A Framework to Detect Novel Computer
Viruses via System Calls

A. A. Abimbola, J. M. Munoz and W. J. Buchanan
School of Computing, Napier University, EH10 5DT, Scotland, UK
a.abimbola@napier.ac.uk

Abstract- This paper describes a framework for
detecting self-propagating email viruses based on
deterministic system calls derived from associated email
client’s dynamic link libraries (DLLs). Our research
approach is based on the principle that a key objective
of an email virus attack is to eventually overwhelm a
mail server and clients with large volume of email
traffic. A virus achieves this by propagating to other
email addresses in the infected email client inbox,
alongside activating its payload. In doing this, the virus
executes certain malicious processes, resulting in the
creation of abnormal system calls via related DLLs. Our
research effort advances Stephen Forrester earlier
contribution that proved normal and abnormal system
calls from a email client in a Unix platform could be
differentiated, by describing a framework on how to
monitor and detect abnormal system calls in real-time
from an email application.

1. INTRODUCTION

An email computer virus, or virus, is a piece of
code with two structural subroutines [1]. One with the
capability to reproduce and the other to transfer
instances to other email clients via email addresses
found in the initially infected email client. In addition,
there is a payload or malicious act that may await a
set of predetermined circumstances before being
activated or triggered. Viruses remain a significant
threat to modern networked computer systems.
Despite the best efforts of those who developed anti-
virus systems, new viruses, such as w32/sober.p@mm
(McAfee adversary-www.mcafee.com) and others
that implement hybrid exploitation techniques [2] are
not dealt with by present anti-virus systems. In
addition, the rate at which a virus can spread has risen
dramatically with the increase in connectivity and
also aided by the ease of accessing virus production
toolkits [3].

Traditional anti-virus techniques typically focus on
detecting static signatures of viruses. Whilst these
techniques are effective, they do not address the
dynamic nature of a virus infection within the context

ISBN: 1-9025-6013-9 © 2006 PGNet

of an underlying system. For instance, polymorphic
viruses [4] alter their instruction codes either by
substitution or encryption methods to replicate a new
viral instance.

There has been an increase in research efforts
targeted towards using viruses as direct weapons of
information warfare [5]. A key drawback to these
research efforts is that viruses have mainly wandering
properties. As a result, computer viruses do not
discriminate between friend or foe in executing their
payload. This non-discriminatory cruise-ability,
makes viruses more suited as a terrorist weapon [6].
Our earlier research efforts [7], introduced a novel
subroutine into a virus, enabling it to propagate from
one network terrain to another, seeking a specific
intended target. As a result, a discriminatory cruise-
ability was achieved and enhanced our experimental
virus for direct information warfare [7]. In another
article [8], we proposed an approach to curbing
cruising viruses and viruses as a whole using system
call wrappers, while in the article “viral-net system
via autonomous agent technology” we described an
architecture using autonomous agents for similar
reasons [8].

In this paper, we investigate further the design of
a framework that employs the creation of a system
call wrapper to isolate or confine the activities of an
email client to innocuous trends only. Our research
approach involves observing and logging system calls
created when an email client executes in real-time
malicious processes. These logged system calls are
then compared to current system calls and any
deviation could be perceived as abnormal.

11. BACKGROUND AND MOTIVATION

Viruses are programs that can “infect” other
programs by modifying them to include a possible
evolved version of it. With this infection property a
virus can spread, from program —to program, host —to
host and network —to network, corrupting the integrity
of information as it spreads [7]. Given the widespread

use of file sharing on the Internet, the threat of a virus
causing wide integrity corruption is significant [9].
Virus propagation can be divided into two phases,
infection and payload activation. Some issues related
to the infection phase are outlined below:

. Viruses can act as carriers for other information,
and thus can be used to cause arbitrary effects
[10]. They can carry other attacks along with
them, and thus bypassing many of the protection
mechanism that would otherwise be in place
against the embedded attacks. Hence a virus can
be used to introduce covert channel, modifying
operation controls, or do almost any other
damage [11],

e Infection may be performed on any information
that is interpretational and may infect any other
interpretable information including files-
spreadsheet, database, compilation files, load
libraries, macros and others.

