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ABSTRACT 

Over the last fifty years, the Forestry Commission has developed various low cost bridge 

designs for its large Estate. These bridges are used for timber lorries and pedestrian 

access. This thesis describes many of these designs and leads on to the development of 

stress laminated timber as a modem solution, utilising readily available materials to build 

sustainable bridges. Timber is the only carbon neutral construction material and its use is, 

therefore, very appropriate in these times of perceived environmental damage. It also 
happens to be the product of the Forestry Commission. Recently, the major emphasis of 
land use on the Estate has moved from production of timber to Public access, for the 
intended benefit of the nation's health. This has exponentially increased the requirement 
for low cost footbridges with desirable aesthetic qualities. Timber is the obvious choice 
but the product available from home grown sources is fast-growing and, consequently, of 
low structural quality. The development has therefore concentrated on structural methods 
which could utilise this timber. 

Mechanical stress lamination had been pioneered in a few locations around the developed 

world since 1980, so the Author formed a group of consultants and researchers, called 
Innovative Timber Engineering in the Countryside, to bring these solutions into UK 

practice. In the UK, species of timber and climatic conditions in which the structures 

would be used varied greatly from international practice, so further development was 

required to assimilate existing solutions and devise new ones. This led to considering 
shallow arch construction for longer spans, instead of cellular or 'T' beam construction 
used elsewhere. These constructions either trapped damp air or required LVL which has 

to be imported into the UK. 

Over a three year period, since Autumn 2002, a series of laboratory and field tests were 
carried out on a variety of stress laminated timber arch bridges in order to develop an 
understanding of the structural mechanisms involved. Test bridges included a 6m span, a 
15m span and four 2.1m spans, all built under laboratory conditions and statically load 
tested. A 20m span was specifically built, in the forest, to be statically and dynamically 
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load tested while a number of other commercially built bridges were dynamically tested, 

both with and without a bonded bitumen topping. 

The programme of tests highlighted factors which needed further investigation, so a 
further four laboratory test bridges were built and loaded to investigate the transfer of 
load and load capacity under varying conditions. The test bridges all had spans of 6m, 

with different arch rises. A series of loads was applied at varying lateral tensions and 

measurements were taken of deflections and lateral spread. The purpose of these tests 

was to confirm past findings and extend the understanding of the manner in which the 
load is transmitted through these shallow arch structures. 

All of the test load effects on bridges showed good correlation with elastic analysis and 
indicated an optimum span-to-rise ratio for maximum stiffness. Further, there were a 

number of other factors e. g. lateral bar tension, which could not be integrated into an 

analytical model, so an integrated approach was required. For this purpose, a parametric 

study of a series of arches was undertaken. This study considered a range of different 

spans, rises and structural arch depths and related these factors to stiffness. To integrate 

the other factors, a generic semi empirical model was used to model all relating factors to 

the arch stiffness. 

The stress-laminated arch bridges have very good load carrying capacity when compared 

to structures built from heavier alternative materials. They have a span to structural depth 

limit of approximately I to 100 because more slender structures could resonate under 

pedestrian loading. The bridges are low cost, sustainable, carbon neutral solutions, using 
home grown material to produce aesthetically pleasing bridges for an increasing 

recreational market. The work is a very good foundation for future development and 
forms a basis for a UK code of practice in mechanical stress lamination. 
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CHAPTERI 

I INTRODUCTION 

Ancient legend, archaeological studies and a fairly recent article in the Hindustan Times 

state that the first known man-made bridge apparently dates back 1,750,000 years. Thirty 

metres long and constructed of a chain of limestone shoals this 'bridge', or causeway, 

spans the Palk Straits, between India and Sri Lanka and is known as 'Adam's or 'Rama's 

Bridge' [1]. Whether or not this is believable, it does seem that, since the beginning of 

time Man has been building bridges, using whatever materials were available, in order to 

span the gap that those materials would allow. Great innovations have resulted from the 

diversity of cultures as well as the materials. In the temperate zones, with modest 

vegetation and many glacial deposits, stone arches were developed, possibly inspired by 

natural arches formed during geological activity. Simple timber beam bridges may have 

resulted from fallen trees over small rivers and, in the tropics, vines might have inspired 

suspension bridges. 

As mathematics developed, together with an understanding of materials, the first 

'designed' structures would have been built. These would employ joints to extend the 

spanning capabilities of the timber by creating haunches and forming the first simple 

trusses. In time, trusses and trestles would be developed to form long span timber 

bridges. In China 3000 years ago Rainbow arch bridges employed short lengths of 

straight timbers to form arches built up from corbels joined at mid span. However, joints 

were difficult to make and maintain and timber bridges had their limitations. 

For thousands of years only the basic materials were available and development of long 

span bridges for heavy loads could not take place. Between one and two hundred years 

ago steel and concrete became available and new designs were made possible. At the 

same time, western society was experiencing an industrial revolution which created a 
demand for strong vehicle bridges. These circumstances were responsible for the 

development of steel trusses, steel cantilevers and suspension bridges. The new materials 
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were thought to be relatively indestructible and indeed they were, when compared to 

badly designed timber structures, which rotted quite quickly. For that reason, bridge 

construction generally ignored timber except for use in rural settings, for short spans, 

where timber was available. Stone arches were also abandoned because they were labour 

intensive, and thus, too expensive. 

Over the last fifty years, vehicles have more than doubled in weight and bridge design 

has had to keep pace. At the same time, due to economic restraints, investment in 

maintenance has reduced in most developed countries. This has led designers to look 

back through history for ideas on how to create low cost medium span bridge 

replacement designs which, with some modem engineering could satisfy present day 

specifications. It was this situation which produced the first mechanical stress laminated 

flat decks in the USA. The combination of that particular development, together with a 

personal fondness for the strongest, most durable and 'original' of designs, the stone 

arch, led the Author to consider developing the first ever stress laminated timber arch 
bridge. That long love affair with the 'arch', together with forty years of design 

experience, created the inspiration to combine two technologies from thousands of years 

apart, to produce an innovative solution suitable for the present time. The offspring of 

this union is the 'stress laminated timber arch'. 

The focus of this PhD Thesis is on research into the load responses of transversely 

laminated, stress laminated timber (SLT) arch bridge decks. It is an extension of 
international work on flat and cellular decks. 

1.1 Research Objectives and Drivers 

Mechanical stress-lamination methods have been successfully used for construction of 
flat timber bridges for over two decades. The research programme outlined in this thesis 

details the use of small sections of relatively low grade softwood to design and construct 
large and attractive bridges. The method utilises the strength properties of timber in an 

arching action, which contributes significantly to the overall strength and stiffness of the 

bridges. 
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This thesis expands the recent work in mechanical stress-lamination of timber by 

implementing an arching profile for bridges to exploit timber's excellent compressive and 

end-bearing properties. It details development, assembly and testing of a number of 

stress-laminated arched timber bridges with spans between 2.1m and 20m. The test 

results will show that the bridges possess considerable strength and stiffness when 

subjected to high load levels. Thirty major bridges are now in service as a result of this 

work. The research programme was designed to explore the full potential of these 

structures and also to examine the use of relatively low grade UK grown timber species. 

The influence of different arch profiles and alternative stressing mechanisms were the 

main focus of the research work. 

The aim is to develop decks appropriate to UK conditions in terms of materials available 

and uses of the bridge decks. 

Full and part scale decks were load tested in order to derive a detailed knowledge of 

global and local effects. The outcomes are an in depth understanding of the structural 

performance and behaviour of stress laminated arch bridges which can be utilised to 

analyse footbridges, leading to the fiiture design of vehicle bridges. 

The main drivers are: 

" an abundance of plantation timber coming on stream in the UK 

"a need for many new footbridges created by the recent new access legislation 

"a need for many new rural road bridges for forestry 

"a need to replace decaying stone arch bridges 

1.2 Scope 

To develop design rules for the analysis of SLT arch footbridges and provide a basis for 

the design of similar road bridges. This was done through the application of static and 

dynamic loads to a number of full scale, long and short bridges and measuring the effects. 

Testing concentrated on the static load effects within the range of application to realistic 

practical structures, that is, to determine the load effects on stable timber arch structures. 
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An optimum range of span-to-rise ratio arches was used to develop generic formulae, 

thus avoiding slender structures which would fail dynamically, or very upright structures 

which require spandrel support for strength. 

Maintenance of completed structures, particularly the tension bars, has been given 
detailed consideration. 

1.3 Timber as a Construction Material 

1.3.1 Species 

Timber is the only renewable structural resource available to man. It is carbon neutral 
because at the end of its useful life the C02 which it puts into the atmosphere is equal to 

the quantity that it removed while growing. 

There has been resistance from modem Engineers to the use of timber, partly because of 

their general lack of understanding of species, properties of strength and durability, and 

of the construction details necessary for sound construction. Timber frame housing has 

flourished over recent years but some poor workmanship and detailing has led to a 

number of premature failures. This has generated new resistance to the use of timber for 

permanent structures. However, the use of timber for major high profile structures like 

bridges could help renew confidence. 

There are three groups of trees - softwood, temperate hardwood and tropical hardwood 

[2]. Within these groups there are a number of species in each with different properties. 
The softwoods generally come from temperate zones and the species which are readily 

available in the UK are Pine, Spruce, Larch and Douglas Fir. Within these species there 

are a number of particular tree types. The type which has been planted in the UK over the 
last eighty years, due to its toleration of the low winter temperatures in Scotland, together 

with its ability to thrive in the acidic soil resulting from deforestation, is Sitka Spruce. 

This is very good for paper and pulp but weak as a structural timber, partly because of the 

rate of growth. The average rate of growth in the UK is approximately forty years to 

maturity. 
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Scots Pine is very useful, reasonably abundant and very good at taking up preservative 

treatment. Larch is more durable in its natural state and takes up less preservative 

treatment. Douglas Fir is a fine structural timber with good resistance to decay. These are 

the timbers which will be used for the bridges in this thesis. 

Common temperate hardwoods, or deciduous trees, in this part of the world are Oak, 

Beech, Birch and Lime. These have very variable durability and their 'hard' description 

is not always deserved. In fact, some 'softwoods' in the world are harder than hardwoods. 

Oak is particularly useful in the UK as it is plentiful, durable and very hard, though it is 

very expensive. Beech and Birch are generally used for furniture or other indoor 

products. 
The tropical hardwoods are dense, strong and durable. They are very effective as 

structural materials and their chemistry gives them resistance against predators, in some 

cases even marine borers. Greenheart is a famous example and originates from Guyana in 

South America. In colonial times, this was harvested and used in many UK Victorian 

maritime piers. The Author built a new pier three years ago using Greenheart which, 

although it had already given one hundred years' service in Helensburgh pier, was still in 

perfect condition. These hardwoods however are difficult to work, produce toxic splinters 

and are difficult to obtain from truly sustainable sources. Their natural habitat tends to be 

in politically sensitive areas, so their use is best discouraged in preference of plantation 

softwood. 

Plantation softwood is available from most countries in the world so the cost should 

remain competitive for some time to come. International competition should ensure 

control of the price, in contrast to that of oil and gas which are only available in a few 

locations and where the price is controlled politically. This is one very good reason to 
develop the use of timber for structural applications, even if it is not the strongest, most 
durable material. 
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1.3.2 Properties 

Timber is not a homogenous material like steel, which has the same properties in all 
directions. Timber is orthotropic, which means it has different properties in different 

directions. This is because it is formed from a group of parallel vertical tubes which 

convey water to the extremities, where sunlight converts it to food through 

photosynthesis. These tubes form what we call the 'grain' and vary in diameter, 

depending on growth rate. Along the grain they provide substantial stress resistance but at 

right angles to the tubes the timber is easily compressed, especially in softwood species. 
This is useful for constniction of SLT bridges because it creates a certain amount of 

tolerance for timber thicknesses. Hardwood SLT decks can loosen off very easily because 

they do not compress as much as softwood. 

A perfect piece of timber is very strong. Scots Pine can achieve 46N/mm2 [3] in bending 

stress before breaking, but natural defects like knots, slope of grain, compression wood 

etc. mean that a safe stress would only be one tenth of the ultimate. 

Fresh timber is made up of about 50% water by volume and considerably more by 

weight. Most of this water is lost over time after the tree is cut down. Usually it is kiln 

dried nowadays, to accelerate that process until it has reached the in-service moisture 

content (MC) which is 16% - 18% for protected external timbers. Even after optimum 
MC is reached there are seasonable shrinkages, dependent on humidity. Softwood 

shrinkage is less than temperate hardwoods, which is very satisfactory for SLT bridges. 

1.3.3 Durability 

This is a description given to the resistance to fungal or insect attack. In this part of the 

world insect borers are only a problem near seawater and fungus only grows if there is 

sufficient moisture. Some timbers have natural toxins which resist organic attack while 
others are very vulnerable. Timber can be impregnated with chemicals to help the 

resistance to decay. Hardwoods are generally more durable but this is very variable e. g., 
whilst home grown oak is reasonably resistant, tropical Greenheart is almost totally 

resistant. Softwoods are all susceptible to decay though Larch, while resistant, still 
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benefits from chemical treatment. Scots Pine or Douglas Fir will be used for SLT bridges 

because of their strength, availability and resistance to distortion. Scots Pine requires 

treatment and absorbs it well, whereas Douglas Fir, although moderately resistant, will 

still be treated. 

Treatment of timber is a very emotive environmental subject because the best treatments, 
designed to kill carbon based insects and fungus, are also toxic to humans. The most 

superior is Creosote, followed by Copper Chromium Arsenic (CCA) and then Copper 

Chromium Phosphate (CCP). Organic preservatives can leach out so have a poor 

performance, externally. Creosote and CCA were legislated out of use in the UK in June 

2004 but derogations were introduced for a number of professional uses, like railway 

sleepers and bridge decks. However, in practice, these treatments have not been available 
for bridges due to the low demand, so specifications have to employ CCP. Nevertheless, 

even with treatment, the timber decks will be further protected by a bitumen topping, to 

ensure water is shed and the deck remains relatively dry. With modem pressure/vacuum 
treatment processes, the chemical only penetrates a few millimetres so all cuts and holes 

have to be made before treatment. It is always good practice to protect timber from 

prolonged wetting therefore, to ensure this, good detailing is essential for timber bridges. 

1.3.4 Strength 

The strength of a piece of timber depends on its species, growth rate and defects. The 

growth rate determines the number of growth rings per width of a piece of timber and the 

closer they arc, the stronger the sample. Defects are - clusters of knots, slope of grain and 
'wane', which is the loss of edge pieces caused by milling too near the extremities of the 

round timber. An assessment of all of these factors gives a piece of timber a specific 

grade which is related to its ultimate strength, that being a proportion of its yield strength 

or breaking strength. That strength is preceded by a 'C' for coniferous if it is softwood 

and 'D' for deciduous if it is hardwood. The latest Code of Practice for structural timber 
design in the UK/Europe is 'Eurocode 5', [51] which is a Limit State Code and uses these 
Ultimate strength Grades. The old UK Code, 'BS 5268' [501 is still in use and is based on 

permissible stresses, which are generally about one third of the ultimate. The two 
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common Grades of timber are 'C16' and 'C24', which relate to visual grading categories 

'General Structural' and 'Special Structural'. Home grown Oak will be graded as 'D30' 

or 'D40'. For SLT bridges the main deck timbers will be 'C16' with 'D40' outer oak 

laminates, to resist lateral bearing pressure from the stressing bars. Although design and 

analysis will utilise these strength parameters, laminated structures can use higher 

stresses because the defects of each timber are shared between the laminates. This is 

certainly true for glue laminated structures but there are some reservations about stress 
lamination in external environments. However, the evaluation of true modulus and 

strength grade of a complete deck may become an interesting piece of future work. 

1.4 Contents of Thesis 

This thesis begins with an overview of timber engineering in the UK and internationally, 

with a focus on bridges. It looks into the cuffent use of timber and makes particular 

reference to the Forestry Commission Estate, which has used a number of innovative, low 

cost, bridging solutions over many years. This has been possible because public and trunk 

road legislation, which does not permit the use of timber for main structural members, 
does not apply in this area. The leading chapter finishes by considering recreation 

structures and other opportunities in the UK for timber structures, but particularly stress 
laminated bridges. Chapter Two sets out the reasons, and makes a case, for this particular 
PhD study. 

Chapter Three is an historical look at past innovations and good practice in Forestry 

Commission (FC) bridge design and construction. It is a first-hand account of the 
development of low cost bridge engineering for rural road networks in the UK. It 

highlights how materials, engineering expertise and fashion govern the designs of the day 

and shows why Stress Lamination of Timber is a natural progression for this decade. For 

the first time, it appears that designs for Estate bridges could be extended for use on 

minor public roads. This is of particular importance today as Central Government policy 
has almost removed maintenance budgets for minor public roads and bridges. There is 

now a movement to convert some minor public roads, from tar surfaced, to gravel roads 
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as in most other parts of the world. Forestry-typc bridges would fit well with these new 

roads and provide significant cost savings. 

Chapter Four deals with the history and development of Stress Laminated Timber (SLT) 

techniques for bridges throughout the world and discusses how that led to the specific 
development of arches in the UK. The objectives of this research have been restricted to 

the development of footbridge arches in detail, so that future work will be well founded 

and taken forward to long-span timber bridges for heavy vehicles. 

Chapter Five is a full account of stress lamination knowledge, to date. It takes each aspect 

of the technique and explains research findings so far, at the various Centres of 
Excellence in the world. This chapter forms the foundation for the research work of this 

thesis, by showing the start point for each aspect which required research for the 

development of the arch structures. 

The main body of the research is contained in Chapter Six. It deals with the testing and 

analysis of a number of arch structures, with the aim of developing design criteria for 

SLT arch bridge structures. It is a chronological report of the research programme, 

explaining why each test led to the next. It contains large extracts from published papers 

which reported the research as it progressed. This contains some of the results, as this 

was necessary to explain the experimental processes. However, the following chapter is 

reserved for the full report of the results. 

Chapter Seven is the complete report of the data from all test bridges, with a view to 

concluding the overall findings. At the beginning of the research, comparisons were made 
between timber arches and those made from other materials. The timber arches were 

considered to be good in compression with significant bending capacity. It was therefore 
deduced that the very shallow arches may act as a combination of a beam and an arch, so 
tests were designed to investigate this. The data showed good correlation between elastic 

analysis and tests. 
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Although this thesis indicates that reliable design can be achieved by using elastic 

analysis, there are other factors which cannot be taken into account by such analysis, the 

most significant factor being the lateral tension holding the laminates together. This 

tension creates the friction necessary for load transfer and it reduces, with relaxation of 

the steel bars and changes in moisture content of the timber. Chapter Eight extends the 

test results by adding parametric data so that these other factors can be taken into 

account. This is done by equating each parameter affecting the strength of the arches to a 

common factor - stiffness. From these relationships a generic formula is derived for the 

assessment of stiffness for a working envelope of arch shapes and sizes. 

The overall objective of this project is to provide the Construction Industry with a 

simplified design for foot bridges and vehicle bridges which may be transferable to 

public road use. This objective was inspired by a Department of Trade & Industry (DTI) 

International Technology Mission [4] in 2000, led by the Author, which toured 

Scandinavia to look at their solutions. Chapter Nine contains the conclusions from this 

study which could help towards that goal. It goes on to point out the future work 

necessary to complete this design technique and take the work forward to new goals. 
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CHAPTER2 

2 BACKGROUND AND FRAMEWORK TO PROJECT 

2.1 Background History of Forestry Commission Estate 

The Forestry Commission (FC) holds and manages the largest land area estate in the UK, 

on behalf of the General Public. It carries out commercial forestry but, very importantly, 

it provides recreation and access facilities for the Public. 

"The mission [5] of the Forestry Commission is to protect and expand Britain's forests 

and woodlands and increase their value to society and the environment. " 

In this enlightened time the public landholding is primarily used to improve the health of 

the Nation and demonstrate environmental excellence. Commercial forestry creates 

approximately half of the funding for these activities (E82m in the year 2005) but the 

organisation depends on Government grants to balance the books (E60m). The most 

vigorous development today is in providing all ability access to the Estate and 

constructing recreation facilities. At the same time, the commercial arm demands much 

attention in maintaining the access networks for harvesting the timber resource and for 

replanting. 

These activities require a large holding of roads, Figure 2.1, and tracks and paths which, 
in turn, have many bridges of all types. Through its eighty seven years of existence, many 

innovative designs of bridges have been built. Their design has been governed by 

availability of materials, loading and, of course, cost. These parameters have not changed 
but through time, the materials available and type of use have changed significantly. 
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Fig 2.1 Forestry Commission road 
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The FC estate is approximately I million hectares [6] with about 2,500 significant 

bridges. These bridges are rural, low cost designs aimed at maximising value for money. 

The 1500 (approx) road bridges are designed to take the largest lorries permitted on the 

public roads, as these vehicles need to enter the forest to load the cut timber. 

The construction of 44 tonne capacity bridges at a fraction of the cost of similar bridges 

on the public highways has required some compromise and much innovation, without 

reducing safety standards. Further pressure to innovate has come from the Public's recent 

obsession with the outdoors and Society's current interest in maintaining a healthy 

environment. The recently granted access rights [16] [17] have fuelled the development 

of many novel activities such as mountain biking and orienteering, which have increased 

the requirement for sustainable footbridges. Heavily used mountain-bike trails cause 

ground erosion, so timber paths and track sections are commonly built as a protective 

measure. These are becoming sophisticated features in order to add greater excitement 

and all are built from timber. New research into using timber for bridges and other rural 

structures is therefore in line with market forces. 
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2.2 International Development of Timber Bridges 

2.2.1 History 

In the developed world, small span bridges were generally built using timber until a little 

over one hundred years ago, when steel became plentiful. This was then followed by 

reinforced concrete. These new materials had the important advantages of lasting longer 

and of not rotting. In the meantime, many timber bridges were still giving good service 
but there was a lack of maintenance and a shortage of engineering expertise in timber 

design to repair them or to build new ones. About twenty five years ago a new interest 

began in timber, fuelled by the necessity to replace so many of these rural bridges 

throughout the world, made necessary by a lack of investment in the minor rural road 

network. There was a need, not only to replace and repair the old timber structures but, in 

fact, also many of the steel ones, which had corroded. 'Spalling' also became a common 
fault on concrete bridges, so action was required. 

2.2.2 Available Materials and Innovation 

During the 19'h century and before, there had been a plentiful supply, internationally, of 

good quality large section timber but, for a variety of reasons, this was no longer the case 
in the latter part of the twentieth century. Innovation was required to make up for the 

deficiencies of the small sized, fast growing plantation timber. Glue lamination was an 

obvious choice, to produce large sections from small timbers, but that required 

sophisticated precision engineering which increased costs. Stress lamination was 

explored by the Canadians in the late 1970s and the USA took up the development during 

the 1980s. It was then that Europe and Australia, who both had the same needs for many 

rural bridges, began to consider stress lamination. Soon there was an international 

collaboration and by the year 2000 there were sophisticated designs in many locations, 

using all forms of composite laminations, in attempts to increase spans. 

2.2.3 Timber Bridges around the World 

The UK had not been involved in a revival of timber engineering in bridges, except for a 
few very specialist structures, built more for aesthetic reasons than out of necessity. 
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Many UK rural bridges are, in fact, stone arches and they have survived the centuries 

well. However large vehicles used for modem agriculture and forestry were beginning to 

cause problems in the UK, and similar problems were identified in other countries. It is 

interesting to note that the USA has 577,000 bridges of which 42,000 are timber and over 
100,000 require to be replaced or repaired [7]. In Australia, there are 10,000 timber 
bridges on the eastern coast alone [Lembke - 1991] (8], mostly over seventy years old and 
also needing to be replaced or repaired. As the UK became industrialised before other 
countries, and consequently had fewer trees left, we now tend to have old steel, concrete 

and masonry bridges requiring repair or replacement. 

2.2.4 Timber Design Innovation in the UK 

Innovative Timber Engineering in the Countryside (InTEC) [9] was formed in the year 
2000 to help Timber Engineering develop in the UK. Its first task was to look at 
developments internationally. A full report was produced in the year 2000 about these 
developments with a view to Engineers in the UK forming partnerships or collaborating 

with others working in similar areas of Timber Engineering, in other countries. This 

marked the beginning of some sophisticated timber bridge engineering in the UK. The 

participating members are B RE [ 10], TRADA [II] and Forestry Civil Engineering [ 12]. 

They are maintaining international links and bringing new ideas to the UK. 

Although this group emerged from the three large organizations involved in Timber 
Engineering, it is now encouraging universities and smaller groups of Engineers to 
develop and share their ideas. It provides a free forum for all Timber Engineers and hopes 

to revive the discipline in the UY, through contact with international Timber Engineers. 

2.3 Timber Engineering in the UK 

2.3.1 The UK Timber Industry 

The timber industry in the UK consists of importers and forestry companies who are the 

materials suppliers, sawmills who provide basic processing and finally, the retail sector. 
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The UK produces 8.6 million cubic mctres [6] of timber per year and imports 52 million 

cubic metres of wood pulp, paper etc. The structural quality of the imported timber is 

generally higher than home grown timber, mainly Sitka Spruce. Because of its faster 

growth rate and resulting lower structural quality, most home-grown softwood timber is 

used for pulp and paper or in the construction industry for low grade structural uses. In 

the UK, there are very few specialist timber designers, only a small number of training 

establishments and a limited supply of specialist processors who can carry out 
fabrication. As a result of this, Timber Engineering here is not big business. 

2.3.2 Markets 

There are, however, large markets with excellent opportunities for timber to replace steel, 

concrete or plastic. Sustainability is becoming the key to acceptable development in the 

UK and timber has the credentials to fulfil many of the criteria. House building is set to 

increase substantially and thousands of new and replacement bridges are required. 

2.3.3 Timber Engineering Designers 

Building Research Establishment (BRE) [10], Timber Research and Development 

Agency (TRADA) [I I] and a few consultants e. g. Buro Happold and Arup, have worked 

over the years to maintain some momentum in specialist Timber Engineering but without 
Institutional involvement, there could never be fundamental research and training. 

Fortunately Scottish Enterprise made Forestry one of eight Cluster Industries in Scotland 

[13] and provided funds to set up the Centre for Timber Engineering (CTE) at Napier 

University [14] in 2002. The aims of CTE include training a new generation of Timber 

Engineers and carrying out research which will lead to innovative engineering uses for 

timber. Work here is already producing results and the hope is that it will grow to become 

a Centre of Excellence, to provide a developing industry with much needed Academic 

backup. 

2.3.4 Timber Resource 

Although most of the UK's timber is imported, there are good reasons to use home grown 
timber for high value added products, where there is more profit to be made. A full life 
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cycle analysis would include the C02 emissions from transport of timber, thereby 

reducing the sustainability of imported material. Presently, most home grown softwood is 

pulped or chipped so, in order to develop high value uses for fast growing Sitka Spruce 

and Scots Pine, they must be used as whole wood products. To do this successfully, their 

weakest properties need to be designed out. Timber must be treated with preservative and 

reliance on bending strength needs to be minimised. Useful developments have recently 
taken place with timber cladding and wall studding for timber frame houses, but Public 

acceptance must be enhanced. A World in Action [ 15] television programme, ten years 

ago, discredited timber frame houses by highlighting the tragic results of poor 
workmanship. It is thought that one way to increase Public confidence could be to build 

timber bridges on public roads and display what this 'secondary' structural material is 

potentially capable of. 

2.3.5 Timber Lamination 

That thought process led to lamination as being the only way to produce large, strong 

sections from small timbers. However the UK does not have a glue lamination industry or 

any Laminated Veneer Lumber (LVL) factories. These products need large markets, 

require enormous investment and only utilise stable, dry, high quality timber along with 

toxic glues. These facts led to consideration of the potential for Mechanically Stressed 

Laminated Timber (SLT) with high yield steel stressing bars to provide lateral tension. A 

search of international practice showed that research and development was advanced and 

that the technique was successful and of interest for development in the UK. However, it 

was noted that the span capabilities of slab decks were limited and the cellular decks used 
in other countries would not be suitable for the damp conditions in the UK. Specific 

research would therefore be required, at least to adapt existing technology and to develop 

some new ideas. After some deliberation it was decided that SLT arch construction might 
be a way of overcoming the long span problem in a wet climate, whilst utilising the 

compressive strength of timber. 
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2.3.6 Mechanical Stress Lamination in the UK 

The development of stress laminated timber decks in the UK is still quite modest but as 

research results are published in the UK, interest is expanding. There are about thirty 

permanent bridges around the UK, designed by the Author, who also supervised their 

construction. Many more are planned for the coming years. At this time, development is 

being spearheaded by Napier University with some Forestry Commission funding, under 
the timber research initiative known as InTEC [9]. 

The main areas of SLT development will involve: 

which home grown species should be used 

treatment of the timbers 
deciding on a cost effective stressing system 

timber lengths 

position of stressing bars 

maintenance 
foundations 

long spans suitable for UK climate. 

The construction of these bridges has been hampered by the lack of a network of timber 
fabricators and stress graders. The UK industry is set up to produce treated sawn timber 
for processing on site, except for the few timber framed housing specialists. There are 
very few companies who will stress grade, cut and drill accurately, then treat timbers for 

special structures. This facility is easily available in Europe and hopefully will develop as 
the market grows in the UK. This is where Forestry Cluster industries can help. 

2.3.7 Other Timber Research in the UK 

Most research in the UK is industry driven and is aligned to the biggest market, which is 

at present, housing. Much effort has gone into the development of Structural Insulated 
Panels (SIP), which are Orientated Strand Boards (OSB) with insulating material 
sandwiched between. These panels will lead to low cost, well-insulated homes and 
industrial sheds but Public acceptance will still take time. Presently there is also work 
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being done on flitch beams, OSB webbed T beams, timber cladding etc. and all research 

should help to build Public confidence in timber as a primary structural material. 

2.4 UK Bridge & Recreational Requirements and Opportunities 

2.4.1 Current Access to the Countryside 

England has approximately 190,000 krn (118,000 miles) of footpaths, bridleways, by- 

ways and other rights of way but the Public were not permitted to stray from the paths 

until October 2005, when new legislation [16] allowed them restricted access to private 
land. These routes are the most important way for visitors to enjoy the countryside, and 

are also useful for local people to access shops, schools and workplaces. Highway 

authorities and landowners have a duty to maintain bridges over natural water courses, 
including farm ditches, to provide access for the Public. Due to pressures on capital 

expenditure over the last fifteen years, many bridges have not been maintained and there 

is now a backlog of sub-standard bridges. Added to that, access authorities (National 

Park authorities and the local highway authorities) have powers under the Countryside 

and Rights of Way Act 2000, [16], to make agreements with the owners and occupiers to 

improve routes on to newly mapped open access land. This will inevitably lead to the 

requirement for more, new structures. Scotland has its own independent legislation, [17] 

but the general theme remains the same - to increase safe access to land for the General 

Public. 

2.4.2 New Footbridge Requirements 

The number of new or replacement footbridges and small vehicle bridges required in the 

UK at present is unknown but a conservative estimate would be at least two thousand. 

Such a capital outlay is not readily available but there are many funding agencies, 

meaning that simple low cost bridges, which could be assembled by volunteer labour, 

could find a ready market. 
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2.4.3 Funders 

The Office of the Deputy Prime Minister (ODPM) [84] provides funds to encourage the 

Public into the countryside in an effort to improve health. This has been used extensively 
in recent years to fund recreation bridges as well as other facilities which can be built 

from timber. Lottery funding is also available as well as local enterprise funding and 

some from private companies but direct Local Authority funding is most common. In 

Scotland, most of the new bridges for access are being financed by Local Authorities and 
Enterprise groups, as opposed to land owners. 

2.4.4 Funder Specification 

Because of the ODPM initiatives and the new access legislation, which also applies in a 

similar way in Scotland, there are many new opportunities for timber structures in the 

countryside. Timber fits well with the initiatives which go hand in hand with 

environmental and sustainability issues. People seem to like timber, especially in the 

countryside and funders are happy because timber structures tend to be lower in terms of 

cost. Home grown timber will always be the preferred option as it does not incur large 

transport costs and is, therefore, more sustainable. However, it is generally of small 

section and poor in bending stress, making stress lamination one way of overcoming 

these problems. 

2.4.5 Timber Activity Structures 

Interesting and exciting activities are valuable in attracting people and encouraging them 

to take exercise. Walking is still by far the most popular activity but the young are being 

attracted in very large numbers by mountain biking. This results in severe ground erosion 

so timber structures are often used to keep the riders off the ground, where soils are 
delicate or wet. This is leading to a significant number of new structures throughout the 

UK and is a very good opportunity for the utilisation of stress laminated timber. Viewing 

platforms and lookout towers are also in great demand so that the Public can gain 

maximum value from viewpoints in the countryside. A recent development is the creation 

of timber sculptures and interesting artefacts in the countryside. These exhibits range 
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from specialist timber forest furniture to tree-hanging mirrors, but all include the 

innovative use of timber. Fi,, ures 2.2 wid 2.1 show ,i titilbershelter iiid viewing platform. 

2.4.6 Timber Environmental Structures 

Wetlands are a main target in recent government initiatives. Millions of pounds are being 

spent on improving habitats and raising water levels in order to provide catchment 

storage. These areas become high quality recreation facilities and produce yet another 

market for timber structures in the shape of boardwalks. Medieval and archaeological 

sites are also of great interest but again the Public needs to be channelled away from 

important relics, to prevent the risk of damage to them. Many boardwalks and bridges 

are required to serve this purpose, Figure 2.4. 
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2.4.7 Specialist Recreation Structures 

Treetop walkways are becoming very popular, enabling the Public to gain a 'bird's eye' 

view of the forest from unusual and exciting vantage points, Figure 2.5. These are 

complex structures but again, stress lamination can fulfill many of the requirements. 
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Fig 2.4 - Boardwalk at Salcey 

Fig 2.5 - Aenal walkv, -ay Salcey 
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2.4.8 Private Recreation 

Wood for Good ( 18] launched a campaign in the year 2000 to increase the General 

Public's desire to have wood in and around their homes. In only five years they have 

increased the public's interest from 18% to 40% and the patio decking industry is now a 

major part of the UK's 700,000m 3 increase in annual wood consumption. 

2.4.9 New Road Bridge Requirements 

Although the greatest market in the UK apart from housing is recreation, timber road 
bridges for 44 tonne vehicles could increase public confidence in timber as a primary 

structural material. That makes this use of the material especially important. At present 

there are very few bridges of this type because of the small sizes of timbers available. 
However, Stress Lamination can overcome the problems of dimension with multi- 

member structures. Cellular boxes are not considered to be a good idea in the UK because 

they would trap damp air and consequently rot. 'T' beam structures require Laminated 

Veneer Lumber (LVL) beams which are unavailable in the UFý, and importing them 

would not be cost effective. However, SLT arches supporting SLT flat slab decks will 

work. SLT space-frame decks will also increase spans by increasing inertia while 

allowing a drying wind through the structure. This is seen as further potential work 

extending from this research. 
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CHAPTER3 

3 FORESTRY COMMISSION BRIDGES 

Low Cost Bridges and Large Culverts on Forestry Commission Estate 

- Minor Public Roads and Public Rights of Way bridges 

3.1 History of the Forestry Commission Estate 

The FC was formed in 1919 by taking over large estates in the UK and planting suitable 

trees for the, then, perceived markets. Many of these estates were on poor damp ground 

and Sitka Spruce, from Vancouver, was chosen as the most likely species to thrive. The 

estates had stone arch and steel beam bridges with gravel roads, which were suitable for 

the tree planting traffic. However, after the Second World War, stronger roads and 

bridges were needed for the first extraction lorries, which had increased in size to 20 

tonnes. One of the most innovative ideas implemented was a design using old tram-rails, 

which were being removed from major town centres all around the country. Six hundred 

bridges were built by placing the 'T' rail sections side by side and filling the gaps with 

concrete, Figure 3.1. Five hundred of those bridges are still in service, fifty years on. 

Many other innovative designs were tried but none as successful and low cost as the 

tramrail bridges. Much innovation has also been developed in building low cost 

unsurfaced roads. 
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Footbridges were usually rough structures, built by Estate staff that had little or no 

engineering knowledge. They would often be made by using round timber logs as beams 

with deck boards nailed directly to the beams. This would frequently cause a split on the 

top of the beam, into which water would seep, resulting in undetectable intemal rot in the 

heartwood and sudden failure. There were, however, some good examples and also the 

occasional fine suspension bridge from the Victorian era. One particularly interesting 

innovation was the 'bucket bridge' which is a one-person bridge, the person requiring to 

be very strong in order to pull against the catenary, Figure 3.2. 

It was not until legislation began to control safety that a new approach to the design of 
footbridges was put in place. 

3.2 Introduction to Forestry Bridges 

Forestry bridges are required to take all the loads which are legally imposed on public 

roads but some compromises in design can be made because of slower speeds and low 

usage, without increasing risk. These factors reduce costs significantly. There has been a 
debate for some time on the proposal that similar bridges could be used on minor public 

roads, especially as there is now a need to replace quite a few on the UK's failing 
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network. Further, there is a good economic case for converting some of the minor public 

roads themselves to a forestry road spccirication [9]. 

Footbridge design was given some guidance from British Standards but it was geared to 

urban design where durability against vandalism is a major factor. Lower, more realistic, 
loadings were defined in 1984 in a Countryside Commission Handbook (19], about to be 

replaced by a similar book 'Path Bridges' [20], and are presently used by the FC. 
Footbridge construction in the UK has grown exponentially over recent years at the same 
time as extra responsibilities have been placed on landowners for the safety of the Public. 
This has resulted in accurate Engineering design which can be certified, in order that 
insurance policies can protect owners. The FC standard designs are used by many public 
authorities and estates throughout the UK, so there is an extra responsibility to achieve 
durable, safe, economic and aesthetically pleasing structures. 

References will be made to a number of reports and field visits around the world, by the 
Author, concerning rural bridges. They are described as background to this research in a 
review in Appendix 6. This text will concentrate on crossings spanning between 2m and 
15m because they are the most usual on public roads and the focus of this research 
programme is to produce design guidance for low cost timber bridges, suitable for 

pedestrians and, eventually, heavy vehicles. 

