 

(a) 

(b) 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

In Parallel 
p: 348 rrA 

e Fanl 
p: 174 rrA 

inl In Serles 
t-up: 174 rrA 

Fig. 6.6: IV characteristics for parallel and series combinations for (a) FanO and (b) Fan I. 

The optimisation process assumes that the two fans deliver air through separate 

ducts at the same effective duct length (i. e. same APs-Q characteristic) and so, the flow 

rate for one of the branches is doubled (calculations show that for FanO and FanI with a 

single duct, the flow is always turbulent). However, when two similar fans are 

connected in series, the voltage obtained from the iteration process described in section 

4.2.1 (Fig. 4.4) is halved. This is based on the assumption that the electrical 

characteristics of the two fans are identical. 

2 FanO In Parallel 
Start-up: 622 n-A 

A single FanO 
Start-up: 311 rTA 

2 FanO In Series 
Start-up: 311 rrV% 

05 10 15 20 25 
V, v 
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6.3.4 Start-up characteristics 

6.3.4.1 Threshold irradiances 

The threshold irradiances (start-up and cease) are listed in Table 6.2 for the 

different PV-fan combinations. In writing the program, start-up and cease irradiances 

are determined by specifying both the selected PV module and fan. The start-up and 

cease currents and voltages for systems with single components are measured in the 

laboratory (V, and I, in Table 3.8) and threshold irradiances are calculated. Threshold 

and cease irradiances for parallel and series combinations are calculated from basic 

electrical theory. 

6.3.4.2 The switch function 

After specifying the PV module and fan combination required, the program 

chooses the corresponding start-up and cease irradiances. The flow rate model will be 

run only for those data points specified when the fan is operating. However, the fan is 

not only operating for irradiances above the start-up irradiance. If the fan is already in 

operation, it will keep operating as long as the irradiances are above the "cease" values 

as can be seen from the simplified flow chart in Fig. 6.7. A switch function, which 

assigns a value of "I" to an operating fan and a value of "0" to a non-operating fan, is 

included in the updated model. This procedure dramatically reduces calculation time as 

values of "I" and "0" are stored in the program, and only lines with values of "I" are 

considered for calculation. The switch code is shown in Appendix B9. 

6.3.4.3 Kick-starting the fan 

The optimisation process also considers cases where systems with high 

threshold irradiances are kick-started using an electronically controlled capacitor (Faiz 

et at., 2004). The purpose is to study whether the additional cost of kick starting is 
justified by the extra benefits, if any, it produces. In this case, the model is run 

disregarding the "switch" function and all systems are compared for the same start-up 

and "cease" irradiances. 
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6.3.5 Assumptions 

In order to run the optimisation model, several assumptions are made concerning 

the input parameters. These assumptions do not affect the optimisation process since 

they are fixed for all systems considered. These are discussed below. 

6.3.5.1 Slope 

It was shown in chapter 5 (Fig. 5.8) that the optimum slope for Edinburgh is 

approximately 45". There are no statistics about the most prevailing roof tilt in 

Edinburgh. For the optimisation process considered here, a slope of 45* is assumed. 

6.3.5.2 Duct properties 

In order to achieve higher flow rates and thus maximise the volume delivered, 

the resistance to flow must be kept at a minimum. This necessitates that the length of 

the duct is kept at a minimum. As the grill opening is reduced, the effective duct length 

increases. Ideally, a system with no grill has the least resistance to flow and thus the 

least Lff. Practically, however, such a system is not favourable to prevent undesirable 

sudden draughts of air and also to control the noise from the fan. For the optimisation 

process, an effective duct length of 10-m is' assumed even though through further 

reducing the grill aperture, it can reach to 20 m. As long as the length is the same for all 

PV-fan systems to be compared, the optimisation process will not be affected. In the 

next section it is shown that for a given PV-fan combination, there exists an optimal 

duct length (for a given diameter and extension) at which the system utilises 100 % of 

fan pneumatic power, AP xQ (see Fig. 2.9). 

It was shown in chapter 4 that a duct diameter of 152 mm. is favourable to the 

102 mm diameter. As highlighted in chapter 4, there exists a critical diameter for the 

system after which the volume delivered does not increase. This diameter is optimum 

because it maximises the volume delivered. For the current optimisation process and for 

system testing, in chapter 7, based on the available components, a duct diameter of 152 

mm. will be used. 
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Fig. 6.7. Accounting for start-up characteristics 

The degree of extension of the duct is assumed to be 80 %. This allows for 

entrance and exit losses in addition to twisting and bending of the duct. This assumption 

does not affect the optimisation of the PV-fan combination (since it is a fixed value for 

all cases) but clearly affects the volume, and thus the heat, delivered. It can also affect 

the heat transfer through the walls of the duct to the attic. For a given temperature 

difference and a given length of duct, a higher degree of extension results in a lower 

surface area, which implies lower heat transfer rate. In practise, as discussed in chapter 

4, it is not possible to measure an exact value for the degree of extension. Alternatively, 

a measured AP, -Q curve for the system can be translated into an effective duct length 

for some diameter and some degree of extension. This approach is further discussed in 

chapter 7. 

6.3.5.3 Air properties 

The temperature of air and atmospheric pressure are necessary for calculation of 

density and viscosity. The barometric pressure is fixed at 760 min Hg. The temperature 

of air flowing in the duct depends on the temperature of the. slates, heat transfer 

coefficients, heat losses from the duct, ambient temperature and irradiance. For 

simulation purposes, a temperature of 5C above ambient is considered for 

simplification. This assumption does not reflect the real situation since the difference in 
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temperature depends on the prevailing wind speed, irradiance and other factors. 

However, an optimum system for a5C difference will also be optimum for 10 C. This 

will be discussed in chapter 7. 

6.3.5.4 Effect of suction pressure 

As has been shown in section 3.7, the effect of the system pneumatic 

characteristics on the electrical and speed-voltage characteristics of the fan is negligible. 

6.3.6 Economic considerations 

The cost for each of the components used for constructing the PV-driven RSB 

system is shown in Table 6.3. It can be seen that the addition of a PV module in parallel 

or in series can add more than 50 % to the cost of systems with a single PV module. 
Table 6.3 will be used for payback period calculation in section 6.6. The payback period 
depends on both the initial cost of the system and the volume of air delivered (which 

corresponds to energy savings). Parallel combinations of PV modules incur higher costs 
but also produce more volumes (as will be seen in the next section). 

The use of two fans in parallel or in series can add 25 - 32 % to the cost of 

single fan systems. The optimisation results will clarify if the additional cost of an extra 
fan is justified by the extra volume, if any, delivered. 
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'r. lkl. A 'I - Iýncf 

Cost, f Description 

PVI 104.00 Polycrystalline, 4.5 WP' PV/SX-MLOS, 

dimensions: 10.8 x 10.5 x 0.6 inches 

PV2 135.00 Polycrystalline, 10 Wp, PV/SX-MLIO, dimensions 

17.5 x 10.5 x 0.6 inches 

FanO 69.29 PAPST, 135 mm standard, 9.5 W, 12 V, 69 Ils 

Brushless DC motor 

FanI 53.34 PAPST, 135 mm standard, 9.5 W 24 V, 69 I/s 

Brushless DC motor 

Fan2 47.41 Comair Rotron 171 mm, 20.3 W 24 V, 111 I/s 

Brushless DC motor 

Duct 1 12.69 10 m long 102 mm Thermaflex Aliflex Flexible 

ducting with a multiple layer 
_aluminium/polyester 

laminate 

Duct2 17.57 10 m long 152 nun Thennaflex Aliflex Flexible 

ducting with a multiple layer aluminium/polyester 
laminate 
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6.4. OPTIMISATION RESULTS 

6.4.1 Volume delivered by single fan systems 

Using datasetl, the program was run month by month for the different fan 

combinations. Figure 6.8(a) shows the results for the three single fans with a single 

PV2. It is seen that Fanl, when coupled to PV2, consistently produces higher monthly 

volumes. This is due to the fact that Fanl starts at lower irradiances and so operates for 

longer periods of time. The utilisability for each of the fans, which also corresponds to 

the percentage of the time the irradiance is above the threshold irradiance, is shown in 

Fig. 6.9. Figure 6.10 shows utilizability for all three fans for two typical days in January 

and May, again based on datasetl. 

However, even when FanO and Fan2 are "kick-started" so that the model is run 

for these fans for the same period of time as Fanl, the model predicts that they will still 

deliver lower monthly volumes, as shown by Fig. 6.8(b). This can be explained by 
2 

reference to Fig. 4.20 where it can be seen that for pe'riods between 200 and 580 W/M , 
Fanl produces higher flow rates than Fan2. This optimum period of Fanl is the most 

prevailing irradiance interval for Edinburgh, and, so, for most of the time, Fanl will 

deliver higher flow rates. Figure 6.11 shows APf-Q characteristics for the three fans at G 

= 400 W/M 2. It is clear that at this irradiance, Fanl produces higher flow rates than the 

two other fans. 

This same behaviour is also observed with the smaller PV module. In this case, 
however, lower volumes are produced. This is also explained by the start-up 

characteristics. The respective delivered volumes in thousands of m3 for each of the PV- 

fan combinations and for the specifications listed in section 6.3.5, are summarised in 

Table 6.4. It is seen that, considering volume delivered, the PV2-Fanl system is the 

most favourable amongst the single PV-single fan systems. 
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Fig. 6.10: Utilizability for the three fans for a typical day in (a) January and (b) May based on 27 
years of data for Edinburgh. 
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Fig. 6.11: Fan AP-Q characteristics at 400 W/M2. 
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6.4.2 Volume delivered by different fan combinations 

Figure 6.12 shows Q-G simulations for parallel and series combinations of Fanl. 

The respective modelled monthly volumes delivered by the parallel and series 

combinations of Fant are shown in Fig. 6.13(a). For these combinations, two 

assumptions are made. First, it is assumed that the two fans deliver air through ducts 

with the same effective duct length (i. e. the two branches of the system have the same 

AP, -Q characteristic). Secondly, it is assumed that the electrical characteristics of the 

two fans and their coV relationships are identical. Figure 6.13(a) reveals that parallel and 

series combinations add to the cost but introduce no performance advantage over a 

single fan system. The parallel combination produces less volume because of the higher 

start-up irradiances. For the series combination, on the other hand, the start-up 
irradiances are the smne as for the single fan case. However, for the same irradiance, the 

operational voltage for each of the two series-fans (see Fig. 6.6(b)) is halved. Thus, in 

this case, each of the two fans in series operates at lower speeds than in the single fan 

case, and so, in the long run, the volume delivered for the series combination is less. 
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Fig. 6.12: Q-G simulations for parallel and series combinations of Fanl. 
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For FanO, the parallel combination has a start-up irradiance of more than I 100 

W/M2 and so the model clearly predicts that the system will remain non operational. 

Figure 6.13(b) shows that, unlike systems comprising Fanl, operating two FanO in 

series significantly increases the monthly volume of air delivered. 
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Fig. 6: 13: Montlfly volume delivered (1000 rr? ) by PV2 systems with parallel and series 
combinations of (a) Fanl and (b) FanO. 
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6.4.3 Optimisation based on dataset2 

The model was run with dataset2 (5-min data) for the different PV-fan 

combinations. The results are shown in Fig. 6.14. Based on 5-min data, the system PV2- 

Fanl is still the optimum system. Table 6.5 shows that the total annual volume as 

calculated by dataset2 is 12 % higher than that calculated by datasetl. This is expected 

because with detailed data, the periods of operation for each of the systems increase. 

The effect of using dataset2, however, is more noticeable with FanO and Fan2. Table 6.5 

also shows that, for all systems, approximately 60 % of the volume is delivered during 

the heating season. The results reported for the optimum system is the next section are 
based on dataset I (long-term hourly data). 
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6" 20.0 EE 
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- FanO 

Fig. 6.14: Monthly volume delivered (1000 M) for single PV -single fan systems 
using dataset2. 
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Table 6.5: Comparison of results as obtained from the two datasets (datasetl and dataset2). 

FanO Fanl Fan2 
Datasetl Annual volume, 1000 m4 81 160 42 

During heating season, 1000 m4 47 96 23 

(Heating season: year), % 59 60 55 

Dataset2 Yearly volume, 1000 m3 116 179 87 

During heating season, 1000 m4 71 112 51 

(Heating season: year), % 61 63 58 

Summary Increase in predicted volume for 
whole year (dataset2: datasetl), 

45 12 110 

Increase in predicted volume for 
heating season (dataset2: 
dataseti), % 

51 16 123 
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6.5 ANALYSIS OF THE OPTIMUM SYSTEM 

6.5.1 Potential of optimum system 

Based on datasetl, the optimum system is PV2-Fanl. For the heating season 

(Sep. through May), this system is expected to deliver approximately 9.6 x 104 M3 of air 

(1.1 X 105 M3 according to dataset2). There are potentially 2890 hours of daytime 

(sunrise to sunset) in Edinburgh and so the volume delivered by the optimum system 

corresponds to a constant flow rate of 33.2 m3 /hr (9.2 I/s). This flow rate satisfies the 

ASHRAE recommendations (ASHRAE, 200 1) for aI 00-m 3 room with one occupant. 

Running the model for a delivery temperature of I degree Celsius above ambient 

temperature and assuming a constant specific heat capacity for air (Cp = 1006 J/Kg. C) 

and a density of 1.2 Kg/M3' the heat that can be potentially delivered by the optimum 

system throughout the heating season is 116.1 MJ (32.2 kWhr). In chapter 7, it will be 

shown that the delivery temperature for some types of slates can easily reach 5C above 

ambient temperature. Using this temperature difference, the amount of heat that can be 

potentially saved by the optimum system is 161 Mr. This constitutes more than 15 % 

of the heat that can potentially fall on a 1M2 south-facing collector in the UK (Page and 

Lebens, 1986). A comparison with the two other single-component systems is shown in 

Table 6.6. 

Table 6.6: Average flow rates and total heat delivered for AT -1 C during the heating season. 

Optimum system PV2-FanO PV2-Fan2 

Volume% 1000 m3 96.2 47.1 22.9 

ACH for 100_M3 space 0.32 0.16 0.08 

Heat delivered", kWhr 161 79 39 

Solar fraction", % 0.11 0.05 0.03 

C02 savings, kg 100 50 25 

During heating season For 5C temperature ditterence (delivered - ambient) 

Assuming that the heating load for a 100-m 3 space is 1500 kWhr during the 

heating season (an average of 5.5 kWhr/day), a solar fraction of 0.11 is obtained. This 

means that the optimum system is expected to save II% of the heating cost during the 
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heating season. Furthermore, based on a 630 9 C02/ kWhr, the potential annual C02 

savings for this system are 100 kg. 

