
Phishing URL Detection Through Top-Level Domain Analysis: A
Descriptive Approach

Orestis Christou, Nikolaos Pitropakis, Pavlos Papadopoulos, Sean McKeown and William J.
Buchanan

School of Computing, Edinburgh Napier University, Edinburgh, United Kingdom
Christouorestis@gmail.com, {N.Pitropakis, pavlos.papadopoulos, S.McKeown, B.Buchanan}@napier.ac.uk

Keywords: Phishing Detection, Machine Learning, Domain Names, URL

Abstract: Phishing is considered to be one of the most prevalent cyber-attacks because of its immense flexibility and
alarmingly high success rate. Even with adequate training and high situational awareness, it can still be hard
for users to continually be aware of the URL of the website they are visiting. Traditional detection methods
rely on blacklists and content analysis, both of which require time-consuming human verification. Thus, there
have been attempts focusing on the predictive filtering of such URLs. This study aims to develop a machine-
learning model to detect fraudulent URLs and be used within the Splunk platform. Inspired from similar
approaches in the literature, we trained the SVM and Random Forests algorithms using malicious and benign
datasets found in the literature and one dataset that we created. We evaluated the algorithms’ performance
with precision and recall reaching up to 85% precision and 87% recall in the case of Random Forests while
SVM achieved up to 90% precision and 88% recall using only descriptive features.

1 Introduction
The past few years have seen an outburst of high-
impact breaches and issues, showing that sole reliance
on traditional mitigation and prevention approaches
is not ideal for providing adequate protection against
such fluctuant environments. Domain Name System
(DNS), being one of the principal elements of the
web, is not only a prime target for attacks involv-
ing system downtime but also used as a means for
the execution of further and more complex social en-
gineering and botnet attacks. In the report by IDC
(Fouchereau and Rychkov, 2019) 82% of the compa-
nies undertaking their survey reported suffering from
at least one DNS-related attack. The average number
of attacks experienced per company was 9.45, placing
the average cost of damages at $1,000,000. From the
“dangerously diverse” and ever-growing threat land-
scape, the most ubiquitous DNS-related threat was
phishing, with Malware, DDoS and Tunnelling com-
ing not far behind it. FireEye’s recent report (Hirani
et al., 2019) on a grand-scale DNS hijacking attack
by alleged Iran-based actors for record manipulation
purposes reinforces this notion.

Adversaries do not have to be networking experts,
nor possess knowledge of the underlying operation of
the DNS to misuse it. To execute a successful phish-
ing attack, the only thing an adversary needs to do

is to select the right domain name to host their mali-
cious website. Instead of merely choosing a generic
and innocent-appearing name, the process of select-
ing the domain name may include techniques such as
homograph spoofing or squatting (Kintis et al., 2017;
Moubayed et al., 2018; Nikiforakis et al., 2014).

One of the most popular approaches of dealing
with such websites is using blacklists (OpenDNS,
2016). It is simple and accurate as each entry in the
blacklist is usually manually verified as malicious.
The problem with the latter approach is that it re-
quires frequent updating of the blacklist through con-
stant scanning for new entries. Moreover, the systems
creating these blacklists tend to have high operational
costs, which lead to the companies requiring payment
to access them. Usually, adversaries that utilise these
malicious URLs do not keep them active for very long
as they risk being detected and blocked.

Machine Learning techniques use features ex-
tracted from the URLs and their DNS data to anal-
yse and detect whether they are malicious or benign.
Usually, methods which rely on the analysis of the
content of such URLs come at a high computational
cost. (Blum et al., 2010), compute MD5 hashes of the
main index of their webpages and compare them with
the hashes of known phishing sites. In their work,
they mention that this technique is easily bypassed

just by obfuscating the malicious contents. This limi-
tation constrains approaches to exclusively analysing
the URL strings to classify the URLs. More recently,
López et al. (López Sánchez, 2019) attempted to de-
tect phishing by using “Splunk” and taking into con-
sideration only the use of typosquatting (Nikiforakis
et al., 2014) and homograph squatting.