Many of the current rural road bridges are, in fact, masonry arches. They are usually very 

strong but of rigid construction and therefore susceptible to frequent heavy loads. They 

were designed for horses and carts but are also able to take intermittent heavy loading, if 

given time to 'settle' between loadings. An assessment of these structures by the MEXI 

method [2 1 ], approved by the Department of Transport, can often show that the bridge is 

strong enough for the loads although there maybe concerns over durability. This becomes 

a major issue when frequent timber harvesting traffic travels over these old rigid 
structures which have only experienced, on average, one heavy load per month during 

their lifetime. Often they are retained for light traffic only and a bypass for heavy 
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vehicles is provided. This is where the forestry specification is well suited. Figure 3.3 

shows a recent example of this designed by the author at Brenchoille in Argyll. 

Fig 3.3 - Substitute steel and timber road bridge Brenchoille, Argyll 

3.2.1 Forestry Commission Bridge Designs Standards 

Bridges are provided for pedestrians, livestock, horses, cyclists, light vehicles, 
Construction and Use traffic [22] or special vehicles. They have abutments, wing-walls, 
decks and parapets. They need to permit the passage of aI in 100 year flood without 

causing damage to the bridge or the flood plain. They also need to look appropriate in 

their environment and their cost must be within the budget. A good design will take all of 

these factors into account and provide the optimum solution within the constraints and 

guidance given in relevant legislation and codes of practice. Above all, the materials must 

come from a sustainable source, environmental impact must be minimized and Life Cycle 

cost must be optimized. 

3.3 Vehicle Bridges 

3.3.1 Deck Specification 

Design generally follows BS 5400 [23] and the relevant Department of Transport 

Memoranda but savings are made where possible, usually resulting in a slight 

compromise of the official codes. 
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3.3.2 Deck Specification - Departures from Standards 

The design of forestry bridges can legitimately depart from highway codes of practice 

because these are generally upland bridges situated near the river sources, resulting in 

smaller catchment areas. This usually means that bridge decks are relatively close to the 

river beds, so reducing the consequences if a vehicle were to drive over the edge. The 

speeds are restricted because of the loose road surface and tighter geometry so there is 

reduced risk of colliding with a bridge parapet. Drivers tend to be more cautious on 

gravel roads and in fact there are statistically fewer reportable accidents in Sweden, 

where most public roads have gravel surfaces (4]. For these reasons any sort of 

containment barrier is considered unnecessary and a sturdy pedestrian parapet is usually 

substituted to help drivers align themselves to the bridge span and also to protect walkers. 
This modification means that edge stiffness to support a parapet becomes unnecessary 

and allows the bridge to act like a single beam, resulting in better lateral load dispersion 

and, most importantly, a considerable cost saving. 

3.3.3 Deck Specification - Fatigue Loads 

The lower number of vehicles using the bridges will mean that durability against constant 
dynamic loadings can be reduced and fatigue from stress reversals is negligible. These 

factors allow much design flexibility. For example, beams can be spliced at mid span and 
bearings can be reduced to a sheet of bitumen felt. 

3.3.4 Deck Specification - Timber in Highway Bridges 

Timber is used for forestry bridges as a primary structural element. Timber is excluded 
from British Standard BS 5400 - Highway Structures [23]. However the new Eurocode 5 

part 2 (51] deals with timber design for bridges, so it may ease the path for the 
introduction of timber bridges on public roads. It is understood that the current BS 

ignores timber because the joints can become loose with age, through wear and rot, and 
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are considered to be below the required durability standards. Many new advances in 

jointing now supersede that argument and timber is an abundant low cost material, well 

suited to highway structures. Most other countries around the world permit timber for 

highway bridges and recent discussions with the Department of Transport suggest that a 

well designed timber bridge will be permitted in the UK. Figure 3.4 shows one example 

of many timber bridges used on public roads in Norway. 

Fig 3.4 - Timber truss and SLT deck bridge over motorway near Oslo, Norway 

3.3.5 Deck Specification - Deck Waterproofing 

Salt is not used on forest roads in the winter, so waterproofing of concrete deck structures 
is not necessary and timber decks do not need protection. This simplifies construction, 

saving capital and avoiding costly maintenance. 

3.3.6 Deck Specification - Simple Spans 

Square spans are usually specified because they save money in construction and avoid 

unequal lateral forces which twist the deck. It is usually more expensive to build a shorter 

span skew than a longer square span because of the special details and the inevitable 

mistakes and bad fits. It always pays to keep structures simple and thus have a wider 

choice of contractors who can construct competitively. 
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3.3.7 Deck Specification - Deck Width 

The decks should be 3.5m wide. This is the optimum to pen-nit large specialist vehicles 

without allowing two way traffic and keeping the structural costs down. Beams are 

generally concentrated beneath the wheel tracks of the heaviest loads and the narrow 

width ensures they cannot stray from that line. Large wheel loads between beams require 
bigger, more expensive deck boards. 

3.3.8 Deck Specification - Deck Weight 

Deck structures are designed to be as light as possible. This is a particular advantage 

when foundations are on poor ground. A steel beam and timber deck is light but the solid 

timber stress laminated deck could be even lighter. Steel beam lightweight decks are of 

modular construction and can be dismantled easily. This is an advantage if abutments 

need to be repaired and they are often the best solution for re-decking onto existing 

abutments of less than certain ability. 

3.3.9 Deck Specification - Loading 

The loads cannot be changed from those specified for the public road system. This means 
that HA (24] (The Department for Transport statistically derived loading for the design of 

public highway bridges) is adopted but some saving is made by applying the minimum 

number of HB [24] units. HA is a statistically derived load which allows for all vehicles 

permitted on the public roads without special permission and takes account of all 

additional features e. g. dynamic, overload, bunching. These are generally relevant but 

there is a little spare capacity because e. g. bunching can never become an issue on a 

single lane bridge. HB is a specialist oversize vehicle not normally allowed for on minor 

public roads. The minimum allowance, 25 units of HB, is designed for as it does not have 

a greater effect on short spans than HA. Spans of less than 10m are not usually adversely 

affected by wind loads. Footbridges, on the other hand, are designed for wind loads [25]. 
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3.4 Vehicle Bridge Types 

Two types of deck and beam structure have become the FC standards over recent years 

and they are suitable for use on minor public roads if the Local Authority agrees with the 

derogations built into the design: - 
Pre-stressed Concrete 

Steel Beams and Timber Deck 

3.4.1 Pre-stressed Concrete 

These bridges are based on a long established design devised by the Cement and 
Concrete Association in the 1950s. The deck is made from inverted pre-stressed "T" 

beams produced in a pre-casting factory. They are laid on abutments side by side and in 

situ concrete is poured in the voids between the beams and over the top of the webs to 
form a solid concrete mass. The Forestry Commission has built about three hundred of 

these bridges and they have been trouble free for between thirty and forty years. 

This is probably due to the virtually crack free soffit, which is a result of the pre-stress in 

the beams keeping the underside of the deck in compression. When a heavy load passes 
this goes into tension but it happens so seldom and statistically, when it does, it is likely 

to be when the air is dry so no moisture enters the structure and deterioration is therefore 

minimised. 

These bridge decks are heavy, necessitating excellent abutments and, therefore, good 
ground. They require good access and preferably a reliable source of ready-mixed 
concrete. A highly skilled construction workforce is necessary to fix the reinforcement 

steel and to place the concrete as shown in Figure 3.5. This is an excellent solution but 

there are a few limitations. In the past, the kerb was factory cast in-situ with the outer 
beams, greatly simplifying the site works but the costs of this luxury have spiraled out of 
control. Site cast kerbs are very expensive as new work regulations demand a full 

scaffold on site to cast the kerb. Other forms of kerb beam are being tried, in attempts to 
keep costs down. However, when these bridges are complete, bare concrete is always 
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visible in elevation, which clients regard as ugly in rural areas. They are also difficult to 

fix parapets to, which is another disadvantage. 

The costs have, in the past, been extremely competitive but they rely on a low cost supply 

of beams. These are no longer manufactured in Scotland, so transport costs have become 

a more significant element. 

These may well be the first choice for a minor public road bridge because of their 

durability but e. g. as a bypass bridge perhaps a less pen-nanent solution, which could be 

dismantled easily, would be more appropriate in some circumstances. As with most 
design briefs, each case will have different conditions and a best solution. 

3.4.2 Steel Beam and Timber Deck 

This is a design introduced to the Forestry Commission about twenty years ago and one 

which deviates from the BS codes more than the pre-stressed concrete deck. It is based on 

a design used for Estate bridges one hundred years ago, when steel beams became 

available. In those early bridges the steel corroded badly and the timber was not pressure- 

treated so they deteriorated quickly and gained a bad reputation. The new design utilises 

modem materials and processes and has proved to be the first choice of bridge in the span 

range to l5m for the past fifteen years. 
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The beams are standard hot rolled high tensile grade Universal Beam steel sections which 

are galvanised immediately after fabrication. This ensures a maintenance free life of fifty 

years in the rural environment. They are arranged in two pairs, forming two sets of "rails" 

across the span. Timber runners are bolted to the top flanges and transverse timber deck 

boards are bolted to them. Where high durability is required, longitudinally tensioned 

SLT deck sections should be used directly bolted to the top flanges of the beams. 

Bracing, on spans up to I Orn, is provided by diagonal timbers bolted through to the deck 

timbers. On spans from I Om to 15m, steel channel diaphragms are provided at 4m centres 

and 15m to 20m diagonal steel channel bracing. It is a simple solution but great care is 

required during construction to ensure the necessary durability. Regular maintenance is 

required to ensure in-service performance. 

About fifty similar bridges have been built over recent years and only two have given any 
trouble, both with the same problem - the deck boards became loose. In one case, 
500,000 tonnes of timber travelled over the bridge in a short space of time and tracked 

vehicles also used it. This caused some loosening of the deck boards and as immediate 

maintenance was not carried out, progressive loosening resulted. In the other case, the 

road alignment was poor and large vehicle rear bogies scrubbed across the surface, 
loosening the boards. In each case the remedy was to use larger coach screws and deck 

runner boards. The design is now well tested and there is confidence that those bridges 

will give good service for at least their fifty-year life, providing that the deck boards are 

maintained and changed every fifteen years. 

The main advantages of the steel beam timber deck design are: 

0 ease of construction 

* can be built in any weather conditions 
0* lightweight on the abutments 

can tolerate some differential settlement 

ease of fixing parapets 
fits well in the forest environment 
low cost. 
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Figure 3.6 shows two examples of steel beam and timber deck bridges in a forest 

environment. 

This design had been used in a public road situation where a masonry arch could not take 

forestry traffic. Instead of replacing the existing bridge, it was retained for restricted 

traffic and a bypass bridge was built for heavy vehicles. This was part of a major scheme 

at Brenchoille in Argyll where the public road was ripped up and graded to form a forest 

type road, Figure 3.3. 
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Fig 3.6 - Steel beam and tinibcr deck- brl(lgcs - Dalby and Bcnniorc 

3.4.3 Stress Laminated Timber 
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Because timber is the FCs commercial product, and in the interest of economy and good 

countryside aesthetics, there has always been a desire to construct timber vehicle bridges 

on the FC estate. This, however, was not possible with the small size of harvested timber 

in the UK. Work on vertical stress lamination became known in the UK about five years 

ago and a 4m span bridge was built as a prototype in 2001. A number of commercial 

bridges have now been built but the spans are restricted because the maximum timber 

size easily available in the UK is 250mm. The designs have been based on the Australian 

model, current UK codes of practice and Eurocode 5. Figure 3.7 shows a flat slab stress 
laminated bridge for large vehicles at the maximum span permitted by the timber sizes 

available. Before this design can be really useful, a method of creating a longer span is 

required. The current research is aimed at the design of arches supporting flat decks. In 

.0i, I.. zjzdý, w II 
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the USA and Australia they have built cellular decks for longer spans but these would not 

be suitable in the damp UK climate. This subject is discussed at length later in this report. 

3.5 Footbridges 

3.5.1 Deck Specification - Loading 

BS 5400 [23] gives one footbridge loading of AN/m 2 which produces strong, durable, 

vandal-proof structures but they are expensive and not elegant enough for the 

countryside. The Department for Transport has adopted this loading for bridges over 

roads. The FC is not legally bound by BS 5400 and uses loads from a joint publication 

with the Countryside Commission [ 19] which gives a countryside crowd loading at 2/3 of 

BS 5400 and a non-nal loading at 1/2. These loadings must accord with use and often 

footbridges have to carry livestock, cyclists or utility vehicles e. g. quad-bikes. Appendix 

8 shows a table of loading for different uses of footbridges. 

Design for dynamic loads is becoming more important as decks become more slender. 

The most public failure in this context was the Millennium Bridge, over the river 

Thames. Pedestrians transmit vertical and horizontal surges of load which can become a 

problem on slender and long span bridges. Design normally uses the static loads given in 
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codes which are adequate unless the structure's fundamental natural frequency (FNF) lies 

within the range of the frequency of the applied loads. Walkers transmit load at about I- 

2Hz while runners and jumpers transmit at about 2.5Hz, so to be safe, a footbridge should 
have an FNF above 5Hz which is what BS 5400 Pt2 Appendix Cl p46 requires. If the 

FNF is below 5Hz the acceleration must be within certain limits. Today, countryside 

structures are being designed within the danger zones so the effects of dynamic loads and 
the problems of resonance must be evaluated and considered in the design. 

3.5.2 Parapets 

Bridge use not only demands different specific vertical loadings, it defines the parapet 
design and the width of deck. Road bridges in forestry do not have containment barriers, 

which is one of the cost savings. This is justified because of the low speed limits on 

gravel roads in the forest. Bridge parapets are normally Im high, unless there is a 
dangerous drop. The higher parapets needed for horses and cyclists are not necessary on a 

road bridge because these are 3.5m wide and the users do not need to go near the edge. 

On non-vehicle bridges, horses impose high point loads from hooves, which affect deck 
boards [Appendix 8]. These animals need to feel secure, so horse bridges must have a 
high natural frequency. They, and other livestock, impose much greater lateral loads on 

parapets so posts must be designed to take these loads. On an English public right of way, 

parapets have to be 1.8m high for horses but 1.6m is accepted by the British Horse 

Society [26]. 

Generally, normal handrails are Im high and have to sustain 0.74kN/m of horizontal line 
load. However parapets for crowd load, or where there is a drop of more than 2m, will be 

1.2m high and be designed for 1.4kN/m of line load at handrail height. The parapet must 
be 1.4m high for cyclists. A further requirement in a relatively busy location is that the 
design should prevent people from climbing on the rails. This requires vertical infill 

panels or steel mesh over the rails. This must be arranged so that children and small pets 
are safe. The spacing of infill must be small enough to ensure a child does not get its head 

stuck but large enough so that it does not get a hand or finger stuck. 
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All of these requirements can interfere with the view for children and wheelchair users so 

the special design, shown in Figure 3.8, has been devised for an all- ability access bridges 

which caters for the combination of needs. Appendix 9 contains a useful spreadsheet 

which designs posts and rails for all combinations of use and loading. 

3.5.3 Choosing a Bridge Type 

The choice of bridge will depend on span, use, cost and importantly, access. Unlike road 
bridges, footbridges are often built where there is no vehicle access and all materials have 

to be carried to site, which defines design. The availability of materials will affect cost 

and span and the ground conditions will affect abutment design. These many variables 

mean that a designer needs a range of designs to choose from and may make a decision 

e. g. to increase the span in order to lower the cost of abutments and thus affect the cost of 

the whole bridge. 

3.5.4 Aesthetics 

Aesthetics are a very important aspect of footbridges. These bridges are usually situated 

on walks which are intended as a countryside experience and, as such, become focal 

points for walkers to stop and look. A bridge in the countryside is always more that just a 
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place to cross a river or a stop for enjoying the view. It often has a certain spiritual value 

-a place to contemplate - an aspect which can be very important to users. 

"Like holding hands, a bridge embodies that feeling of forging a link across a void, 

bringing together what was once separate" 1271. 

With this in mind, every effort should be made to ensure that the appropriate bridge is 

chosen and that each particular location gets the bridge it deserves. Figure 3.9 shows a 

very good example of a bridge in context with its environment. It sits below the horizon 

with a shape to reflect the location. The material, timber, and its colour, merge with the 

surroundings to create a balanced aesthetic. 

A 

'Nip 
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3.6 Footbridge Types 

The FC currently specifies three types of footbridge to cover most requirements. 

Occasionally a very long span is requested and suspension or cable-stay design is used, 

but that is the exception. 

o Glentrool 

o Aerial Mast 

9 Stress Laminated Timber 

3.6.1 Glentrool 

For many years the FC employed a standard design called the 'Galloway'. Its uniqueness 
involved the manner in which the deck and handrails fixed to the beams. As previously 

noted, timber beams which are split by fixings allow water to enter, causing rot, so a 
frame approach was developed in order to allow the deck support and handrails to be 

clamped onto the beams, thus avoiding puncture of the timber beams. The design reached 

the public domain and many hundreds were built by the army as well as estate owners 

etc. However, builders ended up taking short cuts and consequently, produced dangerous 

bridges. A very important lesson was learned about those designs - which ones must be 

controlled by Engineers and which ones can be left to amateurs. After this became 

apparent, the 'Glentrool' was developed as a replacement for the Galloway, Figures 3.1 Oa 

and 3.1 Ob. 

The Glentrool utilizes steel or timber beams with steel angles above and below the beams 

which project out to support the handrail. This is a torsional restrain mechanism designed 

and patented by the Author, as part of the Aerial Mast Bridge project (Section 3.6.2). The 

deck and handrails are always timber and the beams are usually steel. The main design 

philosophies are to allow air flow around timberjoints to avoid rot and for a design which 
is easy to build on site and cannot result in a dangerous structure, even if short cuts are 
taken. This design is very economic and is usually first choice for spans up to 8m span. 
For longer spans, the beams become difficult to handle and unless there is vehicle access 
to site, another design may be preferred. 
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The design does not include any diagonal bracing and it has been suggested that it could 
fail through lateral torsional buckling, as the lateral angles do not provide sufficient 

restraint. However, the structure is fixed at the supports and acts as a grillage so it does 

not, in fact, need bracing which would be, in any case, difficult and costly to fit. 

. 

"ii 4 
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3.6.2 Aerial Mast 

This design uses factory- produced triangular steel truss units, 3m long which are bolted 

together on site to produce beams of length up to 24m. The base and side of the beam is 

500mm wide for spans up to 15m and for spans between 15m and 24m the side is 

increased to 750mm. Beam units are laid side by side to produce a bridge of the desired 

width and they are linked laterally using steel angles 'U' bolted to the top and bottom 

tubes of the mast sections. A timber deck is fixed to the top of the beams, and handralls 

are attached to the lateral steel angles as shown in Figure 3.1 1. 

The advantages of this design are: 

0 Every piece of the structure can be carried to site. 

It is very lightweight. 

It 
'is 

easy to build. 

0 It has good torsional resistance. 

This design is very popular with Local Authorities and countryside groups because of the 

case of construction. All the component parts can be carried by two men to, often, 
inaccessible locations. More than one hundred of these bridges have been built in the last 

ten years since the design was patented by the FC, with the Author named as Inventor. 
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Figure 3.12 illustrates the diversity of the system. One bridge of 20m span was erected in 

one week, to replace a stone arch washed away in a flood just before a major cycling 

event. The other is on an SSSI on a beach and the steel was double dip galvanized for 

extra protection. After seven years of use, this bridge has weathered, so that it can barely 

be seen from a distance and is in perfect condition. 

I-ig 3.12 - Acria I iiias I I) ridgcs - 25111 spa ii in ý\ aicýs wid I 5ni in IýI ik:, Ia, i(I 

3.6.3 Stress Laminated Timber 

This is a relatively new design and the technical advantages are dealt with in detail in 

later chapters. The design was developed first as part of an overall plan to use more 

timber in rural construction for three reasons: 

" to utilize the FC product 

" to increase the Public's confidence in timber as a structural material so they might 

consider a timber frame house. 

" to improve the aesthetics of the countryside. 

These bridges can be built as simply supported flat deck spans, as shown in Figure 3.13 

or as two-pin flat arches which are not too steep to walk over, as shown in Figure 3.14. 

The flat slabs use more timber for the same spans but do not need such large abutments. 
The arches are very slender and have good visual appeal, but require sound foundations. 
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4 

About thirty permanent bridges have been built as part of the development programme of 

this project. They are becoming very popular and the demand has surpassed contractor 

capability so new contractors are being tutored in the construction techniques. 

Constructing bridges in parallel with laboratory research provides many opportunities for 

performance and proof testing. Already, the cost of building the bridges is reducing as 

confidence and knowledge increases. Although the aim is to build long span timber road 
bridges, there will always be a demand for this design of timber footbridge. 

The main appeal, apart from the low cost of materials, is the rigidity in the arch structures 

which have a span to depth ratio of up to I to 100. The bridges are developing a great deal 

of Public interest and achieving their goal of becoming focal points. The stress lamination 

technique will lead to many derivatives of similar design in the countryside. Research is 

on-going to try to find simple alternatives to the costly Dywidag [28] stressing bars and 

the hydraulic jacking process. Threaded bars have been used for small bridges in the 
laboratory where 2 tonnes of tension was sufficient. The long span bridges have proved 
to be very popular but it is the span range around 10m which will prove to be the most 

economic. Small bridges of that size are very lightweight and can be constructed off-site 

or on the river bank, and then lifted into place. 

, 
AWW 
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3.7 Culverts 

Culverts are commonly used under forestry roads for small catchments and relatively low 

flows. They are always used for taking roadside drain water but their use is not regarded 

as good practice in natural watercourses because of potentially detrimental effects on 
fish. 

3.7.1 Circular Pipes 

The smaller diameters were all made from concrete until ten years ago, when ribbed 

plastic pipes were introduced, Figure 3.17. Now these twin walled culverts are the first 

choice because they are light to handle and quick to install. They are not as strong as the 

concrete pipes and need to have the backfill properly compacted at the sides of the pipe 
before the top hardcore cover is placed, otherwise the pipe will be squashed. Some 

galvanized corrugated steel pipes, Figure 3.16, are still used for larger diameters but in 

acidic soils they can corrode quite quickly. Circular pipes are not recommended for 

natural watercourses unless they are sunk well below the stream bed, thus avoiding 
interference with the natural gradient and gravel makeup of the river bed. 

Fig 3.16 - Corrugated stccl culvert - corroding and too high above the strearn bed 
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3.7.2 Box Culverts 

These are factory-produced, rectangular boxes laid side by side to form a span over a 

river. Traffic usually runs on a reinforced concrete slab, cast over the top of the boxes. 

They can also have an adverse affect on the passage of fish up and down a river so, again, 

they must be sunk into the bed. Some designs have protrusions on the river bed face to 

catch migrating gravel and forrn a natural river bed for fish, Figure 3.18. These structures 

can be useful in special circumstances but a bridge is always the best solution if a good 

site can be found. Bridges leave the bed untouched, resulting in zero impact on the 

wildlife environment. 

J:. 
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3.7.3 Pipe Arches 

This is an innovative idea recently researched by 'FERIC' (Forestry Engineering 

Research Institution of Canada) [29] in Canada and some examples were observed by the 

Author, in Sweden, Figure 3.19. It is a useful crossing for forestry or minor public roads, 

where the height from the road to the river bed is not great enough to allow a full pipe. 

Proprietary pipe arches by "Annco" have been available for many years but are 

expensive and are therefore only economic for very large spans. On the other hand, 

circular pipes have been used in diameters up to 2400mm, often causing a barrier to fish 

and severe downstream erosion. A circular pipe can be installed with its invert below the 

stream bed, but this usually involves cutting some rock, is difficult to do and can cause 

great disturbance. 

This most recent development involves slicing a large diameter circular pipe along its 

length and using the cut section as an arch. Only half the length of circular pipe is needed 

as both pieces are used with a small overlap at the centre. This was considered many 

years ago but the problem of bearing at the springings has always been perceived as 
insun-nountable, at the correct cost. The proprietary An-nco arch specifies a concrete kerb 
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which is difficult to cast without the risk of pollution. The new proposal is to lay the cut 

edge into a galvanised steel channel section. This is not so much a mathematically 
designed solution, but a practical one which has been found to work. 

In the UK some trials are necessary to establish if a plastic pipe arch will sit in a channel 

without fixing. In Sweden, steel arches were used and they were tack-welded to the 

channels. 

3.8 Abutments and Piers 

Abutments are built to support the bridge and hold back the soil of the approaching road 

or path. For that reason, abutments often have wing walls attached to them. Their other 

main function is to raise the bridge high enough to avoid flood damage and to protect the 

foundation of the bridge. A support between abutments is a called a pier. This is 

positioned to shorten the beam span and usually has only to support a vertical load 

without being undermined. Bank seats are simple abutments built at the top of a slope 

which usually supersedes the requirement for wing walls. 

Abutments are built using four types of materials/construction - 
" concrete 

" gabion 

" reinforced earth - geotextile 

" timber 

- each one has its specific advantages and disadvantages. 

The choice of abutment for a specific situation will depend on: 

volume of traffic 

bearing capacity of the ground 

type of bridge it has to support 

availability of ready mixed concrete 

" availability of skilled labour 

" height of abutment 

" aesthetics. 
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The design bearing capacity of the ground is required, whichever abutment type is 

chosen. In Forestry and Agriculture, the cost of site investigation is usually not justified 

for small rural bridges so the likely bearing capacity is assessed by an experienced 

Engineer and the design is based on that. If the bridge is on high ground, the subsoil is 

most likely to be rock or a glacial mix of boulders and clay and it is usually safe to take a 
2 bearing capacity of about 300kN/rn . In lower ground, if the bridge is in a very flat area 

which is obviously an old flood plain, the maximum recommended is about 15OkN/rn 2. 

Settlement must also be considered in poor ground. Piers should only be built on rock 

outcrops for small bridges. The Engineer needs to be present when excavation takes place 

to ensure the assumed bearing capacity is achieved. New environmental regulations in 

2006 by the Scottish Environmental Protection Agency [30] will make it very difficult to 

obtain permission to build a pier for a small bridge. 

Bridge abutments are important structures from an environmental perspective. They 

provide sheltered areas for nesting. Certain species of bird particularly enjoy the secluded 
bearing areas, so it is good practice to build in a nesting box, Figure 3.20. It should be 

cast into the concrete with a slope outwards for drainage and have a small retaining strap 

to hold the nesting material. It is also good practice to leave little slits about 20mm wide 

and 200mm long for bats to sleep in. 

Fig 3.20 - Picture of nesting box 

48 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

3.8.1 Concrete 

This is the most durable, but unfortunately the most expensive material and on 

sustainability grounds, by far the most energy intensive. The manufacture of I torme of 

cement creates I tonne Of C702. A useful rule of thumb is that, for a 10m span, the low- 

cost bridge deck and its abutments are roughly equal in capital cost. As the span 
decreases, the proportional cost of the abutment increases. Mass concrete is always used 
because the cost of steel fixing to produce reinforced concrete abutments negates the 

savings in material, and skilled labour is not often readily available in rural areas. They 

lend themselves well to the addition of wing walls which are always necessary to support 

the road next to a bridge. Bare concrete looks unnatural in the countryside and in 

sensitive areas, should be hidden by stone facings, Figure 3.21. Although these are 

expensive, if they are used as permanent shutters the cost can be offset. This is only 

possible if small concrete lifts can be justified as the wall would have to be extremely 

strong to resist the pressure of a large pour. If ready mixed concrete is available, it is 

difficult to recommend anything other than a mass concrete abutment, especially for a 

permanent heavily used bridge. Figure 3.22 shows two typical examples of these 

abutments and their lack of visual appeal. 

49 

Fig 3.21 - Stone faced concrete abutment - Carribber bridge 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

Fig 3.22 - Concrete abutments 

3.8.2 Gabion 

These are wire baskets filled with selected size and quality rock. The durability of the 

baskets is always in question, when used as permanent abutments. In non-acidic water 

and without undue abrasion or indeed as bank seats, they should last the fifty-year life of 

the bridge. 

Their great attractions are: 

cost - half that of a concrete abutment 

aesthetics - look more pleasing than concrete -a matter of opinion 

safety - no risk of polluting the water with concrete 

fill material is often available on site. 

Their disadvantages are - 
life of the protective coating 

slumping and bulging as a result of poor quality filling 

span of bridge must be increased to keep bearing away from front face 

risk of vandalism 

cost of hand placement 

soft rock fill can dissolve or erode 

In practice, gabions often cost as much as mass concrete because of the hand placing of 

stone in the faces. If limestone or other chemically or dynamically unstable fill is used, it 
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will wash away and the basket will slump, especially if the BRC [31] stiff box type is 

used as opposed to the Maccaferri [32] basket, which is designed to slump and nestle. 

Vehicle bridges must have a substantial sill beam for the beams to bear on so that load 

spread is assured. Differential settlement is always possible with gabion abutments. This 

sill beam must be about 500mm back from the front face in case the wire on the 

vulnerable front face is cut or bursts. Catastrophic collapse could result from bad 

detailing of bearings. Vandalism is a problem near urban areas so this form of 

construction should be avoided near towns. Figure 3.23 shows a good example of well 
filled baskets but the sill beam is closer to the front face than would normally be 

recommended. This places extra stress on the front face. 

11, 

3.8.3 Reinforced Earth 
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This is a relatively new form of abutment for rural bridges but one with great potential for 

the FC or minor public road bridges. These are usually formed from pre-cast concrete 
face units about 150mm thick held back by steel bars, webbing or a matrix of geo-grid. 
As the face is built up, each unit is tied back and selected fill is compacted over the ties. 
When the abutment reaches full height a concrete slab is cast on top as the bearing for the 
beams. 
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This is an excellent form of construction where ready mixed concrete is not available and 

good gravel fill is readily available -a cornmon combination in upland Scotland on FC 

land. It is also the best solution for high abutments which are now becoming necessary 

with the construction of special bridges for wind farm access. They have to be built to 

suit shallow, steady gradients for the large cranes and the transport of generators and 

propellers. Normally, economy demands that abutment heights are controlled by the 

necessary flood waterway area and road gradients are designed to fit. 

Although pre-cast concrete face units are most common on major highway bridges 

gabions are more cost effective in rural situations. This means that geotextiles are best 

placed at 500mm between layers to coincide with the gabion layers. Trials will begin 

soon using used tyres as the front face, which could produce the most sustainable 

abutment ever used on FC land. However, the aesthetics will be poor and the correct 
locations will have to be chosen carefully. 

Figure 3.24 shows the geotextile in a roll and it can also be seen in place just below the 
large boulder. Figure 3.25 shows a large abutment built for a 700 tonne crane to erect 

wind turbines. After carrying several hundred thousand tonnes of material, over a very 

short space of time, these bridges suffered no damage. 

(If "j I 
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Fig 3.25 - Gabion abutment face to a geotextile abutment - Farr Wind Farm 

3.8.4 Timber 

Timber abutments were used extensively in the New Forest in the South of England, 

where durable hardwoods were available. Many now require to be replaced but only 

softwood is available. Although it has to be pressure treated, it is available at low cost. 

Past systems have basically comprised a front face of abutment and wing walls, filled 

behind with hardcore, Figure 3.26. However, modem designs will incorporate some form 

of tie back using a geogrid or timber ties like a Criblock [33] system. Most of these 

systems could suffer wash-out of the retained material if they are used in a fast flowing 

river, so location will have to be chosen carefullY. 
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Fig 3.20 Ncý% kwest bridge abutniciii 

-, 

-e 

iu. ý z 

53 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

A trial system was exhibited by Forestry Civil Engineering (FCE) (12] at an agricultural 

show in 2001 and tested under a new initiative called Innovative Timber Engineering in 

the Countryside (InTEC) [9], Figure 4.3. Construction is from sawn pine with chemical 

pressure treatment, after all drilling and cutting is complete. These abutments are most 
likely to be used where aesthetic considerations are high on the agenda. There will 

always be a risk of premature failure through rot, even with chemical treatment. 

3.9 Other Factors Affecting Bridge Design 

It is not enough to measure the width of a river and build a bridge strong enough to take 

the loads which need to cross. Today there are many other factors to be considered. 
Some are simply good practice but others involve legislation. 

Included in this category are: 

" flood design 

" environmental aspects 

" fish 

" energy equations and renewable materials 

" recycled materials 

" sustainability and whole life costs. 

3.9.1 Flood Design 

The Centre for Ecology and Hydrology - Flood Estimation Handbook [34] is usually 

sufficient to calculate the maximum flood which is used to calculate the bridge height and 

span in the UK. In 1999 this publication replaced its predecessor, the Flood Studies 

Report - 1975, but recent climate change, perceptions have demanded some revisions 

which are expected early in 2006. Even with revisions in the guidance, the FC has 

decided to calculate bridges on aI in 100 year return period and culverts on aI in 50 

year return period. However, these calculation methods are statistically based and 

specific river information is more valuable. Careful research is needed to trace past 
floods. Some of this can be done by local observations. Evidence of past flooding can 
often be observed in the form of residue marks on e. g. old church walls. Much flood 

information can also be gleaned by questioning local elderly residents, who can often 
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provide much valuable data. This information, together with statistical evidence and cost 

calculations regarding the consequences of a flood, is required in order to make an 
informed decision. 

3.9.2 Environmental Design 

Rural structures need to harmonise with their surroundings in colour, scale and texture. 

This is usually achieved, where possible, by using local materials for the structure or in 

order to hide unnatural elements. 

Local groundwater supports the natural flora and fauna of an area so, if it is drastically 

changed by a bridge or its approach road, it can upset the balance of an entire area. 
Wetlands should be avoided, as they are the most valuable and vulnerable. If they must 
be crossed, water must not be channelled. Instead, a boardwalk or a multi-pipe crossing 

should be built, so that the water can continue on its historic path and nurture the wildlife, 

Figure 3.27. 

-_e - 

There may be archaeological remains in the area which should either, not be disturbed or 
be catalogued before they are disturbed, or even spanned over with a bridge, Figure 3.28. 
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Local habitats must always be considered and Local Authority environment officers 

consulted before embarking on any bridge project. Badgers e. g. may live in the area and, 

as they need a run, bridge abutments require to be built back from the river to allow them 

clear passage at the water's edge. 

Care of the fish life is important and fish are protected by legislation from EA [35] and 
SEPA [30]. The basic rule is to avoid interference with the river and its bed during 

construction or as a consequence of the design. SEPA publishes excellent guidance, so 

there is no need for ignorance. In Spring 2006 a license will be necessary prior to 

building a bridge to ensure that damage can be minimized. This will not stifle activity 
because an excavator may, indeed, work standing in the river but it must be free from oil 
leaks and outwith the fish breeding season. The most common forins of environmental 

vandalism, in fish terms, are the creation of waterfalls with round culverts, or paving the 

bed under the bridge at a level higher than the natural bed. It is better to use arch culverts, 

not to pave and concrete box culverts can have nodules cast onto the base, or rough 

masonry, to catch migrating gravel which acts as a natural bed for fish, Figure 3.18. 

56 

I I, -, - 'SL I Owl- woodhank 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

3.9.3 Sustainable Bridge Design 

This is fast becoming the most important element of design because of the political 
implications. The funding for a project often comes from a well lobbied source which has 

made manifesto promises to an electorate. Recreation projects are all about health and 

education so bad examples must not be observable within the infrastructure. Commercial 

infrastructure will always offend someone, so if the environment is not offended the 

opportunities for objection are diminished. 

Factors that must be considered are: - 
" energy efficiency 

" material selection 

" construction waste reduction 

" air quality 

the visual environment and 

the general health and well-being of the users. 

This list is not exhaustive but these are the most important factors. 

A low energy structure should employ natural materials which have not had extensive 

processing and manufacturing inputs. Concrete (cement) and steel are high energy 

components, while masonry and timber are low ones. A well designed, sustainable, rural 

structure will use the minimum quantity of energy. When making these decisions it is 

important to remember hidden costs and not try to build the justification which is desired. 

These are common faults in 'sustainable' decision making. 

It is important to remember to include transport of materials -a major issue with timber 

which starts off with a zero energy rating. However, due to its bulk, transport fuel energy 
becomes a very large portion of the equation. On the other hand >50% of steel production 
in the UK is from recycled metal and cement production is now burning used tyres where 
they can. 
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Unfortunately, in our 'short- term Society' it is usually the minimum capital cost which 

matters most in the choice of structure, whereas the lowest whole life cost should be the 

criterion. A Life Cycle Analysis would take into account factors such as maintenance, 

manufacturing energy and eventual demolition. This sort of analysis very often shows 

that the lowest initial cost is not the lowest total cost. However, business is usually 

judged on this year's balance sheet, so it is up to the Engineer to achieve the best balance 

between sustainability and cost. 

Key factors are: 

" using timber for main structures, 

" keeping concrete use to a minimurn, 

" using steel where it is only really needed, 

" recycling materials where possible. 

Fig. 3.29 shows a typical simple log bridge. 
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3.10 Costs of Forestry Bridges 

Exact costs for forestry or minor public road bridges are almost impossible to estimate 
because of particular site conditions, availability of contractors and fluctuating materials 

costs. However average costs with relative comparisons are useful to help make choices. 

Factors affecting costs in the rural areas fluctuate with time but today the main ones are: 

" the wind farm projects competing for the local contractors 

" world steel prices 

" fuel and energy costs affecting delivery 

" concrete prices. 

A steel beam and timber deck vehicle bridge should cost the same as a pre-stressed 

concrete one - if beams are available - and should be about E800 per square metre of 
deck. This should increase for short spans because two abutments are still required and 
they will be roughly the same size, whatever the span. Similarly, the beams are heavier 
for long spans which will increase cost. The optimum span for cost is about 10m span 
where abutments and deck costs are approximately equal. 

A stress laminated timber deck should cost about half of the other two alternatives at 

construction, but the whole life cost may be the same, because its life may be about half 
On the other hand plans could change in twenty five years and perhaps the bridge may 
not be needed for fifty or one hundred years, so the true cost in that case would be half. 
Again, on the other hand, if waterproofing of the deck is well maintained, pressure SLT 
decks should last fifty years. Abutments will cost about the same as for the other designs 

of deck. 