6.5.2 Efficiency 

6.5.2.1 PV-fan efficiency 

Figure 4.25 shows that for the most prevailing irradiance interval in Edinburgh, 

Fanl systems consistently produce higher 71PV-Fan values than Fan2 systems. Using 

datasetl, the model is used to simulate monthly values Of TIPV-Fan. The results are shown 

in Fig. 6.15. The PV2 - Fanl combination is preferable because it will produce higher 

average efficiencies. Efficiencies of 10 %, which correspond to approximately 80 % of 

the PV maximum power efficiency, can be achieved in May. Choosing a fan with a 

lower motor constant will provide a better match to the PV module's maximum power 

as discussed in section 6.5.4. This can increase efficiencies up to 14 %. 

- PV2 - Fani 
- PV2 - Fan2 

-PV1 - Fanl 
- PV1 - Fan2 

10 

8 

2 

0 

Fig. 6.15: Monthly-averaged PV - Fan efficiencies. 

6.5.2.2 Fan-duct efficiency and optimum duct length 

Figure 6.16 shows the monthly for FanI and Fan2 with PV2. It is seen 

from section 4.4.2.3 (Fig. 4.25) that Fan2 produces higher )7,,,,, -D,,,, values for most of 

the irradiance range. Simulations show that there exists an optimal length of duct for 
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which the optimum system (i. e. PV2-Fanl) utilises a 100 % of available pneumatic 

output. This optimal length is a function of the fan AP-Q characteristic. 

PV2 - Fanl 

PV2 - Fan2 

6 

5 

4 

Fig. 6.16: Monthly-averaged Fan-Duct efficiencies for systems with 8m long duct (152 nun 
diameter and 80 % extension). 

The dependence of Wan-Duct on duct length for a 152 mm duct at 80 % extension 

for two irradiance levels is shown in Fig. 6.17. At lower irradiances (i. e. 400 W/M2 in 

the figure), the system with Fanl produces higher efficiencies for duct lengths below 12 

m. For the system PV2 - Fan I, the fan-duct efficiency is maximised at a duct length of 
8 m. This can also be seen from Fig. 6.18 where the efficiency-irradiance profiles for 

Fan I are shown for 6 in, 8 in and 20 in long ducts. For PV2 - Fan2, the optimum length 

(i. e. the length at which is a maximum) is 12 in. Since, a shorter length is 

desirable because it maximises the volume of air delivered, it is more beneficial to use 
Faril rather than Fan2 because overall efficiency is also maximised. 

With an 8 in long 152 mm diameter duct at 80 % extension, the PV2-FanI 

system produces higher fan-duct efficiencies from April to August as shown in Fig. 

6.16. The rest of the year, the system with Fan2 will produce higher values 

(but not necessarily higher overall efficiencies since, as shown in Fig. 6.15, PV2 - FanI 

always gives higher tlpv-F,,, values). Considering cost, the system with Fanl and the 

shorter length of duct (i. e. 8 in) is still preferable over that with Fan2 (which requires 
kick-starting during the period Sep. to Mar. ) 
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Fig. 6.17: Fan-Duct efficiency as a function of duct length for a 152 nun flexible duct with 80 % 

extension. 
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Fig. 6.18: Fan-Duct efficiency for Fani as a function of irradiance at different duct lengths (1) 

152 mm, ext. - 80 %). 

6.5.3 Optimum duct diameter 

The diameter of the duct is chosen so that the annual volume of air delivered is 

maximised for the optimum PV-fan combination. As explained in section 4.4.1, a duct 

diameter of 152 mm is desirable because it maximises flow rate and consequently, also, 

the volume of air delivered. The annual volume of air delivered, however, reaches its 
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maximum value at a critical duct diameter (D,,. ) as shown in Fig. 6.19. Using the model, 

and, based on dataset2 (5-min) data, the annual volume of air is calculated for different 

diameters for a length of 8m and an extension of 80 %. A critical diameter of 

approximately 200 mm. is obtained. Increasing the diameter from 152 mm to 200 mm. 

will increase the annual volume delivered by the optimum system by 18 %. 
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Fig. 6.19: Annual volume of air delivered by the optimum system (i. e. PV2 - Fanl -8m long 
duct) at 80 % extension as a function of duct diameter. 

6.5.4 Optimum motor constant 

It was shown in section 6.5.2 that, in addition to maximising volume, the 

optimum system (PV2-Fanl) also maximises ilpv. F., and according to Fig. 4.26, it also 

maximises Tjov,,,, Il. In order to further increase the utilisation of PV maximum power, an 

optimum motor constant for FanI can be determined. The present section, therefore, 

focuses on the optimum system (PV2-Fanl). While using a duct length of 8m will 

maximise fan-duct efficiency, selecting an appropriate motor constant for Fanl can 

maximise the PV-fan efficiency. 

Using a matching device to utilise most of the PV power is undesirable, as 

explained in section 6.1.1. An alternative approach is to determine a motor constant, 

which would ensure that the motor/fan operate closer to P. for most of the year. This 

optimum motor constant is a function of environmental conditions, in addition to the PV 

and fan characteristics as described by the Kolhe equation (Kolhe, 2000). In order to 

apply the Kolhe equation, the PV current at maximum power (I. ) is required. In the 
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present method, the determination of the optimum motor constant is based on the new 

method for describing the PV IV characteristic (section 3.2.2). 

The determination of the optimum motor constant is based on datasetl. For each 

data point, I. is determined and the optimum motor constant for Fanl calculated. This 

approach is useful as it produces a K. value which is representative of the design 

location since it is based on long-term weather data. However, applying this procedure 

can be cumbersome since evaluating In for each data point is not a straightforward task. 

Typically, the full PV IV characteristic must be generated and the current at which the 

power is a maximum is identified. For a large set of data, this increases the 

computational time significantly. 

The new method described in chapter 3 (Eq. 3.5) relates Pn, V,,, and I,, directly 

to irradiance and ambient temperature. This method, which has been validated through 

the work highlighted in section 3.4.5, can reduce the computational time significantly 

since it provides the means for estimating I. directly from weather data. The maximum 

power current can now be expressed as 

G [p + AT] 
G,, f 

V..,,, f + AT + C.. In( -G 
(6.11) 

ý 
ul -": 

r 

A program written in VBA was run for all data points and an average optimum 

motor constant was determined for each month. The results are shown in Fig. 6.20. The 

K,,,, pt value for the whole year was calculated as a radiation energy-weighted average. 

A value of 0.0745 V. s/rad is obtained (for Fanl, K. = 0.079 V. s/rad as calculated in 

section 3.5.1) . This result means that, based on 27-years of data for Edinburgh, a 

permanent magnet BLDC motor with a motor constant of 0.0745 V. s/rad is expected to 

utilise most of the yearly available maximum PV output. 

For purposes of the RSB system under consideration, if Fanl is manufactured so 

that it has the motor constant calculated above, the total yearly PV output will increase 

from 37.3 MJ to 43.1 MJ (14 % increase) as seen in Fig. 6.21. 
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Fig. 6.20: Monthly-average optimum motor constant for the 10 Wp PV module and based on irradiance 
data for Edinburgh 
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Fig. 6.21: Calculated monNy PV energy output. 

Figure 6.22 shows how the output energy for PV-FanI changes with the motor 

constant. It is clear that the K ... . pt is around 0.074 V. s/rad and that if the motor constant 
increases or decreases away from this value, a decrease in the PV output energy occurs. 
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Fig. 6.22: PV energy output at different motor constants for Fanl. 
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6.6 ECONOMIC EVALUATION OF THE OPTIMUM SYSTEM 

Several economic criteria are available for evaluating solar energy systems. The 

"payback time" method is used here. The payback time is defined as the time needed for 

the cumulative fuel savings to equal the total initial investment. According to Duffie 

and Beckman (1991), the common way for calculating the payback time is without 
discounting the fuel savings. These authors give the following equation for calculating 

payback 

J Csif 
+1 

NP = 
LFLCF, 

In(l + if 
(6.12) 

where Np is the payback period (years), Cs is the initial investment (f), if is the fuel cost 
inflation rate, F is the annual solar fraction, L is the annual load (kWhr) and CFI is the 
first period's unit energy cost (FJkWhr). 

Using the volumes delivered during the heating season in Table 6.4(b) and the 

information in Table 6.3, the payback time was calculated for the optimum system and 
compared to other systems as shown in Table 6.7. 

The systems with two PV2 modules in parallel are competitive with the 

optimum system. The system (2 PV2 in parallel with a single Fanl) has a lower 

payback period than the optimum system due to the high volumes produced. However, 

the use of two PV modules here is not justified since the fan is operating very far away 
from P,,, and so a very low efficiency will be produced. The option of using two PV2 

modules in parallel, however, cannot be entirely discarded and it can be useful for 

producing higher ventilation rates and delivering more heat. 

The use of two 4.5 W1, PV module instead of a single 10 Wp PV module with 
Fanl has a lower initial cost but a longer payback period. 
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6.7 SUMMARY 

In chapter 6, the flow rate model developed in chapters 3 and 4 and the slope 

irradiance model described in chapter 5 were put together into an updated optimisation 

model. The model was updated in order to account for different PV and fan 

combinations in addition to start-up characteristics. A function which assigns and stores 

a value of "l" for an operating fan and a value of "0" for a non-operating fan has been 

used. This function simplifies the lengthy calculation procedure since only cases with a 

value of "I" are considered. The effect of wind speed on the value of the loss 

coefficient, U, was also accounted for. 

The optimisation criteria and methodology were also introduced. The basis for 

optimisation based on maximum volume delivery was justified. The optimisation 

process reveals that the optimum system is the PV2-Fanl system. It was also concluded 

that kick-starting FanO or Fan2 will add to the cost but will not deliver higher monthly 

volumes than Fanl does. The optimum system delivers the recommended ASHRAE 

ventilation rates for a dwelling with a single occupant and it can, for a1C temperature 

difference deliver about 32 kWhr during the heating season. 

The optimum system can potentially 

1. deliver 96000 M3 of air during the heating season. This satisfies the 

ASHRAE recommendations for ventilating a 100 m3 room with one 

occupant. 

2. deliver 161 kWhr during the heating season (more than 15 % of solar 

energy falling on a IM2 in the UK). This can save more than 10 % of 
heating costs (solar fraction = 0.11). 

3. save 100 kg Of C02 annually. 

The overall flow efficiency 
H-Q 

can be maximised by maximising both 
G-a 

i7pv-F.. and Wan 
-Duet * Maximising volume delivered, however, does not necessarily 

maximise efficiency. It is evident from the model that the system with Fanl still 

produces higher efficiencies than other systems. 

The following recommendations are given 
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1. Considering only the components listed in chapter 3, the optimum system is the 

10 Wp PV module with the 24 VDC, 9.5 W fan with a free flow capacity of 69 

I/S. 

2. This fan has a motor constant of 0.079 V. s/rad and on average it can utilise 

about 86 % of the maximum power of PV2. The same fan but with a motor 

constant of 0.0745 V. s/rad can increase the yearly output of the PV module by 

14 % thus utilising the full of the maximum energy available. 
3. An effective duct length of 8m can maximise the pneumatic power. The system 

can be set to a given duct length by changing the setting of the grill. 
4. The larger the diameter, the more volume delivered. However, no volume 

increase is achieved for duct diameters larger than 200 mm. So it will be a waste 

of money to use larger diameters than 200 mm. For the system installed in the 

next chapter, a 152 mm. diameter is used based on availability. A 200 mm 
diameter is expected to increase the annual volume delivered by 18 %. 
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7. SYSTEM TESTING AND MODEL APPLICATION 

7.1 INTRODUCTION 

In chapter 6, the model presented was used to define the combination of system 

components that maximised the annual volume of air delivered. In the present chapter, 

this optimum system is installed and the model used with temperature measurements to 

make conclusions about the amount of heat deliverable by the system. The optimum 

system described in chapter 6 is installed and tested in two ways. First it is tested at a 
house in Wiston, Scotland and compared to the system PV2-Fan2. The two systems are 
installed side by side and measurements are taken for August, September and November 

(2004). Secondly, the optimum system is installed at three different locations in three 

different roof sections (with different types of slates) and the effect of the slates on the 

performance of the system is investigated. 

The model developed in chapters 3 and 4 is used to predict the amount of heat 

delivered during the period of operation of the system. This is to give insight into the 

potential of RSB systems for preheating ventilation air. The amount of heat delivered 

per unit time, that stored in the fan box and the maximum available heat absorbed by the 

slates can be calculated using Eq. 6.3 

Emonlh =C-Z (Q -AT) 
month 

Running the model for the measured data (i. e. irradiance, ambient temperature 

and air temperature in the duct), instantaneous values of flow rate are calculated. When 

integrated over the time period considered, in combination with the measured 
temperature data, the heat delivered by these different systems can be calculated and the 

system performance compared. 

The current chapter describes the procedure for testing such systems. The 

system's AP-Q characteristic in addition to irradiance and temperature data, require to 

be measured in order to be able to predict the performance of the system. 
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7.2 TESTING OF SOLAR AIR HEATING SYSTEMS 

7.2.1 Comparative testing of solar systems 

A measure of collector performance is the collection efficiency, defined as the 

ratio of the useful gain, over some specified time period, to the cumulative incident 

solar energy over the same time period 

E' dt 

a, fG dt 

where a. is the area of the collector. The basic method of measuring collector 

performance is to expose the collector to solar radiation and measure the fluid outlet and 
inlet temperatures and the fluid flow rate. The useful energy delivered, can then be 

calculated from Eq. 6.3. In addition to inlet and outlet temperatures, irradiance on the 

collector, ambient temperature, and wind speed are also recorded. Instantaneous 

efficiency can be calculated as 

171 = 
Ei 

GF 
(7.2) 

It is convenient in the economic analysis of solar systems to express the solar 

energy contribution to the total load in terms of the fractional reduction in the amount of 

energy that must be purchased. The fractional reduction of purchased energy is 

calculated from Eq. 6.1 and 6.2, as explained in chapter 6. In the current chapter, the 

optimum system will be compared to other systems based on solar fraction as an 
indicator. 