Possible threats posed by malicious payload
activation are data damage and harvesting, hardware
damage and espionage as described in [12].

There have been several defenses implemented
against viruses using systems such as pattern
matching programs. These programs detect known
attack patterns, and they are quite successful at this,
but they present some problems such as:

e Firstly, pattern-matching technique only works
against known attack patterns, and thus only
detect viruses we already know about, or fail to
detect evolving viruses [13],

e Secondly, we can detect larger classes of
variations by having less accurate patterns
(signatures), but this also increases the
likelihood of false positives.

Other viral defenses implemented that exist in the
research community include: - comparing operating
system current parameters [13], proper protection
state and real-time virus direction system using
iNetmon Engine [14] just to name a few.

Recent advances in computer virus research have
shown that viruses are able to target a specific host
[7]. Thus, they propagate from host —to host, and only
execute their payload at the target host. This type of
viruses are known as cruising viruses [7] and are
difficult to obtain intrusive signatures for, because
they are practically invisible as they propagate and
only execute their payload at the target host. In
thwarting cruising viruses, a Viral-Net System was

proposed in [8]. In broad terms, Viral-Net
architecture consists of a detecting agent that
discovers previously unknown viruses via system
calls and a central analysis agent that automatically
derives intrusive signatures and removal procedures
for captured viruses. In this paper, we describe a
framework on how the detecting agent highlighted
above derives system calls for virus detection.

111. Related Work

M Rhattacharya et al. developed the Malicious
Email Tracking (MET) system to track the flow of
malicious email such as self-replicating viruses
through a network [15]. The novelty of their research
was that sampling the entire email track exchanged
between servers, in a wide area network, the tracking
of the flow of malicious email traffic was not
required. Nevertheless, its techniques for determining
malicious email, such as the use of MDS5 for
identification of the propagation of the same virus,
can be defected by polymorphic viruses.

M.Schultz et al.[16] attempt to use a data mining
approach to detect malicious executables embedded
within emails. Their attempt focuses on short
sequences of machine instruction as a means to detect
malicious executables. To determine if an attachment
contains malicious code, a Naive Bayes classifier was
trained on a set of malicious and benign executables
and then used as a determinant. A demerit of this
approach is the assumption that there are similarities
among the binary code of malicious executables.
Whilst this may be true for current viruses, stealthy
viruses may prove otherwise [17].

A complementary research approach to MET was
introduced by S.Stolfo et al. [18], coined Email
Mining Toolkit (EMT) and uses data mining to
synthesize the behavior profile of users that is used by
MET to detect malicious email. EMT incorporates
modelling of normal email users behavior based on
several categories, including patterns and frequency
of correspondence, to detect malicious activities. As a
result of this methodology, MET alerts at slight
changes in communication pattern between email
correspondences, which may lead to high false
positive rate of attacks.

Static analysis techniques that verify program for
compliance with security properties have also been
proposed for the detection of malicious executables.
Biship and Dilger showed how file access race
conditions can be detected dynamically [19]. Tesauro
et al. [20] used neural network to detect boot sector
viruses, while Lo et al. proposed to use “tell-tale

signs” and *“ program slicing” for detecting malicious
code [21]. LaBrea, an intrusion prevention tool, is
able to trap known intruders by delaying their
communication attempt [22]. The virus throttles
research efforts carried out by Williamson et al. [23]
who utilized the temporal locality found in normal
email traffic and were able to slow down and identify
massive mailing viruses as they made massive
mailing connection attempts. Their success in both
intrusion prevention and tolerance confirms the
effectiveness of behavior modification based
methods. These approaches depend on knowing, or
having a prior sample of, an email virus for analysis
before infection takes place. They also rely on the
massive email traffic generated by an email virus
during propagation. A cruising virus will prove
difficult to detect wusing the above research
approaches, since it is elusive and only propagates to
selective addresses in the infected email client, as a
result generating a low email traffic.