Concrete abutments are about half the cost of an average 10m span bridge; gabion 
abutments are about half the cost of concrete ones. Timber abutments could be a little less 
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expensive than using gabions and geotextile abutments, using old tyres, may become the 

best value in the future. 

Footbridge decks cost less than heavy vehicle decks, which makes the overall cost more 

sensitive to the abutment cost. The secret of economic footbridge design is to keep the 

abutments simple, which means keeping them away from water and building them on the 

bank if possible. It is usually more economical to extend a footbridge span rather than 

build an expensive abutment. If these rules are followed, footbridges should cost about 
E600 per square meter of deck. 

The above estimates are capital costs and perhaps it would be more sensible to consider 
Life Cycle Analysis. This approach shows true costs and highlights the value of using 

timber or recycled materials. Many attempts have been made at this approach and most 

are skewed to show answers which will sell products. BRE has carried out research to 

design a system which takes account of everything. It even puts a value on the amenity 
loss of cutting a tree down to produce timber. These obscure values were derived from 

asking the public what they thought, so they are not just professional judgements. 

Although a Life Cycle Analysis pricing exercise is very involved, it is something that 

political bodies like Local Authorities will have to do very soon to justify their 

expenditure. 

A third approach to the cost of a bridge is the energy value of the structure, which results 
in a sustainability value. This can be calculated as an amount Of C02 exhausted to the 

atmosphere during the manufacture of the bridge components and the site construction. 
This approach would show the real value of a timber bridge on recycled tyre and 

geotextile abutments over e. g. an aluminiurn bridge on concrete abutments. 

The perfect cost exercise would show the results of all three approaches and the 

compromise which suits all aspects of the design brief would be chosen. 
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3.11 Conclusions on the Use of Forestry Bridge Designs on Minor Public Roads 

There is an established departure from the strict requirements BS 5400 and DfT 

(Department for Transport) memoranda in the design of forestry bridges without 

compromising safety. Introducing more timber into the designs, especially as primary 

structural members, will be an extension of that established practice. Further, as a result 

of an initial approach, the Dfr is awaiting submission of SLT designs with a view to 

permitting them on public roads. In the meantime the Brechoille model Figure 3.3, where 

a bypass is built on private land alongside the public road bridge, is a suitable 

compromise. 

Many of the fragile masonry arches on minor public roads need to be replaced, especially 

if they are to take forestry traffic. Quite a number of arches are strong enough to take the 

occasional large lorry but, as previously mentioned, they need time to 'settle' before 

being heavily loaded again. This is not possible during harvesting. The tried-and-tested 

forestry solutions offer a credible low cost alternative to the cost-crippling specifications 

of Central Government for public roads. 

The deviations from the current Standards should be evaluated in terms of risk and the 

speed limits. It is a fact that drivers in Sweden slow down on unsurfaced roads, resulting 
in fewer accidents. The same may become true in the UK and, if so, the forestry- type 

bridges without crash barrier parapets could become appropriate. 

The overriding factor for the use of lower specification structures in the forest is cost. 

Traditionally, this has been calculated as capital cost but now the sustainability and 

energy issues are important, especially in an industry which preaches clean activities. 

Recreation, forestry, sustainability, environment, and emissions all go hand in hand 

which means that the use of steel and concrete need to be kept to a minimum. The use of 

timber must be maximized by using it for primary structural members. This will require 
large sections from small trees so lamination of some kind is required. Gluing and truss 

formation have their difficulties which leaves mechanical stress lamination. This form of 

construction has not been used in the UK so there is a need to assimilate as much past 
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foreign research work as possible and carry out developments which are necessary to 

translate this form of timber engineering to UK codes and site conditions. Cellular boxes 

are not suitable for the UK but arches supporting flat decks are. 

Rural profitability is a finely balanced equation and an important aspect of this entire 
initiative is to find an appropriate and sensible solution to enhance access to the 

countryside and protect employment. This could mean converting potholed, tarred roads 
into gravel roads and introducing stress laminated timber arch bridges to rural public 

roads. Environmental impact would be reduced, alongside cost and emissions. 
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CHAPTER 4 

4 REVIEW OF STRESS LAMINATED TIMBER BRIDGE DECKS 

4.1 Historical Development of Stress Lamination 

Timber has a good strength to weight ratio and it is easily worked and easy to fix on to. 

However, being a natural laminate, it is orthotropic, contains natural defects and is really 

only useful as straight lengths. Its best properties are its tensile and compressive (end 

bearing) strength parallel to the direction of grain. Although it is fairly good in bending it 

is, however, poor in bearing at right angles to the grain. These properties made it the 

natural choice for pit props in mining but today, that market is greatly diminished. In the 

days before steel and concrete it was the only spanning material, so it was used for roofs 

and floors, in bending. It is still mostly used in bending today but the poorer quality, 

quick growing, material from the UK does not excel in that market. Nevertheless, the 

poorer quality material is still excellent in compression, so an arch structure would be a 

natural choice. However, trees usually tend to grow straight. 

To make an arch or dome from straight, or slightly curved, pieces of timber, many short 
lengths are needed. This means many joints have to be made and, because of timber's 

poor bearing capacity across the grain, highly stressed joints are not easy to make. It was 

probably that thought process which inspired Philibert Delorme [36], the father of French 

Neo-Classical architecture, to build the first known timber dome, using mechanical stress 
laminated timber, in 1561. He described the technique in his treatise, 'Nouvelle 

Inventions Pour Bien Bastir et a Petits Frais'. It comprised a series of short curved 

timbers laid side by side with staggered laps. This would ensure a significant cost saving 

over a masonry dome and it would be so lightweight it would not need the same amount 

of support. He used a system of clamps and wedges to compress the laminates and 

analysis would have shown no areas of significant stress concentration. Figure 4.1 shows 

an example of an early arch. 
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Fig 4.1 - Philbert De Lorme arch [36] 

The idea was used in early railway bridges where a complete deck slab was formed by 

nailing the laminations through to two neighbouring laminates. It was especially popular 

in Canada and the USA in the late 1800s but with time, these decks suffered badly when 

nails corroded and became loose. The concept of prestressing (post tensioning) laminated 

timber bridge decks was conceived in Ontario, Canada in 1976, as a method of upgrading 

these existing, deteriorated, nail laminated wood decks. The first bridge deck to be 

repaired was at Hebert Creek in Ontario [37]. The deck was 'squeezed' back together, 

using transverse post-tensioning. This was done by adding a steel channel to each edge 

and connecting them with transverse steel bars. The bars were stressed, thus replacing the 

need for the nails connecting the laminates. This developed into a new construction 

technique whereby the transverse bars were passed through holes in the timbers at their 

neutral axis, thus avoiding external bars which were being damaged by lorry wheels 

running over them. 
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This technique, a stressing bar at the neutral axis, is now used for all modem mechanical 

stress lamination and was developed through the 1980s in North America [38,39), mainly 
for replacement bridge decks. Through the 1990s further developments were made in a 

number of European countries and also in Australia [40,41,42]. Stress lamination is a 

very efficient way of sharing and distributing load, which means that low grade lengths 

of variable quality timber can be used, as the natural strength-reducing characteristics of 
timber are dispersed throughout the orthotropic plate. 

All developments in mechanical stress-lamination of timber for bridge decks have used 
flat decks or beams in bending. They have either been plate decks, rib beam decks or 

cellular decks. The plate decks can only span to approximately 6m, using full highway 

loading and normal maximum timber sizes up to around 250mm deep. Because of the 

restriction on maximum available timber size, the rib beam and cellular decks were 
developed to span further, while supporting the same highway loads (40,42]. These rib 
decks require laminated veneer lumber beams and the cellular decks entrap moist air 

which can create a rot problem. Consequently, neither is suitable for use in the UK. 

Prior to mid 2002 there had been no known examples of stress-laminated timber bridge 

structures in the UK. Initial investigation was prompted by a need for low cost forestry 

and rural public road bridges which had originally been built as stone arches and 
traditionally replaced by steel and concrete. Home-grown timber is now plentiful in the 
UK but the quality and sizes are limited, so mechanical stress lamination techniques, 

similar to those used in the USA and Australia, looked to be of interest. 

Before work began in the UK, the span limitations of slab decks were acknowledged. The 

cellular decks [42], composite with inverted steel "T" beams [43] or LVL, and stressed 
glued-laminated beams [44] were all known to be of no interest in the UK, for various 
reasons. The rejection of these longer span derivatives was based on cost and climate. 
There is no 'Glulam' or LVL industry in the UK, so they would have to be imported. The 
UK is much wetter than other places where SLT decks have been used and UK Design 
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demands that timber structures are designed in such a way that they are able to air-dry 
between wet periods. 

This led the Author to investigate implementation of the stronger engineering properties 

of timber (compression and end bearing), in an arching action. This would, ideally, 

overcome the limitations of decks in bending and create structures through which air 

could flow. 

4.2 Recent International Developments in Stress Lamination 

The mechanical stress lamination technique was adopted in the USA at a time when a 

national survey showed a need for many small-span replacement bridges in rural North 

America [45]. The form of construction seemed ideal, as it utilised timber in smaller 

sections which were readily available. Further, the construction did not require very 

specialist skills. The Timber Bridge Initiative was passed by Congress in 1989 [46]. This 

emphasised the need for research into new bridging designs and, of course, brought with 
it, funding. The initiative was to utilise wood and provide rural highway infrastructure to 

replace or repair many of the 592,000 bridges which make up the Federal Highway 

System. Of these bridges, 40,000 are all timber and a further 40,000 have timber decks. 

The forests have a further 7,500 bridges, half of which are timber. A major programme of 

research and trials was set up by the United States Dept of Agriculture (USDA) Forest 

Products Laboratory, in 1988, to develop the mechanical stress lamination decks [Ritter, 

M. A., 19901 [381. This eventually led to a new American Association of State Highways 

& Transportation Officials (AASHTO) standard on the subject, in 1991. From those 
beginnings the USDA's National Wood in Transportation Program has funded 322 

projects, resulting in many more timber bridges throughout the USA. 

As development took off in the USA, (four hundred bridges in the first seven years), 
Michael Ritter visited other research centres in Australia and Europe. He stimulated 
development in a number of Institutions, including the Sydney Institute of Technology 

and the Nordic Timber Council. In 1996 Crews, K. I. published a guide for Australian 

practice and Kleppe, 0. and Aashiem, E. produced some spectacular structures in 
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Norway. Other parts of Europe have also benefited from this forrn of construction 

The Norwegian government has invested heavily in this system and in more complex 
derivatives of the basic slab. Typically, they have formed Laminated Veneer Lumber 

beams and stress laminated them to form a slab. They have built a number of impressive 

timber bridges on the public road network, even on motorways, Figure 4.2. Indeed, five 

to ten per cent of all bridges built in 1998-99 were of timber. 
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The bridges are well detailed and consideration has been given to all aspects of durability 

and deterioration. They are pressure- treated with Creosote, providing timber with the 

required treatment for a life of one hundred years. The preservative treatment is, 

however, of greater than non-nal significance. Dimensional stability of these decks is 

critical in order that the pre-stress remains during service when the timber is wet and dry. 

The correct treatment can help reduce movement to ±0.25%. In Norway the timber is 

kiln-dried to 14% before treatment, which increases treatment volumes and reduces 
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shrinkage and swelling in service. In the UK and many other European countries, the use 

of Creosote is strictly controlled because of its toxicity and liability to leakage in its first 

year of service. It is understood that special care will be needed, but the returns should 
justify its use. 

This flat slab SLT design has a number of perceived advantages: 
it utilises the industry product 

timber is plentiful and inexpensive at present 
lightweight 

ease of fixing parapets 
low expansion and contraction compared to steel and concrete, allowing 

continuous bitumen surfacing without joints 

* it can be factory produced. 

The disadvantages are likely to be: 

restricted to shorter spans 

regular maintenance when timber shrinks, due to drying 

the stressing systems are not readily available in the UK. 

The UK is starting late in this field of bridging and there is much to be learned from the 

US, Australia and Norway, but the first arches were developed here. Links with the 

international researchers will be invaluable over the next five years while this unique 
form of construction develops in the UK. 

4.3 UK Developments in Stress Laminated Bridges 

There are very few research bases dealing with timber engineering in the UK and only 
Napier University's Centre for Timber Engineering is examining Stress Lamination in 

bridges. Chapter 2, Section 2.3 of this report makes reference to this. 

The Author designed a pseudo stress laminated footbridge for an innovation centre ten 

years ago, following a discussion with Cocd Cyrnru in Wales, who were looking for 
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markets for their short, small, round hardwood. This stimulated an interest in the subject 

and in Timber Engineering, in general. From that, emerged InTEC, the New Age Flitch 

Bcam [47] and the first stress laminated timber arch bridges. The timber arch was 
developed as an idea, previously untried, to perhaps find a way of building long span 

vehicle bridges, suitable for the UK. It also provided the UK research effort with 

something to offer the international stress lamination fraternity, in return for their results 

on flat decks, which will be very useful in the UK. 

Research has not been well funded, and even following the Author's DTI International 

Technology Mission Report [4], road authorities and Central Government have been 

reluctant to embrace the idea of timber vehicle bridges. The need has certainly been 

greater in other countries, but SLT bridges on UK roads could save money and reduce 
C02 emissions. Some home research results will help confidence and already there are 

signs that published papers are having an effect. 

The Author has built about thirty permanent SLT bridges and is presently monitoring 

tensions and performance, with a view to extending confidence not only in SLT, but in 

the use of timber for other structures. These include 4No 20m span arch footbridges, an 
8m span road bridge, 2No 7.5m span Forwarder bridges and a number smaller span 
footbridges. The aim is to make the work of this thesis the foundation for innovative long 

span road bridges and footbridges up to 25m span. 

The first display bridge was built for the Royal Highland Show (RES) in June 2000, 

Figure 4.3, and this was followed by a 6m. span arch in 2002. This was tested at the newly 
formed Centre for Timber Engineering and spawned the beginnings of this research 
programme. 
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The next test bridge was a 15m span commercial bridge built in the laboratory, tested, 

and then transported to its permanent site 250 miles south. This inspired confidence, so a 

20m span test bridge was designed and built at the RHS in June 2004. This was then 

moved to a forest location for rigorous testing, using static and dynamic loading. 

This thesis details the findings of all of these tests and many others. The conclusions will 

pave the way for future innovation in stress laminated structures for bridges and 
buildings. 

The precise details of the test bridges will be given in the proceeding chapters but 

generally, the loadings were the same as for steel and concrete bridges and a range of 

timber grades were used to demonstrate the suitable bearing capacity of the low grades. 

Hardwoods have been used for outer laminates, but all inner laminates have been 

softwood. 
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CHAPTER 5 

5 CHARACTERISTICS OF SLT BRIDGE DECKS 

This section explains the details of what is already known about stress lamination, in 

other countries around the world. It is intended to provide a full technical background to 

the subject, within the scope of this thesis. Previous chapters have provided information 

about the history of development but little about the details of the structural actions of 
this new form of Timber Engineering. Each aspect of stress lamination will be explained 

and interpreted in relation to arches. 

5.1 Fundamentals of Stress Laminated Timber Decks 

The decks are vertically laminated and stressed together without the use of glue, thus 

avoiding many quality control issues concerning moisture content and smooth surfaces. It 

permits cost effective bridge decks in the UK, where an established glue laminated 

industry does not exist. In the USA it is common practice to plane one side in order to 

ensure even laminate thickness but the Author has found that a good sawmill will 

produce sawn laminates of near enough equal thickness and the sawn surfaces have a 
higher coefficient of friction. 

The laminates run with the span and the stressing bars are transverse. Together, they 

create the structure and the deck. The tension bars provide enough force to create friction 
between the laminates which transfers the vertical shear to the supports. The initial 

compressive stress between the laminates is approximately IN/mm2. This has been used 
in USA and Australia and Eurocode 5 Section 6.1.2 (6) states that 0.35N/mm2 residual 

prestress can be assumed for an initial prestress of IN/mm2. The lateral tension also 
creates an orthotropic lateral load sharing plate to distribute point loads to the full width 
of the structure. This effect is not as critical in an arch footbridge, with pedestrian load, as 
it is on a flat vehicle bridge with wheel loads which cause prying of the laminates and 
high local shears [48]. 
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The timbers can be full length for short flat spans and, where possible, bridges should be 

built this way. This is not possible for longer spans or for arches, so the span must 

contain butt joints. These joints represent discontinuities which must be accounted for. It 

will be shown later that the effective cross section is the minimurn solid timber section 

which is at the section with the maximurn butt joints. Figure 5.1 shows a typical SLT 

cross section. 

i =50mm 
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Fig 5.1 - Typical cross section of SLT deck 

5.2 Material Properties - Timber 

5.2.1 Timber 

The main structural elements are softwood, and because this research is aimed at using 
home-grown timber, Sitka Spruce [49] is the first choice but Scots Pine and Douglas fir 

are excellent substitutes if available. Sitka Spruce was used for most laboratory tests. 

Mechanically stress graded timber was not used because the bending strength would not 
be critical at working loads in arches and it is very difficult to buy home grown stress 

graded timber of larger sizes. A visual stress grading system, based on the TRADA 

guidelines, was derived by the Author for use in the Forestry Commission and was used 

as the basis for grading the timbers in the structures - visual grading [Appendix 2]. This 

visual grading method is simplified by concentrating on growth rate and advising 

rejection of timbers with clusters of knots. 
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The moisture content (MC) of timber for construction is given in BS 5268 [50] as 18%. 

Eurocode 5 [5 1] specifies 16% for stress laminated bridge decks. The ambient moisture 

content will be approximately 18%, so this was specified for all untreated timber used in 

laboratory tests. All permanent bridges are pressure treated and the specification is given 

in Appendix 1. The specification states kiln drying to a 15% MC and then pressure 

treatment with Copper Chromium Arsenic (CCA). This low MC is specified to ensure a 
final MC, with treatment, of no more than 18% and also to ensure a greater penetration of 

preservative. BS 5268 [52] recommends a MC of below 28% but the Author has found 

the penetration of preservative at 28% to average about 5mm, which is unacceptable if an 

external timber deck member splits to a depth greater than that. Structural timber codes 

permit splitting well below preservative penetration without affecting the strength. 

To ensure a design life of fifty years, the treatment process must be rigorous. Each 
laminate must be cut and drilled before treatment and the completed deck must be kept 

dry. An advantage of this type of structure over one using fewer, larger timbers is the 

effective treatment within the core structure. Pressure treatment with modem equipment 

never achieves full penetration, but treating each laminate before construction means that 

the resulting deck is more effectively fully penetrated. 

The MC of timber for stress lamination is critical because if it is too wet the moisture will 

squeeze out over time and the stress in the bars will be lost. This means that newly treated 

timber cannot be used. It requires to be allowed to air dry over three weeks or be returned 
to the kiln after treatment. 

The recommended treatment is specified as CCA but this was legislated out of normal 

use in June 2004 in order to come in line with EEC legislation (Council Directive 
76/769/EEC). One of a number of derogations is that its use is still permitted for bridge 
decks but it is now almost impossible to find a treatment plant willing to use CCA. The 

situation with Creosote is similar, so a less toxic treatment - Copper Chromium 
Phosphate - is now used. This is also suitable for handrails, which must use a mild 
treatment because of the risk of children touching the rails and then licking their fingers. 
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The external laminates are made out of a sustainable hardwood. They typically have 

lOOkN bearing onto a 200mm diameter plate giving a bearing stress of over 3 N/mm2 

perpendicular to the grain, which requires a minimum D40 hardwood. Home grown oak 
is usually used because it just satisfies the strength criteria and, more importantly, its 

source is easily traced. 

5.2.2 Material Properties - Steel Stressing Bars 

The transverse steel bars are critical to the stress lamination system. They must provide 

the force to mobilise friction in order to transfer the shear from the applied load. Their 

tension reduces over time through metal relaxation, which is additional to the shrinkage 

of timber laminates, but they must retain a minimum amount of force to perform their 

task. This is ensured by choosing a tensioning bar with a large strain and tensioning the 
bar to at least 2.5 times the required tension [41]. The greater the strain, the more 

movement that can be tolerated while some stress is retained. For that reason the highest 

tensile steel is the best choice for permanent structures. On the other hand, mild steel 

would be adequate for laboratory tests because the stress only requires to be maintained 
during the test loading procedure. 

Durability of the bars is also a consideration for the permanent structures. The aim is to 
build bridges with a fifty year life. This can be achieved with the timber by treating each 
laminate before construction and waterproofing the deck to protect against exposure. To 

ensure the same life for the steel stressing bars against exposure, some protection is 

necessary. This can be provided in a number of ways: 

galvanising 

sheradising 

sleeving and greasing 

using stainless steel. 
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Additional to the attack from atmospheric agents, Copper Chromium Arsenic (CCA) 

preservative can accelerate corrosion of steel and some of the new formulae of 

preservative treatments could be more aggressive. For these reasons galvanised steel bars 

should be galvanised to a high specification, ensuring a thick coat of zinc. Sheradising is 

only useful for shorter life structures as the coating will only provide protection for a 
little more than five years. Sleaving and greasing is a useful alternative but it requires 
larger holes in the timber and, during construction, the sleeve must be positioned very 

accurately at the start because it cannot be moved later. This is the best way to avoid 

corrosion from the preservative treatment. Stainless steel bars are being used for the first 

time but are more expensive. They will be resistant to corrosion without sleaving but 

have different yield properties, which might require a different stressing regime. 

All of the bars used in the laboratory tests were mild steel threaded bar. This allowed 

easy and accurate stressing up to tensions suitable for the tests. To ensure a high level of 

accuracy, a gig was built to convert torque from a large wrench into a known tension. A 

section of bar was connected at one end to a load cell in the frame with the other 

protruding past the frame and anchored with a hexagonal nut. This nut was tightened with 
the wrench, and torque settings were measured against load cell readings. Appendix 4 

shows the results. 

The bars used for all of the permanent bridges were supplied by Dywidag [28] who 

supply prestressing bars for ground anchors and concrete structures. Their standard 

product is a prestressing bar with a yield strength of 900/1100 N/mm. 2. It is available in 

15mm diameter and 20mm diameter, with a right hand thread. The bars are supplied 

either uncoated or sheradised or can be sleaved and greased. 15mm diameter bars were 

used for the first 6m span bridge without any protection and the second test bridge used 
20mm diameter sleaved bars. Subsequent permanent bridges have used Gewi [53] 

galvanised bars which have a yield of 500/600 N/mm. 2, Figure 5.2. Full technical data is 

provided in Appendix 5. They have proved easier for construction but the strain is 

reduced compared to the 900/1100 N/mm2 prestressing bars and there is a question mark 
over the durability with the preservative treatment. Gewi bars are available in 16mm and 
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2 
20mm diameter, with a left hand thread. To produce the initial prestress of I N/mm , 
16mm diameter bars have been used for footbridges and 20mm diameter for vehicle 

bridges. 

As part of future work, consideration will be given to the use of prestressing cable [54] 

and glass reinforced plastic (GRP) [55] strand to tension bridges. Both have been used in 

the USA and the GRP strand does not relax. However, both are more sophisticated 

technologies and do not relate well to a low cost simple bridge system. 

5.3 Prestress Effects - Basis of Design 

Prestress is necessary for this structural system to disperse load laterally. An initial 

prestress of approximately I N/mm 2 is the target to provide enough friction in a flat deck 

[48] with sufficient allowance for stress loss, which is inevitable. The Ontario Highway 

Bridge Design Code (OHBDC) [56] and subsequently the AASHTO design procedures 

limited the steel to timber ratio so that losses due to creep could be minimised by 

maximising strain, while minimising strain loss. The steel to timber limitation specified 

in the OHBDC is typically 0.0016 and is species dependent. Subsequent Australian 

research by Crews - 1995 [57] concluded that a better way of achieving maximum bar 

tension to give maximum strain to counter creep was based on transverse bending 
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stiffness of the plate. In the UK, as no specific research has been done with the native 

species, the bars are tensioned to 90% of yield to maximise strain. However this is not 

such a critical issue with arches, which act mainly in compression. 

It will be shown that there is a major difference between arches and flat decks in the 

value of prestress necessary. An important aim of many of the load tests was to show the 

high load capacity at very low lateral stress in arches. However, there is still a lower limit 

and the following will demonstrate what is necessary to maintain that lower limit. 

Because arches represent a smaller risk, threaded bar with a spring washer system will be 

tried in the future for small spans. This will be similar to the laboratory tensioning system 

and will make future maintenance easier. The nut at the fixed end will have to be tack 

welded to the bar to prevent the bar turning when maintenance tightening takes place. 

5.3.1 Stress Relaxation 

This has been well researched and documented in the USA, Canada and Australia and the 

results are transferable to UK practice and SLT arches. There was no reason, therefore, to 

carry out tests as part of this research. The relaxation is mostly due to creep of the timber 

laminates as a result of high stresses, perpendicular to the grain. There is also relaxation 

of stress in the steel bars which can amount to a 65% loss [581 through stretching over 

time though over short time-spans, this is a small component. Seasonal effects contribute 

to loss of prestress, so the effect is difficult to predict analytically. It is also dependent on 

moisture content and ambient temperature, as discussed below. 

The AASHTO specification for these bridges [41] requires an initial prestress 2.5 times 

the minimum required tension to account for losses. Furthermore, the tendons must be re- 

tensioned to initial prestress level before leaving the site after construction, and again 

after eight weeks. Further restressing is advised at yearly intervals for the first three 

years. 
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5.3.2 Loss of Prestress - Creep, Moisture Content 

Creep is the major component of loss and is inter-related with moisture content (MC). 

The creep mechanism in this case is a compressing of the fibres at right angles to the 

grain [59]. There is also a component from the surfaces of the laminates compressing 

together. Creep is time-dependent but with seasonal effects occurring simultaneously, 

evaluation and prediction is difficult. However, laboratory measurements were made by 

Crews in Sydney, Australia [48] and a 60% to 90% loss was observed in an eighty day 

period. Similar results have been observed in the USA [60] with 33% losses in nine days. 

The creep loss is species dependent (48] therefore it would be advantageous for some 

tests to be done on Sitka Spruce. However, tests have been done elsewhere on Douglas 

Fir and these are transferable. Crews also measured creep with different tensions and 
found that losses occur whatever the tension. 

The conclusions on creep loss are, that if the laboratory tests under controlled humidity 

held true for permanent bridges in the field, they would not be practical because they 

would need restressed three or four times a year - Crews 2002 [48]. In practice, this has 

not been found necessary in the UK or elsewhere which shows that the laboratory effects 
are an accelerated scenario. Creep losses do not affect laboratory load tests. Creep losses 

fluctuate in real structures and are adequately allowed for in the AASHTO code by 

specifying a prestress 2.5 times the stress required. 

Below the recommended moisture content of 18%, this effect is small as was observed in 

the laboratory tests, because the timbers were not treated and stressing times were short. 
Permanent bridge timbers, however, must be treated with preservatives and in some cases 
there was not always time to rc-dry after treatment. When stressing took place in these 

cases, moisture and preservative was seen squeezing out and the bridge deck lost its 

prestress quickly, requiring restrcssing. This happened during the construction period on 
site when most of the excess fluid was expelled by restressing, before leaving site. In 

general, the restressing recommendations take care of this potential problem. Records are 
being kept when bridges are maintained so that a UK register of prestress loss can be 

compiled. 
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5.3.3 Loss of Prestress - Temperature 

Work has been done in the USA [61] because continental extremes of temperature must 

be catered for. It was found that the losses were related to moisture content and very low 

temperatures. Significant losses in the bar tension were found where the MC of the 

timber laminates was above 30%. Where the MC was at the optimum of 18% the effect 

was small. When low temperatures returned to normal, tensions recovered. There is 

therefore little need to carry out work in the UK in this field. 

5.3.4 Stressing Procedure and Tensions 

Stressing procedures are well documented and it is essential that all bars are tensioned 

gradually. Too much tension too quickly resulted in cracking of laminates in one 

permanent bridge in the Forest of Dean. In all cases successful stressing was achieved by 

beginning with very low tension along the entire length of the bridge, until all the 

laminates were bedded together. Tension was increased to 50% of full tension on every 

second bar and then on the intermediate bars before repeating the procedure for full 

tension. Final tensions were 90% of yield to achieve the maximum safe strain and bar 

diameters were chosen to achieve a minimum of I N/mrn 2 stress. 

Laboratory tests followed the same stressing procedures. However, all tests included a 

measure of load capacity with different tensions which meant that, after full stressing had 

taken place, the tension was removed and the test tension then applied. This ensured 
bedding of the laminates, even for low tensions. 

Although tensions are directly related to friction, which is the mechanism for transferring 
load laterally, it is also the mechanism for longitudinal transfer past butt joints. In arch 
bridges there is a locking effect when bars bear against the edge of the holes through 

which they pass. This provides additional resistance to the longitudinal shear and 

although this is not part of the design, it is a safety factor against collapse. 
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5.3.5 Shear between Laminates 

The coefficient of friction between two pieces of timber depends on surface texture and 

moisture content. The value is between 0.2 and 0.5, Kempe's Engineering Handbook 

[62], the lower being wet and the higher dry with sawn finish. In the USA similar values 

were found - 0.3 for planed timber and 0.55 for sawn - and they were not dependent on 

species [63]. Initial prestress in the stressing bars is aimed to produce at least I N/mm 2 

stress between softwood laminates which is much higher than is required to induce 

enough friction to transfer the shear forces. These values are however used to allow for 

stress relaxation and it is accepted that 0.34 N/mrn 2 is enough to transmit wheel loads on 

a vehicle bridge [64]. The arch bridges under test in this thesis do not take point loads 

therefore friction is predominantly a factor to transmit horizontal shear past the butt 

joints. 

To illustrate these points a series of tests on three 2.1 m span and four 6m span laboratory 

bridges was conducted, with varying lateral tensions, and the results are detailed in 

Chapter 6 and 7. 

5.3.6 Lap Lengths 

This is one of the key differences between flat decks and arches. Arches require short 
laminates to form the shape, which results in more butt joints, and it will be seen in 

Chapter 6 that a typical layout is four holes per laminate of between Im and 2m length. 

The holes are drilled on the radius curve so that, when assembled, the arch is 

automatically formed. The laminates are laid in a stagger pattern with butt joints, which 
leaves only 75% of the deck width solid at butt joints. Some bridges have only had 3 

holes per laminate to reduce the number of stressing bars. This is now considered poor 

practice as it requires the cross sectional area to be reduced to 67% of the deck. These 

reduced sections are used in computer analysis calculations. The reduced cross section 

was found to give analysis results which matched test results and accorded with findings 

by Oliva [65] in 1990. This arrangement means that only very short lengths of laminate 

are provided for stress development around a joint in an arch. However butt joints are 

predominantly in compression in an arch, whereas they are in bending in a flat slab. 
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Bending creates deflection, which results in horizontal shear increasing as the effect 

approaches the abutments. Timber is very poor at taking horizontal shear and the effect 

should be limited. 

Figure 5.3 shows a detail of a typical single laminate for bridge and Figure 5.4 shows the 

construction of a bridge over the river Forth where a single laminated is being placed. 

2036 (centreline dimension) 
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t 
30172 rod. 

-3.5 3.5 

4No 200mm holes 

NOTE: - Plank to be drilled before treated 
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Fig 5.3 - Detail of a single laminate 

I. ig 5.4 Laminates on Forth bridge 
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The transfer length is the length between holes and it is the length which, through friction 

transfers the shear. This can never be more than 500mm for a large span arch and as little 

as 250mm in a 6m span arch. Butt joint spacings of 600mm c/c (with aI in 5 pattern), 
have been used for bridges in the United States, but spacings of less than 900mm c/c for 

softwood (I in 4) pattern are not permitted in Australian design procedures. These limits 

are based on the minimum "development length" required to transfer load by 

interlarninate friction around a butt joint and have been derived from both testing and 

analytical modelling [66]. The arch model uses a combination of compression and 
horizontal shear along the length to transmit the load to the next laminate and onto the 

abutment. 

In the laboratory tests, slip was the cause of failure of the flat decks, partly because the 

threaded bar could not be torqued enough to provide sufficient tension. This problem, 
however, did not occur with the arches. 

5.3.7 Lateral Tensions and Lateral Distribution of Loads 

Lateral tension in the prestressing bars is designed to create IN/MM2 of stress between 

laminates, to mobilise friction for load transfer and to resist the prying forces from a point 
load. When a point load is applied, especially to a flat deck, the bottom of the laminates 

will tend to separate which means friction reduces and thus load transfer. This will 

especially affect lateral distribution of load. Arch structures will begin their structural 

action by first transferring load in compression and then in bending, resulting in smaller 
deflections. This will mean that any opening up on the tension face, or underside of the 

structure, will be reduced. This aspect of activity is not specifically measured as part of 

this project because footbridges are designed for UDLs. Detailed analyses were carried 

out by Crews 2002 [48] and the findings will be relevant to further stages of work in the 

UK. Figure 5.5 shows a detail of a deck opening up on the underside. 
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Fig 5.5 - Point load on deck, Crews 2002 [48] 

It was found on a number of occasions that, when stressing a bridge, a bar could be 

tensioned to, say, 30kN and the nut at the other end of the bar was still loose. It was 

concluded that 100kN tension during construction was necessary on a full size structure 

to ensure even tension on the bar. The bar locks onto the sides of the holes in the timber 

and high friction forces have to be overcome. This is a very practical reason for 

tensioning bars to at least 2.5 times that required for load transfer. 

This was not a problem with any of the laboratory tests because the structure was 

lightweight and did not create much resistance against the bar. 

5.3.8 End Bearing Effects 

The end bearings at the supports are a critical feature of the arch decks. The arches are of 

low rise profile so that pedestrians can easily walk over them and the maximum gradient 

permitted for all ability access is I in 10 [67]. This profile results in very high thrust loads 

at the abutments. This would be a problem for timber perpendicular to the grain but 

parallel to the grain, the forces are well within the permissible stress. 

Drainage at this bearing is extremely important. The structure must have direct contact 

with the foundation but the detail must allow water which collects at that point, to drain 
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away otherwise rot could occur. This has resulted in using an oversize galvanised steel 

channel and a small bearing strip, as shown in the detail Figure 5.6. 
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Fig 5.6 - End bearing detail - Carribber bridge 
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5.3.9 Anchorage of Stressing Bars 

Permanent Bridges 

This is the most highly stressed area of the bridge structure. The load must be spread into 

the timbers over the largest area possible to reduce the bearing pressure on the outside 

timbers. Achieving an interlaminar stress of IN/MM2 and bars at, say, 500mm centres on 

a 200mm wide timber, requires a 100kN load, which is in turn spread over a maximum 
2 

plate size of, say, 180mm diameter, giving a local stress of 3.9N/mm . This load is 

perpendicular to the grain and so requires a minimum grade of timber of D40 [13S 5268 

Table 8] [50]. This becomes a little more difficult for smaller bridges with laminate depth 

of 100mm. It is still general practice to use 16mm diameter stressing bars and they need 

to be fully tensioned to achieve the strain to maintain the friction. This means there is 

lOOkN over, say, IOOxIOOmm plate giving ION/mm 2 which is beyond all grades of 

timber. Normal practice has been to use the best sustainable hardwood available and 

accept some bearing failure. 

On road bridges with larger, 20mm diameter bars, one attempt was made at using pieces 

of steel channel. This looked ugly and the thin web needed too much support. One 

84 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

answer is to use the maximum diameter spreader plate and the best hardwood and just 

accept some crushing. The spreader plates must be at least 20mm thick and supported by 

another similar but 80mm diameter to avoid unacceptable prying forces. A normal, full 

thread, hexagonal nut can be used with this anchorage. 

The design of the anchorage is extremely important for maintenance. All of the 

permanent bridges have used 'Dywidag' threadbar or 'Gewi', a German derivative which 
is galvanised. 

The DYWIDAG THREADBAR"O Prestressing Steel has a continuous rolled-in pattern of 
thread-like deformations along its entire length. More durable than machined threads, the 
deformations allow anchorages and couplers to thread onto the threadbar at any point. 
The 20mm bar can be continuously cold threaded for its entire length, or supplied with 

threaded ends only. - see [Appendix 5]. 

The DYWIDAG System is primarily used for grouted construction. All components of 

the system are designed to be fully integrated for quick and simple field assembly. 
Sheathing, sheathing transitions, grout sleeves, and grout tubes all feature thread-type 

conncctions. 

Threadbars are available in mill length to 18m, and may be cut to specified lengths before 

shipment to the job site. Where circumstances necessitate it, the threadbars may be 

shipped to the job site in mill lengths for field cutting with a portable friction or band 

saw. Threadbars may be coupled for ease of handling or to extend a previously stressed 
bar. Cold threaded 20min diameter bars are available in lengths up to 7.2m. 

These products are off-the-shelf and DSI [28] also provide the spreader plates. The 

secondary plate between the nut and spreader plate is 80min diameter, sized to house the 

chair of the jack (white), Figure 5.7 which allows the nut to be tightened when the jack 
(red) is stressing the bar. If the bars have been cut short after initial stressing, as shown in 
Figure 5.7, an extension bar is joined using a sleeved socket. This is shown passing 
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through the jack, and the back-nut (white), is threaded on to the extension, Figures 5.7 

and 5.8. 
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Fig 5.7 - Tensioning jack & pump Fig 5.8 - Tensioning jack 

The jack is, unfortunately, extremely heavy because it needs to be robust in order to 

provide the 300kN thrust and very high pressure and also be capable of a stroke of about 
100mm, which is necessary for construction. A maintenance jack, Figure 5.9, has 

different priorities. it must be as light as possible, be suitable for fixing through the 
timber rails and does not need such a long stroke. A system has been designed and 
tailored to suit so that it can be powered by the construction hand pump. 
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5.3.10 Waterproofing of Decks. 

The decks will always be pressure treated with preservative after cutting and drilling so 

should have a life of twenty years minimum, without maintenance. However this life can 
be extended by keeping rainwater off the deck, by waterproofing the surface. This would 

normally be done using good quality dense bitumen macadam which would contain a 

resin additive and 6mm whin stone aggregate chips. Asphalt can be used in a similar way 

quite successfully and will depend on availability. Clear mastic has recently been trialled 

on a mountain-bike bridge. This allows the natural timber to be seen through the coating. 

