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Abstract 
The dynamic response of highway bridges is a topic that has been thoroughly researched over 

many years. However, understanding of how the dynamic response of bridges is affected by the 

performance of their bearings over an extended period of time is, at present, not clearly defined. 

Although health monitoring of bridge structures is relatively advanced, the scope for further 

research is wide. The study presented in this thesis contains research on plate structures; ranging 
from a simple Euler-Bernoulli method to determine natural frequencies; modal analysis of a 

plate structure in the laboratory; FEA of the plate structure; modal analysis on a full-scale 

structure subjected to vehicle loading; and FEA of a simplified model representing the full-scale 

structure. A combination of these methods has allowed the conclusions presented herein to be 

drawn with respect to the effects of support degradation, and the consequent effect on structural 

performance. 

In the laboratory, modal analysis of a small-scale, thin rectangular plate of Perspex' has been 

completed. A series of boundary conditions have been investigated through altering the support 

offered to the plate by a series of springs, each with a different stiffness, to simulate bearings 

with different stiffnesses. Vibrations of varying frequency have also been forced upon the plate, 

and its response recorded. Displacement values provided the clearest indication of the effect of 
bearing stiffness, with the least stiff spring resulting in the largest displacement. Alteration of 

support stiffness in the model can have a marked effect on the resonant frequency of the plate 

(approx. 23 % frequency change between spring 1 (1.22 Nmm 1) and 5 (15.62 Nmm 1)). 

Full-scale testing on a highway bridge at Berwick-upon-Tweed on the Al, over the River 

Tweed, was completed in May 2005. These data form the baseline for future dynamic testing 

and condition monitoring of the structure. To describe the dynamic properties of the structure, 

the force generated by each type of vehicle traversing the structure was determined using 
instrumentation already in place on the bridge. Statistics drawn from the data are presented, 

which indicate that the bearings are functioning as expected, but are subjected to forces of a 

much larger magnitude due to overloaded HGVs than in current design specifications. Larger 

HGVs made up a small percentage of overall vehicles recorded, but contribute a much higher 

proportion of damage caused to the bridge. Displacement and frequency were both valid 

measures of bearing performance and therefore state of degradation. 

The method is offered as a condition monitoring test for bridges and their bearings. 
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Notation 

Unless otherwise stated in the text, the symbols used in this thesis are listed below in the 
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are Systeme International (SI), or derived, units where possible. For verisimilitude, 
imperial units are quoted where originally used by a cited author. Approximate SI 

conversions are provided immediately afterwards in parentheses where appropriate. 
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CHAPTER 1 

Introduction 

1 General introduction 

Vibrations caused by traffic loading are a major source of damage to highway bridges, 

especially in and around the area of support in single-span bridges. In highway bridges, 

elastomeric bearings are used to take the force actions from the superstructure into the 

substructure and to allow horizontal and vertical movement. The purpose of this 

research is to develop an understanding of the effect of traffic induced vibrations on 

critical elements at the deck slab/abutment interface. 

Highway bridges are subjected to forced vibration due to moving vehicles of varying 

types throughout the duration of their service life. To transfer the loading generated by 

the vehicles passing over the bridge, a bearing is placed between the bridge super- 

structure and the bridge abutments. These bearings come in many different varieties, 

from simple pad bearings (Figure 1.1), pot bearings (Figures 1.2 and 1.3), rocker 

bearings (Figure 1.4), to large-scale roller bearings (Figure 1.5), and are designed 

specifically to cope with vertical and lateral movement of the structure. However, these 

types of bearings are not designed to withstand dynamic loading from vehicles, but 

primarily static loading. Figure 1.6 (b) shows the different types of loading an 

elastomeric pad can experience during its service life; (i) shear forces, (ii) rotational 

forces and (iii) compressive loading. Figure 1.7 provides the idealised stress distribution 

diagrams for the three loading cases shown in Figure 1.6 (b). Failure of bearings is a 

significant cause of damage to highway bridge structures. Providing a framework of 



guidelines that allow early detection of bearing deterioration would result in large 

savings, in both a quantitative and qualitative sense. 

1.1 Structural dynamics 

Structural dynamics is the engineering discipline concerned with the behaviour of 

structures subjected to dynamic loading, or forced vibration, such as a sinusoidal 

harmonic excitation, impulse excitation or free vibration. 

Modal testing allows experimental determination of the modal parameters of a structure, 

including resonant frequency, damping and mode shape. In most cases the first few 

modes of vibration are the most significant, as they result in larger displacements than 

those in the higher frequency range. 

1.2 Modal analysis 

There are two distinct separate types of modal analysis: operational modal analysis and 

classic modal analysis. Classic modal analysis determines the modal parameters of a 

structure as a relationship between the input and output of a system which are 

commonly referred to as frequency response functions (FRFs). Modal parameters are 

then extracted from the FRFs by curve-fitting algorithms. The most commonly used 

FRFs are compliance, mechanical mobility and dynamic stiffness. Choi et al. (' 1 use the 

compliance method to locate damage in structures which manifest themselves through a 

shift in frequency and alteration of modeshape. Other researchers have used this method 

of shifts in resonance frequency to locate and quantify damage in discrete systems( ' . ') 
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To validate the initial hypothesis of bearing degradation affecting dynamic response, a 

small-scale model consisting of a Perspex® plate with variable support conditions was 

tested using classical modal analysis techniques (1.3). The small-scale test is to be viewed 

as nothing more than a simplification of a bridge arrangement, and is not intended to 

model actual behaviour of a bridge, but simply to prove the concept of the effect of 

varying the stiffness of end supports. Figure 1.8 shows the original undeformed mesh 

and plate geometry, including support locations. Figures 1.9 to 1.12 show the effects of 

variable support conditions on the modeshape of the plate used during the small-scale 

testing. Figures 1.9 and 1.11 show the unsealed modeshape obtained for the third 

frequency of the arrangement with Spring 1 and Spring 5 as the support conditions, and 

Figures 1.10 and 1.12 show contour plots of displacement values in the vertical, Z- 

direction. 

The problem can be reduced to a simple plate analysis. Research in this field is well 

advanced from initial investigations by Leissa(1.4) using the common Rayleigh-Ritz 

method('. ') which listed all possible frequencies for the classical support conditions, to 

the more complex analysis involving elastic boundary conditions by the superposition 

method' 6) 

Operational modal analysis is a newer method and does not rely on an input signal, and 

is therefore known as "output only analysis". Rather than using a recorded force input, 

``output only analysis" determines the modal parameters of a structure using the ambient 

vibrations, caused in this case by vehicle movement. The full-scale experimental data 

presented relate to testing of a highway bridge currently in use on the Al at Berwick- 

upon-Tweed. This chapter combines details of the Principal Inspection Report (PIR), 
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traffic count, vehicle speed, and axle weight data derived from in situ induction loops 

and weigh-in-motion sensors(1 7&1.8) followed by data arising from the non-destructive 

testing (NDT) of the bridge. The set of NDT results are intended to represent a baseline 

state of condition for further measurements. Brenner et al. (' 9) outline a method for 

bridge analysis and design based on the definition of a baseline model which reflects the 

behaviour of the structure as a whole rather than the elemental approach currently 

adopted. 

Although the bridge tested here has been in use for over twenty years, the bearings 

should be functioning as intended. The accuracy of results for this portion of testing is 

of course reliant upon the correct parameter identification, modal data included in the 

identification analysis can affect the accuracy of results. One method of damage 

measurability was proposed' 10), where damage is estimated quantitatively. The method 

is based on the sensitivity of a residual vector to the structural damage and the effect of 

noise on the measurements. 

Two papers by Yang et al. (1'11 & 1.12) outline a method for determining the bridge 

frequencies using the dynamic response of a passing vehicle. The papers show an initial 

numerical treatment of the problem, followed by the experimental results obtained from 

testing on a structure. The method highlights the fundamental frequency only. The 

overall dynamic response of a bridge is affected by many parameters. Researchers have 

investigated the effects of bridge running surface texture, developing a three- 

dimensional analysis approach to define the response of the bridge structure 1'13ý. What 

is apparent from data analysed from the experimental stage at Berwick-upon-Tweed is 

that the largest HGVs cause the highest proportion of damage to the bridge. Green and 
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Cebon(1.14) introduce the effects of HGVs on bridge structures, and recent research has 

also highlighted the effects of superloads on structures (1.15) Superloads tend to be 

exceptionally rare and can range from large cranes to turbines. 

Two methods of determining the modal parameters using operational modal analysis are 

available; frequency domain decomposition (FDD) and stochastic sub-space 

identification (SSI), in the time domain. Many papers outlining applications of the two 

methods are available (1.16 - 1.18 and the three cited herein highlight the key features of 

FDD and SSI methods. The two methods allow a graphical representation of mode 

shapes at each resonant frequency to be visualised. In general, the SSI technique will 

give the most accurate results, but a combination of the two is advisable to validate 

experimental results. Order estimation and the detection of spurious modes can often 

affect the accuracy of the two techniques. Zhang et al. ( '") propose a method using 

component energy as an identifier rather than matrix values, and a stabilisation diagram 

utilising the Hankel matrix (120 

However, for this research, the mode shapes are not considered to be of any real 

importance. Rather the actual value of frequency and magnitude of acceleration, 

velocity and displacement are of interest as any changes in structural behaviour due to 

material properties will manifest themselves as a change in frequency or magnitude of 

acceleration, velocity or displacement. Similar research using this method, albeit 

applied to planar trusses as opposed to bridge structures, has been developed by Wang 

ei alai'iý 
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Health monitoring is an important process in maintaining highway structures. Recent 

advances in transducer technology allow the early detection of deterioration in structural 

integrity and the prevention of catastrophic failure, especially when applied to large- 

scale structures' 22ý. One proposed method for health monitoring is based on a global 

fixity index, where any alteration in the structural modal flexibility matrix comes from a 

change in displacement of the structure (1.23) 

1.3 Euler-Bernoulli beam / Rayleigh-Ritz method 

Initial research into the effects of variable end conditions on the dynamic response of a 

plate structure incorporated a simple beam deflection equation analysis, combined with 

the Rayleigh-Ritz method for determining resonance frequencies. Varying the 

displacement of the supports, which is related to the support stiffness, allows a general 

value of the fundamental resonance frequency of a system to be established. The reason 

for undertaking this task was to apply end conditions which would mimic the 

characteristics of bridge bearings that would deflect when subjected to movement 

induced by traffic loading. The deflection is dependent on the stiffness of the bearings; 

therefore the effect of degradation in bearing performance could be simulated through 

the change in stiffness. 

Similar methods to this have been employed by researchers investigating the effects of 

moving loads on bridges supported by elastomeric bearings. Methods outlined 

elsewhere (1.24 & 1,25) use essentially the same premise of setting the bearing stiffness, 

assuming a shape function based on beam theory and the flexural rigidity of the beam 

combined with the stiffness. In this case the method is applied to bridges subjected to 

moving train loads, but could simply be applied to highway bridges. 
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Research into bearing defects in the UK by Allot & Lomax( 126 highlighted the fact that 

almost 94% of bearings had at least one defect. Each bearing type, and defect type, is 

listed with respect to age and other parameters such as temperature. The report shows 

that older bearings show an increased extent of damage, particularly in terms of bulging 

or splitting. Recent research carried out in the United States (127 on the condition of 

bearings after 40 years in service indicates that the pads tested still performed 

adequately. In addition to the visual inspection technique used by Allot & Lomax, shear 

and durometer testing were used to determine the effects of fatigue. These tests 

indicated that the bearings had increased in stiffness and also had an increased shear 

modulus, almost two times the specified value. 

1.4 Finite element analysis 

Finite element analysis (FEA) is a method for numerical solution of field problems, 

which requires that spatial distribution (in x, y, z coordinates) of one or more dependant 

variables (e. g. stress or strain) be determined. Mathematically, this can be described by 

a series of differential equations or an integral equation. The FEA method is a numerical 

analysis technique used to discretise a large problem, such as a bridge, into smaller 

sections, visualised through a mesh, which are simpler to analyse, thus reducing the 

computational power required. FEA lends itself to dynamic analysis, and as a result, 

recent advances from the original h-type analysis, which uses linear first-order functions 

to represent the field variables, to the p-type method, where the field variables are 

represented by higher-order polynomials, have resulted in researchers applying this 

method to vibration problems. Dalenbring and Zdunek(1 28) highlight the differences 

between the methods and the possible advantages of applying the p-version FEA. 

Combining the two types of FEA results in the hp-version which is based on shifted 
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Legendre orthogonal polynomials rather than the lower order polynomials of the h- 

version results in a more accurate solution as the polynomial order is increased 

simultaneously with mesh refinement. Houmat uses this method to analyse the three- 

dimensional behaviour of plates (1.29) 

FEA is used to compare results obtained experimentally to those expected from 

analytical methods. In this thesis the FEA is used to compare frequency values obtained 

for each arrangement, modeshapes [Figures 1.9 to 1.12] and other parameters such as 

stress and strain behaviour due to harmonic loading, Figures 1.13 to 1.16. Figures 1.13 

and 1.14 show contour plots of bending strain due to applied loading at time 0.1 s from 

the total analysis time of 0.4 s for Spring 1 and Spring 5. Figures 1.15 & 1.16 show 

graphs of the total duration of analysis for the two support conditions. 

FEA is often used in conjunction with experimental data obtained to produce accurate 

solutions for dynamic analysis of complex problems. This technique is known as modal 

updating. Teughels and De Roeck use the technique to locate and quantify damage to a 

highway bridge currently in service in Switzerland('. 30)" Damage in the structure is 

represented by a change in the Young's and shear moduli, which are distributed over the 

model using linear piecewise approximation functions. 

Other applications of FEA are to provide a damage indication and life-time estimate of 

structures. Kratzig develops this method('. 31 by applying it to three examples of 

damaged structures, then predicting the estimated life of the structure, which is 

effectively modal updating. 
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1.5 Research objectives 

The main objective of this research is to determine the effects of a change in the 

dynamic response of highway bridges due to degradation of the bearings. In this regard, 

the following objectives will be considered: 

1. It is intended that a set of guidelines be developed to predict optimum 

replacement times of bridge bearings before any serious damage be done to the 

structure as a whole. 

2. The analysis of the system's dynamic behaviour will be developed through 

small-scale testing, using a Perspex ̀R plate with variable support conditions. 

3. The model will be used to describe the effects of varying the support stiffness. 

4. The small-scale testing will be validated using the commercially available Finite 

Element Analysis package LUSAS v13(1 32) 

5. Full-scale testing is to be used to determine a baseline level of condition for the 

Al bypass bridge at Berwick-upon-Tweed. 

6. The dynamic response due to traffic loading is to be shown through FRFs which 

describe the dynamic properties of the structure. 
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1.6 Outline of thesis 

A method of determining the variation in dynamic response of a highway bridge due to 

degradation of the elastomeric bearing supports has been developed. The theoretical 

model has been tested, and response data obtained from a highway bridge in current 

service on a major trunk road over a river is presented as a baseline level of response for 

the structure. The information gathered has been presented graphically allowing detailed 

examination of the variation in response to be viewed accurately. 

Chapter 2 presents a critical review of current relevant literature. Research involving 

modal analysis, finite element analysis, structural health monitoring, damage detection, 

analysis of plate sections and bridge bearings have all been considered. 

Chapter 3 concentrates on the modal analysis and finite element analysis of the small- 

scale model tested in the laboratory. Initial investigations of plate behaviour in several 

common support conditions, with varying degrees of fixity, are presented. The effect of 

variation in support stiffness is shown, initially deriving the natural frequencies of each 

arrangement, and then performing a forced vibration test at a series of frequencies, by 

recording the difference in amplitude of acceleration at several locations on the plate. 

Finite element analysis of each support arrangement is presented, showing the 

eigenvalue analysis used to evaluate natural frequencies and mode shapes. A transient 

loading finite element analysis of the plate with variable end-conditions is also shown. 

Comparison of the modal analysis and finite element analysis results are made to 

illustrate the application of FEA on a larger scale. 
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Chapter 4 presents the data collected from large-scale testing performed on the highway 

bridge at Berwick-upon-Tweed. The modal analysis data recorded and post-processed is 

shown in graphical and tabular form to allow comparison between the series of data and 

individual events within those data. Data obtained from a weigh-in-motion (WIM) 

sensor located on the approach to the bridge is also displayed to allow specific events 

captured in the modal analysis to be attributed to a vehicle type and load, and FRFs be 

determined to describe the dynamic properties of the structure. 

Chapter 5 presents the conclusions to be drawn from the research contained within this 

thesis. Recommendations for further research are presented. 
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Figure 1.1 Simple elastomeric bearing pad 
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Figure 1.2 Constrained pot bearing: in situ 
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Figure 1.5 Typical high-load roller bearing 
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Figure 1.6 (a and b) Loading regimes for standard elastomeric pad. 
Figure (a) shows the sign convention used throughout the 
remainder of the text. Point g is the contact point between 
girder and bearing, Points 1 and 2 are contact points between 
the bearing and girder, then bearing and concrete plinth. Xg 
and Yg are the horizontal and vertical loads, Fxi and Fx2 are 
shear forces, Fy, and Fy2 are compressive forces, Ffl and Ff2 
are frictional forces calculated using the Coulomb friction 
law, N, and N2 are the normal forces and p, and 92 are the 
coefficients of friction at the two surfaces. 

Figure (b) shows; (i) deflected shape due to applied shear 
force, (ii) deflected shape due to applied rotational moment 
and (iii) deflected shape due to compressive force. 
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Figure 1.7 Shear stress distributions of corresponding loading applied as in 
Figure 1.6 b (i, ii, iii). 
Figure 1.7 (i) shows the stress distribution due to shear loading. 
Figure 1.7 (ii) shows the distribution due to a rotational moment 
loading. 
Figure 1.7 (iii) shows the distribution due to direct compressive 
loading. 
Figure 1.7 (iv) shows a typical stress against strain curve for rubber 
materials. 
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Figure 1.8 Undeformed plate geometry, elements, node points, mesh and spring 
support locations. Location of loading for one transient test shown as 
black arrow (0.25,0.25, -0.0111) 

Figure 1.9 Modeshape 3- Perspex plate - spring stiffness 1. Black circles 
correspond to spring support location on deformed geometry. 
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Figure 1.10 Contour plot - modeshape 3- spring stiffness 1 
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Figure 1.11 Modeshape 3- Perspex plate - spring stiffness 5. Black circles 
correspond to spring support location on deformed geometry. 
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Figure 1.12 Contour plot - modeshape 3- spring stiffness 5 
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Figure 1.13 Contour plot of bending strain - spring stiffness 1. 
Time step 50 (0.1 s), input force location (0.25,0.25, -0.0111). 
Location of maximum and minimum values at node 434 (0.03,0.35, 

-0.00094) and 1202 (0.25,0.25, -0.0111). 
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Figure 1.14 Contour plot of bending strain - spring stiffness 5. 
Time step 200 (0.4 s), input force location (0.25,0.25, -0.0111). 
Location of maximum and minimum values at node 5906 (0.4,0, 

-0.01516) and 1202 (0.25,0.25, -0.0111). 

Plate bending strain - Spring I at node 3635 

0.015 

0.013 

0.011 

0.009 

0.007 

0.005 

0.003 

0.001 

-0.001 
Time step /s 

4 

Figure 1.15 Bending Strain response - spring stiffness 1 at node 3635 (1.37,0.35, 

-0.00094), input force location (0.25,0.25, -0.0111). 
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Plate bending strain - Spring 5 at node 3635 
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Figure 1.16 Bending Strain response - spring stiffness 5 at node 3635 (1.37,0.35, 

-0.00094), input force location (0.25,0.25, -0.0111). 
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CHAPTER 2 

Literature Review 

2 Introduction 

This chapter presents the current extent of knowledge on the topics covered within the 

research presented in this thesis. The chapter is divided into three sections; vibration of 

plates, dynamic analysis and bridge bearings. The author's approach has been to cover 

the necessary background material from which this research stems and provide 

sufficient additional coverage for the interested reader / practitioner. 

2.1 Vibration of plates 

Plates of numerous geometries, i. e. rectangular, circular and polygonal etc., material 

type such as orthotropic and isotropic are widely used in all engineering fields. Plates 

are used in modern aerospace, aircraft, naval engineering and civil engineering. An 

extensive body of literature exists for plates, especially on the free vibration of. 

rectangular plates. Most of these papers use the classic theory for thin, isotropic plates 

of uniform thickness, using Eq. 2.1 to describe the vibrations of the plate. 

2 Eh3 
04 tiv + ,ua 

w= P 
1? 

(1-v2) 
at2 

Eq. 2.1 

Where V4 is known as the biharmonic differential operator, i. e. V4 = V2V2' 

a'u ö'u V2 _+, when expressed in rectangular notation, w is the transverse ax- ay- 
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Eh' a? 

12(l -v2) 
V4w+p 

at 2w-P 
Eq. 2.1 

Where\74 is known as the biharmonic differential operator, i. e. \74 = V20' 
, 

02 _ 
a'u 

+ 
ö'"u 

when expressed in rectangular notation, w is the transverse 
ax- 8y 

26 



displacement, Eh' 
is the flexural rigidity; E is Young's Modulus; h is plate 121-v-) 

thickness; v is Poisson's ratio; µ is mass per unit area of plate surface; P is the external 

load per unit area of plate surface; and t is time. Figure 2.1 shows the first three mode 

shapes for the plate equation using the Kirchhoff constraints. 

2.1.1 Classic boundary conditions 

Initial investigations into plate behaviour by Chladni(2 ') and Strutt (Third Baron 

Rayleigh a. k. a. Lord Rayleigh) (2'2 inspired many researchers to investigate the free 

vibration of plates in the late 19th and early 20th centuries with the increase in 

computational power now available, research involving more complex geometries and 

boundary conditions can be completed. 

In his early research, Rayleigh assumes that plates and beams have the same 

waveforms, so a plate with fully fixed boundary conditions is comparable to a beam 

with each end fully fixed. This assumption is still used today by many researchers when 

determining the shape function applicable to plates in various boundary condition 

arrangements. Ritz (2.3) then adapted Rayleigh's formula to produce the Rayleigh-Ritz 

method, which is a faster, more direct method for solving the frequencies of plates 

requiring less calculation to resolve the general equation shown in Eq. 2.2. 

n 

Z(X) =yC, Z, (x) Eq. 2.2 
1-1 

Classic theory of plate vibration is based on research completed by Kirchhoff, whose 

theory states that plane sections remain plain and perpendicular to the mid-plane when 
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subjected to loading. Many approaches to the theory have been developed, with the 

most commonly used method developed by Mindlin(2 4), who's theory takes into 

consideration the shear and rotary inertia effects. Kirchhoff theory is generally applied 

to the analysis of thin plates as no consideration is given to the effects of transverse 

shear, whereas Mindlin theory is more applicable to thick plates as transverse shear and 

its effects are taken into consideration. A thorough review of research on thick plate 

vibration up to 1995 has been conducted by Liew et al. (2 5 

One of the most comprehensive studies of the theory of plates and shells was completed 

by Timoshenko and Woinowski-Kreiger (2.6) and initially published in 1936. They 

outline the basic theory of plates, deriving differential bending equations for thick and 

thin plates, the displacement of laterally loaded plates and finally outline the response of 

plates with various degrees of support condition to various types of loading (Figure 2.2). 

The most common approach to determining the response of plates is to derive the 

governing equations of the plate using simplified beam functions. Warburton (2.7) 

highlights modeshapes and frequencies associated with fifteen separate configurations 

of support conditions using the Rayleigh-Ritz method for thin isotropic plates, all edges 

being free, simply-supported, clamped or a combination of these. Warburton assumed a 

modeshape for each arrangement that was a function of vibrating beam eigenfunctions. 

Young (2 8 and Hearmon(2.9) investigated vibrations in isotropic plates, and Hearmon 

then extends this treatment to plates that are "specially orthotropic", with the exception 

of free edges, and assumes the plate thickness and deflection to be small, therefore 

reducing the problem to a two-dimensional problem (2,10) 
. 

Other authors have evaluated 

the response of orthotropic plates, such as Biancolini et al. (2 ") who uses the Rayleigh 
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method applied to the simple general expression of the fundamental frequency of a plate 

to determine the higher value frequencies. Rossi et al. (2.12) compares values obtained 

through numerical and analytical methods for rectangular orthotropic plates with a free 

edge. Values are obtained using the Rayleigh-Ritz method and a Fourier expansion. The 

values obtained with these methods are in close agreement with those obtained with a 

finite element analysis. 

Leissa(2.13 & 2.14) provides an excellent summary of the literature on the free vibration of 

plates up to 1973, highlighting the analytical results obtained for all twenty one cases of 

possible combinations of free, clamped or simply-supported edge conditions. Leissa 

compares values obtained using Warburton's approximate calculations, and makes note 

of the effects of a varying Poisson's ratio on the vibration response. Deobald and 

Gibson (21 used the Rayleigh-Ritz method to continue the solutions produced by Leissa 

with respect to orthotropic plates. 

Thin plate theory has been extensively covered, and Leissa presented exact solutions by 

solving the differential governing equations for a thin plate with two opposite sides 

simply-supported. Hashemi and Arsanjani(2.16) present the exact solutions for thick 

plates using Mindlin theory, as these have not been determined previously. In this 

paper, six individual cases with differing boundary conditions are solved. The results 

presented can be taken as the benchmark values to be compared with other theories. 

Comparison with the values obtained by approximate solutions shows that the method is 

valid. 
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This method of using beam functions is used as the basis for research completed by 

Cheung and Zhou(217 on plates with elastic intermediate line-supports and edge 

constraints. The method outlined allows both the translational and rotational stiffness of 

supports to be altered, which are both considered simultaneously. The method is 

considered simple, with each beam function a third-order polynomial plus a sine 

function. The method is solvable with a computer program as a change in any of the 

boundary conditions of the plate can be altered by changing the coefficients of the 

polynomial beam functions. It is also noted that a small number of beam functions are 

considered sufficient to derive the response of the plates. The solutions presented are in 

close agreement with more established research. 

The references cited above all derive the frequencies of plates by assuming a 

modeshape from beams as admissible functions for analysis methods. Dickinson (2 18) 

proposed an alternative method, obtaining modeshapes from the vibration of plates 

having two parallel edges simply-supported with the other two edges dependent on the 

edge conditions under consideration. The functions are similar to the beam functions 

used in previous research and exhibit similar characteristics, allowing the geometric 

boundary conditions to be satisfied, but are directly derived from the natural modes of a 

system and can be used to establish the higher modes, in addition to the fundamental 

modes of vibration for the plate in question. Dickinson (2.19) then compares results 

obtained using this method to those obtained by Leissa for several plates with different 

boundary conditions and edge aspect ratios. However, Dickinson states that neither 

method produces a solution of any great accuracy when considering a plate with a free 

boundary condition. 
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Several researchers have also applied the Rayleigh-Ritz method to the in-plane vibration 

of rectangular plates. In-plane vibrations tend to occur in the higher end of the 

frequency range than those in the transverse direction. Hyde et al. (2.20) uses the 

Rayleigh-Ritz method to determine the frequencies and modeshapes for the in-plane 

vibration of rectangular, isotropic plates subjected to plane stress deformation. Three 

boundary condition arrangements are investigated; free, a combination of fixed and free, 

and fully fixed, and plates with different aspect ratios have been analysed. This allows 

the method to be compared with solutions found using classical plate theories. Although 

the answers provided are in relatively close agreement in most cases, the method seems 

to overestimate the first few modes of vibration at the low end of the frequency 

spectrum. In recent years, the advent of computers with ever-increasing memory 

capacities and processor speeds mean it is now possible to solve previously labour 

intensive problems rapidly. 

Bhat et al. (2 21 outline a method of determining the fundamental frequencies of plates 

using the Rayleigh-Ritz method which is ideal for solution by computer program. A 

numerical scheme to generate a two-dimensional boundary characteristic orthogonal 

polynomial using a recurrence relation is developed which satisfies the essential 

boundary conditions of the plate. The authors then compare the results with those 

obtained by performing an analysis using previous polynomials which have been 

orthogonalised. 

One method of determining the response of plates is the finite difference method 

(FDM). Chen (2 22 uses the FDM to calculate the fundamental frequency of an 

orthotropic plate with clamped, simply-supported and free edge conditions. To derive 
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the constraints of the equations required to model the edge conditions stated the authors 

assumed a displacement at the outside nodes where the edge constraints are located. 

This method generates a three-dimensional problem which is computationally intensive, 

especially with respect to determination of the required stiffness matrices and depending 

on the mesh refinement chosen, a large matrix can be required. However, this method 

does produce an accurate solution for orthotropic plates. Figure 2.3 shows the mesh and 

sign convention chosen for this method. 

Another simple method of analysis of plates is the finite strip method. The finite strip 

method effectively performs the same type of analysis as a finite element method, with 

the plate divided into several sections, or strips. Dawe(2.23) uses this method to 

investigate the vibration of Mindlin plates using four different models with varying 

degrees of interpolation of plate deflection and rotation. Numerical examples presented 

indicate that accuracy increases with more interpolations, as would be reasonable to 

assume. Results for the analysis are shown in Table 2.1. Lower order strip performance 

suffers accuracy problems when applied to thin plates as the bending effects are affected 

by poor representation of lateral displacement. (Refer to footnote on Table 2.1, p. 130) 

Another method of determining the response of plates is the superposition method. 

Gorman is a prolific researcher in this particular field of analysis. He uses the technique 

to determine the response of rectangular plates with conventional boundary 

conditions (2 24) and extends this to a combined superposition-Galerkin method (2 - 25) 

Figure 2.4 shows a schematic of the building blocks used. The Galerkin method 

produces answers of equal accuracy as the more traditional method, but requires less 

effort to calculate. However, the method has only been applied to symmetrical modes, 
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so further analysis would be required. The superposition method is also used to 

determine the free vibration response of completely free rectangular Mindlin plate S(2.26), 

again extending this method to a combined superposition-Galerkin method (2.27) 

Gorman also analyses Mindlin plates supported at four discrete points (2.28) 
. The 

superposition method satisfies the governing differential equations and boundary 

conditions by obtaining more terms in the solution series. The point supports can be 

located at any point on the plate, even along its edges. Gorman indicates that for the 

lower values of frequency for thick and thin plates, the superposition method provides 

answers in close agreement, to within three significant figures of the exact solution. 

An alternative method of analysis of plates is the differential quadrature method 

(DQM). The DQM is similar to other methods of analysis such as the previously 

mentioned FD and FEA methods in that it solves the partial differential equations using 

a mesh of grid points. DQM is often used as the number of grid points required to solve 

the governing equations is smaller than for the other two methods. Depending on the 

type of problem being analysed, the governing equations are then reduced to either a set 

of algebraic time independent equations or a set of time dependent ordinary differential 

equations. Initial investigations into the method were based on a two-dimensional 

solution, and in recent years researchers have applied the method to three-dimensional 

elastic theory. Liew and Teo(229) highlights the history of the DQM and proposed a 

method for determining the response of rectangular plates with generic boundary 

conditions in three-dimensions. The method of solution, outlining the method of 

normalisation and discretisation of the governing equations, then constructing the 

eigenvalue equation from matrices derived from the equations. In the paper they 
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indicate that a cosine mesh pattern produces more reliable results which are then 

compared with other known solutions produced from classic theory and other two- 

dimensional solution methods. Results indicate a good correlation, indicating the 

method is valid, and could be extended into other possible boundary conditions. 

An alternative method of analysis is called the Discrete Singular Convolution (DSC) 

method (2.30). The DSC method uses singular convolutions, which are a special class of 

mathematical transformation used in the Hilbert and Radon transforms. The general 

governing equations are constructed, taking into consideration the equations for 

rotational stiffness. Comparisons are then drawn between the obtained data using the 

DSC method and data obtained from other methods, shown in Figure 2.5. The method 

produces answers in close agreement with other theories, but is only applied to either 

plates with edges simply-supported and elastically restrained in torsion, or clamped and 

elastically restrained. 

A novel method of detection of the flexural vibration response of a plate is shown by 

Nieves et al. (2.31). They use a method called laser-interferometry detection to obtain both 

the in-plane and out-of-plane components of vibration, most other methods simply 

detect the out-of-plane movement. Figure 2.6 shows a sketch of the experimental setup. 