To the best of our knowledge, our work is the first
attempt that takes into consideration all the forms of
domain squatting and produces an automated mecha-
nism to detect malicious phishing URLs, thus increas-
ing the situational awareness of the user against them.
The contributions of our work can be summarised as
follows:

• The Machine Learning system is trained using de-
scriptive features extracted from the URL strings
without utilising host-based or lexical (bag-of-
words) features. The domain names come from
real-world, known phishing domains (blacklist)
and benign domain names (whitelist).

• The popular classification algorithms SVM and
Random Forests are used and compared empiri-
cally based on their performance.

• The process is heavily automated as it relies
on Splunk software, thus being fit against new
datasets and generating alerts when new malicious
entries are detected.

The rest of the paper is organised as follows: Sec-
tion 2 briefly describes the related literature with re-
gards to phishing; Section 3 introduces our method-
ology while Section 4 describes the results of our ex-
perimentations along with their evaluation. Finally,
Section 5 draws the conclusions giving some pointers
for future work.

2 Background and related work
2.1 Phishing
“Phishing” as a term did not exist until 1996 when
it was first mentioned by “2600” a popular hacker
newsletter after an attack on “AOL” (Ollmann, 2004).
Since then, there has been an exponential increase in
phishing attacks, with it becoming one of the most
prevalent methods of cybercrime. According to Veri-
zon (Verizon, 2019), phishing was part of 78% of all
Cyber-Espionage incidents and 87% of all installa-
tions of C2 malware in the first quarter of 2019. In
the earlier report by Verizon (Verizon, 2018), it is re-
ported that “78% of people didn’t click a single phish
all year”, that means that 22% clicked. Therefore, that
could be rephrased to be: “One in five people clicks
on a phishing e-mail at least once a year”. More-
over, users only reported an alarming 17% of the cam-

paigns ran. It is also emphasised that even though
training can reduce the number of incidents, “phish
happens”. Kaspersky has recorded over 11 million
blocked redirect attempts to phishing sites just in
the first quarter of 2019 (Vergelis and Shcherbakova,
2019), a 31.5% increase from the last quarter of 2018.
Since only a single e-mail is needed to compromise
an entire organisation, protection against it should be
taken seriously.

Cyber-criminals use phishing attacks to either har-
vest information or steal money from their victims
through deceiving them with a reflection of what
would seem like a regular e-mail or website. By redi-
recting the victim to their disguised website, they can
see everything they insert in any forms, login pages or
payment sites.

Cyber-criminals copy the techniques used by dig-
ital marketing experts to guarantee a high click rate.
They also tend to take advantage of the fuss created
by viral events or stories to increase their potential
victims. Vergelis and Shcherbakova (Vergelis and
Shcherbakova, 2019), reported a spike in phishing
redirects to apple sites before each new product an-
nouncement.

Regular phishing attacks do not care about their
target; they are usually deployed widely and are very
generic so that they can be deployed to target as
many people as possible. A Spear-Phishing attack
is similar; it targets a specific individual instead. In-
formation gathering against the victim needs to be
performed beforehand to craft a successful spear-
phishing e-mail. A more advanced version of this
attack is a Whaling attack; A spear phishing at-
tack that specifically targets a company’s senior ex-
ecutives to obtain higher-level access in the organisa-
tion’s system. Targeted phishing attacks are increas-
ingly gaining popularity because of their high success
rates (Krebs, 2018).

Pharming is a different approach in which the at-
tacker will attempt to direct their victims to a mali-
cious website. There are various methods to execute
this without even needing the user to make a mistake.
For example, if the attacker manages to poison the
cache of the local DNS server fake records, then they
can redirect the user to their malicious website.

2.1.1 Attacks
If the end-goal of a phishing attack is to ensure that
the victim is ultimately redirected to the phishing
website without being aware of it, then the adver-
sary needs to use several techniques to guarantee that.
Some of those techniques include: URL hiding a
most commonly used technique, where the attacker
obfuscates a malicious URL in a way that does not
raise any suspicions and ultimately gets clicked on by

the victim. One way to execute this would be to re-
place a valid URL link with a malicious one.