Anti slip surfacing is becoming an important issue. A resin coating and dusting of bauxite 

chips over the bitmac provides an anti skid surface and improves the waterproofing. In 

2005 a deck was covered with boards containing a fibre glass insert with resin and 
bauxite chippings, Figure 6.4. Trials are about to begin using green glues, normally used 
for finger jointing, sprinkled with bauxite chips. 

5.4 Traditional Arch Analysis 

Arches are automatically thought to be made of masonry and therefore it may be 

assumed, in error, that the structural mechanisms would be the same if an arch were made 

of another material. Timber and masonry are the original building materials but they 

could not be more diverse. They each have their own unique properties and it is a strange 

concept when one material is used to do a job which is, traditionally, thought of as 
belonging to the other. 

Glue laminated timber arches have been popular over recent years but their structural 

actions are completely different to stress laminated structures. However, they do share the 
two important features which are timber's main structural assets - 

* Timber is very good in both compression and tension and is moderate to good in 

bending capacity. 
In contrast - 

Masonry is very good in compression but weak in tension; as a consequence it 

cannot be subjected to high bending stress. 
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However - 

e Masonry is durable. 

0 Treated timber is less durable. 

There is a market today, for short-term infrastructure, which timber is in a position to 

fulfil. A standard design life span of one hundred and twenty years for highway structures 

often results in expensive demolition as a result of planning or fashion not being well 

predicted for this number of years. 

5.4.1 Masonry Arch Mechanisms 

Masonry arches are, essentially, a balanced pile of stones. The ring comprises of two 

corbels supporting each other at the centre, with the fill and spandrel walls creating a 

counterweight against live loads. This balance is critical, as William Edwards found in 

1746. He built a 42m masonry arch span over the Taff at Pontypridd four times, before 

he got it right. None of the failures were stress related. They were all due to the geometry 

of the arch. All early design was based on geometry. Figure 5.10 shows a secular arch 
(part of a circle), similar to the timber arches in this thesis. 

It is shown with a load at, approximately, the quarter point, Figure S. 10, which is its 

weakest point, and it illustrates the formation of four hinges, two at the springings and 
two at quarter points. The thrust force which supports the applied load and the weight of 
the arch travels from one springing to the other, through the arch ring. As the applied 
force increases, the thrust moves up in the ring towards the load, to create equilibrium. If 

88 

Fig 5.10 Secular arch [691 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

the applied force moves too far up, the hinge will open and the ring will go into tension. 

At this point the arch is unstable. Figure 5.11 shows the line of thrust at the edge of the 

arch ring which is the limit of stability. 

Figure 5.12 shows a funicular or catenary arch, which is the upturned shape of a piece of 

string hanging under no load. It is the perfect arch shape so the line of thrust, under 

uniform load, passes exactly though the centre of the arch ring. This makes it a very 

efficient shape to carry uniform load. It is very nearly parabolic which is easier to define 

mathematically so this is often used as an arch shape. 

The funicular arch is close to a segment of a circle which is very easy to handle 

mathematically (segmental arch). This is the shape chosen for all experimental work in 

this thesis and for all of the pen-nanent arches built by the Author. It is easy to build 

analyse circular shapes. 
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If two parallel lines are drawn to enclose the middle third of the arch ring, the zone for 

zero tension is enclosed, Figure 5.13. As live load is added to the arch, the thrust line 

move up and down and hinges are formed. If the line crosses the middle third line, 

tension begins. This was the basis of all early arch design and is described by Jacques 

Heyman [691. 

Fig 5.13 - Diagram showing arch ring with line of thrust in the middle third 

This is the fundamental difference between masonry arches and those built from a ductile 

material. The masonry fails by forming a mechanism of hinges, leading to instability, and 

the timber arch acts elastically within its design limits. As greater loads are applied it 

changes shape dramatically but still takes increasing load in bending, until failure. Figure 

5.15 shows a 6m span test arch near failure. The arch is inside out at the quarter point 

where the load is applied. 

5.4.2 Timber Arch Analysis 

In subsequent sections, the details of timber arch actions will be discussed with the 

results of experimental tests. However, it is important to note the contrast with masonry 

arches which illustrates the value of timber arches. Timber is usually used as a spanning 

material but is excellent in end bearing and compression parallel to the grain. It is weak 

in horizontal shear because of its natural laminate structure but this is insignificant in well 

shaped arches where bending is small. The combination of bending and compression in 

an arch suits timber because all of the dead load is taken in compression, being evenly 

distributed. The bending capacity is, therefore, reserved for live load. 
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The weakest sector of an arch is near the quarter point, therefore a live load at this 

position will produce the greatest bending moment. For that reason, all test arches were 
loaded at the quarter point as well as centrally. The central loading was applied as two 

line loads at 1/3 span and called four point loading. The full scale load tests were carried 
out using I OkN sand bags placed at the middle third of the span. 

The example shown in Figure 5.14 illustrates the relative values of dead and live load 

deflection for a 6m span with 40mm of 'bitmac', giving a dead load of 1.5 5 kN/m 2, and a 
20kN live load at the quarter point. The support is allowed to spread by 5 mm, Table S. 1. 

This illustrates the differing effect of the UDL and a point load at the weak point of the 

arch. The arch is split into twelve half metre elements. 

Fig 5.14 - Arch cross section 

Table 5.1 Node displacements 

Node LIC (MM) Node uc 
Z 

(MM) 

1 DL1 0.000 8 DL1 -0.332 
LL1 0.000 LL1 -8.259 

2 DL1 -0.111 9 DL1 -0.308 
LL1 4.646 LL1 -13.998 

3 DU -0.199 10 DL1 -0.264 

LL1 7.979 LL1 -16.968 

4 DLI -0.264 11 DL1 -0.199 

LL1 9.130 LL1 -15.503 

5 DL1 -0.308 12 DL1 -0.111 

LL1 7.731 LL1 -10.933 

6 DL1 -0.332 13 0L1 0.000 

LL1 3.900 LL1 -5.000 

7 DU -0.339 

LL1 -1.781 
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It can be seen in Table 5.1 that the deflections from a uniform dead load of I. 55kN/m 2 are 

almost negligible, whereas the live load generated large deflection due to induced 

bending. 

The design criteria for SLT arches will therefore depend on a number of variables: 
I. span 
2. rise 
3. lateral tension 
4. depth of section 
5. timber grade 
6. slip of laminates span 
7. moisture content of timber 

8. settlement of supports 
9. loading 

It is aimed to develop a semi-empirical model to simulate the performance (strength and 

stiffness) characteristics of SLT arch bridges incorporating the factors mentioned above 

and hence to compare them with the experimental results. 

5.5 Behaviour of Statically Loaded SLT Arches 

All of the timber arches that were tested displayed a high stiffness, when compared to flat 

decks. This was due to the geometry of the structure. Within elastic limits the bridges 

deflected very little so that, under normal design conditions, there is little risk of any 

semi- rigid topping used to waterproof the deck, breaking up due to severe change of 

shape. As loads were increased towards failure however, the arches were capable of very 
large deflections before any failure occurred. At high load levels the deflections were too 
large to be measured by the available transducers, and in order to avoid any damage they 

were removed before failure. Figure S. 15 shows the deflected shape of the first 6m span 

arch under a V4point load at what was termed failure. Under the load, the shape of the 

arch had reversed, causing the opposite side to take up a very tight profile. This caused 

one laminate to split along the grain through a tension bar hole, Figure 5.16. 
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Fig 5.16 - Failure - laminate split 
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When the arch was dismantled, Figure 5.17, the laminates were all undamaged except for 

one, which led to the conclusion that more load could have been applied before total 

collapse took place. 
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Fig 5.17 - Dismantling 6m trial arch 

The bridge behaved linearly elastic with a line load of value equivalent to the design load 

of 3.2kN/M2. With increase in load the excessive deformation of the arch lead to non- 

linear inelastic behaviour which no longer compared with the simple linear elastic results. 

Tests to failure were designed to deten-nine the reserve of strength in the bridges and to 

give an indication of the safety factors involved. 

The design load for the full scale test arches was 3.2kN/m 2 applied as a UDL. This type 

of loading is defined in the British Standard BS 5400 [23] which gives an intensity of 

5kN/m 2. The reduction is justified because of rural location and a low probability of large 

crowds of people. The maximum eccentric load would therefore be half of the span 
loaded to one side of the bridge. This would produce approximately '/4 of the bending 

which caused failure in the 6m span bridge above, thus, a factor of safety of 4. 

Vehicle loading on flat arch bridges will apply point loading at the quarter span and 
become the design criteria. However, vehicle bridges are more likely to consist of a flat 

deck supported by an arch therefore load will be, at worst, a point load at mid span. This 

is a strong point of an arch. 
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5.6 Behaviour of Dynamically Loaded SLT Arches 

Arches are stiff when considering the minimal structural depth of section and compared 

to flat spans of the same section. They are rigid because their effective inertia is based on 

the square of the arch rise. However the arch ring itself is very slender and therefore 

could be quite active when a dynamic load is applied, although it may be strong in 

bending and compression. 

There has been considerable activity over the last five years, since the Bankside 

Millennium footbridge over the river Thames was closed because greater than expected 

movements occurred, when a large group of people were crossing. The greatest problem 

was a result of the lateral forces induced by the pedestrians, which very quickly became 

synchronous, as they tried to maintain balance when the structure began to sway laterally. 

Another bridge, the Hungerford Millennium Bridge was under construction at the time 

and work was stopped while detailed analysis took place. Much of this work is published 
by Fletcher and Parker [70]. The important dynamic characteristics of a bridge are 

acceleration, Fundamental Natural Frequency (FNF) and damping ratio. 

For non bridge-specific situations, BS 6841: 1987 [71] gives the likely reaction of humans 

to root mean squared (RMS) acceleration as: 

(a) a little uncomfortable: 0.3-0.6 m/s 2 

(b) fairly uncomfortable: 0.5- 1.0 M/S2 

(c) uncomfortable: 0.8-1.6 m/s 2. 

BD 37/88 [24], ENV 1995 and Walther [72] quote acceptance levels up to 0.7m/s 2 and 
Jiri Strasky [73] gives 0.5m/s 2 for bridges with FNFs below 8Hz. He also states that 

maximum vertical acceleration :5O. SVF-NF 

The FNF of a simply supported flat deck can be calculated, as can a cantilever, but 

calculations are not reliable for an arch. In practice Engineers are now measuring 
dynamic characteristics of bridges after construction, to give accurate values before 

expensive damping is provided. It was therefore decided to measure the characteristics of 

95 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

the arches in this programme using three different sets of equipment which are described 

in Chapter 6. 

When pedestrians walk, run or jump on a bridge they apply load and energy at specific 

frequencies. If the frequencies coincide with the FNF of the bridge, resonance will occur 

and if enough energy can be imparted, excessive deflections will result, which lead to 

high stresses. For simple structures, damping is not cost effective so the FNF should be 

large enough to avoid any chance of resonance. Strasky gives a very useful table, Table 

5.2, to sum up pedestrians' pacing and jumping frequencies. 

Table 5.2 - Pacing and jumping frequencies in Hz [73 - page 32] 

Total Range Slow Normal Fast 

Walking 1.4-2.4 1.4-1.7 1.7-2.2 2.2-2.4 

Running 1.9-3.3 1.9-2.2 2.2-2.7 2.7-3.3 

Jumping 1.3-3.4 1.3-1.9 1.9-3.0 3.0-3.4 

The measurements of three of the 20m span bridges have given average FNFs at 3.5Hz 

before the topping was applied and 4.5Hz afterwards. The accelerations have all been low 

at approximately 0.02 M/S2 . This shows that there is a possible problem with the most 

slender span but accelerations are low. This means that it is very unlikely that enough 

vandals could jump in sequence long enough to damage the bridge. This will be 

discussed in more detail in Sections 6.21 and 7.7. Figure 5.18 shows a very slender 20m 

span deck before handrails, which stiffen the structure, are added. 

-how 
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5.7 Plate Models for Analysis of SLT Decks 

Various analytical models have been used over the last twenty five years to provide 

deflections and moment distributions throughout a flat SLT deck. For practical 

engineering and design purposes, the beam analogy has proved the best approach: 

" Orthotropic model 

" Grillage model 

" Finite element analysis 

" Beam analogy 

Orthotropic models were first tested at Queens University, Ontario, Batchelor et al - 
1981 [74]. Later in the 1980s Forest Products Laboratory - Madison, carried out 
laboratory and some field tests to verify the Canadian test results. Variations of between 

35% and 50% in transverse stiffness were found but the later work showed that analytical 

models of this kind could be used to predict design parameters, and this formed the basis 

of the AASHTO code. In 1993, in Australia, Crews [66] carried out full scale laboratory 

tests which validated orthotropic plate behaviour. However this was not considered a 

useful approach to design, as it is not easy to use the solution. 

Work on grillage models for SLT flat decks has been based on concrete plates with 
limited success. This is a valid method but, again, mathematically intense for little 

benefit, Crews 2002, [48]. 

Some finite element modelling has taken place on SLT decks. It is a long process and 

only valid for the specific case which was modelled. This is important when working 

with timber, which is a very variable material. It has been considered that this intense 

method is more sophisticated than is necessary and useful. 

The finding from the above on plate modelling for flat decks would be transferable to flat 

arches. For this reason no time was spent on sophisticated mathematical models, as no 
design advantage was perceived. 
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A simplified finite element analysis was used to calculate FNF of a 20m span bridge and 

produced a figure of 4Hz, being a check on the measurements which came to 3.5 Hz for 

the same decks. 

5.8 Comparison of Composite Flat Decks to Arch Decks 

Some earlier references were made to the restriction on spans for stress laminated decks 

because of the maximum size of timber available. This becomes a bigger problem with 
large vehicle loads. It has been tackled in Australia and the USA by building cellular and 
'T' beam decks. 

Fig 5.19 - Cellular deck - [751 

Fig 5.20 -T Beam deck - [75] 

The decks which are shown in Figures 5.19 and 5.20 use SLT slabs in conjunction with 
LVL or Glulam beams to transmit horizontal shear. Unfortunately, as was stated earlier in 

this thesis, LVL is not available in the UK and closed boxes trap moist air or water, 

resulting in rot. These types of structure are suitable for warm dry condition but definitely 

not the UK. 
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In order to create successfitl longer spans for the UK market, it became obvious that any 

timber structures would require a system that did not use LVL and one that would dry in 

a free flowing wind. Arch structures are able to do that, and so this research project 

concentrated on the development of stress laminated arches. 

The main reservation, before the first SLT arches were built, was the lap lengths and 

suitable load transfer. All of the previous work with flat decks specified longer lap 

lengths than would be possible in an arch. It was, however, proposed that the 

combination of compression and bending in the arch would equate to the greater bending 

of the flat deck. This has been proved to be the case in all arch tests. 

Four arches were loaded to failure and the mechanism was not slip, as would be expected 
in a flat deck. Failure occurred well beyond the elastic zone and only when the shape 
became so distorted that geometry and tolerance limits were breached. 

5.9 Foundations, Lateral Thrust and Settlement 

The design of the abutments is an ongoing development of trials to find the most efficient 

and sustainable solution. Until now concrete has been used in all cases but this is 

inconsistent with the timber deck, which has a zero rating for carbon emission. The best 

solution is to find a site where the deck can bear against natural rock, otherwise it is best 

to use as little concrete as possible. The forces are large, 30 tonnes of thrust for a 20m 

span crowd loaded footbridge, but some relaxation is allowed. This effect has already 
been explored in laboratory tests where the lateral thrust was provided by tie bars which 
inevitably strained during the test. The increase in stress and deflection has been 

measured and is estimated to within acceptable limits, so this has been exploited in 

foundation design by reducing factors of safety. This movement was well illustrated 

during the test of the 20m span when 12 tonnes was placed centrally to measure 
deflections [79]. An l8m span bridge was built in Rochdale, England during Dec. 2005, 

using piled foundations to establish the cost benefit of this new approach to providing 
thrust at the springings. 
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Analysis calculations show a very large increase in vertical deflections if an abutment is 

allowed to settle, say, 25mm but the forces in the members change very little. Early 

measurements confirmed this with the 6m trial arch and thel5m span, test-bridge, at the 
beginning of the research programme. The geometry of the arch shapes in all of the 

permanent bridges dictates that the vertical deflection caused by a lateral settlement will 
be 2.4 times the lateral movement. The deflection resulting from the load remains almost 
the same. If the span of the arch is increased by 25mm and the analysis re-run the 
increases in member force are very small. A vertical laminate arch of this kind settles into 

a new shape and takes the load without any signi f icant increase in member load. 

During construction the arch settles within the tolerances of holes and cuts. To avoid the 
final structure settling below its intended shape the shuttering should be set to add a pre- 

camber of about 1/200 times the arch span. 

The method statement for the construction of these arches states that the horizontal 

foundation settlement and the construction settlement are to be assessed and the 

appropriate vertical pre-camber is to be built in to the shuttering. When all of the 
laminates are in place and tensioning begins, the supports are removed and the arch is 

allowed to settle which also pushes the foundations out. The tensioning is then resumed. 
This avoids any unnecessary locked-in stress and allows some passive resistance behind 

the foundations to be mobilised. 

5.10 Maintenance 

The success of SLT arches will depend on how much maintenance is required. With 

considered actions, all of the negative factors surrounding the durability of timber arches 

can be designed out. The biggest problems are: 

e rot of timber 

* maintaining the lateral tension 

* stiffness of foundations. 
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Rot is designed out by adding preservative treatment under pressure and then keeping the 

treated timber dry during its working life. The covered timber bridges in Europe and the 
USA have lasted more than one hundred years, Appendix 6. The roofs were provided to 

shed snow and in fact kept the bridges dry, which is why they are still in good condition. 
Roofs are not practical today because of the height of lorries, so it was decided to cover 
the deck with a waterproof, dense bitumen macadam. Pictures in Appendix 6 show metal 

plates used to shed rainwater from SLT decks, in Australia and Norway. 

Lateral tension is essential to live load sharing between the laminates. Bars are chosen at 
the design stage to be stressed to 90% yield while imparting IN/mm 2 between the 
laminates. This level of stress guarantees a Factor of Safety of 2.5 to 3 in the lateral 

tension because 0.3N/mm2 is sufficient for friction. At this stage of development in the 
UK, it is considered that re-tensioning is required at the end of the construction period, 
then eight weeks later and again after one year. Subsequent checks will be recommended 

at five year intervals thereafter. 

A number of studies have been carried out on residual tension as part of the U. S. Forest 

Service's Timber Bridge Initiative [46]. Taylor. S reported on eighteen bridges [75] 

which were checked for lateral tension, moisture content and bearing damage in 1997. 

All of the bridges had been in place for many years and had not had regular maintenance. 
The conclusions were that slip of some laminates had allowed moisture into the structure 

which affects slip and load capacity. The important conclusion is shown in Table 5.3, that 

only about 10% of tension bars were found to have fallen below the 40% value of initial 

tension. This is encouraging and shows that this form of construction is reliable in 

practical terms. 

Because this aspect of stress lamination is so vital and so much useful work has been 

carried out by others, a small bibliography is included, on Page 263. 

101 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

Table 5.3 - Summary data for stressing bar forces of eighteen stress-laminated T- 

beam and Box-beam bridges inspected in West Virginia. Data in this table 

were sorted by thickness of the flanges. 

Statistical Quantity Bridges with 
178 mm Thick 

Bridges with 
229 mm Thick 
Flanges 

Number of Bars Tested 35 52 

Mean (kN) [kip] 67.2 [15.1] 57.8 [13.0] 

Median (kN) [kip] 67.6 [15.2] 57.8 [13.0] 

Coefficient of Variation 28.0 30.3 

Maximum (kN) [kips] 96.5 [21.7] 105.9 [23.8] 

Minimum (kN) [kips] 25.8 [5.8] 16.0 [3.6] 

Initial Design Bar Force Level (kN) [kips] 74.7 (16.8] 96.0 [21.6] 

Allowable Bar Force Level (kN) [kips] 
(40% of Initial Design Level) 

29.8 [6.7] 38.2 [8.6] 

Number of Bars at Stresses Below 
Allowable Level 

3 6 

Percentage of Bars Tested Below 
Allowable Level (%) 

9 12 

Recent tests on completed bridges in the UK have shown encouraging results. 

A 17m span arch at Golspie, which was built in Spring 2005, did not receive its eight- 

week re-tensioning, as planned. It was eventually carried out in December 2005 and the 

majority of the bars still had between 30-35kN of force from an initial prestress of 90kN. 

The structure compressed between 4 and 5mm on re-tensioning. The 20m span Forth 

bridge was re-tensioned at the same time, four months after completion and the results 

were similar. It was found that the bars had to be tensioned from both sides of the bridge 

to achieve uniform results. Figure 5.21 shows the re-tensioning jack in its various stages 

of operation. 
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Fig 5.21 - Lightweight re-tensioningJack 

5.11 Practical Aspects of SLT Arch Construction 

Footbridges are very often situated in remote locations, which could, in the future, 

provide many opportunities for these bridges. All of the components are small and easily 

transported. Short spans only require quite primitive temporary works. 

Detailing is important for durability and to create a tight fitting, end bearing arch which 

will take maximum load with minimum slip and settlement. Construction techniques 

must be as safe, effective and as low cost as possible. This is a new bridge type so these 

aspects had to be as well thought out as possible. Many lessons were learned from 

mistakes made, as work progressed. 
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The most important detailing exercise was to ensure tolerances were to a maximum, 

where they could be, and minimum when they had to be. Holes were drilled in the 

laminates to a diameter 3mm greater than the outside diameter of the threads on the 

tensioning bars. Angle end cuts were made at dead size as the laminates are designed to 

butt against each other. The tolerance in the holes is the construction tolerance for sliding 

the laminates onto the bars. The central span support should be set approximately one or 

two hundredths of the span higher than the final rise, with quarter points increased in 

proportion. This will make it easier to position the laminates and allow for construction 

settlements internally and at the supports. The actual amount allowed will depend on the 

Engineer's assessment of construction settlements and some foundation movement. 

,-v 

The most important construction aspect has been temporary support. Small span bridges 

up to 10m span are relatively light and are easily constructed on the river bank before 

being lifted into place. However, long spans of 20m can weigh 10 tonnes, which then 

require a large crane and close tolerance temporary supports. Figure 5.22 shows a 20m 

span at an early construction stage. It has become clear that long spans must be erected in 

situ. This necessitates a full scaffold, at a cost of f-5-7k. Figure 5.23 shows a typical 

scaffold for a long span bridge. 
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The 15m span test bridge, built in the University car park, was self-loaded onto a lorry, 

Figure 6.33. It was transported 250 miles and offloaded onto a tractor and trailer and a 

rear bogie. It was then dragged to site and winched into place. This caused the bridge to 

move and stretch, which presented difficulties in achieving accurate final dimensions. 

The careful setup of temporary supports is known to be vitally important. In two cases, 

the channel supports on the abutments were put in place at too shallow an angle, resulting 
in a non secular shape. This had an exponential effect on the natural frequency and 

stiffness. Quite minor excitation caused collapse of a 20m exhibition span, Figure 5.24. 

This unscheduled test showed the importance of the arch shape and was considered in 

subsequent dynamic tests. The Bridge shown in Figure 5.25 was erected without the 

correct rise at the centre and it also collapsed, this time due to vandals, reportedly, 
jumping at the reduced FNF of the flat arch. 
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Fig 5.25 - Mallard Pike, Forest of Dean - completed too flat and collapsed 

When all of the laminates are in place, the deck must be tensioned gradually and evenly 
because it can, very easily, twist in a horizontal direction. If this is allowed to happen, it 

cannot be rectified unless all tension is removed and the process begun again. Although 

the abutment bearing channels must be set exactly to the correct angle and level, even 

more important is that they must be squared by checking diagonals exactly. If one side 

has a span, say, 30mm longer than the other, the rise will be 70mm less, which makes the 

bridge very lop sided. The initial tensioning will be relaxed and the support removed to 

allow settling and end bearing to take place. The tensioning process must then be 

repeated gradually up to full tension. When the bridge is complete, usually about three 

weeks after first tensioning, it will again be re-tensioned and finally after eight weeks in 
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service. As a safety check they will be re-tensioned again after one year until there is full 

confidence in the technique. 

The moisture content of the timbers at the time of treatment and construction is of vital 
importance. The British Standard for preservative treatment [52] only requires drying to 
28% before treatment which results in peripheral impregnation only and is too wet for 

stressing. The moisture content must be reduced to preferably 14% and then treated. The 

timbers will then be left to air dry, or again kiln dried back to 14%, if possible, before 

construction. If this is not done it is very easy to overload scaffolding and tension will be 

lost very quickly, as excess moisture is pushed out under pressure. 

These very shallow decks have caused a problem with handrail fixing. The small 

structural depth needs to be increased by steel brackets to provide sufficient lever arm to 

resist lateral handrail loads. These brackets must be fixed well onto the span or they will 

overstress the external laminates. Figure 5.26 shows typical fixings which have proved 

successful. They still look close to the outer laminate but are very secure due to the 

stressing. 

týfr -Y. 7 

107 

Fig 5.26- Brackets for handrall posts 



The Development of Transversely Stress- Laminated Timber Arch Bridges 

The first SLT decks in the last century were nail laminated. This can be a useful 

technique for making the building of these, more structurally advanced bridges, easier. If 

laminates are nailed as the arch develops it makes stressing simpler because there will be 

less slack to jack up. This can however interfere with arch relaxation before stressing. It 

would be interesting to try very small nail laminated arches for use in remote locations. It 

would also be of value to develop the use of mild steel threaded bar for stressing small 

arches. 

A final practical aspect of arch bridges is that they provide excellent freeboard for 

floating debris in a flood. The springings must be kept at least above the one in one 
hundred year flood level, which means that a medium sized bridge will have Im of space 
for debris rather than the normal 300mm which is presently provided on flat span bridges, 

in order to minimise cost. Figure 5.27 illustrates these details well. 
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Fig 5.27 - 20m span over river Forth with excellent freeboard. 
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CHAPTER 6 

EXPERIMENTAL WORK 

This chapter deals specifically with the arches chosen for experimentation and the testing 

procedures undertaken. It describes the apparatus used for testing and the specific 

construction details of the arches built for testing. It closes by describing each of the test 

bridges and their trial loadings in a chronological order and gives an overview of the 

results. This is accomplished by taking extracts from published papers by the Author, 

where appropriate. This leads on to Chapter 7, where all of the results are shown and 

analysed in detail, leading to the development of a generic semi-empirical model in 

Chapter 8. 

6.1 General Considerations and Geometry 

The first trial, SLT, bridge in the UK, was put together for the Royal Highland Show 

(RHS) in the year 2000. It was a flat deck of 3m span using Macalloy bars to stress it 

laterally. This displayed the concept and generated some interest. This bridge is now in a 

permanent location just inside the M25, near London, Figure 6.1. It taught the Author that 

the tension bars must strain a significant amount to maintain tension and 25mm Macalloy 

HYS bars did not perform that task well. 

-- 

A. 
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The first SLT arch was the winning design for a competition, organised by Innovative 

Timber Engineering in the Countryside (InTEC) in the UK in 2002. The remit was to 

build an attractive and innovative timber footbridge. The design used the structural arch 

as the bridge deck. The span was 12m and an arbitrary rise of I in was chosen to provide a 

reasonably stiff arch, while, at the same time, not being too steep to walk over, Figure 

6.2. 

Fig 6.2 - 121n span bridge 

T T' k 

All commercial pedestrian arches, built since then, have had the same span/rise ratio. 
Two sets of test arches built in the laboratory have had different ratios in order that the 

effect on stiffness and strength could be measured. 

The slope, up to the quarter point on a 12 to I ratio arch, is too great for wheelchairs (> I 

in 10) so fill has been placed to flatten the slope. The decks have all been waterproofed 

with dense bitumen macadam, containing a polymer additive. A 40mm layer is bonded to 

a dry deck with a tack coat and is thickened at the springing to reduce the slope to I in 7, 

which is still a little steep for wheelchairs but it is over a very short distance. Details of 

this end section are shown in Figure 6.3. 
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Fig 6.3 - Details ofend ot'deck and tar 

Recently a pedestrian bridge was decked, using boards with non-slip inserts placed on 

fillets, which reduced the slope. The laminates were not waterproofed, although they 

were pressure treated with preservative, Figure 6.4. 
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Fig 6.4 - Non slip deck oil new bridges at Salcey 

Future road bridges will be a combination of flat SLT decks, integrated with arch 

supports. These structures will have higher natural frequencies and greater stiffness due 

to the connections between the arch and the flat. This will be the subject of a further 

study. A pedestrian bridge was built to this design as a prototype and is shown in Figure 

6.5. The connections for a vehicle bridge will be more substantial with particular 

attention to the joints which may be integrated with the stress lamination of the decks. 

This would provide a complete structure with material of the same modulus resulting in 

even stress distribution and avoiding high local concentrations at bolt connections. 
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A test programme was chosen to experiment with a variety of spans of the 12 to I ratio, 

both in the laboratory and in the field. A few flatter and steeper spans were tested in the 

laboratory to help build a full picture of the effects of arch rise on strength. 

6.2 Test Apparatus, Instrumentation for Deflection and Force Measurements 

The laboratory bridges were tested using a 'Dartec Modular 9500' which is a combined 

loading and data acquisition system with a 300 kN load capacity, Figure 6.6. This 

provided a measured load through hydraulic rams and stops at the preset test load or 

deflection. The loads were transmitted to the structures through a series of beams and 

rams and in order to ensure that the line load was applied evenly, a bed of sand was 

provided in a box on the deck. 
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Vertical deflections of the span and horizontal deflections of the supports were measured 

using displacement transducers with 100mm of measurement range. All outputs were 

recorded by an onboard data logging system and then analysed using Excel. 

In the field, kentledge was used as loading which is not ideal, but the only practical 

solution. Loading with kentledge deviates from a laboratory load system, in that when the 

load effect is measured, the load continues to thrust on the deflected form. The laboratory 

rams, in contrast, stop at the position and load that a reading is required, thus allowing 

time to record. The most convenient form of kentledge was I OkN sand bags delivered by 

a building supply merchant. These bags are accurately weighed and the delivery vehicle 

was able to load and unload the structure. 
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Fig 6.6 - Laboratory test of timber arch 
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Fig 6.7 - 20m span brtdi,, c ith kenticcl-c loading 

The deflections of the full scale structures were large, compared to the laboratory tests, 

which meant that the travel of the transducers created a problem. Some had to be reset 

because their full iiic: i, ýtirciiicw \\: i, ý lc, ýs than the deflection, Figures 6.7 and 6.8. 
I'u RIF --7 
i 

4W4 

Of 

Fig 6.8 - Transducer - tests at Glentress 

Smaller movements in the thrust tie bars of the full scale bridges were measured using 
Wheatstone bridge strain gauges. The strains were converted to thrust. The smaller 
laboratory bridge tie thrusts were measured directly using load cells, Figure 6.9. 
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Fig 6.9 - Load cell 

When the 20m span bridge was re-loaded four months after initial testing, the deflections 

were measured remotely, using a SOKIA 413R3 Total Station which measured any point 

in three dimensions to an accuracy of I mm, Figure 6.10. This was the only opportunity in 

the entire test programme to measure longitudinal and lateral movement, as well as 

vertical. The instrument stored all of the readings for subsequent download directly to 

PC. This was very successful and saved on many of the site safety procedures, normally 

necessary for on-site load tests and is to be recommended for the future. 
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Fig 6.10 - Sokkia Total Station - Remote detlection measurements 
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6.2.1 Instrumentation for Vibration Measurement 

The Natural Frequency (NF) of a laboratory bridge will never give an accurate indication 

of the NF of the full scale bridge. There are too many variables which cannot be modelled 

within experimental limits. In Civil engineering today, it is normal for large footbridge 

contracts to have a contingency sum set aside for dampers, in the event that they may be 

needed. Calculations cannot predict the specification. Only testing of the completed 

structure can give the required information. 

Each of the full scale bridges were tested for a measure of their natural frequency (NF). 

This was done using three different sets of equipment, to ensure a check on this sensitive 

parameter. 

The first set of equipment used four vertical and two horizontal Pinocchio Vibraphones, 

Figure 6.12, connected to an 8-channel TEAC LXIO data recorder, in conjunction with 
ARTeMIS test planner and modal analyses software. The excitation required was 

provided by two then four people, walking steadily over the bridge, Figure 6.11. 
T 
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Fig 6.11 - Excitation for ARTeM IS test 

In ARTeMIS Analyser, the data was processed with a default signal processing 

configuration, including a 1024-lines spectral density estimation. During the 

measurements modal analyses were made using the Fast Frequency Domain 
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Decomposition Peak Picking technique. This was for quality checking of the data as well 

as verification of the sensors and their positions. Figure 6.12 shows an accelerometer in 

place. 
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The second set of dynamic tests involved the use of a dual spectrum analyser and impact 

excitation method. The impact hammer was used to excite the structure. The response 

was recorded using two accelerometers. Both the excitation force and the response 

signals were recorded using a multi-channel spectrum analyser. The results were analysed 
both in time and frequency domains, Figure 6.13. 
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Fig 6.13 - Accelerometer - second test 
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The third set of tests was carried out using a versatile handheld vibration analyser RT440, 

developed by 'Reactec Ltd', Figure 6.14. The bridge was excited by impact (including a 

broadband frequency spectrum, thus exciting any system natural frequency) using 50 kg 

bags of ballast and the response was measured utilising the RT440 'bump test' module. 

Fig 6.14 - RT 440 Portable handheld vibration analyser 

This portable equipment was purchased so that the FNF of future bridges could be 

measured easily and quickly without the need for a separate computing facility or a mains 

power source. Measurements of this kind will eventually lead to load assessments which 

can be calculated from two sets of FNF readings with the dead load altered. 

Dynamic tests could have progressed and explored accelerations and damping, but the 

small spans and relatively light weight decks mean that natural frequency is the only 
design criteria of interest. This is because it would be uneconomical to add damping to 

these low cost bridges. Large acceleration values, outwith the comfort zone of 

pedestrians, are only set up with crowd loading, which is not the norm in rural situations. 
When the waterproofing layer of dense bitumen macadam is added, Figure 6.15, it is 

bonded to the deck thereby adding to the stiffness and the NF. If it was laid on without 
bonding, it would just increase mass and thus reduce the NF. This can be very serious if 

the NF has a value near the frequency at which vandals can jump synchronously. 
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NF = c-Fk -I -m Where c is a constant, k is stiffness and m is the mass. 

A number of commercial bridges built through this programme had the NF taken with the 

portable RT440 both before and after the topping was applied. These results are shown in 

Chapter 7, Section 7.7. 

Fig 6.15- Application of Bitmac to bridge deck 

- 

6.3 Material Properties and Component Preparation - Timber 

Details of timber grading and specification are given in Chapter 5. All of the test bridges 

conformed to the specification in Appendices I and 2. The species chosen for the test 

bridges was Sitka Spruce because, as stated before in this document, that is the plentiful 
home-grown product, which this research is endeavouring to promote. The 15m span 

permanent bridge was built using higher grade timber. 

The timber must be cut and drilled accurately to ensure that the arch fits together and the 

laminates settle into bearing. This has been achieved by calculating the dimensions 

exactly, using the spreadsheet shown in Appendix 10, and designing the bridge so that 
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every laminate is identical and symmetrical. This has permitted an element of mass 

production, both in the laboratory and in the field. If the holes for the stressing bars are at 

'S' mm centres then the distance from the end of the laminate to the outside holes is 

'S/2'mm. The centre holes are a few millimetres above the centre line and the outside 

ones are a few below, which creates the arch radius. The accuracy is provided by working 

on a drill table with one drill position, one back stop and one end stop and spacers of 

thickness 6mm. or so, which is the vertical distance between the holes. A typical laminate 

is detailed in Figure 5.3. 

Care was taken to ensure that the modular size of the timbers were within a 5% tolerance. 

This was important for width because rogue laminates inhibit other laminates from 

bonding with their neighbour and thereby create a lateral discontinuity in the isotropic 

plate. In the USA it is common to plane one face in order to ensure accuracy of width. if 

the depth is out of tolerance, it affects the accuracy of the hole drilling because the mass 

production technique requires a laminate to be turned, which means that measurements 

are taken from both faces. 

6.4 Materials Properties - Tension bars 

The Laboratory tests used threaded mild steel bar with nuts and washers at both ends to 

tension the scaled-down bridges. This was very convenient because part of the testing 

involved the application of many different tensions and this permitted easy adjustment. 

However, after a number of uses at the high tensions, the threads began to fatigue. It was 

very difficult to attain a high enough tension on the bars in the flat decks to obtain 

meaningful results. 

Torque was applied using a wrench, calibrated in the laboratory, to provide a specific 

tension in the threaded bar. This was done using the simple equipment shown in Figure 

6.16. Various torques were applied and a load cell connected in series with the bar 

section, held in the rigid frame, provided a corresponding tension. The results were 

plotted as shown in Figure 6.17 so that a specific torque could be obtained for the 

required tension in the stressing bar. In commercial bridges, hardwood laminates are used 
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on the outside to take the high bearing loads from the tension bars. In the laboratory, this 

was not done and some bearing plates, unfortunately, crushed the timbers. 
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Fig 6.17 - Torque to tension plot 

The full scale bridges were tensioned using either prestressing bar or Gewi galvanised 
HYS bar. The procedures are detailed in Section 5.3.9 of Chapter 5. 
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Fig 6.16 - Load cell and calibration frame 
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6.5 Construction Details of Structures and Restraints 

A number of practical aspects had to be considered before completing the design of the 

test bridges. The laminates were scaled down resulting in the rod size being 

proportionately large and additionally, some of the arch shapes fon-ned very tight radii. 

This meant that the holes were near the edges of timbers. Eurocode 5 [5 1] requires that 

prestressing is central to a laminate, but this is not possible in arches. To ensure that this 

was within reasonable experimental limits, shorter laminates were used for the small 

radius arches, Figure 6.18. 

b 
I 

The longitudinal thrust was provided by one or two tension bars acting between two steel 

channels, into which the ends of the arch were locked. The channels restrained the 
bearings from lifting, which happened in early trials. The tension bars each had a load 

cell in line so that lateral thrust and strain could be measured in the laboratory, Figure 6.9. 