It is considered that the classical methods of frequency analysis, perpendicular 

displacements, Kirchhoff theory and Mindlin theory, are not sufficient to describe the 

movement of the plate. Nieves uses the Ritz method to determine the modal response in 

three-dimensions using commercially available software for three different analyses; 

one where the Kirchhoff theory is used, another when Mindlin theory is used, and 

finally one method where the displacements are three-dimensional. The results obtained 
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using the experimental and theoretical methods are compared and are in close 

agreement for the first two modes of vibration. The third is not convergent with the 

experimental work, but with more terms in the three-dimensional series used in the Ritz 

method, the solution should become more accurate. 

2.1.2 Variable end conditions 

The main theme behind the research in this thesis is the effect of variable end conditions 

on the response of structures. An extensive survey of the present literature highlighted a 

number of interesting papers containing several different methods of analysis for both 

thick and thin plate vibration. 

One such method is the Ritz method, used extensively in the determination of the 

vibration response in plates with classical boundary conditions such as free and simply- 

supported arrangements. Leissa et al. (2'32) analyses the response of rectangular plates 

with non-uniform elastic edge supports in various configurations. The displacements 

and frequencies of the plates are solved by deriving the exact solutions of the 

differential equations of motion, and by the Ritz method. The paper considers a support 

condition of parabolically varying stiffness, with two edges simply supported and 

symmetrical non-uniform elastic constraints in one case, and two edges simply 

supported with non-symmetrical non-uniform elastic constraints in another. The exact 

solutions converge rapidly, whereas the Ritz solution produces upper bounds on the 

frequencies, and is also sensitive to changes in the non-dimensional stiffness constraint 

or aspect ratio. 
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Warburton and Edney (2.33) investigates the vibrations of rectangular plates with 

elastically restrained edges, in terms of both translational and torsional stiffness. They 

use the general modeshapes of beams as the assumed functions, reducing the number of 

required functions. In contrast to many other researchers, they applied both rotational 

and translational elastic restraint to the plates. The accuracy of the answers obtained are 

compared with established baselines, their accuracy ranges from 0.5% to 2% depending 

upon the support configuration. The authors also state that the use of beam functions in 

place of polynomials should result in increased accuracy for higher modes. 

Normally a two-dimensional method, Liew et al. (2.34) extend the method into three- 

dimensions for isotropic thick rectangular plates. The main focus of the research 

presented is to determine the effects of boundary conditions and the thickness ratio on 

the response of plates. To demonstrate the accuracy of the proposed approach, they 

carried out a convergence test, comparing values obtained with those calculated from 

classic theory, Mindlin theory and an exact solution. Once convergence has been 

established, the three-dimensional Ritz method is applied to two separate boundary 

condition configurations, SSSS and SFSF, with different aspect ratios and thickness 

ratios for each configuration. The results show that mode shapes can be switched or 

modal coupling can occur in plates with the simply-supported conditions. Meanwhile, in 

the SFSF condition, this switching can be seen in plates with a higher thickness ratio. 

The Rayleigh-Ritz method is used by Li(2 3 to determine the response of plates with 

general elastic boundary conditions. Li stated that the admissible functions are 

composed of a trigonometric function supplemented by a polynomial function to ensure 

the smoothness of the residual displacement function used to describe the edge support 
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conditions. This method is also considered applicable to more complicated boundary 

conditions as the technique's polynomial functions used can be easily substituted with 

any other continuous function. 

Gorman uses the superposition method to determine the free vibration response of 

rectangular plates with elastic edge supports(2 36), and analyses Mindlin plates resting on 

elastic supports (2.37). Edge constraints can be applied with rotational and lateral stiffness 

in any distribution along the edge, and with any combination of edge supports. The 

Mindlin plate analysis allows a rotational stiffness to be added by a slight change to the 

eigenvalue matrix, adding or subtracting a stiffness value to the section of the main 

diagonal concerned with the building block used to generate the matrix, Figure 2.7. 

Gorman also uses the superposition method to determine accurate solutions for plates 

resting on elastic edge supports both with a linear distribution of lateral and rotational 

stiffness(2 38) 
, where stiffness is arbitrarily distributed(2.39) 

, and in plates where the elastic 

support is normal to the boundaries (2.40). The edge constraints are modelled using a 

series of building blocks with a separate equation to describe the distribution and 

location of support. It is also noted that where support is concentrated locally, or where 

discontinuities exist, more terms are required to represent accurately the support 

distributions for the building blocks. To determine the governing equations and 

boundary conditions, the in-plane stresses and support stiffness are calculated, where 

the support stiffness is related to the displacement normal to the plate boundary. The 

building blocks are then determined in the same manner as the previous papers (2 40), and 

solutions calculated. The method shown could be used to determine the response of 
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plates with opposite edges supported, with the other two edges free, by setting the edge 

constraints of one set of stiffness to zero. 

Gorman applies the superposition method to obtain buckling loads and free vibration 

frequencies for a series of plates with elastic boundary conditions(241). Two opposite 

edges are completely free, and the remaining two opposite edges are elastically 

restrained in rotation. Building blocks using the generalised equations of the plates are 

constructed, and the results for buckling and frequency analysis shown. The first four 

frequencies are shown with only one edge support elastically restrained, and with two 

opposite edges free. Both opposite edges are prescribed the same stiffness values from 

zero (simply-supported) to infinity (fully clamped). 

Teng et al. (2.42) developed an analytical method to determine the realisation of boundary 

conditions in the vibration of plates. To determine the actual values of natural 

frequency, a series of modal tests was performed using a signal analyser detecting the 

response of plates subjected to a forced vibration. Plates with varying degrees of elastic 

edge restraint can then be simulated, and the closeness of experimental and theoretical 

tests can be compared. An analytical procedure was developed which enables the 

deflection to be computed, thus enabling the accuracy of the solution to be increased. 

Figure 2.8 provides a diagram of the apparatus used. 

One new novel approach to the analysis of thin plates is the moving least square Ritz 

method, proposed by Zhou and Zheng(2 43). The moving least square method is used to 

determine an unknown coefficient within the governing equations of the plate 

movement. Determining the value of theses coefficients than allows the Ritz function to 
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be displayed in terms of the displacement values of all the points used in the grid on the 

plate. The equation is then differentiated once and then again with respect to x and y, 

and the subsequent equations then inserted into the Lagrangian equation of the plate, 

then depending on the boundary conditions of the plate using a point substitution 

method, an equation comprising the stiffness matrix, the mass matrix and the nominal 

displacements for all grid points can be evaluated to produce the vibration frequency. 

The equations below are the key equations used to determine the resonant frequencies 

of the plates. 

21 
D 02W 02W ra2W 82w 02W 1 F 2(1-v) - dA--phw- ýwýdA 

ax' ay 2 ax' aye axay 2 

Eq. 2.3 

F=1 WT(K-co 'M) W, Eq. 2.4 
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K=T T KT Eq. 2.5 

M=T T MT Eq. 2.6 

(K 
- co 2 Ni) WI =o Eq. 2.7 

Convergence studies have been completed, taking into consideration the effect of grid 

point size, the number of Gaussian integration points and the order of the polynomial 

function used in the general governing equations. Results obtained with this method 

applied to right-angled triangle slabs are compared with more established methods. The 

proposed method does show some agreement with the more established methods. 

However, no comparison is made for rectangular plates and as such, any validation for 

the method applied to rectangular plates cannot be made at the present time. 
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2.1.3 Finite Element Analysis 

FEA is a method used to determine a numerical solution of field problems which 

require the determination of the spatial distribution of one or more variables, and is an 

extension of the commonly used Rayleigh-Ritz method of analysis. Such problems are 

defined by differential equations or an integral equation which may be used to formulate 

finite elements. FEA is one particular method which lends itself to the accurate analysis 

of plates due to the method's ability to analyse large, complex problems using vastly 

increased modern computational power currently available. The FE method is generally 

considered reliable. In recent years, many researchers have attempted to improve upon 

the accuracy of the method, which in certain cases can be time-consuming and 

computationally intensive. A small sample of recent literature proposing new or 

improved methods of solution for the FE method, and element types are highlighted in 

this section. 

One common type of element used in FEA solutions is the four nodded isoparametric 

quadrilateral element available in computer analysis packages. Razaqpur et al. (2 44) 

proposed a new element based on a 9-noded Lagrangian isoparametric quadrilateral 

element called QUAD9 which has 27 degrees of freedom, 3 at each node. Figure 2.9 

shows the element type with node numbering, gauss points and sign convention used in 

this thesis. W is the displacement, Oy and 8x are absolute rotations of the through- 

thickness normals after deformation based on Mindlin plate theory. These rotations 

include the transverse shear deformations. An element with thin plate performance is 

then produced by constraining the shear strains to zero at discrete points within the 

element. The element proposed is a four-noded element with 12 degrees of freedom, 

and element stiffness matrix is defined in the same manner as the classic discrete 
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Kirchhoff triangular element, and Kirchhoff thin plate constraints are applied. 

Following this procedure results in a more concise element formulation, as the QUAD9 

element is often time consuming and has problems when connecting the element to 

other element types. The results obtained using the new element show a close agreement 

with the results obtained using classic Kirchhoff theory. 

Commercially available FEA packages usually utilise the original h-version of the 

method. In this particular method, the displacements, stresses, strains, temperature and 

other physical quantities are represented by first order functions of spatial coordinates. 

Elements are flat-edged and faced, and the accuracy of solution is dependent on the 

mesh refinement; i. e. the mesh shape and element size. 

Another method of FE is the p-method, which is a spectral version of the FE method. In 

this method, the field variables are represented by higher-order polynomials, meaning 

the method can fit physical data points more smoothly, and more accurately than the 

linear first-order functions of the h-version. The accuracy of the p-version is not 

dependent upon the mesh refinement as the element edges are curved, thus convergence 

is automatic. 

Combining the two methods produces the h-p version of finite element analysis. The 

hp-version of the finite element method (hp-FEM) is a generalisation of the classical (h- 

version) FEM and the p-version FEM/spectral method in that convergence is achieved 

by simultaneously refining the mesh and increasing the approximation order. 

Houmat(2.45) uses this method based on a pentahedral element for the analysis of the free 

vibration of plates. The higher order polynomial functions are expressed as shifted 
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Legendre orthogonal polynomials, providing a solution that includes a full frequency 

spectrum: both in-plane and out-of-plane modes are detected. Comparisons of results 

obtained with the proposed method are made for a square plate with fixed edge 

conditions with classical two-dimensional plate theories. The results obtained are in 

close agreement for a thin plate, thickness of 0.01 m, but slightly overestimates the 

values compared with the Mindlin theory when applied to a thicker plate, 0.1 m. The 

Kirchhoff theory answers are not in agreement, but the explanation for such an 

occurrence lies in the fact that the Kirchhoff theory neglects the effects of thickness. 

2.2 Dynamic analysis 

Vibrations caused by traffic loading are one of the main causes of damage to highway 

bridges. The dynamic response of highway bridges to the applied random traffic 

excitation arising from day-to-day loading has been widely researched. Investigations 

into structural health monitoring and damage detection are also covered by existing 

research. The vast majority of dynamic analysis on large structures uses the principle of 

modal analysis. A brief outline of the theory behind the important procedures involved 

in modal analysis is highlighted in the following section, any further theory and 

applications of the method can be ascertained from existing literature on the subject as 

this is beyond the scope of this thesis(2 46 2 49ý 

2.2.1 Modal analysis 

In non-destructive testing, the traditional way of observing signals is to view them in the 

time domain. However, it is also possible to view the signal in the frequency domain by 

a mathematical algorithm know as the Fourier transform. This type of analysis is 

commonly known as spectral analysis. Transforming the data signal from the time 
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domain into the frequency domain allows certain useful parameters describing the 

response of a structure or object to be extracted, and no information is lost or gained 

during this process. The transformation between time and frequency is carried out by 

using a digital analyser, which usually makes use of a more advanced form of the 

Fourier transform, the fast Fourier transform. 

2.2.1.1 The Fourier transform 

The transformation is based on the Fourier transform integral derived from a Fourier 

series. The integral transforms the infinite and continuous time signal into a continuous 

and infinite frequency spectrum using Eq. 2.8 and 2.9. 

X(f)= fx(t) e-''" 1tdt Eq. 2.8 

And its inverse, 

x(t)= fýX(f) 
e 12 it r(I Eq. 2.9 

Where X(f) is the frequency spectrum, 

x(t) is the periodic time signal, 

Eq. 2.8 and 2.9 show an idealised transform which can be applied to all time signals. In 

reality, not all of the required information will be available, normally only a small 

transient signal. 
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2.2.1.2 Discrete Fourier transform 

Fourier analysis is not suitable for transforming a time limited non-periodic signal into 

the frequency domain. A waveform can be sampled and digitised using a spectrum 

analyser, and then transformed into the frequency domain using the DFT. The DFT 

transforms finite sequences of data by windowing and sampling the continuous time 

signal. Windowing the data, using one of several types available such as the Hann 

window, allows a short section of the data to be discretised using the sampling theorem. 

The modified equation for the DFT is shown in eqns 2.10 and 2.11. 

X (k) =Y x(n) e-'2ßn"' Eq. 2.10 
n-0 

And its inverse, 

x(n)= YX(k) e'2 IN Eq. 2.11 
Nn=o 

Where k is the set of discrete frequency components up to N-1, 

n is the time sample index up to N-1, 

N is the number of samples considered. 

2.2.1.3 The fast Fourier transform 

The DFT is the most straightforward mathematical procedure for transforming data the 

frequency domain from the time domain, but is considered inefficient. One method of 

improving the DFT's efficiency is known as the FFT, originally described by Cooley 

and Tukey(2 50) in 1965. The FFT is not a new transform, but simply a method used to 
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increase the efficiency of the transform. Most modern analysers use the FFT, although it 

should be pointed out that both methods produce the same answers, the FFT uses fewer 

computations to reach those answers. The FFT is a discrete Fourier transform algorithm 

which reduces the number of computations needed for N points from 2N2 to 2N1og2N. 

A discrete Fourier transform can be computed using an FFT by means of the Danielson- 

Lanczos lemma (2 51 if the number of points N is a power of two. If the number of points 

N is not a power of two, a transform can be performed on sets of points corresponding 

to the prime factors of N which is slightly degraded in speed. Base-4 and base-8 FFTs 

use optimised code, and can be 20-30% faster than base-2 FFTs. FFT algorithms 

generally fall into two classes: decimation in time, or decimation in frequency. 

The Cooley-Tukey FFT algorithm first rearranges the input elements in bit-reversed 

order, then builds the output transform (decimation in time). The basic idea is to break 

up a transform of length N into two transforms of length N/2 using equation 2.12. 

N-1 N 12-1 N /2-1 
Ya, 

e-27ank/N = 
la 

e-27ri(2n)k/N + 
Ya" 

e-2m(2n+l)klN 2n n+1 
n=0 n=0 n=0 

N/ 2-1 N/2-1 
Eq. 2.12 

Yaevene-2nink/(N/2) 
+e 

2 k/N ýaodde 2mnkl(N/2) 
an 

n 
n=0 n=0 

This is sometimes called the Danielson-Lanczos lemma. The easiest way to visualize 

this procedure is perhaps by the Fourier matrix. The Sande-Tukey algorithm (2.52) first 

transforms, then rearranges the output values (decimation in frequency). 

45 



2.2.1.4 Sampling and aliasing 

To transform the time signal accurately, it is necessary to sample the signal at discrete 

points to represent the sinusoid transformed. A sampling rate that is too low will result 

in vital information about the signal being lost. This phenomenon is known as aliasing. 

To remove this error, the correct sampling rate must be determined, which is termed as 

the Nyquist sampling theorem(2 53). In this paper, Nyquist presented a method for 

converting analogue waveforms into digital signals for more accurate transmission over 

phone lines. He presented a method whereby an analogue signal, if it were band-limited, 

could be captured and transmitted in digital values and then recreated in an analogue 

form on the receiving end. He presented the concept of sampling amplitudes at a 

specific rate, and most importantly determined that the sampling rate would need to be 

at least twice the highest frequency to be reproduced. If this is not the case, then aliasing 

occurs. Aliasing can be prevented by increasing the sampling rate and filtering the data 

before analysis. These filters are known as anti-aliasing filters and are designed to limit 

the high frequency content of the waveform. 

2.2.1.5 Leakage 

When performing an FFT analysis, the time history for the samples must be limited, 

discretising the continuous signal into smaller sections. However, truncation of a signal 

in the time domain will result in an error in the frequency domain, and vice versa. This 

error is called leakage. Leakage can be reduced by applying time weighting functions 

known as windows. Normally, the effect of the window in the frequency domain is 

understood as the convolution of the signal spectrum and the spectrum of the time 

window. This can lead to signal distortion in the frequency domain, as the signal is 

effectively changed. Several types of window exist, and each separate type is applicable 
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in different situations. The Hann window (2.54) is often used for continuous signals such 

as random excitation due to impacts. The Hann window reduces possible errors by 

setting the signal equal to zero at the start and end of the time record. Figure 2.10 shows 

the types of windowing available. It is also possible to use overlapping analysis for 

transients of a long time sample, effectively giving a flat overall analysis window, with 

the added advantage of reducing noise at the start and end of the record. 

2.2.1.6 Signal enhancement 

Measurements can often become contaminated with noise, which can result in signal 

degradation. Noise in a signal will still be analysed when present, which can lead to 

erroneous frequency spectra being displayed. In order to improve the process, time 

signals can be filtered and averaged. To reduce the noise element in a signal, a linear 

averaging technique can be employed which improves the signal to noise ratio by the 

square root of the number of repetitions of the figure. The technique of signal averaging 

is straightforward. A repetitive signal is acquired a number of times, each acquisition is 

added to the last, and the sum is then divided by the number of acquisitions. The more 

averages taken, the smoother the response curve will tend to be, as more extraneous 

noise is eliminated from the spectrum. It is mainly used for analysis of stationary signals 

and transients. In addition to linear averaging, analysers also offer exponential 

averaging and peak averaging. Exponential averaging places the emphasis on the latest 

sample. The contribution of each sample towards the average is weighted using an 

exponentially decaying curve with a time constant equal to the number of averages, Na, 

times the record length, T. If a measurement is made with no overlap, Na xT is equal to 

the time constant. Exponential averaging is a continuous process, and is useful for 

analysing continuous non-stationary signals. Peak averaging records the largest 
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amplitude of each spectral line. When a new sample is included, values are compared at 

each frequency and the largest retained. Averaging simply stops upon reaching the 

required number of averages. 

2.2.1.7 Analysis 

The main purpose of signal analysis here is to determine the dynamic behaviour of a 

structure. This is done by measuring the input-output relationship. Several methods can 

be used to describe the structural response, either in the time or frequency domains. 

Analysis in the time domain provides information on pulse reflection, whereas analysis 

in the frequency domain shows the vibration response of the structure. In general, the 

three parameters used in this type of structural analysis are acceleration, velocity and 

displacement. All three are related, and can be calculated using the following 

integrations (Eqns 2.13 to 2.15); 

Acceleration z= 
aIx 

8t2 

Velocity z= 
ax 

at 

Displacement x=z 
4 2r2 f2 

2.2.1.8 Time domain functions 

.x or 
2 zzf 

Eq. 2.13 

Eq. 2.14 

Eq. 2.15 

The most common properties of interest can be obtained by the impulse response 

function h(r). The output signal b(t) is measured in terms of a(t), with the relationship 

between the two signals given by Eq. 2.16. 
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b(t) = h(t) x a(t) Eq. 2.16 

For Eq. 2.10 to hold true, the system must be physically reliable, stable, linear and 

unchanging. Other time domain functions available include autocorrelation and cross- 

correlation. The autocorrelation expresses the correlation between a signal and a 

displaced version of itself. Autocorrelation is used for echo detection in signals and 

measurement of their strength and time delays, as well as the detection of periodicity 

buried in noise. This is possible because the autocorrelation of a periodic signal is also 

periodic whereas that of noise falls rapidly to zero with increasing time displacement. 

The cross-correlation expresses the correlation between the first signal and a displaced 

version of the other signal. Cross-correlation is used to measure time delays between 

signals or in systems, identifying transmission paths and to detect signals buried in 

extraneous noise. 

2.2.1.9 Frequency domain analysis 

A frequency spectrum is derived from an averaged time signal using an FFT analysis, 

and the resultant spectrum is often referred to as the autospectrum. The FFT of a 

correlation function, described in the previous section, results in the power spectrum. 

The FFT of the autocorrelation function is known as the autospectrum, whereas the FFT 

of the cross-correlation function is the cross-spectrum. Both of these spectra are 

required to construct the frequency response functions which describe the modal 

parameters of the structure. 
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2.2.1.10 Frequency response function 

When a time signal is transformed into the frequency domain, the input A(f) and output 

B(f) are related by the following expression; 

B(f) = H(f) xA (f) Eq. 2.17 

H(f) = 
B(f) 

Eq. 2.18 (f 

Where H(f) is known as the frequency response function (FRF) and can be described as 

the Fourier transform of the impulse response function h(t). However, noise is often 

present in measurements in the input, output or both, which prevents this method form 

functioning. Therefore, modified equations are used as follows: 

HI (f) = 
Gab (. fý 

and H, (. f) = 
Ghh (. fý 

Eq. 2.19 
Ga(f J 

(f 
J 

Where Gaa(f) is the autospectrum of the input signal 

Gab(f), Gba(f) is the cross-spectrum of the input and output signals 

Gbb(f) is the autospectrum of the output signal 

In most cases, Hl and H2 will produce equal answers when used in impact testing. Hi is 

used with noise-free measurements on non-linear systems and measurements with 

uncorrelated noise on the output signal, but no noise on the input signal. The latter is 

often the case at frequencies where the frequency response function shows anti- 

resonance. In these situations, the input autospectrum GQQ(f) is measured correctly. If 
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the averaging number is sufficiently large, the non-linear contribution or the noise is 

averaged out in the cross-spectrum Gab(f ). H1 is also applicable to measurements with 

a flat input autospectrum and leakage in the output autospectrum. Hz analyses 

measurements with uncorrelated noise on the input signal, but no noise on the output 

signal. (This can be the case at resonance frequencies for a mechanical system excited 

by a vibration exciter. ) In this situation, the output spectrum Gbb( f) is measured 

correctly. If the averaging number is sufficiently large the noise is averaged out in the 

cross-spectrum Gba(f). H2 is applicable to measurements with a flat input autospectrum 

and leakage in the output autospectrum. 

In this thesis, the H1 method is used for the modal analysis section. In modal analysis, 

the input signal is measured in terms of force and the output signal is measured in terms 

of motion. This motion is typically acceleration, velocity or displacement. There are 

several different types of FRF, dependant on the parameter measured and the transducer 

type. Table 2.2 shows the range of structural FRFs available, dependant on the output 

parameter. 

2.2.1.11 Coherence function 

Coherence is a number between one and zero, and is a measure of the degree of linearity 

between two related signals, such as the input force of a structure related to the vibration 

response to that force. 

2(. f)_ 
HI(f) 

Eq. 2.20 
H2 (. f 

Coherence, shown in Eq. 2.20, is thus a two-channel measurement, and does not apply 

to single-channel measurements of vibration signatures. In a frequency response 
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measurement of a mechanical structure, if the structure is linear, the coherence will be 

one, but if there is some non-linearly in the structure or if there is noise in a 

measurement channel, the coherence will be less than one. The FFT analyser is able to 

measure the coherence between channels, and it is a useful tool in determining good 

from noisy, or meaningless, data. 

2.2.2 Damage detection 

Full-scale dynamic testing of bridges can provide useful information on the 

performance of structures. By measuring the dynamic response due to loading, either 

ambient or impact loading, modal and system parameters can be determined. Salawu 

and Williams (2 55 highlight early research carried out on bridges, citing the reasons for 

the testing, as well as a general discussion of excitation devices used. Figure 2.11 shows 

two pieces of equipment used for exiting structures. 

Researchers have used many different methods for the monitoring and damage detection 

of bridge structures, using both dynamic and static behaviour. Damage detection 

through changes in frequency have also been developed by researchers(2.56) 

One dynamic method is the modal flexibility method which includes the influence of 

modeshapes and resonant frequencies. Usually this method uses the impact method, but 

in the case of Zhao and DeWolf 257), the approach is modified so that the excitation is 

provided by ambient vibration due to traffic loading. 

One study by Nassif et al. (2.58) used data obtained from weigh-in-motion (WIM) sensors, 

incorporating axle load, gross vehicle weight and number of axles, to construct a three- 

dimensional model for the simulation of multiple truck loads on bridges. The results are 
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presented as a function of the static and dynamic stresses in each girder, and the 

intention is to provide an alternative method for the development of live-load models 

for design and evaluation. 

Most bridges are designed using static analysis procedures, which can often produce 

inaccurate answers due to the inherently complex nature of vibration. Simplification of 

the problem into a beam yields accurate solutions for simple geometries, yet is not 

sufficiently rigorous for more complex structures such as skewed bridges. Memory et 

al. (2.59) developed a method for estimation of resonant frequency by applying Rayleigh's 

method to a grillage model which can provide results within ten percent accuracy. The 

paper also considers the effect of support stiffness, primarily through a change in 

bearing type from simply supported to resting on elastomeric bearings. This alteration 

of support condition is not considered to have an effect on the resonant frequency of the 

structure. 

Damage detection in structures is a well researched topic, with many techniques 

available for the analysis of bridges. One such method of analysis is vibration based 

damage identification using ambient excitation from vehicles in the case of a bridge. 

Several methods of determining the modal parameters of the structure are available; 

mode shape curvature, change in flexibility, change in flexibility curvature and strain 

energy methods to name a few. Alvandi and Cremona (2.60) compare these techniques to 

detect damage in a beam structure. The results presented would tend to indicate that the 

strain energy method provides the most accurate results, especially when the signal 

being analysed contains a large proportion of noise. 
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Thyagarajan et al. (2.61) use the receptance version of an optimised FRF of a truss 

structure to determine damage location, which is then applied to an FEA model to 

predict structural integrity. However, this method does have a couple of deficiencies. 

The technique is computationally intensive making it more applicable to smaller 

structures. To apply this method on a larger scale would require the analysis of sections 

of the structure to be analysed sequentially, which could introduce possible errors into 

the analysis. The second limitation is that the variation in ambient temperature alters the 

elastic modulus of the structure to the extent that FRFs may not be repeatable. 

The dynamic stiffness technique is used to locate damage in structures, with a particular 

emphasis on concrete or masonry structures, through an often small change in 

eigenfrequency values or magnitude. The dynamic stiffness shown is the force divided 

by the displacement and it is a dynamic measure (in Nm-1 units) of the ease with which 

a body may be deformed. Many researchers have applied this technique to locate 

damage in structures, with the most common application in civil engineering being the 

location of cracks in concrete beams62 & 26'ý ý2 

In general, a variation in the primary natural frequency can be attributed to a cracking in 

the beam, a change in the deformation modulus of the beam or in bearing 

conditions(2 64). It is often problematic to locate damage, or at least attribute it to a 

change in one single parameter. Therefore, it is necessary to record the change in more 

than one frequency. In addition to the application of the method for concrete damage, 

researchers have also used the method to determine the dynamic properties of masonry 

arches (2.65. This particular investigation showed that the arch characteristics were 

related to the degree of restraint, fill material properties and any external loading on the 
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structure. These parameters are all possible considerations when considering the 

response of the highway bridge tested during this research. 

Another dynamic descriptor for structures is the mechanical impedance method. 

Impedance is defined as the force divided by the velocity and is a dynamic measure of 

how much a structure resists motion when subjected to a given force, and it is the 

reciprocal of mobility. Tseng and Wang (2.66) use this method to determine the structural 

impedance response from the electrical admittance measurements of piezoelectric 

transducer patches bonded to the structure. The method highlighted does not involve 

any modal analysis, but the data are used to update an FEA model to locate damage and 

estimate its severity. Further research on the applicability of the method to larger 

structures is currently underway. 

Lee and Shin introduce a method of damage detection in plates based on the partial 

differential equations of motion for damaged plates (267) 
. This method uses FRF data in 

the damaged state and can locate several different damage locations simultaneously. 

Two methods are compared, the full-domain and reduced-domain methods. In the 

reduced-domain method, the spatial domain of the problem is reduced based on prior 

knowledge of the damage location. In reality, this in an unlikely scenario, therefore a 

three step method of detection is outlined. The results showed that the best results are 

obtained using the reduced-domain method in conjunction with a multi-excitation 

frequency and multi-measurement point approach. 

Green and Cebon(2 68) introduce the effects of HGVs on bridge structures, proving a 

potential method for predicting the behaviour of a bridge to a set of wheel loads. The 
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method uses the convolution of vehicle loads with the modal response of the structure. 

The convolution integral is then solved using the FFT. Experimental work is used to 

validate the method, where modal properties of a bridge obtained using an impact 

hammer test. Data obtained during single vehicle tests were then convolved with the 

impact testing data, and the results compared with the predicted response. The modal 

tests indicated that simple beam and plate models provide accurate predictions of mode 

shapes and natural frequencies of the bridge. 

Boothby and Laman(2 69) investigated the extent of damage caused by vehicle loading on 

concrete bridge structures. An analytical model to evaluate the effects of loading on a 

bridge deck slab was developed. This analysis highlighted the importance of mechanical 

and environmental factors, but shows that due to the exceptionally high number of 

cycles required to failure, mechanical factors are less significant than environmental 

effects. 

Petryna and Krätzig use the compliance method as the basis for a damage detection 

method (270) 
. The damage is based on the maximum compliance measurement from the 

structure's lowest eigenfrequencies and mode shapes. The method is therefore most 

applicable for determining damage which affects bending modes. Further research into a 

reduction of longitudinal stiffness and shear stiffness is currently underway. Results 

obtained using the method indicate that the method is relatively insensitive to possible 

uncertainty factors affecting the accuracy. 

Model updating methods based on vibration data can often contain uncertainties that 

affect the accuracy of damage detection. Xia and Hao proposed a statistical method of 
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damage detection based on changes in frequency(2 71 
. The stiffness matrices in the 

damaged and undamaged states are obtained, then the parameters are estimated by the 

perturbation method and then verified using the Monte Carlo method. The probability of 

damage is then determined based on these parameters in the damaged and undamaged 

states, and the higher the probability, the more likely damage is present. 

Owolabi et al. use a technique of detection where accelerometers are attached to the 

damaged sample(272). Measurements of frequency changes in the first three resonant 

frequencies are noted and the corresponding amplitudes of the FRFs are used to 

quantify the extent of the damage. The method provides accurate results and a simple 

procedure for determining structural alterations. However, this method has only been 

applied to small-scale structures, and the applicability to larger structures is uncertain as 

there are many more parameters that can affect the response. 

FEA is often used in conjunction with experimental data obtained to produce accurate 

solutions for dynamic analysis of complex problems. This technique is known as modal 

updating. Teughels and De Roeck use the technique to locate and quantify damage to a 

highway bridge currently in service in Switzerland (2.73). Damage in the structure is 

represented by a change in the Young's and shear moduli, which are distributed over the 

model using linear piecewise approximation functions. 

Other applications of FEA are to provide a damage indication and life-time estimate of 

structures. Krätzig and Petryna develop this method (2 74) by applying it to three 

examples of damaged structures, then predicting the estimated life of the structure, 

which is effectively modal updating. 
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Operational modal analysis (OMA) is a newer method and does not rely on an input 

signal, and is therefore known as output only analysis. Rather than using a recorded 

force input, output only analysis determines the modal parameters of a structure using 

the ambient vibrations, caused in this case by vehicle movement. One example of OMA 

is presented by Lee et al. (2 75 
, who extract the modal parameters for the response data 

using the random decrement method. Once this data has been analysed, damage location 

is performed using a neural network using the ratios of pre-damaged resonant 

frequencies to post-damage as well as the mode shapes, Figure 2.12. Results indicate 

that the technique has some potential for locating cracks in the structure. 