Calculating the efficiency of RSB systems, as defined by Eq. 7.1, requires 
knowledge of the area of the roof through which the fan will draw air. Definition of this 

area is a complex matter since it depends on irradiance in addition to other 

environmental factors. For example, as irradiance increases, the speed of the fan 

increases and so the area from which air is drawn also increases. So it can be difficult to 

compare different systems based on their thermal efficiency. 
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Another way of describing the performance of the system is by calculating its 

effectiveness (c), which can be defined as the ratio of heat delivered to the maximum 

heat absorbed by the slates. Assuming constant flow rate, the effectiveness can be 

calculated as 

Eoullet 

= 

(T. 
utlet -Tamb 

Emax 
imum 

(TSIle 
- 

Tamb 

where T,,,, tl, t is the temperature of air delivered. 

In the present chapter, three indicators will be used to compare systems: 

1. Solar fraction 
2. Effectiveness 

(7.3) 

3. The ratio r defined as the ratio of volume delivered (1) per Joule of 
irradiance received by the PV module. This indicator is used since 
the area of the PV module is known while the slate area from which 

air is drawn is not known. 

230 



7.3 COMPARATIVE TESTING OF TWO PV-FAN SYSTEMS 

In the current section, the optimum system will be comparatively tested with the 

system PV2-Fan2. The comparison will be carried out in two ways. First voltage and 
temperature profiles for selected days are compared for the two systems. This type of 

comparison will give information on the start-up irradiances and also on the 

temperatures that can be potentially reached by the slates and delivered by the system. 
The discussion of the results from these specific days will lead to conclusions about the 

performance of the systems. Heat quantities are then integrated and the performance of 
the systems compared for the full period of operation. 

The comparison of the two systems was carried out in two different roof sections 
A (Fig. 7.1) and B (Fig. 4.1 0(a)). The comparison in roof section A was carried out with 
the two systems installed side by side. In roof section B, the days of measurement for 

each of the systems were different (i. e. only one fan box was used at a time and the two 
fans were exchanged for different periods of operation). In the former case, the results 

are easier to interpret since the effect of wind speeds and other environmental factors 

can be neglected. In this case, however, the two side-by-side systems must be adjusted 

to the same AP, -Q characteristics as discussed in section 7.3.2. 

7.3.1 System installation 

Two systems were installed side by side on the south-facing roof at a house in 

Wiston as shown in Fig. 7.1 and according to the procedure outlined in Chapter 1. 

Measurements of iffadiance, fan voltage, ambient temperature, in-box temperature and 
temperature of the outlet air were recorded. 

7.3.2 System characteristic 

In order to be able to run the model for the data measured, a system's AP-Q 

characteristic (or alternatively an effective duct length at some diameter and degree of 

extension) must be entered into the model. This characteristic is different for different 

systems and must be measured for the specific configuration including the grill opening. 
The determination of the AP, -Q characteristics requires a single point measurement of 

pressure and flow rate (and then the affinity laws can be used to generate the rest of the 
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curve) or alternatively, if the APrQ characteristic of the fan in use is known, then a 

single point measurement of fan voltage and pressure across the fan will be satisfactory 

as shown in Fig. 7.2. 

AP 
1. Generated at measured 

voltage 

4. System 
characteristic 
detern-Aned by affinity 
laws from this point 

2. Measured AP 

rate 

Q 

Fig. 7.2: Procedure for determination of the system's AP-Q characteristics from a single 
measurement of fan voltage and pressure across the fan. 

In order to compare different PV-fan systems or different slate systems, the grill 

openings are set so that the different systems have identical AP. -Q characteristics. For 

systems with the same slates and same PV module but different fans, this requires that a 

voltage pair (Fanl, Fan2) at which the two fans will give identical AP, -Q characteristics 
is predetermined. For example, it can be seen from Fig. 7.3 that if Fanl is operating at 

17.5 V and Fan2 at 13 V, they will approximately give the same AP, -Q characteristic. 

The grill opening for S2 is set so that the pressure at 13 V is the same as that for S1 at 
17.5 V. It should be noted that even though this procedure produces small error, it is 

very simple and provides quick approximations. Figure 7.4 shows the APf-Q 

characteristic for the two systems SI (PV2-Fan 1) and S2 (PV2-Fan2) as generated from 

a single measurement of voltage and pressure across the fan. 

The pressure across the fan was measured using the inclined manometer 

presented in section 3.3.5 with two Pitot static tubes. A program written in VBA is used 

to convert voltage to speed and then to the APf-Q characteristic. The pressure is then 

located on the APf-Q characteristic and the corresponding flow rate is determined. The 

system's AP-Q curve is then generated by the affinity laws from this determined flow 

rate and the measured pressure. 
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Fig. 7.3: APrQ characteristics for Fanl and Fan2 with (a) both fans at 13 V (Fanl at 1350 r1min and 
Fan2 at 1670 r/min) and (b) Fanl at 17.5 V (1940 r/min) and Fan2 at 13 V (1670 r/min). 

Using the method outlined in section 4.3.2, an effective duct length of 8 ra at 80 

% extension and 152 mm diameter was determined for the system curve in Fig. 7.4. 

This duct length with the corresponding diameter and extension of duct are entered in 

the model to predict the flow rate as a function of the measured irradiance and ambient 
temperature. Using the predicted flow rate with temperature measurements, heat can 
then be calculated. 
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Fig. 7A AP, -Q characteristics for SI and S2. 

7.3.3 Voltage and flow rate profiles 

The measured voltage profile of the fan gives an indication of when the fan is in 

operation. Figure 7.5 (a) and Fig. 7.5 (b) show the irradiance and voltage profiles for a 

single day of measurement for the two systems (S1 and S2). It is noted that Fanl starts 

operating at 7: 54 AM while Fan2 does not start until 10: 00 AM. The start-up irradiances 

for both fans as read from Fig. 7.5 agree significantly with the laboratory measurements 
(see section 3.5.1 and Table 6.2). Notice also that the irradiance on the sloped roof can 

reach up to 1200 W/m2, which also agrees with predictions by the anisotropic NE model 
discussed in section 5.3. 

Using the irradiance and temperature data, the flow rate profile was calculated 
for the day shown by Fig. 7.5. The results for both systems are shown in Fig. 7.6. The 

area underneath the flow rate profile is proportional to the volume of air delivered. This 

indicates that even though S2 is delivering higher flow rates at midday, SI produces 

more volume throughout the day. Based on the method described in section 6.2, 

calculations reveal that for that day, SI delivered 735.9 m3 while S2 delivered 365.7 M3. 
The irradiance falling on the roof for the same period of time is 18.3 MJ/m2 (5.1 

kWhr/m2). Thus it is seen that SI delivers nearly twice"as much volume as S2. This is 

attributed, as discussed in chapter 6, to the start-up characteristics. Furthermore, for the 

whole period of operation for that day, Fan2 operates only 26 % of the time while Fan1 

operates 62 % of the time. 
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Fig. 7.5: (a) Irradiance profile and (b) voltage profiles for the two fans for Aug. 6,2004. 

236 

IIIII11 
79 11 13 15 17 19 

Time of day, hr 

-VFanl 

-VFan2 



60 - 

50 - 

40 - 

30 - CY 

20 - 

10 - 

0 -- 
5 

Time of day, hr 

Fig. 7.6: Flow rate profile for systems SI and S2 for Aug. 6,2004. 

7.3.4 Temperature and heat rate profiles 

-PV2-Fanl 

- PV2-Fan2 

The temperature profile for the period of measurement is necessary to calculate 

the thermal input of the system. Figure 7.7(a) shows that the temperatures delivered by 

SI and S2 are very similar regardless of the flow rate. The slight difference in delivered 

temperature (which also corresponds to similar difference in the in-box temperatures) 

raises the issue of optimum location of the box as will be discussed in section 7.5. 

It is seen from Fig. 7.7 that the temperature of air delivered in August can be 

well above comfortable levels. In this case, the fan should be switched off and air can be 

drawn from the outside or from a cooler place. The calculated heat profile for the 

August day is shown in Fig. 7.8. The heat delivered by the system over a given period 

of time is calculated in a similar fashion as that depicted by Fig. 6.2. A cooling effect is 

observed before 9 AM when the slates are not as warm as ambient temperature yet. This 

effect will cause cold draughts inside the house and can be a disadvantage of Fanl. 
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Fig. 7.7: (a) Duct-outlet temperature profiles for systems SI and S2 and (b) In-box and duct-outlet 

temperature profiles for S 1. 
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Fig. 7.8: Calculated heating rate for Aug. 6,2004 for SI and S2. 

This drop in T ... tjýt is observed in Fig. 7.7 and also in Fig. 7.9, which represents a 
day in November. The profiles for S2 are not shown because Fan2 did not start on that 
day. As Fanl starts (4t about 9: 30 AM), T ... tl, t and T, 3.,, drop very close to ambient 
temperature. This temperature drop from 10 to 6C causes discomfort. It can be avoided 
by either delaying the start-up of Faril until the slates are warm enough or by enhancing 
the properties of the slates so that they can warm up quickly. It is calculated that an 18- 

0 resistor connected in parallel with Faril will delay the start-up from 290 W/m2 to 800 

W/m2. Alternatively, adding dark paint or antireflective coating to the slates may cause 
the slates to warm up quickly thus avoiding cold draughts and delivering more heat to 
the house. 
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Fig. 7.9: (a) Measured temperature profiles and (b) calculated heat rate profile for a day in November 
2004. 
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7.3.5 General observations and results 

7.3.5.1 Roof section A 

1. In August, the in-box temperatures can reach up to 40 C. In such cases, it is 

undesirable to start the fan. Alternatively, air can be drawn from the outside or from a 

cooler place. Using a battery in this case can be useful so that, at night the fan can be 

turned on for cooling. 

2. Average temperatures for November are shown in Fig. 7.10. These are averages 

calculated over the potential sunshine period (i. e. from sunrise to sunset). It is seen that 

even in November the temperature of air delivered to the house can be a few degrees 

above ambient temperature. For the days of measurement, the delivered temperature is 

on average 3C above ambient temperature. This confirms the fact that roof slates can 
contribute to preheating ventilation air during cold days. 
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Fig. 7.10: Average ambient, outlet and in-box temperatures for the measurement period during 
November, 2004. 

3. The cumulative results for each of the three periods of operation are shown in Table 

7.1. While the volume delivered by SI during the full period of operation is more than 
twice that delivered by S2, both systems nearly deliver the same amount of heat. This 

can be explained by periods when SI is delivering cold air in the morning as discussed 

above. Nevertheless, Sl is more advantageous because S2 did not deliver any heat 
during November, a pattern which may also be repeated during subsequent months. 
Generally, the start-up characteristic of the system is the most important factor affecting 
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its performance. Results of the daily volumes and heat delivered by the two systems for 

the three periods of operation are also shown in Fig. 7.11. 

Table 7.1: Results for SI and S2 for 59 days of operation. 
System Aug. Sep. Nov. 

Run days 27 10 22 

Total hours* 325.6 124.0 173.8 

Total G, MJ/m2 658.9 250.5 133.0 

Total V, m" S1 

S2 

12131.5 

6306.5 

4812.8 

3283.0 

2561.0 

12.1 

r, 15 S1 

S2 

0.26 

0.13 

0.27 

0.18 

0.27 

0.00 

Total E, kWhr S1 

S2 

23.4 

22.0 

11.7 

14.8 

3.8 

0.03 

Solar fraction" S1 

S2 

15.6 

14.8 

21.3 

26.9 

3.5 

0.0 
'These are maximum possible daylight hours (sunshine to sunset) 
00 Based on a load of 5.5 kWhr/day 

4. The two systems are compared based on their solar fractions. The solar fractions 

shown in Table 7.1 are based on a heating load of 5.5 kWhr/day, which corresponds to 

spending LO. 35 /day on space heating at an electricity cost of EO. 07/kWhr. In Sep., S2 

gives higher solar fraction due, again, to the cooling effect of S 1. In Nov., however, SI 

performs much better with a solar fraction of 3.5. 

5. It is seen from Table 7.1 that the optimum system has higher valuesof -e, for the 
three periods of operation. In Sep., the ratio for S2 is higher because, as can be seen 
from Fig. 7.11 (b), during the last few days of operation in Sep., the received radiation 
was very high indicating that Fan2 had been delivering higher flow rates during that 

period. This, in addition to the cooling effect caused by early start-up of Fanl, results in 
lower thermal energy delivered by SI during the period of operation in Sep. 

6. It is expected that as the flow rate in the system increases, more heat is removed from 

the slates and so the slate temperature decreases. However, based on the similarity of 
the temperature profiles (Fig. 7.7 (a)) and the difference in the flow rate profiles for the 

same day (Fig. 7.6), it can be suggested that the flow rate in the system may not 

significantly affect the temperature of air in the box or the slate temperature. 

242 



C. ) 

co 

IT LILII 
II 

0 
C14 

U) 

0 

LO 

V-- - --- 1- --- -,! 

CD CD C: ) 
OD e 

w K'A 

, ý: cr, -, LT LT 
II 

0 
(N 

> 

U) 

(Y) C%4 

Qw/ruv) 

UOIWIP8J 18401 PUL, rw '3 

C) 

00 
00 

AD 

< 
LO 

>% LT LML 12 m 

CN C14 

C) C) 

C) C) C) C) 
C) C) C) 

o8 c) c) 000 
(0 ýt M cq - 

co (D N: r N 
(, Lu/rw) 

CLU &A uoiwipoi ieioiL Pue rw 3 

04 

LILU C) 
04 

LO 

m 
a 

-0 

LO 

0 

CN 0 00 CD ;t CN 

ew 'A 

U) 
04 

04 m 

U) 
L. LT 12 

U) 

(0 LO It MN 
(, Lu/rw) 

uolieipe., iezo. L Pue rw 3 

C'4 



7. The collector area from which air is drawn is variable and depends on irradiance and 

fan voltage (or speed). Thus it is not possible to calculate an efficiency of the system. It 

was not possible to determine effectiveness (6) since slate temperatures were not 

measured. 

8. For the total period of operation (59 days) the optimum system delivers, on average, 

31 M3 /hr (8.7 I/s). This compares well with the predicted value of 9.2 I/s given in section 
6.5.1. 

7.3.5.2 Roof section B 

Further comparison of the two PV-fan systems was carried out with the roof 

section in Fig. 4.10(a) (roof section B) during March 2004. Unlike the case with slate 
type A, the PV-Fan systems with roof section B were operated for different days (not 

side by side). The slate, ambient and duct outlet temperatures for a few days of 

measurements are shown in Fig. 7.12. This figure indicates the potential of roof slates 
for delivering heat. 
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Fig. 7.12: Temperature profiles for roof section B for several days during March 2004. 
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A comparison for the full period of operation of both systems is shown in Table 

7.2. Effectiveness was calculated in two different ways as shown at the bottom of the 

table. It is seen that the optimum system is expected to have higher effectiveness and 

solar fractions. It is also seen again that the heat ratio is less than the volume ratio. This 

is due to the cold draughts produced by FanI due to early start-up as can be seen from 

Fig. 7.13. Moreover, for days with the optimum system, higher wind speeds were 

measured. Despite the fact that the optimum system was operated with lower slate 

temperatures (due to high wind speeds) it gave a higher effectiveness due to its longer 

periods of operation as seen in Table 7.3. 