However, the thrust was too large for instrumentation in the full scale bridges so strain 

gauges were used. 

In all tests pre-loading was essential to allow the structures to settle into a load-bearing 

position. An early test with the 15m span bridge, built and tested in the University car 

park, showed that considerable error could be introduced if this was not done. 
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6.6 Summary of Arch Testing 

In the following sections of this chapter the testing programme, with many of the results, 
is presented in chronological order. Each stage of the research was prompted by findings 

from the previous stage. In order to achieve a logical layout, Table 6.1 shows a summary 

of the bridges tested and the important findings. 

Table 6.1 - Summary of the tested bridges 

Test Bridge Details Test Details Behaviour Failure 

6m span Trial Arch 4 point, V4 point and line Elastic behaviour Failed when one 

I 0.5m rise loading at 0.75m centres. within design limits laminate split 

Im wide Horizontal tics to take thrust. which was giving a FoS of >4 

0.1 m laminate depth Transducers along span for mirrored the results when compared to 

0.05m laminate width deflection and load cell in from QSE design load 

ties to measure thrust. 

Single tension in lateral ties 

to give IN/mm 2 between the 

laminates 

15m span Trial/Permanent lOkN sand bags to give Elastic behaviour Not loaded to 

2 1.25m rise central and Y4 point loading. within design limits failure 

2m wide Transducers along span to which was 

0.25m laminate depth measure deflection. mirrored the results 

0.05m laminate width Single tension in lateral ties from QSE 

to give IN/mm 2 between the 

laminates 

2.1 m span -4 rises 4 point loading and 
1/4 

point Elastic behaviour Failed with FoS of 

0.216m wide loading. Horizontal ties to within design limits 4 

0.07m laminate depth take thrust. which was 

0.01 8m laminate width Transducers along span for mirrored the results 

4 rises deflection and load cell in from QSE when 

3 Flat bridge rise =0 ties to measure thrust. tension was 

4 Rise = 0.335m All bridges were tested with sufficient. 

5 Rise = 0.445m a minimum of 4 different 

6 Rise = 0.580m tensions. 

Results showed that 1/3 of 

design tension was sufficient 

for lateral load transfer 
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6m span -4 rises 4 point and 1/4point loading. Elastic behaviour Not loaded to 

0.475m wide Horizontal ties to take thrust. within design limits failure yet 
0.95m laminate depth Transducers along span for which was 
0.025m laminate width deflection and load cell in mirrored the results 

7 Flat bridge I rise =0 ties to measure thrust. from QSE when 
8 Flat bridge 2 rise =0 All four bridges were tested tension was above 
9 0.25m with 4 different tensions. UN 

10 0.5m Results showed that 1/3 of 
II Lom design tension was sufficient 

for lateral load transfer 

20m span 9kN sand bags to give Elastic behaviour Not loaded to 
12 1.67m rise central and V4point loading. within design limits failure 

2.0-3. Om wide (varies) Transducers along span to which was 
0.2m laminate depth measure deflection. mirrored the results 
0.05m laminate width Single tension in lateral ties from QSE. 

to give IN/mm2 pressure Improved stiffness 
between the laminates. shown with 
Tested at 4 month intervals increase tension 

with different tensions I 

6.7 6m Trial Arch and 15m Trial/Permanent 

A 12m span stress-laminated timber arch bridge was designed and submitted to a design 

competition early in 2002. The remit was for an innovative timber bridge for all ability 

users and horses. The site was part of one of the government's Capital Modernisation 

Fund (CMF) projects, near London. These were Central Government funded initiatives, 

aiming to increase access to the countryside in areas of large population. The design won 
the competition and was immediately scheduled for construction but, unfortunately, the 

project ran into difficulties with land ownership and delays resulted. As the construction 

of the bridge had been delayed, it was decided to build a test arch for demonstration 

purposes. The aims were to explore the construction techniques and to determine the 

structural behaviour and performance of this new design (stress-laminated timber arch 
bridge), as it would be the first bridge of this kind to be constructed. The demonstration 

bridge was built as a half scale model, Figure 6.19, with a 6m span, Im wide and 0.5m 
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rise, using 50mmx I 00mmx I 000mm laminate timbers in place of the full scale bridge. 

The full scale bridge would have a 12m span, 2m width and Irn rise with 

50mmx2OOmmx2OOOmm laminates. 

Whilst awaiting the testing of this half scale bridge, an opportunity arose to build a 15m 

span bridge on another CMF site, near Manchester. This bridge was designed, using 

elastic analysis and a generous factor of safety, as an arch with a 1.2m rise, 2m width and 

timber laminates of 50mmx250mmx2l5Omm. It was decided to build this at the 

University, under controlled conditions, then load test it before transporting it to the site 

in Manchester. 

6.7.1 Design Details 

The bridges were designed for a uniformly distributed load of 3.2kN/M2 using grade C24, 

FSC certified, timber even though the ultimate goal is to use C 16 or C 18, as these are the 

grades readily available from home grown produce. 

Grade D40 hardwood was used for the outer leaves of the 15m span bridge to resist the 

very high bearing stresses from the tensioning bars. The timber for the 6m demonstration 

arch was entirely softwood and consequently the outer leaves were subjected to 

considerable bearing defori-nations. 
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6.7.2 Preparation of the Timber 

For the arch construction, a single size of timber was used and staggered in groups of four 

to form a module which would repeat itself throughout the deck. Four holes were drilled 

in each timber at an appropriate diameter which would easily accommodate the bars, and 

for the 15m span, their sleeves. The holes were drilled on the radius of the circular curve 

of which the deck was a segment. The timbers were then pressure treated with a Copper 

Chromium and Arsenic (CCA) compound, to repel fungal attack. 

The timbers laminate lengths were chosen to allow a curve, without too much of their 

ends protruding above the deck surface or the holes being too far off the centre of the 
laminate. 

6.7.3 Tension Bars 

The generic aspects regarding specification of tension bars are described in Sections 5.3.2 

to 5.3.9 of Chapter 5. The important general factor is that timber shrinks seasonally and 
the stressing bars must maintain a minimum tension so that sufficient friction is set up 
between neighbouring timbers, so ensuring that load is shared laterally by all timbers 
forming the deck. High tensile 'Dywidag' ribbed bars were used for stressing the timber 

sections together. They were tensioned using a hydraulic jack and locked with specialist 

nuts at either ends. The bar diameter was chosen so that 70% of yield stress gave the 

required design load to set up the friction. The bars were 15min in diameter for both 6m 

and 15m span bridges. To protect the bars in the 15m span permanent bridge they were 

sherardised and then greased and sleeved to the same specification as ground anchors. 
For later bridges, 90% of yield was chosen to maximise strain. Figure 6.20 show a bundle 

of' Dywidag', bars sleeved ready for use. 
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) 

In order to distribute the nut tension onto the timber sections 100mm square mild steel 
bearing plates were used for the 6m span bridge and 200mm diameter galvanised mild 

steel plates for the 15m span bridge. 

6.7.4 Testing and Measurements 

The 6m span bridge was supported on a steel frame constructed from two angle sections 
(one at each end), acting as bearing plates for the ends of the bridge. The horizontal thrust 

was contained by two steel hollow sections of 40mm x 40mm x 5mm thick (one on each 

side) with ends being welded to the bearing plates. The 15m span bridge was supported in 

a similar way but with the horizontal thrust being contained by steel tie bars attached to 

steel channel restraints at the ends of the arch. These were designed to eliminate the need 

to form rigid supports - and to provide a means of measuring the thrust by using a pair of 
load cells in the case of 6m span bridge, and strain gauges in the case of 15m bridge. 

Deflections were measured at various points along the arch by means of displacement 

transducers. All readings were automatically recorded using a data logging system. 
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6.7.5 6m Span Arch Bridge 

The 6m span bridge was tested in the laboratory using a Dartec Modular 9500 which is a 

combined loading and data acquisition system with a 300kN load capacity. First the 

bridge was subjected to a four-point loading condition as illustrated in Figure 6.2 1. 

IE 2.0 m 2m 111 2.0 m 

1-7 1 Total load (0-50 
Pair of 

TT 
IT (TU 

JT 

TT 

'Fie 

<- 0.75 -41<-- 0.75 -->I<-0.75 m-4--0.75 rn->ý- 0.75 ->ý- 0.75 0.75L! 
ýý 

0.7ý 

IE 6.0 m 

Fig 6.21 - 6m Span trial arch test set up 

The bridge under preparation for testing is shown in Figure 6.22. A preload of 5kN was 

applied and removed a few times to eliminate any initial settlements. The bridge was then 

loaded at a constant rate to 35kN, released and then loaded again to a maximum of 50kN 

after which, the load was removed and the bridge was allowed to recover. In Figure 6.23, 

the load deflection / relaxation of the bridge at various positions along the length of the 

arch are shown and the exaggerated deflected profiles of the bridge at various load levels 

are shown in Figure 6.24. The second part of each position graph shows the arch recovery 

deflection. It can be seen that the initial test showed that much of the deflection took time 

to recover whereas in subsequent loadings the recovery was faster. This was because the 

AN pre-load was not sufficient to complete the initial settlement. 

The support frame used for this bridge for testing purposes, proved to be very effective in 

preventing its ends from spreading apart, hence preventing undue increase in vertical 
deformation and reduction in horizontal settlement. The bridge sustained approximately 
2.6 times its design load (3.2kN/m 2 on 6rn 2= 19.2kN), applied as two line loads (total 

50kN) at its middle third points, without signs of any distress. At the design load, the 

maximum deflection of the bridge at its mid span was less than 0.003 times its length. 
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Fig 6.23- Vertical deflections at regular sections -4 point loading 
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Fig 6.24 - Exaggerated deflected profile -4 point loading 

Comparison of the test results with the calculations, using a series of simple static 

analyses, indicated that the bridge behaved elastically up to well above its design load 

and sustained its arching action during the increased loading. In Figure 6.25, the 

horizontal thrust recorded from the two attached load cells, together with their combined 

values is shown. These were compared with the calculated horizontal reaction in the arch 
bridge. 
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Fig 6.25 - Horizontal thrust 
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In the second series of tests, one support was pennitted to move horizontally by 25mm, 

using a specially devised adjusting mechanism attached to the tie bars, to simulate 

settlement of an abutment and the arch was again loaded under a four-point loading 

condition. The horizontal movement (settlement) of the support illustrated its profound 

effect on increasing the vertical deformation of the bridge. In Figure 6.26, the load 

deflection /relaxation of the bridge at various positions along the length of the arch is 

shown. 
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Fig 6.26 - Vertical deflections -4 point loading and support settlement 

In the third series of tests, point loads (line loads) were applied at 0.75m from a support, 

then at 1.5m, 2.25 and finally at 3. Om positions. In each loading position, loads were 

increased up to a maximum of l5kN and the deflections were recorded. 

In the final series of tests, the bridge was subjected to a point (line) loading at 2m from a 

support and was increased until failure occurred at 29AN, due to upwards bulging of the 

arch on the unloaded side. The magnitude of the failure load clearly indicated the 

considerable reserve of strength provided by the arching action in the bridge. In Figure 

6.27, the exaggerated deflected profiles of the bridge at various load levels up to 15kN 

are shown 
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Fig 6.27- Exaggerated deflected profile - quarter point loads 

The design loading for a pedestrian bridge is always a UDL- For an arch, the most 
onerous case will be when half of the span is carrying a UDL which gives a bending 

moment of less than 2kNm for 3.2kN/m 2 loading. The 29.6kN third point loading gives a 
bending moment of over 12kNm and a timber stress of approximately ION/mm 2 parallel 
to the grain. 
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6.7.6 15m Span Arch Bridge 

The 15m span bridge was constructed in a car park outside the laboratory and was loaded 

by up to ten sand bags of I tonne (lOkN) each, totalling IOOkN, evenly distributed over 

the middle third of the span, using a mobile crane. The loading and the instrumentation 

details are illustrated in Figure 6.28 and the bridge during loading is shown in Figure 

6.29. The bridge was. built using Douglas Fir laminates with oak on the outside and 

stressing was with l6mm diameter prestressing bars sleeved and greased in tubes. In 

Figure 6.30, the load deflection/relaxation details of the bridge at various positions along 

the length of the arch are shown and the exaggerated deflected profiles of the bridge at 

various load levels are illustrated in Figure 6.3 1. 

IE 5.0 5.0 in 
Applied I di (0 100 kN) 

Fig 6.28 - Loading and instrumentation 

Fig 6.29(a)- Applied loading 30kN Fig 6.29(b)- Applied loading IOOkN 

Fig 6.29 - 15m span bridge during loading 
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Fig 6.30 - Vertical defort-nation of 15m span arch 
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Fig 6.31 - Exaggerated deflected profile - 15m span 

The support frame used for this bridge for testing purposes, was not very effective in 

preventing its ends from spreading apart. A total of 28.4mm horizontal movement was 

recorded during loading, which in turn caused undue increase in vertical deformation and 

also reduction in horizontal thrust. Analytical results showed that such a horizontal 

settlement would increase the mid span deformation of this bridge by over 13 folds. At 

the load of lOOkN the maximum deflection of the bridge at its mid span reached only 
0.008 times its span, Figure 6.3 1. 
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Finally the bridge was loaded eccentrically at a position 5m from a support, using 4 sand 
bags (40kN in total). In Figure 6.32, the exaggerated deflected profiles of the bridge at 

various load levels are illustrated. 
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Fig 6.32 - Exaggerated deflected profile - quarter point loading 

After completion of the tests, the 15m span bridge was transported on a lorry with 

extendable trailer to its final destination at Cogshall Brook, near Manchester. The bridge 

is shown during loading on site, in Figure 6.33. 
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Fig 6.34 -15m span bridge under construction on site 

Figure 6.34 shows the 15m span bridge during construction on site at Northwitch. It was 

erected over an existing weir in a disused salt mining area which is now a country access 

park. 

6.8 2.1m Span Arch Bridges 

The tests on the 6m and 15m arches illustrated that small sections of relatively low grade 

softwood timber could effectively be used to design and construct large and attractive 

structures. The method utilises the better qualities of timber in compression and end- 
bearing, than its relatively poorer one in bending, in an arching action which contributes 

significantly to the overall strength and stiffness of the bridges. 

The utilisation of an arch profile in the UK, in design of the already successful stress- 
laminated timber bridges, elsewhere, provides enhanced and excellent performance and 

endurance when constructed and maintained properly. 
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The ongoing research in this programme was now planned to explore the full potential of 

stress-laminated arched timber structures with regard to factors affecting structural 

performance and stability, assembly and construction processes, maintenance, durability 

and life-long reliability. End of life disposal/recycling issues also require consideration in 

order to develop a comprehensive design guidance and a database of the key design, 

construction and maintenance issues for forestry and construction industries. 

To this end it was decided to load test a set of laboratory scaled arches of- 
2.1 m span 
With 4 rises =0 flat 

335mm 

447mm 

580mm 

For 4 lateral tensions Finger tight 
3.83kN 

7.66kN 

11.49kN 

To explore the load deflection relationships and the differences in stiffness due to 
different lateral tensions. 

From the work so far, the most significant differences between flat decks, which have 

been well researched by others, and arches, were the extra stiffness from the arch rise and 
the influence of the lateral stress. It was considered that the compressive action of the 

arch rendered the lateral tension less crucial than in flat decks, which collapse if too much 
tension is lost. 

6.8.1 Loading 

Although this was not a full scale structure, a reference loading of 3.2kN/M2 was used to 

quantify the capabilities of the experimental arches by applying some factor of safety. 
This is the loading which was used to design the other full scale bridges and is the 

accepted footbridge crowd load for the countryside [ 19]. 
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A similar loading pattern to the trial 6m span was used. Four point loading was applied as 

two equal line loads at mid span 700mm apart (Y3 span). This would simulate the UDL. 

The loading was applied incrementally up to a load within the elastic limit. A further set 

of tests were carried out with a point load at the V4 point of the span. Again an 

incremental load but this time it was applied to failure. 

6.8.2 Preparation of Timber 

The timber laminate size used for all arches was 17.5mrn wide x 70mm deep x 530mm 

long to give a scale factor to the normal 50mm thick timber used for full scale structures. 

Each laminate had 3 No. 16mm diameter holes drilled on a curved centreline at the radius 

of the arch and about the centreline of the laminate. The timber was dried to a moisture 

content of approximately 15%. Each bridge comprised twelve laminates wide, each 

staggered in sets of three, so that at any cross section there would be four butt joints and 

eight solid timbers. The effective cross section was therefore 2/3 of the actual section. 

6.8.3 Tension Bars 

The first tests had used HYS stressing bars which were tensioned using a hydraulic jack. 

This was time consuming and as the tension would have to be adjusted many times, it 

was decided to use galvanised mild steel threaded bars with nuts and washers at each end. 

The smaller scale arches would not require such large lateral forces as are used for full 

scale bridges. This was another reason for using threaded bars. It was also considered as a 

possible permanent stressing system for small arches therefore the stressing system would 

also be under test. Figure 6.35 shows the beginning of construction of a small arch using 

threaded bar. The first arches were built from the abutments and from one side. This led 

to difficulties as the tensioning rods were difficult to support in the temporary situation. It 

soon became clear that construction should begin with the mid span central laminate, as 

shown. 
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Fig 6.35 - Threaded bar tensioning - first laminate 

To ensure accurate tensions, the system described in Section 6.4 was used to calibrate the 

torque wrenches used to tension the bars. The system worked very well for the low 

tensions but at loads of 20kN, the washer compressed the external laminates, indicating 

bearing failure and the threads eventually began to fatigue. The 20kN tension produced 

approximately IN/mm 2 between the laminates. 

6.8.4 Testing and Measuring and Equipment 

The arches were mounted in a frame of steel channel sections, connected by a length of 

threaded bar acting as a tension rod, to take the horizontal thrust. The bar had a load cell 

in line to measure the thrust load and the longitudinal movement. Four different arches, 

of 2.1 m span were built with rises, from the tension bar to the centreline of the top 

laminate, of Omm, 335mm, 447mm and 580mm. 
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Fig 6.36 - 2.1 m arch with 4 point loading 

Because the arches were only 21 Omm wide they had to be supported laterally for safety, 

Figure 6.36. This would have no effect on the results. The 'Dartec Modular 9500' 

equipment was again used to apply the loads. The line loads of the four point loading had 

to act through a bed of sand to ensure the load was evenly applied. Six transducers were 

positioned in pairs under the mid point and the two line loads. These could not act 
directly on to the arch because the soffit sloped too steeply to give a reliable seating, so 
intermediate timber strips were added as seatings. The transducers were positioned at '/4 

points and mid-span for the 1/4point loading case. 

6.8.5 Tests and Results 

Each arch was loaded centrally and unloaded to settle them in and bed down the 

structure. Each was then loaded centrally up to lOkN for four different tensions and at 

quarter point with maximum tension to failure. Table 6.2 gives a summary of the bridges 

and loadings. 

I 

M-5 
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Table 6.2 - 2.1 m span arches - vertical loading for various lateral tensions 

Rise of Arch mm Lateral Tension kN 4 Pt Loading kN Quarter Pt Load kN 

Flat 0 0-4.38 

1.92 0-9.44 

3.83 0-10.54 

5.75 0-12.92 

7.66 0-11.86 

9.58 0-12.33 

11.49 0-12.68 

13.41 0-12.47 

15.32 0-14.81 

17.23 0-14.45 

335 Finger tight 0-10 

3.83' 0-10 

7.66 0-10 

11.49 0-20 0-25 

447 Finger tight 0-10 

3.83 0-10 

7.66 0-10 

11.49 0-10 0-25 

580 Finger tight 0-10 

3.83 0-10 

7.66 0-10 

F 11.49 0-10 0-25 

The deflections were very small, especially in the elastic zone up to I OkN loading. The 

deflections were of similar order of magnitude for all three arches and even a little greater 
for the 580mm arch. This was surprising as it was considered that it should have been the 

stiffest but may have had been due to poorer quality timber in this arch. However, it will 
be shown in Chapter 8 that there is an optimum span to rise ratio. 
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In each case, the deflection for finger tight deflection at full load was approximately 

twice the deflection for all the other lateral tensions. This showed that at minimum lateral 

tension, adequate friction was mobilised to permit full load transfer for all arch shapes. 

The lateral settlement was not measured although the lateral thrust was. The thrust can be 

used to estimate the settlement as will be shown in Chapter 8. 

The loads were plotted against deflections so that comparisons could be made and linear 

expressions could be derived for each lateral tension. The gradient would be a measure of 

the arch stiffness. The stiffnesses were then plotted against the lateral tensions. 

Figure 6.37 shows a set of plots of load against deflection at the '/3 span for the 335mm 

rise arch with four point loading. Each plot is for a different lateral thrust from the tension 

bars. For comparison a plot of an elastic analysis is shown for full lateral tension (dotted 

black line). It can be seen that this does not appear to correlate exactly with the I 1.49kN 

lateral thrust plot which is its equivalent. No lateral settlement has been allowed for and it 

will be shown in Chapter 7 that the values are within the limits of experimental error. 

20 

z 16 

M 12 0 

8 

CL 
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01234567 10 

Deflection, (mm) 

Fig 6.37 - Load deflection graph at 0.7m -4 point loading - 335mm rise 
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Figure 6.38 shows a set of plots of load against deflection at mid-span for the 335mm rise 

arch and four point loading. A full set of similar plots for all load cases are shown in 

Chapter 7. Correlation is not perfect for the same reasons explained above for the '/3point 

loading. 
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16 
OkN 

----------------- 3.83 kN 
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7.66 kN 

11.49 kN 

Analysis 

M 12 C) 

8 
CL 
C' 
<4 

0 
0123456789 10 

Deflection, (mm) 

Fig 6.38 - Load deflection 6Taph at mid point -4 point loading - 335mm fise 

Figure 6.38 illustrates the linear load deflection relationships representing the stiffness of 

the arches. As lateral tension increases the stiffness increases. Figure 6.39 shows these 

different stiffnesses plotted against their corresponding tensions for one particular arch. 

Again, Chapter 7 shows all of the results for the other arches. 

5 

E4 

(01 
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2468 10 

Lateral Tension, kN 

Fig 6.39 - Bridge stiffness - 335mm rise 
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Figure 6.40 shows a plot of horizontal thrust at the supports against applied load. The 

results of an analysis are also shown which correlate well with the experimental results. 
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3.83 kN 
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0-0 
0 2468 10 12 14 16 18 20 

Horizontal thrust, (kN) 

Fig 6.40 - Horizontal thrust - 335mm rise 

The 447mm rise arch performed in a similar manner but it deflected a little less and the 
580mm rise arch deflected more, showing that there may be an optimum for arch rise in 

terms of stiffness. This is explained further in Chapter 7. 

Each arch was finally loaded at its quarter point up to 25kN. All three arches failed at the 

same load. The flat deck was tested with ten different lateral tensions, so that a 

relationship between them and stiffness could be derived. 
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The tests with the flat spans, Figure 6.4 1, showed how un-stiff (flexible) they were at low 

tension and highlighted the safety which the arch bridge possesses if tension is lost in 

service. Later experimental work was done on the flat deck, using stressing and glue. The 

increase in stiffness was exponential. However, this work is not part of this research. 

6.8.6 Summary 

The programme of tests on the 2.1 m span arches, with different rises and lateral tensions, 

significantly added to the understanding of the structural actions of stress laminated 

arches. The initial tests on the 6m and 15m span had shown that arching action took place 

and that results correlated with elastic analysis. The 2. Irn span tests extended those 

findings to show that lateral tension has a significant effect on load capacity and that full 

strength was achieved at relatively low tension. It also showed that arch rise significantly 

affected stiffness and that ever increasing rise does not produce ever increasing stiffness. 

These results pointed clearly to the specification for the next stage of the programme 

which would need to show confin-nation of the findings for larger scale laboratory tests 

and another full scale test to confirm the results of the 15m span test. 
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6.9 20m Span Full Scale Test Arch 

Having successfully built and tested a 15m span with 250mm. timbers and established that 

elastic linear analyses provided comparative results, it was assumed that this would hold 

true for larger spans. Commercial orders were received for three 20m span arch bridges, 

so the decision was taken to build a test bridge to full scale (20m span) and use it as an 

exhibit at the June 2004 Royal Highland Show (RHS) in Edinburgh. 

Analyses and design calculations were carried out using a countryside crowd loading of 
3.2kN/m2. This permitted a 200mm deep deck (an optimum solution in regard to material 
availability), with the 20m span and the same secular shape of Im rise for a 12m span 
giving a 1.67m rise. This geometry provided a structure with a natural frequency of just 

over 4.0 Hz as calculated using finite element analysis. 

6.9.1 Loading 

Design loading for footbridges in the UK is detailed in Section 3.5.1 in Chapter 3. The 

chosen loading for the design of this bridge was 3.2kN/m 2 which is adequate for 

countryside crowd and horses. 

However, slender structures designed for lighter loads will have low values of natural 
frequency which, together with low stiffness and mass, can be excited easily. In this 

context it is vandal loading which could become critical. Other research [70] indicates 

that the maximum frequency at which a small group of vandals can synchronise their 
jumping is 2.511z therefore the natural frequency of a small footbridge should be greater 
than this to avoid the possibility of vandals damaging the bridge by co-ordinating their 
load frequency with the natural frequency of the bridge, and causing resonance. 
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6.9.2 Stability 

In order to increase the overall stability of the structure, it was decided to widen it to 

about 3m at the supports, reducing to a width of 2m at mid span. This would also provide 

a more attractive shape to the bridge. Handrails were fitted, similar to those envisaged on 

the final structure, as this would have an effect on the overall stiffness of the bridge. 

The test bridge was first built at the RHS ground and because foundations could not be 

excavated, tie bars connected the springings, or end bearings, of the arch, Figure 6.42. 

These were formed using Rolled Steel Channels (RSC) and provided the lateral thrust. 

This same configuration had been used to form the lateral tie for the 15m bridge, 

previously tested and created some slip problems [76]. As expected, a relatively large 

amount of movement occurred when the tie bars holding the bridge ends together took 

the strain. This in turn caused a large increase in the vertical deflection of the bridge. 

A great deal of care, in general, is required to ensure that the arch shape is correct from 

the outset. The construction at the RHS, by a team of workmen, had started off at too flat 

an angle to the ground, which produced a flatter profile than the design required. This 

resulted in significantly larger deflections and, in turn, caused a lower natural frequency. 

Although this was to be expected, the effect on its 'liveliness' seemed disproportionate. 

Here, the importance of the geometrical shape (arch profile) of the structure was 
highlighted, in sansivim, hoo, sel-viceability and strength design criteria, Figure 6.42. 
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After the RHS, the bridge was dismantled and reconstructed by four men in five days in a 

quarry at Glentress, Peebles, in the Scottish Borders, about twenty five miles from 

Edinburgh. The foundations (mass concrete 400mm wide by 750mm deep) were 

anchored into the quarry base. They were deliberately not built to the size which would 

be used in permanent construction, in order to add a further facet to the tests. Some lateral 

movement was expected but it would be realistic, in terms of an actual structure and it 

would be measurable by establishing survey points at the springings. 

6.9.3 Timber 

Sitka Spruce was chosen in accordance with all the specification requirements detailed in 
Section 5.2.1, Chapter 5. Four holes were drilled in each timber in accordance with the 
details shown in Section 5.3.6 of Chapter 5. In Figure 6.43, the 20m span bridge is 

shown during construction. The timbers were rough sawn 50 mm thick x 200mm deep x 

Tý 

Fig 6.43 - 20m span bridge under construction 

6.9.4 Lateral Stressing Bars 

One of the important aspects of design for SLTA bridges is the function of the lateral 

stressing bars to achieve the necessary effects: 

0 sufficient tension to stress all of the laminates 

0 sufficient friction to transmit longitudinal and transverse stresses 

e sufficient extension to maintain tension when laminates dry and shrink 
resistance to corrosion. 
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16mm 'Gewi' bars, supplied by 'Dywidag, were favoured because they are galvanised 

and, although their yield stress is only 500/60ON/mm 2, the bar strain to maintain tension 

was considered less important in an arch bridge [76] than in a flat bridge. The bars were 

stressed to 90% proof stress providing lOOkN to 200mra wide laminates at hole spacing 

of 500min giving a pressure of 10OOkN/m2. Research on flat decks [58] has shown 
700kN/m2 as a maximum but in the knowledge that most of it could be lost over the first 

few months, values of 1000 to 2000 have also been proposed (78]. Earlier tests on 2.1m 

span arches, Section 6.8, established that only minimal tensions will provide sufficient 
friction in an arch, so the lower level of l0OOkN/m2 was chosen as sufficient. The bars 

passed through the laminates as close as possible to their centres while still allowing a 

curve to be formed. The moisture content, species and preservative treatment of the 

timbers all have a significant effect on the tensions necessary to maintain friction. The 

moisture content was 18%, in accordance with the requirements described in Section 

5.2.1, Chapter 5 and the laminates were allowed to dry after preservative treatment. The 

bars in arches are at closer centres because of the curve and edge distances. 

The bridge had been in place for three months before testing. To create a further facet to 

the testing, only half of the bars which were randomly selected were re-tensioned, to 

examine the difference it might make in the stiffness characteristics of the bridge. For the 

subsequent loading, four months later, all of the bars were re-tensioned so that the bridge 

performance under similar loading conditions could be compared. 

6.9.5 Tests and Results 

Because of the difficulties of measuring the lateral thrust for a full scale bridge with in 

situ foundations, and because the results from previous laboratory tests has shown thrusts 

are as predicted by linear static analysis, they were not measured. Deflection 

measurements were carried out under increasing loads up to well above design loads. 

Lateral settlement was measured as the spread of the supports. 

Vibration tests were carried out using three independent but similar techniques, all 

employing accelerometers/transducers to measure the response to a hammer blow, 

149 



The Development of Transversely Stress- Laminated Timber Arch Bridges 

crowds walking over, jumping on the bridge or sandbags being dropped onto the deck. 

These results were compared to the results from a finite element analysis. 

6.9.6 Static Loading 

In the first series of tests, displacement transducers were used to measure the deformation 

profile of the bridge under applied static loadings. Two transducers, one at each side of 

the bridge, were placed at 2.5m centres along the span of the bridge (fourteen in total). 
All readings were automatically recorded using a data logging system. As mentioned 

earlier, the bridge had been in place for three months before testing took place and the 

stressing bars had relaxed considerably. To create a further facet to the testing, only half 

of the bars, which were randomly selected, were re-tensioned. This was to examine the 
difference it might make in the stiffness characteristics of the bridge. 

First, 50% of the loading was used to settle and bed down the bridge. The loads were then 

removed and transducers were adjusted and zeroed. The bridge was subsequently loaded 

using 9kN bags of sand, placed by the hydraulic arm of the delivery lorry. 15 bags were 

used to apply 135kN as a UDL, to simulate the 3.2kN/m 2 design load which totals 128kN 

over the 20m span and 2m wide deck, Figures 6.44 and 6.45, and deflections were 

recorded at each increment of loading. 

;c 

Fig 6.44(a) - 20m span UDL loading 
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During unloading, readings were taken after each bag was removed. The results of these 

tests are illustrated in Figure 6.46 and are compared with the stepwise linear analyses, 

where at each step, nodal coordinates of the bridge were updated to reflect the new 

geometry due to deformed proflle. 
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Fig 6.46 - Deformation profile under incremental UDL loading - comparison of analytical and 

experimental results - deflections are exaggerated for illustration. 

The middle 1/3 of the bridge was then loaded with 14 bags (126kN) and subsequently 

unloaded, using the same procedure. This represented approximately three times design 

load. The bridge sustained this load with no sign of any distress. On removal of the 
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applied loads, the bridge recovered over 80% of its maximum deflection. Further 

recovery would take place over time. 

This was then followed by applying up to 8 No. bags of sand (72kN), at the quarter point. 

In Figure 6.47, details of the loading and the load-deformation behaviour of the bridge at 

1/4 point loading up to 72kN load, are illustrated. The effects of uneven tension in the 

stressing bars are partially shown in Figure 6.48, as the structure exhibits a characteristic, 

unique to stress lamination (due to flexibility of the deck at various points along its 

length), as load is increased. 
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The results of these tests are further illustrated in Figure 6.49 and are compared with the 

stepwise linear analyses. With increase in load it was noticed that, due to extreme 

horizontal thrusts, the small strip concrete foundations started to slip/rotate. The 

magnitude of support slip at the loaded end was approximately 3mrn and at the unloaded 

end about 5mm both outwards, Figure 6.50. 
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Fig 6.49 - Deformation profile under incremental 1/4 point loading - comparison of analytical and 

experimental results - deflections are exaggerated for illustration. 
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Fig. 6.50 - Bridge at Glentress - effect of foundation slip (crack opening near a support) under the 
fu 11 1/4 

point loading. 

In order to run a check on the most critical loading, and also to test the suitability of a 

remote deflection measurement equipment for future tests, a further load test was carried 

out four months later, when the bridge had had time to readjust/recover from the extreme 

loadings. The quarter point loading, as before, was used. The remote measurement was 

carried out using a 'SOKIA 413OR3 Total Station', which measures any point in three 

dimensions to an accuracy of Imm. For this test, all stressing bars were re-tensioned to 

lOOkN. The results are illustrated in Figure 6.51 and in general gave a good comparison 

with those in the previous test, Figure 6.48, where only half the bars had been re- 

tensioned. 
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Fig 6.51 - applied 1/4point loading of 0 -72kN using 9kN sandbags. 

The comparison of Figure 6.48, where only half of the bars are at full tension, and 6.5 1, 

where all of the bars are at full tension, further confirmed the previous findings of this 

programme - that in an arch construction the level of stress in the bars is not as critical as 

those in the flat bridges [76]. This is clearly shown by the load deflection curves for 

Section 6 (Figure 6.5 1), the point under the load. They are the same in both cases even 

with different tensioning characteristics. 
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6.9.7 Dynamic Loading 

Fig 6.52 - Bridge at Glentress during dynarnic testing - excitation by crowd walking. 

vibration tests 

The first set of vibration tests was carried out using four vertical and two horizontal 

Pinocchio Vibraphones connected to an 8-channel TEAC LXIO data recorder, in 

conjunction with ARTeMIS test planner and modal analyses software. The excitation 

required was provided by crowd walking steadily over the bridge, Figure 6.52. The 

measurements were made in the sequence shown in Figure 6.53. Dashed arrows indicate 

free moving sensors, and solid arrows indicate reference sensors. 
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In Table 6.3 the number of records used, the number of samples in each record for 

modal analysis and the Nyquist frequency are detailed. 

Tablc 6.3 - Acquired data frorn ARTeMIS dynamic test 

No. ofRecords (DOFs) 6 

No. of Samples in Each Record 5000 

Duration of Each Record 97.66s 

Nyquist Frequency 25.6 Hz 

In ARTeMIS Analyser, the data was processed with a default signal processing 

configuration, including a 1024-lines spectral density estimation. Figure 6.54 shows the 

singular values of the spectral densities of the third measurement. During the 

measurements, modal analyses were made using the fast Frequency Domain 

Decomposition Peak Picking technique. This was to provide quality checking of the data 

together with verification of the sensors and their positions. 
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Fig 6.54(a) Singular values of the spectral densities 

160 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

4G 

ID-. D.. 'I 

SPOr 

--l- 1-1 
Fig 6.54(b) Stabilization diagram 

Fig 6.54 - Dynamic response - sample output for measurement 3. 

The first six modes were found and are shown in Table 6.4. 

Table 6.4 - First 6 modes estimated using the UPC, Stochastic Subspace Identification 

tcchnique. 

Mode 

Number 

Frequency 

JHZJ 

Stand. Dev. 

Freq. lHzl 

Damping Ratio I'Vol Stand. Dev. Damp. I'Vol 

1 3.54 0.07893 3.046 1.098 

2 6.25 0.02062 2.115 0.4998 

3 6.535 0.02934 2.111 1.013 

4 8.103 0.05948 1.458 0.6083 

5 10.1 0.07868 2.5 0.7061 

6 11.29 0.0547 1.771 
1 

0.7613 

-- 
I 

The second set of the dynamic tests involved the use of a dual spectrum analyser and 

impact excitation method. The impact hammer was used to excite the structure. The 

response was recorded using two accelerometers. Both the excitation force and the 

response signals were recorded, using a multi-channel spectrum analyser. The results 

161 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

were analysed, both in time and frequency domains. The fundamental frequency, using 

this method, was found to be 3.60 Hz in the first mode. 

The third set of tests was carried out four months later with all bars fully tensioned, using 

a versatile handheld vibration analyser, RT440, developed by 'Reactec Ltd'. The bridge 

was excited by impact (including a broadband frequency spectrum, thus exciting any 

system natural frequency), using 50 kg bags of ballast and the response was measured 

utilising the RT440 'bump test' module. Several measurements were taken at both sides 

and the natural frequency of the bridge was again found to be approximately 3.5 Hz in the 
first mode. 

The experimental results obtained from the three different methods (including both input 

and instrumentation), compared very well with each other, indicating that the 

fundamental natural frequency of the bridge, without any topping of bitumen macadam 

and backfill at the abutments to reduce slope for access, is approximately 3.5 Hz. As 

mentioned earlier, a simplified finite element analysis carried out to estimate the natural 

frequency of the bridge - assuming it as a single mass of homogeneous material and 
ignoring the laminate slip and the flexibility within the composite mass of the deck - was 
just above 4.0 Hz. 

These values are close to the frequency which can be applied by vandals (2.514z), but 

resonance is unlikely to occur because ten persons could never impart sufficient energy to 

an 8 tonne structure at IHz over the optimum that they can normally impart. At these 

values, this parameter could be considered critical in the design of a footbridge but, with 

a dense bitumen macadam topping as waterproofing, the FNF will increase beyond the 

critical zone. 

6.10 6m Test Arches -Flat - 250mm Rise-500mm Rise- 1000mm Rise 

The first trial bridge of 6m span was a half scale of the 12m first design, but the laminates 

were 50mm and therefore not to scale. The 2.1m span laboratory test bridges were 
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considered too short and stiff to be fully representative of the scale of bridges which are 

now known to be necessary for commercial footbridge loading. The field tests had shown 

correlation between load and scale. It was therefore justified to undertake another set of 

laboratory tests to a true scale, and large enough to avoid boundary effects. It was 

therefore decided to load test four 6m span bridges with 25mm wide laminates, and each 

475mm wide. The results from these tests were considered vital to consolidate the 

previous findings. 