Two methods of determining the modal parameters using operational modal analysis are 

available; frequency domain decomposition (FDD) and stochastic sub-space 

identification (SSI), in the time domain. Many papers outlining applications of the two 

methods are available (2.76 - 2.78), and the three cited herein highlight the key features of 

FDD and SSI methods. The two methods allow a graphical representation of mode 

shapes at each resonant frequency to be visualised. In general, the SSI technique will 

give the most accurate results, but a combination of the two is advisable to validate 

experimental results. Order estimation and the detection of spurious modes can often 

affect the accuracy of the two techniques. Zhang et al. (2,79) propose a method using 

component energy as an identifier rather than matrix values, and a stabilisation diagram 

utilising the Hankel matrix (2.80) 

Peeters and Ventura present a study comparing several different modal anlaysis 

techniques from forced, free to ambient vibration tests (2 81 
.A 

highway structure in 

Switzerland was selected, and six separate different methods of system identification 
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were compared. The methods used ranged from simple peak picking methods, FDD 

methods, orthogonal polynomials, the Ibrahim time domain method, SSI methods and a 

two stage least squares method. The results obtained using the different methods 

indicate that certain methods of excitation are not applicable in every circumstance. 

What is clear is that ambient vibration techniques provide a method of exciting the full 

range of resonant frequencies in a large scale bridge structure when compared to a 

mass-shaker or simple impact testing. 

2.2.3 Wavelets 

In recent years, use of the wavelet transform as an analysis tool has become widespread. 

The wavelet transform (WT) is often compared with the Fourier transform, in which 

signals are represented as a sum of sinusoids. The main difference is that wavelets are 

localized in both time and frequency whereas the standard Fourier transform is only 

localized in frequency. Wavelet transforms are broadly classified into the discrete 

wavelet transform (DWT) and the continuous wavelet transform (CWT). Figure 2.13 

shows three wavelet transforms and their equations. The principal difference between 

the two is the continuous transform operates over every possible scale and translation 

whereas the discrete uses a specific subset of all scale and translation values. The 

discrete wavelet transform is less computationally complex in comparison to the FFT, 

taking O(N) time as compared to O(N log N) for the FFT, where N is the data set size. 

Melhem and Kim(2 82) compare the two methods of analysis on a concrete pavement and 

simply supported pre-stressed concrete beams. Yin et al. (2 83) use the WT on FRFs from 

an FFT analysis to determine natural frequencies and damping estimates. This method 

provides a simple solution, but is not as accurate for closely spaced modes as multi- 

degree of freedom methods. Yan et al. (2.84) use a modified method of the WT 
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incorporating a bootstrap distribution theory to evaluate uncertainty effects. Data 

obtained experimentally is compared to data generated numerically, and an excellent 

correlation is achieved. 

Kim and Melhem(2 8 provide an excellent review of structural damage detection using 

the wavelet transform. In this review, the methods for damage detection were arranged 

into three categories: variation of wavelet coefficients, local peturbation of wavelet 

coefficients in a space domain and reflected wave caused by local damage. The first 

method is used to find damage and its severity, usually by changes in the modal 

properties of the structure. The second method localises the damage by identifying any 

irregularities in the wavelet coefficients near the crack location. The final category 

measures the severity and location of damage, which identifies damage through 

reflected waves from cracks. However, it is noted that damage severity is often difficult 

to estimate accurately. One solution to this could be the application of artificial neural 

networks. Hou et al. (2.96) and Basu(2 87 use the WT to localise damage through a change 

in structural stiffness through spikes in the response data. 

One possible drawback of the WT is that the resolution is poor in the high-frequency 

region. One method proposed to resolve this problem is the wavelet packet transform 

(WPT)(2 88). In this method, dynamic signals measured from a structure are decomposed 

into wavelet packet components, then component energies are calculated and used as 

inputs for damage detection using neural network models. Results for a three span 

continuous bridge show that the method has some validity by locating changes in 

stiffness. Law et al. (2.89) also make use of this method, using the WPT sensitivity to 

locate and quantify damage. This method also has the advantage of not being sensitive 
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to noise in the measurements. Sun and Chang (2.90) apply a statistical damage threshold to 

data decomposed using the WPT. This method is particularly powerful for 

determination of damage location in noisy signals as components that have small signal 

energy are discarded. 

Damage detection in plate structures is particularly applicable with respect to many 

engineering structures, especially civil engineering structures such as highway bridges. 

Loutridis et al. (2.91) use a two-dimensional WT to locate and quantify damage in plate 

structures using a method similar to that used for edge detection in images. Damage is 

identified by changes in the transform coefficients; spatial changes locate the damage, 

whilst the maximum value and energy content measured to investigate cracks of 

different length and depth. It should be noted that this method is only applicable to two- 

dimensional structures, and requires a fine spatial resolution as well as relying on the 

accuracy of response data. Sheen (2.92) proposes a three-dimensional analysis technique 

using a wavelet-based demodulating function by sweeping the filtering passband from a 

low-frequency band to a high-frequency band. 

Rucka and Wilde (2.93) propose a method using wavelets on static deflection profiles as 

opposed to modeshape. The method relies on accurate digital pictures with a fine 

resolution which are not always available for standard visual inspections. It should be 

noted that due to noise in the measurements, in certain cases, it is awkward to locate 

damage due to false maxima being present in the responses. Only once the crack is of a 

significant depth can it be identified accurately. This could be a potential difficulty 

when trying to identify smaller instances of damage. 
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2.2.4 Genetic algorithms 

Hu et al. use two algorithms applied to modal testing data to identify damage in 

structures which are based on the subspace rotation algorithm (294) 
. The first method uses 

the mass and stiffness matrices for damage identification purposes, whereas the second 

method only uses the mass matrix. The magnitude of damage is then estimated using a 

quadratic programming technique. Both methods can locate the damage, but only the 

second method using just the mass matrix can accurately predict the damage extent. 

Even then the second method cannot detect the extent in all of the presented cases, 

which is a weakness of this method. 

One method of damage detection using FRFs obtained from vibration testing is the 

damage location vector (DLV) method. Huynh et al. (2.95) obtain damage location by 

comparing FEA models of the structure in its original undamaged state with an updated 

model using impact hammer testing which allows determination of the damaged 

structure's stiffness matrix. Test results showed that the method is capable of detecting 

damage in simple structures such as a truss or plate, although further investigation is 

required to determine applicability to larger, more complex structures. 

Duan et al. use a proportional flexibility matrix (PFM) method from scaled mode 

shapes and frequencies to apply the DLV method to ambient vibration problems (2.96) 

Instead of real flexibilities, the PFM is incorporated into the DLV method by 

determining PFMs for the undamaged and damaged states. This method is, however, 

reliant on the accuracy of the mode shapes and frequencies for determination of the 

PFM, and data used for the pre- and post-damaged PFMs must be comparable. 
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FEA is a powerful tool that can be used in the determination of damage location and 

extent. Dutta and Talukdar use an adapted version of FEA using the modal curvature 

technique to detect damage in simulated data for simply supported and continuous 

bridges(2.97). Damage is located in multiple positions, and what is apparent is that 

damage is located more accurately using the lower modes in this case where the signal 

to noise ratio and sensitivity of measuring equipment is such that higher order modes 

may be swamped by noise in the signal. This is shown in Figure 2.14, which indicates 

that higher modes should have an increased sensitivity due to the increase in slope, but 

in practice, lower modes are better in the authors case due to the lower signal to noise 

ratio. This should come as no surprise, as these modes will tend to contain more 

dynamic energy than those in the higher end of the frequency spectrum, although more 

modes are required to increase the accuracy of the analysis. 

The use of structural identification techniques has expanded in recent years due to the 

increase in computational power available and advances in signal processing 

techniques. Neural networks and genetic algorithms are one example of this improved 

technology, and are being used increasingly due to their ability to detect patterns in data. 

Early work in the 1990s by Masri et al. (298) highlights the methodology used for the 

genetic algorithm method, where data for a healthy structure is obtained and compared 

with data for varying stages of damage. 

Lee et al. use a neural network to track damage present in a structure using modal 

properties applied to an FEA model this model is then compared with the original 

undamaged model by comparing the differences between mode shape coefficient 

ratios (2-99). Two examples presented are a simple beam and a multi-girder highway 
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bridge. The method does provide accurate solutions but does present several false 

alarms when applied to the full scale multi-girder bridge. Chou and Ghaboussi(2 10°) use 

a similar method, but identify alterations in static displacements to characterise 

structural parameters such as Young's modulus and cross-sectional area, as opposed to 

stiffness matrices. 

Pothisiri and Hjelmstad use an algorithm to detect global damage parameter estimates 

using both an FEA model and the measured structural response (2'°' An optimisation 

scheme is used to locate the damage, then the algorithm is used to determine the 

probability of these measurements being actual damage locations using Monte Carlo 

simulations. The method can produce results that are accurate, but does seem 

susceptible to noise in the measurements when the ratio of crack depth to sample 

thickness is above 10%. 

Modal strain energy methods have also been used to locate and quantify damage where 

the technique relies on changes in mode shapes and the stiffness matrix. One method 

proposed by Shi et al. (2 102) only requires incomplete modal data to locate and quantify 

damage, such as the incomplete measured mode shapes, the analytical mode shapes and 

the element stiffness matrix. The damage detection procedure is shown with two 

examples, one numerical and one on a two storey steel frame. The results show that the 

method can locate damage, but the method is sensitive to noise in the measurements and 

cannot accurately determine the extent of damage when more than 5% noise is present 

in the data. 
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As a result, another paper by Shi et al. presents an improved method of detection using 

both the stiffness matrix and mass matrix of the system to quantify damage (2,103) Using 

this method reduces errors present from modal truncation and improves the convergence 

properties of the previous algorithm. The same two tests are performed as in the 

previous paper, with vastly improved results (Table 2.3). 

Sazonov and Klinkhachorn(2.104) attempt to determine an optimal time sampling interval 

that would reduce the effects of truncation and noise errors in the measurement. 

2.2.5 Moving loads 

The vibration of plate structures under moving loads is a topic that until recently was 

not researched to any great degree. Fryba and Pirner(2'°5 & 2.106) provide an excellent 

initial background to the theory of moving loads on plate structures, as well as a 

comprehensive review of literature containing research on plate structures. 

In bridge engineering, the loading on the structure comes in the form of a vehicle 

travelling at a certain velocity and imparting a force into the structure. The vehicles that 

cause the largest forces, and hence potentially most damage, are the largest vehicle 

types such as HGVs, which can impart forces up to four times greater than an average 

car. In recent years, the permissible loading for HGVs has increased to 44 tonnes, and 

may possibly be increased again to 48 tonnes in the near future. The distribution of 

loading in HGVs, and the type of vehicle configuration, i. e. number of axles and 

suspension type, can have a large influence on the transmission of loading into the 

structure. Figure 2.15 shows historic vehicle width limits, length restrictions and gross 

vehicle weight. 
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One method used to analyse moving loads is to use the orthotropic plate theory and 

apply the modal superposition principle, then using the Tikhonov regularisation 

procedure (2.107) to provide the boundary conditions for the loading in the time domain. 

Zhu and Law (2.108) use this method, and compare results obtained using a beam model 

with those for a plate model. Using actual measured strain and acceleration data from 

experimental work, the validity of the method is shown. What is apparent is that 

acceleration methods would appear to provide much clearer results than strain 

measurements, although it should be noted that forces moving down the centreline of 

the deck are more accurate than those measured on an eccentric path. This is only in the 

authors work, were more advanced sensors used, then strain based methods would be as 

accurate as acceleration methods. This is shown in Figure 2.17. It is also considered that 

the problem may be accurately analysed using a beam model when the longitudinal 

vibration modes are more prevalent. This method is also applied to continuous multi- 

lane bridges, and responses are considered with respect to the dynamic impact factor of 

the deck (2.109) The study indicates that the road surface roughness is more important 

than the vehicle speed to the impact factors, as is the transverse position of the vehicle 

on the deck. 

Two papers by Yang et al. (2.110 & 2.111) outline a method for determining the bridge 

frequencies using the dynamic response of a passing vehicle. The papers show an initial 

numerical treatment of the problem, followed by the experimental results obtained from 

testing on a structure. The method highlights the fundamental frequency only. 
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The overall dynamic response of a bridge is affected by many parameters. Researchers 

have investigated the effects of bridge running surface texture, developing a three- 

dimensional analysis approach to define the response of the bridge structure (2 112) 

One method of parameter evaluation is highlighted by Chatterjee et al. (2.113) and Au et 

al. (2 114) 
, where the response of a continuous bridge to a single sprung and unsprung 

mass is obtained by modelling the deck as a continuous system. The irregularity in 

pavement surface is modelled by a stationary random process characterised as a specific 

power spectral density (PSD) function. The response analysis is performed in the time 

domain by simulating the random profile of the deck. Effects of torsion due to eccentric 

loading and any non-linear response due to vehicle-pavement interaction are also 

considered. A parametric study highlights some interesting information with regard to 

the effect of pavement roughness, especially in terms of DAF which appears to be 

influenced by vehicle velocity and the type of idealisation applied (2 115) Au et al. obtain 

the parameters through genetic algorithms which reduce the possible error in terms of 

parameter identification by comparing measured data with simulated data. Using this 

method, it is also possible to obtain information about the time varying vehicle contact 

forces between the vehicles and bridge surface (Figure 2.16). 

The DAF is an important factor that can describe the response of structures to impact 

loading from vehicles. Pesterev et al. (2.116 & 2.117) proposed a method to assess the 

dynamic contact forces produced by vehicles passing over a discontinuity in the bridge 

running surface. Functions describing the road surface irregularity are used in 

conjunction with first-order complex differential equations that describe the moving 

vehicle, then the solutions to all equations are found and expressed in terms of a 
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complex variable, the pothole dynamic amplification factor. Each irregularity has a 

unique answer. 

Law and Zhu investigate the influence of road surface roughness combined with the 

braking effects of a vehicle ý2 118. In this research, the structure is modelled as a multi- 

span Euler-Bernoulli beam with non-uniform cross-section resting on springs with a 

large stiffness. The vehicle is modelled as a series of moving loads at a fixed spacing. 

The braking effect of the vehicle generates excitation forces that cover a large frequency 

range, and as such this requires a large number of vibration modes for accurate solution. 

Figure 2.18 show the apparatus and results obtained. It is considered that the type of 

suspension has a significant effect on the dynamic response, particularly when braking 

on top of the structure. The pitching effect induced by the vehicle can generate large 

oscillatory forces in the deck structure. 

Savin(2.119) uses an exact analytical solution for an Euler-Bernoulli beam traversed by a 

series of pointloads, analysing the dynamic amplifications for both the forced response 

and free vibrations. Based on the results derived, a set of simple formulae are obtained 

for the maximum expected dynamic amplifications. This method could be extended into 

plate vibration as all the required information regarding plate eigenmodes in most cases 

of boundary condition are currently available. 

Zhu and Law(2 120) developed a method of determining the parameters of moving loads 

through a technique called regularisation and the superposition method. The method 

was applied to a continuous Euler-Bernoulli beam and uses measured strains and 

acceleration to identify and quantify interaction forces on the bridge structure. The 
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technique is best for single-span structures as multispan structures are more sensitive to 

noise in measurement data, and erroneous data are observed at the supports. It is 

apparent from the data presented that measured accelerations provide a much more 

accurate analysis than measured strain energy. Another paper by Zhu and Law(2 121 uses 

measured strains to identify moving loads by comparing the results obtained using two 

methods; one based on the exact solution method, the other based on FEM. The 

identified results are good for axle loads, but slightly poorer for individual loads, and 

both methods failed to identify loads with a large eccentricity. 

2.2.6 Other NDT methods 

Woodward (2 122 summarises a wide range of available techniques for NDT of concrete 

structures; pulse methods such as acoustic emission and ultra-sonics, electromagnetic 

methods, visual methods such as photogrammetry, infra-red methods, radar, electrical 

methods, magnetic methods and other methods such as surface hardness, pull out tests 

and permeability tests. 

Forde outlines recent advances in NDT methods for concrete structures(2123), outlining 

the possible advantages and applications of each particular type. The paper separates the 

methods into sonic, ultrasonic, electromagnetic, and electronic methods of NDT. 

One method which is used extensively for the NDT of concrete structures is radar 

inspection, which falls into the electromagnetic category of analysis. Radar has been in 

use since its development during the Second World War, and with increasing 

computational power and advances in equipment technology, radar is used for a wide 

variety of applications. In terms of civil engineering structures, radar tends to be used to 

investigate the integrity of either concrete or masonry structures. Voids can be detected 
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by the reflections of signals, allowing the location to be determined due to wave 

velocity (Figure 2.19). Bungey and Millard use this method (2.124), and Bungey presents 

an update on the applications and limitations of radar testing such as the portability or 

the inherent cost of equipment(2 125). One practical application of radar for highway 

structures was carried out in Virginia in the United States. Two methods of NDT were 

used, radar and impact-echo testing, and the results compared with concrete cores taken 

from the structure. The research found that the methods are in close agreement with the 

concrete cores taken, although the impact-echo method must be performed with great 

care and attention(2.126). Consideration must also be given to the input parameters, 

namely the frequency in this case, as choosing the wrong frequency could result in data 

being lost or voids not being detected (2.127) 

Advanced methods of NDT for concrete such as spectral analysis of surface waves 

(SASW) and ultrasonic pulse velocity testing are also used to determine material 

properties, shown in Figure 2.20. SASW is of particular use for bridges when 

attempting to determine the depth of weathering on the concrete(2 128. Other applications 

of NDT methods are the determination of such parameters as the modulus of elasticity 

of concrete, which is not an easily definable variable once the structure has been 

constructed. Hassan et al. (2129) apply the ultrasonic method of testing to determine this 

property. 

Another method of determining structural integrity is the acoustic emission method (2,130 

& 2.131) Acoustic emission may be defined as a transient elastic wave generated by the 

rapid release of energy within a material. Small-scale damage is detectable long before 

failure, so AE can be used as a non-destructive technique to find defects during 
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structural proof tests. An typical transducer and output from AE tesing are shown in 

Figure 2.21. 

Advances in technology in recent years have seen the development of new techniques 

for structural health monitoring. One example of this is fibre optic sensors. These 

sensors can provide high-resolution and measurement capabilities not possible with 

other types of system. Casas and Cruz (2.132) outline the possible applications for fibre 

optics in terms of structural assessment. The sensors are capable of monitoring strain, 

temperature, inclination, acceleration, load measurements, ice detection, vehicle speeds 

and weights as well as corrosion and cracking problems in concrete structures. This 

technology is currently in use on the Tsing Ma suspension bridge in Hong Kong(2.133) 

Other structures, so called smart structures, have been monitored in the long-term using 

a combination of sensors such as strain gauges, deformation meters and WIM sensors. 

These structures have constantly updated information on the condition of the bridge 

which can be applied to an FEA model to analyse their dynamic response in a range of 

conditions. 

A more recently developed technology called photgrammetry has been applied to the 

maintenance of bridge structures (2 134 & 2.135) Photogrammetry is a non-contact technique 

used to determine the three-dimensional geometry of physical objects, with particular 

application to structures that are difficult to access (Figure 2.22). 
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2.3 Bridge bearings 

Until the publication of BS 5400: Part 9(2.136) which deals with the design, manufacture, 

testing and installation of bearings for bridges, no British Standard had 

comprehensively covered bridge bearings. BS 5400: Part 9 is divided into two sections; 

Part 9.1 deals with the Code of Practice and outlines rules for the design of bearings, 

whereas Part 9.2 specifies the materials, method of manufacture and installation used 

for bearings. Bridge bearings fulfil a number of functions: 

1. to transfer forces from one part of the bridge to another, usually from the 

superstructure to the substructure; 

2. to allow movement (translation along, and/or rotation about any set of axes) of 

one part of a bridge in relation to another; 

3. by allowing free movement in some directions but not in others, to constrain that 

part of the bridge supported by the bearings to defined positions and/or 

directions. Lee (2.137) 

There are several types of bearing; roller bearings, rocker bearings, sliding bearings, pot 

bearings and elastomeric bearings (see figures 1.1 to 1.5). Elastomeric bearings come in 

two basic forms; the laminated bearings which consist of one or more sections of 

elastomer bonded to metal, usually though a process known as vulcanisation, a process 

of cross-linking the polymer chains of the rubber molecules invented in 1839 by 

Goodyear, and bearing pads which are simply un-reinforced sections of elastomer of 

relatively thin section, figure 1.1. 
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Elastomeric bearings have the capability to resist most types of movement to a certain 

extent. Translation can be accommodated by shear in the elastomer, and rotational 

movement by the difference in compressive strain within the elastomer. It is considered 

that elastomers should posses a high shearing flexibility to prevent the transmission of 

large horizontal loads as well as a high rotational capacity, thus avoiding the 

transmission of large moments to the supports. The vertical stiffness of the elastomer 

should be high enough so as to avoid large displacements under loads. 

Tests reveal that the tolerance of layer thickness is of high consideration, as poor control 

can cause larger compression strains, deflections and can lead to early initiation of 

yield. The compression stiffness of an elastomeric bearing is dependent upon the shape 

factor S, defined as the ratio of one loaded area to the total force-free surface area. 

s= 
A` 

Eq. 2.21 
lpte 

Where Ae is the effective plan area of the bearing, i. e. the plan area common to 

elastomer and steel plate; lp is the force-free perimeter of the bearing; te is the effective 

thickness of an individual elastomer lamination in compression; this is taken as the 

actual thickness, t;, for inner layers and 1.4t; for outer layers. 

When the bearing has no holes, 

lp = 2(le+be) and Ae = lebe Eq. 2.22 
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Where le is the effective length of the bearing which equates to the length of the 

reinforcing plates, and be is the effective width of the bearing, again equal to the width 

of the reinforcing plates (2 137) 

The inclusion of steel plates in elastomeric plates has little effect on the shear stiffness, 

with shear strain limited to aid the prevention of fatigue problems. BS 5400: Part 9.1 

states that the shear strain due to translational movement, 4q, is given by ýq = Sr / tq. (Eq. 

2.23) 

BS 5400: Part 9.1 also states that the design pressure on elastomeric bearings should be 

limited to GS or 5G, where G is the shear modulus in terms of shear stress over shear 

strain. However, at sub-zero temperatures, elastomers are susceptible to stiffening, 

although the process is often reversible. Figure 2.23 shows typical shear modulus for an 

elastomeric bearing at varying temperatures. To accurately determine G, it must be 

multiplied by 1-T/25, where T is the recorded Celsius temperature. The frequency or 

rate of application must also be considered, and dynamic stiffness factors for different 

hardness and shear modulus are listed in BS 5400: Part 1. 

BS 5400: Part 1 states that in order to provide a satisfactory margin against the effects 

of fatigue, the sum of the nominal strains should not exceed 5%. 

ýt=k(ýc+ýq+4a) Eq. 2.24 

Where k is equal to 1.5 for live loads; 1.0 for all other types of loading; 4, is the nominal 

strain due to compressive loads; 
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4, = 1.5V / GA1S; Eq. 2.25 

ýq is the shear strain due to translational movement; 4, is the nominal strain due to 

angular rotation; 

a= (be2ae + le2a, ) / 2t; fit; Eq. 2.26 

V is the vertical load; A, is the reduced effective plan area due to the loading effects; 

A, = Ae (1-(8b / be) - (6, / 1e)) Eq. 2.27 

bb is the maximum horizontal relative displacement across its width; 6, is the maximum 

horizontal relative displacement along its length; ab is the angle of rotation across the 

width of the bearing; a, is the angle of rotation along the length of the bearing; t; is the 

thickness of individual layer of elastomer being checked; Yt1 is the total thickness of 

elastomer in the bearing. 

This is an essential parameter to determine accurately as rotations incurred within the 

elastomer can lead to delamination of the steel plates, causing further degradation to 

occur. In general, the maximum rotational displacement is taken to not exceed the 

displacement due to vertical loading. The displacement can be determined using the 

following equation; 

8_ 
Vt 

+ 
Vt; 

Eq. 2.28 
5A, GS' AC, Eh 

Where Eb is the bulk modulus of the elastomer. 
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The horizontal movement of bearings can be determined using the following 

expression; 

AGB. 
H= Eq. 2.29 

t9 

Where A is the plane area of the elastomeric bearing; G is the shear modulus; 6r is the 

maximum horizontal displacement; tg is the total thickness of the elastomeric bearing. 

Elastomeric bearings subject to long-term loads exhibit evidence of creep and stress 

relaxation which are dependent on temperature, stress history and formulation of 

elastomer. In certain cases, compressive creep to the order of 25% of the initial 

deformation due to loading has been identified though testing. In general, creep and 

stress relaxation need not be considered a severe problem (as far as elastomeric bearings 

are concerned) as a significant proportion of the creep has already occurred by the time 

joints and the final running surface are installed. 

One particular special type of bearing is the pot bearing. Pot bearings are comprised of a 

circular, constrained non-reinforced natural rubber or neoprene pad, enclosed in a steel 

pot. The load is applied to the elastomer by a piston attached to the upper bearing plate, 

and the arrangement is sealed to prevent elastomer leakage between piston and pot. The 

elastomer is prevented from expanding, and as rubber is rendered incompressible, the 

elastomer behaves similarly to a fluid. The stress within the elastomer is limited by the 

effectiveness of the seal, but should be limited to 40 Nmm-2. Pot bearings allow a 

rotation angle of up to 1/50, in the horizontal direction rotation should be limited so as 

the vertical strain experienced at the perimeter of the pad is not more than 15%, and in 
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combination with a sliding surface such as PTFE (Teflon®), can also allow horizontal 

movement. 

As a general introduction to the research carried out up to the present time, a paper by 

Roeder (2,138) provides an extensive survey of research primarily carried out in the United 

States up to the early 1980s. Roeder presents a summary of the material behaviour of 

elastomers, combined with a review of theoretical and experimental work on bearings. 

From this survey, the main issues considered important for further research are; a better 

solution for the modes of failure of elastomeric bearings, with a particular emphasis on 

fatigue failure, and the provision of a set of guidelines for failure prevention; an 

enhanced understanding of rotation effects when combined with loading; and a fuller 

understanding of material behaviour with an emphasis on the effects of low temperature 

stiffening. 

The University of Texas at Austin researches the behaviour and performance of 

elastomeric bearings. The main contributor is Yura, in conjunction with several other 

research staff and students, with many of the projects undertaken to provide guidelines 

for various national bodies and standards for bearings. Various reports (2.139 & 2.140) 

provide good background information regarding the behaviour of elastomeric bearings 

in the field, and test methods for bearings. 

In the early 1970s the Transport Research Laboratory, TRL, investigated several 

different aspects of bearing behaviour. Taylor (2.141) investigated the effects of horizontal 

forces generated by bridge bearings by inputting a shearing force into the bearings using 

a test method developed, where the frictional forces generated by the elastomeric pad 
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are transmitted to a force transfer plate. The resultant forces were then recorded with 

force transducers. The results indicate that the method should be applicable to all types 

of bearing construction, and is particularly well suited to the monitoring of bearing 

performance over the long-term. Although the method produces errors, these are 

considered small, less than 2% for unidirectional loads and approximately 8% for multi- 

directional loads, and can be reduced if the accuracy of the transducers and stiffness of 

elastomer are factored into the equations. 

Bridge bearings can also be used to mitigate translational movement caused by thermal 

expansion or by vehicle loading. Taylor (2 142) also investigates the behaviour of PTFE 

materials with respect to bearing movement. The research covers such phenomena as 

bearing stress, interface temperature, sliding speed, surface finish and lubrication, and 

their effects on bearing performance. What becomes apparent is that the sliding 

behaviour of the bearings is a function of the compressive stress, temperature, sliding 

speed, interface temperature and the previous loading history. Rather unsurprisingly, 

unlubricated surfaces generate a high frictional force during the first loading cycle 

which gradually decreases over time. The long term coefficient of friction can be 

calculate by an expression determined in the paper, and is related to the interface 

temperature as well as the applied compressive stress. 

Material tests on elastomers were carried out in 1991 by Eyre and Stephenson (2.143) for 

the TRL. In addition to the tests performed to develop an understanding of the test 

methods, the effect of low temperature stiffening was evaluated on sample sheets, full- 

size samples and test pieces cut from bearings. From these tests, large increases in the 

modulus were measured in every case, although there were differences evident between 
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sample types (Figure 2.24). The testing showed that in certain cases, the modulus could 

increase by a factor of 4. Therefore, to obtain a more accurate value of modulus, it is 

recommended that tests be performed on samples of vulcanizates taken from the body 

of the bearing. It is considered that this will give a more accurate representation of the 

service performance. The testing was carried out on nine different vulcanizates supplied 

by bearing manufacturers, but only three were found to comply fully with BS 5400: Part 

9. If the ageing resistance requirement is reduced from its current level then five of the 

samples would pass the tests, and would potentially last for up to 100 years. 

Elastomeric bearings are often used to mitigate the effects of seismic activity due to the 

inherent properties, such as damping ratio, of the constituent elastomer. With 

elastomeric bearings as supports on a bridge structure, the dynamic response of the 

structure may be affected, and the natural frequencies of such an arrangement are 

required to determine overall response. Methods outlined (2 144 & 2.145) use the premise of 

setting the bearing stiffness, assuming a shape function based on beam theory and the 

flexural rigidity of the beam combined with the stiffness. In this case the method is 

applied to bridges subjected to moving train loads, but could simply be applied to 

highway bridges. 

Monitoring of bridges with elastomeric bearings is not a common occurrence. One 

study on the feasibility of monitoring elastomeric bearing behaviour in a railway 

viaduct is presented by Wang and Chew(2146). A model to determine the relative 

displacement of bearings due to train loading is outlined, and the results indicate that the 

method could be applied to indicate the elasticity of the bearings over the long-term. 
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Maleki(2.147) investigates the effect of deck and support stiffness on the seismic response 

of bridges. The support stiffness was varied in the longitudinal and transverse 

directions, considering minimal stiffness to an infinite stiffness which is assumed to be 

pinned. The research indicates that an increase in the longitudinal stiffness value will 

result in a reduction in deck stress. 

Kawatani et al. (2.148) investigate the effects of elastomeric bearings on the traffic- 

induced vibrations of highway bridges, when replacing steel bearings. Analytical three- 

dimensional studies are compared with numerical experimental data obtained on urban 

highway bridges. The results indicate that although the resonant frequencies or vertical 

displacements do not alter significantly, the horizontal displacements become larger. It 

is also noted that impact behaviour caused by vehicles striking the expansion joint is 

increased when elastomeric bearings are installed. 

Research into bearing defects in the UK by Allot & Lomax (2 149) highlighted the fact that 

almost 94% of bearings had at least one defect. Each bearing type, and defect type, is 

listed with respect to age and other parameters such as temperature. The report shows 

that older bearings show an increased extent of damage, particularly in terms of bulging 

or splitting. Table 2.4 lists the bearing defects recorded. 

Elastomeric bearing behaviour is often complex and provides a non-linear response. 

Haringx's theory is one method employed by researchers to determine certain 

parameters of laminated elastomeric bearings, as it considers lateral displacement and 

the rotational angle in the bearing as two separate variables. Chang 2'50 uses the 

Haringx method (21 1) to develop a finite element solution to the problem by obtaining a 
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4X4 analytical stiffness matrix. The matrix is then used in conjunction with another 

matrix for a rigid plate, and a stiffness summation procedure is used to construct the 

model. This model represents one individual layer of elastomer, and multi-layer 

bearings can be constructed using a number of elements. Chang investigates several 

distinct situations, such as the effect of compression forces, the effect of the total 

number of elastomer layers, the effect of the rubber layer thickness, the steel shim 

thickness, the effect of bearing diameter and rubber shear modulus. It is noted that the 

investigation into the behaviour of laminated bearings with varying layer thickness 

provides the most useful answer. 

Testing elastomeric bearings is essential when attempting to determine the overall 

performance of bearings in service. One study in Florida by Potter et al. (2' 12 determines 

the condition and strength of elastomeric bearings that have been in service for 

approximately 40 years. Durometer, Figure 2.25, and shear tests are used to determine 

the condition and strength. The tests revealed that although superficial damage to the 

bearings was evident through minor surface cracking, the bearings are still within 

acceptable limits for adequate working condition. The pads had shrunk slightly, and the 

stiffness of the pad had increased, but not to the extent that they would be considered 

faulty. 

Bridge bearing specifications require the destructive testing of bearings to be performed. 