Shortened links from services such as Bitly can
be used to obfuscate malicious links easily. There is
no way to know the actual destination of an obfus-
cated link without visiting it.

Homograph spoofing is a method which depends
on the replacement of characters in a domain name
with other visually similar characters. An example
of that would be to replace 0 with o, or I with 1
or an exclamation mark (Rouse et al., 2019). So,
for a URL “bingo.com” the spoofed URL would be
“b1ng0.com”. Characters from other alphabets such
as Greek have also been used in the past for such
attacks. The Greek ’o’ character is visually indis-
tinguishable from the English “o” even though their
ASCII codes are different and would redirect to dif-
ferent websites. Squatting is the term used to de-
scribe the use of a variation of a popular domain name
for spoofing purposes. Polymorphism in phishing
was initially a synonym for squatting as it was only
applied to URLs. Now polymorphism is also ap-
plied in the contents of phishing websites and e-mails.
By making minor alterations to the e-mail contents it
is much easier to bypass conventional anti-phishing
mechanisms (Jain and Gupta, 2017). Content poly-
morphism is addressed using visual similarity analy-
sis of the contents; an early example of such an appli-
cation is illustrated by Lam et al. (Lam et al., 2009).

Typosquatting is a similar method to homograph
spoofing, but it targets common typographic errors
in domain names. For example, an attacker could
use the domain “www.gooogle.com” to target users
who incorrectly type “google.com” or to trick them
into clicking on a regular link. (Moubayed et al.,
2018) combat this issue using a Machine Learning ap-
proach. They use the K-Means Clustering Algorithm
to observe the lexical differences between benign and
malicious domains and extract the features needed to
detect them successfully. They propose a majority
voting system that takes into consideration the outputs
of five different classification algorithms. In the re-
port by Proofpoint (Proofpoint, 2018), the most pop-
ular typosquatting approach is to swap an individual
character, followed by inserting an additional one.

Combosquatting is different from typosquatting
as it depends on altering the target domain by adding
familiar terms inside the urls. An example of
this technique would be “bankofscotland-live.com”
or “facebook-support.com”. Research performed by
Kintis et al. (Kintis et al., 2017) show a steady
increase in the use of combosquatting domains for
phishing as well as other malicious activities over
time. It is also reported that combosquatting do-

mains are more resilient to detection than typosquat-
ting. Moreover, they report that the majority of the
combosquatting domains they were monitoring re-
mained active for extended periods, sometimes ex-
ceeding three years. This suggests that the measures
set in place to counter these are inadequate and that
if that remains as the status quo, then combosquatting
could grow into a genuine and dangerous threat.

Soundsquatting targets voice-operated software
with the use of words that sound alike (homo-
phones). In their research, Nikiforakis et al.
(Nikiforakis et al., 2014) show that for a do-
main “www.test.com”, an adversary may use dot-
omission typos (“wwwtest.com”), missing-character
typos (“www.tst.com”), character-permutation ty-
pos (“www.tset.com”), character-replacement ty-
pos (“www.rest.com”) and character-insertion typos
(“www.testt.com”). The same author and his team
(Nikiforakis et al., 2014) illustrate how they used
Alexa’s Top one million domain list to create and
register their soundsquatting domains, measuring the
traffic from users accidentally visiting them. Through
their research, they have proven the significance of
taking into account homophone confusion through
abuse of text-to-speech software when tackling the is-
sue of squatting.