1V. An Overview of Our Virus Detection Framework

In this section, we will define the various
components of our research framework. Our
framework consist of the following stages: determine
related application system calls, and a training period
to create a malicious system call expert database
system. These two stages are discussed in detail
below.

To determine system call messages created by any
application, we need to first locate the DLLs
associated by that application. A possible approach in
determining DLLs wused by Microsoft based
applications is to use Microsoft’s Portable Executable
(PE) [24] file format, see Figure 1 for PE structure.
Microsoft introduced PE file format for backward
compatibility between its various versions of
operating system.

MS DOS Headers (MZ) and

PE signature (PE)

Program Code (Text)

Image Onptional Headers

Initialised Data (Data)

Export Table (edata) P>
Import Table (idata)

Exported DLLs

Debug Svmbols

Fig.1. Portable Executable File Format Structure

A typical PE file consists of a list of export
functions or static DLLs that are called by the PE
during operations. These DLLs functions are within
the win32 API architecture and produce system call
messages.

They exist in the Internet downloadable programs,
that can extract the list of export functions or static
DLLs from any Microsoft based application [25].
Another approach would be to lookup Microsoft
DLLHelp database [26], where a list of all associated
DLL to any Microsoft based application can be
found.

Determine Related Application System Calls- To
monitor and log system call messages made by
applications via associated DLLs, we need to inject a
series of bogus DLLs with the same name as the
Microsoft’s supplied associated application DLLs.
There are various techniques on how to inject DLLs
[27], like system-wide hook technique, but we will
focus on the most used technique, Registry
modification. Microsoft’s registry provides a registry
key where a DLL path that would be loaded with all
Microsoft based applications can be inserted. The
actual loading occurs when user32.dll initialises and
inputs the DLL path from registry, then calls
loadlibrary() from its DLLMain code to load the
related DLL from memory. The negative side effect
to this technique is that the operating system needs to
reboot before any changes can be effective. Also, the
overhead induced by loading the injected DLL into
every process of all Microsoft based applications,
instead of just the application being monitored for
intrusion, is high [24].

Training Phase Period- The training phase period, in
intrusion detection, refers to the exposure of an
intrusion detection design (IDD) to a series of
malicious operations it is expected to detect. This is
usually carried out after a risk assessment of the
training phase period has taken place in a controlled
environment. It is a period that enables the detection
of malicious system call messages generated from a
Microsoft supplied DLL owing to executing known
and unknown (cruising) viruses. The reader is
encouraged to use the Figure 2 to aid their
understanding of the context in this section.

In order to fully appreciate our training phase
period, we need to, first, define certain unique trends
of a viral system call message generated from
malicious email attachment. When a user receives a
viral email attachment, executing this malicious
attachment may take place with or without the user

clicking it. As a result of the attachment executing,
the user’s contact folders are likely searched and a
series of listed address details are added to a
new/forwarded message created by the virus that
includes the malicious attachment before they are
dispatched.

Harmful email
operations
Used to generate
malicious system calls
for intrusion detection
expert system database

(IDESD).

A 4

Innocuous email
operations
Used to generate
innocuous system calls
for comparison with

malicious system calls
stored in IDFSN.

A 4

False positive
measurement
Subject our framework to
new malicious system
calls to test IDESD for
false positives and fine-
tune intrusive

signatures.

Fig.2. Operations of Our Training Period

In addition, the malicious attachment may execute

a payload. The associated malicious system call

messages that are generated, by executing a viral

email attachment, reflect these minimal to none user
interaction during their life span of a viral activity.