Othman(2 153 investigated the behaviour of elastomeric bearings, and discovered that 

thick rubber bearings exhibit a property profile, where the material properties of the 

bearing vary across its cross-section, when exposed to prolonged heating during the 

moulding process. The common accepted practice is to consider the outer layers of the 
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elastomer as being representative of the remainder of the bearing layers. However, 

certain properties show an increase closer to the centre of the bearings, such as modulus, 

tensile strength, hardness and compression set. This variation in behaviour does not 

adversely affect the performance of the bearing, as long as the change is relatively 

minor. If the change is large, it is noted that the compression and shear modulus may be 

affected, which could affect any design calculations performed. It is suggested that by 

improving the preparation and moulding techniques for bearings, any deterioration in 

the physical properties of the bearing can be reduced. 

More recent research carried out in America investigated the performance of bearings at 

low temperatures (2 154 & 2.155) Two separate types of bearing, each with a different shear 

modulus, were subjected to a series of tests to establish the effect of cyclic compression, 

shear, rate of loading, creep, temperature history, slip coefficient and the effect of the 

elastomer type. Tests were performed in an environmental chamber at four different 

temperatures; 23°C, -10°C, -20°C and -30°C over 21 days, and approximately 500 shear 

tests were performed during this time (Table 2.5). The results indicate that although 

creep rate is more significant at the low temperatures, the effect is much less than room 

temperature creep. However, cyclic compression forces and cyclic shear strain are not 

considered to have a large influence on the overall performance of the bearing. 

Recommendations are made with respect to values calculated from shear modulus tests. 

As this type of test is performed at a fast loading speed, it is considered that the results 

obtained be factored down to take this into consideration, and should also consider the 

crystallisation resistance and type of compound. Reductions of 30% and 20% are 

recommended for neoprene and natural rubber compounds respectively. 
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The research presented (2 156) forms the basis for a performance based test criteria for 

elastomeric bearings in cold temperatures. A variety of bearing types were tested at four 

separate locations with low temperature. A new evaluation criteria is proposed based on 

the expected bearing performance. Future performance is predicted based on a detailed 

analysis of regional temperature data to obtain test parameters. These results are then 

used to calculate the value of shear force and slip. Results obtained would tend to 

indicate that the current guidelines for cold-temperature testing are too severe as 

materials which perform adequately in service would be rejected based on test data. 

Figure 2.26 shows the minimum shade temperature for the UK, with Edinburgh and 

Berwick-upon-Tweed highlighted. 

Yura furthers this research by suggesting a new method for defining shear modulus of 

bearings which does not rely on small samples of the bearing being removed. Testing by 

removing small samples can be costly and often do not accurately represent the actual 

in-service behaviour of the bearing, as well as being a destructive method. Research by 

the TRRL in the 1980s by Price and Fenn (2'157 highlights some of the factors to consider 

when proposed removal of bearings for testing is suggested. Yura's method is non- 

destructive, based on compression testing, and therefore only requires a compression 

test machine to apply the loading. Tests outlined in the AASHTO guideline S(2.158) 

involve inducing a shear force into the test sample. The inclined compression test 

proposed places two bearings between three wedge-shaped, or inclined, aluminium 

platens. Upon application of the compression force, a shearing force is introduced as a 

result of the inclined shape of the platens. The slope of the platens is factored into an 

equation used to calculate the shear modulus. The method outlined is only considered 

applicable to laminated bearings, plain bearings would be required to be bonded to steel 
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sole plates. The machine plates must be roughened to provide a surface to prevent 

slippage of the sample, and that slope should be restricted to a maximum value of 1: 20. 

The values produced by this method are in close agreement with those obtained using 

the accepted methods outlined in the guidelines. The test method proposed can also be 

used to test sample sections of bearing removed from larger sections, but the test has the 

advantage of not destroying the bearing whilst proving its performance parameters. 

The analysis of elastomeric bearings is often a complicated procedure as the response of 

bearings can be non-linear in certain cases, especially when considering laminated 

bearings containing steel reinforcing plates. FEA modelling of bearings can provide 

engineers with solutions to facilitate accurate design of structures, whether that is for 

base isolation or highway bridges. One such example of this type of analysis is shown 

by Herrmann et al. (2' 9). In a previous paper, Herrmann outlined a non-linear FE 

method for elastomeric bearings based on basic theory. Two computer codes, one in 2- 

dimensions based on plane strain analysis and another in 3-dimensions, have been 

constructed. At the time of submission of this thesis, the 3-dimensional analysis was 

simply considered a research tool, although initial comparisons with test results show 

that the model's accuracy is considered within acceptable limits. The intention was to 

develop a database of bearing response for a variety of bearing types and loading 

conditions. Several outcomes of the research warrant further investigation. It is 

proposed that a modified version of the shape factor is assumed to account for 

variations in bearing type and shape, and investigations into the effect of possible voids 

in the material on the overall response of the bearing. Other researchers (2.160) have 

applied a 3-dimensional FEA to high damping rubber bearings, with results that are in 

general agreement with experimental values obtained through testing. 
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More recent research involving FEA of bearings is presented in(2 16 
. The research 

presented describes the effect of bearing pads on the performance of highway bridges, 

taking into consideration the pad-bridge interface which defines the support boundary 

conditions. FE was used to validate the bearing stiffness values set out in the AASHTO 

guidelines (2 18, varying the elastomer shear modulus, and subjecting the FE model of a 

bridge structure to static HGV loading. Bearings were simulated using vertical and 

horizontal spring elements. The research found that the effect of the bearing stiffness for 

new pads does not greatly influence the structural performance, and can actually be of 

benefit in certain cases. However, as the stiffness increases, the performance of the 

structure can be affected, although other effects caused by splitting and cracking of the 

neoprene are considered to be of greater influence to the overall performance of the 

structure. Other research using the finite element method has included investigations 

into large deformation behaviour of bearings (2.162 & 2.163) and a stress analysis under 

axial loading (2.164) 

The stability of bearings is one of the major factors under consideration when designing 

highway bridges, in particular, the ability of bearings to cope with the increased 

horizontal loading now imparted onto structures by increasingly larger vehicles. 

Gilstad(2 165) investigated the stability of three different bearing arrangements, a pot 

bearing, disc bearing and spherical bearing. Tests were based on two types of temporary 

loading events, one normal and one extraordinary. Conclusions drawn for the analysis 

of the three different types are: for pot bearings, the elastomer allows rotations therefore 

creating a pin support (Figure 2.27). The overturning moment depends on the distance 

from the applied force to the effective pin support. The disc support also allows 

rotations, and the overturning moment is dependent on the distance from the applied 
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force to the pin support. For the spherical bearing, the moment must take into 

consideration the effect of eccentricity of the vertical and horizontal loads. In general, 

an overturning load factor of safety of 3 for rectangular and 5 for circular surfaces are 

proposed under normal loading conditions. In the more extreme case of extraordinary 

loading, a factor of 1.5 for rectangular and 2 for circular surfaces is suggested. 

The stability of elastomeric bearings is dependent on several factors. One such factor is 

the method of fixing the bridge superstructure to the bearing, and the bearing to the 

substructure. In most cases, simple pad bearings are held in place by frictional forces 

caused by the interaction between the rubber surface and either the steel beams or 

concrete abutments. However, in certain cases, pads can be tapered to carry inclined 

beams. Such pads can be prone to a phenomenon known as "walking", whereby the 

bearing slips from its position and can often lead to no bearing support under the 

inclined beam. The "walking" phenomenon has, in certain quarters, been attributed to 

shear forces in excess of the allowable frictional capacity of the interfaces. Hamzeh 

proposes another reason for this occurrence, namely viscosity-induced slippage, linked 

to the waxy substance which is added to the rubber as ozone protection which 

accumulates on the surfaces of the pad by secretion form the bearing. In the paper, 

Hamzeh et al. (2.166) describes an analytical model which makes use of Coulomb friction 

law by solving the equations of motion for the pad, noted in matrix form, as non-linear 

differential equations. The equations essentially represent an initial value problem 

solvable using the Newmark constant average acceleration method, and the resultant 

frictional forces can be determined. 
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McDonald et al. (2.167) investigates this phenomenon by compiling a large amount of 

information on neoprene bearings from DOTs in the United States, bearing 

manufacturers and respected researchers. A comprehensive field study attempted to 

capture slippage on video tape, and also girder thermal movements as well as pad 

relative to structure movements. From the data gathered, several conclusions can be 

drawn: 

" Slippage occurs when girders undergo thermal movement, meaning 

slippage occurs on a daily basis, contrary to the currently accepted belief. 

" The slope of the bottom of the girder at the bearing remains constant. 

" Based on the survey of manufacturers, it is apparent that paraffin is 

added to bearings to account for ozone attack. 

The paper concludes that bearing pads should not be ordered from companies who add 

paraffin to their bearings, and that the stringent ozone requirements be relaxed so that 

wax is not added to the bearing surface. In fact, no slippery substance should be present 

on the surface, which should be scraped clean to ensure no wax is present. Concrete 

surfaces should be roughened to promote a greater friction coefficient. 

Fatigue is also an important design condition for elastomeric bearings, although 

understanding of this phenomenon seems limited as not much literature is readily 

available. One paper that does exist investigates the fatigue of steel-reinforced 

elastomeric bearings by Roeder et al. (2 168. The paper examines what methods were 

used to control fatigue, performing twenty six tests in total to evaluate the design 

methods. All of the bearings were subjected to cyclical shear or compression testing. As 

a result, in certain cases, fatigue cracks formed in the rubber near the steel 
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reinforcement, often growing to a significant depth. It is noted that bearings subjected to 

breaking and acceleration forces from vehicles may experience more loading cycles, 

and therefore a faster strain rate. Fatigue is strongly influenced by the magnitude of the 

cyclic shear strain in the rubber. Extreme cracking is often accompanied by increasing 

temperature in the rubber, and an increasing load rate or hysterisis in the rubber could 

result in increased cracking and reduced fatigue life. It is noted that increasing the mean 

strain results in an increase in cracking, although this is less significant than the cyclic 

strain. 

Lanzo investigates the instability phenomenon in laminated rubber bearings (2.169) using a 

Koiter perturbation method (2.170). Two beam models are proposed and analysed, a linear- 

elastic model and a non-linear elastic model. The linear model analysis indicates that the 

load bearing capacity of the bearing is not affected by the post-critical behaviour. 

However, the non-linear analysis model shows a high variegated profile, due to strain 

induced discolouration, which affects the load carrying capacity. The author indicates 

that one difficulty with the method is the accurate definition of constitutive coefficients 

to take into account the actual geometry of a laminated bearing. This is deferred for 

future research. 

2.4 Summary 

Both theoretical and experimental works are still being carried out on plate structures, 

bearings and full-scale highway bridge structures. The analysis of plates is not new, but 

with advances in knowledge, older more established theories have been adapted and 

accuracy of solution has been improved in many cases. Plates with more conventional 

boundary conditions have been investigated thoroughly, and the current investigations 
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are concerned with the effects of moving loads or variable boundary conditions on the 

dynamic performance of plate structures. 

Modal analysis is a widely used tool for structural analysis. In recent years, with the 

increase in computational power available, researchers have employed OMA techniques 

to extract natural frequencies and material properties from full-scale structures excited 

by ambient vibration. Various factors such as road surface roughness and the effects of 

cracking have all been investigated. Few researchers, in terms of damage location, have 

investigated the effect of support condition, and this is one area that provides further 

scope for research. 

The available literature on bearings is mostly concerned with the material properties or 

performance of the bearings under loading, either compressive or shearing. 

Investigations into the performance of in situ bearings is restricted to the behaviour in 

cold temperatures, and the effects of bearing walking. 

Although health monitoring of bridge structures is relatively advanced, the scope for 

further research is wide. This study contains a wide spectrum of research on plate 

structures; ranging from a simple Euler-Bernoulli method to determine natural 

frequencies; modal analysis of a plate structure in the laboratory; FEA of the plate 

structure; and modal analysis on a full-scale structure subjected to vehicle loading. 

Further reference will be made to the possible applications of many of the techniques, 

such as wavelet transforms, modal updating of FEA models, Euler-Bernoulli equations 
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and compliance, impedance and dynamic stiffness, covered in this chapter throughout 

the remainder of this thesis. 
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Primary bending mode 

Primary torsional mode 

Second bending mode 

Figure 2.1 First three mode shapes of plate model used in experimental analysis 
with two opposite edges fully fixed and the two remaining sides free. 
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__a 

A 

b 

Y 

X 

Centre of plate 
b/a MX =a, q1' 

ai 

M, = ß, q12 
ßi 

Factor 

0 0.0250 0.1250 
0.5 0.0367 0.0999 
0.6 0.0406 0.0868 
0.7 0.0436 0.0742 qb2 
0.8 0.0446 0.0627 
0.9 0.0449 0.0526 
1.0 0.0442 0.0442 
1.1 0.0517 0.0449 
1.2 0.0592 0.0449 
1.3 0.0660 0.0444 
1.4 0.0723 0.0439 
1.5 0.0784 0.0426 
1.6 0.0836 0.0414 qa2 
1.7 0.0885 0.0402 
1.8 0.0972 0.0391 
1.9 0.0966 0.0378 
2.0 0.0999 0.0367 

00 0.1250 0.0250 

Figure 2.2 (a) Bending moment equations with parameters for simply supported 
plates of various length to breadth ratios. 
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T 
X 

Centre of plate 
Middle of 
fixed edge 

b/a 
MX = a3gl2 

0L3 

M= ß3q12 
ß3 

ql- M= 83 
83 

Factor 

0 0.0083 0.0417 -0.0833 
0.5 0.0100 0.0418 -0.0842 
0.6 0.0121 0.0410 -0.0834 
0.7 0.0151 0.0393 -0.0814 qb2 
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1.9 0.0795 0.0401 -0.1174 
2.0 0.0846 0.0394 -0.1191 
00 0.1250 0.0250 -0.1250 

Figure 2.2 (b) Bending moment equations with parameters for plates of various 
length to breadth ratios with two opposite edges fully fixed and the 
remaining two sides simply supported. 
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Figure 2.3 Chen's finite difference mesh and notation, with sign convention (2.22) 
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Figure 2.4 The superposition method used by Gorman (2.24) showing complete 
plate with central co-ordinate axes, and quarter plate section 
showing building blocks used in the superposition method. 

112 

0A 



Comparison ui frequenc t parameters S2 of rectangular plates with all edges transversely 

supported with uniform elastic rotational restraint 

K 0.1 52, S23 Sty 525 52,; Q- S28 

1 0.1 DSC 19.968 49.580 49.58() 79.190 98.931 98.931 128.541 128.541 
a 19.937 49.546 49.546 79.155 - - 
b 19.936 49.533 49.546 79.142 - 
c 19.937 49.549 49.556 79.164 98.938 99.036 

I DSC 21.748 51.474 51.474 81")30 100.900 100.910 130.535 130.535 

a 21.502 51.191 51.191 80.828 -- - 
b 21.501 51.177 51.191 80.814 - 
c 21.502 51.196 51.202 80.838 100.633 100.736 - - 

100 DSC 34.758 70.990 79.990 104.804 127.460 128.038 159.995 159.995 
a 34.671 70-781 70.781 104.450 - - - 
b 34.666 70.746 70.784 104.480 -- - - - 
c 34.675 70.801 70.819 104.509 127236 127.862 - - 

2.5 0.1 DSC 72.815 102.13 151.24 220.18 258.01 287.50 308.01 336.70 
a 72.64 101.99 151.14 220.09 --- - - 
b 72.636 101.99 151.13 220.09 - - - 
c 72.64 101.99 151.12 220.28 257.88 287.38 --- 

1 DSC 82.31 109.69 157.13 224.96 269.39 297.99 312.99 346.04 
a 81.03 108.63 156.26 224.21 - - 
b 81.03 108.62 156.26 224.20 -- 
c 81.04 108.63 156.29 224.40 267.79 296.49 - 

100 DSC 142.66 167.97 214.28 282.82 373.22 381.19 407.52 452.69 
a 143.30 167.50 213.50 281.70 - -- 
b 142.219 167.59 213.68 282.04 -- 
c 142.34 167.54 213.69 282.18 372.99 180.38 - 

Figure 2.5 Table of results comparing answers obtained using the DSC method 
with the three other methods outlined in the text(2'30). 

LASER II Bragg 
ý--+ý Cell 

! )i 

IZ 

DETECTOR OSCILLOSCOPE SPECTRUM 
ANALYSER 

Figure 2.6 Experimental setup for Nieves et a1. (2.31) to detect out-of-plane 
movement. Mirrors are drawn in black and the shutters are in blue. 
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Figure 2.7 Schematic representation of the eigenvalue matrix used by 
Gorman (2.36) based on three-term functions. The short bars indicate 
non-zero elements, and the M and V notation indicates the edges 
along which moments or lateral force equilibrium is enforced. 
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Figure 2.8 Schematic diagram of modal testing arrangement used by Teng et 
al. (2.42) 
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Figure 2.9 Isoparametric Kirchhoff plate element used in the FEA anlysis of 
plate structure used in experimental analysis. Figure 2.9 (a) shows 
the node numbering convention adopted; Figure 2.9 (b) shows the 
location of Gauss points in each element; and Figure 2.9 (c) shows 
the degrees of freedom used for this element type. 
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Figure 2.10 Window functions used in FFT analysis. Window shape and 
(Z '171ý. governing equations are shown 
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Figure 2.11 Methods of excitation for modal testingý2,172). Figure 2.11 (a) shows 
an impact sledgehammer with available tips. Figure 2.11 (b) shows a 
mass shaker in its mounting frame. 
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I Initial Baseline FE Model 
Using Design Drawings 

Impact Tests 
(Natural Frequencies, Mode Shapes) 
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(Frequency Ratios`l, Mode Shapes) 
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Figure 2.12 Schematic showing bridge monitoring procedure used by Lee et 
(2.75) 

al. 
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Figure 2.13 Wavelet transform functions. 
Figure 2.13 (a) shows the Haan transform and constituent equation. 
Figure 2.13 (b) shows the Morlet transform and its equation. 
Figure 2.13 (c) shows the Mexican Hat transform with its equation. 
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Figure 2.14 Higher mode sensitivity due to increased slope. 
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Figure 2.15 Axle weights and vehicle lengths and width alterations in the last 50 

years. 
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Figure 2.16 Sample data from O'brien et a1. (2'15) showing the effect of vehicle 
speed on DAF. Figure 2.15 (a) shows the road roughness profile; 
Figure 2.15 (b) shows the DAF caused by a vehicle travelling at 80 
kph across the bridge; Figure 2.15 (c) shows the DAF caused by a 
vehicle travelling at 120 kph; Figure 2.15 (d) shows (c) superimposed 
on (b). 
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Figure 2.17 Acceleration and strain plots against frequency value. 
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Figure 2.18 Sample data from Law and Zhu(2' 18 
. Figure 2.16 (a) shows the 

experimental setup; Figure 2.16 (b) shows measured and calculated 
strains from gentle braking on the system; and Figure 2.16 (c) shows 
strains from hard braking. 
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Figure 2.19 Radar equipment and typical output(2'125 . Figure 2.17 (a) shows two 
types of radar equipment; and Figure 2.17 (b) shows a typical output 
obtained on a reinforced concrete beam. 
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Figure 2.20 Typical SASW equipment. 
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Figure 2.21 Typical acoustic emission equipment and output(2'130). 
Figure 2.19 (a) shows the transducers in situ. 
Figure 2.19 (b) shows typical output spectra for a beam with eight 
transducers attached. 
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Figure 2.22 Typical output from the photogrammetry method (2.135). 
Figure 2.20 (a) shows the sampling points; and Figure 2.20 (b) shows 
the final rendered version of the structure. 
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Figure 2.24 Increase in shear modulus at three time exposure limits for nine 
bearing types at -10°C and -25°C. 

Figure 2.25 Typical durometer for measuring material harness showing typical 
output values on LED screen. (after www. zwick. com) 
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Table 2.1 Finite strip results and comparison with other methods(2'23) . 

Values of % error in strip solutions, 
based on converged strip solution 

Model C (Quartic) Model D 
(Quintic) Values of 92 

Mode I strip 2 strips 3 strips I strip 2 strips 
Converged 

strip 
solution 

Thin 
plate 

solution 

1,1 0.001 0.00 0.00 0.01 0.00 0.1413 0.1412 

1,2 0.22 0.08 0.02 0.22 0.01 0.2668 0.2671 

2,1 908* 0.07 0.08 1.23 0.05 0.3376 0.3) 3) 83 

2,2 641 0.05 0.013 0.26 0.01 0.4604 0.4615 

1,3 0.37 0.14 0.0-1) U 
-36 

0.02 0.4977 0.4988 

3,1 1224* 
. 
33.433 0.11 496* 0.8-1) 0.6279 0.6299 

* High errors are due to poor representation of the lateral deflection in circumstances 
where bending effects are predominant. Increased order of interpolation, from Quartic 
to Quintic, leads to improved accuracy when combined with an increasing number of 
strips. 
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Table 2.2 Frequency response functions, equations and units. 

Frequency 
response function Notation Quantity Units S. I. 

(Hi or H2) unit 

Acceleration MS Inertance kg-' 
Force F N 

Velocity Mobility or MS-1 
mechanical kg-'s 

Force F admittance 
Displacement x Dynamic M -1 2 

Force F compliance 
- 
N 

kg s 

Force F N 
Dynamic mass kg 

Acceleration 5ý MS -) 

Force F Mechanical N 
Velocity x impedance MS- 

kgs-' 

Force F N 
Dynamic stiffness kgs 

Displacement x M 

Table 2.3 Shi et A: results for damage detection in beams in percentage (2.102) 
change . Columns marked a correspond to data obtained with 
the previous method, and b contain data obtained with the improved 
method. 

Iteration no. 1 2 3 

a b a b a b 

Damage Damage at 9-30 8.55 7.00 5 03 ) 10 5 10 4 52 
at node 4 . . . 

element Damage at 
16 node 7 -57.10 -58.09 -54.70 -55.02 -53.80 -55.82 

Damage Damage at 
at node II -24.90 -24.38 -29.60 -3 1.88 -")'1.80 -33.09 

l t e emen s 
15 and Damage at 

-61.00 -62.11 -56.80 -57 2 33 -56 00 -56 94 
16 node 7 . . . 
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Table 2.4 Bearing defects from Allot and Lomax survey(2'149) 

Number Fault code (% of each type) Percentage 
Bearing of of rou s g p 

types groups 1 2 3) 4 5 6 7 8 9 without 
inspected any fault 

Roller 3) 4 - - - 94 - - 41 18 50 33 % 

Rocker 40 - - - 88 - - 45 25 48 10% 

Knuckle 27 - - 9' 3 96 - - 37 11 30 4% 

Plane 
sliding 

2 - - 50 50 - - 0 50 50 50 % 

Pot 20 - - 75 80 - - 25 30 10 15% 

Elastomeric 
laminated 46 65 - - - - - 4 33 24 

-3) 
3 7% 

Elastomeric 
plain 

32 91 - 97 - - - 6-3) 28 66 0% 

*Fabreeka' 21 - 52 - - - - 0 5 433 14% 

Others 3,1 93 - 0 0 84 90 58 0 52 0% 

Total 25 
-3) 

I Elastomeric bearing faults 
2 Fabreeka bearing faults 
3 PTFE / stainless sliding interface faults 
4 Metal bearing faults 
5 Mortar and concrete bearing faults 
6 Sheet bearing faults 
7 Bedding mortar faults 
8 Bearing related structure faults 
9 General faults (independent of bearing type) 

Fabreekal Structural Bearing with a stainless steel upper unit mating with a 
PTFE (Teflon) -surfaced elastomeric pad lower unit. The smooth, mirror-finished 
stainless steel of the upper unit slides with low friction over the PTFE-surfaced 
pad of the lower unit to allow the beam to freely expand and contract. 

Due to differing ages, the 0% elastomeric plain bearing faults are not considered as 
significant as thought, as this category of bearings have been in service for a longer Z: ' ýn 

I 

duration than elastomeric laminated bearings. Z: ' 
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Table 2.5 Change in shear modulus for elastomeric bearings. NE0150 and 
NR150 relate to neoprene and natural rubber bearings with a 
compressive strength of 150 psi (1.03 MPa); NEOIOO and NR100 
correspond to neoprene and natural rubber bearings with a 
compressive strength of 100 psi (0.69 MPa). 

Shear modulus at 30% strain, MPa (% change) 

Room 
-100C -20'C -300C temperature 

Compound Fast Slow Fast Slow Fast Slow Fast Slow 

NE0150 G/ MPa 1.57 1.3 5 5.47 3.65 
AG (%) (16) (0) (50) (0) 
G/ MPa 6.55 5.01 
AG (%) 

- 
(31) (0) 

NR150 G/ MPa 0.88 0.78 1.23 0.97 3.64 2.9 3 
AG (%) (13) (0) (27) (0) (24) (0) 
G/ MPa 1.34 1.03 3.74 3.15 
AG (%) (30) (0) (19) (0) 
G/ MPa 1.34 1.10 1.90 1.4 33 
AG (%) (22) (0) (33) (0) 

NE0100 G/ MPa 0.72 0.62 1.54 1.28 1.07 0.79 2.28 1.56 
AG (%) (16) (0) (21) (0) (J5) (0) (46) (0) 
G/ MPa 0.66 0.54 1.85 1.56 

-1.3 
8 2.83 2.3 

-3 
1.71 

AG (%) (23) (0) (19) (0) (19) (0) (36) (0) 
G/ MPa 2.17 1.72 
AG (%) (26) (0) 
G/ MPa 2.31 1.84 
AG (%) (25) (0) 

NR100 G/ MPa 0.68 0.59 0.85 0.74 0.95 0.82 
AG (%) (15) (0) (15) (0) (16) (0) 
G/ MPa 0.85 0.74 1.00 0.88 
AG (%) (15) (0) (14) (0) 
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CHAPTER 3 

Small scale model testing 

3 Introduction 

Bridge bearings are designed to withstand a maximum loading and to allow a certain 

amount of movement in a prescribed direction, often laterally or in certain cases, 

rotationally. However, bridge bearings are prone to damage as they are traversed by 

motor vehicles of varying sizes and speeds. As a consequence, bearing replacement is 

time consuming and requires specialist installation. If the response of bridge bearings to 

vibrations could be better understood this could potentially save both time and capital 

expenditure. 

Initial research yielded a simple method for determining the fundamental natural 

frequency of a plate structure using the Euler-Bernoulli and Rayleigh-Ritz methods. The 

derivation of the method is highlighted herein, and several examples of answers 

obtained with the method are shown. 

To validate the initial hypothesis of bearing degradation affecting dynamic response, a 

small-scale model consisting of a PMMA plate with variable support conditions was 

tested. The small-scale test is to be viewed as nothing more than a simplification of a 

bridge arrangement, and is not intended to model actual behaviour of a bridge, but 

simply to prove the concept of the effect of varying the stiffness of the end supports. 

Finally, the FEA included within this chapter is intended to show the degree of 

concurrence between measured data from testing and analytical methods to determine 

the pattern and wave propagation of response due to support stiffness changes. 
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3.1 Static deflection of beams with spring end support 

In addition to the modal analysis and FEA performed on the plate shown later in this 

chapter, a quick and simple solution for determining the primary resonance frequency in 

the various end condition arrangements used in experimental work was developed using 

(3.1) (3.2) the Euler-Bernoulli beam equation and the Rayleigh-Ritz principle 

The rationale was to evaluate a plate with variable end conditions, where the deflection, 

displacement and bending moment can be different at either end of the beam, and be 

totally independent of each other, using established methods. The reason for 

undertaking this task was to apply end conditions which would mimic the 

characteristics of bridge bearings which compress when subjected to movement induced 

by traffic loading. The degree of compression is dependent on the stiffness of the 

bearings; therefore the effect of degradation in bearing performance is simulated 

through the change in stiffness. 

Other researchers have investigated the effects of support stiffness on the response of 

plate structures. Methods outlined by Li and Yau et al(3.3 & 3.4) use the same premise of 

setting the bearing stiffness, assuming a shape function based on beam theory and the Z: ý 

flexural rigidity of the beam combined with this stiffness. In this case the method is 

applied to bridges subjected to moving train loads, but could simply be applied to 

highway bridges. 

3.1.1 Euler-Bernoulli equation 

The Euler-Bernoulli method, often called classical beam theory or the engineering beam 

theory, is the methodology covered in elementary treatments of mechanics of materials. 
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This model accounts for bending moment effects on stresses and deformations. Its 

fundamental assumption is that beam cross-sections remain plane and normal to the 

deformed longitudinal axis. Any rotation which occurs does so about a neutral axis that 

passes through the centroid of the beam cross-section. 

Initially, the general Euler-Bernoulli equation for beam flexure was used to determine 

an equation for a beam with flexible supports, where the end conditions of the beam are 

independent of each other, i. e., VO and VL are potentially different values. 

V= Cl + Czx + C3x2 + C4x3 pAg 
x4 Eq. 3.1 

24EI 

This equation is then differentiated once with respect to x to give an equation for the 

deflection of the beam: 

dV 
- Cz + 2C3x + 3C4x2 - 

PAg 
x3 Eq. 3.2 

dx 6 EI 

That equation is then differentiated once more with respect to x to give an equation for 

the moment in the beam: 

d uV 
_ 2C; + 6C4x - 

pAg 
x' Eq. 3.3 

dx 22 EI 

The end conditions: 
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At x=0, V =Vo anddd2xZV =0; Atx=L, V=V,, and 
ddx2 

=0 

are then applied to Eqns 3 ). I to .3). -3 ) to determine values for the constants which are given 

below as Eqns 3.4 to 3.8. 

C, = Vo Eq. 3.4 

V' - V° pAgL' Eq. 3.5 CL 
24EI 

C3 =0 Eq. 3.6 

C4 = 
PAgL Eq. 3.7 
12 EI 

C; _ '°Ag Eq. 3.8 
24 EI 

Once the above calculations had been carried out, it was then possible to evaluate values 

of deflection, V, for different values of Vo. 

3.1.2 Rayleigh-Ritz method 

A complete analysis of the natural frequencies of a beam is a complicated problem, 

especially if the geometry is complex, and is best solved with the aid of FEA software. 

It is also possible to perform a modal analysis on a finite element model of even 

complex geometries. Executing such an analysis will result in a large number of natural 

frequencies being determined, all in three-dimensional space. This is the preferred and 

frequently used approach when analysing a completed or mature design in detail. 

However, in the early stages of design, when the part geometries are still not fully 

defined, a quick and easily applied method for finding at least an approximate 
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fundamental frequency for a proposed design is useful. The Rayleigh-Ritz method, 

which is an energy-based method that gives results within a few percent of the true 

natural frequency, serves that purpose. 

The Rayleigh-Ritz method equates the potential and kinetic energies in the system. The 

potential energy is in the form of strain energy in the deflected beam and is at a 

maximum value at the largest deflection. The kinetic energy is a maximum when the 

vibrating beam passes through the undeflected position with maximum velocity. This 

method assumes that the lateral vibrating motion of the beam is sinusoidal and that 

some external excitation, or forcing function, is present to force the lateral vibration. 

Va = 
(C, +C, x+C4x3 -C5x4) sin cot Eq. 3.9 

Using the Rayleigh-Ritz method on the above equation derived from the Euler- 

Bernoulli equation, it is possible to derive an equation for the natural frequency of the 

beam. It is then necessary to calculate the period and frequency from Eqns 
-3 ). 10 to 3.14. 

L 

2T = pA f 
aVs 

dx Eq. 3.10 
ar 0 

2T = pA o2 f 
(cl 

+ C2 x+ 04 x3- C5 x4 
)2 dx Eq. 3.11 

0 
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C2 + 2C1 CX + C, 2X2 
+ 2C1 c 

4X 
Cl c 

5X 
4+ 2C, C4X 4 

21 
oA o) 

0 -2CC5- C5 +C4 
2X6 IC 

4C5 X7 +C 52X8X 

2L 
ci 2 

x+CI CIX2 + 
C, X' 

+ 
ci c 

4X 
4 2C1 c 

5X + 
2C2C4 X. ) 

=, oAü) 2355 
6 

c4 2X7c4c 
5X 

8 C5 2Xg 

X++ )C, C5 

749-0 

ci 2 L+C, C, L 2+ 
C2 ') L C1C4L 4 2C1C5L' 

+ 
2C2C4Lý' 

A ü_) 23255 
)0 7829 

6+ 4- 455L 
)CC5L + 

Eq. 3.12 

I02V 

= EI s dx Eq. 3.13 2V 

0 ax v 

L 

X2) A = EI 
f(6C4X 

- 12C5 

0 
L 

= EI f(36C4 2X2 

- 
144C4 c 

5x 
3+ 144C5 2X4) dx 

0 

=EI 
12C4 2X3- 

16C4 C 
5X 

4+ 
144C5 2X5 ]L Eq. 