Three different rises (250mm, 500mm and 1000mm) were chosen and two flat bridges. 

The focus of the tests was to accurately measure parameters which were now known to be 

of special importance. The first tests concentrated on showing arch action and correlation 

with elastic analysis. It had become clear that lateral movement and thrusts of a well 

scaled model must be measured to give a true picture of all of the structural actions. 

Figure 6.55 shows a flat span with four point loading. Figures 6.56,6.57 and 6.58 show 

the load tests and the set of arches with the different loading regimes. 

1-ig O. D: s - Hat 6m span under four point loading 
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Fig 6.57 - 6m span, 500mm rise under four point loading 
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6.10.1 Preparation of Material for Arches 

The timber was graded as C 16 visually but later tests were carried out to establish the true 

modulus of elasticity. The timbers were approximately Im long for the flat bridge, the 

250mm rise arch, the 500mm rise but had to be reduced to 500mm long for the I in rise 

arch. This was necessary to ensure that the holes in the laminates had sufficient edge 

distance and to reduce the projections into the deck. This was one of the improvements 

made over early laboratory tests with the 2.1 rn span arches. All laminates had three holes 

so the effective cross section would be2/3of the actual cross section. The moisture content 

was approximately 15% as the timber had been stored inside the laboratory for some 

time. The timber was not treated with preservative. 

The tensioning was carried out with 12mm diameter threaded bars as had been used for 

the 2.1m spans. The same method described in Appendix 4 was used to deten-nine the 

tension from a torque setting. Again this method was chosen to facilitate the changes in 

tension which was a major factor in the tests to evaluate the minimum tension necessary 
for adequate lateral load transfer. Because larger tensions were required the threads on 

the bars eventually began to fatigue. Future tests of this kind will use a larger diameter or 
higher grade steel. The loads were spread into the timbers by a square washer plate which 
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worked adequately for most tests but because the outer laminates were softwood there 

was some bearing failure. 

6.10.2 Static Load Tests of 6m Span Laboratory Bridges 

All of the 6m span bridges were tested using a 'Dartec Modular 9500', as in previous 
laboratory tests. A preload of approximately RN was applied and removed a few times, 

to eliminate any initial settlements in the arches. The bridges were all subjected to a four- 

point symmetrical loading condition, as illustrated in Figure 6.59. 

They were loaded at a constant rate, up to a little more than their design load, appropriate 

to each span rise, without causing structural damage. This was a relatively small load for 

the flat span and much greater for the 1000mm rise arch. The load was then removed and 

the bridge was allowed to recover. This process was repeated for a number of different 

lateral tensions, ranging from finger tight to 24kN in each stressing bar. 

4 Point Load 
Cradle 

Transducer 

Rise7- 0,0.25,0.5,1, m Ris 
r 

Tie Bar 

_2 

ad Cell 
m -4- 1mmmmm 

, 6m 

Fig 6.59 - Details of 4 point loading test 

The flat spans and three arches were all loaded at their quarter points for various tensions. 
This is the weakest section of the arch and, therefore, the critical design section. 
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All of these load tests were within the working strength of the structures, as the primarily 

aim was to produce results which could be compared to analysis results and different 

tensions. 

The data logger recorded the applied loads and the related deflections, measured by 

transducers at Im intervals along the arch and lateral movements of the supports. The 

lateral thrusts were measured using load cells in the tension bars linking the springings. 

6.10.3 Analysis of Results 

All of the tests showed similar behaviour to all of the previous tests. However this time 
longitudinal settlements were measured, lateral tensions were varied and many more 

readings were taken, so there was more confidence in the findings. 

The most significant result from this test programme illustrates that, after reasonable 
lateral tension is provided, a steady load carrying capacity is generated in the arches. This 

had been found with the 2.1 rn spans but was so important it needed confirmation with a 
larger scale test. 

Figures 6.60 to 6.63 show the deflected forms of the flat, 250mm, 500mm and 1000mm 

rise arches with different lateral tensions to illustrate the effect of variable tension. Four 

different tensions, zero, 7kN, l2kN and 20kN or 24kN were applied while gradual 
loading was applied from zero up to 20kN or less if the deflection became too great. The 

flat span is shown at only I kN load because, at low lateral tension the span could not take 

any more without collapsing. However with full tension it reacted in a similar way to the 
250mm rise arch. Figures 6.60,6.61,6.62 and 6.63 show deflected forms for each arch 

with the variable tension. The flat span deflections are shown unfactored, the 250min rise 

was multiplied by two to exaggerate the deflection while the 500mm. and 1000min rises 
were exaggerated by five. 

These plots are shown to illustrate the marked difference made by the tension and the 

significant increase in load capacity between flat span and arches. Figure 6.64 shows a 
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plot of load against deflection for each arch at full lateral tension to illustrate the 

significant increase in load capacity. 

Flat Span 
Deflections for Different Bar Tensions with 1 kN Load 

E 10 
E -. *-No Load 
C0 i5: rý -0 OkN 

234 
7kN 

-20 12kN 
-30 

-40 
20kN 

-50 
Span of Slab m 

Fig 6.60 - 6m span flat bridge 
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Deflections for Different Bar Tensions with 20kN load -*-No Load 

s OkN 

s 7kn 

s 12kN 

--+--24kN 
l+VV 

200 

04 oe 
0123456 

Arch SDan 

Fig 6.62 - 6m span 500mrn rise 

6m Span - 1000mm Rise Arch 
Deflections for Different Bar Tensions 20kN Load 
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-C- 2 600 < 12kN 

0 400 UN 
i-ý 

200 2) 
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Span of Arch m 

1000 

800 

, a5 600 
x 

Fig 6.63 - 6m span I 000mm rise 

The deflected forms change very little after the 7kN lateral tension is reached which 

shows that this is sufficient to transfer load through friction. The flat bridge and 250mm 

rise arch took very little load which demonstrates the load capacity of an arch. 
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6m Span - All Arches - 20kN Lateral Tension 
16 

14 

12 

10 
m8 
0 
-j 

4 

2 

0 

Fig 6.64 - Effect of rise on load-deflection behaviour of all arches 

The capacity of the flat bridges would benefit from longer lap lengths in the timbers. This 

would be the normal construction for a flat bridge but the laminates need to be short to 

form arches so short laminates were used for this flat bridge so that comparisons could be 

made. Before this programme began it was considered that stress laminated arches may 

not work because lap lengths need to be short. It has been conclusively proved that arches 
do transfer load well through short laps but flat bridges do not. 

The 500mm and I 000mm rise arches were both loaded to approximately 20kN, which is 

about half of the failure load of the original 6m span arch tested three years ago 

(Freedman & Kermani ICE 2004 [76]). This again shows that, within the working limits 

of the structures, they act elastically and their behaviour is predicted by linear elastic 

analysis. 

Figure 6.65 shows the 500mm arch with central loading and Figure 6.66 with quarter 

point loading. These are examples to illustrate the correlation with elastic analysis. The 

full array of all four structures with the six loading conditions at two different lateral 

tensions, zero and full, are shown in Chapter 7. 

170 

0 20 40 60 80 100 
Deflection mm 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

6m SPAN - 500mm RISE 
7 kN tension in bars, deflection exagerated x5 

600 
500 

2 400 
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Z 200 

100 

0 

01234 
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56 

Fig 6.65 - Analytical experimental correlation - four point loading 

6m Span - 500mm Rise 
24kN tension in bars, deflections exagerated x5 
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Fig 6.66 Analytical experimental correlation - quarter point load 

Figure 6.67 shows the load deflection plots, for central loading on a 500mm rise, for 

positions at each Im point along the bridge during loading and unloading. This example 

is for full lateral tension. A trendline is shown for the central point. It will be shown in 

Chapter 7 that the gradient of this line is a measure of stiffness. Figure 6.68 shows the 

stiffnesses plotted against lateral tension which illustrates that full load bearing capacity 
is reached at 7kN. 
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Stiffness to Lateral Tension - 6m Span - 500mm Rise 
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Fig 6.68 - Stiffness to lateral tension - 6m span 500mm rise 

The elastic analyses used to make the comparisons in Figures 6.65 and 6.66 took account 

of the support movement which occurred in the test at the particular loading and tension. 

This was found to be critical for close correlation in these tests but even more so in the 

20m span test bridge [79] (Kermani & Freedman ICE Nov 2005) where movement was 

greater. The discontinuities in the deck, at the butt joints, were accounted for by reducing 

the cross section to twelve timbers in the analysis. This value depends on how many 

tension bars are provided in each laminate. In these tests there were three, hence the 1/3 

reduction in cross sectional area. No reduction was taken in the elastic modulus value for 

exposure because the timber was dry and the tests were carried out inside the laboratory. 
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In practice, a 20% reduction is necessary for bridges built outside. Dead load deflections 

were ignored as they had already taken place before measurements commenced. 

From these results, it is concluded that elastic step-wise linear analysis gives a very good 

estimate of the actual deflections and stresses in a timber stress laminated arch. It is also 

concluded that, as little as 30% of the full lateral tension, is sufficient to produce friction 

for load transfer. This was found to be the case in a similar set of tests in Brazil [80] 

where a set of trusses were stress laminated to form an orthotropic plate for bridge 

construction. Further work on stress laminated trusses would be a valuable extension of 
this work. 

6.11 Dynamic Load Tests of Bridges in the Field 

The parameters for dynamic effects were described in Section 5.5 of Chapter 5. The 

instrumentation was described in Section 6.2.1 of this chapter. A full description of the 

three methods of testing is given in Section 6.9.8 of this chapter which dealt with the 20m 

test span. However a number of subsequent tests were carried out on other bridges in the 
field to ascertain confirmation of the results. These tests were carried out using the hand 

held RT 440 instrument shown in Figure 6.14 on bridges before and after the bitumen 

topping was added. The results of these tests are shown at the end of Chapter 7. 

It is a first mode natural frequency that could be emulated by live load and become a 

problem. The lighter the bridge, the greater natural frequency needs to be for safety. 
Evaluation of this relationship is not part of this research project but it depends on the 

number of vandals available and the number who can synchronise jumping. It is 

considered that a IOOkN weight of bridge is safe with a natural frequency of MHz, 

whereas a 300kN may only need a natural frequency of 2Hz. 

6.12 Materials Testing 

In Section 5.21 the materials specification is described with reference to Appendix I and 
the visual grading technique described in Appendix 2. Section 6.3 described the further 

physical specification items concerning the timber used to build the arches. Generally 
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grade C16 in accordance with BS 5268 [50] was used as that is what is readily available 
from home grown sources. However, it is well known that, because of the small 

quantities of timber required as stress graded in the UK there is little investment in 

grading machinery. This has resulted in much of the home produce all being classed as 
C 16 when some of the timber is of a higher grade. For that reason and the fact that the 

visual grading method is imprecise it is quite likely that some of the timber used to build 

the arches had a different strength than assumed. 

Modulus of Elasticity and density were used in the evaluation of the deflections in the 

analysis of the model arches used as comparisons with the experimental results. They 

were also used in calculations to build the semi empirical model in Chapter 8. 
Throughout all of the tests, a moisture content was measured using a meter which is a 
useful quick indicator but the results are not reliable. For these reasons a set of materials 
tests were carried out on timbers used to build the laboratory arches. 

Eight samples were tested for bending from the timber used for the 2.1 in span arches. Ten 

samples were tested for moisture content, bending and compression in three different 

directions on timbers used for the 6m spans. The results were averaged to give one set of 

values for each arch span. The tests were carried out in accordance with the requirements 

of BS 408 [81] and BS 373 [82] and the results are given in Section 7.8 of Chapter 7. 

Some extra details of the tests, preparation of samples and apparatus are given in 

Appendix 3. 

The timber for the first 6m span arch and the 2.1 m span laboratory arches was of poor 
quality. The 20m span test bridge used C 16 visually graded Sitka Spruce and the 
laboratory 6m spans used good quality Sitka Spruce. The timbers used for permanent 
arch bridges were also visually stress graded but the species were Scots Pine or Douglas 
Fir chosen for durability and treatability. Good treatment of Sitka, Spruce is still being 

researched. The materials testing will give an indication of the percentage difference that 

may exist between the actual strengths and the visually assessed strengths. 
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CHAPTER 7 

7 DATA FROM EXPERIMENTAL WORK AND ANALYSIS 

This chapter contains the results for all of the tested bridges to show load, deflection and 

stiffness relationships. It shows correlations with analyses and treatment of the results to 
derive relationships between independent variables. The results of the dynamic tests are 
also listed. 

7.1 Data Management and Collection 

Outputs using transducers and load cells were fed into Microsoft Excel to build 

spreadsheets, plots and charts to display and analyse data. The remote measurements of 
deflection taken by the 'SOKIA Total Station' were treated manually. The dynamic test 

results were recorded electronically on the 'RT 440' and converted for use in Excel. 

7.2 6m Span Trial Arch 

The results shown in Figure 7.1 are the load deflection plots for various loadings and un- 
loadings, at chosen positions across the bridge. A linear regression line, for the loaded 

actions only, is superimposed (heavy black dotted line) to represent the minimum 

stiffness at the position on the arch showing maximum deflection (the centre). Figure 7.2 

shows that the deflection is symmetric for four point loading and exaggerated by a factor 

of four to make the shape clear. 

The set of plots shown are for the maximum loading up to 50kN. 
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Fig 7.2 - Arch shape with increasing loads 

Figure 7.1 shows two plots, in a heavy red line, for deflection at the midspan for four 

point loading from an elastic analysis. One has allowed no settlement and the other 
(dotted line) 16mm of settlement. This gives a very good indication of the sensitivity of 
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the vertical deflection to settlement. The heavy black dotted line is a trendline of the 
deflection plot at mid span which is the experimental equivalent of the elastic analyses. 
Zero deflection was assumed for the experimental loading but evidently some took place 

as the trendline did not follow the solid red plot. Further, when this first test was planned, 
the importance of settling the structure, by taking up slack in tolerances, was not fully 

appreciated. This meant that slip took place between the laminates of the structure and 
not at the supports where it can be measured. This added to the increased vertical 
deflection, thus reducing the apparent stiffness. 

Experimental deflection at mid-span (50kN) = 44mm 

(includes settling deflection) 

Calculated deflection at mid-span (50kN) 6= 4mm 

Experimental Test: K 1.1395kN/mm 

Calculated: K 13.89kN/mm 

40 
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Combined (ineasured) horizontal reaction 

Load Cell \o I 

Load Cell No. 2 

alculated horizontal reaction 

2i 10 35 40 45 50 5 60 65 10 

Horizontal Reaction, (kN) 

Fig 7.3 - Horizontal reactions 

The horizontal reactions are not altered in any way by settlement at the support or within 
the structure. A good correlation between the measured and linear elastic analysis was 

observed in Figure 7.3. 

The results from these tests showed the value of the structure by demonstrating very large 

load capacity, using low quality timber. However, the results do not give good indications 

of stiffness, which is one reason that a series of 6m spans were tested later. 
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Below Figure 7.4 is a load-deflection relationship for a line load at the third point of the 

arch. The experimental deflection is a little over 20mm, with no settlement assumed. 

Under the same conditions, the calculated deflection is 7mm which again shows there 

was internal settlement of the arch cause by slip of the laminates and some lateral 

settlement. These shallow arches are very sensitive to small lateral movements. The 

geometric secular shape of nse to span of I to 12 means that vertical deflection is 2.4 

times the support yield. 

Deflection/Relaxation of Bridge 
(2.25m Point Load) 
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- 2.99m Deflection (-ve) 
- 3.745m Deflection (-ve) 
- 4.495m Deflection (-ve) 
- 5.24m Deflection (+ve) 

0 74m Relaxation 
1+49m Relaxation 
2.235m Relaxation 
2 99m Relaxation 
3 745m Relaxation 
4 495m Relaxation 
5 24m Relaxation 

() 15 24) 25 

Deflection, (mm) 

Fig 7.4 - Deflection for load at 2.25m third point 

7.2.1 Arch Stiffness 

The stiffness values adopted for this Thesis are load per unit deflection. This is the load 

which is taken by the arch as it stresses and strains the parent timbers. However the 

laminates and supports of a stress laminated arch slip and settle, causing movements and 

deflections which do not create stress, so they are not indicative of stiffness. For the 

purpose of this study stiffness is, therefore, the load divided by the maximum 

deflection within the elastic limits of the structure. Such an approach gives stiffness as 

a common base line for comparison of all arches. All internal settlements and support 

settlements are assumed to result in changes of shape, without inducing stress. 

STIFFNESS = LOAD PER UNIT DEFLECTION (within elastic limits) 
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7.3 15m Span Permanent Arch 

Figure 7.5 shows the load deflection behaviour for various loadings and un-loadings, at 

chosen positions across the bridge for uniform load in the middle third. It shows the 

minimum stiffness of the arch at mid-span as a trendline (heavy black dotted line) of the 

elastic zone. Figure 7.6 shows the support yield for applied vertical load. These 

settlement values are used in an elastic analysis to calculate equivalent analytical values 
for vertical deflection of the arch. Figure 7.7 shows the horizontal thrust for progressive 

vertical load up to the applied load of I OOkN. 
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Fig 7.7 - Vertical load to horizontal thrust for 15m span arch 

Using a linear elastic analysis, the vertical deflection, for 28mm of horizontal yield, and 

I OOkN of load in the middle third, was calculated: - 
Analytical Deflection = 76mm 

In comparison the experimental deflection was 130mm. 

This discrepancy was believed to be due to the fact the preload was not enough to remove 

all of the internal slip. 
The analytical stiffness is: - 

100/76 = 1.32kN/mm 

The experimental stiffness in the elastic zone from Figure 7.5 is the gradient of the 

trendline of the load deflection plot: - 

= 1.05kN/mm 

Again this was considered acceptable within experimental error. 

A second set of tests were carried out by loading the arch with 40kN at its quarter point. 

Figure 7.8 shows the load deflection plots for various positions along the arch. The 

trendline is plotted for the elastic zone at the point of application of the load where the 

maximum deflection took place. Figure 7.9 shows the profile of the arch under 

progressive quarter point load. 
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Fig 7.8 - Load deflection plots for quarter point loading on 15m span arch 

1400 

1200 
EI 

900 

600 
(D 
CY) 400 
'a .1 
CO 200 

() 

-Load= 0 kN 

- Load= 10 kN 
Load = 20 kN 

-Load= 30 kN 

-Load= 40 kN 

246S1 12 14 

Bridge span, (m) 

Fig 7.9 - Exaggerated deflected profile - quarter point loading 15m span arch 

The stiffness of the 15m span arch at the quarter point for load at quarter point is again 

the gradient of the trendline, shown as a heavy black dotted line, in Figure 7.8: - 

Experimental Stiffness = 2.049kN/mm 

The support yield for 40kN of vertical load can be taken from Figure 7.6 as 8mm. 
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Using a linear elastic analysis, the vertical deflection, for 8mm of horizontal yield, and 

40kN of load in the quarter point, was calculated: - 
Analytical Deflection = 25.9mm 

The analytical stiffness is: - 
40/25.9 = 1.54kN/mm 

This represents correlation within experimental error. The arch was given time to recover 

after the first four point loading test but it is thought that there was some residual 
deflection not yet recovered. This would have the effect of reducing the experimental 
deflection and increasing the stiffness. This would account for the experimental stiffness 
being 25% greater than the calculated value. 

These tests, on the 15m span bridge, showed that the results from the half scale 6m span 

were relevant at full scale. It demonstrated the importance of minimising the lateral 

settlement and pre-loading to take up the tolerances. The most important finding was that 

the structures behaved in such a way that traditional analysis would predict deflections 

and forces giving comparable stiffnesses. The differences between analysis and 

experimental results could be explained by unpredicted movements. 

The results of the 15m and 6m span tests showed that a longer and more slender span 

needed to be field tested. This would provide realistic results for dynamic tests and 

consolidate previous load test results. At the same time, shorter span laboratory tests 

would be set up to confirm correlation between experimental loading and analysis. The 

factors which created experimental error in the initial load tests would be considered 

carefully to ensure that they would not cause similar errors in later tests. 

The load/deflection stiffness values from the above tests were considered to be a very 
useful comparative parameter. It was therefore decided to use this as the criteria to 

compare future results and, eventually, as the basis for comparing all variables when 
building a semi empirical model in Chapter 8. 
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7.4 2.1m Span Laboratory Scale Arches. 

This series of secular 2.1m test spans, together with a subsequent series of 6m spans, 
forms the basis of controlled experimental load tests to determine how stiffness relates to 

arch rises and lateral transverse stiffnesses. Loads are plotted against deflections for 

different lateral tensions, different loading positions and for arches of different rises. The 

plots in Figures 7.10,7.11,7.12 and 7.13 show the loading curve to the maximum applied 
load. The un-loading which was also recorded, demonstrated full but delayed recovery. 
The gradients of the trendlines shown, are measures of stiffness and these are plotted 

against the lateral tensions. 

The experimental results are compared to analytical for the 335mm. rise span. All arches 

were 210mm wide with laminates having three holes, so the effective width is 2/3 of 
21 Omm and the depth of the arch ring was 70mm. 

The arches were loaded to I OkN at the lower lateral tensions and to 20kN at the highest. 

The arches were then loaded to failure with a progressive line load at the quarter point. 
The key to the graphs is as follows: 

AO Arch Rise zero 
Al Arch Rise 335mm. 

A2 Arch Rise 447mm 

A3 Arch Rise 580mm 
CE 4 point loading i. e. simulated UDL 
QU Quarter Point Load 

Arches Flat Deck 

TI Tension Finger tight Finger tight 
T2 Tension 3.7 1 kN 5.75kN 
T3 Tension 8.2 1 kN 11.49kN 

T4 Tension 12.64kN 17.23kN 
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A2CET1 2.1m Span - 447mm Rise -OkN Tension 
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A2CET3 2.1m Span - 447mm Rise - 8.2lkN Tension 
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A3CET1 2.1m Span - 580mm Rise -OkN Tension 
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Fig 7.13a - 2.1 in span - 590mm rise - zero tension 
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Fig 7.13b - 2.1 m span - 580mm rise - 3.7 1 kN tension 
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A3CET3 2.1mSpan-580mmRise-8.21knTension 
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Figures 7.11 a, b, c, and d, 7.12a, b, c and d, and 7.13a, b, c and d illustrate the load - 
deflection behaviour for 2.1 m spans of three different rises with four point loading and 

various lateral tensions. 

The linear regression lines were drawn for each mid span position at 1.05m (heavy dotted 

line). The coefficient of the 'x' term is a stiffness measured in kN/mm. 

Figure 7.14a shows the three different rises of the 2.1 m span arches, which demonstrates 

the relative steepness of the arches compared to the previous tests, which all had a unit 

rise to twelve of span. The steeper profile was chosen to explore the stiffness effects of 
different shapes. 
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'U i... i i 

ji 
-: - 

7.14a - 2.1 in span arches - threc (11 Ifactit rises 

Ad 
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Figure 7.14b shows the threaded bar and nut fixings used to tension these laboratory 

arches and allow the many variations of tension necessary to test the effect of lateral 

tension on stiffness. 

r. 
I 
I 4 

x*O, 
1111 

il II 

In Figure 7.15 each lateral tension is plotted against the mid span stiffness to show the 

effect of tension on stiffness of arches at mid span for all arches of zero, 335mm, 447mm 

and 580mm. It is apparent that the optimum stiffness for all rises is achieved with 

approximately 5kN lateral tension. Thereafter, the stiffness remains constant at a 

maximum value. There is also a variation in stiffness against arch rise where, again, there 

is an optimum which relates span, arch thickness and arch rise. 
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It is interesting to note from Figure 7.15 that stiffness reduces with arch rise which is the 

opposite of what might be expected. The span to rise ratios of the three arches are 6.2 for 

the 335mm rise arch, 4.7 for the 447mm rise arch and 3.6 for the 580mm rise arch. It will 

be shown later in Chapter 8, Figures 8.1,8.2 and 8.3 that the optimum stiffness for timber 

arches occurs at an approximate span to rise ratio of 5 and reduces at ratios above and 
below. The tests on the 2.1 m arches are therefore entirely consistent with this finding and 

the 335mm rise arch is very close to the optimum shape for maximum stiffness, Figure 

7.17. 

Stiffness to Lateral Tension 2.1 m Spans 

5 

E4 
E 
Z3 
le 

0 

Fig. 7.15 - Arch stiffness to lateral tension for all arches 

At this point it is important to show the correlation between experimental results and 

analytical calculations. At the end of this chapter it will be shown that the timber used for 

these arches had a low 'E' value of 4590N/mm 2. This was used to calculate stiffness 

which is plotted in Figure 7.16 as a solid heavy line. There is no settlement allowed for 

but some settlement will have taken place. A second stiffness is plotted which allowed for 

1.5mm settlement, dashed heavy line, to show the sensitivity of the experimental data. 
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All of the deflections in this series of tests were very small and 1.5mm of lateral 

settlement is consistent with analysis for IOkN of loading and in proportion to other 
deflections. The significant difference in deflection for a small settlement shows the 

sensitivity and thus reinforces the analytical correlation 

In all cases elastic analysis was carried out assuming maximum lateral tension, and this 

gave good correlation for stiffness as was demonstrated in Figure 7.16. These stiffnesses 

were plotted against the arch rises and are shown in Figure 7.17. This shows that, from a 
flat profile, the span becomes stiffer but as the arch rise increases, the stiffness reduces 

again. The optimum rise is shown as 335mm but with more results would probably have 

been a little lower. 

A further check on correlation between experimental load deflection results and elastic 

analysis was carried out by comparing stiffnesses. The values are shown in Table 8.7 and 

are within 20% which is considered as an acceptable experimental error. 

t95 

Fig 7.16 - Load deflection of 2.1 m span with analytical results 
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2.1 m Spans - Optimum Rise 
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r- 
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)1 

0 

7.17 - Stiffness to rise for 2.1 m span 

The final tests carried out on the 2.1 in span bridges were under quarter point loadings, to 

failure. As with all other quarter point loadings, the opposite side of the arch rose and the 

maximum deflection and bending moment occurred under the applied load. All 2.1m 

span arches were deemed to have failed at 25kN when deflections under the load were 
between 16mm and 18mm. This give stiffnesses between 1.4kN/mm and 1.5kN/mm. This 

compares with stiffnesses of greater than 3kN/rnm for 4 point loading thus showing that 

arches do not have as much load bearing capacity if loaded at the quarter point. 

Failure was deten-nined when a laminate split. In practice, a full scale arch would 

continue past this point and still take load until a number of other laminates failed. This is 

a very useful feature of a timber arch. 

7.4.1 Conclusions from 2.1m Span Tests 

The experimental behaviour of the 2.1 m span arches has shown good correlation with 

elastic analysis. The stiffness at the quarter point, with load at that position, is smaller and 

may be a governing design criterion. The effect of lateral tension is clear and shows that 

sufficient friction is provided at low tensions for transfer of load. This shows the built-in 

safety of stress laminated arch structures. Finally the tests clearly indicate that there is an 

optimum rise for a particular span which could be a useful design tool therefore this 

should be evaluated further. 
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7.5 20m Span Test Arch 

The following results show the testing of this full scale SLT arch in more detail. Loading 

and unloading are plotted against deflection soon after construction and four months later. 

The arch was not loaded to failure. Lateral tensions were varied, to reflect real site 

conditions. The fundamental natural frequency was measured using three different sets of 

equipment. 

20m Span - Progressive UDL up to 135kN 
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-. V 
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Deflection, (MM) 

Fig 7.18 - Load deflection for 20m span and UDL 

Figure 7.18 shows erratic deflections at all points along the arch for a UDL, up to the 

maximum load. This was expected for a large structure where some relaxation in lateral 

tension had taken place since the time it was originally built. These results are a realistic 

reflection of a real structure, especially given that the UDL consisted of very large 

individual loads applied at various positions. The central deflection increased rapidly at 
the beginning because that is where the loads were applied first and this caused negative 
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deflections at points nearer the supports. The average stiffness at the centre, for this initial 

loading situation, can be given by the trendline as 4.9kN/mm, but a more realistic value 

may be the maximum load divided by the maximum deflection 135/21.41, which is 

6.3kN/mm. 

Previous tests on the 6m, 15m spans, Figures 7.1 and 7.5, showed the arches retaining 

some residual deflection when they were unloaded. The opposite has apparently 
happened here shown by the loop in the plot going in the opposite direction. The solid red 
line is the loading curve and the dotted red line is the unloading curve. This has been 

caused by the uneven application of the large loads. 

Figure 7.19 shows the deflected shapes of the arch. The deflections are exaggerated by a 
factor of three to display the shapes more effectively. 

20m Span - Arch Shapes for progressive UDL loading - deflections exagerated 
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0 2.5 5 7.5 10 12.5 15 17.5 
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Fig 7.19 - 20m span arch shape for UDL 

It can be seen that the deflected shape is not uniform under uniform load, well illustrated 

by the crossing of the 70.6kN and 132.4kN load shapes. This shows that some of the 

asymmetric deformation from the initial loading remained even at full design load. This 

occurred because large loads were placed at single locations on the deck all at one time 

producing high local deflections. Because of the flexibility of the stress lamination it was 

considered that the structure would recover when unloaded and left to settle and 
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subsequent loadings would give a more consistent result. The effect was interesting to 

note and would not be expected from a steel or concrete structure. 

QSE/Test Compabson -Unloaded Arch 
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Fig 7.20 - 20m span arch shape for UDL showing analytical results 

Figure 7.20 shows the comparison between the experimental and analytical shapes which 

are very close and display good correlation especially at mid span. The differences are 

consistent with the explanation contained in the previous paragraph. 
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Fig 7.21 - Load deflection for 20m. span under middle third loading 
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20m Span - Arch Shape - Deflections exagerated 
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Fig 7.22 - 20m span arch shape for middle third loading 

Figures 7.21 and 7.22 show the load deflection behaviour for a middle third loading case. 

This is comparable to the four point loading used in the laboratory for the small scale 

arches. The trendline shows a much more consistent measure of the stiffness at the centre 

as 1.58 kN/mm. This greater consistency was due to it being a second loading after initial 

internal arch slippage had taken place. The result was a true reflection of structural 

capacity. 

The span to rise ratio of this 20m span is I to 12, the same as for the other permanent 

structures spanning 6m and 15m. They had stiffnesses of 1.14kN/mm and 1.05kN/mm 

respectively which correlates well with analysis. 
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20m Span - Quarter Point Loading 
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Fig 7.23 - Load deflection for 20in span and quarter point loading 
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Fig 7.24 - 20m span arch shape for quarter point loading 
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20m Span - Quarter Point Loading 4 months later 
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Fig 7.25 - Load deflection for 20m span and quarter point loading 4 months later 

Figures 7.23,7.24 and 7.25 show the same load deflection plots as previous 20m span 

charts only, this time, with loading at the quarter point. In this situation the stiffness is 

considerably reduced, to 0.78 kN/mm. As mentioned before it was interesting that after 
four months and with some re-tensioning, the stiffness remained the same but the more 

erratic deflections at other points on the arch had smoothed out. 

7.5.1 Conclusions from 20m Span Tests 

All of the load tests carried out to this point of the programme were designed to 

investigate structural actions and show a correlation between experimental tests and 

elastic analysis while investigating other interesting effects. The results have been 

encouraging because they have shown consistency between full scale tests and laboratory 

results and have paved the way for bridges like the one shown in Figure 7.26. 
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7.6 6m Span Scaled Test Arches 

This series of 6m spans, 475mm wide, made from 25mm wide x 95mm deep laminates, 

formed the basis of controlled experimental load tests to demonstrate how stiffness 

relates to arch rises and lateral bar tensions. Loads are plotted against deflections for 

different lateral tensions, different loading positions and for arches of varying rises. The 

gradients of the load-deflection relationships were considered as a measure of stiffness 

and these are plotted against the lateral tensions. These stiffnesses are related to total 

deflection which is the sum of the structural bending and shear effects plus the deflection 

due to lateral settlement. The experimental results are compared to linear elastic analysis 
for each span and rise at full lateral tension with corrections for settlement deflection. 

The load deflection plots all recorded loading and unloading. The unloading curves 
displayed temporary residual deflections which dissipate with time. At zero lateral 

tension the arches display very low stiffness and non linear structural action which cannot 
be used to predict load capacities. 

The arches were loaded according to their capacity which depends on span rise ratio and 
lateral tensions. Fore example the flat slab could only take just over 5kN with a very large 

deflection whereas the strongest arch with the maximum lateral tension was loaded up to 
20kN. The arches were not loaded to failure but were loaded to approximately four times 

the design load. 

The plots are shown in Figures. 7.27a, bc&d, 7.28a, b, c&d, 7.29a, b, c&d, 7.29a, b, c 

&d and 7.30a, b, c&d for flat, 250mm rise, 500mm rise and 1000mm rise respectively. 
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6m Span - Flat Slab - Zero Tension Position 1m 
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Fig 7.27a - 6m span - flat - zero tension 
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Fig 7.27b - 6m span - flat - 7kN tension 
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Fig 7.27d - 6m span - flat -20kN tension 
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6m Span - 250mm Rise - Zero Tension 
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Fig 7.28a - 6m span - 250mm rise - zero tension 
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Fig 7.28b - 6m span - 250mm rise - 7kN tension 
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6 m Span - 250mm Rise - 12kN Tension 
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Fig 7.28c - 6m span - 250mm rise - 12kN tension 
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Fig 7.28d - 6m span - 250mm rise - 24kN tension 
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6m Span - 500mm Rise - Zero Tension 
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Fig 7.29a - 6m span - 500mm rise - zero tension 
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Fig 7.29b - 6m span - 500mm rise - 24kN tension 
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Fig 7.29c - 6m span - 500mm rise - 12kN tension 
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Fig 7.29d - 6m span - 500mm rise - 24kN tension 

209 



The Development of Transversely Stress- Laminated Timber Arch Bridges 

6m Span - 1000mm Rise - OkN Tension 
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Fig 7.30a - 6m span -I 000mm rise - zero tension 
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Fig 7.30b - 6m span -I 000mm rise - 7kN tension 
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6m Span - 1000mm Rise - 12kN Tension 
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Fig 7.30c - 6m span - 1000mm rise - 12kN tension 
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Fig 7.30d - 6m span -I 000mm rise - 24kN tension 

The linear regression lines are drawn for each mid span position at 3m (heavy dotted 

line). The coefficient of the 'x' terni is a stiffness measured in kN/mm. These, total 

deflection stiffnesses at mid span are plotted against the lateral tensions for each arch in 

Figures. 7.3 1 a, b, c&d, to find the tension at which full stiffness is developed. The total 

deflection is the structural deflection plus the settlement deflection. 
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Fig 7.3 la - Stiffness to lateral tension - flat 

Stiffness to Lateral Tension - 6m Span - 250mm Rise 

0.25 

Ev 
E 0.15 

CD 
=*Stf f ness at Cent e 

0.05 

-0.05 
5 10 15 20 25 

Lateral Tension kN 

Fig 7.3 1b- Stiffness to lateral tension - 250mm rise 
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Fig 7.3 1c- Stiffness to lateral tension - 500mm rise 
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Stiffness to Lateral Tension 1000mm Rise 
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Fig 7.3 1d- Stiffness to lateral tension -1 000mm 

From Figures. 7.31 a to 7.31d, it is clear that the full stiffness is achieved for all arches at 

a relatively low lateral tension, showing again that sufficient friction is generated to 

provide lateral distribution of load. This is consistent with the results from all of the 

previous test arches. The stiffness increases with arch rise as shown in Figure 7.32 which 

is a plot of the full tension stiffness from Figures 7.3 1 a, b, c&d. 

Stiffness to Rise - 6m Spans 
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Fig 7.32 - Stiffness to rise - 6m arches - experimental and analytical 

Figure 7.32 shows increasing stiffness from flat spans up to a span to rise ratio of one to 

six. It has been shown for the 2.1 in spans, and will be confinned in Chapter 8 that there is 

an optimum span to rise at one to five. Figure 7.32 includes plots of the experimental 
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results with the effects of lateral settlement removed and one of analytical values taken 

from Table 8.1. This shows how the settlement deflection reduces stiffness significantly 

and shows reasonable correlation with elastic analysis. 

Figures 7.33a, b, c and d show the actual arch shapes with deflections (exaggerated five 

times), at various tensions together with a superimposed elastic analysis to demonstrate 

correlation. 
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Fig 7.33a - 6m span flat - loaded shape 
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Fig 7.33b - 6m span - 250mm rise arch - loaded shape 
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Fig 7.33d - 6m span - 1000mrn rise arch - loaded shape 

Figures 7.33a to 7.33d show that there is good correlation between experimental results 

and elastic analysis, even from a low tension of 7kN up to full tensions of 24kN. The 

analysis used the same settlements which actually occurred in the tests to calculate 

vertical deflections thus making the experimental and analytical comparable. 

As a concluding test the 500mm and 1000mm rise arches were loaded at their quarter 

points. As this is the weakest point the stiffness will become the design stiffness if the 
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arch is to take quarter point loading in practice. Figures 7.34a and b show the load 

deflection plots and the trendlines as a measure of stiffness. 

6m Span - 500mm Rise - OTR point load - 24kN tension 
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Fig 7.34a - Load deflection for 6m span - 500mm rise arch and quarter point load 
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Fig 7.34b - Load deflection for 6m span -I 000mm rise arch and quarter point load 

The stiffnesses from Figures 7.34a and b were plotted against the rises using the flat span 

stiffness from the four point load tests as this would not change for quarter point load. 

This is shown in Figure 7.35 and in this case the increase in stiffness for the higher rise is 

not as great because of the deflected shape the arch takes with asymmetric loading. The 
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quarter point load introduces a high proportion of bending whereas the symmetrical four 

point loading induces predominantly compressive stresses resulting in less deflection. 