For example the user does not carry out the following

operations:

e click the forward/new bottom or use hot keys,

e attach dispatched sender address details to the
“To” input-box either via the keyboard or
contact folder,

e click the send button or use related hot keys.

This trend can be used as a means of detecting known
and unknown viral email attachment.

The first phase of our training period is to subject our
IDD to viral email attachment and then execute these

attachments. While doing this, we log all malicious
system call messages that are generated via our bogus
injected DLLs. The duration of this initial phase
usually depends on the number of viral email
attachments. We recommend as many viral email
attachments be used as possible, to provide as large
as possible malicious system call message to train
with. Also no other application should be running
during this phase apart from the ones being used for
the experiment, to avoid unwanted system call
messages being generated.

The second phase of the training period involves
performing a series of normal operations on
Microsoft email client; these operations should
include innocuous daily activities. The system call
messages generated during this period are logged and
compared with those of the first phase. In comparing,
we seek only system call messages that are unique to
the first phase of the training period, when viral email
attachment are executed and not to the second phase
when innocuous email client operations were carried
out. These unique viral generated system call
messages should then be stored in an Intrusion
Detection Expert System Database (IDESD).

A third and final phase of our training period will
be to subject the IDESD to a new fresh operation of
normal Microsoft email client activities to measure its
false positive rate of attacks. We recommend the
reader adhere to DARPA 1999 suggestion of 10 false
positives for every 100 transactions [28]. If an
acceptable false positive rate is reached then the
IDESD is ready to be installed online otherwise any
of the phases could be repeated to fine tune the
IDESD.

V. Conclusion

The negative effects of computer viruses have
been a thorn to the research community working on
intrusion detection for numerous years. Their elusive
nature has bemused intrusion detection experts; these
elusive techniques include: disabling an anti-viral
software in the target host before activating a
payload; monitoring and intercepting any interrupt
request call made to the memory address it resides in;
encrypting itself to prevent positive pattern matching,
amongst others. As an attempt to thwart the negative
effects of computer viruses, intrusion detection
experts have emerged with several research
approaches [12] that mainly depend on pattern
matching methodology.

We follow through from our two earlier
publications [7,8]. Where in [7] we describe a

cruising virus that only execute its malicious payload
at a target host. And in [8], design a Viral-Net System
that discovers previously unknown viruses via
detecting agent and a central analysis agent.

In this paper, we underpin our earlier two
publications by designing a framework that tackles
how a detecting agent will isolate possible email viral
samples. Our design framework consist of two
components:- locating Microsoft email client
associated DLLs and isolating malicious system call
messages that these DLLs generated. We described
the first component can be achieved by using
Microsoft Portable Executable file format that
exports static DLL called by any Microsoft based
application. While for the second component, we
introduce a training phase period that exposes our
framework to malicious and innocuous email
operations to isolate malicious system call messages
only.

We conclude this paper by suggesting an
alternative approach like system calls to detecting
computer viruses, other than pattern matching. This
approach in not vulnerable to cruising viruses and
further research

References

[1] F. Cohen, “Computer Viruses’, PhD
Dissertation, University of Southern California,
ASP Press (PO Box 81270, Pittsburgh, PA
15217 USA), 1986.

[2] “Response Strategies for Hybrid Threats”,
www.Itsecurity.com, 2005.

[3] “Building Anna Kournikova: An Analysis of the
VBSWG Worm Kit”, http/www.online.
securityfcus .com /infocus /1287, 2005.

[4] Harley et al (2001), “Viruses Revealed”, ASIN:
00721 30903.

[5] S.Hang, “Autonomous Mobile Cyber Weapon”,
http://www.tl.infi.net/~wtnewton
/vinfo/bs3.html, 2005.

[6] S.Yang “Movement of Viruses”, http://www
.intergate.bc.ca/personal/yang
/movement.htm, 2005.