-1.14 150 

=EI 
12C4 

2 
L3 

-36C4C5L 
4+ 

5 

Upon completion of the calculations, Eq. 3 ). 15 below is obtained by combining Eqns 

12 and 3.14, with the constants remaining as stated previously. 

Y2 

2 

12 C, 2 L, -36C, CjL' + 
144C 

, 
L5 

El 5 
co 

p, 4 
C, 2 

C, ILC, C, L4 2C, C, Lý 2C, CIL' CICJ 6 C, 2L' C, CL' C, 2L"j 

L+ C', C, L' +++++ 

323749 

Eq. 3.15 
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The natural frequency of the beam will change when VO and VL are altered, due to the 

C1 term on the bottom line of Eq. 3.15. 

3.1.3 Forcing function 

In order to evaluate the overall deflection of the beam in a realistic and useful way, it is 

necessary to introduce a forcing function which will simulate loading from traffic on the 

bridge. To calculate the overall deflection, Eqns 3.16 and -3 3.17 are used to determine the 

vibration amplitude. 

V(x, t)= axhFo sin Qt Eq. 3.16 

1=0, (h) 0, (x) 
Eq. 3.17 ash L. ý pAZ 77 S22 w' - 

Then one calculates mode shapes from Eqns 3.18 and 3.19 below: 

h (x)= sinz ', 0, (h)= sinz- Eq. 3.18 
LL 

Z Eq. 3.19 
2 

Where Q is the input frequency of the forcing function, 

co is the natural frequency of the beam as calculated from Rayleigh-Ritz, 

x is the position of interest on the beam, and 

h is the input position of the forcing frequency. 

The first step is to calculate the mode shapes and then apply Eq. 3.17 to calculate the 

(Xxh parameter. The value calculated for U-xh can then be substituted into the main 

equation, and the deflection due to vibration on a certain point of the beam can be 

calculated. Once the deflection due to the vibration has been determined, it can be added 
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to the deflection due to Eqns ' ). I to 3.8 calculated by using Euler-Bernoulli. It can be 

seen that the closer the value the input frequency is to the natural frequency, the greater 

the deflection of the beam. 

3.1.4 Response values 

Figure 3.1 shows typical displacement values obtained using the Rayleigh-Ritz method. 

The dashed line shown indicates the vibration deflection, i. e. how much the beam will 

deflect due to the input frequency forcing function and the solid line shown determines 

the value of Vt,, t,,,. V,,, tal is simply Vb, a,,, and V(,, t) added together. The beam deflection 

values change when VO is varied as a result of the different natural frequency obtained. z: I 

The derived equations for the natural frequency of the beam were all inserted into an 

MS-Excel spreadsheet. This allows all of the variables, such as the input frequency and 

the end conditions, to be changed easily by altering the values in the spreadsheet cell. 

This simply means that the graphs can be generated instantaneously and a picture of the 

beam movement can be established without having to do separate calculations for each 

input frequency. Calculating the beam deflection for each 0.1 s time increment produces 

the graph shown in Figure 3.2. 
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3.2 Small-scale model 

3.2.1 Material property definition 

Before performing the modal analysis on the small-scale model, it was necessary to 

determine the material properties of all materials used in the model to input the data 

required by the FEA package to complete the analysis accurately. Of primary concern 

are the elastic properties of the Perspexg and the compression stiffness of the series of 

springs to be used as support conditions. 

3.2.1.1 PMMA plate 
®R 

Perspex , or polymethylmethacrylate (PMMA), is a vinyl polymer made using the 

process known as free-radical (addition) vinyl polymerisation from the monomer 

methylmethacrylate. There are two manufacturing methods for PMMA, the extrusion 

method and the casting method. The PMMA plate used in the small-scale testing was Zý 

produced using the extrusion method. 

The most significant material property to define is Young's modulus of elasticity (3.5). if 

the extension or compression in a member due to a load disappears on removal of the 

(3.6) load, then the material is said to be elastic. Elastic materials obey Hooke's law 

which shows that the strain is directly proportional to the applied stress as shown by Eq. 

3.20. 

E= stress 
_6^ Eq. 3.20 

strain c 

However, in this particular instance, a four point bending test was required to determine z: I 

the E value of the PMMA plate as the flexural E value is required in this case. To 

calculate this modulus, a series of five, four-point bending tests using a Lloyd zn 
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compression-testing machine were completed (Figure 3.33). Each specimen of PMMA 

used was 400 mm in length, 30 mm wide and nominally 10 mm thick. Load was applied 

at two locations situated 100 mm from the centre point of the sample, and the sample 

was supported at 50 mm in from each end. Each sample was then cycled through ten zn 

loading and unloading sequences, up to a maximum displacement of II mm, to 

determine if any hysteresis existed within the material, and to demonstrate the 

repeatability of the tests. Little hysteresis was evident whilst performing, the tests and =1 

each sample returned, within a relatively close envelope, to the position it was in at the 

commencement of testing. Figure 3.4 shows an example of five cycles from test 

specimen number 1, note that the cycles are very close together with the exception of 

the initial loading curve. 

Simple elastic beam bending theory to determine the E value, initially constructing the 

equation of the bending moments generated by the loading on the sample, is then 

performed. 

Mx ý 'ý, 
c - 

P(x-0.05) 
- 

P(x-0.25) Eq. 3.21 

Eq. 3.21 is then integrated once to determine the slope 0, and again to obtain the 

displacement Y. 

0, = -1 
fM, dx =1P, 

P(, 
-0.05)1 

P(x-0.25) 2+c 

Eq. 3.22 
EI EI 222 

, lý"3 p- -', P(. 
-0.25) 

33 

f0, dx =-( 
U5) 

+Cx+D Eq. 3.23 
EI 666 

When x=O, Yx =0 sothat D=O 
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Eq. 3.2-33 is then rearranged to calculate C. This value for C is then substituted into the 

following rearranged equation for E: 

Px 
+ Cx 

E_ 6 
}I 

where P is the loading on the sample in N, 

C is a constant that varies from sample to sample, 

Y, is the sample displacement directly under the applied load in in, 

4 1 is the second moment of area of the sample in m, see Eq. 3.25. 

Eq. 3.24 

I= 
bd' 

Eq. 3.25 
12 

where b is the width of the sample in m, 

d is the depth of the sample in m. 

Taking an average of the values calculated from the five tests, EBending was taken as 3.15 

GPa. 

To determine the uniformity of the plate in terms of thickness, a series of 2600 

ultrasound thickness measurements were taken over the entire plate using an EPOCH4 

ultrasonic flow detector and a2 MHz transducer coupled to the plate with glycerine. r) 

This data was downloaded to a PC and imported into a spreadsheet, then post-processed 

(see footnote on Table 3.9). In order to determine the thickness, the EPOCH4 requires 
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the wave speed (V, ) of compression wave through the material, which in this case is the 

PMMA plate. To establish the wave speed, Eq. 3.26 was used. 

V, - 
(IxIO'E(I-v)) 

Eq. ' ). 26 
(p(l + v)(I - 2v)) 

where p is the density (1194 kgM-3), 

v is Poisson's ratio (0.34), 

E is the Young's modulus (3.15 GPa). 

Notice that to ascertain the wave speed in PMMA, it was essential to determine a value 

(3.7) for Poisson's ratio . Poisson's ratio can simply be described as a strain ratio and is the 

negative ratio of lateral strain against uniaxial strain, in axial loading. Its value can 

range from -1, for some sponges, to 0.5 for incompressible materials such as 

elastomers. Poisson's ratio is dimensionless although it does exhibit some stress and 

strain dependency. 

v=- 
E' Eq. 3.27 
C3 

where c, is the strain normal to loading, 

C3 is the strain parallel to loading. 

The Poisson's ratio of the PMMA was calculated by performing a tensile test using the z: I 

Lloyd machine. A sample of PMMA (Figure 3.5) was placed into the rig and a rosette 
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of strain gauges were mounted on the sample to read strain in the required x and y 

direction. The rig outputs the data from the strain gauges in the form of a graph, whose 

values can then be imported into a spreadsheet. Using this data, the Poisson's ratio for 

the PMMA was found to be 0.34±: 0.005. 

The density, p, was calculated by performing an immersion weighing of five samples in 

water and in air, obtaining the volume of water displaced, then dividing the dry weight 

by the volume of water displaced. In this case the average value determined for the 

samples was 1194 kgm-3 . Conventional density measurement techniques would have 

been as simple and would have resulted also have given a value close to the 

manufacturers density of 1.15 to 1.19 kgm-3 
. 

Substituting these values into Eq. 3.26, the 

wave speed in this particular blend of PMMA was 2027 ms-1. 

Inputting this value for wave speed into the EPOCH4, approximately 2600 thickness 

measurements were taken. Figure 3.6 shows the variation in thickness across the plate. 

The change of thickness in this case is not a particular concern, but can be used to 

explain any variation between the numerical solutions, such as FEA, and the 

experimental modal analysis. The plate was rotated regularly and stored horizontally to 

minimise the effects of creep. Between tests, the plate was covered to prevent ultraviolet 

radiation induced changes to E and p in particular. All tests were undertaken at 

temperatures between 19'C and 23'C and at 65 % relative humidity. 

The parameters determined for the Perspex plate used for small scale modal analysis 

are, of course, not directly relatable to full scale bridges by simply multiplying the 

values obtained for frequency by a scaling factor. As a result, a dimensional analysis 
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technique called Buckingham H Theorem was used to develop a series of equations Zý, 

using known parameters, such as p, E, o), F, b and d. In this case, p, E and o) are taken as 

the core parameters that occur in each equation, and F, b, d and L are the remaining 

parameters. Equation 3.28 Shows the series of equations derived. 

co 
2 
pF ct)p 2b CO)o 2d ct)p 2L 

Eq. 3.28 
E20 

-1 11 

E2E2E2 

3.2.1.2 Springs 

To vary the stiffness of support offered to the plate it was necessary to manufacture a 

series of five springs, from Industrial Springs Ltd, each with its own particular stiffness. 

Each spring was 38 min in diameter and 90 min in length, but each set of springs has a 

different nominal diameter of wire; 2 mm, 2.5 mm, 3 mm, 3.5 mm and 4 mm (see 

Figure 3.7). The stiffness of each spring was determined through a series of cyclic 

compression tests, as with the evaluation of EBending for the Perspex plate. To determine 

the repeatability, and reproducibility, of the compression testing, three springs from 

each stiffness set were tested. In this series of tests, with the machine loading heads 

parallel to the machined ends of the springs, each spring was subjected to a load 

sufficient to induce a 30 mm displacement. Twenty loading and unloading cycles were 

performed to determine what hysteresis, if any, there was in the material. Figure 3.9 

shows the linearity of the material, which exhibits little deviation in stiffness, or 

hysteresis, from cycle to cycle. The springs were held in place by two specifically 

machined plastic holders, Figure 33.7, which were machined slightly larger than the 

diameter of the springs but still tight enough to stop slippage, and to resist any lateral 
I 

movement induced by loading of the springs. ZID 
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The range of stiffness values obtained are shown in Tables 3). 1 and 3.2. The values 

shown in the final two columns of Table 3.1 relate to an additional series of tests 

performed on the same sets of springs. Observing the sag of the Perspex plate when 

supported by a set of springs, it became apparent that the springs would never be in an 

idealised state where the springs were parallel to the plate. As a result, a series of tests 

where the machine platens are loaded onto the spring holders as before, but to mimic the 

effect of the plate curvature, wedges of various thicknesses were inserted below the 

lower holder. From inspection, the maximum displacement of the plate at its centre 

point was taken as 22 mm; therefore, the worst possible case scenario would be an angle 

of approximately 2' for this span of plate. Figure 3.8 shows a range of rotations versus 

displacement at midspan. 

To test the ability of the springs to function within acceptable parameters, two angles of 

10' and 20' were imparted onto two separate spring samples. The resulting data 

indicated that, although there is a large reduction in stiffness at 20', the springs will 

never be subjected to a rotation of this magnitude during any of the tests. The reduction 

in stiffness at 10' is, on average, only 5% to 10 %, although again it should be noted 

that the springs would never be subjected to rotations of this magnitude. Values for all 

stiffness tests are shown in Table 3.4. 

3.2.2 Method 

Small-scale modelling in structural analysis is normally used with a view to determining 

how a scaled down version of a structure reacts to either a type of prescribed loading, 

such as an impact load or a moving load on the structure, or environmental effects, such 

as temperature, wind loading or in the case of bridges traversing a river, scour caused at C, 
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pier bases by river currents. In this particular case, of most interest was the effect of 

changing the support conditions and the effect such changes had on the dynamic 

response of the structure. It should be noted that the plate model used is not intended to 

simulate an actual bridge deck in any way, but should merely be viewed as method of 

facilitating valid response spectra using modal analysis techniques by using establishing 

a series of base readings with the plate constrained at its edges in more a conventional 

manner. The end conditions were then altered, and the analysis with the variable support 

conditions was completed and compared. 

3.2.2.1 Free-free support 

Initially, to establish a baseline series of readings to be used in order to validate the FEA 

used, the simplest type of support condition of a freely suspended plate, in effect having 

no support, was tested. In reality, arranging a set-up with no support is virtually 

impossible as, even if supported by wires, some portion of the plate must be in contact 

with a wire. To try and simulate this set-up as best possible, an arrangement whereby 

the plate was suspended on four wires from each comer, shown in Figure 3.10, was 

constructed. The wires were attached to a frame, independent of the suspended plate, by 

a guitar tuner, as shown in Figure 3.11. Using the guitar tuners allowed the length of 

each wire to be altered until the plate was level to a tolerance of 0.5 mm per m length 

(0.7 mm over 1.4 m, which results in O=tan-'(0.7mm/l400mm)=0.029'). To 

dampen out any extraneous vibrations that could be imparted upon the plate by 

equipment located in the heavy structures laboratory where the testing was completed, a 

foam-like material called Sylomer' was placed between the floor and the frame. A 

Sylomer" section was also placed between the plate holding the guitar tuners in place C, 

and the frame, as well as on the end of the wires, pressing against the underside of the 
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plate. The reason for using the Sylomer, 'ý in such a way was to reduce the possibility of 

scratches occurring from the wire, and to try and reduce any external vibrations. The 

wires were prevented from coming back through the hole in the plate using an 

arrangement similar to that used on a bicycle breaking system. The wire is passed 

through a bolt with a hole drilled through it. The wire is then bent over, and passed back 

through the hole and then clamped in place using a nut, shown as a callout in Figure 

3.11. 

3.2.2.2 Fixed supports 

The second arrangement in the baseline readings was a fully fixed arrangement. This 

arrangement is a common one in structural engineering, where many bridges are 

described as having fixed supports. A fixed support will not allow any rotation or 

translation in the x and y directions, therefore resisting moments. In reality, this type of 

arrangement, as with the freely suspended set-up, is very difficult to achieve as some 

rotation will inevitably be allowed by the support. This rotation can be ignored, as it is 

relatively small in most cases. 

Using the same frame as used previously for the freely suspended tests, the PMMA 

plate was clamped between two sections of timber at either end (Figure 3.12). The 

timber sections were clamped together using two lengths of screwed rod located either 

side of the extremities of the plate, with a locking nut at one end of the rod, then 

tightened with a nut until the plate was secured. Once the plate was clamped between C, 

the timber sections, these were then attached to the frame by another section of timber, 

two for each end of the plate. This section had two pieces of timber with four sections 

of threaded rod holding the timber sections together, shown in closer detail in Figure zn =1 
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3.12. To reduce the vibrations transmitted through the steel frame, Sylomerl sections 

were placed either side of the steel frame, between one side of the timber, plate clamp, 

and one of the two pieces of timber used to hold the plate in place. Sylomer' sections 

were also placed between the other piece of timber used to hold the plate in place, and 

the timber clamp. Having this particular arrangement of clamps facilitated easier 

manipulation of plate location, allowing the plate to be levelled more accurately. 

3.2.2.3 Simply supported pin joints 

The final arrangement for the initial base readings was a simply supported arrangement. 

A simple support allows rotation in one direction, usually about the x-axis, but will not 

allow translation in the x or y directions. Many joints are assumed to be pinned, even 

though in some cases they do resist moments, because the actual value of the moment is 

insignificant. To simulate a simple support, two sections of steel tubing were placed 

underneath the PMMA plate at either end, thus allowing the plate to rotate about those 

points in the x-axis (Figure 3 ). 13). 

3.2.2.4 Springs 

Once the initial testing had been completed, a series of variable support conditions were 

investigated. To facilitate easy alteration of the support conditions by changing the 

springs, a set-up similar to the one used for the fully fixed arrangement was employed. 

Initially, the lower section of the arrangement was secured to the steel frame in the same 

manner as used in the fully-fixed arrangement. However; in this case, the piece of 

timber used to hold the plate was shallower and had an attachment made from plastic 

fastened to it, as shown in Figure 3.14. This piece of plastic, the same length as the 
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width of the plate, 800 mm long by 50 mm wide, had eight holes, each of 38 mm 

diameter, along its length. The centres of the first and last holes were located 50 mm in 
zn 

from either end, with each subsequent hole located at 100 mm centres therein. Care was 

then taken to ensure that the two sections were level with each other, and then sixteen 

springs, eight at either end, were placed in the holes. An identical plastic section was 

secured to the plate, both top and bottom, and the plate was then carefully placed on to 

the springs. Once the plate was in place, sixteen more springs, again eight at either end Z=' 

of the plate, were placed into the plastic holding section on the top surface of the plate. 

The arrangement was completed by placing the second timber section, with plastic 

holding section as before, on to the springs. The timber section was secured to the steel 

frame, imparting a small compressive force on the springs, as in the fully-fixed 

arrangement. 

As the springs are all of a uniform length and diameter, only the diameter of the wire 

differs, once the arrangement has been set up, the springs can simply be changed over 

without having to remove the wooden holding sections. zn 

3.2.3 Natural frequency analysis 

Modal analysis is the process of experimentally determining the modal parameters of a 

structure, such as vibration mode shape and material damping. There are two methods 

of modal analysis, the classical method and the operational modal analysis method. The 

classical method is when the structure being tested is stimulated by a known force, 

usually an impact hammer or mass shaker, and the response to this force is determined 

using a fast Fourier transform (FFT) analyser. 
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To determine the modal parameters, several methods can be employed; a roving 

hammer test, a roving accelerometer test, a swept sine test or a pseudo-random 

excitation test with a mass shaker. In this instance for the baseline tests on the plate, a 

roving hammer test was carried out on each arrangement. A roving hammer test, 

described in this case as a single input-multiple output test (SIMO), is when several Z:, 

accelerometers are fixed to the plate and are not moved during the tests. To maintain 

consistency throughout the series of tests performed, the accelerometers were left in situ 

on the plate, and not removed, to eliminate the possibility of modal shift which can be 

caused by adding mass to different sections of the plate. With the accelerometers fixed 

in place, the force hammer was used to excite the plate in several different locations, 

down a line of points taken over the whole length of the plate. Moving the hammer to 

different locations, in this case down two lines of points in the longitudinal and 

transverse directions, will excite all of the modes the plate is capable of producing. 

Figure 3.15 shows the grid of points relating to all future results presented. Using the 

FFT analyser (Figure 3.16) the imaginary part of a series of frequency response 

functions (FRFs) can be taken after each excitation of the plate and displayed as a 

waterfall plot graph. The imaginary part of the spectrum displays the direction of the 

vibration rather than the actual value of vibration, which is shown in the magnitude 

graph that combines the real and imaginary parts of the spectrum. This allows the mode 

shapes at each resonant frequency, in both longitudinal and transverse directions, to be 

displayed by taking a slice through the waterfall plot at the desired frequency. :D4: 1 

When performing a modal analysis, it is standard practice to view the coherence 

function when displaying the FRF of a signal. Coherence is a number between zero and I= ZD 

one, and is a measure of the degree of linearity between two related signals such as the C, 
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input force of a structure related to the vibration response to that force. In a frequency 

response measurement of a mechanical structure, if the structure is linear, the coherence 

will be one, but if there is some non-linearity in the structure, or if there is noise in a 

measurement channel, the coherence will be less than one. The multi-channel FFT 

analyzer is able to measure the coherence between channels. Coherence is a useful tool 

in determining good from noisy or meaningless data. 

In the case of the mobility measurements taken on the plate using the roving hammer 

test, only one exponential average hammer strike per recorded measurement was 

captured. As a result, the coherence is one over the whole frequency range. To show the 

linearity of the material, and the quality of measurements taken, a separate set of tests in 

each arrangement were completed. Five points located on the line of points used during 

the roving hammer test were excited in turn. 

A single measurement with the hammer set up in the exponential averaging mode was 

taken, as in the roving hammer test, to act as a baseline for the subsequent readings. A 

total of ten linear averages were taken for each measurement point, recording each of 

the accelerometer's FRF and coherence functions. The results in Figures 3.17 and 3.18 

showed that the material was not susceptible to hysteresis, and the signals imparted zn 

upon the plate can be assumed to be good as the coherence function graph is at a 

constantly high value throughout. Any drop in the coherence function graph can be 

explained as noise or signal leakage in the measurements. 

It should, however, be noted that due to certain material properties of the PMMA which 

have resulted in high modal coupling, it is often problematic to identify the actual peaks 
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that correspond to natural frequencies of the plate for any given arrangement. This also 

results in difficulty obtaining accurate damping ratios for each frequency. To identify 

the value of each resonant frequency of the plate, the autospectrum graphs generated for 

each accelerometer were used as a reference. By curve fitting the autospectra, each 

frequency can be identified clearly, and then a slice at this frequency can be taken 

through the waterfall plot of FRFs taken for the same reading. 

The accelerometer type used for this modal analysis was a Type 4508-B DeltaTron 

transducer electronic data sheet (TEDS) accelerometer (3.8) (see Figure 3.19). This type 

of accelerometer is specifically designed to withstand the harsh environment of the 

automotive industry, and as a result, should be more than adequate for this set of tests. 

The 4508-B is a ThetaShear accelerometer coupled with a DeltaTron preamplifier 

within a lightweight titanium housing. The shear accelerometer works by having a 

central seismic mass flanked by two piezoelectric plates. This assembly is then clamped 

together with a titanium ring, meaning the parts are held firmly together without the use 

of any bonding agent, solely relying on frictional forces. This assembly is then Z:, 

hermetically sealed within the titanium shell. An exploded schematic diagram of this 

type of accelerometer is shown in Figure 3.20. The DeltaTron accelerometer removes 

the requirement for an external charge amplifier to boost the signal in the accelerometer, 

and also removes the requirement for expensive cables. The TEDS allow the inherent 

parameters of the accelerometer to be detected automatically by the PULSE system, 

effectively making the transducer a "plug and play" device. 

Care must be taken when attaching the accelerometers to the plate. Placing the C, 

accelerometers at locations which are considered to be node points will result in various 
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frequencies not being detected. As a result, several measurement points are chosen to 

reduce the likelihood of such an occurrence. 

Placing accelerometers on to a surface can result in the modal parameters of the 

structure, in this case the PMMA plate, being altered (3 9). Adding the extra mass of the 

accelerometers can result in modal shift, meaning the vibration modes occur at slightly 

different frequencies than would otherwise be the case. However; this phenomenon only 

occurs when the mass of the accelerometer is significantly large as a proportion of the Z: ý 

mass of the plate. Typically, the accelerometer used should not be more that one tenth 

of the mass of the structure. In this case, the mass of the Perspex plate is 13 kg and the 

mass of the accelerometers used is only 0.004 kg, so each accelerometer added 0.03 % 

mass. 

In addition to modal shift, consideration should also be given to phase deviation 

between accelerometers and base strain sensitivity. To remove the possibility of phase 

deviation, an accelerometer with no phase shift within the frequency range of interest 

should be selected. Direct current (DC) coupled designs are the best choice in this 

particular case. The type chosen for the tests is a constant current line drive (CCLD) 

accelerometer, which has no phase deviation. Base strain occurs when the structure 

being excited imparts a force onto the accelerometer due to the structure's movement 

during vibration. Base strain sensitivity can be reduced by using an accelerometer with a 

thick base, or by using a DeltaShear accelerometer such as the 4508-B, as the internal 

elements are not connected directly to the base. 
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The impact hammer used for the initial modal parameter testing was an 8202 hammer, 

incorporating a type 8200 force transducer. The type 8200 transducer is a piezoelectric 

transducer, as the accelerometers are, but produces the outputs in a different manner. In 

the force transducer, forces are focused directly onto the piezoelectric elements, 

squeezing the element thus generating a charge across the element. This charge was 

then converted to a force in the same manner as the charge was converted to an 

acceleration in an accelerometer. 

The type of hammer initially used for the experiments is an old piece of equipment 

designed to be used with a dual channel analyser, type 2034. The transducer requires an 

external charge amplifier, or pre-amplifier, in order to function. The pre-amplifier 

available was not compatible with the PULSE system. As a result, the charge amplifier 

type 2635 was used whilst a new hammer was obtained. A ma or difficulty with using i 

the 2635 amplifier is that it introduces another possible error to the readings. Initial tests 

showed that the transducer was producing a noisy signal on the analyser display. This 

problem was remedied by altering the sensitivity and upper frequency bounds on the 

charge amplifier, and by windowing the data in the time domain to remove any noise 

either side of the signal. Another difficulty using the hammer with a charge amplifier is 

that it inverts the signal from the transducer by 180'. As a result, when setting up a 

trigger for the measurements using the initial hammer strike, the slope of the hammer 

must be set to a negative slope, otherwise the incorrect starting point of the 

measurement will be detected. 

After completing the initial testing in the four baseline reading arrangements, a new C, 

hammer, fully compatible with the analyser was obtained. As a result, it was decided to 
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redo the original testing with the new impact hammer, Type 2302-10. Figure 
zn 

3.201 shows a diagram of the hammer and Figure 3.22 shows how the hammer is 

connected to the analyser, bypassing the need for a signal conditioner. As with the 

previous hammer, the 2302-10 comes with three different tip materials; rubber, plastic 

and steel. Each tip excites a different range of frequencies (Figure 3.23 )) and after 

several trial runs with the different hammer tips, the plastic tip was chosen for the 

testing as it resulted in the cleanest response spectra. 

Having the new hammer resulted in the time taken to perform the tests being reduced 

dramatically. Instead of having to activate each measurement manually, triggering the 

measurements with the hammer became possible. This meant that the analyser could be 

set up to record each individual hammer strike above a certain trigger level making the 

measurement clearer with a much higher coherence value. Average coherence improved 

from 0.90 to 0.98. The window used from this set of tests was the rectangular window, 

for both the output and input channels. This window was chosen as it is a general- 

purpose window and gives clean responses in relatively noise-free environments. Most 

impact hammer testing tends to be performed using exponential and transient 

windows 
(3.10) 

3.2.4 Forced vibrations 

After determining the modal parameters of the plate using the impact hammer test, the 

next stage of testing was to determine the effect of varying stiffness of support z: l 

conditions on the propagation of waves across the plate. 
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The PULSE system contains a generator output in one of the modules located in the 

front end. The generator function can then be used to power a mass shaker, which is 

attached to the plate. The generator function, once activated in the analyser software, 

can generate a wide range of signal types to power the mass shaker, or whichever type 
zn 

of device is attached. The signals the generator can produce are: a single fixed sine 

(either continuous or burst), a single swept sine wave, a dual fixed sine, a dual swept 

sine, a fixed sine plus swept sine, a stepped sine wave, a multi-sine wave, a random 

excitation (again continuous or burst), a pseudo-random excitation, a pulse excitation, a 

periodic random, and a user-defined excitation. 

3.2.4.1 Sinusoidal harmonic loading 

The main purpose of the forced vibration testing is to determine what effect, if any, the 

variation in support stiffness has on vibration amplitude. To test this theory, a single 

sinusoidal loading generated by the analyser was forced into the plate at five separate 

locations. The points chosen to excite the plate were five of those used in the roving 

hammer test, with the accelerometer locations remaining consistent with earlier tests. A 

second set of points, all located at the centre point of the plate, were chosen after 

analysis of the results obtained from the primary set of tests. 

Each of the five location points was excited at each of the natural frequencies obtained 

through the impact hammer testing for each of the five spring arrangements, as well as 

one common frequency, in this case 39.1 Hz, which is not considered a resonance in 

any of the test arrangements. 
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To force the vibrations into the plate successfully, the mass shaker must be securely 

attached to the plate. Most shakers are attached to objects using a "stinger" which is 

simply a metal rod, or piece of wire, which is then attached to the plate through a force 

transducer. The force transducer is then either glued or cemented on to the structure. 

However, in this case a force transducer is not required as the mode shapes have already 

been determined using the impact hammer testing. Therefore, a bolt of 60 mm in length 

was screwed into the mass shaker and then stuck to the underside of the PMMA plate 

with a small portion of beeswax at every excitation point (Figure 3.24). A nominal 

precompression was applied and manually tested to ensure continuity of contact 

between stinger and plate, therefore eliminating the possibility of chatter. 

To test the ability of the arrangement to transmit vibrations into the plate, two 

accelerometers were used, one on the diaphragm of the mass shaker and the other on the 

plate directly above the bolt. Results indicated that although there was an average 10 % 

decrease in magnitude, the values were sufficiently close to assume that there was no 

problem with transmission. The Hann (3.11) window is used in this case as it is applicable 

to continuous or random excitation signals as it reduces the noise in the spectrum at the 

beginning and end of the recorded data. 

3.3 Finite element analysis 

FEA is a well-known and well-understood method of engineering analysis of complex 

structures. To investigate further changes in support stiffness for plate vibrations, an Z: ý 

FEA model has been constructed using a commercially available package. Initially, the 

FEA is used to predict the response of the PMMA plate in the laboratory for all the test 

arrangements used in the modal analysis section of the research. 
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The model generated for the analysis was a simple plate. To construct the model, there t'. 1 

are several steps to perform. To begin with, the structure geometry must be established 

and entered into the model. Each individual point's coordinates are entered, then the 

points are linked together in turn by selecting the points to be joined, then selecting the 

line drawing command. Figure 3.25 shows the completed geometry and mesh 

refinement used for all FEA simulations. 

Once the structure's geometrical shape is outlined it is necessary to generate surfaces to 

be analysed. Each line that is to make up the boundary of the surface is selected in turn, 

then the surface drawing command is utilised, and the surface generated. 

Once the geometry properties are completed, the next step is to assign the model 

attributes. The first attribute to define is the mesh definition. A mesh can be defined for 

a point, line, surface or volume, but in this case, a mesh for a line and surface are 

defined. The line mesh simply indicates how refined the mesh is, depending on how 

many divisions are defined within that mesh, but it can be used to model beams or bars. 

The surface mesh is defined by selecting the element type from a menu, in this case a 

thin plate element, as well as the element shape, either quadrilateral or triangular, and 

the interpolation order, either linear or quadratic, are assigned in a similar manner. In 

this menu it is also possible to change the meshing pattern between regular and irregular 

meshing. As the model is a simple rectangle, the meshing pattern was left as the default 

regular pattern. After defining the surface mesh, the surface thickness is assigned by 

selecting the geometric properties menu, then the surface section. For each of the model 

tests the plate thickness was 10 mm. 
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Assigning the material properties to the model was done through the materials section 

of the attributes menu. In this menu there were several sections that can be chosen to 

input the material properties of the model, such as a general materials library in which 

materials such as concrete and mild steel are located, isotropic material sets can be 

generated as well as orthotropic and anisotropic material definitions. The PMMA used 

for the model plate is considered to be isotropic. Selecting the isotropic material tab in 

the menu allows various parameters to be entered into the model, such as elastic, plastic, 

creep and damage properties. For this model, only the elastic properties have been 

entered as the plate is not taken to the plastic limit during the testing regime. The 

flexural Young's modulus (3 ). 15 GPa), Poisson's ratio (0.34) and the mass density (1194 

kgm -3 ) determined through the materials testing were entered for all models. 