Stifness to Rise for Quarter Point Loading - 6m Spans 
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Fig 7.35 - Stiffness to rise for quarter point loading 

Figures 7.36a and b show the exaggerated deflected shapes of the 500mm and 1000mm 

arches with quarter point loading. The results of elastic analysis, using the measured test 

lateral settlements, are plotted over the arch shapes. Again there is good correlation. 
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Fig 7.36a - Deflection of 6m span - 500mm rise arch with quarter point load 

experimental - analytical comparison 
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Fig 7.36b - Deflection of 6m span -I 000mm rise arch with quarter point load 

experimental - analytical comparison 

7.7 Dynamic Tests on Field Structures 

The three measurement methods of FNF were described in Chapter 6 and the detailed 

testing of the 20m span was described earlier in this chapter. To further confin-n the 
findings some commercial bridges, recently constructed, were tested using the RT440. 

Figure 7.38 shows a typical recorded test for the bridge at Carribber, shown in Figure 

7.37. 
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Carribber Bridge Vibration 
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Fig 7.38 - Output from vibration Carribber bridge 

Figure 7.38 shows the Natural Frequency of the 20m span Carribber bridge to be 3.6Hz. 

There is a rogue peak at the axis of approximately 0.5Hz. This is the decay of the Fourier 

Series which is applied to the vibration meter output, to organize it into actual meaningful 

2 
peaks. The maximum acceleration is . 005m/s , which is very much less than 0.5V 

given by Jiri Strasky [73] as the comfortable maximum for pedestrians. 

Table 7.1 shows the field results taken up to this time. It is significant that both the Forth 

bridge and Carribber bridge FNFs increased after the bitumen topping was added. This 

shows that the topping added stiffness by bonding to the deck. If it had not bonded it 

would have added dead weight and decreased the FNF. All of the completed bridges will 

be tested as a continuation of this work to build up a database and to check that they 

maintain their stiffness. A decrease in value through the life of the bridge would show 

that the lateral tension had relaxed or the topping had delaminated or structural decay had 

occurred. 
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Table 7.1 - Dynamic Field Test Results 

Test 
Number 

Frequency 
[HzI 

Description of Bridge 

1 3.5 Forth bridge - 20m Span - unsurfaccd 

12 
4.4 Forth bridge - 20m Span - surfaced 

3 3.6 Carribber bridge - 20m Span - unsurfaced 
4 4.0 Carribber bridge - 20m Span - surfaced 

Table 7.2 shows the results of the 3 different methods of measurement used for FNF with 
the result of a finite element analysis. All were carried out on the 20m test span bridge at 
Glentress and described in Section 6.9. It was not surfaced and it can be seen that the 

values agree with the Forth and Achray bridges of the same span, Table 7.1. 

Table 7.2 - Dynamic test results on a 20m span unsurfaced bridge using three different 
instruments 

Frequency Equipment and Excitation 
Test [Hzj 
Number 
1 3.54 ARTeMIS test planner and modal analyses software 

Excitation by walking 
2 3.6 dual spectrum analyser 

Hammer impact excitation 
3 3.5 Handheld vibration analyser RT440 

50kg sandbag dropped on deck as excitation 
14 14 Finite Element analysis 
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7.8 Materials Testing Results 

The data from eight test samples from the 2.1m span laboratory arches and ten from the 

6m spans were averaged and used to calculate the values given in Table 7.3. The 

calculations were carried out in accordance with the equations given in BS EN 408: 1995 

[81]. 

Table 7.3 - Materials properties of timber samples from 2.1 m and 6m laboratory arches. 

Spanof Modulus of Moisture E E E 
Bridge elasticity Content Compression Compression Compression 

sample Bendinf %age 00 
2 

450 
2 

go, 
2 In N/mm N/mm N/mm N/mm 

2.1 4590 

6 12642 10.76 2297 680 310 

The values for Modulus of Elasticity for bending are the most significant. The timbers 

used for the 2.1m span bridges were poor quality but the bridges still perfonned well 

showing the value of taking load in compression. The 6m span bridges were built from 

better timber as shows in the result which is 40% greater than the 880ON/mm 2 value used 
in analysis comparisons because C16 was assessed by visual grading. The moisture 

content is very low because the timber had been in the laboratory for some time. The 

compression values show the significantly greater capacity parallel to the grain which 

again shows the value of arches which take most of the load as a compression parallel to 

the grain. 

7.9 Conclusions from Experimental Results 

One of the objectives of this PhD research was to study and quantify the behaviour of 

stress laminated solid timber arches for bridge decks and develop a predictive empirical 

model that would represent the structural behaviour within the range of expected loadings 

and design conditions. The above work, to some extent, achieved this objective and 

produced a number of useful outcomes. 
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From the beginning, the focus was on finding the critical parameters which would lead to 

the optimum design for particular requirements. This study emerged originally from a 

commercial application for pedestrian use. It was therefore biased towards a shape which 

would permit easy access over the deck. This is why the first arch to be tested had a span 

to rise ratio of I to 12. 

Flat arches of a similar profile had not been used for small rural structures because of the 
high cost. These shallow profiles normally require steel and concrete together with a 

careful input of precision construction. They have to be built of materials which can take 

some bending. Masonry would not generally be used for such flat arches because it 

simply cannot sustain large bending moments. Masonry flat arches can become unstable 

with small lateral movements resulting from settlement at the springings. At the 
beginning of this study it was predicted that timber arches might succeed where other 

material could not. 

The timber arches resist bending moments and are extremely good in compression. 
Through slip, they can settle into a minimal stress condition under dead load. Because 

dead load is uniform, only some of its compression ability, of which there is generally an 

excess, is used. This leaves the majority of the bending capacity for the live load, which 

produces the maximum effect at extreme loading conditions, as has been demonstrated 

above. 

Although the focus was on flat arches, the study tested a range of shapes to quantify the 

trends of stress and deflection in order to broaden the result base, with a view to 

developing predictive analysis for arches for vehicle bridges. These arches would provide 

support to an upper deck, therefore the arch would take load at its centre. For that reason 

much of the testing was carried out with loading over the middle third of the arches. 

The results show good correlation with elastic analysis, when lateral settlements, suitably 

modified modulus of elasticity values for external condition, modified cross sections etc. 

are taken into account. However, there are effects which are not readily accounted for in a 
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traditional analysis, e. g. lateral tensions, so this research has aimed to address these issues 

in the next chapter and will conclude with an attempt to generate a semi empirical model. 

The test results show timber arches to have a very high strength to weight ratio. There are 

optimum structural strengths and geometry for different uses. The shallow arch, for use as 

a pedestrian bridge, has a limit of I to 100, structural depth to span. This is based on 
limiting dynamics, where the natural frequency approaches the possible applied live load 

frequency. The optimum stiffness for load capacity comes from a steeper arch shown to 
have an approximate ratio of I to 5 for rise to span. 

Perhaps the most useful outcome from the tests is confirmation that only approximately 
1/3 of the initial prestress of IN/mm. 2 is adequate for lateral load transfer. This satisfies 

Eurocode 5 Pt2 [5 1 ], but because of the locking effect and the end bearing actions, arches 

are much safer than stress laminated flat spans, at low lateral tension. 
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CHAPTER 8 

8 DERIVATION OF SEMI EMPIRICAL MODEL AND DESIGN ISSUES 

Although the tests detailed in Chapters 5,6 and 7 have shown that SLT arches can be 

analysed elastically, these calculations include assumptions e. g. that the structure acts as 

an isotropic plate. This is not true if the lateral tension is low because the stiffness is 

reduced and not uniform. In order that this, and other effects, can be accounted for in 

some generic equations, a set of semi empirical models is developed in this chapter. 

By observation and tests it was found that the load capacity of a SLT arch is mainly 
dependent on the following variables: 

" span 

" rise 

" depth of section 

" lateral tension 

" timber grade - (characteristic stiffness in terms of modulus of elasticity and 
dcnsity) 

" slip of laminates 

" moisture content of timber 

" settlement of supports 

* loading conditions / type 

The test programme in this research was carried out in order to show and evaluate 
relationships between these variables and a common denominator. All of the variables 
affect the stiffness of the structure, so that has been chosen as the common denominator 

and indicator of the performance of the structure. It is proposed to develop a partial 
empirical model to define any arch in terms of stiffness where stiffness, for the purposes 
of this study, is defined as the sustained load per unit of deformation. A design could then 
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be carried out by calculating a stiffness for the chosen parameters and comparing this to 
the required stiffness for the bridge being designed. 

It is assumed that there is no significant interaction between some contributing factors 

listed above. In this regard these factors are studied independently. 

One timber grade is chosen to develop relationships which are then factored by the 

relevant parameter for other grades in terms of modulus of elasticity and density. The 

stiffness chosen is load per unit of deflection so load becomes an external factor. 
Moisture content (MC) is eliminated by considering that all timbers are below 18% MC 

and because slip occurs with low lateral tension, it is regarded as part of that variable. 
The lateral tension effects are calculated from the test results provided by the sets of 2.1 m 
and 6m span laboratory test arches and incorporated into the model. The generic semi 

empirical model as developed by Porteous and Kermani [83] is used and will take the 
form: - 

K= Fj(G), F2(T), F3(ED), F4(b) 

Where: 

K= Stiffness of the arch 
F, = Geometric function(G) 

F2 = Lateral tension function (7) 

F3 = Materials properties function (E, D) 
F4 = Horizontal settlement of supports (b) 

Equation 8.1 

load/unit deflection 

made up of span (s), rise (r) 

and ring thickness (d) 

force in the stressing bars at 
(b) centres 

modulus and density 

lateral movement 

The stiffness, K, is taken as kN/mrn which was the unit of experimental measurement. 

8.1 Geometric Function FI(G) 
The geometric function includes three variables - span and rise and arch thickness. They 

are interdependent and will be chosen in any combination for a design. To develop a 
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suitable relationship from test results alone would have required too many test structures 

so analytical results have been used. This is validated on the assumption that all tests 

showed good correlation with linear elastic analysis and where experimental results are 

available they will be compared in the conclusion to this chapter. 

A series of parametric analyses, using QSE structural analysis software, was carried out 
to examine the effects on load deformation response with varying spans, rises and arch 
thicknesses. In the analyses the following were considered: - 

Loads were applied as line loads across a Im width of deck to simulate three 
different loading conditions: - 

Central point loading to simulate an arch supporting a structure 

above. 

Quarter point load to simulate the most critical loading on an arch, 
This is the load applied if the arch ring is used as a bridge deck. 

Two line loads at third span to simulate, approximately, uniformly 
distributed load and compare with test results. 

2 Three different spans were considered. 6m, 10m, 20m. 

3 Three or four different arch ring thicknesses were considered for each arch. 
4 Four different rises were considered for each arch. 
5 Lateral movement, settlement of supports, was not permitted. 
6 Young's Modulus E was taken as 8.8kN/mm2 and weight density as 5kN/M3. 

20kN of load was chosen to give realistic results for plotting but this is arbitrary because 

load is unitised in the resulting derivations. The effective width was taken as 0.75 times 

the actual width to account for the butt joints in the arch. SLT arches are generally made 
from laminates each containing four holes which in turn lead to four staggers in the 
joints. This means that at any cross section there is a butt joint at every fourth laminate 

therefore the effective cross section is 0.75 of the full cross section. The second moment 

of area in the vertical direction is also affected. 
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The following Table, 8.1, shows parametric stiffncsses calculated from deflections for 

the three arches of varying geometry for three different forms of 20kN of loading - single 

point load at mid span, single point load at quarter span and two I OkN point loads at third 

points. The gradient of the load deflection plots was taken as the stiffness which are 

shown as W in Table 8.1. W is the load which gives I mm of deflection for each load 

and combination of span, rise and depth. 

Table 8.1 - Parametric stiffnesses for three loadinp-s 

PARAMETRIC STIFFNESSES 
Central 
Point Load 

QTR Point 
Loading 

Four Point 
Loading 

Span 
mm 

Depth 
mm 

Rise 
mm s/r s/d 

K 
Parametric 
kN/mm 

K 
Parametric 
kN/mm 

K 
Parametric 
kN/mm 

20000 200 500 40.00 100.00 0.561 0.332 1.7-11 
20000 200 1000 20.00 100.00 0.914 0.375 3.18 
20000 200 2000 10.00 100.00 1.079 0.382 5.72 
20000 200 3000 6.67 100.00 1.097 0.374 6.47 
20000 200 4000 5.00 100.00 1 1.085 0.363 6.4 
20000 200 5000 4.00 100.00 1.060 0.350 7.69 
20000 200 10000 2.00 100.00 0.908 0.276 5.38 
20000 250 500 40.00 80.00 0.855 0.600 1.46 
20000 250 1000 20.00 80.00 1.591 0.714 4.66 
20000 250 2000 10.00 80.00 2.030 0.740 9.59 
20000 250 3000 6.67 80.00 2.103 0.729 11.5 
20000 250 

_4000 
5.00 80.00 2.094 0.708 11.83 

20000 250 5000 4.00 80.00 2.053 0.682 14.08 
20000 1 250 10000 2.00 80.00 1.770 0.539 10.26 
20000 300 500 40.00 66.67 1.170 0.948 1.82 
20000 300 1000 20.00 66.67 2.429 1.197 6.04 
20000 300 2000 10.00 66.67 3.356 1.268 14.13 
20000 300 3000 6.67 66.67 3.554 1.254 18.05 
20000 300 4000 5.00 66.67 3.568 1.220 19.18 
20000 300 5000 4.00 66.67 3.510 1.175 23 
20000 300 10000 2.00 66.67 3.030 0.930 12.5 
10000 100 250 40.00 100.00 0.560 0.352 1.11' 
10000 100 500 20.00 100.00 0.905 0.401 3.12 
10000 100 1000 10.00 100.00 1.063 0.401 5.52 
10000 100 1500 6.67 100.00 1.081 0.401 6.19 
10000 100 2000 5.00 100.00 1.068 0.389 6.15 
10000 100 3000 3.33 100.00 1.015 0.347 2.41 
10000 100 4000 2.50 100.00 0.952 0.314 2.52 

L 10000 150 250 40.00 66.67 1.174, 0.973 3.45 
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10000 150 500 20.00 66.67 2.414 1.278 5.97 
10000 150 1000 10.00 66.67 3.312 1.358 13.7 
10000 150 1500 6.67 66.67 3.503 1.344 17.45 
10000 150 2000 5.00 66.67 3.514 1.306 18.48 
10000 150 3000 3.33 66.67 3.378 1.180 8.33 
10000 150 4000 2.50 66.67 3.185 1.060 7.72 
10000 200 250 40.00 50.00 1.862 1.810 2.6 
10000 200 500 20.00 50.00 4.442 2.814 8.73 
10000 200 1000 10.00 50.00 7.090 3.150 23.75 
10000 200 1500 6. E-7 50.00 7.871 3.151 33.67 
10000 200 2000 5.00 50.00 8.048 3.075 37.95 
10000 200 3000 3.33 50.00 7.840 2.760 44.44 
10000 200 4000 2.50 50.00 7.430 2.500 40.82 
6000 75 100 60.00 80.00 0.500 0.480 0.713 
6000 75 250 24.00 80.00 1.394 0.697 3.454 
6000 75 500 12.00 80.00 1.914 0.740 8.032 
6000 75 750 8.00 80.00 2.049 0.737 10.73 
6000 75 1000 6.00 80.00 2.055 0.724 11.56 
6000 75 1500 4.00 80.00 2.010 0.780 11.76 
6000 75 2000 3.00 80.00 1.923 0.635 11.63 
6000 100 100 60.00 60.00 0.779 0.900 1.026 
6000 100 250 24.00 60.00 2.571 1.540 5.076 
6000 100 500 12.00 60.00 4.107 1.719 13.89 
6000 100 750 8.00 60.00 4.613 1.731 20.6 
6000 100 1000 6.00 60.00 4.718 1.706 23.81. 
6000 100 1500 4.00 60.00 4.695 1.613 27.4 
6000 100 2000 3.00 60.00 4.500 1.502 25.97 
6000 150 100 60.00 40.00 1.470 1.946 1.823 
6000 150 250 24.00 40.00 5.400 4.385 8.4 
6000 150 500 12.00 40.00 10.935 5.488 26.67 
6000 150 750 8.00 40.00 13.615 5.683 45.15 
6000 150 1000 6.00 40.00 14.609 5.661 59.97 
6000 150 1500 4.00 40.00 15.040 5.390 74.07 
6000 150 2000 3.00 40.00 14.710 5.040 74.07 
6000 200 100 60.00 30.00 2.43 3.4 3.03 
6000 200 250 24.00 30.00 1 8.573 8.636 11.94 
6000 200 500 12.00 30.00 20.101 12.107 39.06 
6000 200 750 8.00 30.00 27.473 12.979 71.94 
6000 200 1000 6.00 30.00 31.056 13.115 99 
6000 200 1500 4.00 30.00 33.3 12.58 143 
6000 200 2000 3.00 30.00 33.3 11.83 143 

(the figures in red will be used later in an experimental correlation) 

Stiffness was then plotted against the span/rise ratio for each individual combination of 

span and depth (thickness of arch ring). The plots for each loading case are shown below 

in Figures 8.1,8.2 and 8.3: - 
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Fig 8.1 - Stiffness to span/fise for various span/depth ratios under central point load 
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Fig 8.2 - Stiffness to span/rise for various span/depth ratios under quarter point load 
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Four Point Loading 
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Fig 8.3 - Stiffness to span/rise for various span/depth ratios under four point loading 

From the plots in Figures 8.1,8.2 and 8.3 it can be seen that there is a common optimum 

span/rise ratio of approximately five. From test results, arches with span/rise ratios of 

greater than 24 had, or would have had, Fundamental Natural Frequencies too low to be 

useful when considering dynamic loads imparted by users of the bridges. A range of 

span/rise ratio between five and twenty four was therefore chosen for the parametric 

study. 
This optimum range provided plots with similar curves representing relationships 
between span, rise and thickness in terms of stiffness. Plots of this limited model range 

are shown in Figures 8.4,8.5 and 8.6. 
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The function which provided the best fit to the data was different for each loading case. 

Trendline functions provided in the spreadsheet, Excel, were used which provided good 

fits in all cases with R2 values above 0.9 as illustrated in Figure 8.6. One example of the 

trendline function is shown on the charts for the arch with a 6m span and s/d = 40. 

The general best fit equations for each of the three loading condition are as follows: - 

Central Point Load K=Ae -B(s/r) 

Quarter Point Load K= A(s/r) +B 

Four Point Load K= Ae -B(s r) 

Equation 8.2 

Equation 8.3 

Equation 8.4 

The parameters 'A' and '13' were determined from each trendline equation and tabulated 

as shown below in Tables 8.2,8.3 and 8.4 for Equations 8.2,8.3 and 8.4 respectively: - 
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Table 8.2 - Equation coefficients for various span/depth - central point load 

Span m s/d A B (-ve) 
6 30 48.143 0.072 
6 40 21.05 0.0563 
10 50 10.249 0.041 
6 60 6.0242 0.0349 

10 & 20 67 4.2208 0.0269 
6& 20 80 2.3787 0.0195 

d 

10 &20 100 1.1847 0.012 4 

Table 8.3 - Equation coefficients for various span/depth- quarter point load 

Span m s/d A (-ve) B 
6 30 0.2584 14.939 
6 40 0.0753 6.246 
10 50 0.0208 3.2643 
6 60 0.0104 1.8042 
10 67 0.0032 1.3549 
20 67 0.0027 1.2632 
6 80 0.0003 0.7254 
20 80 0.002 0.749 
10 100 0.0005 0.393 
20 100 0.0004 0.3688 

Table 8.4 - Equation coefficients for various span/depth - four point loading 

Span m s/d A B (-ve) 
6 30 179.72 0.115 
6 40 106.7 0.1073 
10 50 63.787 0.0992 
6 60 40.169 0.0864 
10 67 29.901 0.0791 
20 67 28.556 0.0775 
6 80 17.289 0.0645 
20 80 18.052 0.0686 
10 1 100 8.7689 0.0495 
20 1 100 8.3317 0.0479 

The values of the coefficients, A and B were plotted against their span/depth ratios to 

provide two plots for each loading condition. These plots are shown in Figures 8.7,8.8 

and 8.9. 
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The function which provided the best Fit to the data was again different for each loading 

case. Trendline functions provided in the spreadsheet, Excel, were used to provide good 

fits in all cases. The equations of these plots, illustrated in Figures 8.7,8.8 and 8.9 were 

then substituted into Equations 8.2,8.3 and 8.4 to give generic equations containing 

Span, Rise and Depth equated to stiffness, K, giving Equations 8.5,8.6 and 8.7 below. 

The stiffriesses were calculated and compared to the parametric values. The error 

differences between all QSE derived stiffness and those calculated from the equations 
developed through best fit plots were calculated and are shown in Table 8.5. The average 

for each load case was applied as a coefficient correction factor in Equations 8.5,8.6 and 

8.7 to provide the best correlation to the parametric values of K. The results are shown in 

Table 8.5. Equations 8.5,8.6 and 8.7 represent FI(G) in Equation I for central point 

loading, quarter point loading and four point loading respectively. 
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Table 8.5 - Error difference - Generic equation stiffnesses and parametric values 

for 's/r' range 5- 24 

Arch Central Pt Load Quarter Pt Load 4 Pt Load 

Span under+ve Corrected Corrected under +ve Corrected underest under+ve Corrected Corrected 

depth/rise %age err k %age err %age err k %age err %age err k %age err 
20/0.2/1 -14.6 0.928 -1.5 0.5 0.372 0.8 1.0 3.226 -1.4 
20/0.2/2 -9.6 1.048 2.9 1.4 0.375 1.7 13.6 5.064 11.5 
20/0.2/3 -12.2 1.091 0.6 -0.7 0.376 -0.4 11.3 5.885 9.0 
2010.2/4 -15.8 1.113 -2.6 -4.0 0.377 -3.7 3.3 6.345 0.9 
20/0.2511 -11.8 1.576 1.0 -2.0 0.726 -1.7 -6.8 5.099 -9.4 
20/0.2512 -7.1 1.926 5.1 0.1 0,737 0.4 1 0.5 9.778 -2.0 
20/0.25/3 -10.6 2.060 2.0 -2.0 0.741 -1.7 -3.1 12.148 -5.6 
20/0.25/4 -14.8 2.130 -1.7 -5.3 0.743 -5.0 -11.7 13.540 -14.5 
20/0.3/1 -9.4 2.354 3.1 -4.2 1.243 -3.9 -11.8 6.920 -14.6 
20/0.312 -4.9 3.121 7.0 -0.9 1.276 -0.6 -4.7 15.162 -7.3 
20/0.3/3 -8.9 3.428 3.6 -2.9 1.287 -2.6 -6.4 19.693 -9.1 
20/0.3/4 -13.6 3.593 -0.7 -6.3 1.293 -6.0 -14.2 22.443 -17.0 
10/0.1/0.5 -15.7 0.928 -2.5 7.0 0.372 7.3 -0.9 3.226 -3.4 
10/0.1/1 -11.2 1.048 1.4 6.1 0.375 6.4 10.5 5.064 8.3 
10/0.1/1.5 -13.9 1.091 -0.9 6.0 0.376 6.3 7.2 5.885 4.9 
10/0.1/2 -17.6 1.113 -4.2 2.9 0.377 3.1 

_ 
-0. 

. 
6.345 -3.2 

101.15/0.5 -10.1 2.354 2.5 2.4 1.243 2.7 -13.1 6.920 -15.9 
10/. 15/1 -6.3 3.121 5.8 5.8 1.276 6.0 -8.0 15.162 -10.7 
10/. 15/1.5 -10.4 3.428 2.1 3.9 1.287 4.2 -10.1 19.693 -12.9 
10/. 15/2 -15.4 3.593 -2.2 0.7 1.293 1.0 -18.5 22.443 -21.4 
10/0.210.5 -8.2 4.259 4.1 -0.7 2.824 -0.4 -13.3 10.136 -16.1 
10/0.211 -4.2 6.544 7.7 4.8 2.991 5.0 -7.8 26.236 1 -10.5 
10/0.2/1.5 -8.3 7.551 4.1 3.0 3.047 3.3 -4.4 36.022 -7.0' 
10/0.2/2 -13.8 8.112 -0.8 -0.3 3.074 0.0 -8.5 42.209 -11.2 
6/. 075/. 25 -17.7 1.454 -4.3 -3.8 0.721 -3.5 -11.0 3.930 -13.8 
6/, 075/. 5 -9.1 1.851 3.3 0.4 0.735 0.7 -4.3 8.584 -6.9 
6/. 075/. 75 -10.5 2.006 2.1 -0.6 0.740 -0.3 -1.3 11.138 -3.8 
61.075/1 -14.7 2.088 -1.6 -2.8 0.742 -2.5 -7.1 12.686 -9.7 
6/0.1/. 25 -12.9 2.572 0.0 -8.4 1.664 -8.1 -10.2 5.736 -13.0 
6/0.11.5 -5.5 3.838 6.6 -1.3 1.736 -1.0 -11.9 15.926 -14.7 
6/0.11.75 -7.3 4.385 4.9 -2.0 1.760 -1.7 -6.0 22.384 -8.7 
6/0.111 -12.1 4.688 0.6 -4.1 1.771 -3.8 -8.7 26.537 -11.5 
6/0.15/. 25 -11.0 5.309 1.7 -10.6 4.835 -10.3 2.8 8.371 0.3 
6/0.151.5 -6.4 10.311 5.7 -1.3 5.544 -1.0 -8.1 29.545 -10.8 
6/0.15/. 75 -6.6 12.865 5.5 -2.0 5.780 -1.7 2.8 44.985 0.4 
6/0.15/1 -11.0 14.370 1.6 -4.5 5.898 -4.2 9.7 55.508 7.4 
6/0.2/. 25 -15.9 8.806 -2.7 8.8 7.853 

_ 
9.1 

_ 
17.4 10.112 15.3 

610.2/. 5 -16.3 20.706 -3.0 5.0 11.469 5.3 -0.5 40.243 -3.0 
6/0.2/. 75 -13.1 27.533 -0.2 2.1 12.674 2.3 13.5 63.773 11.4 
6/0.2/1 -15.4 31.750 -2.2 -1.5 13.277 -1.2 1 20.9 80.281 18.9 

Ave - 11.419.886 Ave =1.3 Ave - -0.3 le . 997 Ave =01 Ave -2.6 le. 976 Ave =0.1 
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Central Point Loading 

0.886 (2E + 6(s /d) -3.0878 )e -(0.1522 e-0.0253 (s /d »(s / r) 

Equation 8.5 

Quarter Point Loading 

K=0.997(7E + 7(s / d) -5.1129(S / r) +5 03 215 (s / d) -3.0113 ) 

Equation 8.6 

Four Point Loading 

K=0.975 (565 . 91 e -0.0429 (sld) )e- (-o. 001 (yld)+0.1451 )(slr) 

Equation 8.7 

It can be seen that the correlations for the Quarter Point load and the Four Point load are 

very close- average errors 0.3% and 2.5%. The central point loading correlation contains 

acceptable errors but they are of the order of twice the percentage of the others. This four 

point loading mirrors the loading used in the laboratory tests on the series of 2.1 m spans 

and 6m spans, so the equation will be used to compare parametric results to test results in 

8.6. 

8.2 Lateral Tension Function FAT) 

As detailed in Chapter 7, a series of tests was carried out to determine the effects of the 

level of tension (transverse stress) on the load deformation behaviour of 2.1 m and 6. Orn 

span arches Figure 8.10, with different rises (from flat to nearly semi circular). Linear 

regression was applied to each plot e. g. Figures 7.10 - 7.13, to determine the slope of the 

load / deformation characteristics for each tension level to represent the arch stiffness. 
These stiffness values were plotted against their lateral tension as shown in Figures 8.11 

and 8.12. All of the plots show maximum stiffness is gained at relatively low tensions. 

Much higher tensions are recommended for flat stress laminated bridge decks in 

Eurocode 5 as well as codes in USA and Australia. However, as the lower limit for 

structural safety is given as 30% of design tension, test results will be used to derive a 
factor for the semi empirical model to modify stiffness for tensions below 30%. This is 
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done by deriving a general equation fit for plots below minimum tension and applying it 

to the model. 

Fig S. 10(a) - 6m span arch tested for varying lateral tensions 

Fig S. I O(b) - 2.1 m span arch tested for varying lateral tensions 
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Fig 8.12 - Maximum stiffness to lateral tension - 6m spans 

From Figures 8.11 and 8.12, it is clear that sufficient tension for a working arch is 

reached at 5kN for the 2.1 in span arch and similarly l2kN for the 6m arch for all rises. 

These tensions give lateral stresses between the laminates of 0.4 and 0.38 N/mrn 2 

respectively. 

2.1 m Span 
a= (5 x 1000) -- (70 x 177) = OAN / mm 
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6m. Span 
cr = (12 x 1000) -- (95 x 333) = 0.3 8N / mm' 

This is compared to the recommended lateral stress of IN/mm2 in the ASSHTO standards 
[41] for flat deck bridges which allow a reduction, between maintenance tensioning, to 

0.3N/mm 2. It is therefore safe to take OAN/mM2 as the minimum required tension for full 

structural capacity. It is also safe, and close to the tests for many spans, to assume zero 

stiffness for zero tension. This means that the stiffness coefficient for lateral tension is 

applied stress / 0.4, where stress is the lateral tension from the stressing bars divided by 

the area over which this tension is transmitted. This area is the depth of the arch ring (d) 

times the distance between the bars (b), both in mm. 

F(T) =T 1(b x d) / 0.4 Equation 8.8 

This value cannot be greater than one which is at maximum stiffness so for lateral stress 

greater than 0.4N/mm2 the lateral tension coefficient will be equal to one. 

8.3 Material Strength F3(E, D) 

The parametric study used a modulus of elasticity of 880ON/mm. 2 and a weight density of 
SkN/M3 for all calculations. The modulus of elasticity is a linear multiple of all factors 

affecting stiffness in the deflection calculations. The density only affects self weight and 
hence as a uniformly distributed load its effect on deflection is linear. The self weight 

will be added to live load to calculate deflection using the stiffness but it does not directly 

affect stiffness. 
Therefore: 

F (E, D) =E/ 8800 Equation 8.9 3 

where E is in N/mm2 

8.4 Settlement Function F4(8) 

Settlement of the arch springings creates a load effect which results in a vertical 
deflection and forces in the arch members. Whatever the arch is made of the vertical 
deflection will be geometrically proportional to the settlement. In an arch made of high 
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modulus of elasticity material such as steel, the vertical deflection, for specific lateral 

settlement, will be the same as for a low modulus of elasticity material such as timber. 
The forces in the steel members will be greater as will the lateral thrust to create that 

same settlement. The horizontal settlement is entirely dependent on the lateral support 

provided for the arch and is independent of the characteristics of the arch. For that reason 
it will be treated as an independent additional deflection in the semi empirical model as 
shown in Equation 8.10. 

PI(A, t + 8,, ) =K Equation 8.10 

Where 

P= the applied load 

A, t = the vertical deflection of the arch due to structural effects 
5" = the vertical settlement due to the horizontal settlement 
K= the stiffness of the arch in terms of load per unit of deflection 

Settlement at the supports is generally very small in comparison to the span as is shown 
below by a parametric study. The increased stresses in the laminates are very small when 
settlement occurs. That is, the stresses calculated in, say, a 20m. span compared to those 
in a 20m span plus a few millimetres added for settlement. 

Vertical load causes vertical deflection which usually results in some lateral settlement in 

practice. Using geometry, a vertical deflection in an un-tensioned arch, can be calculated, 
because it relates directly to lateral movement. It is shown below in a parametric 
comparison that the increase in vertical deflection, under load, when lateral settlement is 

allowed, is almost all due to the lateral movement. Here, this is named 'geometric 
deflection' as opposed to 'structural deflection' which is caused by loads deforming the 

structure. 

Vertical deflection is therefore made up of two parts as described in Equation 8.10: - 
I Structural deflection from strain in the structure 
2 Geometric deflection resulting from lateral settlement 
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To describe this, a 20m span arch was evaluated using linear elastic analysis to calculate 
deflections and forces resulting from a pedestrian loading. The 20m span was chosen 
because a test bridge was built with that span and the horizontal settlement of 

approximately 8mm (Section 6.9.7) was observed under load. 

Central deflection for full loading and zero settlement (QSE) = 10.054mm 

Central deflection for full loading with 8mm. settlement (QSE) = 29.011 mm 

Force parallel to grain at the supports, zero settlement (QSE) = 123kN 

Force parallel to grain at the supports with 8mm of settlement (QSE) = 122kN 

Therefore: 

I Because of the low modulus of elasticity of timber and the stress release 

capability of the stress-laminated construction, additional stress in the laminates 

from the force parallel to the grain is negligible. 
2 Additional deflection due to geometry and some structural effects 

= 29.011-10.054 = 18.957mm 

3 Calculated geometric vertical deflection from an 8mm lateral settlement in aI to 

12 secular arch = 19.36mm (Excel spreadsheet, Appendix 10) 

4 Nearly all of the vertical deflection is due to the lateral settlement 
5 The difference between the additional deflection in the loaded arch and the 

calculated geometric deflection 

=19.36-18.957 =0.403mm 
Is due to the structural resistance. 

The additional structural effects from settlement are very small because of the low 

modulus of elasticity of timber but also due to some slip between laminates. In practice 
there will be a very small slip between laminates allowing the arch to take up a new 

shape. This new arch, with the induced stresses released, will then resist the load effects. 
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The comparative cffects of lateral settlement arc illustrated by the following parametric 

study of two sets of 6m span arches, with 250mm, 500mm, 1000mm and 1500mm rises 

and 100mm deep sections, one made from timber and the other from steel. Table 8.6 

shows the results of deflection and maximum arch barrel forces, at the springing, for zero 
load and I mm of lateral settlement. 

Table 8.6 - Deflections and forces for arches with zero load and I mm settlement 

Timber S teel 
Arch Rise 

mm 
Vertical Deflection 

mm 
Maximum Member 

Force kN 
V rtical Deflection 

mm 
Maximum Member 

Force kN 
250 4.6 2.71 4.6 63.09 

2.34 0.686 2.34 15.98 
1000 1.1.34 0.168 1.134 3.93 
1500 0.778 0.072 0.778 1.687 

It can be seen that vertical deflection is geometrically proportional to span and rise and is 

exactly the same for steel and timber for the same settlement. Forces increase 

proportionately with increasing modulus of elasticity. The size of the forces induced in 

the timber arch by settlement is relatively small and therefore can be ignored in the semi 

empirical model. 

Therefore: 

To account for lateral settlement in the semi empirical model when using it to design an 

arch: - 
I Assess the lateral settlement likely to occur in practice 
2 Calculate the geometric vertical deflection the settlement will induce 

3 Add that deflection to the deflection calculated from the stiffness equation 
4 The resulting deflection is the total deflection of the arch. (Equation 8.10) 
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8.5 Generic Formula - Proposed Semi Empirical Equation 

Combining equations (5), (6), (7), (8), and (9) 

Equation 8.5 becomes 

Central Point Loading 

K=0.886(2 x IO'(sld )-3.0878 )e _«). , j22 e-0.0253 (. t 
id) )(3 / r) (Tlbd /0.4)(E/8800) 

Equation 8.11 

Quarter Point Loading 

K=0.997(7 x 10 7 (sld)-5 - 6629 (s / r) + 503215(s / d) -3 - 0613 )(TlbdIO. 4)(EI8800) 
Equation 8.12 

Four Point Loading 

K=0.975 (565.91 e -0.0429 (s /d) )e- (-0.001 (s I d)+0.1451 Xs I r) (T / bd / 0.4)(E /8 800 ) 

Equation 8.13 

Where 

s= span, mm 
d= depth of laminate, mm. 

r rise of arch, mrn 
b distance between tension bars, mm 

T tension in bars, N 

E modulus of elasticity, N/MM2 

If it is required to consider a structure with uniformly distributed loadings the loads can 
be converted to equivalent four point loading so that Equations 8.13 can be used. 

Table 8.7 shows stiffnesses calculated from the proposed equations. The modulus of 

elasticity was not altered from that used to derive values in Table 8.1 (E = 880ON/mm 2 ). 

Full lateral tension has been assumed and no lateral settlement was allowed for. 
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Table 8.7 - Stiffncsscs calculated from proposed Equations 8.12,8.13 and 8.14 

Arch 20m Span I OmSpan I 6m Span 

Central 
PtLoad 

Quarto 
r Pt 

Load 

4 Pt 
Load 

Central 
PtLoad 

Quarter 
PtLoad 

4 Pt 
Load 

Contra 
I Pt 

Load 

Quarter 
Pt Load 

4 Pt 
Load 

Depth 
mm 

Rise 
mm 

I 

K 
kN/mm 

K 
kN/mm 

K 
kN/mm 

I 

K 
kN/mm 

K 
kN/mm 

I 

K 
kN/m 

m 

K 
kNim 

m 

K 
kNImm 

K 
kNImm 

75 250 1.454 0.721 3.930 

75 500 1.851 0.735 8.584 

75 750 2.006 0.740 11.138 

75 1000 2.088 0.742 12.686 

100 250 2.572 1.664 5.736 

100 500 . 928 . 372 3.226 3.838 1.736 15.926 
100 750 4.385 1.760 22.384 
100 1000 1.048 . 375 5.064 4.688 1.771 26.537 
100 1500 1.091 . 376 5.885 

100 2000 1.113 . 377 6.645 1 
150 250 5.309 4.835 8.371 

150 500 2.354 1.243 6.92 10.311 5.544 29.545 
150 750 12.865 5.780 44.985 

150 1000 3.121 1.276 15.162 14.370 5.898 55.508 

150 1500 3.428 1.287 19.693 

150 2000 3.593 1.293 22.443 

200 250 8.806 7.853 10.112 

200 500 4.259 2.824 10.136 20.706 11.469 40.243 

200 750 27.533 12.674 63.773 

200 1000 0.928 0.372 3.226 6.544 2.991 26.236 31.750 13.277 80.281 

200 1500 7.551 3.047 36.022 
200 2000 1.048 0.375 5.064 8.112 3.074 42.209 
200 3000 1.091 0.376 5.885 
200 4000 1.113 0.377 6.345 
250 1000 1.576 0.726 5.099 
250 2000 1.926 0.737 9.778 
250 3000 2.060 0.741 12.148 
250 4000 2.130 0.743 13.540 
300 1000 2.354 1.243 6.920 
300 2000 3.121 1.276 15.162 
300 3000 3.428 1.287 19.693 
300 4000 3.593 7293 22.443 
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8.6 Correlation between Experimental Results and Proposed Semi Empirical 

Equation 

Five of the six arches tested in the laboratory fit the span to rise ratio for the optimum 

arch shape range used for the derivation of the generic equation. Their parameters are 

shown in Tables 8.8 and 8.9. The experimentally measured stiffnesses, the stiffness 

values from the proposed Equation 8.13, Table 8.7 (figures in red), and the stiffness 

calculated from elastic analysis, Table 8.1 (figures in red), are compared in Tables 8.8 

and 8.9. The experimental stiffnesses are shown in Chapter 7 but are modified here to 

make the test arch width directly comparable with a 1000mm wide arch, used for the 

semi-empirical model, which in turn is reduced to 750mm by removing the effects of the 
butt joints. The modifications are as follows: - 

" Active depth of laminate is the minimum solid depth of arch ring where laminates 

are in contact. This is less than the depth of the laminate because the laminates are 

not cut on the curve. 