[71 A.Abimbola, J.M. Munoz, W.J. Buchanan,
“Analysis and Detection of Cruising Computer
Viruses”, ECIW 2004.

[8] A.Abimbola, J.M. Munoz, W.J. Buchanan,,
“Viral-Net System Via Autonomous Agent
Technology”, BCS SGAI
Symposium/Colloquium on Mobile Agent and

Complex Agent System, Vol: 7, No:3,
ISSN:1465-4091, 2005.

[9] R.R Linde, “Operating System Penetration”,
AIFIPS National Computer Conference, pp:
361-368, 1975.

[10] F. Cohen, “Computer Viruses- Theory and
Experiments”,Computers and Security, vol: 6,
pp: 22-35, 1987.

[11] F. Cohen, “A Short Courses on Computer
Viruses”, ASP Press, (PO Box 81270, Pgh PA
15217, USA), 1990.

[12] B. Dwan, “The Computer Virus — From
There to Here.: An Historical Perspective”,
Computer Fraud & Security, Vol: 2000, Iss: 12,
pp: 13-16, 1 Dec 2000.

[13] J.C. Wierman and D. J. Marchette, “Modeling
Computer Virus Prevalence with a Susceptible-
Infected-Susceptible Model with
Reintroduction”, Computational Statistics &
Data Analysis, Vol: 45, Iss: 1, pp: 3-23, 28 Feb
2004.

[14] N. Sathainanthan, N.C. Keong and C.S. Jong,
“Real-Time Virus Detection Using iNetmon
Engine”, Network Research Group, School of
Computer Science, University Science
Malaysia, 2003.

[15] M. Bhattacharyyaet al., “MET: An Experimental
System for Malicious Email Tracking”,
Proceedings of the 2002 Workshop on New
Security Paradigms, pp:3-10, 2002.

[16] M.SchultzM et al , “MEF: Malicious Email
Filter A Unix Mail Filter that Detects malicious
Windows Executables”, USENIX Annual
Technical Conference, pp: 245-252, 2001.

[17] S.Kumar and E.H. Spafford, A generic virus
scanner in C++, In Proceedings of the 8th
Computer Security Applications Conference,
pp: 210--219, Los Alamitos CA, December
1992. ACM and IEEE, IEEE Press.

[18] 1J. Stolfo.J et al “A Behavior-Based Approach
To Securing Email Systems”, 1st International
conference on Applied Cryptography and
Network Security, 2003.

[19] M.Bishop and M.Dilger, “Checking for Race
Conditions in File Access”, Computing Systems
9, pp: 131-152, 1996.

[20] G.Tesauro, J.Kephart and G.Sorkin, “Neural
Network for Computer Virus Recognition”,
IEEE Expert 11, pp: 5-6, 1996.

[21] R.W. Lo, K.N.Levitt and R.A.Olsson, “MCF: A
Malicious Code Filter”, Computer and Security,
Vol: 14, pp:541-566, 1995.

[22] LaBrea Sentry IPS: Next Generation Intrusion
Prevention System:
http://www.labreatechnologies. com/ 2005.

[23] M.Williamson,“Throttling Viruses: Restriction
Propagation to Defeat Malicious Mobile Code”,
18th Annual Computer Security Application
Conference, pp: 61-68, 2002.

[24] M.Pietrek, “An In-Depth Look into the Win32
Portable Executable File Format”, MSDN
Magazine, February 2002.

[25] Exelnfor Utilities, “ www.nirsoft.net”, 2005

[26] Microsoft DLLshelp Database, http://support.
Microsoft.com/dllhelp/, 2005.

[27] API Hooking Revealed, www.codeproject. com,
2005.

[28] J.W.Haines, R.P.Lippmann, D.J.Fried, E.Tran,
S.Boswell, M.A.Zissman, "1999 DARPA
Intrusion Detection System Evaluation: Design
and Procedures”", MIT Lincoln Laboratory
Technical Report.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