The final section of model definition is the support conditions. The FEA package comes 

with the most common support conditions pre-programmed into the model templates, 

such as pinned supports, fully fixed and a range of degrees of fixity in the x, y and z 

directions, with respect to translation and rotation. In addition to the pre-programmed 

support conditions it is possible to define conditions using the attributes menu, selecting 

the support tab, and then selecting the structural tab. Within this menu the various 

degrees of movement can be defined by selecting the required tab. There are three 

degrees of fixity that can be selected, free, fully fixed and spring stiffness, which allows 

the spring stiffness to be entered in either absolute stiffness, stiffness per unit length or 

stiffness per unit area. 

The initial set of tests carried out in the laboratory had the plate effectively freely 

suspended on wires. To imitate this circumstance in the support conditions in the model, 
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all of the tabs were set to free with the exception of translation in the z direction, which 

was set to fixed to prevent rigid body movement under load. 

Similarly, the second set of tests were carried out with the plate in a simply supported 

arrangement, where all the tabs are set to fixed with the exception of rotation about the 

y axis. The final test in the initial baseline readings was an arrangement with a fully 
4: 1 

fixed support condition, with no translation or rotation allowed at the edge of the plate. 

To imitate the spring support conditions, each stiffness per unit length was entered into 

the model parameters and assigned to a node point at the exact location of the centre 

point of each spring on the actual plate. 

Initial FE testing was intended to determine the natural frequencies of the plate in the 

various support conditions. This particular type of analysis is known as an eigenvalue 

analysis, where eigenvalues are the roots of the equations of the matrices generated in 

the FEA. The eigenvalue analysis output gives the eigenvector, the frequency in hertz 

and the error normalisation. The solution is completed by calculating error estimates on 

the precision with which the eigenvalues and eigenvectors have been evaluated, and 

normalising the eigenvectors according to a user-specified criterion. The computer 

package is capable of displaying the mode shapes for each frequency determined in the 

analysis. However, it should be noted that absolute displacement is not available from 

any eigenvalue analysis, and as a result the mode shapes shown are un-scaled mode 

shapes that accurately represent the deformations, but do not quantitatively define the 

displacements as there is no forcing function or load from which to derive the required 

information. 
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It is necessary to complete an eigenvalue analysis in order to force a sinusoidal loading ZD 

in to the model, and simulate the testing completed using the mass shaker in the 

laboratory testing. 

The type of element chosen for the model is an 8 noded quadratic isoparametric thin 

plate element with 2x2 Gaussian quadrature within the software package. The bending 

properties of a plate depend on its thickness as compared to its other dimensions. In the 

case of the PMMA plate used for the model presented, it was considered to be thin with 

a small deflection. It was possible to make several assumptions when developing the 

analytical model; 

1. There was no deformation in the middle plane of the plate. This plane remains 

neutral during bending. 

2. Points of the plate lying initially on a normal-to-the-middle surface of the plate 

remain on the norm al-to-the-middle surface of the plate after bending. 

3. The normal stresses in a direction transverse to the plate can be disregarded (3.12) 

The element is therefore formed by applying Kirchhoff constraints to elements 

(3.13) (3.14) formulated using Mindlin plate theory. Kirchhoff theory , 
in recognition of 

Kirchhoff s research on plate theory in 1850, excludes transverse shearing effects which 

are included in Mindlin theory, also known as Mindlin-Reissner (3.15) theory. Transverse 

shear becomes negligible in a plate whose span is much greater than its thickness. Both 

theories provide a model that can be solved using FEA, and in both models normal 

stress in the thickness direction is taken to be zero. The FEA package formulates the zn 

Mindlin plates using general isoparametric elements, elements where the two shape 
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function matrices are identical, then applies the Kirchhoff constraints to exclude the 

transverse shearing strains by forcing them to zero value at discrete locations in the 

element 

The evaluation of stresses and strains are determined using 2x2 Gaussian quadrature, as 

these are generally more accurate than the nodal values. The nodal values are then 

determined using a procedure known as nodal extrapolation from the Gauss points. A 

fictitious element with nodes at the element Gauss points is defined, and the stresses and 

strains are then extrapolated out to the nodal points of the real element by using the 

shape functions of the fictitious element (3.13) 

3.3.1 Forced vibration testing 

To validate the modal analysis testing of the plate, the FE method was used to simulate 

a forced vibration of the plate. Once the eigenvalue analysis had been performed on the 

model and the natural frequencies recorded, a transient analysis was performed. The 

transient analysis was set up by selecting the model properties from the file menu, then 

selecting the solution tab on the next menu. In the solution tab the box marked "Load 

Curve" is selected, and set to a transient problem. Selecting the "set control" button then 

allows the type of transient analysis to be determined, and in this case a dynamic 

analysis is selected. The various parameters such as the initial time step, the overall 

analysis time and the number of increments per analysis are then defined. For the 

analysis performed on the plate, a time step of 0.002 s was chosen, and the overall 

analysis record time was determined by the frequency of forcing function to allow at 

least one full cycle of vibration to be completed. 
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After completing the initial transient set-up, the type of waveform to be forced into the 

model, the peak value, frequency and the phase offset were all determined in the 

loadcase parameter section. For each test the forcing function was a sine wave with a 

peak value of one and an offset value of zero. The only parameter that changed was the 

input frequency, which was the natural frequency value recorded from the eigenvalue 

analysis for each arrangement. 
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3.4 Results 

3.4.1 Euler-Bernoulli analysis 

The results from the Euler-Bernoulli method adopted for plate analysis are shown in 

Tables 3.3 and 3.4. All input variables used in the method are shown in Table 3.5, and 

the material and geometric properties used are shown in Table 3.6. Figures 3.26 and 

3.27 show the effect of support stiffness and loading on the fundamental resonance 

frequency. The range of values shown for stiffness relate to the values obtained for the 

springs used in the modal analysis, from the stiffest at 15.6 Nmm-1 to 1.22 Nmm-1. Also 

included are values relating to infinite support stiffness, where the displacement was 

assumed to be zero. 

3.4.2 Small-scale model 

3.4.2.1 Experimental modal analysis 

Figures 3.28 to 33.35 show the resonance frequency outputs from the laboratory modal 

analysis carried out on the PMMA plate. Figures 3.28 to 3.30 are the baseline readings 

taken for the plate in more conventional support conditions; free, simply supported and 

fully fixed. These figures show the response at three locations, shown in Table 3.7 and 

Figure 3.15, in both the longitudinal and transverse directions. The purpose of this was 

to allow the mode shapes to be determined in three dimensions, thus making it clearer 

as to the alterations in plate behaviour with varying support conditions. Figures 3.31 to 

3.35 are the waterfall plots for spring support stiffnesses I to 5. These figures show the 

effect of altering support stiffness on the resonant frequencies, where the resonant 

frequencies become more evenly spread as stiffness of support increases. The resonant 

frequency values are shown in Table 3.8 for each experimental set-up used. It should be 

noted that in the higher range of frequencies shown in Table 3.8, the modal analysis Cý 
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missed several frequencies. In this case, the first three modes were considered to be the 

most important, and as a result, only the first three modes were considered when 

making comparisons between data. The first three modes generally tended to contain the 

most energy, and would be considered to be the most important from a structural 

enoineering viewpoint in any case. Figure 3.36 shows mode shapes, both transverse and Z= 

longitudinal, for the various support conditions in spring support configuration 1. This zn 

figure shows that the first mode was a bending mode; the second mode was torsional: 

and the third mode was bending. The higher modes were generally a combination of 

bending and torsion. These modes tended not to have the same energy as the lower 

modes (3.3 x 10-8 J at 240 Hz compared to 5.0 x 10-6 J at 5.6-3) Hz), and result in 

infinitesimally small displacements (47.1 nm compared to 24.9 ýtm). As a result, only 

data for the first mode was considered in the analysis. The energy required to excite the 

higher modes in a full-scale structure to a destructive degree would be unlikely to occur. 

This logically follows as a corollary to the fact that they contained less energy in the 

first place. Other methods of representing data in plane and vector space exist. Van der 

Pol and Poincar6 plots derived using a Java applet are presented in Figures 3.67 to 3.74. 

Figure 3.67 shows the expected result for the Perspex plate, as lateral displacement is 

assumed to be zero times the vertical displacement. Figures 3.68 to 3.70 illustrate the 

effect of increasing the lateral displacement relative to the vertical displacement. Data 

obtained through testing of the plate could not be used to derive either type of graph as 

only data in two dimensions, x and t, were recorded. Analysis of the data by integrating 

the data obtained and using the Van der Pol equation, indicated that the system is not a z: l 

Van der Pol oscillator as the right hand side of the equation, Eq. 3.29, did not equal zero 

at any time step. The Van der Pol oscillator (named for Dutch physicist Balthasar van 

der Pol) is a type of non-conservative oscillator with nonlinear damping. 
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It evolves in time according to the second order differential equation shown in equation 

3.29 below. 

dX2 

- 'U(I _ X2 )dX +X =0 Eq. 3.29 
d2Y dy 

where x is the position coordinate - which is a function of the time t, and P is a scalar 

parameter indicating the strength of the nonlinear damping that affects how non-linear 

the system is. For y equal to zero, the system is actually just a linear oscillator. 

Taking a slice through the x axis of a Van der Pol plot produces a Poincar6 map. In 

mathematics, particularly in dynamical systems, a Poincar6 map is the intersection of a 

trajectory which moves periodically (or quasi-periodically, or chaotically), in a space of 

at least three dimensions, x, y and t, with a transversal hypersurface of one fewer 

dimension. More precisely, one considers a trajectory with initial conditions on the 

hyperplane and observes the point at which this trajectory returns to the hyperplane. The 

Poincar6 map refers to the map of points in the hyperplane induced by the intersections. 

These are shown in Figures _3 ). 71 to 3.74. 

Figures 3 ). 37 to 3.44 present data obtained from the forced vibration testing. Figure 3.37 

shows the effect of support condition at the three accelerometer points for the first 

modeshape at each of the five forced vibration input locations. Figures 338 to 3.44 

show the response at the plate mid-span due to forced vibration at the five excitation 

locations for each spring stiffness in terms of velocity, displacement and acceleration. 

The data presented are not the absolute values of acceleration, but a ratio of output to 

input acceleration. The data is presented this way as the force generated by the mass 

shaker was not consistent, especially as the frequency altered for each spring within 
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each modeshape boundary. This method of presenting data allows comparison between 

data obtained for the same mode shape with different frequency values. 

3.4.2.2 Finite element analysis 

The FEA performed on the small-scale model yielded the eigenvalue analysis which 

determined all of the possible resonant frequencies for the plate. Figures 3.45 to 3 ). 47 

show the three dimensional mode shapes obtained for initial, baseline, boundary 

conditions for the first three modes. Figures 3.48 to 3.52 show the mode shapes 

obtained with the variable spring support conditions. Resonant frequency values 

obtained from the FEA are shown in Table 3.9. The input variables used for the FEA 

were previously shown in Table 3.6. 

In addition to the eigenvalue analysis, the results obtained from forced vibration loading 

are also presented. Figure 3.5-3) shows the effect of support condition on vertical 

displacement for the first mode shape at all five forced vibration input locations. Figure C) 

3.54 shows the effect of support condition on vertical and rotational displacements for 

the first mode shape displacements for the first mode shape at forced vibration input 

location point 4. Figures 3.55 and 33.56 show the acceleration and displacement response 

at node point 18. Figures 3.57 to 3.61 show the displacement contour plots of the plate 

in each of the five spring stiffness configurations in the first mode of vibration. These 
zn 

figures also show the location of maximum and minimum displacements. 

The stress response of the plate at each of the support nodes, with variable end 

conditions for the excitation loading points is also considered, and the results obtained 

are shown in Figure 3.62. This figure shows strain about the y-axis for node point 18 in Z= 
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contour plot form and graphical representation. Figure 3.63 shows the maximum 

bending strain response at node 18 for each support stiffness value at input location 4. 

Figure 3 ). 64 shows the results obtained from a parametric study on the plate model and 

Figures 3.65 to 3.66 compare the values obtained by modal analysis with those from 

FEA for frequency and displacement (see footnote on Table 3.9 for effect of variation in 

thickness). 

3.5 Discussion 

The initial simple Euler-Bernoulli method for beams has been adapted for use with 

plates having variable end conditions. The main aim of this method was to provide a 

simple method of analysis when component geometry is in its infancy, before more 

complex designs are done, to indicate the primary resonance frequency. Allowing either 

end to displace by a value proportional to the stiffness of the support means this method 

can be used to simulate the effects of degradation in bearings. The method outlined 

allows either end of the plate to be altered independently, meaning the degree of support 

can be altered separately. 

The results showed that an alteration in the support stiffness can have a marked effect 

on the resonant frequency of the plate. Using the stiffness values obtained for the 

springs in the model yielded results which, when compared to the modal and FEA 

results, underestimated the recorded values of resonance frequency. However, the 

method was not intended to provide the exact numerical answer, merely a general :. n 

baseline frequency for use in calculations. The apparent underestimation need not be a 

problem, thereby building in a factor of safety as far as design calculations are In 

concerned. 
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The major weakness in the method outlined was that it only takes the first mode of 

vibration into consideration, whereas in reality there will be more than one mode. 

However, the first mode of vibration was generally the worst case, providing the largest 

amplitude oscillations and stresses on the plate. Further adaptation of the method could 

yield further frequencies if the assumed plate mode shapes were altered. The method 

could also be modified to take more conventional support conditions into consideration 

at one end of the plate, leaving the other end supported on the spring. This would 

further mimic actual bridge structures, many of which are not supported by elastomeric 

pads at each end. The method could also be modified to take rotational and transverse 

restraint into consideration. Increasing the complexity of the model, and therefore 

calculations, may result in a more accurate answer. 

Determining the modal parameters of the plate using the impact hammer test provides 

the first indication of the effect of variable support conditions on the plate response. 

Figures 3.3 1 to 3.35 showed a gradual alteration of spacing between frequency peaks as 

the support stiffness increases. The spacing became more regular over the frequency 

range shown, with some frequencies at the higher end of the range in spring 5 

configuration, disappearing from the graph altogether. This was shown in the data 

presented in Table 3.9, where the final two columns contained no data relating to 

specific mode shapes. 

The forced vibration testing results shown in Figure 3.37 indicated that an increase in 

support stiffness affected the dissipation of each vibration as it traversed the plate. Each 

point on the graphs indicated the plate's response at the given accelerometer location. 

Each graph for the individual input points for the forced vibration show the same trends, 
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with differences between the values depending on input location ranging from -25 to 

+13 %. However, as the frequency was altered to become the natural frequency for the 

plate in each arrangement, the measurement is effectively reset with the new frequency 

resulting in a new base reading being set. This made it impossible to compare sets of 

data obtained for each mode-shape recorded as the frequencies changed from set-up to 

set-up. Therefore, the ratio of output response to input excitation was recorded and used 

as the diagnostic tool, whether that is in terms of acceleration, velocity or displacement. 

The purpose of deliberately inputting the natural frequencies as a forced vibration 

spectrum for the plate was to find which mode shapes were most affected by the 

prescribed changes in support stiffness. What became apparent was that the bending 

modes were affected in a more recognisable way. 

The data in Figures 33.38 to 3.44 were those obtained for the first resonance frequency at 

each excitation location for each spring stiffness. The figures indicated that as the 

stiffness increased, the acceleration, velocity and displacement level recorded change at 

the centre point of the plate. However, the velocity plot did not follow the expected 

pattern as values for springs 2 and 3 are considered to be in the wrong order. The values 

obtained for spring 3 in Figure 3 ). 41 would appear to be erroneous, removing (or indeed 

negating) velocity as a means of identification for bearing stiffness. Acceleration and zn 

displacement plots shown in Figures 3.38 to 3.40 and 3.42 to 3.44 indicated that either 

would have been an appropriate method of detection of change in support stiffness. 

What was interesting from these plots was the apparent effect of forcing the vibration in 
Cý 

at the plate edges compared to at the mid-span. In fact, the order in which the springs tl 

occurred was reversed in this case, with one point of interest being the apparent location 
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where each spring exhibited the exact same response, located between points 7 and 14 

and points 14 and 17. The results suggested that as the springs became stiffer (springs 4 

and 5) the support conditions tended towards being simply supported. This was 

confirmed by the values of resonant frequency shown in Table 3.8. 

FEA results indicated that all possible mode shapes have not been detected by the 

modal analysis method. However, the first three modes were the same, and were 

identical mode shapes to those in the modal analysis, shown in Figures 3 ). 48 to ' ). 52. The 

frequency values obtained and presented in Table 3.9 are lower than the experimental 

values obtained, ranging between 20 % to 30 % from spring 1 to spring 5. This was not 

considered to be of great significance, as it was the mode shapes and method of 

detection rather than the absolute values of frequency that are being considered here. 

A parametric study, in which the values of Young's modulus, density and Poisson's zn 

ratio were reduced by half of their original value, indicated that a change in density 

would significantly alter the frequency values obtained, for reference: 

Of 
=-9%, 

af 
=+14%, 

af 
=+77%. aE ap av 

Initially, data were obtained for strains, acceleration, velocity and displacement at node 

point 18, shown in Figures 3.53 to 3.56. Analysis of these data allowed the selection of 

displacement as the method of detection for a change in support stiffness. The strain 

values in Figure 3.62 and 3.63 ), and therefore stresses, in the plate at the node points did Z: ' 

not provide a clear pattern with which to determine overall response of the plate. In each 

case, in terms of bending strains in the x, y and xy directions, maximum and minimum 
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principal bending strain (o-, and c 3)1 the maximum bending strain, and the equivalent 

bending strain for node point 18 were notably the same values for each spring 

configuration. The acceleration response of the node points was unclear and although a 

pattern did exist, it was problematic to separate the information within Figure 3.61. The 

displacement values were shown for the vertical and rotational directions. In this case, 

as the point of interest was the effect of support stiffness, greater importance was placed 

upon the vertical response as although rotations will occur, bearings are designed to :m 

allow a certain amount of rotation. What the response from the FEA showed was the 

rotations about the x-axis changed whereas those about the y-axis did not. This would 

tend to infer that the transverse stiffness of a support can affect the response. This could 

provide further scope for investigation at a later date. 

Displacement data shown in Figures 3.57 to 3.61 showed how the variation in support 

stiffness altered the recorded displacement and wave propagation across the plate. As 

would be expected, the stiffest support (spring 5), produces the smallest displacement 

values and the least stiff (spring 1), resulted in the largest displacements at each 

location. Comparing results obtained from both methods, Figures 3.65 and 3.66, 

indicated that the FEA underestimated the resonant frequencies obtained for each 

arrangement, but over-estimated the displacements at the mid-span. 

One minor reason for the difference in values obtained was the geometric properties 

used in the FEA analysis may not be accurate, especially as the plate thickness varied 

over its entire area. This variation in thickness means that certain areas will be less 

prone to oscillate than others, illustrated schematically in Figure 3.66, and also referred 

to in FEA of the plate with varying thickness (see Table 3.9). As the variability arose tý 
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from normal manufacturing tolerances on thickness during extrusion processes, this was 

unlikely to alter E, v or p. There may be minute variations in E, v or p due to thermal or 

manufacturing effects. Referring back to Figure 3.64, it was apparent how sensitive the 

model was to changes in these parameters. The only way of accurately modelling the 

plate is to ascribe a different thickness to several sections of the plate to match the 

ultrasonic thickness measurements, as attempted in Table 3.9. In terms of practicality, 

this is not always possible, and an assumption of uniform thickness over the whole plate 

seemed reasonable in this case. 

One other source of error could be the support conditions. In FEA, the support 

conditions were idealised, whereas in experimental modal analysis, defects in materials 

can affect the overall response, but these were dwarfed by differences in support 

restraint. The major difference between the methods was that in the modal analysis, 

springs were placed on either side of the plate. In the FEA however, the plate was only 

supported on the bottom surface. The FEA also assumed the springs were linear in their 

behaviour. It should also be noted that the springs are effectively acting as a point 

support with varying degrees of stiffness in the FEA, whereas in the modal analysis, the 

springs support an area equivalent to their wire diameter over their circumference. 

Although a method of highlighting the effects of support stiffness has been developed, 

several issues relating to the analysis should be noted. NDT is not a panacea, but simply 

a tool used in conjunction with more traditional visual inspection methods and must be 

corroborated. In NDT, the main principal, in terms of probability of detection, should be 

to determine the biggest defect that may be missed, not the smallest detectable as is 4: 1 

often the case. 
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As the method is based on small-scale model testing, the difficulty with scale effects Z: ' 

when applying the method to a full-scale structure can be problematic. The 

simplification of a plate model in this case when related to a bridge structure does not 

take into consideration the more complex geometries and composition of constituent 

parts of a bridge structure. 

In addition to the scale effects, the material properties can also present a problem in 

large scale structures. Bridge structures are often in a poor state of repair, and as such, 

contain numerous defects ranging from hairline cracks to reinforcement corrosion or 

running surface degradation. All of these defects will affect the response of the 

structure, making it problematic to detect the alteration in the desired parameter. For 

example, has the method detected the change in response due to bearing stiffness, or has 

the structure moved clear of the bearings and is resting on the superstructure? This 

example highlights the requirement for visual inspection in conjunction with any 

proposed NDT method. 

178 



3.6 Conclusions 

* The modified Euler-Bernoulli method for plate structures provides a simple 

method to determine the fundamental resonant frequency when support 

conditions are variable at either end of the plate. 

9 Alteration of support stiffness in the model can have a marked effect on the 

resonant frequency of the plate (approx. 23 % between spring I and 5). 

* The proposed method underestimated the exact resonant frequency value by 

almost 13 %. This difference is due to idealised conditions assumed for the 

analytical models, compared to the actual conditions for modal testing. 

* Improvement of the method is possible if consideration is given to rotational and 

translational restraint. 

* The method only produced the first resonant frequency, but could be extended to 

higher order modes with application of higher order polynomial assumed mode 

shape functions in the general equation. 

* Simple modal analysis testing protocols, such as the single input-multiple output 

test used herein, were adequate for routine inspection purposes. 

* Modal analysis allowed the effect of stiffness to be visualised through waterfall 

plots of FRFs. 
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* Forced vibration testina indicated that bending modes were of more use for zn 

detection of the effect of alteration in bearing support stiffness. Torsional modes 

provide no real discernable pattern in this case, but conceivably with different 

measurement locations, damage could be identified in these modes. 

* Identification of the mode shapes was essential if accelerometer locations are not 

to coincide with nodal points. Finite element analyses may offer some useful 

guidance, albeit at some cost (both direct and time-based), as to the mode shapes zn 

likely in a deck slab. 

e Considering individual resonant frequency values was not considered to be a 

viable option, rather the mode shapes relating to each frequency which can be 

matched were of significance. 

9 Excitation data relating to a non-resonant frequency did not provide any insight 

into the effects of support stiffness, although data presented from modal analysis zn 

testing showed the effect of approaching or receding from a resonant frequency 

in the higher spring stiffnesses. 

e The baseline frequency used in any full-scale condition assessment should be 

chosen to avoid proximity to a natural frequency of the bridge deck. 

0 The structural support conditions, with reference to their stiffness in particular, 

were effective in influencing the FRF measured on a model bridge deck. 
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Continual monitoring over time would be required if this method were to have 

any basis as a condition monitoring, or degradation assessment, tool. 

The FRF may be used as an accurate general indication of the overall state of a Z:, 

bridge deck's stiffness. Support changes affected wave propagation across the 

model deck slab. 

0 Displacement and acceleration values in the vertical direction provided accurate 

information as to the response of the plate when subjected to forced vibration 

with variable support stiffness. 

* Velocity response was not a viable diagnostic tool in this case. Integration will 

flip the amplitudes of vibration from acceleration, to velocity, then again to 

displacement. In this set of results, this integration appeared to affect the 

velocity response. 

Relative displacements at the mid-span due to loading at plate edges were higher 

than those subjected to loading at the centre nodes. 

Strain values provided no indication of the effect of support stiffness on wave 

propagation or dynamic response. 

9 The plate response and propagation of waves was dependent on the location of 

excitation. 
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Figure 3.1 Euler-Bernoulli beam deflection values due to forcing function at 
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Figure 3.2 Euler-Bernoulli beam deflection values due to forcing function at 
0.1 s time step intervals 
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Figure 3.3 PMMA sample in four point bending test configuration 
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Figure 3.4 PMMA cyclical tests for E value determination. Five loading and 
unloading cycles are shown, at a loading rate of 2 mm per minute 
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Figure 3.6 Thickness measurements on PMMA plate 
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Figure 3.7 Springs used in experimental analysis and holders. 
Each spring is nominally 1m in free length 
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Figure 3.8 Centreline displacement versus rotation curve for PMMA plate. 
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Figure 3.9 Load - displacement curve for spring 1. 
Loading rate of 2 mm per minute, all tests performed at 200C. 

Figure 3.10 PMMA plate in freely suspended configuration. 
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Figure 3.11 Guitar tuners for levelling PMMA plate in freely suspended 
configuration. 

Figure 3.12 PMMA plate in fully fixed arrangement. 
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Figure 3.13 Simply supported configuration. 

Figure 3.14 Spring support configuration. 
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Figure 3.15 PMMA plate with dimensions, grid and point locations numbered 
(all dimensions in mm) 
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Figure 3.16 PULSE FFT analyser and laptop computer 
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--.. EMT 

Slot for mounting 
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Sensitivity: 10 MV / MS-2; Measuring range: 700 MS-2 ; Frequency range: 0.3 -8 kHz ± 
10 %; Bias voltage: 13 V± IV; Inherent noise: < 35 gV; Weight: 4.8 g; Temperature 

range: -54'C to 100'C. 

Figure 3.19 Accelerometer type 4508-B. Arrow indicates direction of 
measurement 
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Figure 3.20 Exploded view of ThetaShear accelerometer configuration 
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Figure 3.21 Impact hammer Type 2301-10 showing typical dimensions. 
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Figure 3.22 Schematic diagram of impact hammer apparatus configuration. 
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Figure 3.23 Excitation frequency range of impact hammer tips 
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The mass shaker is an electromagnetic shaker, and essentially works in the same way as 
a speaker. A coil of wire is wrapped around a piece of metal, and an electrical current 
passed through the wire creates a magnetic field around the coil, magnetizing the metal 
it is wrapped around. The field acts just like the magnetic field around a permanent 
magnet: It has a polar orientation, a "north" end and a "south" end, and it is attracted to 
iron objects. Unlike a permanent magnet, in an electromagnet you can alter the 
orientation of the poles. If the flow of the current were reversed, the north and south 
ends of the electromagnet switch, hence the oscillatory movement of the mass shaker. 

Figure 3.24 Mass shaker attached to plate with beeswax at excitation point 14 
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Figure 3.25 FEA model geometry and mesh refinement 
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Figure 3.26 Effect of stiffness at VIL on resonance frequency due to 10 N loading 
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Figure 3.27 Effect of stiffness at VL on resonance frequency due to 50 N loading. 

199 



Frequency / Hz 

Frequency / Hz 

Frequency Hz 

Accelerometer point 1 (250,200) 

Accelerometer point 12 (700,300) 

Frequency / Hz 

Accelerometer point 25 (1250,700) 

Longitudinal mode shapes Transverse mode shapes 

Figure 3.28 Mode shapes in free support condition 
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Figure 3.29 Mode shapes in simply supported condition 
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Figure 3.30 Mode shapes in fully fixed condition 
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Figure 3.31 Mode shapes in spring support condition I 

203 



Frequency / Hz Frequency / Hz 

Accelerometer point 1 (250,200) 

Frequency / Hz Frequency / Hz 

Accelerometer point 12 (700,300) 

Frequency / Hz Frequency / Hz 

Accelerometer point 25 (1250,700) 

Longitudinal mode shapes Transverse mode shapes 

Figure 3.32 Mode shapes in spring support condition 2 
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Figure 3.33 Mode shapes in spring support condition 3 
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Figure 3.34 Mode shapes in spring support condition 4 
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Figure 3.35 Mode shapes in spring support condition 5 
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Figure 3.37 Forced vibration response of springs for first mode shape 
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Figure 3.38 Acceleration response at mid-span - test 1 
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Figure 3.39 Acceleration response at mid-span - test 2 
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Figure 3.40 Acceleration response at mid-span - test 3 
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Figure 3.41 Velocity response at mid-span 
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Figure 3.42 Displacement response at mid-span - test I 

2.5 - 

2 

1.5 

0. 

0 

0.5 

0 

Figure 3.43 Displacement response at mid-span - test 2 
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Figure 3.44 Displacement response at mid-span - test 3 
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Figure 3.45 First three FEA mode shapes of plate model used in experimental 
analysis in freely supported condition. (Displacements exaggerated 
to 15 mm for clarity) 
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Figure 3.46 First three FEA mode shapes of plate model used in experimental 
analysis in simply supported condition. (Displacements exaggerated 
to 15 mm for clarity) 
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Figure 3.47 First three FEA mode shapes of plate model used in experimental 
analysis in fully fixed support condition. (Displacements exaggerated 
to 15 mm for clarity) 
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Figure 3.48 First three FEA mode shapes of plate model used in experimental 
analysis in spring support 1 configuration. (Displacements 
exaggerated to 15 mm for clarity) 
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Figure 3.49 First three FEA mode shapes of plate model used in experimental 
analysis in spring support 2 configuration. (Displacements 
exaggerated to 15 mm for clarity) 

218 



Primary bending mode 

(0,0,0) 

Primary torsional mode 

(0,0,0) 

w 

Second bending mode 

(0,0,0) 

Figure 3.50 First three FEA mode shapes of plate model used in experimental 
analysis in spring support 3 configuration. (Displacements 
exaggerated to 15 mm for clarity) 
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Figure 3.51 First three FEA mode shapes of plate model used in experimental 
analysis in spring support 4 configuration. (Displacements 
exaggerated to 15 mm for clarity) 
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Figure 3.52 First three FEA mode shapes of plate model used in experimental 
analysis in spring support 5 configuration. (Displacements 
exaggerated to 15 mm for clarity) 
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Figure 3.70 Van der Pol plot with AM equal to 0.1 times y 
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Table 3.1 Stiffness values for each individual spring diameter 

Test 1, k, 
Nmm-1 

Test 2, k, 
Nmm- I 

Test 3, k, 
Nmm -1 

k, in Nmm- 

at a= 10' 

ks in Nmm- 

at a= 200 

Spring 1 1.23) 1.22 1.21 1.11) 1.05 

Spring 2 2.4 33 2.46 2.44 2.21 1.99 

Spring 
-3) 5.55 5.66 5.71 5.09 4.92 

Spring 4 9.35 9.52 9.55 8.65 8.07 

Spring 5 15.6 15.6 15.7 14.9 12.1 

Table 3.2 Average stiffness values for springs 

Spring I Spring 2 Spring 3) Spring 4 Spring 5 

Average k, Nmm-1 1.22 2.44 5.64 9.47 15.62 

Table 3.3 Plate frequencies for variable support displacements (10 N load) 

Primary plate resonance frequency due to 10 N load (Hz) 

VO / mm 

VL / MM 

vo m 

MM 

0 -0.64 -1.06 -1.77 -4.10 -8.20 

0 3.790 33.721 3.677 3.6 033 33. 
-33 

77 3.029 

-0.64 33.7 21 3.654 3.6 12 3 ). 541 3.323 2.986 

-1.06 33.6 77 3.6 12 33.5 71 3.501 3.289 2.959 

-1.77 3.60' ) 3.5 41 3.501 
_3 3.433 4 33.2 

-3) 
0 2.913 

-4.10 33.3 77 1 33 2 
-3) 33.289 

-33.2 
3) 0 33.0 52 2.770 

-8.20 3.029 2.986 2.959 2.9133 2.770 2.542 

235 



Table 3.4 Plate frequencies for variable support displacements (50 N load) 

Primary plate resonance frequency due to 50 N load (Hz) 

VL / MM 

VL / rnfnýý 

0 
-31.20 -5.3 )0 -8.90 -20.5 -41.0 

0 3.790 3.461 3.268 2.975 2.281 1.591 

-3.20 '11.461 3.190 
-3.028 2.778 2.170 1.541 

-5.30 3.268 3.028 2.883 2.658 2.101 1.508 

-8.90 2.975 2.778 2.658 2.470 1.988 1.454 

-20.5 2.281 2.170 2.101 1.988 1.679 1.29-33 

-41.0 1.591 1.541 1.508 1.454 1.29-33 1.066 

Table 3.5 Displacement values relating to support stiffness values 

Spring stiffness, 
Nmm- I 

Force 
amplitude, 

N 

Corresponding 
displacement at 
VO or VL, mm 

Force 
amplitude, 

N 

Corresponding 
Displacement at 
VO or VL, MM 

Infinite -10 0 -50 0 

1.220 -10 -8.20 -50 -41.0 

2.442 -10 -4.10 -50 -20.5 

5.6 
-3) 

8 -10 -1.77 -50 -8.90 

9.475 -10 -1.06 -50 -5.30 

15.62 -10 -0.64 -50 --3.20 
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Table 3.6 Material and geometric properties of PMMA plate 

Material or 
geometric property 

Value 

Breadth, m 0.8 

Span, m 1.4 

Depth, m 0.01 

Density, kgm-' 1194 

Area in x-y plane, rn 2 0.008 

Second moment of area, m4 6.667xlO-8 

Young's modulus, GPa 33.15 

Table 3.7 Accelerometer and excitation point locations for modal analysis and 
FEA 

Accelerometer location 
(x, y)/ mm 

Excitation location 
(X, Y) / mm 

Point I Point 12 Point 25 Point 4 Point 7 Point 14 
- 

Point 17 Point 24 

x= 250 700 1250 x=250 450 700 950 1250 

y= 200 300 700 y= 600 600 600 600 600 
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CHAPTER 4 

Full-scale testing 

4.1 Introduction 

The data presented in this chapter relate to the highway bridge currently in use on the 

Al, specifically on the stretch of carriageway known as the Berwick-upon-Tweed 

bypass. This chapter presents details of the Principal Inspection Report (PIR), traffic 

count, vehicle speed, and axle weight data derived from in situ induction loops and 

weigh-in-motion (WIM) sensors, followed by data arising from the non-destructive 

testing of the bridge. 