The ratio , e, was calculated for both systems. It can be seen that the optimum 

system still produces higher volumes for each joule of energy received by the PV 

module. These values for roof section B are different from the values for roof section A 

which may be attributed to different system characteristics. 

Table 7.2: Results for FanI and Fan2 (operated on different days in March, 2004) with roof section D. 

Fanl Fan2 

Run days II (Mar. 7-17) 11 (Mar. 18-28) 

Max sunshine hours 126.5 126.5 

Total G, MJ/niý 83.8 73.7 

Total V, M3 4893.2 1983.8 

r, I/J 0.81 0.37 

E,,. x, MJ 41.8 40.2 

EB..,, MJ 28.4 20.2 
Edelivered, MJ 22.1 16.7 

solar ftaction* 0.11 0.08 

Edelivered-max 0.53 0.42 

Cbox-mx 0.68 0.53 
Dasea on D. D Kwnr/aay ioaa. 
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Fig. 7.13. Temperature and voltage measurements (a) for March 17,2004 with PV- FanI 

and ws = 9.7 m/s) and (b) for March 27,2004 with PV - Fan2 and ws =4 m/s). 
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Table 7.3: Results for PV-Fanl and PV-Fan2 for two different days of operation with slate type B. 

PV-Fanl PV-Fan2 

day Mar. 17 Mar. 27 

Average ws, m/s 9.7 4 

En .. ý, MJ 10.0 11.5 
E in boxý MJ 5.1 5.4 
Edeliveredg MJ 4.2 4.4 
e 0.42 0.38 

7.3.6 Sununary 

The optimum system is still favourable due to its early start-up characteristics. 
However, measurements of both systems under identical conditions of wind speed and 

patterns are necessary for representative comparison to be carried out. Moreover, a 

matching between slate type and the optimum system is required so that the slates warm 

up as quickly as the system starts operating. Delaying the start of the system is 

advisable but in order to make use of the full possible period of operation, the slate 
properties can be altered in order to enhance their absorption properties. 
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7.4. TESTING THE OPTIMUM SYSTEM WITH DIFFERENT SLATES 

The results with roof sections A and B for the optimum system were further 

compared to results obtained with a third roof section (C) shown in Fig. 7.14. The new 

system was installed at a garage in Biggar and measurements were taken during April 

2005. In order to compare the system to other roof sections, the grill opening was to be 

set so that the system characteristic resembles the previous two (8 m effective length of 

flexible metallic duct at 80 % extension and 152 mm diameter). 

The comparison is a complex matter since the testing was undertaken on 

different days for different lengths of time and with different prevailing wind speeds. 

With slate type B and C, the total maximum possible hours of operation (TMPHO) and 

the irradiance received by the PV module and the slates for both periods were similar. 

For slate A, the September data is chosen for comparison purposes because it yields the 

same TMPHO. The total irradiance for that period is also of the same order as the two 

other systems. However, in order to make sense of the data in Table 7.4, the wind speed 
for the days of measurement must be known. These were not measured and so they are 

obtained from the Internet meteorological site "Weather Underground". The wind speed 

values used here are not specific and they are to be used only to make general 
impressions about each of the days of operation (i. e. they cannot be used for 

calculations since they do not represent the location of interest but they represent the 

general conditions for the city at the time of measurement). 
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The effect of wind speed can be realized from Fig. 7,15, Generally, for days with 
high average wind speeds, low temperatures are detected and vice versa. The small 
amount of heat delivered by slate type B is not caused by lower volumes as can be seen 
from Table 7.4 but rather by lower slate temperatures. It is reported on the Internet site 
that for March, 2004 and during the period of measurement for slate type B, wind 
speeds as high as 12 m/s are measured. 

Table 7.4: Results for different slate types. 

Hours G, MJ/m' V, M, E, MJ 
Slate A 124.0 250.5 4812.8 42.1 
Slate B 126.5 205.0 4893.2 20.5 
Slate C 125.1 236.6 6633.8 54.8 

If equal collector's area for the optimum system is assumed, regardless of the 
slate type, the overall efficiency (for the full period of operation) for each of the slate 
systems can be calculated as the ratio of the delivered heat to the available radiation. 
Based on this assumption, the system with roof section C is more efficient either due to 
higher temperatures or due to higher flow rates. However, the volume delivered by the 

optimum system with slate C is much higher than that delivered by the two other 
systems indicating the system AP, -Q characteristics may not be the same. 

If wind speed for the days of measurement for roof A and roof C are the same, 
the ratio of heat delivered to volume delivered can be an indication of the slate's 
thermal potential for collecting heat. 

Slate C can be advantageous over both slate A and slate B because, as can be 

seen from Fig. 7.16, the slates were warm enough when the fan started operating. For 
the day shown in Fig. 7.16 (April 23,2005), the slate temperature reaches 50 *C and the 
temperature of air delivered reaches 25 IC. However, the effectiveness of the system 
shown here (e = 0.3) is lower when compared with the system in roof section B. This 

may be due to the higher heat transfer coefficients for slate C resulting more losses by 

convection and radiation. 
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Comparing different roof slates requires that they are set up next to each other in 

the same environment. The model developed in chapter 3 and 4 can then be used to 

make conclusions about the potential of the optimum system with different slate types. 
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Fig. 7.15: Selected temperature, irradiance and wind speed profiles for several days of 
operation for the optimum system with (a) roof section A and (b) roof section C. 
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7.5 FLOW PATTERNS OVER ROOF SLATES USING CFD 

In order to utilise the most of the system, the location of both the PV module and 

the fan box must be selected so that most of the energy falling on the slates is utilised. 

The current section introduces a brief study of the wind flow patterns over the slates 

using computational fluid dynamics (CFD). Such a study can give predictions as to 

where the heat transfer coefficient is expected to be lowest so that the fan box can be 

installed. On the other hand, in order to maximise its output, the PV module should be 

placed at a location where high transfer coefficients are expected to be high. 

For this case study, the computational domain comprises the area not just above 
the roof slates but rather that surrounding the house. The CFD modelling herein is based 

on long-term weather data (wind speed, wind direction and ambient temperature) for 
Edinburgh. Based on 16-year data (1976 to 1992), an average wind speed of 4.56 rals, 
an average wind direction of 183" clockwise from North (i. e. 3' west of south) and an 
average ambient temperature of 8.6 'C are determined. In order to reduce the problem 
from a 3D problem to 2D one, the wind direction is taken as 180*. The slate temperature 

can vary depending on irradiance, slate properties and other factors. A uniform slate 
temperature of 18.6 T (10 T above ambient) is assumed. Moreover, a slate length of 
20 cm, and a thickness of 2 cm are assumed. A small roof section with 8 slates was 
considered. 

The wind speed and direction are not constant but are changing all the time. 

Here it assumed that the house is located in an open area where the flow over the roof 

slates is not obstructed by other nearby houses. Even though some of the assumptions 

may not seem realistic at this point, the purpose here is to try to make general 

conclusions about the flow over roof slates, which may lead to further work. 

CFD simulations show that as air flows over the slates, it increases in velocity 
due to the convergence effect as shown in Fig. 7.17(a). The convergence of flow in this 

case is caused by both the restrictions resulting from the inclined surface and the slates 
themselves. This also explains the sudden increase in the velocity of air as it moves over 
the tip of the roof. The small velocities at the bottom of the opposite side of the roof 
(i. e. the side not vulnerable to wind) are caused by the formation of a vortex. It can also 
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be seen that small velocities are predicted at the end of each of the slates as a result of 
the restriction caused by the thickness of the slates. 

Figure 7.17(b) shows the heat transfer coefficient along the length of the roof 

section. Each of the colors represents a slate. At the beginning of each of the slates, the 
heat transfer coefficient is high but then it stays constant along the length of the slate. At 

the end of each slate, a sharp decrease in the heat transfer coefficient is caused by the 

restriction to flow resulting from the slate thickness. In general, it can be seen that the 
heat transfer coefficient stays constant over the length of the roof section but increases 

rapidly at the end. This behaviour is different from that over a horizontal flat plate 

where the heat transfer coefficient decreases with length (Fig. 7.18). 

It can be concluded from Fig. 7.17(b) that an ideal location for the fan box 

would be as far away as possible from the top of the roof section. The top of the roof 
section would, on the other hand, be suitable for the PV module since lower 

temperatures are expected. In order to verify these CFD simulations, they must be tied 

with experimental data in the future. Primarily, it can be seen that the flow patterns over 
inclined surfaces is different from patterns over horizontal surfaces. 
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Fig. 7.17: (a) Contours of velocity of air and (b) heat transfer coefficients (W/M2 X) over the length 
of the slates. 
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7.6 SUMMARY 

1. In order to be able to apply the model, the system characteristics must be measured. 

A single measurement of the fan voltage and the corresponding pressure across the fan 

are satisfactory for defining the system characteristic. 

2. The testing of the optimum system indicates that early start-up of the fan can be a 
disadvantage which can result a cooling effect. As explained, this can be overcome by 

either delaying the start-up of the fan or using dark paint or antireflective coating with 

the slates so that they wann up quickly. This area is of future work as will be discussed 

in the next chapter. 

3. Because the area from which air is drawn is not defined, other indicators for 

comparative testing are used. Effectiveness (defined as the ratio of energy delivered to 
the maximum energy possible) and the volume delivered per joule of energy received 
by the PV module are two of these indicators. For roof section A, the system delivers 

270 l/kJ of energy falling on the PV module while for roof section B, this value rises to 
8 10 I/W. 

4. For meaningful comparison of systems to be undertaken, measurements must be 

obtained under identical conditions and wind speed must be accounted for. 

5. CFD simulations reveal that the fan box should be located away from the top of the 

roof section where high heat transfer coefficients exist. This, however, needs to be 

supported by future experimental studies. 
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8. CONCLUSIONS AND FURTHER WORK 

The current thesis presented a newly developed system for ventilation air 

preheating using solar energy. This system utilises the existing roof tiles or slates as a 

solar collector. A PV-driven fan draws air through the spaces between the slates. As air 

picks up the heat from the slates, it is drawn by the fan through holes drilled in the 

sarking board and is then delivered via a flexible duct to the house underneath for 

ventilation. More than a hundred roof slate-based (RSB) solar ventilation preheating 

systems have been installed in Scotland during the last decade. The current thesis is the 

first quantitative and optimisation study of such systems. 

The primary objective of the current thesis was to develop a model for 

predicting the flow rate of air in the roof slate-based system described above. The model 
developed can then serve the double purpose of optimising and studying the heating 

potential of the system. Conclusions about the volume of air and amount of energy that 

can be potentially delivered in a given period of time can be made based on long-term 

data of the design site. This chapter of the thesis presents the most important 

conclusions regarding the modelling, optimisation and testing of the system. Areas of 
further work in order to improve the understanding of these systems are then suggested. 

CONCLUSIONS 

The flow rate model developed was based on the measured performance of each 
of the components (i. e. the PV module, the fan and the duct). The mathematical model 

of the system consisted of equations describing the individual performance of each of 
the components. 

A new method for generating the PV IV characteristic by applying corrections 
for the measurable quantities of short circuit current (Isc), open-circuit voltage (Voc), 

maximum power (P. ) and the voltage at maximum power (V. ) has been introduced. 

Empirical relationships were suggested and the method was validated. The IV 

characteristics generated by this method were in agreement with both measurements and 

with characteristics generated by other methods. Maximum power was within 8% of 

the measured values while the current at maximum power (calculated from P. and Vn) 

was within 9 %. This new method is very useful because it allows the determination of 
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P., V. and I. without having to generate the IV characteristic and searching for the 

maximum power as the case before was. Furthermore, this new method provides the 

means for determining the optimum motor constant directly from irradiance and 

ambient temperature data. 

Using Visual Basic for Applications, the PV module and fan equations were 

solved simultaneously and iteratively for the voltage and speed of the fan. The model 

predicts the operational speed of the fan with an accuracy of 92 %. The predicted speed 

can be used to generate the fan head-flow (APf-Q) characteristic which can then be 

solved simultaneously with the system's AP-Q characteristics for the flow rate of air in 

the system. A cubic APf-Q relationship was found suitable for axial flow fans. A 

characteristic at reference conditions was measured and used for generating other curves 
at different air temperatures and rotational speeds. Due to instrumental and operational 

errors in reference measurements, the model predicts the flow with an accuracy of 88 %. 

The model developed is general and useful because it accounts for the effects of 
irradiance, ambient temperature, and PV module and fan selection in addition to duct 

length, diameter and extension. Furthermore, it can be used in several input-output 

scenanos. 

The model developed was then updated so that it can be used for optimisation 

with regard to the maximum monthly and annual volume of air delivered. 27-year 
hourly weather data for Edinburgh were used for predicting the long-term performance 

of the system. In order to account for start-up characteristics of the fans, a switch 
functions, which assigned a value of "I" for an operational fan and a value of "0" for a 
non-operational fan was used. This procedure considerably saved computational time 

since data points with a "switch" value of "0" were not considered for calculation. 

Considering a range of available components, the optimum system comprises a 
10 Wp polycrystalline PV module, a 24 VDC 9.5 W axial flow fan (Fanl) with a free 
flow capacity of 69 I/s and an 8m long, 152 nun metallic flexible duct at an extension 
of 80 %. The optimum effective duct length was obtained at a diameter of 152 mm. and 

an extension of 80 %. While the optimum diameter was determined as 200 mm, a 152 

mm. duct was used due to availability. The optimum system can deliver flow rates as 
high as 40 I/s. While other fans could deliver up to 65 I/s, they had high start-up 

259 



irradiances and so they delivered less volume over the same period of operation. The 

start-up characteristics and threshold irradiances play a key role in the optimisation 

process. It is found that, based on 27-year of hourly data for Edinburgh; the optimum 

system has a utilisability between 60 and 90 %. 

One of the most important findings of this thesis is that, regardless of the start- 

up characteristic, the optimum system still delivered more volumes even though the fan 

had a lower free-flow capacity. This was attributed to the optimal interval for FanI (200 

- 580 W/mý). Model-based simulations showed that for this interval, Fanl would 

produce higher flow rates. Since irradiance data for Edinburgh is within this interval for 

most of the time, maximising the volume based on long-term data shows that FanI is 

favourable. As a result it is concluded, as expected, that weather data also play a very 

significant role in the optimisation process. 