" For the 2.1 in span arches settlement deflection was calculated from the average 

thrust to settlement ratio derived from the 61n span tests which used the same 
lateral restraint system. This varied from approximately 2.5 to 4.5 kN for I min of 

settlement. This modification was necessary because the settlement was not 

measured for the 2.1 in spans. 

" The geometry ratio is the proportion of vertical deflection resulting from a 

corresponding lateral settlement when the arch ring remains the same curve 
length. The spreadsheet shown in Appendix 10 is used to calculate this accurately. 

" The 'deflection zero settlement' is the vertical experimental measured settlement 
less the 'geometric deflection' where lateral settlement has taken place. This is the 

true structural settlement for comparison with the proposed equations which were 
derived from arches where no lateral settlement took place. 

" The 'K285' is the stiffness of the experimental 61n span arches which were 285mm 

wide. 'K140' is the stiffness of the experimental 2.1m span arches which were 
140mm. wide. 
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* The 'K750' is the stiffness for the equivalent 750mm wide arches which is the 

width used in the derivation of the proposed equation. 1000mm arches were 

considered with 25% of the cross section removed to account for the butt joints. 

9 'Kproposed' is the stiffness calculated from the parametric equation, Table 8.7. 

9 KQ. sl,. was calculated using the same 20kN of loading, applied as two third point 
loads, that was used in the test. The active depth of section was used to calculate 

properties. These values are taken from Table 8.1 for the 6m span arch (shown in 

red). 

* 'Vertical deflection error' is the difference between the measured experimental 
deflection and the proposed equation. 

The comparison of results, in Tables 8.8,8.9 and 8.10, show some differences which 

result in quite large percentage errors in stiffness. These differences are related to small 
deflection readings which are within acceptable experimental error. 

Table 8.8 - Stiffness comparison 2.1 rn span arches 
Experimental tests, proposed equation and elastic analysis 

2.1m Spans - Comparison of Stiffness 
Expedmental K Transverse Tensions Full Tension 

0 kN 3.71 kN 8.21 kN 12.64 kN Modified 
Arch 335 1.75 4.37 4.48 4.36 85. 
Rise 447 1.76 3.74 3.63 4.2' 95 

QSE 
Analysis K 

Arch 335 91 
Rise 447 119. 

Proposed 
quation K 
Arch 335 
Rise 447 70 

For the 6m span comparison, the values for QSE stiffnesses in Table 8.9 are taken from 

Table 8.1 (figures in red) and for the proposed equation, from Table 8.7 (figures in red). 
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The reduced stiffnesses include the effect ot'deflection due to lateral settlement and the 

semi empirical model values (proposed equation K) are calculated using Equation 8.13. 

The stiffness without settlement is the load which causes Imm of structural deflection. 

With settlement that load effectively causes that I mrn plus the deflection due to 

settlement. Therefore the reduced stiffness is the zero settlement stiffness divided by: 

I mm + settlement deflection mm 

Table 8.9 - Stiffness comparison 6m span arch 
Experimental tests, proposed equation and elastic analysis 

6m Spans - Co parison of Stiffness 
Experimental K Transverse Tensi ns Full Tension Settlement 

0 kN 7 kN 12 kN 24 kN Modified 1rnm 1 2mm 3mm 

250 0.148 0.182 0.186 0.183 1.97 

500 0.602 0.961 0.98 0.98 9.32 

1000 0.135 0.974 1.56 1.764 5.86 

OSE 
Analysis K 

250 5.076 2.3 1.52 0.9 

500 13.89 5.34 3.29 1.86 

1000 23.81 10.11 6.38 3.65 

Proposed 
Equation K 

250 
5.7 1.01 0.56 0.29 

500 
15.9 4.76 2.8 

1 
1.53 

1000 26.5 12.42 8.11 4.79 
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Table 8.10 - Stiffness comparison 20m span arch 
Experimental tests, proposed equation and elastic analysis 

20m Span - Comparison of Stiffness 
K kN/mm 

Central Load 
K kN/mm 

Quarter Point Load 

Experimental 1.5845 0.7838 

QSE Analysis 0.926 0.61 

Proposed Equation 1.022 0.748 

The largest error, between experimental results and the proposed equation, is in the Im 

rise, 6m span arch. This could have been the result of the laminates slipping until the butt 

joints made contact creating an extra 6.7mm of deflection. This has been found to happen 

when constructing full scale arches. The preload in the laboratory, to ensure this would 

not happen, was 3kN therefore it is reasonable to assume that the 20kN test load cause 

some further slip. 

The modulus of elasticity of the timber used for the experimental 6m arches was 

evaluated experimentally and is detailed in Sections 7.8 of Chapter 7. This was found to 
be 11.5kN/mm2 which is greater than the value 8.8kN/MM2, used for the parametric 

calculations and the proposed equation. 

The deflection comparisons were based on the four point loading which was used in the 
laboratory. The results are within the range of experimental error so it is reasonable to 

assume that the proposed generic equation, for the other loading regimes, will give 

acceptable results. 

A full comparison between the parametric study and the field tested arches is not possible 
because the lateral thrust and lateral deflections were not measured in all cases. However 
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correlation has been shown between deflections and elastic analysis for these arches (6m 

trial arch and 15m test arch) and excellent correlation is shown in Table 10 for the 20m 

span arch where the lateral settlement was indicated by cracks in the soil at the bearings. 

This results is particularly significant and therefore it is reasonable to assume that the 

proposed equation will hold true for field tested arches. 

8.7 Conclusions from Development of Semi Empirical Model 

The parametric study has provided a set of equations, one for each of the critical loading 

regimes for arch bridges. Correlation, within experimental error, has been demonstrated 

with laboratory tests which performed in a similar way to the field tested arches. It can 

therefore be assumed that the proposed equation will give useful design infori-nation for 

all combinations of parameters within a span to rise ratio of between five and twenty 

four. It is significant that a peak value of stiffness, and thus strength, was found to occur 

at a span to depth ratio of approximately five for all arch shapes. This will be useful in 

choosing profiles for specific arch designs. 

It is significant that the lateral settlement affects the vertical deflection but, due to the low 

modulus of elasticity of timber and the stress relief capability of SLT, settlement has little 

effect on the stress set up within the arch provided settlements are relatively small. This 

provides a considerable advantage over masonry arches where even quite small 

settlements can result in instability. This effect will eventually translate into lower cost 
foundations when the limits of allowable settlement are evaluated. 
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CHAPTER 9 

9 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK 

The construction of low cost sustainable bridges is a worthy aim. The world is entering a 

period where specialist materials are in short supply, energy costs are escalating and 

atmospheric pollution is getting out of control. In this context anything that can be done 

to help the environment is politically, socially and morally justified. Throughout the 

world, bridge construction uses a significant amount of material and much of it requires 

energy- intensive processes to make it, transport it and build with it. As population rises, 
demands on the available materials increase and therefore costs escalate. 

Timber is plentiful, carbon neutral, easy to work with and usually available near to the 

sites of bridges. Because plantation timber is now available from so many countries, the 

price will remain internationally competitive. Further, because it does not require great 
investment to establish plantations, it is possible that even developing nations can have a 

plentiful and affordable supply in the future. 

Timber, therefore, has many advantages over steel and concrete but it has gone out of 
fashion as a primary building material. Structures have become political statements which 
demand new technology and hybrid materials. And so, significant research into novel 

methods to allow it to compete is needed. This is especially difficult today because most 

of the large trees were felled many years ago and plantation timber nowadays tends to 

consist of fast growing varieties and is, therefore, of small diameter. 

Although there are significant technical, social, political and environmental reasons for 

building timber structures, more importantly, there is a market. The text of this thesis 

refers to similar practice around the developed world over the last thirty years of 
investing less on maintenance of minor roads. This neglect has taken it toll on the 
distributor and feeder networks which link rural production to the main highways. Many 

of these roads have bridges, from one hundred years ago, made of timber, particularly in 
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Australia and the USA. This backlog of maintenance promises to become a significant 

market over the coming years. 

The Forestry Commission (FC) in the UK has always had to build low cost bridges to 

keep costs down so that the plantation timber can compete in the international market. 
For that reason, the FC has more experience of low cost bridges than other Authorities in 

the UK. Timber structures are of special importance to the FC because timber is its 

product and, being a Government body, it must support the political mood and policies. 
The FC was therefore very supportive of a new innovation using timber for bridges, 

especially as the results may be appropriate for use on minor public highways. This, 

therefore, is the background to the reasons for this PhD research and why this thesis 
began with a full description of what had gone before in the FC. 

Glue lamination or LVL would have been a way forward but there arc no existing 
facilities on which to build a new industry in the UK. That form of Timber Engineering 

also requires very good quality, highly machined timber, not readily available in the UK. 

Stress lamination was therefore an obvious candidate for research. 

9.1 Main Conclusions 

The important findings of this research are reported in Sections 7.9 and 8.7. The 

following surnmarises them: - 
9 Stresses in timber arches can be predicted reasonably accurately by elastic 

analysis. 

" Simple elastic analysis cannot take account of slip and lateral tension forces. 

" Load carrying capacity was beyond predictions. 

" Timber arches are lightweight and take bending unlike masonry. 

" Timber arches have a very high strength to weight ratio. 

" Timber arches are stable even at relatively flat profiles. 

" Internal slip relieves stresses. 

" Only 1/3 of the initial prestress is required for full structural stiffness. 

" Stressing bars will lock the structure before collapse could take place. 
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e SLT arches are significantly stronger and safer than SLT flat decks. 

SLT arches transfer load through short laminate laps unlike flat decks 

Lateral settlement has a significant effect on load deformation behaviour and 

therefore on stiffness. 

" Tied arches save significantly on cost. 

" Maintenance regimes to ensure safe lateral tension are vital 

" Very flat slender arches are only restricted in their capacity by their FNF. 

" Steeper arches are stronger but there is a limit at span/rise = 5. 

" Future designs can make use of the semi empirical model. 

" Environmental credentials of the system are good. 

Collectively these findings have significantly advanced the understanding of timber stress 
lamination techniques. Arch construction of this type has not knowingly been used 
before, except by Philip De Lorme in the 16 th century, and he did not have the advantage 

of hydraulic jacks and prestressing steel. Arches now seem to be a logical extension to 

the recent work on flat slabs and opens up many possibilities for other timber structures. 

The results of this work are likely to have significant commercial value to Authorities 

who require bridges and also to timber producers with stocks of plantation softwood. 

9.2 Future Work 

The future use of stress laminated arches is most likely to be in recreation structures, 

vehicle bridges, roofs and floors for buildings, therefore future research work should be 

focused on the requirements for these uses. It will provide low cost spanning using 

compression which is one of timber's better qualities. There are many possibilities e. g. 
domes and full arch buildings. Because timber of the quality required will be available for 

between L300 and E400 per m3 for the foreseeable future, long term research should be 

justified. 

Work needs to be done on the optimum amount of settlement which will -occur and which 

can be tolerated. Pre-cambers will be built in to negate the dead load settlement. 
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The fire resistance of the timber slab needs to be investigated. It is likely that it will act 
like very large timbers and char, thus creating an insulation layer against further 

combustion. The small spaces between some laminates may negate this, so tests need to 

be carried out. This will be an important precursor to use for roof and floors for buildings. 

Successful heavy vehicle bridges will employ an arch supporting a flat stress laminated 

deck. Before this can be done successfully, some research is necessary to optimise the 
joints between the arch and the deck. If rigid steel joints are used they may induce high 

stress points and fatigue whereas, if an integrated timber jointing system is developed, the 

entire system would have similar modulus and avoid high stress points. 

Preservative treatment is not only expensive but it reduces the environmental value of 

these structures. Work needs to be done on the economics of using the most durable 

timber available e. g. Larch or Douglas Fir, without treatment. The economics would 

allow for replacement at approximately fifteen years. This may seem a short life but there 

will be no maintenance costs, very low capital costs and for small enough bridges, the 

decks can be prefabricated and changed over very quickly. Very vulnerable areas could 
be selectively treated, in situ. 

The stiffening effect of the bitumen surfacing needs to be evaluated more accuratelY. The 

thickening at the end of the bridges helps in this respect but it is mainly the stiffening 

effect of the bonded layer which helps increase FNF. 

More work is required on stressing systems for specific uses. It may be cost effective to 

use carbon rods, or similar, for buildings because these materials do not relax after time, 

as steel does. It may also be cost effective to use much lower cost threaded bar for 

recreation structures and thus avoid the requirement for stressingjacks. 

Finally, to further the understanding of the action of a stress laminated timber arch, a plan 

area of approximately Im 2 in the centre of a deck needs to be analysed in detail, to 
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provide a true inertia and modulus for the deck. This has not been done elsewhere for a 
timber arch. 

The foundations have required large quantities of concrete which significantly reduces 
the sustainability of the system. Research is required to evaluate the passive resistance 

which can be provided by soil in the horizontal direction. Foundations could then be 
designed with the use of very much smaller quantities of concrete. 
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APPENDIX I 

STRESS LAMINATED BRIDGES 

AERIAL MAST BRIDGES 

SPECIFICATION FOR SOFTWOOD TIMBER DECK MEMBERS 

................ BRIDGES FCE/ 

All timber must be sourcedfrom a sustainably managed UKforest registered under the 

Forestry Stewardship Council or with equivalent credentials. This will have to be 

proved by the supplier either with signed documentation or proof of membership. 

Species Home Grown European Larch, Corsican Pine, 

Scots Pine, Douglas Fir 

Strength Class C16, C24 to BS 5268: Pt 2 1996. Timber to be 

visually stress graded in accordance with 
parameters given below in Forestry Commission 

Stress Grading of Bridge Timbers. 

Action before Treatment Cut to size, Drill holes according to schedule. 
Kiln Dry to moisture content 12%. 

Preservative Treatment Copper Chromium Arsenic (CCA) 5.3kg/m 3 

For Deck members 
Copper Chromium Phosphate (CCP) 

For Handrail Members 

Post Treatment Drying Dry to 18% moisture content (CCA). 

Allow 2 weeks for CCA to chemically lock. 

Seal end grain of deck timbers. 
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APPENDIX 2 

FORESTRY COMMISSION BRIDGES 

STRESS GRADING OF SOFTWOOD TIMBERS 

The following specification will be used to identify suitable pieces of home grown 

softwood timber which have not been machine graded or visually stress graded to BS 

4978. This identification technique is ultimately a short cut visual grading which is 

relevant for timbers used for these particular bridge decks and specified upto C24. 

Pennitted Timber Species Snecies 

Pine, Larch, Douglas Fir 

Rate of Growth Average width of annual rings no greater than 6mm for C24 and up 

to I Omm for C 16 

Fissures (Resin pockets and bark pockets) 
Codes permit up to 1/2way through the thickness anywhere and all 
the way through for a restricted length. This specification takes a 
conservative approach and allows only up to 25mm deep splits for 

a 500mm length. 

Slove of Grain Not steeper than a gradient of I in 6. 

Growth Ring Distribution No fully boxed heart pennitted 

Wane % of width for full length of a timber is acceptable 

or 1/3 of the width for a distance of 300mm. 

Knots Knot area at any cross section not greater than 115 of total 

cross sectional area. 
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Distortion Bow - 
Spring - 
Twist - 
Cup - 

Maximum I Omm over 2m 

Maximum 5mrn over 2m 

Maximum 8mm over 2m 

Maximum 6mm 

[ends up] 
[sides out] 
[comers up] 
[bow across section] 

Worm Holes 

Funizal Decay 

Sapstain 

There shall be no wasp holes but pin worm holes are permitted 
in small numbers which will not affect the wood strength. 

Reject any piece with any decay. 

This is not a defect. 

Abnormal Defects Abnormal special defects eg compression wood, which would 
weaken the plank below its serviceability are grounds for rejection. 
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APPENDIX 3 

Determination of Mechanical Properties of Timbers for Laboratory Bridges 

Determination of density: 

Density of the test pieces was deten-nined by cutting three sections from the 

samples used for static bending. In order to provide a density value for the wood used in 

all tests an average was taken of these three samples. 

Determination of moisture content 
Moisture content was deten-nined on the same samples that were used to measure 

density. Mass was measured after the test, the samples were then placed in an oven 

>100'C until such time as they were deemed to be of constant mass. Moisture content 

was then calculated as (wet mass - dry mass)/dry mass x 100. 

Static Bending 

Three samples were prepared to the dimensions 20x2Ox380mm. Dimensions were 

checked prior to testing with Mituyoto Callipers. The test machine was a Zwick Rowell 

with IOOkN load cell set up with three transducers as shown in figure one and two. The 

bending speed was 0.5mm per second. Transducers were removed after a load of IOOON 

in order to prevent damage to the equipment. Modulus of Elasticity was calculated 

according to BS EN 408. 

I OAD 

-+3 k )III ni 

Set up for static bending test 
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F# 
. ýWm 

Tension Test 

Three samples were prepared in an 'I' shape. The test machine was a Schenk Trebel with 

a IOOkN load cell, rate of tension was 0.5mm per minute, speeded up to 3mm per minute. 

BS EN 408 states that a tension speed of no more than 0.15mm per minute should be 

used, however due to constraints on time this was not possible. Modulus of elasticity was 

determined according to BS EN 408: 

C 

I shaped samples (left) for tension testing, and sample in rio, (ri(ght) P, P9 
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Compression Test 

3 samples were prepared to the dimensions 20x2Ox 120mm with the grain running 

perpendicular (0') to the test direction, 3 samples were prepared to the same dimensions 

with the grain running at 450 to the test direction and finally prepared were 3 samples to 

those dimensions with the grain running parallel to the direction of compression (90'). 

The test machine was a Schenk Trebel with a lOOkN load cell, rate of compression was 

3mm per minute for the 0' samples, slowed down to I mm per minute for the 45' and 90' 

samples. 

- 

Samples cut with var. ying grain orientation for 
compression testim-, 

I w,. 
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Calculation in accordance with BS 08 
Modulus of Elasticity in Bending: 

Ein =a12 
(F2 - FI) 

161 (w2-wd 

E. = Elastic Modulus 
a= distance between loading position and the nearest support mm 
F2-Fj = Increment of load in straight line portion of graph in N 
W2 - W1 = Increment of deformation in mm corresponding to increment of load 

= Second moment of area in mm. to the fourth power 
= Gauge Length in mm for determination of Modulus of Elasticity 

(distance between transducers next to test loads) 

The load deflection curves were plotted and the gradient of the plot is : 

(F2 - F, ) /(w2 - wl) 

An example calculation for a sample from the 6m span bridges is shown: 

E. = (125xl8O'/16xl3697)x636 

E. = 12068 N/mm 

Results 

The average density = 547kg/m 3 

The average moisture content = 10.8% 

The average modulus of elasticity 6m span = 12642 N/mm2 
2.1 rn span = 4590N/mm2 

assumed 500kg/m 3 

assumed < 18% 

assumed 880ON/mm 2 
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APPENDIX4 

Torque wrench calibration for mild steel threaded bar 

To induce a specific tension in the threaded tension rod a torque wrench was used to 

tightening up the nuts. By carefully using the wrench it was possible to determine the 

specific tension in the bars in the bridge structure. To find the torque which created the 

required tension, the torque wrench had to be calibrated. 

This was done by means of a steel frame, a load cell and a short piece of the threaded 

tension rod. The load cell was fixed inside at one end of the frame. A short piece of the 

tension rod was fixed to the load cell at one end while the other passed through a hole in 

the frame to the outside. There the stressing bar was fixed with a washer and a nut. 

1. jj g 

"1' di 

Torque wrench calibration setup 
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Turning the nut by means of the torque wrench tensioned the threaded rod. This tension 

was measured by the load cell. The torque wrench could be set to a specific torque that 

was indicated with a snap when reached. The tension, that equated to the torque was 

measured by the load cell and recorded on computer. Each torque was measured seven 

times in the range from 35 to 55 foot. This was necessary to average out the errors 

resulting from strain on the threads with increasing torque. At the end of the calibration it 

was impossible to remove the nut from the rod because the threads had deformed too 

much. To minimise this affect the threads were then treated with a large amount of WD40 

to preserve them by reducing the friction. 

The upper limit for the tension was found by torquing against a short a piece of timber 

which had been used for the bridge constructed. This test gave a maximum torque of 

approximately 65 foot pounds. At this tension the timber suffered bearing failure under 

the washer. The maximum torque applied to the test bridges was approximately 44 foot 

pounds. At this torque the washer bearing failure began. 

Torque wrench calibration 

45 

40 
Z 35 

30 

25 

20 
15 

I- lo 
5 

0 -- -1 
05 10 15 20 25 30 35 40 45 50 55 60 65 

Set Torque on torquewrench in [ft. lb. ] 

y= 582.84x 
R2=0.9399 

Measured 
Tension 

Linear 
(Measured 
Tension) 
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APPENDIX 5 

Dywidag and Gewi bar Characteristics 

Besides the threaded bar used in the laboratory, two types of stressing bar were used in 

the project - standard pre-stressing steel and galvanised stressing steel, by 'GEWP from 

Germany. 

Dywidag pre-stressing steel is easily available and is generally used in the construction 
industry for holding temporary shutters for concrete. They have a very high tensile stress 

capacity and a very high pitch of thread which makes them ideal where strength and 
holding capacity is required. They are no good for tightening up in the way a bolt is used 
because of the type of thread. However this type of thread is very much stronger and less 

easily damaged. 

These stressing bars are made by deforming hot rolled steel and, if galvanised, the heat in 

the process causes stress loss. This is why the GEWI can only take 500/60ON/mm, 2 where 

standard pre-stressing steel takes 900/11 OON/mm 2. The pre-stressing steel can be 

sheradised without losing stress but this treatment only gives a five year life where 

galvanising will give a fifty year life in a protected rural environment. These bars are 

mostly used as ground anchors and are commonly sleeved in grease. 

These bars are tensioned using a hydraulic jack to pull the bar and the nut is tightened up 

against the structure face before releasing the jack. Great care is necessary as tensions up 
to 20 tonnes will be used. It is always possible for a thread to strip which could cause 

some equipment to eject with great force. For safety no one should stand behind the jack 

during operations and all fittings must be load rated by the manufacturer. 

After trying a number of stressing set ups the galvanised GEWI bar is preferred because it 

is simple to use and is galvanised. The next bridges will try stainless steel to compare 

costs, availability and effectiveness. A typical set of GEWI or pre-stressing bars, nuts and 

washers for a 20m bridge will cost between E1,500 and E2,000. 

275 



The Development of Transversely Stress- Laminated Timber Arch Bridges 

Prestressing Steel Threadbars 

Based on a continuously threaded bar, the Dywidag System of Prestressing Steel Threadbars 
is exceptionally versatile and well proven worldwide. 

The threadbars may be cut to finished length at the factory or on site and anchorages, nuts or 
couplers fitted immediately without frustration or delay. 

Being coarse and robust, the thread is ideally suited for use in the construction industry- 

Technical Dat a for Prestressing Steel 
Bar Diameter Steel Grade Ultimate Yield 70% Ultimate Weight Cross Section Pitch 

Yield/UttimSto Strength Strength 
mm N/MM2 M M M kg/m mrrv mm 

'15 900/1100 195 159 136 1.44 177 10 

*20 900/1100 345 283 241 2.56 314 10 

* 26.5 900/1030 568 496 398 4.48 551 13 

26.5 1080/1230 678 595 474 4.48 551 13 

* 32 900/1 D30 828 724 579 6.53 804 16 

32 1080/1230 989 868 692 6.53 804 16 

* 36 900/1030 1049 916 734 8.27 1018 18 

'36 1080/1230 1252 1099 876 8.27 1018 18 

Available from Stock Modulus of Elasticity. E- 205,000 M/mm' 5% 

Anchor Plates 
Solid rtat Recessed Anchor Plate and Domed Nat 

When anchoring prestressing steels the Dywidag nut is usually domed 
shaped. This nut locates into a cone shaped recess in the anchor plate 
and can tolerate a nominal deviation from the Normal. The flat anchor 
plate is designed for surface mounting on either concrete or steel. 
Variations on plate size are possible from the standard table to suit 
specific applications. Grouting holes may be incorporated to suit. 

Bell Anchorage with Domed Nut 

The bursting forces immediately behind this anchorage are contained 
by a steel cylinder. This causes a triaxial stress condition resulting in a 
uniform load transfer. Incorporation at design stage is essential as bell 
anchorages must be cast in situ. 

Articulating Anchor Plate 

This anchorage comprises a cast steel base plate and a malleable cast 
iron hemisphere. The hemisphere is designed to accept all preferred 
sizes of domed anchor nuts. The hemisphere perrruts articulation of up to 
30* in one direction. Applications include tie bars through structures or 
piling where tendon orientation cannot be predicted. 
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GEWI" Steel High Yield Threadbar System 
GEWI* Steel High Yield Threadbar is a high tensile alloy steel bar which features a coarse left-hand thread over its full length. The 

system is proven worldwide and offers versatility in a range of applications. 

Manufactured in accordance with the German Certificate of Approval (Deutsches Institut fOr Bautechnik), the system also offers 
general conformance with BS 4449 : 1997 (Carbon Steel Bars for Prestressing of Concrete). 

The minimum specified characteristic yield strength is 500 N/mm2 for bar diameters 16 - 50mm and 555 NJmM2 for the 63.5mm 
diameter bar. 16 - 50mm bars can be welded using appropriate industry practices relative to the carbon content of the steel. 
Welding of the higher grade 63.5mm diameter bar is not recommended. 

Key features of the system are: 

" Fully Threaded Bar - can be cut and coupled at any point. 
" Robust Threadform - ideal for construction site use. 
" Coarse Pitch Threadform with two flats - ensures thread is self cleaning. 
" Fully Galvanized Systems - galvanized threadbars and accessories also available from stock. 

Technical Data for GEWI" Steel High Yield Threadbar 
Nominal 
Diameter 

Steel 
Grade 

Ultimate 
Strength 

rpu 

0.1% (a) 
Proof 
Stress 

70% (b) 
Ultimate 
Strength 

50% 
Ultimate 
Strength 

Cross 
Sectional 

Area 

Diameter 
Over 

Threads 

Thread 
Pitch 

Bar 
Weight 

mm NImm2 kN kN kN M MM2 mm mm kg/m 
16 500/600 121 100 85 61 201 19 8 1.58 
20 500/600 188 

___1_57_ 
132 94 314 23 10 2.47 

25 500/600 295 1 245 206 147 491 29 12.5 1 3.85 
28 500/600 370 308 259 185 616 32 14 4.83 
32 500/600 482 402 337 241 804 36 16 6.31 
40 gOO/600 756 630 529 378 

_1260 
45 20 9.87 

50 --ý00/6()O 1176 980 823 588 1960 56 26 15.40 
63.5 555/700 2217 1758 1552 1108 3167 69 21 24.80 

(a) 0.1% Proof Stress also referred to, in general terms, as Yield Strength - Ty. 
(b) For geotechnical applications 75% fpu may be used for prwf testing. 

Modulus of Elasticity: E= 205,000 N/mM2 +/- 5%. 

Stock Lengths: All bar diameters 12.0m. Tolerances +/- 100mm. Special lengths up to 18. Om are available to order. 
All bar diameters can be cut to length to suit customer requirements or supplied bent to BS 8666 : 2000. 

Couplers for GEWl" Steel High Yield Threadbars 
Couplers enable GEWI' Steel Threadbars to be coupled or extended, reliably and efficiently. It is important that the two threadbars 
meet centrally within the coupler, and remain so during installation, to ensure correct load transfer. Coupler strength is 92% 1pu of the 
bar in accordance with the German Certificate of Approval. 

With all types of coupler, precautions should be taken to ensure that the coupler remains centrally located during handling and 
installation. This can be achieved through the use of grub screws, a centre pin or lock nuts. 

The choice of coupler type depends on the application. The static coupler is used either in constant tension or a combination of 
tension and compression loading, with the longer dynamic coupler used when vibration and cyclical load reversals are anticipated. 

standard coupling centre pin - optional 

paint - visual indicator grub screws - optional 

Lock nuts should be used at each end of the coupler when the threadbar is used in reinforced concrete applications designed in 
accordance with BS 8110. These lock nuts should be torqued to a predetermined value to prevent cracking of the structural concrete 
at the coupler when the joint comes under load. See table on Page 3 for torque values. 

M? GEWI' St" Th, *., dbw 
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APPENDIX 6 

Bridges in Australia, USA and Scandinavia 

Australia 

In 2003 the Author visited the University of Technology in Sydney to witness the work 

carried out by Professor Crews [48] on Mechanical Stress Lamination. Crews had taken 

up the study after a visit by Ritter, M. A. [40] who had developed the subject in the USA. 

Crews advanced the developments of the flat slab, flat cellular decks by carrying out 

rigorous full scale tests which had not been done before. He carried out assimilation work 

on Australasian timber species for creep and loss of pre-stress. 

The Crews research was carried out with funding from highway authorities with a view to 

constructing bridges on the main highways. Over a ten year period conclusive research 

results lead to the construction of a number of vehicle bridges which the Author visited 

with Professor Crews. The techniques for slab and cellular SLT construction are now 

well established in Australia where there is a very large market for these bridges. 

Australia has a good, dry, climate for timber bridge construction and there are a large 

number of roads with minimal traffic. These are perfect condition for SLT whereas, in the 
UK, with more severe conditions, there will be a demand for new details and designs to 

avoid premature failure. 

The experience highlighted the possibilities for the UK. In Australia SLT decks are used 

on roads with speed limits of 70mph and the Author was able to witness the effects of fast 

moving II tonne axle vehicles crossing these bridges at high speed. The detail of the 
designs for holding down at the bearings, the topping, the maintenance schedules etc. 

were all of great interest and relevance to future UK practice. The UK is in need of many 

rural bridge replacements which could be achieved at low cost using SLT. 
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United States of America 

In the USA from 1992 to 2002 the Author gave three papers at the American Society of 

Agricultural Engineers which houses the Forestry Engineering specialism. Contact was 

made with Professor Taylor [75] who has built many glue and stress laminated bridges in 

forest situations. It was this meeting which stimulated the first transfer of knowledge into 

the UK. This culminated in Prof. Taylor giving a paper on the subject in Edinburgh at an 

International conference, organised by the Author, in 1999. This stimulated interest and 

resulted in some funding. 

The most important lesson to be learned from the USA is the durability of these 

structures. The modem construction of SLT has been used there for more than twenty 
five years. Prof. Taylor has carried out checks on long term loss of Prestress which will 
be critical in the acceptance of this type of bridge for general use. The form of 

construction has been supported by a national initiative with funding and many States 

have responded by building SLT bridges. This level of confidence will be important in 

convincing UK Authorities to adopt SLT bridges. 

Timber bridges were the norm for construction throughout the USA one hundred years 

ago and surprisingly some are still in very good condition today. The Author toured some 

of these covered bridges in Iowa in Madison County to find out why these bridges had 

lasted so long. The most common argument against timber bridges is their durability and 
information on very old surviving bridges is very useful. 

Scandinavia 

The Author led a DTI International Technology Mission to Sweden and Norway in 2000 

to study the use of gravel roads for public roads in the UK and timber bridges for public 

roads. A previous contact from a conference in 1990, Otto Kleppe, from the Norwegian 

Public Roads Administration and past chairman of the Nordic Timber Council, escorted 

the Mission in Norway and introduced Erik Aasheim, Norwegian Institute of Wood 

Technology to the group. Between them they have lead a renaissance in timber bridge 

construction in Scandinavia. This has included a research programme in SLT decks and 
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resulted in eight hundred new bridges in the region. The Mission group were shown some 

examples of the most recent construction which were extremely relevant to UK practice 
because the climate is more similar than in Australia. 

In 1990, as part of a government initiative, Otto Klcppc toured the world on a fact finding 

mission to learn about good timber bridge construction. This lead to contact with Ritter, 

M. A. and stress lamination and its introduction to Scandinavia. It is used successfully in 

forest situation as well as on public roads where it is used to display the natural home 

grown material and build confidence in timber construction generally. Otto Klcppe took 
back one very important lesson from his tour. It was that the timber bridges which had 

lasted one hundred years had all been kept dry. They were the covered bridges in the 
USA and the Orient where the bridges had roofs for shedding snow or for decoration. 

However this is not possible with modem bridges because of the headroom required for 

large vehicles. He has therefore covered main members with metal copings and the 

timber is always treated with the most effective preservative allowed. He gives his 

bridges a one hundred year life which is very encouraging for timber bridge construction. 

Pictures of Timber Bridge Construction from the Author's Tours. 

The following pictures show a collection of bridges with a caption to explain what the 

picture is illustrating. The collection is limited to aspects which affect this research either 
directly as stress lamination or as examples of relevant timber bridge construction. 
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AUS - High speed road over SLT bridge on a bend with centrifugal loads 

-. 4 

;. '., 1'i -- 

IL 

4, AF 

V41 
%, t- F 

Ilk. If Pý 

N 

Irk 
-A 

AUS - Extended bars for restressing - Continuous channel to spread concentrated load 
Sufficient resistance can be achieved to support a crash barrier 
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AUS - Cracks at interface between timber deck and abutment 
resulting frorn deflection and no designed joint 
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AUS - Typical rural road where SLT bridges are best suited 
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AUS - Metal plates to keep timber dry and tarred stressing bars to prevent corrosion 
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USA - Typical "T" beam deck 

USA - Restressing of SLT deck 
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USA - 100 year old covered bridge in Madison County 
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USA - Cracks in asphalt at joints in deck and some slip of laminates 
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Sweden - Forest Road over a stress laminated timber flat deck 

Norway - Stress laminated Laminated Vcnecr Lumber bridge on trunk road 
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Nor,. vay - Glue laminated timber arch supporting SLT deck on trunk road 

Norway - SLI'deck supported by steel cradle beams 
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APPENDIX 7 

Case study of arch bridge for forwarders 

Throughout the period of research a number of opportunities arose to build SLT bridges 

on a semi trial basis. That is, an actual bridge is required on the Forestry Commission 

Estate and because there are no Authorities to satisfy innovative structures can be trialled 

as long as they do not fail catastrophically. When a situation arises for a temporary bridge 
it is especially useful as even more inventive ideas can be tried. 

A year ago in Spring 2005, a temporary forwarder bridge was required in Wales. These 

are vehicles, generally having 4 axles, for carrying timber from the harvesting site to a 
place for pick up by a road going lorry. They weigh up to 36 tonnes; when loaded. 

Forwarder bridges usually span short distances as forests in the UK tend to be in the 

uplands near the source of rivers. It is also useful if bridges are portable which means 
weight is important. Many types of portable or very temporary structures have been tried 

over the years but stress lamination has not been used in the UK. The particular remit for 

this bridge was to produce a forwarder bridge which could be converted to two 
footbridges after the working year of the harvesting site. 

It was decided to build two 9m span arches each 1500mm wide. The arch was designed 
for the maximum axle load at the quarter point of the span and an allowance was made 
for impact from these very large off road vehicles which are very like construction site 
dump trucks. The arch was 175mm thick and the profile was based on the I to 12 ratio 
which has proved acceptable for other footbridges. The two bridges were laid side by 

side, linked with a steel bracket at mid span and covered in brash to avoid damage and to 

reduce the steep slope at the start of the arch. The year of harvesting is almost complete 

and the project has been a major success. 

The springings were tied with steel ropes although the design did not require them. It was 
decided to provide the extra safety because the aesthetics were not important and the 
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impact load is difficult to estimate. The perfon-nance of the bridge was monitored during 

use and it was estimated that it deflected I mm under full load. The following pictures 

show the bridge in use, before and after harvesting :- 

36 tonne harvester crossing on top of a brash mat 

Before 

�1 

mj 

liu 
WI 

iK 
:, 

"t ý, 

After 

292 



The Development of Transversely Stress-Laminated Timber Arch Bridges 

APPENDIX 8- LOADS FOR FOOTBRIDGES IN THE COUNTRYSIDE 

MEMBER LOAD TYPE LOADING REMARKS 

UDL POINT LOAD Use BS 5400 

MAIN BEAMS Pedestrian - for Urban or 
Normal 2.3kN/m2 Wide bridges 
Crowd 3.2kNlm2 Use BS 5400 

Horse Cattle 3.2kN/m2 
Sheep 

Quad Bikes lOkN -20kN 

SHORTSPAN Pedestrian - 1.62kN on 75mm. 
DECK Normal 
BOARDS Crowd square 

Sheep 

Horses & Rider 7kN on patch 
300mm square 

Cattle 
6.12kN on patch 
120mm square 

HORIZONTAL Pedestrians - 0.74kN/m 
HANDRAILS Normal I m. above deck 

Crowd 1.4kN/m BS 5400 
Im above deck normal 

Horse & Rider 1 3kN/m Handrail Cattle . 
1.25m above deck heights are 

not the same 
Cycles 1.4kN/m. as height of 

I rn above deck load 

application 
> 3m drop below 1.4kN/m 
bridge deck Im above deck 

ALL MEMBERS SNOW 0.4kN/m2 

WIND 1.4kN/m2 loaded Consult 
0.7kN/m2 unloaded engineer for 

long spans 
COLLISION 5OkN @ 3m. high 
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