The research presented aims to establish the information required to determine the 

effects of degradation in bearing condition on the bridge response thereby setting a 

baseline for subsequent condition monitoring. It draws upon the key findings of Chapter 

3 and illustrates the use of the recorded change in fundamental frequency for a range of 

support stiffnesses (fo = 0.09, f, = 0.35, and f2 = 0.6 Hz / Nmm-) presented in Section 

3.2.1.2. To assist the transition from small-scale model to full-scale field testing 

additional research to that presented in Chapter 2 is used. Research in the early 

1990S(4.1) indicated that structural damage can cause significant changes to resonant 

frequencies and modeshapes. This chapter highlights this method for the structure 

tested. The replacement of failed bearings is expensive and potentially disruptive, in 

both financial and engineering terms. Bearing failure can lead to damage to the 

superstructure; early identification of decay could save time and money. 
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The dynamic response of highway bridges to the applied random traffic excitation 

(42-44) 
arising from day-to-day loading has been widely researched . Investigations into 

structural health monitoring 
(4.5-4.7) 

and damage detection (4.8-4.11) 
are also covered by 

existing research. The influence of bridge bearings upon the dynamic response of a 

bridge, in particular the effect of a gradual degradation of the bearing, has also been 

considered 
(4.12-4.14) 

The testing described herein relates to traffic count, speed, and weight (strictly 

speaking, mass) data obtained from the WIM sensors and the induction loops 

incorporated in the carriageway. The vibrations measured would be meaningless unless 

they could be related to the traffic causing them. The bridge owner's PIR is used for 

information relating to the bridge's general condition: similarly, little may be 

meaningfully said about the measured vibrations in the absence of any assessment of the 

bridge's structural integrity from a broader engineering perspective. 

The set of NDT results are intended to represent a baseline state for condition 

monitoring through further regular measurements. Although the bridge has been in use 

for over 20 years (it was officially opened in 1982), the bearings should be functioning 

as intended. The accuracy of the results for this testing is reliant upon the correct 

parameter identification; modal data included in the identification analysis can affect the 

accuracy of results. Problems with identification of modal parameters are discussed in 

Section 4.6.3. 

To confirm the concept highlighted in Chapter 3, a full-scale dynamic modal response 

test of an actual highway bridge currently in use was performed. After meeting at the 
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Scottish Roads, Highways and Traffic Management conference (Ingliston 2004), the 

Department of Transport, Highways Agency, Napier University and a private company 

called Applied Traffic, a suitable bridge to test was made available to this ad hoc 

consortium. 

4.2 Bridge location and type 

The main theme of the research is to determine the dynamic response of the structure, 

and the effect of bearing degradation using modal analysis, which is a tool familiar to 

most engineers. 

The bridge tested was a two-lane highway bridge and is located on the Al (Berwick- Z: ) z:, 

upon-Tweed bypass) over the River Tweed (Ordnance Survey grid ref. NT 974 517). 

The bridge was opened in 1982 and runs approximately North-South over the River 

Tweed. The bridge was designed to BS 5400 and comprises twin plate girders, with a 

smaller central beam and K-shaped bracing sections at 6.00 m centres across the length 

of the structure (4.15) 
.A general view of the bridge is shown in Figure 4.1. The 13.5 m 

wide deck is a reinforced concrete slab with edge cantilevers. The bridge was designed 

to carry 45 units of HB loading and consists of four spans; 37 in, 56 in, 53 in and 49 in. 

The combinations of HA and HB loading are shown in Figure 4.2, along with the axle 

spacing for the HB loading vehicle. At the South abutment, the expansion joint is a 

Waboflex ®R moulded rubber segmental joint system (see Figure 4.3) and the bearing is a 

Freyssinet, W guided sliding pot bearing (see call out from Figure 4.4). Pot bearings are 

designed to allow a relative rotation of up to 1150, whilst at the same time providing the 

same effect as a point-contact rocker bearing as the centre of pressure does not vary by 

more than 4% in any axis or direction. The bearings are designed to allow the structure 
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to translate in the longitudinal direction due to a low coefficient of friction PTFE 

surface (ýtkinetic "ýý 0.04 to 0.10), and are restricted from movement in the transverse 

direction by two steel guide-rails. The bearings are located beneath a stiffening plate 

beam which connects the span beams, which are 7 in apart from centre to centre, 31.5 in 

either side of the centre line of the running surface. The bearings at the south abutment 

are 4 in apart, two metres either side of the centreline. The bearings located at the top of 

the three piers are steel rocker bearings, with the bridge fixed in place at the north 

abutment. The bridge slopes from South to North with a level change of approximately 

I in, and leads to a five arm roundabout located approximately 200 in from the South 

bank of the River Tweed. The plate girders are 2205 x 50 mm (web), 1000 x 50 (bottom 

flange), 600 x 50 mm (top flange), changing to 1000 x 50 mm over the supports. The 

stringer beam over the total length of the bridge is a 553 x 210 x 101 kg/m universal 

beam section. The stringer beam is bolted to several steel angle sections which act as 

transverse stiffeners, and produce a K-section shown in Figure 4.4. 

The expansion joint at the south abutment is located directly above the bearings 

separating the head wall from the bridge superstructure. The expansion joint is 

considered to be faulty as it protrudes from the running surface of the bridge, when 

installation requires that the joint be raised no more than ±5 mm from the running 

surface. As a result, impact loading from vehicles striking the expansion joint is 

imparted onto the structure. The installation of expansion joints greatly influences their 

ability to perform as intended (4.16) 
. 

In research on expansion joints, the effect of an 

impact loading, and hence the DAF, are shown to be important factors to consider when 

(4.17) desiOrnino the expansion joint In certain cases, when the load factor is also added, z::, zD 

the DAF can be over two. This indicates that the fault with this expansion joint is 
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potentially significant. Research in the 1970s outlined the major factors influencing 

dynamic loading caused by vehicle suspensions (4.18) 

In addition to the steel superstructure, an access cage (see Figure 4.5) and walkway are 

located underneath the bridge running surface for maintenance purposes. The steel 

walkway runs the entire length of the bridge and is bolted to the steel K-sections. 

4.3 Test arrangement 

The main theme of the research was to use modal analysis to determine the bridge's 

dynamic response and the effect of bearing degradation thereon. Vibration data were 

collected in 15 minute runs, for a four hour period on Thursday 19th May 2005 using 

accelerometers connected to spectrum analysis equipment. The data were analysed by 

fast Fourier transform (FFT) methods. 

Following initial investigations of site layout and facilities, the following testing 

methodology was derived for the set of tests recorded on the bridge. Access to the 

bridge soffit adjacent to the head wall at the south abutment was by a four metre 

retractable ladder attached to the access cage through a removable section in the cage 

floor (Figure 4.5). Accelerometers were attached to the soffit using a small, plastic 

mounting clip (see Figure 3.19 for detailed drawing) fixed in place using a two-part 

epoxy glue (Figure 4.6). The small plastic clips will remain in situ to ensure that 

subsequent measurements of bridge response will be recorded in exactly the same 

positions, allowing direct comparison of results. 
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Each of the accelerometers was connected to the analyser by a 30 rn long cable, Z: I 

type AO 0463-K. The cables' cores are 2 mm in diameter and have a capacitance of 

100 pFm-1. The cable insulator is polyethylene, the cable coating is polyvinylchloride 

and has a working temperature range of -20'C to 700C. 

The accelerometers used for the testing were the same 4508-B type accelerometers used 

in the small-scale model testing. This type of transducer is robust enough to undertake 

this testing as it is considered a general use transducer. The analyser used in the 

laboratory testing was used to record and analyse the data from the bridge testing (see 

Figure 4.7) 

For these tests there are no input values to record (traffic itself forming the excitation as 

opposed to a hammer) unlike in the laboratory tests. As a result, FRFs constructed are 

related to data obtained from traffic WIM sensors for Type 56 HGVs and not from force 

transducer measurements as loading from larger vehicles is considered more damaging. 

The damage caused by vehicle axle loads is a fourth power relationship as shown in Eq. 

4.1, so the larger the axle load, the greater the damage (4.19) 

DF = (Gross vehicle mass)' Eq. 4.1 

In the laboratory testing, a measurement was taken when the impact hammer was 

triggered at a given force. For the bridge testing, as there is no input force transducer, 4: ) 

data were recorded over a four hour period using a data storage function in the analyser. zn 
The length of time recordings can be taken over is variable. A period of 15 mins was Z:, 

chosen to reduce the file size of the recordings, therefore reducing the chance of any 
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data being lost. A typical 15 min recording of an accelerometer signal produced a 30 

MByte file with as much file space again for the duplicate, back-up, copy. 

Once these data were recorded, they can be played back in the PULSE software and 

analysed accordingly. Specific events captured in a recording can be analysed in greater 

detail by zooming in and highlighting any section of the recording using signal analysis 

software. The highlighted section of data can then be analysed, thereby obtaining the 

autospectra and related graphs for that time period. 

4.3.1 Location of accelerometers 

To investigate various sections of the bridge structure and the overall structural 

response due to vehicle movements, five tests were performed. The initial test which 

was only a matter of seconds in length was taken to indicate the background noise level 

on the bridge. This test was performed with the accelerometers in the arrangement used 

for the first set of tests at the south abutment where the expansion joint and pot bearings 

are located. 

The first hour of testing was carried out with a line of four accelerometers located at the 

headwall of the bridge superstructure, with the accelerometers numbered from left to 

right looking in a southward direction. Two accelerometers were located on either side 

of the steel stringer beam which runs the entire length of the structure. Each 

accelerometer was located so as to be as close as possible to the line of the wheel tracks 

of the vehicles traversing the running surface. The fifth accelerometer was located on 

the bearing plinth beneath the northbound lane (see Figure 4.8). The exact locations are Z7, 

shown in Figure 4.9. 
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The third set of tests comprises a set-up similar to that of tests I and 2. The four 

accelerometers were moved from the headwall to the first intermediate K-shaped 

bracing section, 6 in from the headwall. Four 15 min tests were then recorded as before. 

Test 4 simply saw the accelerometers moved to the next K-shaped bracing sections 

moving out across the span from the South. Four 15 min scans were recorded for each 

of Tests 2 to 4. Figure 4.4 showed the locations of accelerometers for these tests. The 

fifth accelerometer was not used in test 33 or 4 as there is no bearing located under the K- 

shaped bracing sections. 

Test 5 used nine accelerometers to trace vehicle movement along the bridge, both 

southbound and northbound. The nine accelerometers were sited 200 mm from the 

centreline of the bridge, underneath the southbound carriageway. Accelerometer I was 

on the headwall and Accelerometers 2 to 9 were on the first to eighth K-shaped bracing 

sections counting from the South abutment; Accelerometer 7 was sited over the first set 

of piers housing a set of rocker bearings. Each line shown on Figure 4.10 indicates the 

position of an accelerometer (one per K-shaped bracing section) for this test 

arrangement. To allow each cable used to be a reasonable length, and not the full 30 m, 

the analyser was moved from its initial location to accelerometer location 5 which was 

equidistant from accelerometers I and 9 (see Figure 4.11). 

All tests were completed on the same day, and the temperature ranged from 9"C to 

16'C. This may have a bearing on the results, although recent research on concrete slabs 

indicates that whilst frequencies have a negative correlation with temperature, the most 

influential parameter is Young"s modulus 
(4.20) 

which, over this TC temperature range, Z: ' 

exhibits little change. 
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4.4 WIM Classifier 

Traffic data for vehicles crossing the bridge were obtained from Applied Traffic who, in 

conjunction with the Highways Agency, monitor the bridge traffic with WIM sensors. 

These are located on the South side of the bridge, with one sensor in each lane. The Z= 

sensor consists of two separate sections: the first comprising two piezoelectric devices 

set into the carriageway surface. These act as an on/off switch, counting the number of 

axles, axle loads, axle spacing and vehicle speed. The second section comprises an 

induction loop located between the two piezoelectric devices. The induction loop 

detects the overall length of the vehicle. The general instrumentation arrangement is 

shown in Figure 4.12, and the datalogger is shown in Figure 4.13. Speed, classification 

and count accuracy has been repeatedly checked and verified in association with the 

DTLR including the use of Home Office approved speed monitoring equipment to 

verify speed accuracy to within ±I mph. Compliance with the accepted DfF and 

Highways Agency standards are met by calibration tests. Three vehicles comprising a5 

or 6 axle articulated vehicle, a -3) axle rigid vehicle and a2 axle rigid vehicle are loaded 

to give a spread of axle weights ranging from I torme through to 10 tonnes. Ten set up zn 4n 

passes are used to produce the calibration factor and five further passes are used to 

confirm the system accuracy. Under COST 32-3) European WIM specification 

recommendations, the sensor should meet the accuracy of Class B (10) which specifies 

GVW accuracy of ± 10 % for 95 % confidence. 

The data were collected, added to a database, and each traffic event assigned a reference 

number. In addition to axle loads and speeds, the data included each vehicle 

classification number (see Table 4.1), the lane in which each vehicle was travelling, 

their speeds, gross vehicle weights and axle weights, and the time at which each vehicle 
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passed the sensors. Histograms and statistics were produced for: distributions of 

variables, determination of their means, variances, standard deviations and quartile 

points. In recent years, a system utilising this type of sensor has been developed for use 

in maintenance regimes for Area 14 (4.21) 

4.4.1 WIM theory 

To produce the various types of data, the sensor uses two simple techniques using 

piezoelectric sensors and an inductive loop. A piezoelectric crystal is a naturally 

occurring material, where certain crystals, in this case quartz, emit an electrical charge 

when subjected to mechanical loading. This electrical charge can then be converted into 

a voltage, which is then related directly to a force or pressure. 

The induction loop, an electric conductor, is placed into the road surface. It is activated 

when the large metal mass of the vehicle passes overhead, completing the circuit. The z: 1 

system detects the induced current as the vehicle passes over, with different vehicle 

types producing different currents for a constant inductance in the loop. It is often 

difficult to detect smaller vehicles with induction loops, but the sensitivity can be 

increased to compensate. This can often lead to double counting of vehicles, or vehicles 

not in the same lane being detected and counted (refer to p. 243 for error bounds). 

The WIM senor data were intended to be used to determine which vibrations detected 

by the FFT analyser are related to specific vehicle types and axle loads. This was to be 

achieved by matching the time signatures on the set of readings taken from both the 

WIM and the FFT analyser. Any significant events were then to be analysed in greater 

detail. 
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4.5 Results 

4.5.1 Principal inspection report 

The PIR, arising from inspections performed in November 2001 and February 2002 by 

Northumberland County Council, was obtained and defects at various locations on the 

bridge were noted. In July 2003, A-one Integrated Highway Services (a 50: 50 joint 

venture between Halcrow Group Limited and Colas Limited) assumed the role of agent 

from Northumberland County Council and now maintain the bridge as Managing Agent 

Contractor for Highways Agency Area 14. Figure 4.14 shows the countrywide 

separation of areas and the main routes within Area 14. 

4.5.2 Traffic survey 

The traffic data obtained are to be related to dynamic loading caused by shockwaves 

induced in the bridge by vehicles striking the expansion joint. The data obtained from 

the WIM sensor located on the south side of the bridge for one typical day has been 

arranged into 21 separate vehicle classifications shown in Table 4.1. The day chosen in 

this case is a Wednesday as this is considered a "neutral" day in terms of traffic 

movements. A "neutral" day is one where there are no extreme events on the road 

network. The weekend, Mondays and Fridays are considered "non-neutral" due to 

unusual traffic patterns. Mondays and Fridays see the network more heavily loaded due 

to people attending work and HGVs delivering goods at the start and end of the week. 

Each vehicle classification was divided into lane number, producing two data sets for 

each vehicle type. Tables 4.2 and 4.3 show data obtained for vehicle speeds in the 

northbound and southbound lanes respectively. Tables 4.4 and 4.5 show data obtained 
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for overall gross vehicle weight (strictly a mass in kg) in both northbound and 

southbound directions for all recorded vehicles. 

Tables 4.6 to 4.11 present data obtained for individual axle loads for all vehicle types 

recorded in both directions across the bridge. Tables 4.6 and 4.7 present the maximum 

and minimum axle weights recorded for each vehicle type in both directions. Tables 4.8 

and 4.9 show data relating to average axle weights recorded, and Tables 4.10 and 4.11 

present the standard deviations obtained for each vehicle type in both directions. 

Note that in these data tables, vehicle types 5N, 6N, 7N, and 8N are not shown. This is 

because no vehicles of this type were recorded on the day of testing. 

From the data obtained, histograms showing the spread of gross vehicle weight, axle 

weight and velocity were produced and are shown as Figures 4.15 to 4.30. This data 

was then used to determine the values of vehicle momentum, kinetic energy and vehicle 

damage factors. The results of these are shown as Figures 4.31 to 4.36. 

4.5.3 NDT 

Figure 4.37 shows acceleration versus time traces for each of Accelerometers I to 5 

inclusive which were used to represent the background noise level for the subsequent 

testing. Figure 4.38 shows the FFT of these data, presenting the frequency spectra for 

background noise measurements. Figure 4.39 shows a zoomed in section over the first z: l 

50 Hz. 
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Figures 4.40 to 4.43) show the time traces and subsequent FFT of data for three time 

sections recorded during the first hour of testing at test location 2. 

Figures 4.44 to 4.47 show similar data for hour two at test location 33. Figures 4.48 to 

4.51 show the data for hour three at test location 4. 

Figures 4.52 to 4.57 show similar data relating to test 5, where nine accelerometers were 

located along the centreline of the bridge. 

Figures 4.58 to 4.6-3) show the inertance, admittance and dynamic stiffness obtained for 

a 92 kN HGV for data obtained in Figures 4.40 and 4.42. 

4.6 Discussion 

4.6.1 Principal inspection report 

The PIR written between December 2001 and January 2002 highlighted several points 

of interest regarding the condition of the bridge. The previous PIR from December 1996 

indicated that cracks were evident in certain areas of the substructure and bridge deck. 

Steelwork in the superstructure was showing signs of corrosion. Since the previous PIR 

the parapets were replaced and the steel superstructure painted. 

The PIR highlighted cracking and spalling on the concrete piers and abutments. Several 

cracks propagating from the bearing plinths at the South, central and North piers were 

evident: many of these were not noted in the December 1996 PIR. The South abutment 

has several cracks on both internal and external walls. The abutment is hollow and 

houses a corroded wastewater pipe, further contributing to what is a naturally humid, 
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saline environment (the bridge lies 3 km from the coast). The external wall of the South 

abutment has some spalling with exposed reinforcement on the East face of the 

abutment. 

The bearings at the South abutment were repainted and are considered to be in 

satisfactory condition although the East bearing plinth showed signs of spalling. The 

south, central and north pier bearings showed evidence of seepage of lubricant from the 

bearing housing (see Figure 4.64). This was due to their being fully packed with grease 

and temperature effects subsequently driving some of the lubricant out the bearing 

housing at locations where the lack of a sealant permits. The central and north pier 

bearing plinths both showed signs of cracking. The north abutment was considered to be 

satisfactory. The steel superstructure was considered to be in a satisfactory condition, 

with only minor corrosion at the North abutment due to localised water seepage. The 

concrete slab has numerous hairline cracks with three cracks showing evidence of salt 

staining. Several sections of the concrete slab showed evidence of water seepage 

possibly due to inadequate waterproofing, this has since been remedied. Improvements 

in the condition and layout of the south approach to the bridge were made in early 2006. 

This scheme involved the resurfacing and reconstruction of the existing carriageway 

from Scremerston roundabout to the River Tweed Bridge a distance of 3.5 km (2.2 

miles). The works began in February 2006 and were completed in March 2006. Further 

remediation of the structure, including the resurfacing of the existing carriageway 

between the River Tweed Bridge and the A6105, utilising crack and seat treatment to 

existing lean mix concrete to remove faults in the structure is to be completed. This 

action is accompanied by replacement of the River Tweed Bridge waterproofing, 

surface materials and replacement deck drainage system. The works are expected to 

253 



start in August 2006 and be completed in December 2006 at an estimated cost of 

f2.5m (4.22) 
. 

Another point of interest is that the bridge recently failed the HA and HB 

loading tests with respect to displacement criteria. This failure does not necessarily 

mean the structure is unsafe, but does indicate that all members are working close to Z: ' 

capacity. This could have an impact on the serviceability state of the structure more than 

the ultimate limit state, producing cracking across the concrete deck sections, which will zn 

in turn lead to a reduction in structural stiffness. With this in mind, identification of 

degradation in performance of bearings then becomes more problematic to determine 

accurately. 

4.6.2 Traffic survey 

Table 2 shows that the average speed of most vehicle types crossing the bridge in the 

northbound direction is approximately 40 mph (65 kmh). Data presented in Figure 4.15 

and 4.16 show the spread of vehicle speeds in both lanes. These figures indicate that the 

vast majority of vehicles occur in the 35 to 50 mph range. The speed of vehicles is 

considered to be of interest for the larger vehicles, such as articulated lorries, as the 

dynamic loading imparted upon the bridge structure will be greater due to the larger 

vehicle mass. The momentum is given by Eq. 4.2 and the kinetic energy by Eq. 43. 

Typical values for a family saloon were 55252 kgms- I and 1.17 x 106 j, for a 44 tonne 

HGV were 1.62 x 106 kgms-1 and 29.98 x 106 J, and for the maximum overloaded 

vehicle recorded during testing (59.9 tonnes) were 2.3) x 106 kgms-1 and 45.6 x 106 j. 

Standard deviations of the data for vehicle speeds indicates that the larger vehicles have 

a much narrower range of speeds, again in part due to the large mass of vehicle, 

compared to smaller vehicles such as cars or vans. 
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p=mv Eq. 4.2 

KE =I mv E q. 4. 
2 

Figures 4.31 to 4.36 show the momentum, kinetic energy and damage factor results for 

all vehicles recorded during the period of monitoring. These figures are weighted due to 

the large number of cars occurring compared to the larger HGV types of vehicle which 

account for approximately 15 % of vehicles recorded. However, this small percentage of 

vehicles has a much more damaging effect on the performance of the bridge. This is 

shown in Figures 4.35 and 4.36 where only 10 % of vehicles in lane I and 5% of 

vehicles in lane 2 produce significant damage factors. This damage factor, combined 

with the larger vehicles increased momentum and kinetic energy, imparted onto the 

structure through the expansion joint could result in extreme remedial action, even 

complete replacement, being required. 

What is apparent from this data set is that the majority of HGVs are either overloaded or 

have the mass unevenly distributed over the axles. Table 4.1 indicates that of the 528 

overloads in both lanes combined, 370 are recorded for Type 56 vehicles. This can 

result in greater impacts on the faulty expansion joint. Figures 4.17 and 4.18 present 

data obtained for gross vehicle weight, noting the relatively small number of vehicles 

running at over 44 tonnes in either direction which is 3% in both directions. 

The distribution of axle weights is clearly shown in Figures 4.19 to 4.30, although the 

data shown in Figures 4.19,4.20,4.25 and 4.26 are heavily weighted to the lower end of t, z: I 

the axle weight distribution due to the higher volume of cars detected compared to 

HGVs. It should also be pointed out that most HGVs tend not to be overloaded on the 
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front two axles as these carry the loading from the vehicle cab and top section of trailer. 

The figures show that the most overloaded axles are more commonly the 3 rd and 4 th 

axles which tend to be located at the rear, or at least close to the rear, of the vehicle. 

This is case in both directions of travel. 

Only the data from these particular vehicles was of particular interest as the larger 

vehicles generate greater dynamic loading. Another interesting point from the data is 

that of the 528 combined overloads, '339 vehicles were recorded as weighing more than 

44 tonnes. The reason for the slight difference between numbers of vehicles overloaded 

and those weighing more than 44 tonnes is that the maximum load criteria is dependent 

on the axle spacing and vehicle suspension type as indicated by The Road Vehicles zn 
(4.27) (Construction and Use) Regulations 1986 

. Many modem vehicles now have load 

transfer bars which distribute loading evenly to each axle, reducing the likelihood of 

poor loading. However, the data presented in Figures 4.19 to 4.30 show a wide range of 

axle loads, although it should be noted that few are considered to be over the maximum 

axle weights permitted for each vehicle type. 

Investigations into dynamic responses of bridge structures to HGV loading (4.14) have 

attempted to develop methods for determining the response due to a given set of vehicle 

loading. The information shown indicates that the spread of vehicle loading is relatively 

restricted, with most standard deviations of axle loading being between one and three 

tonnes. It is also obvious that many of the vehicles travelling across the bridge are 

overloaded on certain axles due to poor load distribution, some axles carrying very little 

weight and others overloaded, and in many cases overloaded overall. zn 
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The maximum vehicle weight recorded for the data analysed was a Type 56 vehicle 

running with an overall gross weight of 59.9 tonnes. No vehicles crossed the bridge 

with an abnormal load escort during the monitoring period. One of the other main 

factors that affect the vibration signal is the type of vehicle suspension. Loading from 

air suspension is generally lower compared to steel suspension, in the order of 10 % less 

in certain cases (4.23). The number of wheels per axle is also considered, with twin wheels 

(4.24) considered to produce higher dynamic load coefficients 

There were no emergency services present within I kni of the bridge, nor were there any 

road traffic accidents during the monitoring period within 10 km of the bridge. No road 

works were underway within 10 kni of the bridge during the monitoring period. The 

presence of any of the aforementioned factors may affect the measured vehicle speed 

distributions in a number of ways: luckily, this did not appear to happen here. 

4.6.3 NDT 

Initial testing to establish background vibrations in the absence of traffic excitation was 

undertaken. Figure 4.37 shows the time domain plot for a sub-sampled 6s of recording. 

Figure 4.37 shows acceleration versus time traces for each of accelerometers I to 5 

inclusive which were used to represent the background noise level for the subsequent 

testing. As with all acceleration versus time plots (also known as time domain plots), 

Figure 4.37 was analysed by FFT methods which gave rise to Figure 438 which 

presents the autospectra (or frequency domain plots). The vibration levels recorded in 

Figure 4.338 were insignificant with the exception of those arising around 0.25 Hz. 

Following consultation with the accelerometer manufacturer, the peak may be ignored zn 

as it was safely assumed to be a spectral component produced by the accelerometer, and 
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thankfully not a resonant frequency of the bridge. Various factors such as wind induced 

movement of the cables, triboscopic effects induced by close proximity to metal piping 

and high capacity power cables within the structure, and errors inherent within the 

equipment are all considered possible reasons for the noise to occur. As the high-pass 

filter was set to 0.7 Hz in any case, the peak at 0.25 Hz cannot be a recorded frequency, 

and was therefore filtered and removed from the data in the time domain. 

Regardless of source of vibration the bridge's first three resonant frequencies rising 

from the fundamental frequency (fo) through to mode 3 (f2) were: I Hz < fo <2 Hz, 

3 Hz < f, <4 Hz, and 10 Hz < f2 <II Hz. The band attributed to each mode of 

vibration encompasses the frequency resolution, Af of 0.25 Hz for the system used, and 

allows for variability caused by thermal changes during the monitoring period. Values 

obtained for the resonance frequencies obtained are compared with values calculated by 

FEA and the modified Euler-Bernoulli method outlined in Chapter 3. These values are 

shown in Table 4.12 and show that the FEA and Rayleigh-Ritz method both provide 

close agreement for the first two resonance frequencies, but underestimate the actual 

frequency recorded for the third resonance by 5 Hz. 

To show the effects of traffic on the bridge's dynamic response, sample acceleration 

versus time plots from Test 2 (five accelerometers on the South abutment headwall) are 

provided in Figures 4.40 and 4.42. From left to right (722 s<t< 729 s), Figure 4.40 

shows vibrations from two three axle HGVs (724.5 s<t< 726 s) with a similar sized 

three axle HGV travelling in the opposite direction immediately afterwards, which is 

then followed by two larger HGVs (726 s<t< 727.5 s), then a slight gap to a further Z= 

three axle HGV (728 s<t< 728.5 s). Figure 4.42 is taken over a longer period of time, 
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approximately 20 s in total. Figure 4.42 highlights the effect of vehicles travelling in 

both directions, striking the expansion joint at either exactly the same instant or close to 

each other. Nine large HGVs pass within this time period, interspersed with five cars or 

smaller vans. 

The northbound vehicles were typified by sudden impact as they passed the expansion 

joint and were detected. They were then followed by a gradual decrease in measured 

acceleration as they moved out onto the span; increasing distance between vehicle and 

instrumentation resulted in attenuation of the signal. In this respect the plots may be 

regarded as influence lines for acceleration at a point for a rolling northbound load. FFT Z: ý 

analysis yielded the frequency domain plots shown in Figure 4.41 and 4.43) where the 

vibrations were most intense at the eastermnost extremity of the bridge deck (closest to 

the point of excitation). There then followed a gradual decay of the vibration's intensity 

(amplitude) as the signal propagated transversely across the deck at right angles to the 

direction of traffic. Also of note was the vibration signal in Accelerometer 5 which was 

attached to the bearing: the absence of vibration would indicate that the elastomeric 

bearings were working properly. These data, and the remaining data contained in 

Appendix 2, are offered as the baseline dynamic response of the bearings for future 

condition monitoring to assess long-term deterioration. 

Figures 4.44 to 4.47 are the time and frequency domain plots showing sampled data 

from Test 3. The equivalent plots for Test 4 are shown in Figures 4.48 to 4.51 were, in 

all practical senses, identical to those obtained from Test 3 but shifted 6.0 m North. Test 

and Test 4 involved the recording of vibrations at the first and second K-shaped 

bracing sections (Sections 2 and 3 respectively on Figure 4.10). These particular time 
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traces were taken over a longer period of time than those shown previously. The 

samples shown here typify the bridge's response to a multi-axle vehicle. The signal to 

noise ratio was lower by approximately 5% due to the effects of the vehicle-induced 

vibrations propagating across the carriageway's surface. This resulted in the vehicle Z:, 

run-up and run-off manifesting itself as a more classical amplification and decay curve 

on both sides of the central peak acceleration. This arose because the vehicle's 

vibrations were now being recorded 6.0 in (Section 2 on Figures 4.10) and 12.0 in 

(Section 3 on Figure 4.10) away from the expansion joint in Tests 3 and 4 respectively 

which lead to a lag time and less of a dynamic "thump" which was recorded directly 

below the expansion joint itself. 