The optimum system delivers 9.6 x 104 M3 during the heating season (58 % of 

the year's total). This volume corresponds to a constant flow rate of 33.2 m 3/hr (9.2 I/s 

throughout the heating season considering the maximum possible period of operation 

from sunshine to sunset throughout the heating season). This system can potentially 

deliver 32.2 kWhr per IC difference between delivered and ambient temperatures. For 

example, depending on the slate type and weather conditions, if the average difference 

of temperature during the heating season is 5 C, then the system can deliver 161 Mr. 

Based on a heating load of 1500 kWhr for the full period of the heating season for a 

100_M3 room, a solar fraction of 11% is obtained (the system can save II% of the cost). 

Furthermore, assuming an inflation rate of 5% and a fuel cost of MOW kWhr, the 

system has a payback period of 13 years. The optimum system can also deliver 100 kg 

Of C02 savings per year. 

The system with two 10 Wp PV modules in parallel with a single FanI produced 

higher volumes and had payback periods similar to the optimum system. However, this 

system has very low utilisation of the maximum power available and thus low 

efficiencies. The use of two PV modules in parallel is, thus unreasonable. 

When compared to other systems, the optimum system is optimum in different 

respects. In addition to maximising the volume delivered, it also maximises the 

utilisation of the PV maximum power (5- 10.5 %) and minimises the payback period. If 
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the motor constant of Fanl is reduced from 0.079 to 0.0745 V. s/rad, the annual PV 

output energy would increase by 14 % from 37.3 MJ to 43.1 MJ. 

The optimum system was comparatively tested with another adjacent system 

consisting of the same PV module, the same AP, -Q characteristic but a different fan. 

Results show that the optimum system, as desired, consistently delivers more volumes 

of air than the other system during the period of operation. For the full period of 

operation and based on the maximum possible hour of sunshine (i. e. from sunshine to 

sunset for all days of operation), the volume delivered by the optimum system 

corresponds to a constant flow rate of 8.6 Ils which compares well with predictions (9.2 

I/S). 

However, it was concluded from testing the optimum system that an undesirable 

cooling effect can occur early in the morning due to early start-up of the optimum fan. 

This can be avoided by either delaying the start-up of the fan until the slates are warm 

enough or by enhancing the absorption properties of the slates. If the first option is to be 

considered, a resistor connected in parallel with the fan to delay its start is to be used. It 

is calculated that an 18-Q resistor delays the start-up from 290 to 800 W/M2. 

Quantitative comparison between the systems was based on several indicators. 

The average volume of air delivered per Joule of energy falling on the PV module was 

used in one case where the slate temperatures were not recorded. It was calculated that 

the optimum system consistently delivered 270 1 while the other system (PV2-Fan2) 

delivered between 130 and 180 1 of air per one kilo Joule of energy falling on the PV 

module. In cases, where the slate temperature was measured, effectiveness, defined as 

the ratio of delivered energy to the maximum energy that can be possibly delivered (i. e. 

that absorbed by the slates), was used as an indicator. The optimum system has an 

effectiveness of 0.53 while the other system has an effectiveness of 0.42. It is 

concluded, that despite the cooling effect associated with it, the optimum system is still 

preferable to other systems. 

Temperatures of air delivered during March can reach up to 7C above ambient 

temperature while in November they can be 3C above ambient. Even though a value of 
5C was used in chapter 6 for heat estimation purposes, further work needs to be 

undertaken in this area. 
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FUTURE WORK 

1. In order to be able to make further judgements about the potential of the RSB system, 

the effective collector area of the slates from which air, for a given situation, is drawn is 

to be estimated. This area is a function of the fan voltage (or speed), which is in turn a 

function of irradiance and ambient temperature. On a sunny day, a thermal camera can 

be used to take photos of the roof and the area from which air is drawn can be 

calculated. These photos can be taken at different fan voltages (and speeds) in order to 

estimate the variable area as a function of fan voltage. This relationship can then be 

entered into the model to determine area after the operational point of the fan is 

obtained. 

2. The optimum system is advantageous due to its lower cost, its higher monthly overall 
flow efficiencies in addition to the more monthly volumes of air it delivers. The kick 

starting of a system with high start-up currents (or irradiances) is undesirable because it 

adds to the cost. Moreover, the delay of the start-up of the optimum system will reduce 
its potential. An area, which requires further investigation, is matching a slate type to 

the optimum system so that the slates warm up as quickly as the system starts. Even 

though the discussion in chapter 7 shows that slate type C warms up quickly and can be 

potentially a match for the optimum system, further investigation is required. The 

performance of the different roof sections described in chapter 7 was carried out under 
different conditions of wind speed. A study with different roof sections and different 

state types all with the optimum systems but under the same conditions (i. e. controlled 

environment) of irradiance, ambient temperature and wind speed is required. 

3. The model developed is useful for several reasons. First is can be used for 

optimisation for any location around the world if weather data is available. Secondly, it 

can be used in different ways and according to different scenarios. Moreover, the model 
is not specific to RSB systems but it can be used for any PV-fan system as long as the 

system's characteristic is measured and included in the model. Furthermore, the VBA 

language is easy enough to understand and transforming the model can be achieved with 

minimal effort. The model developed herein, however, is limited because it is 

specifically intended for optimisation and testing of the RSB system. The real industrial 

and commercial objective would be to recommend a certain PV-fan combination for a 

given house or room. Here the input parameters to the model would be the number of 
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occupants and the volume and floor area of the house in addition to weather data and a 
database of PV module and fan specifications. 

Other suggested areas of future work are as follows: 

4. Experimental studies on flow rate patterns over the slates 
5. Modelling of slate temperature as a function of iffadiance, wind 

speed and ambient temperature. 

6. Studying the potential of RSB systems for drying crops. 
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APPENDICES 



APPENDIX A 

EQUIPMENT SPECIFICATIONS 

1. PV modules 
2. Fans 

3. Pyranometer 

4. Delta T 

5. Thermocouples 

6. Multimeters 

7. Tachometer 

8. Manometer 

9. Flow meter 

10. Data loggers 



1. PV modules 

,p 
modules A. 10 W 

- Type: Polycrystalline BP Solarex 

- Model: SX IOU 

- Serial nos.: C1020906 2167374 

C1020906 2167385 

B. 4.5 Wp modules 
- Type: Polycrystalline BP Solarex 

- Model: SX5M 

- Serial no.: C1020129 2133644 

C 1020129 2133551 

2. Fans 

A. 9.5 W/ 12 VDC 

- Type: PAPST 5112N 

- US PAT: 4730136 

- Famell Order code: 635-420 
B. 9.5 W/ 24 VDC 

- Type. - PAPST 5114N 

- Famell Order code: 635-431 

C. 20.3 W/ 24 VDC 

- Type: CornairRotron 

- Mnufacturer list no.: 01 3084(PQ24B4) 

- Famell Order code: 202-7008 

3. Pyarnometer 

Type: Kipp and Zonen 

cmi I 

Serial no.: CM 11861376 

Calibration factor: 5.17 x 10-6 V. rr? /W 

4. Delta Ts 

Type: BF3 

5. Thermocouples 

- k-type calibrated by technicians at Napier University to within *0.5 C. 



6. Multimeters 

- Model: GDM-8034 

- Appliance #: 1330 

7. Tachometer 

- Photo contact tachometer' 

- Solex TA250 

- Serial no.: K21765 14-6-93 

8. Manometer 

- Inclined 

- Airflow development Inc. 

- Density of Liquid used: 880 kglrr?. 

- US PAT: 2983146 

9. Flowmeter 

- Anemosonic UA6 Handheld Digital Ultrasonic Anemometer 

10. Data loggers 

- Several data loggers were used throughout the project 

- SQUIRREL by Grant Instruments (Cambridge). 

- Model: SQ1023 

- Temperature and voltage channels 

- Serial nos.: KC0230001, KC0229002 



APPENDIX B 

SPECIFIC-PURPOSE AND GENERAL COMPUTER PROGRAMS DEVELOPED FOR THE 

PRESENT PROJECT 

1. Input of PV and fan parameters 
2. Determination of fan operational point 
3. Determination of fan operational point using "motor parameters" (%, K., Kf) method 

4. Determination of fan AP-Q curve from speed 

5. System AP-Q curve 
6. Full version of flow arte determination program 
7. A program for calculating extrateffestrial radiation, filtering measured data and determining slope 

irradiance using the anisotropic model for Northern Europe. 

8. Opening a large data file 

9. The switch function 

10. Volume and efficiency calculations 



Appendix BI: Input of PV and fan parameters 
Sub FanOperationalPointO 
'Choose PV inodulcaod fan 
Module - InputBox("Wbich PV module? ") 
Fan = InputBox("Which fan? ") 
'Define reference prameters of selecled IN niod"le 
If Module =I Then 
Gref = 725 
Tref = 28 
iscref - 0.2 11 
Vocref = 20.4 
pmref - 2.93 
Vmref - 15.9 
Imref - 0.183 
disc = 0.00019 
dvoc -0.08 
dvm -0.08 
Rs = 4.5 
U-1.53 
area - 0.036 
Elself Module 2 Then 
Gref - 750 
Tref - 31 
iscref - 0.471 
Vocref - 20.5 
pmref - 6.76 
Vmref - 16 
Imref - 0.42 
disc - 0.00039 
dvoc -0.08 
dvm -0.08 
Rs = 1.2 
U= 1.9 
area = 0.072 
End If 
'Define Parameters of Selected fail 
If Fan -0 Then 
Av - 0.0604 
Bv = -0.105 6 
Aw - 227.66 
Bw - -128.53 
C1 - 0.000192 
C2 - 0.0000000367 
w -0.002 
x 0.15 
y -3.98 
z 57.4 
Elself Fan =I Then 
Av = 0.0144 
Bv = -0.01 
Aw = 131.77 
Bw = -365.58 
C1 - 0.000192 
C2 - 0.0000000367 
w -0.002 
x 0.15 
y -3.98 
z 57.4 
Elself Fan =2 Then 
Av = 0.0393 
Bv = -0.1317 
Aw = 159.04 
Bw=-384.23 



Cl = 0.000192 
C2 = 0.0000000367 
w -0.0006 
x 0.058 
y -2.39 
z 62.4 
End If 



Appendix B2: Determination of fan operational point 
I Enter desired irradiance aild 11V module temperittire 
G= InputBox("Enter Irradiance") 
Tamb = InputBox("Enter ambient temperature") 
I Assimic efficiency, calculate Tmod theii all the other PV niodule parameters based on G and 
1,1110d 
Eff = 0.2 
M-0 
Do 
Eff = Eff - rn 
Tmod = Tamb + ((0.9 / U) *G* area * (I - (Eff / 0.9))) 
'Caletilale corrected PV IN' parameters 
FF = (pmref / (iscref * Vocref)) 
dprn = FF * ((iscref * dvoc) + (Vocref * disc)) 
ISC - (G Gref) (iscref + disc * (Tmod - Treo) 
Pm - (G Greo (prnref + dpm * (Tmod - Treo) 
Voc Vocref + ((dvoc * (Tmod - Tref)) + Application. Ln(G Gref)) 
Vrn Vmref + ((dvm * (Tmod - Treo) + Application. Ln(G / Gref)) 
Im=Pm/Vm 
If (Irn / ISC) >I Then 

GoTo I 
End If 
A= ((Vm - Voc + (Irn * Rs)) / (Application. Ln(I - (Im / ISC)))) 
10 = ISC * Exp(-VoC / A) 
n-1 
Do 

I- ISC - ((n - 1) * (ISC / 10000)) 
V-A* Application. Ln((ISC -I+ 10) 10) - (I Rs) 
ifan - Av *V+ Bv 
n=n+I 

Loop Until (I - ifan) < 0.001 
EM -(I *V)/(G *area) 
m-m+0.001 
Loop Until (Abs(EM - Eff)) < 0.01 
w=Aw*V+Bw 
MsgBox V 
I End Sub 



Appendix 133: Determination of fan operational point using "motor parameters" 
(R., K,,,, Kf) method 

Replacc 

Do 
I= ISC - ((n - 1) * (ISC / h)) 
V=A* ApplicatiorLLn((ISC -I+ 10) / 10) - (I * Rs) 
ifan = Av *V+ Bv 
n=n+l 

Loop Until (I - ifan) < 0.001 

With 

Do 
Il = ISC - ((n - 1) * (ISC / h)) 
VI=A* Application. Ln((ISC -II+ 10) / 10) - (I I* RS) 
RPMI = (VI - (II * RA) - e) / KM 
ifan I= ((RPM 1) A 2) * (KF / KM) 
n=n+l 

Loop Until (I - ifan) < 0.001 



Appendix B4: Determination of fan AP-Q curve from speed 

Sub Mothod_Bassd_On_Cubic_Regressiono 
: 
Method Based On Cubic Relression. The constants here are determined ftom 
reference (Q, H) data and roverence conditions of speed and air temperature 
as disc usse d in se c tio n 3.2.4.3 (E quatio rt 3.16) 

'Enter speed (rimin), Barometric pressure (mm Hg)and Air temperature (C) 
speed - InputBox("Enter speed") 
Barometric - InputBox("Ertter Barometric pressure") 
AirTemp - InputBox("Enter Air Temperature*) 
density - (Barometric I (AirTemp + 273.15)) 
Choo so fan 
an - InputBox(*Which Fan? ") 
Based on fan choice, determine parameters to be used 

If Fan -0 Or Fan -I Then 
CI-0.000 192 
C2 - 0.0000000367 
w -0.002 
x 0.15 
y. 3.98 
z 57.4 
Elself Fan- 2 Then 
CI-0.000 192 
C2 - 0.0000000367 
w- . 0.0006 
x-0.058 
y,. 2.39 
z. 62.4 
End If 
qre f-0 
j- I 
Do 

Q-CI* 7re f* (see ed do nsitT) 
fA hf . C2 * (speed do nsity) "2* (w (qrs fA3) x (qre 2) (y qre + z) 

S he e tsVH Q "). C a Ils(j, 3). V alue -Q 
S he e ts("H Q "). C a Ils(j. 4). V alue - hf 
qref - qref + 0.1 
i-i+I 

Loop Until hf <0 
End Sub 

-THE NEXT PAGE SHOWSTIM DETERMINATION OF THE FAN Dll-Q 
CURVE BASED ON LINEAR SEGMENTATION 



Nlcthod based on linear segmentation of APf-Q curve 

If fan - "I" Then 
Cl - 1.07 
C2 - 67.9 
C3 = 131.77 
C4 - 365.58 
Qlimit I=0.0 143 * speed 
Qlimit2 = 0.0 183 * speed 
constA I= -0.00061 * speed - 0.0069 
constB I-0.0000 125 * (speed A 2) - 0.000000536 * speed 
constA2 = -0.000588 * speed - 0.0032 
constB2 - 0.0000144 * speed A2+0.00000959 * speed 
Hlirnitl = constAl * Qlimitl + constl3l 
Hlirnit2 = constA2 * Qlimit2 + constB2 
constA3 = (Hliniitl - Hlimit2) (Qlimitl - Qlin-iit2) 
constB3 - Hlimitl + (Qlimitl ((Hlimitl - Hlimit2) I (Qlimitl - Qliniit2))) 

Elself fan - "2" Then 
Cl - 3.28 
C2 - 25.4 
C3 - 159.04 
C4 - 384.23 
Qlimit I=0.0138 * speed 
Qlimit2 = 0.0212 * speed 
constA I- -0.00079 * speed - 0.00045 
constB I=0.0000 167 (speed A 2) - 0.00000656 * speed 
constA2 - -0.000492 speed - 0.000467 
constB2 = 0.0000159 speed A2+0.00000171 * speed 
Hliirýtl - constA I* Qlimit I+ constB I 
Hlimit2 - constA2 * Qlimit2 + constB2 
constA3 - (Hlimitl - Hlimit2) (Qlimitl - Qlimit2) 
constB3 = Hlimitl - (Qlimitl ((Hlimiti - Illimit2) / (Qlimitl - Qliniit2))) 



Appendix B5: System AP-Q curve 

If an effective duct length is available 

Sub System Characteristico 
I 

Enter diameter (mm). length (m), extension(%), barometric pressure (mmHg) 

and temperature of air in the duct (C) 
Diameter - InputDox("Enter Diameter") 
I Calculate area 
ductArea - (0.25 0 (22 / 7) * ((Diameter / 1000) A 2)) 
0 
barometric - InputBox("Enter Barometric pressure") 
AirTemp - InputBox("Enter air temperature") 
' Calculate density 
density - (0.462 * barometric) / (AirTemp + 273.15) 
viscosity - 0.0000176 
4 
Extension - InputBox("Enter degree of extension(% 
If Extension - 100 Then 

k-2.5 
Elself Extension - 80 Then 

k-9.7 
End If 
I 
roughness -k/ Diameter 
I 

ength - lnputBox("Enter Length") 

Q 
j 
Do 

Velocity ((Q / 1000)) / ductArea 
Reynolds (density * Velocity * (Diameter / 1000)) / viscosity 
F-1.325 (((Application. Ln(roughness / 3.3)) + (5.74 (Reynold 2A0.9))) A 2) 
HS- ff Length * density) / (2 * (D iameter / 1000))) (V CloCity A 2) 
Sheets("SystemHQ"). Cells(j, 1). Value -Q 
Sheets("SystemHQ"), Cells(j, 2). Value - HS 
i-i+I 
Q-Q+0.1 

Loop Until HS - 60 
End Sub 

Alternitively, enter the hest-fit oirve for IIS as obtained from measured data). III 

fills Case, tile fjo I, uolp S1101VII ,, III 'U"K ....; m. 3 

Q-1 
Do 

HS=Tl *Q^2+T2*Q 
Q-Q+O. l 

Loop Until HS - 60 



Appendix 136: Calculating IV characteristic, fan operational point and fow rate 
from irradiance and ambient temperature 

'THE CODE BELOW ASSUNIESTHATNOCT IS KNOWN AND SO ITERATION FOR EFFICIENCV IS 
NOT REQMRED 

G- InputBox("G? ") 
Tamb = InputBox("Ambient T? ") 
Tmod - Tamb + ((G / 800) * (NOCT - 20)) 

'USF REFERrNCr DATA IN APPENDIXIII AND PERFORM CALCULATIONS AT NEW CONDITIONS 
TO owrAIN NEW IV CIIARACTERISTIC 

dvm - dvoc 
FF = (pmaxref / (Iscref * vocreo) 
dpmax - FF * ((Iscref * dvoc) + (VOC * disc)) 

' Calculate Isc, Voc, Pmax, Vm, Im at new conditions 
ISC - (G / gref) * (Iscref + disc * (Tmod - Treo) 
Pmax = (G / gref) * (pmaxref + dpmax * (Tmod - Treo) 
Sheets("Reference Data"). Range("112 I "). Value = Pmax 
VOC - vocref + ((dvoc * (Tmod - Treo) + Application. Ln(G / gref)) 
Vrn, = Vmref + ((dvm * (Tmod - Tref)) + Application. Ln(G / gref)) 
Im - Pmax / Vm 

' From Rs, Vm, Irn, Voc & Isc --- Calculate A 
A- ((Vm - VOC + (Im * Rs)) / (Application. Ln(I - (Im / ISC)))) 

' From A, Isc & Voc -- Calculate 10 
10 - ISC * Exp(-VOC / A) 

Do 
I- ISC - ((n - 1) * (ISC / 10000)) 
V-A* Application. Ln((ISC -I+ 10) 10) - (I Rs) 
ifan - (V - Cl) / C2 
n=n+l 

Loop Until (I - ifan) < 0.001 
speed = C3 *V+ C4 
Length = InputBox("Length of Duct? ") 
Diameter= 152 
EF - 0.80 
IF EF - 0.8 THEN 

k-2.5 
ELSEIF EF =I THEN 

k=9.6 
END IF 
roughness -k/ (Diameter) 
Barometric = InputBox("What is Barometric pressure? in nun Hg") 
AirTernp = InputBox("What is air temperature in Celsius? ") 
density = ((Barometric / 760) * 101325) / ((AirTemp + 273.15) 288.297) 
viscosity = 0.0000176 
Do 

If Q< QlimitI Then 
Hf = constA I*Q+ constB I 

Elself Q> Qlimýit2 Then 
Hf = constA2 *Q+ constB2 

Elself Qlimit I <= Q And Q <= Qlimit2 Then 
Hf = constA3 *Q+ constB3 

End If 
Velocity = ((Q / 1000)) / DuctArea 
Reynolds = (density * Velocity * Diameter) / viscosity 
f-1.325 (((Application. Ln(roughness / 3.3)) + (5.74 (Reynolds A 0.9))) A 2) 
HS = ff Length * density) / (2 * Diameter)) * (Velocity A 2) 
Hdiff = Abs(Hf - HS) 
Q-Q+ (Hdiff / 100) 

Loop Until Hdiff < 0.0 1 
MsgBox Q 
End Sub 



Appendix B7: A program for calculating extraterrestrial radiation and filtering 

measured data 

A. Calculate Extraterrcstrial radiation and apply primary filters 

Stil) Extraterrestrial_ail(l_Ilriiiiiry_Filterso 
xlat - 55.62954 
YRLNG - 3.53818 
yrlong - 0# 
DTOR = 3.14159 / 180 

1. 'FIND THE TOTAL NUMBER OF LINES (OR DATA POINTS) 

i- 14 
1 'start a loop 
celvar = Sheets("Original"). Cells(i, 1). Value 
If (celvar <> "") Then 
i-i+I 
GoTo I 
Else 
limit -i- 14 
End If 

' 3. 'START A LOOP WHICH PERFORMS ALL THE NECESSARY INFORMATION FOR ALL 
THE DATA POINTS. 
'Read dayno.. monthno., yeamo., houmo., and n-dnuteno. 
' Calculate equation of time, time correction term and then solar time necessary for calculations. 

For n-I To limit 
dayno - Sheets("Original"). Cells(n + 13,1). Value 
monthno - Sheets("Original"). Cells(n + 13,2). Value 
yeamo - Shects("Original"). Cells(n + 13,3). Value 
houmo - Sheets("Original"). Cells(n + 13,4). Value -I 
minuteno = Sheets("Original"). Cells(n + 13,5). Value 

xyr - yeamo 
xmo = monthno 
xdy -dayno 

imt = xmo 
iyr - xyr 
idy = xdy 

If (imt > 2) Then 
IYR1 - iyr 
IMT1 - imt -3 
Else 
IYRI = iyr -I 
IMTI - imt +9 
End If 
INTTI = Int(30.6 * IMT1 + 0.5) 
INTM = Int(365.25 * (IYRl - 1976)) 
DN I= (idy + RMI + INM) 
IMT9 =I 
IYRI = iyr -I 
IMTI = IMT9 +9 
INM = Int(30.6 * IMT1 + 0.5) 



INTT2 - Int(365.25 * (IYRI - 1976)) 
DN2 - (INTT I+ DrM) 
daynum = DN I- DN2 

XLCT = hourno + (nýnuteno / 60) 
UT = XLCT + YRLNG / 15 
If xmo >2 Then 
IYR I- xyr 
IMT1 - xrno -3 
Else 
IYRI = xyr -I 
IMTI = xrno +9 
End If 
INTTI = Int(30.6 * IMTI + 0.5) 
INIM - Int(365.25 * (IYRI - 1976)) 
SMLT = ((UT / 24) + xdy + INTTI + INTT2 - 8707.5)136525 
EPSILN = 23.4393 - 0.013 * SMLT 
CAPG - 357.528 + 35999.05 * SMLT 
If CAPG > 360 Then 
G360 = CAPG - Int(CAPG 360) * 360 
Else 
G360 = CAPG 
End If 
CAPC - 1.915 * Sin(G360 DTOR) + 0.02 * Sin(2 G360 DTOR) 
CAPI, - 280.46 + 36000.77 SMLT + CAPC 
If CAPI, > 360 Then 
XL360 - CAPI. - Int(CAPL 360) * 360 
Else 
XL360 = CAPI. 
End If 
ALPHA - XL360 - 2.466 * Sin(2 XL360 * DTOR) + 0.053 * Sin(4 * XL360 DTOR) 
eot = (XL360 - CAPC - ALPHA) 15 

XLCT - 12 
UT - XLCT + YRLNG / 15 
If xmo >2 Then 
IYRI - xyr 
IMTI - xrno -3 
Else 
IYR1 - xyr -I 
IMTI = xmo +9 
End If 
INTTI = Int(30.6 * IMT1 + 0.5) 
INM = Int(365.25 * (IYRI - 1976)) 
SMLT - ((UT / 24) + xdy + INM + IN7T2 - 8707.5) 36525 
EPSILN - 23.4393 - 0.013 * SMLT 
CAPG = 357.528 + 35999.05 * SMLT 
If CAPG > 360 Then 
G360 - CAPG - Int(CAPG 360) * 360 
Else 
G360 - CAPG - 
End If 
CAPC = 1.915 * Sin(G360 DTOR) + 0.02 * Sin(2 G360 DTOR) 
CAPI, - 280.46 + 36000.77 SMLT + CAPC 
If CAPL > 360 Then 
XL360 - CAPI, - Int(CAPL 360) * 360 
Else 
XL360 = CAPL 
End If 
ALPHA = XL360 - 2.466 * Sin(2 * XL360 * DTOR) + 0.053 Sin(4 XL360 DTOR) 
GHA = 15 * UT - 180 - CAPC + XL360 - ALPHA 
If GHA > 360 Then 
GHA360 = GHA - Int(GHA / 360) * 360 
Else 



GHA360 - GHA 
End If 
dec - Atn(Tan(EPSILN * DTOR) * Sin(ALPHA * DTOR)) / DTOR 

If (yrlong < 0) Then 
cor = -(Abs(yrlong) - Abs(ylong)) 115 
Elself (yrlong > 0) Then 
cor = (Abs(yrlong) - Abs(ylong)) / 15 
Else 
cor - -ylong / 15 
End If 
cortrm = -cor - eot 

xast - houmo + (ininuteno / 60) - cortrm 
horang = 15 * DTOR * Abs(12 - xast) 
xduml - Sin(xlat * DTOR) * Sin(dec * DTOR) + Cos(xlat * DTOR) * Cos(dec * DTOR) 

Cos(horang) 
SOLALT = (Application. Asin(xduml)) DTOR 
xdum2 - Cos(dec * DTOR) * (Cos(xlat DTOR) * Tan(dec * DTOR) - Sin(xlat * DTOR) 

Cos(horang)) / Cos(DTOR * SOLALT) 
solazm - (Application. Acos(xduni2)) / DTOR 
If (xast > 12) Then 
solazin - 360 - solazm 
End If 
xdum3 - Cos(SOLALT * DTOR) * Cos((solazm - WAZ) * DTOR) * Sin(TLT * DTOR) + 

Sin(SOLALT * DTOR) * Cos(TLT * DTOR) 
SOLINC - (Application. Acos(xdum3)) / DTOR 
ERAD -0 
If (SOLALT > 0) Then 
ERAD - 1367 * (I + 0.033 * Cos(O. 0172024 * daynum)) * Sin(SOLALT DTOR) 
End If 
Shects("Original"). Cells(n + 13,12). Value - ERAD 

Solar altitude is needed so that data below solalt of 7 degrees is filtered. 
GDeltaT - Sheets("Original"). Cells(n + 13,6). Value 
DDeltaT = Sheets("Original"). Cells(n + 13,7). Value 
If GDeltaT -0 Then 

DR - "No Value" 
Else: 

DR - DDeltaT / GDeltaT 
End If 
Sheets("Original"). Cells(n + 13,14). Value -DR 
If ERAD =0 Then 

kt - "No Value" 
Else: 

kt - GDeltaT / ERAD 
End If 
Sheets("Original"). Cells(n + 13,13). Value = kt 

'PRIMARY FILTFRS 

If ERAD >0 Then 
If SOLALT >= 7 Then 

If GDeltaT >0 And GDeltaT < (1.2 * 1367) Then 
If DDeltaT >0 And DDeltaT < (0.8 * 1367) Then 

If kt <-- I Then 
If DR <= I Then 

Shects("Original"). Cells(n + 13,15). Value = "PASS" 
Else: Sheets("Original"). Cells(n + 13,15). Value = "FAIL" 
End If 