The frequency domain plots (Figures 4.45,4.47,4.49 and 4.51) exhibiting the highest 

vibration amplitudes and peak accelerations were those closest to the centreline of the 

bridge deck. This was because there were several vehicles passing over the bridge in 

quick succession, as evidenced by 12 distinct events in Figure 4.45. The general trend, 

as the accelerometers were moved out onto the span was for individual traffic events to 

become less distinct as constructive and destructive interference patterns and transient 

vibrations combined to blur the clear rise-peak-fall event discernible directly beneath 

the expansion joint. 

Test 5 measured the movement of traffic over the bridge from the South abutment 

headwall, over the first pier (Section 7 on Figure 4.10) to Section 9. The first pier is 

topped off by a set of rocker bearings whose condition was also subject to assessment in 

both the PIR and through the use of this NDT as a baseline case for condition 

monitoring. Figures 4.52 to 4.57 are the time and frequency domain plots for Test 5. 
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Accelerometer 7 (Section 7 over the first pier and rocker bearings) indicated that at the 

lower end of the frequency spectrum, there was less movement than at positions on each 

side of the bearings. The author recommends re-recording these readings upon 

restoration of the correct grade and/or quantity of lubricant to the bearing, rather than 

use this anomalous condition as a representative base line for future monitoring. 

Accelerometers I to 9 show the passage of a northbound HGV over the bridge in Figure 

4.52. The detection time at each K-shaped bracing section was slightly faster than a 

typical HGV's average speed (V = 26 ms-1). The pulse exhibited rise-peak-decay 

behaviour with reduced movement over the pier and bearing. The similarity to the 

influence lines for deflection, shear force, or bending moment was intuitively apparent 

although impossible to derive from the measured accelerations alone. Influence lines of 

acceleration at each accelerometer location versus vehicle location (which corresponds 

to an accelerometer location) for the vehicle shown in Figure 4.52 are shown in Figure 

4.65. This indicates that acceleration levels increase as the vehicle approaches the 

supports, and decrease at midspan. 

Figure 4.54 shows two large 6 axle HGVs travelling in opposite directions, passing each 

other over accelerometer position number 5. Both vehicles are travelling at a similar 

velocity and are of a similar mass. Figure 4.56 shows the influence of vehicle platoons, 

taken over a longer period of time of 50 s, with over 30 vehicles detected within this 

period. 

Transforming the data from the time domain to the frequency domain (see Figures 4.53), 

4.55 and 4.57) indicates that vibration amplitudes recorded were much lower at the 
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bearing locations, accelerometer I at the south abutment and accelerometer 7 at the first 

pier housing the first set of rocker bearings. 

Combining the accelerations with recorded vehicle masses allows the input force from a 

vehicle to be applied and the accompanying frequency response function (FRF) derived. 

Vehicle classification 56 (articulated 3) and 3) was used along with the average speed 

('39 mph or 63 kmh) and average mass (43280 kg) from Tables 1,2 and 31 respectively. 

Multiplying the average vehicle mass by the average acceleration (2.13 MS-2) gave a 

force of approximately 92 kN. Using this force, FRFs of the inertance, admittance, and 

dynamic stiffness were derived for all recorded time sections. As the important section 

under consideration is at the south abutment, data relating to the hour recorded at this 

location is shown. Figures 4.58 to 4.63) show FRFs relating to data for the time sections 

recorded in Figures 4.41 and 4.43. The inertance shown in Figures 4.58 and 4.59 is the 

acceleration divided by the force causing this acceleration and it is a dynamic measure 

-2 (in ms N-1 units) of inertia, or the ease with which a body may be accelerated. Note the 

low inertance measured at Accelerometer 5 on the bearing at the south abutment 

headwall: the structure is effectively isolated as evidenced by the inertance indicating a 

body c. 100 times less easily accelerated than the more "lively" deck. 

The admittance, sometimes known as either mechanical admittance or mobility, shown 

in Figures 4.60 and 4.61 is the velocity divided by the force causing the bridge 

movements (not to be confused with the traffic speeds) and it is a dynamic measure (in 

ms-'N-lunits) of the ease with which a body may be moved at a certain velocity. 

The dynamic stiffness shown in Figures 4.62 and 4.63) Is the force divided by the zn 

displacement and it is a dynamic measure (in Nm-1 units) of the ease with which a body 
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may be deformed. In similar fashion to the admittance FRF, the lower frequencies (f < 

20 Hz) were more energetic and this should be monitored over the life of any structure 

of this importance. Deterioration through corrosion, cracking, delamination, degradation 

of bearing, and regular overloading of the bridge will manifest themselves here first. 

The dynamic stiffness, along with the time and frequency domain plots over the joints 

and bearings, will give the best early indication of progressive damage to the bridge. 

This is a truism for most civil and structural engineering applications: the lower 

frequency modes carry the most energy and unfortunately cause the most damage. 

Whether this will prove to be the case for any given structure will require regular 

monitoring and risk analysis-based maintenance. 

Using the dynamic stiffness data obtained for vehicles in Figure 4.62 for accelerometer 

5 (located on the bearing at the South abutment), several plots shown in Figures 4.66 to 

4.68 highlight the effect of average gross vehicle weight, average axle weight and 

average vehicle speed on the first three resonance frequencies for the bridge. Each 

vehicle parameter above was divided by the dynamic stiffness values obtained in Figure 

4.62, and then plotted against the salient parameter to highlight its possible effect on the 

dynamic stiffness recorded. These figures indicate that fl, the second resonance 

frequency, is affected most by each parameter. The average gross vehicle weight is the 

parameter with most influence on dynamic stiffness. 

The data collected from this section of work, combined with the findings of Chapter 33, 

, give rise to Figures 4.69 and 4.70. These show the effects of a change in either 

displacement and stiffness or frequency and stiffness. These figures, based on data 
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obtained on for baseline bearing stiffness relating to displacement and frequency, 

indicate the values that should cause concern with respect to bearings. 

It should be noted, however, that although this proposed method will indicate 

degradation of bearing performance, other factors that can affect the overall 

performance of the structure should be taken into consideration. Cracking of the 

concrete superstructure can have a significant effect on the frequency response of a 

structure, as highlighted by much of the research presented in Chapter 2. As a result, 

care must be taken when determining the actual cause of alteration in frequency. It is 
zn 

recommended that accelerometers be located at the abutments, and more specifically on 

the bearings, to accurately monitor the bearing performance. 

A parametric study carried out by altering the FEA parameters, such as p, E and v, to 

determine the effect of a change in structural condition on the resonance frequencies of 

the bridge. The values obtained are shown in Table 4.13. These values show that t, 

altering the Young's Modulus or density value has a much greater effect on the recorded 

frequencies than Poisson's ratio. Any change in E value cannot simply be attributed to a 

degradation in bearing condition, as stated in the previous paragraph. It would be good 

engineering practice to use this method in combination with a visual inspection and 

other NDT techniques to discount the effect of cracking on the E value obtained. 

The next stage in result recording and analysis will come in 2008, when a 3' year 

inspection will be requested and comparisons made with the baseline case readings 

presented herein. With suitable access arrangements and hopefully, continuity in the 

research, monitoring over a 50 year period would be possible. 
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4.7 Conclusions 

9 The NDT method presented was worthy of inclusion in a major structure's 

maintenance and inspection plan. No disruption to traffic was caused, and no 

damage to the structure ensued. 

* When matched with weigh-in-motion sensors and accurate vehicle counting and 

classification software, the NDT proved useful in matching vehicle events with 

the dynamic structural response. 

* Vehicle speeds had a small distribution, most falling in the 35 to 50 mph range. 

* The majority of Type 56 HGVs were overloaded. 

* Axle weight distribution was poor in many HGVs. 

0 Gross vehicle weight had the greatest effect on dynamic stiffness response. 

9 The momentum, kinetic energy and damage factor were significantly larger in 

relation to larger vehicles. 

* Larger HGVs made up a small percentage of overall vehicles recorded, but 

contributed a much higher proportion of damage caused to the bridge. 4: ý 

o Displacement and frequency were both valid measures of bearing performance 

and therefore state of degradation. 
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9 The bridge bearings were performing as expected, and doing so adequately. 

9 The expansion joint had a more severe effect upon the measured vibrations. 

0 Repeat testing is needed over the rocker bearing after remedial action has been 

completed. 

Future testing to continue this form of condition monitoring is recommended. ZD 

* Although this proposed method will indicate degradation of bearing 

performance, other factors that can affect the overall performance of the 

structure should be taken into consideration. 

0 Cracking of the concrete superstructure can have a significant effect on the 

frequency response of a structure, care must be taken when determining the 

actual cause of alteration in frequency. 

* It is recommended that accelerometers be located at the abutments, and more 

specifically on the bearings, to accurately monitor the bearing performance. 
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Aluminium anti-skid plate 

Figure 4.3 Expansion joint located at south abutment directly above bearings 
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Figure 4.4 Accelerometer locations: typical K-shaped bracing (Section 2 shown) 
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Figure 4.5 Access cage and walkway with access ladder in situ 
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Figure 4.11 Analyser in position for final testing regime, test 5 
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Figure 4.62 Dynamic stiffness FRF under 92 kN HGV load of Figure 4.41 
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Figure 4.63 Dynamic stiffness FRF under 92 kN HGV load of Figure 4.43 
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Table 4.1 Vehicle classifications 

v Description 
Number 

of 
axles 

N, 

(lane 1) 

N, 

(lane 2) 

*OLI OL, 

0 Motorcycle 2 16 13 0 0 

1 Car / Light Van / Taxi / MPV 2 4337 4534 0 0 

2 Van / LGV 2 423 471 0 1 

21 Car or Van with Trailer 4 65 73 0 0 

31 2 axle rigid 2 332 339 14 10 

. 32 3 axle rigid 3 56 67 21 4 

33 4 axle rigid 4 10 10 6 0 

3N Vehicle with 3 or more axles - unclassified 3 4 8 1 1 

41 Rigid 2 axle drawing LGV with I or 2 axle trailer 3 or 4 26 43 3 1 

42 Rigid 2 axle drawing LGV with 3 axle trailer 5 4 3 0 0 

4N Vehicle with 4 or more axles - unclassified 4 26 26 15 0 

51 Articulated 2 and 1 3 10 5 0 0 

52 Articulated 2 and 2 4 85 88 3 0 

54 Articulated 3 and 2 5 16 8 5 1 

55 Articulated 2 and 3 5 170 222 37 35 

56 Articulated 3 and 3 6 269 249 193 177 

5N Vehicle with 5 or more axles - unclassified 5 0 0 0 0 

61 2 or 3 axle buses / coaches 2 or 3 16 15 0 0 

6N Vehicle with 6 or more axles - unclassified 6 0 0 0 0 

7N Vehicle with 7 or more axles - unclassified 7 0 0 0 0 

8N Vehicle with 8 or more axles - unclassified 8 0 0 0 0 

* OL, = Overloaded vehicles in lane 1 
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Table 4.2 Vehicle speed data for traffic in lane I (northbound) 

VT 
V,,,, / V,, j, 

(mph) 

V ave 

(mph) 

(3, 

(mph) 

25'T-'-/-oile 

(mph) 

-50-'Y'-/-oile 

(mph) 

75th%ile 

(mph) 

5N- -ýoille F5 OX 

(mph) 

0 32 / 52 42 5.4 40 42 44 47 

1 13/78 44 6.0 41 44 48 50 

2 14/60 43) 5.5 40 4 3) 46 48 

21 24/52 40 5.2 33 8 41 44 45 

I1 3 
-32 

61 4 33 4.5 9 42 45 48 

32 332 49 39 33 6 38 41 42 

3 33 34/53 41 4.9 19 
-1 

40 41 42 

3N 38/44 40 2.7 39 19 
-1 

40 42 

41 32/48 41 17 39 41 42 45 

42 31 /40 3-) 4.5 31 31 3. ) 36 

4N -32 
/ 42 38 2.4 -3 

7 39 40 41 

51 16/46 38 8.3 38 -39 
40 44 

52 21/47 39 4.0 38 40 42 42 

54 36/46 40 2. 
-3 

38 40 41 41 

55 24/49 40 3.5 38 40 42 44 

56 19/46 39 2.5 38 39 40 41 

61 37/46 42 2.9 39 42 44 45 

N. B. The percentile values for several vehicle classifications are the same as average 
values obtained due to rounding errors. 
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Table 4.3 Vehicle speed data for traffic in lane 2 (southbound) 

VT 
V,,,, / V,, i, 

(mph) 

V ave 

(mph) 

(3, 

(mph) 

25 1h %ile 

(mph) 

5 oth %ile 

(mph) 

75 1h %ile 

(mph) 

85 th %Ile 

(mph) 

0 -332 
/ 53 42 5.6 39 41 42 47 

1 11/74 41 7.1 37 41 45 48 

2 16/66 41 7.1 37 41 45 48 

21 16/49 -39 
6.2 33 6 

-39 
43) 46 

1 99 40 7.3 33 6 40 44 46 

32 25/52 39 5.0 32 
-39 

42 44 

33 26/47 -38 
4.9 36 39 44 45 

3N 34/55 42 7.33 37 41 46 50 

41 31 / 55 41 4.7 33 7 41 43 45 

42 29/32 30 1.7 29 29 -11 
31 

4N 27/47 39 3.4 38 -39 
40 42 

51 31 /44 37 6.0 32 33 7 43 43 

52 26/49 40 4.2 38 ý9 3 42 44 

54 30/52 42 8.1 35 43 48 48 

55 27/52 40 4.8 38 40 43 44 

56 15/49 39 5.3) 36 -39 
42 44 

61 25/46 -19 
5.4 37 40 433 4 

-3) 

N. B. The percentile values for several vehicle classifications are the same as average 
values obtained due to rounding errors. 
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Table 4.4 Vehicle axle loading data for traffic in lane I (northbound) 

VT 

VW 
rn,, 

/ VW,,,, 

(kg) 

VW,,, 

(kg) 

C5"" 

(kg) 

Damage factor 

(tonnes 4) 

Relative damage 

factor 

0 270/860 441 134 0.04 0.008 

1 500/9100 1471 '399 4.68 1 

2 880/15500 2678 13)39 51.4 10.98 

21 1180/15200 3299 2038 118 2 5.3) 0 

1 1330 23500 775 -3) 
5494 361 

-3) 
771.7 

32 9900 38400 25679 6312 4348233 92867 

11000 40900 34030 9370 1341059 286416 

3 )N 4350/20900 9833 7711 9349 1997 

41 1860/41100 15249 11726 54071 11548 

42 21600 / 36300 27200 6332 547363) 116903 

4N 27100 / 41500 36604 3605 1795206 383410 

51 3530 27200 8722 7666 5787 1236 

52 10200 3) 9200 23451 5522 3) 02444 64594 

54 22100 47600 33781 7546 1302237 278125 

55 15300 54700 28296 885 33 641062 136915 

56 20200 60000 43275 10256 3507101 749027 

61 4400/9600 7088 1299 2524 539.1 
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Table 4.5 Vehicle axle loading data for traffic in lane 2 (southbound) 

VT 
VW VW ,, 

(kg) zn 

VW 

(kg) 

(T, 

(kg) 

Damage factor 

(tonneS4) 

Relative damage 

factor 

0 350/490 466 37 0.05 0.01 

1 280/11100 1341 33 62 12 33 1.00 

2 800/19800 2397 133 1 10.21 

21 1090/9400 2835 1147 65 19.98 

31 2030/21500 73) 35 5 4855 2895 895 

)2 9200/38400 17540 63 15 94650 29269 

33 11400 / 22400 14900 3 3) 99 49288 15242 

3N 1280/19200 5279 5829 777 240 

41 2030/33100 15191 7915 53253 16468 

42 15400 / 28100 19700 7275 150614 46575 

4N 9500/28400 133050 4212 29003) 8969 

51 3190 20900 10340 7945 11431 3 5.33 5 

52 4100 3 )4200 20173) 5540 165608 51211 

54 17400 44700 27263 8812 552452 170836 

55 1170/52300 24482 9037 
-3) 

5 92 42 111089 

56 7700/58500 43586 11054 '3609010 1116022 

61 4580/12000 6739 2157 2062 63) 8 
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Table 4.6 Maximum and minimum axle weights for vehicles in lane 1 
(northbound). All values shown in kg. 

V 7- Axle I Axle 2 Axle 3 Axle 4 Axle 5 Axle 6 
A W,,, i, -10* 

130 
0 

A Wn,, 200 790 
AW inin 200 90* 

1 A Wn,, 5000 4100 
A W,, i, 440 440 2 
A Wn, 

-, 
5900 9800 

AW inin 610 470 1 oo* 150* 
21 A Wn,, 4000 5600 5600 

_2300 A Wmin 640 690 
31 

A Wn, 10500 1430 
A Wni, 4300 2400 1500 

32 A W,,,, 11000 13400 14200 
A Wmin 3600 4200 2100 1100 

3 )3 A Wn,, 8900 9400 12100 12300 

1 A Wn j, 1700 1380 500 
-)N A Wn,, 7100 13300 1460 

A W,, i, 1010 73) 0 90* 400 
41 A Wn,, 10100 14700 8200 8600 

AWj, 2700 4700 4000 4200 
42 A Wn,, 9100 8800 5900 6200 

AWmin 5100 4800 8300 8000 
4N AWm,, ý 9400 9300 12400 12100 

A Wn,, 1060 1240 400 
51 AW,,, 7400 9200 10600 

A W,, i, 2700 3400 1200 1300 
52 A Wn,, 9200 10800 11400 10800 

AWmj, 5800 3100 3800 2800 2900 
54 A Wn, 10700 8700 11000 11400 11100 

AWmi, 3600 3700 1600 1700 1400 
55 A Wn,, 10100 15900 10200 10800 10700 

A W,, i, 4400 700 2700 1000 2400 2300 
56 AWm,, 9600 12100 13900 11000 11500 13500 

A W,, i, 1990 2410 
61 A Wn,, 4' )00 5800 

*N. B. The values marked are considered to be a result of either misclassification or 
miscounting events. 
Values in bold font type are illegally overloaded given the absence of an 
abnormal load escort and the statutory notifications and permissions. 
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Table 4.7 Maximum and minimum axle weights for vehicles in lane 2 
(southbound). All values shown in kg. 

VT Axle I Axle 2 Axle Axle 4 Axle 5 Axle 6 

AW. j, 150 190 0 A W,,,, 160 ýM 
-3. ) 

A Wmj, 120 1.30 1 A W,,,, 2200 8900 
A Wmi, 460 290 2 A W,,,, 7500 12300 
A Wmi, 400 430 100 220 21 A W,,,, 1400 3900 1900 2200 
A W,,,, 1040 650 31 A W,,,, 8800 13200 
A Wmi, 4300 1400 2000 32 A Wm, 10400 14500 14500 

n A Wmi, 3700 4100 1300 1500 
-) 

IAW,,,, 
5800 6300 5000 5300 

A Wmin 140 550 400 3N A Wn,, 6200 12600 15 30 

A Wmin 930 810 100 100 41 
A W,,,,, 8700 11200 6500 6700 

AWj, 2700 5600 2 
-3) 

00 1400 1700 
42 

A Wn,, 10300 7300 4200 3100 3400 

A Wmi, 2400 2000 900 1400 
4N 

A W,,,, 8800 7300 7900 6300 

A Wmin 1100 1200 520 
51 

A Wn,, 7100 6200 8000 

A Wmi, 1800 1640 460 200 
52 

A Wn,, 8100 10500 8500 8800 

A Wmin 5200 800 1600 3200 00 
54 

AW 
max 

7400 6900 9900 10600 11000 

AWm,, 4800 2800 700 1000 1400 
55 

AW 
max 

10600 16900 9500 9600 11100 

AWmi, 2700 400 2100 700 700 600 
56 

AW 
mx 

9900 11300 16600 11100 11700 11900 

AWmi, 1800 1800 
61 

A W,,, 
x 

4000 8100 

*N. B. The values marked are considered to be a result of either misclassification or 
miscounting events. 
Values in bold font type are illegally overloaded given the absence of an 
abnormal load escort and the statutory notifications and permissions. 
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Table 4.8 Average axle weights for vehicles in lane 1 (northbound). All values 
shown in kg. 

VT Lane I Axle I Axle 2 Axle 3) Axle 4 Axle 5 Axle 6 

0 A W,,, 130 311 

I A W... 827 644 

2 A W,,, 1366 1312 

21 A W,,, 1012 118 35 918 708 

I AWave 3555 4199 

32 A W, v, 8127 9011 8541 

33 A W, 
ve 6990 7430 9740 9870 

3N A W,,, 
-33788 

5013 Mn 

-1-3 
41 A W, v, 4545 5222 2687 3 160 

42 A W, v, 4545 5222 2687 2439 

4N AWave 7619 7573) 10588 10823) 

51 AWave 3 )046 3116 2560 

52 A W, 
ve 6784 6936 4835 4895 

54 AWave 7625 5519 7525 643 8 6675 

55 AW 
... 

7426 8241 4102 4236 4291 

56 AW 
... 

6896 5655 9015 7018 7225 7467 

61 A W, 
v, 

3249 
-3) 

838 
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Table 4.9 Average axle weights for vehicles in lane 2 (southbound). All values 
shown in kg. 

VT Axle I Axle 2 Axle 3 Axle 4 Axle 5 Axle 6 

0 A W... 159 307 

1 AWave 776 565 

2 A Wave 1285 1112 

21 A Wave 880 944 846 469 

31 A Wave 3491 3843 

32 A Wave 6885 5661 4994 

33) A Wave 4310 4570 3040 2980 

3N A Wave 2005 2509 765 

41 AWave 5250 4867 2503 2631 

42 AW 
ave 

5367 6667 3200 2067 2400 

4N A Wave 4365 4088 2-3) 12 2285 

51 AWave 3476 3128 
-3) 

7 
-3) 

6 

52 AWave 6545 5830 3836 3961 

54 A Wave 6250 3650 6175 541 
-3) 

5775 

55 AWave T-32 7 6775 3298 33423 3660 

56 AWave 7104 5359 8718 72 
-3) 

8 7425 7743 

61 A Wave 30 15 3) 724 
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Table 4.10 Standard deviations of axle weights for vehicles in lane 1 
(northbound). All values shown in kg. 

VT Axlel Axle2 Axle. 33 Axle4 Axle5 Axle6 

0 33 4 1533 

1 196 224 

2 572 827 

21 460 949 750 492 

31 2384 3240 

32 1432 2564 32333 

3 3) 1744 1731 2999 3389 

3N 2591 5633 424 

41 33252 
. 
33892 

r2362 
2439 

42 3077 1741 874 903 83 5 

4N 1031 931 1106 1011 

51 2574 2500 3109 

52 1093) 1560 1786 1826 

54 1395 1980 2451 2484 2558 

55 1048 2777 1915 1974 2062 

56 93) 5 2024 2310 2-3382 2369 2518 

61 583 946 
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Table 4.11 Standard deviations of axle weights for vehicles in lane 2 
(southbound). All values shown in kg. 

VT Axlel Axle2 Axle') Axle4 Axle5 Axle6 

0 3 36 

1 164 230 

2 641 756 

21 179 486 448 469 

31 2118 2915 

332 1533 29133 2569 

33 748 685 1280 1088 

3N 1817 4106 550 

41 2599 2761 1581 1632 

42 4277 929 954 907 889 

4N 1314 945 1669 908 

51 3130 2086 3011 

52 1010 1926 1702 1664 

54 7 3) 5 2099 2998 2425 2543 

55 836 3072 1905 1936 2082 

56 885 1850 2235 2605 2655 2754 

61 682 1799 
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Table 4.12 Resonance frequencies of bridge structure 

Method fio (Hz) f, (Hz) k (Hz) 

NDT 1-2 3-4 10-11 

FEA 2.0 3.0 4. 
_3 

Rayleigh-Ritz 1.60) 3 ). 2 4.8 

Table 4.13 Parametric study of FEA model for bridge structure 

Altered parameter fo (Hz) f, (Hz) f2 (Hz) 

Original baseline 2.0 3.0 4.4 

0.5 times Young's 1.5 2.1 3.1 
modulus 
0.5 times 2.1 3.0 4.3 

Poisson's ratio 

0.5 times density 2.9 4.2 6.2 

All 2.0 3.0 4.3 
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CHAPTER 5 

Conclusions and recommendations for future research 

5.1 Executive summary 

Although health monitoring of bridge structures is relatively advanced, the scope for 

further research is wide. The study presented in this thesis contained research on plate 

structures; ranging from a simple Euler-Bernoulli method to determine natural 

frequencies; modal analysis of a plate structure in the laboratory; FEA of the plate 

structure; modal analysis on a full-scale structure subjected to vehicle loading; and FEA 

of a simplified model representing the full-scale structure. A combination of these 

methods has allowed the conclusions highlighted herein to be drawn with respect to the 

effects of support degradation, and the consequent effect on structural performance. 

5.2 Conclusions 

5.2.1 Chapter 2 

Theoretical and experimental works are still being carried out on plate structures, 

bearings and full-scale highway bridge structures. Although plates with more 

conventional boundary conditions have been investigated thoroughly, the current 

investigations are concerned with the effects of moving loads or variable boundary 

conditions on the dynamic performance of plate structures. 

In recent years, with the increase in computational power available, researchers have 

employed OMA techniques to extract natural frequencies and material properties from 

full-scale structures excited by ambient vibration, as opposed to the more conventional 

classic modal analysis techniques used in this thesis. 
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Few researchers, in terms of damage location, have investigated the effect of support 

condition on the dynamic response of a structure, and this is one area that provides 

further scope for research. At present, the available literature on bearings is mostly 

concerned with the material properties or performance of the bearings under either 

compressive or shearing loading. Research in America currently involves investigations 

into the performance of in situ bearings are restricted to the behaviour in cold zn 

temperatures, and the effects of bearing walking. 

5.2.2 Chapter 3 

The modified Euler-Bernoulli method for plate structures provided a simple method to 

determine the fundamental resonant frequency when support conditions were variable at 

each end of the plate. An alteration of support stiffness in the model can have a marked 

effect on the resonant frequency of the plate (approx. 23 % frequency change between 

spring 1 (1.22 Nmm-1) and 5 (15.62 Nmm- I )). However, the proposed method did 

underestimate the exact resonant frequency value by almost 13%. This difference is due 

to idealised conditions assumed for the analytical models, compared to the actual 

conditions for modal testing. It is considered that improvement of the method is 

possible if consideration is given to rotational and translational restraint in the 

constituent equations. The method only produced the first resonant frequency, but could 

be extended to higher order modes with application of higher order polynomial assumed 

mode shape functions in the general equation. 

Simple modal analysis testing protocols, such as the single input-multiple output test 

used herein, were adequate for routine inspection purposes. Modal analysis allowed the 

effect of stiffness to be visualised through waterfall plots of FRFs. 
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Forced vibration testing indicated that bending modes were of more use for detection of 

the effect of alteration in bearing support stiffness. Torsional modes provide no real 

discernable pattern. Identification of the mode shapes was essential if accelerometer 

locations are not to coincide with nodal points, resulting in possible missed 

modeshapes. Finite element analyses may offer some useful guidance, albeit at some 

cost (both direct and time-based), as to the mode shapes likely in a deck slab. 

In terms of damage detection or quantification, considering individual resonant 

frequency values was not considered to be a viable option, rather the mode shapes 

relating to each frequency which can be matched were of significance. 

The structural support conditions, with reference to their stiffness in particular, were 

effective in influencing the FRF measured on a model bridge deck. Continual 

monitoring over time would be required if this method were to have any basis as a 

condition monitoring, or degradation assessment, tool. Indeed, the FRF may be used as 

an accurate general indication of the overall state of a bridge deck's stiffness. Support 

changes affected wave propagation across the model deck slab. 

Displacement and acceleration values in the vertical direction provided accurate 

information as to the response of the plate when subjected to forced vibration with 

variable support stiffness, although velocity response was not a viable diagnostic tool in 

this case. Of particular interest was that the relative displacements observed at the mid- 

span due to loading at plate edges were higher than those subjected to loading at the 

centre nodes. The plate response and propagation of waves was therefore dependent on 

the location of excitation. Excitation data relating to a non-resonant frequency did not 
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provide any insight into the effects of support stiffness, although data presented from 

modal analysis testing showed the effect of approaching or receding from a resonant 

frequency in the higher spring stiffnesses. The baseline frequency used in any full-scale 

condition assessment should be chosen to avoid proximity to a natural frequency of the 

bridge deck. 

Strain values provided no indication of the effect of support stiffness on wave 

propagation or dynamic response. 

5.2.3 Chapter 4 

The NDT method presented was worthy of inclusion in a major structure's maintenance 

and inspection plan. No disruption to traffic was caused, and no damage to the structure 

ensued. 

When matched with weigh-in-motion sensors and accurate vehicle counting and 

classification software, the NDT proved useful in matching vehicle events with the 

dynamic structural response. Vehicle speeds had a small distribution, most falling in the 

3 )5 to 50 mph range over the whole spectrum of vehicle types, meaning gross vehicle 

weight had the greatest effect on dynamic stiffness response. 

Larger HGVs made up a small percentage of overall vehicles recorded, but contribute a 

much higher proportion of damage caused to the bridge. The majority of Type 56 HGVs 

were overloaded, with axle weight distribution poor in many HGVs. The momentum, 

kinetic energy and damage factor was significantly larger in relation to larger vehicles. 11: 1 =1 
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From results obtained, displacement and frequency were both valid measures of bearing zn 

performance and therefore state of degradation. 

The bridge bearings were performing as expected, and doing so adequately, and the z: 1 

faulty expansion joint had a more severe effect upon the measured vibrations. It is 

recommended that accelerometers be located at the abutments, and more specifically on 

the bearings, to accurately monitor the bearing performance. Repeat testing over the 

faulty rocker bearings are required after remedial action has been completed. This 

would then be assumed as the baseline reading. 

Future testing to continue this form of condition monitoring is recommended. Although 

this proposed method will indicate degradation of bearing performance, other factors 

that can affect the overall performance of the structure should be taken into 

consideration. Cracking of the concrete superstructure can have a significant effect on 

the frequency response of a structure, care must be taken when determining the actual 

cause of alteration in frequency. 

5.3 Recommendations for future work 

Recommendations for further research are outlined in this section to continue the 

research outlined in this thesis. Several aspects of this research could be explored in 

greater detail: the finite element analysis, further full-scale field testing, laboratory 

based experimentation and investigations into plate behaviour using the simplified 

method outlined and possible refinements to the method. The recommendations are not 

claimed to be any less important than the work completed by the author. The 
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recommendations do represent clearly defined steps forward from the author's current 

findings and as such provide potentially years of future analysis. 

The data collected and presented within this thesis are intended to be considered as a 

baseline reading for the bridge dynamic response. Further testing in 5 years on the zn zn 

bridge at Berwick-Upon-Tweed is recommended in order to compare the response now 

to the future response, thus hopefully indicating any change in response due to the 

possible degradation of the bearings, or perhaps other factors such as cracking, 

corrosion, spalling, walking, or indeed overloading. 

One possible line of future investigation is the analysis of bearing performance on a 

large scale by damaging bearings and testing the response of small scale structures. 

Many researchers have carried out testing to determine the ultimate shear and 

compressive loading capacity of bearings. However, these bearings have not been tested 

in a structure after damage, or stressing, has been completed. Bearings, or sections of 

bearings, could be artificially aged by either cyclical shear tests, compressive tests or 

through subjecting bearings to alterations in ambient temperature. The bearings could 

then be tested in scaled down models of structures, and the response due to impact 

loading recorded. 

In addition to the laboratory testing, stiffness values of bearings after ageing effects 

have been applied could be obtained and used in finite element models to accurately 

predict the effects of bearing degradation. The research presented within Chapter 2 

describes the effect of bearing pads on the performance of highway bridges, taking into 

consideration the pad-bridge interface which defines the support boundary conditions. 
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Further investigations into the response of plate structures with elastic edge constraints 

are recommended. Of interest are the effects of skew on the dynamic response, and the 

concentration and dissipation of transverse wave acceleration. 

Use of FEA to update the condition of bearings, in accordance with the modal analysis 

results obtained from testino, could aid evaluation of the projected performance of the Z:, 

structure in future states of disrepair. 

5.4 Summary 

The author has presented various recommendations for future research on the dynamic 

response of highway bridges and the effect of bearing degradation. This concludes the Z= 

author's recommendations for future research and the thesis proper; what follows are 

the Appendices containing copies of the author's publications and analysed data files. 
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