Else: Sheets("Original"). Cells(n + 13,15). Value = "FAIL" 
End If 

Else: Sheets("Original"). Cells(n + 13,15). Value = "FAIL" 
End If 



Else: Sheets("Original"). Cells(n + 13,15). Value = "FAIL" 
End If 

Else: Sheets("Original"). Cells(n + 13,15). Value = "FAIL" 
End If 

Else: Sheets("Original"). Cells(n + 13,1 5). Value = "FAIL" 
End If 
If Sheets("Original"). Cells(n + 13,15). Value = "FAIL" Then 

ko=ko+ I 
Elself Sheets("Original"). Cells(n + 13,15). Value = "PASS" Then 

Sheets("Filteredl "). Cells(n + 13 - ko, 1). Value = Sheets("Original"). Cells(n + 13,1). Value 
Sheets("Filteredl "). Cells(n + 13 - ko, 2). Value = Sheets("Original"). Cells(n + 13,2). Value 
Sheets("Filteredl"). Cells(n + 13 - ko, 3). Value = Sheets("Original"). Cells(n + 13,3). Value 
Sheets("Filteredl"). Cells(n + 13 - ko, 4). Value = Sheets("Original"). Cells(n + 13,4). Value 
Sbeets("Filteredi"). Cells(n + 13 - ko, 5). Value = Sheets("Original"). Cells(n + 13,5). Value 
Sheets("Filtered 1 "). Cells(n + 13 - ko, 6). Value = GDeltaT 
Sheets("Filteredi "). Cells(n + 13 - ko, 7). Value = DDeltaT 
Sheets("Filteredi"). Cells(n + 13 - ko, 8). Value = Sheets("Original"). Cells(n + 13,8). Value 
Sheets("Filtered I "). Cells(n + 13 - ko, 9). Value = Sheets("Original"). Cells(n + 13,9). Value 
Sheets("Filtered I "). Cells(n + 13 - ko, 1 0). Value = Sheets("Original"). Cells(n + 13,1 0). Value 
Sheets("Filteredt"). Cells(n + 13 - ko, I 1). Value = Sbeets("Original"). Cells(n + 13,1 1). Value 
Sheets("Filtered I "). Cells(n + 13 - ko, 12). Value = ERAD 
Sheets("Filtered I "). Cells(n + 13 - ko, 13). Value = kt 
Sheets("Filtered I "). Cells(n + 13 - ko, 14). Value - DR 

End If 
Next 
End Sul) 
............ 0 ......... 6 ..................... 6 ...... 0 .... 6 ....... 0 ... 0 ............ 600- 

B. Apply Secondary filters to best-fit equation for data 
Sub Secondaryffiltero 
i= 14 
1 'start a loop 
celvar =Sheets(" Filtered V). Ce Ils(i, 1). Value 
If (celvar <> "") Then 
i=i+I 
GoTo 1 
Else 
limit =i- 14 
End If 

II II II liii lilt ii lilillililitilt liii 1111111 

'Devide filtered data into intervals and Write it 
into a new sheet 
Data for Old Delta T is written to sheet "Ict Intervals" 

'Data for New Delta T is written to sheet "KtNew Intervals" 

intervals = 30 
Sheets("Fittered2Summary"). Cells(g, 2). Value = intervals 
Sheets("Filtered2Sunnnary"). Cells(9,2). Value = limit 
t=I/ intervals 
Dim SumDR(1 00) 
Dim Sumkt(100) 
DimNoPoints(100) 
DimMeanDR(100) 
DimMeankt(100) 
Dimwt(15000) 
DimWtsuml(100) 
DimWtsurn2(100) 
DimWtsum3(100) 
Dim Wtsum4(1 00) 
DimWtaverage(100) 
DimWtstddev(100) 
Dim IntervalLowLimit(100) 
Dim IntervalllighLin-dt(100) 



1 start is the lowest kt to start with. This is used to wirite data in column B in sheet "Filtered2Summary". 
Start =0 
For j=0 To (intervals - 1) 

Sheets("Filtered2Sununary"). Cellso + 14,2). Value = Start 
Start = Start +t 

Next j 
For i= 14 To limit 

For j0 To (intervals - 1) 
kt Sheets("Filtered I "). Cells(i, 13). Value 
If (t * j) < kt And kt < (t *0+ 1)) Then 

SumDRO + 1) = SumDRO + 1) + Sheets("Filtered I "). Cells(i, 14). Value 
Sumkto + 1) = Surnkta + 1) + Sheets("Filtered I "). Cells(i, 13). Value 
NoPointso + 1) = NoPointso + 1) +I 
Sheets("Filtered2Summary"). Cellso + 14,3). Value = NoPointso + 1) 

End If 
Next j 

Next i 
For j=0 To (intervals - 1) 

MeanDRO + 1) = SumDRO + 1) / NoPointso + 1) 
Meankto + 1) = Surnkto + 1) / NoPointso + 1) 
Sheets("Filtered2Summary"). Cellso + 14,4). Value = Meankta + 1) 
Sheets("Filtered2Sununary"). Cellso + 14,5). Value = MeanDRO + 1) 

Next 
For i= 14 To limit 

For j0 To (intervals - 1) 
kt Sheets("Filtered I "). Cells(i, 13). Value 
DR Sheets("Filtered I "). Cells(i, 14), Value 
If (t j) < kt And kt < (t *0+ 1)) Then 

wt(i) =1/ (Abs(DR - MeanDRO + 1))) 
Wtsum Ia+ 1) = Wtsumlo + 1) + wt(i) * DR 
Wtsum2o + 1) = Wtsum2O + 1) + wt(i) 
Wtaveragea + 1) = Wtsum 10 + 1) / Wtsum2o + 1) 
Sheets("Filtered2Sunimary"). Cellso + 14,6). Value Wtaverageo + 1) 

End If 
Next j 

Next i 

For i= 14 To limit 
For j0 To (intervals - 1) 

kt Sheets("Filtered I "). Cells(i, 13). Value 
DR Sheets("Filtered I "). Cells(i, 14). Value 
If (t j) < kt And kt < (t *a+ 1)) Then 

dep = (DR - Wtaverageo + 1))A2 
Wtsum30 + 1) = Wtsum36 + 1) + dep 
Wtsum4o + 1) = Wtsurn4o + 1) +I 
Wtstddevo + 1) = (Wtsum3o + 1) / Wtsum4o + 1)) A 0.5 
Sheets("Filtered2Sunnnary"). Cellso + 14,7). Value = Wtstddevo + 1) 

End If 
Next j 

Next i 
Stddevfactor =2 
'InputBox ("Enter the standard deviation factor you would like to use") 
Sheets("Filtered2Summary"). Cells(7,2). Value = Stddevfactor 
For j=0 To (intervals - 1) 

IntervalLowLirnito + 1) = Wtaverageo + 1) - Wtstddeva + 1) * Stddevfactor 
Intervall-lighLimito + 1) = Wtaverageo + 1) + Wtstddeva + 1) * Stddevfactor 
Sheets("Filtered2Sunumry"). Cellso + 14,8). Value = IntervalLowLimito + 1) 
Sheets("Filtered2Summary"). Cellso + 14,9). Value = IntervallfighLimito + 1) 

Next j 
'k is used to delete any empty lines in the sheet which the data is being sent to 
k=O 
For i= 14 To limit 

For j=0 To (intervals - 1) 
kt = Sheets("Filtered 1 "). Cells(i, 13). Value 



DR= Sheets(Tiltered I "). Cells(i, 14). Value 
If (t * j) < kt And kt < (t *a+ 1)) Then 

If DR < IntervalLowLimita + 1) Or DR > IntervallfighLimito + 1) Then 
k=k+ I 

Elself DR >= IntervalLowLirnito + 1) And DR <-- IntervalllighLimito + 1) Then 
Sheets("Filtered2"). Cells(i - k, 1). Value = Sheets("Filteredl"). Cells(i, 1). Value 
Sheets("Filtered2"). Cells(i - k, 2). Value = Sheets(Tiltered I "). Cells(i, 2). Value 
Sheets("Filtered2"). Cells(i - k, 3). Value = Sheets(Tiltered I "). Cells(i, 3). Value 
Sheets("Filtered2"). Cells(i - k, 4). Value = Sheets("Filteredl"). Cells(i, 4). Value 
Sheets("Filtered2"). Cells(i - k, 5). Value = Sheets("Filteredl"). Cells(i, 5). Value 
Sheets("Filtered2"). Cells(i - k, 6). Value = Sheets("Filteredl"). Cells(i, 6). Value 
Sheets("Filtered2"). Cells(i - k, 7). Value = Sheets("Filteredl"). Cells(i, 7). Value 
Sheets("Filtered2"). Cells(i - k, 8). Value = Sheets(Tilteredl"). Cells(i, 8). Value 
Sheets("Filtered2"). Cells(i - k, 9). Value = Sheets("Filteredl"). Cells(i, 9). Value 
Sheets("Filtered2"). Cells(i - k, 10). Value = Sheets("Filteredi"). Cells(i, 10). Value 
Sheets("Filtered2 "). Cells(i - k, I 1). Value = Sheets(Tiltered I "). Cells(i, I 1). Value 
Sheets("Filtered2"). Cells(i - k, 12). Value = Sheets(Tiltered I "). Cells(i, 12). Value 
Sheets("Filtered2"). Cells(i - k, 13). Value = kt 
Sheets("Filtered2"). Cells(i - k, 14). Value = DR 

End If 
End If 

Next j 
Next i 
'Find the new number of data points after filtration. 
i= 14 
2 'start a loop 
celvar = Sheets(Tiltered2"). Cells(i, 2). Value 
If (celvar <> "") Then 
i=i+I 
GoTo 2 
Else 
limitl =i- 14 
End If 
Sheets("Filtered2Summary"). Cells(IO, 2). Value = limitl 
End Sul) 



WX 118: UDenine a iarize ciata me 

Open "C: \Mylnefield_StrathAllan. pm" For Input As 100 
I=I 
Do Until EOF(I 00) 
Input #100, Yr, mont, dy, I Ir, CC, Gsr, Dsr 
If (mont = Givemon) Then 
Sheets("Main"). Cells(I, 1). Value = Yr 
Sheets("Main"). Cells(l, 2). Value = mont 
Sheets("Main"). Cells(l, 3). Value = dy 
Sheets("Main"). Cells(l, 4). Value = Hr 
Sheets(" Main"). Cells(l, 5). Value = Gsr 
Sheets("Main"). Cells(l, 6). Value = Dsr 
I=I+I 
End If 
Loop 
Close #100 
Open "C: \Documents and Settings\sgl79\Desktop\allriles\CIBSEtemp\Tamb. dat" For Input As 200 
1=I 
Do Until EOF(200) 
Input #200, Tamb, Yr, mont, dy, Ilr 
If (mont = Givemon) Then 
Sheets("Main"). Cells(l, 7). Value = Tamb 
I=I+I 
End If 



Appendix B9: The switch function 

G(J) = Sheets(" I "). Cells(J, 8). Value 
If G(J) <= GCEASE Then 

switch(J) =0 
Elself G(J) >= GSTART Then 

switch(J) =I 
Elsel f 147 < G(J) < 290 Then 

switch(J) =2 
End If 
Next J 
For J=4 To 50715 
If switch(J - 1) =0 Then 

If switch(J) =2 Then 
switch(J) =0 

End If 
Elself switch(J - 1) =I Then 

If switch(J) =2 Then 
switch(J) =I 

End If 
End If 
Next J 



Appendix BIO: Monthly volume and efficiency calculations for different fan 

combinations 

Sub MONTI ILY-VOLUME-AND-EFFICIENCY-DETERMINATIONO 
'DEFINE DUCT PROPERTIES 
Diameter - 152 
Length - 10 
EF - 0.8 
Barometric - 760 
viscosity - 0.0000 176 
ductArea - (3.14 * ((Diameter 1000) 2)) 4 
If EF -I Then 

k=9.6 
Elself EF - 0.8 Then 

k-2.5 
End If 
roughness -k/ (Diameter) 
'INITIALISE VOLUME, ELECTRICAL ENERGY, PV ENERGY 
Volume(0) -0 
Volumc(l) -0 
Volumc(2) -0 
Volumc(3) -0 
Volumc(4) -0 
Volumc(5) -0 
Volumc(6) -0 
Volumc(7) -0 
Volume(8) -0 
ElEncrgy(0) -0 
ElEncrgy(l) -0 
ElEncrgy(2) -0 
ElEnergy(3) -0 
ElEnergy(4) -0 
ElEnergy(5) -0 
ElEnergy(6) -0 
ElEncrgy(7) -0 
ElEncrgy(8) -0 
ElEncrgy(O) -0 
PVEnergy(O) -0 
PVEnergy(l) -0 
PVEncrgy(2) -0 
PVEncrgy(3) =0 
PVEncrgy(4) -0 
PVEncrgy(5) =0 
PVEncrgy(6) -0 
PVEncrgy(7) -0 
PVEnergy(8) -0 
Flow(l) -0 
ElPower(l) -0 
Dim switch(52000) 
Dim Volume(8) 
Dim ElEncrgy(8) 
Dim PVEncrgy(8) 
Dim PnCUEncrgy(8) 
Dim IRR(8) 
Dim G(52000) 
Dim Flow(52000) 
Dim ElPower(52000) 
Dim PneuPowcr(52000) 
Dim PVPm(52000) 
'DEFINE PARAMETERS FOR ALL PV MODULE Cl IOICES 
For Module -I To 6 
If Module -I Then 
Gref - 725 
Tref - 28 
iscref - 0.211 
Vocref = 20.4 
PMTef - 2.91 
Vmref - 15.9 
lmref - 0.183 
disc - 0.065 * iscref * 0.01 
dvoc - -0.08 
Rs - 1.5 
area - 0.036 
U- 1.5 
Fl- I 
FactV =I 
FP -I 
s=19+FAN 



Elself Module= 2'I'lien 
Gref - 725 
Tref - 28 
iscref - 0.211 
Vocref - 20.4 
pmref - 2.91 
Vmref = 15.9 
lmref - 0.183 
disc - 0.065 * iscref * 0.0 1 
dvoc - -0.08 
Rs = 1.5 
area -2*0.036 
U-1.5 
Fl -2 
FactV -I 
FP-2 
s- 23 + FAN 
Elself Module -3 Then 
Gref- 725 
Tref - 28 
iscref - 0.211 
Vocref - 20.4 
pmref - 2.91 
Vmref - 15.9 
Imref - 0.183 
disc - 0.065 * iscref * 0.01 
dvoc - -0.08 
Rs - 1.5 
area -2*0.036 
U-1.5 
Fl -I 
FactV -2 
FP-2 
s- 27 + FAN 
Elself Module 4 Then 
Gref - 750 
Tref - 31 
iscref - 0.471 
Vocref - 20.5 
pmrcf - 6.76 
Vmref - 16 
linref - 0.42 
disc - 0.065 iscrcf 0.01 
dvoc - -0.08 
Rs - 1.2 
area - 0.072 
U-1.9 
FI -I 
FactV -I 
FP -I 
s-7+ FAN 
Elsclf Module 5 Then 
Gref - 750 
Tref - 31 
iscrcf - 0.471 
Vocref - 20.5 
pmrcf - 6.76 
Vmref - 16 
Iniref - 0.42 
disc - 0.065 * iscref 0.01 
dvoc - -0.08 
Rs = 1.2 
area -2*0.072 
U-1.9 
Fl -2 
FactV -I 
FP-2 
s-II+ FAN 
Elself Module 6 Then 
Gref - 750 
Tref - 31 
iscref - 0.471 
Vocref - 20.5 
pmref = 6.76 
Vmref - 16 
Imref - 0.42 
disc - 0.065 * iscref 0.01 
dvoc - -0.08 
Rs = 1.2 
area -2*0.072 



U= 1.9 
FI= I 
FactV =2 
FP=2 
s- 15 + FAN 
End If 
G(3) - Slicets("1"). Cells(3,8). Value 
'DEFINE THRESHOLD IRRADIANCES FOR DIFFERENT FAN Cl IOICES 
For FAN =0 To 6 Step I 
If Module -4 Or Module -6 Then 
If FAN =I Or FAN =6 Then 
GSTART - 290 
GCEASE = 147 
EiscIf FAN -5 Then 
GSTART - 580 
GCEASE - 293 
Elsclf FAN =0 Or FAN 4 Then 
OSTART = 518 
GCEASE - 147 
Elself FAN -3 Then 
GSTART - 1036 
GCEASE - 293 
ElseIf FAN -2 Then 
GSTART = 800 
GCEASE - 153 
End If 
Elself Module -5 Then 
If FAN -1 Or FAN -6 Then 
GSTART = 145 
GCEASE = 74 
Elself FAN -5 Then 
GSTART = 290 
GCEASE = 147 
Elself FAN -0 Or FAN 4 Then 
GSTART - 259 
GCEASE - 74 
Elself FAN -3 Then 
GSTART - 518 
GCEASE - 147 
Elself FAN -2 Then 
GSTART 400 
GCEASE 77 
End If 
Elself Module -I Or Module -3 Then 
if FAN -I Or FAN -6 Then 
GSTART - 600 
GCEASE - 303 
Elsclf FAN -5 Then 
GSTART - 1200 
GCEASE - 606 
Elself FAN =0 Or FAN -4 Then 
GSTART - 1072 
GCEASE - 303 
Elself FAN -3 Then 
GSTART - 2144 
GCEASE - 606 
Elself FAN -2 Then 
OSTART - 1800 
GCEASE - 317 
End If 
Elself Module =2 Then 
If FAN -I Or FAN -6 Then 
GSTART - 300 
GCEASE - 152 
Elself FAN =5 Then 
GSTART = 600 
GCEASE - 303 
Elself FAN -0 Or FAN 4 Then 
GSTART = 518 
GCEASE = 152 
Elself FAN =3 Then 
GSTART - 1072 
GCEASE = 303 
Elself FAN =2 Then 
GSTART = 900 
GCEASE = 159 
End If 
End If 
'DEFINE FAN PARAMETERS FOR IV, wV and head-flow chracteristic determination 
If FAN =0 Then 



s-3 
Av - 0.0604 
Bv - -0.1056 
Aw - 227.66 
Bw = -128.53 
CI - 0.000192 
C2 - 0.0000000367 
w= -0.002 
x-0.15 
y- -3.98 
Z- 57.4 
Fact t-I 
Fact2 -I 
Elself FAN -I Then 
s-4 
Av - 0.0144 
Bv - -0.0 1 
Aw - 131.77 
Bw - -365.58 
CI-0.000 192 
C2 - 0.0000000367 
w- -0.002 
x-0.15 
y- -3.98 
Z- 57.4 
Factl -I 
Fact2 -I 
Elself FAN -2 Then 
s-5 
Av - 0.0393 
Bv - -0.1317 
Aw - 159.04 
Bw - -384.23 
CI =0.000192 
C2 - 0.0000000367 
w- -0.0006 
x-0,058 
y- -2.39 
Z- 62.4 
Factl -I 
Fact2 -1 
'2 fanO in Parallel 
Elsclf FAN -3 Then 
s-3 
Av =2*0.0604 
Bv -2* -0.1056 
Aw - 227.66 
Bw - -128.53 
CI-0.000 192 
C2 - 0.0000000367 
w- -0.002 
x-0,15 
y- -3.98 
Z- 57.4 
Factl -2 
Fact2 -2 
'2 fanO in Series 
Elself FAN -4 Then 
s-3 
Av = 0,0604 /2 
Bv - -0.1056 
Aw - 227.66 
Bw - -128.53 
CI-0.000 192 
C2 = 0.0000000367 
w -0,002 
x 0.15 
y . 3.98 
Z 57.4 
Factl =2 
Fact2 -1 
'2 Fant in Parallel 
Elself FAN -5 Then 
s=4 
Av =20.0144 
Bv =2 -0.0 1 
Aw = 131.77 
Bw = -365.58 

L w- 0002 
X- 

_=- 

L", 
5, 
j 

-, 

", 
11 



y= -3.98 
Z- 57.4 
Factl =2 
Fact2 =2 
12 Fan I in Series 
Elself FAN -6 Then 
s-4 
Av = 0.0144 /2 
Bv - -0.01 
Aw - 13 L77 
Bw - -365.58 
CI-0.000 192 
C2 - 0.0000000367 
w- -0.002 
x-0.15 
y- . 3.98 
Z- 57.4 
Factl -2 
Fact2 -I 
End If 
'FOR ALL DATA POINTS, ASSIGN A VALUE OF I FOR AN OPERATING SYSTEM AND 0 FOR 
A'NONOPERATING SYSTEM AND STORE THE VALUE 
'TO BE RECALLED LATER 
For J4 To 50715 
G(J) Sheets(" I "). Cells(J, 8). Value 
If G(J) <= GCEASE Then 

switch(J) -0 
Elself G(J) >- GSTART Then 

switch(J) -I 
Elself 147 < G(J) < 290 Then 

switch(J) -2 
End If 
Next J 
For J-4 To 50715 
If switch(J - 1) -0 Then 

If switch(J) -2 Then 
switch(J) -0 

End If 
Elself switch(J - 1) -I Then 

If switch(J) -2 Then 
switch(j) -1 

End If 
End If 
Next J 
For givenmon -I To 12 
Volume(FAN) -0 
ElEnergy(FAN) -0 
PVEnergy(FAN) -0 
IRR(FAN) -0 
PneuEnergy(FAN) -0 
'START CALCULATION (FOR SYSTEMS WITH SWITCH I ONLY) BY READING IRRADIANCE AND 
'TEMPERATURE FOR EACH LINE OF DATA 
For J=4 To 50715 
mont - Shects("I"). Cells(J, 1). Value 
If mont - givenmon Then 
G(J) - Shects("1"). Cells(J, 8). Value 
If G(J) > 1500 Then 

GoTo I 
End If 
If G(J) -0 Then 

GoTo I 
End If 
Tamb - Shcets("I"). CcIls(J. 7). Value 
If FAN -0 Then 

If G(J) <- 500 Then 
t= 100000000# 

Else 
t= 10000 

Endlf 
Elself FAN =I Then 

If G(J) - 300 Then 
t= 100000 

Else 
t- 10000 

Endlf 
Elself FAN -2 Then 

If G(J) - 200 Then 
t= 10000000 

Else 
t= 10000 



End If 
End If 
If switch(J) I Then 

GoTo 2 
Else 

GoTo I 
End If 
2 
Eff = 0.2 
M-0 
Do 
Eff - Eff -m 
Tmod - Tamb + ((0.9 U) G(J) area (I - (Eff 0.9))) 
FF - (pmref / (iscref * Vocreo) 
dpm - FF * ((iscref * dvoc) + (Vocref * disc)) 
Ise - Fl * (G(J) / Gref) * (iscref + disc * (Tmod - Tref)) 
Pm - FP * (G(J) / Gref) * (pmref + dpm * (Tmod - Treo) 
VOC - FactV * (Vocref + ((dvoc * (Tmod - Treo) + Application. Ln(G(J) Greo)) 
Vrn - FactV * (Vmref + ((dvoc * (Tmod - Trcf)) + Application. Ln(G(J) / Greo)) 
Im - I'm / Vni 
If (Im / Ise) >I Then 

Im - 0.99 * Ise 
End If 
A- ((Vm - VOC + (Im * Rs)) / (Applicationln(I - (Inn / Isc)))) 
10 - Isc * Exp(-VOC / A) 
N-1 
Do 

I- Isc - ((N - 1) * (Isc 
V-A* Application. Ln((Isc -I+ 10) / 10) - (I * Rs) 
Wan = Av *V+ Bv 
N-N+I 

Loop Until (I - ifan) < 0.00 1 
EM - (I * V) / (G(J) 0 area) 
M-M+0.001 
Loop Until (Abs(EM - Eft)) < 0.01 
ElPower(J) -V*I 
PVPM(J) - Pot 
ws - Aw * (V / Fact2) + Bw 
speed - ws 
If FAN -0 Or FAN -I Then 
QlimitI - 0.0143 * speed 
Q1imit2 - 0.0183 * speed 
constA I- -0.00061 * speed - 0.0069 

constB I-0.0000125 (speed ^ 2) - 0.000000536 speed 
constA2 - -0.000588 speed - 0.0032 
consIB2 - 0.0000144 speed A2+0,00000959 * speed 
Illimitl - constAl * QlimitI + constl3l 
I llimit2 - constA2 * Qlirnit2 + constB2 
constA3 - (I llimitl - Illimit2) (Qlimitl - Qlimit2) 
constB3 -I flimitl + (Qlimitl fflilimitl - Illimit2) / (Qlimitl - Qlimit2))) 
Elself FAN =2 Then 
Qlimitl - 0.0138 * speed 
Qlimit2 - 0.0212 * speed 
constAl - -0.00079 * speed - 0,00045 
constB I-0.0000 167 * (speed ^ 2) - 0.00000656 * speed 
constA2 - -0.000492 * speed - 0.000467 
constB2 - 0.0000159 * speed A2+0.00000171 * speed 
Hlimitl - constAl * Qlimitl + constBI 
Yllimit2 - constA2 * Qlimit2 + constB2 
const. A3 - (filimitt - Illimit2) I (Qlimitl - Qlimit2) 
constB3 - Ullimitt - (Qlimitl * ((Hlimitt - Hlimit2) / (Qlimitl - Qlimit2))) 
End If 

Tair = Tamb +5 
densityfactor = (Barometric / (AirTemp + 273.15)) 
density - ((Barometric / 760) * 101325) / ((Tair + 273.15) * 288.297) 
Qref -5 
Do 

Calculate point on fan curve corresponding to the reference Qref 

Q=CI* Qref * speed * densityfactor 
hf = C2 * (speed ^ 2) * (densityfactor 1 2) * (w * (Qref 11 3) +x* (Qref ̂  2) +y* Qref + Z) 
'if Q< Qlimitl Then 
' hf=constAI*Q+constBi 
'Elself Q> Qlimit2 Then 
' hf = constA2 Q+ constB2 
'Elself Qlimitl -Q And Q- QIimit2 Then 
' hf = constA3 Q+ constB3 
'End If 
'Start calculating the corresponding point on the system's curve (Use Q not Qref) 



Velocity - ((Q / 1000)) / ductArea 
Reynolds - (density * Velocity 0 (Diameter / 1000)) 1 viscosity 
f-1.325 / (((Application, Ln(roughness / 3.3)) + (5.74 (Reynolds ̂  0.9)))"12) 
Hs - ((f * Length * density) / (2 * (Diameter / 1000))) (Velocity A 2) 
1 
'ALTERNATIVELY THE SYSTEM CURVE CAN BE USED IN ONE STEP BY USING THE QUADRATIC 
'FIT FOR THE MEASURED DATA POINTS 
'I IS -0.0036 *QA 2+0.1783 *Q (Statement taken aout of Ole code to avoid error messages) 
'Minimise difference between the two points on the fan curve and system curve 
I 
Ildiff- Abs(hf- I Is) 
I 
'Increase the value of Q and continue until the two points come close 
I 
Qref- Qrcf+ (Ildiff/ 100) 

, oop Until I Idiff< 0.01 
Flow(J) -Q 
PncuPower(J) - 0.00 1*Q*I Is 
If switch(J - 1) -0 Then 

Volumc(FAN) - Volumc(FAN) 
ElEnergy(FAN) - ElEnergy(FAN) 
PVEnergy(FAN) - PVEncrgy(FAN) 
IRR(FAN) - IRR(FAN) 

Elselfswitch(J - 1) =I Then 
Volume(FAN) - Volumc(FAN) + 0.15 (Flow(J - 1) + Flow(J)) 
ElEnergy(FAN) - ElEnergy(FAN) + (ElPower(J) + ElPower(J - 1)) (5 30) 
PVEnergy(FAN) - PVEnergy(FAN) + (PVPm(J) + PVPm(J - 1)) * (5 * 30) 
PneuEncrgy(FAN) - PneuEnergy(FAN) + (PneuPower(J) + PncuPowcr(J - 1)) (5 30) 
IRR(FAN) - IRR(FAN) + ((G(J) + G(J - 1)) * (5 * 30) 0 0.072) 
Elself switch(J + 1) -0 Then 
Volumc(FAN) - Volume(FAN) + (0.15 * Flow(J - 1)) 
ElEncrgy(FAN) - ElEnergy(FAN) + (ElPower(J - 1)) * (5 * 30) 
PVEncrgy(FAN) - PVEnergy(FAN) + (PVPjn(J - 1)) * (5 * 30) 
PneuEnergy(FAN) - PncuEnergy(FAN) + (PncuPower(J - 1)) * (5 30) 
IRR(FAN) = IRR(FAN) + ((G(J - 1)) * (5 * 30) * 0.072) 
End If 

ýnd If 
4ext J 
ýlicets("Results"). Cclls(givenmon + 1. (((7 * Module) - 2) + FAN)). Value - Volumc(FAN) 
; Iicets("Results"). Cells(givenmon + 14, (((7 * Module) - 2) + FAN)), Valuc - IRR(FAN) 
hcets("Resu Its"). Cells(givenmon + 27, (((7 * Module) - 2) + FAN)). Value - ElEnergy(FAN) 
ýliects("Results"). Cells(givenmon + 40, (((7 * Module) - 2) + FAN)). Value - PVEncrgy(FAN) 
; Iiects("Rcsults"). Cells(givenmon + 53, (((7 * Module) - 2) + FAN)). Value - PneuEnergy(FAN) 

Next FAN 
qext Module 
, nd Sub 