2.1.2 Suggested Defences
The term Passive DNS refers to the indirect collec-
tion and archiving of DNS data locally for further
analysis. In the early days of passive DNS (pDNS)
URL analysis (Spring and Huth, 2012), where privacy
was still not considered an issue, the pioneer system
for malicious domain detection through pDNS was
Notos (Antonakakis et al., 2010) with its reputation-
based classification of domains. Notos extracts a va-
riety of features from the DNS queries and creates
a score for each entry to represent the likelihood of
it being malicious. The system gathered DNS traf-
fic collected from two ISP locations in the USA and
extracted information such as geographical locations,
the number of IP addresses historically related to a
domain and the number of malware samples related
to IP addresses that a domain points to. A similar ap-
proach is taken for EXPOSURE (Bilge et al., 2011),
expanding upon the work of Notos. EXPOSURE is
a large-scale pDNS analysis system developed using
a gathered dataset of 100 billion entries. Bilge et al.
(Bilge et al., 2011), differ in their approach by oper-
ating with fewer data compared to Notos. Khali et al.
(Khalil et al., 2016), expand upon the work of Notos
and Exposure by focusing on the global associations
between domains and IPs instead of looking at their
local features. This way, they also address any pri-
vacy issues as they only extract information relevant

to their research from the gathered dataset. Because
of their alternative approach, they view their work as
complementary to Notos and Exposure. Okayasu and
Sasaki (Okayasu and Sasaki, 2015), compare the per-
formance of SVM and quantification theory in a sim-
ilar setting. SVM was proved to be superior in their
comparison.

Since the lexical contents of malicious URLs play
a significant role in their victim’s susceptibility, squat-
ting detection should play a vital role in their detec-
tion. Kintis et al. (Kintis et al., 2017), study a sub-
category of domain squatting, as mentioned in sec-
tion 2.1.1 named “combosquatting”. For their analy-
sis, they use a joint DNS dataset comprised of 6 years
of collected DNS records from both passive and ac-
tive datasets that amount to a total of over 450 billion
records. They find that the majority of combosquat-
ting domains involve the addition of just a single to-
ken to the original domain. While it succeeds in es-
tablishing that combosquatting is a real threat, there
is no mention of any future directions for research on
this topic.

A novel approach is taken by Blum et al. (Blum
et al., 2010), where URLs are classified without the
need for host-based features. They found that lexical
classification of malicious URLs can rival other con-
ventional methods in accuracy levels. Their dataset
was created utilising a technique called Deep MD5
Hashing (Wardman et al., 2010). The technique is
used to compare the contents of known malicious
websites to those being tested by comparing their Kul-
czynski 2 coefficients to check for their similarity
(Kulczyński, 1928). Lin et al. (Lin et al., 2013), pro-
pose a similar ML approach, which can detect mali-
cious URLs by only looking at the URL strings. They
use two sets of features to train their online learn-
ing algorithm: lexical and descriptive. The lexical
features are extracted by taking the name of the do-
main, path and argument of each entry and using a
dictionary remove less useful words from them. The
descriptive features are static characteristics derived
from the URLs such as total length or symbol count.
The main focus in their approach is to reduce the re-
sources required for the analysis, which they achieve
with a 91% hit rate. Both Notos (Antonakakis et al.,
2011) and EXPOSURE (Bilge et al., 2011) scraped
the surface of using descriptive features in URL anal-
ysis by measuring the domain length and character
frequency. However, they did not dive into any depth
because utilising other features such as TTL, geo-
graphical locations and historical IP address relation-
ships were much more effective. The separate anal-
ysis of features based on their respective categories
is a common trend within the literature. Darling et

al. (Darling et al., 2015) show that classification
speed and accuracy increases significantly compared
to other more complete approaches when the classifi-
cation system is created based on lexical features.

A Machine Learning system that uses the K-
Means algorithm to label the data before applying the
ensemble learning classifier mentioned earlier is pro-
posed in the paper by Moubayed et al. (Moubayed
et al., 2018). Shorter length domain names with
fewer unique characters were found to be more likely
to be benign than malicious. The ensemble classi-
fier outperformed the individual algorithms in their
tests. While promising, the algorithms considered
should not be selected solely based on their popular-
ity but rather their efficiency when implemented to-
gether. The authors do not mention if any other com-
binations were considered. The number of features
taken into consideration is scarce, and the features are
mostly length and character count related. Mamun
et al. (Mamun et al., 2016) achieve a 97% average
classification performance using a similar approach.
They use the random forests algorithm in their lexical
analysis of the URLs. Through their approach, they
find that the Random Forests algorithm yields signifi-
cantly better results than multi-class classification. K-
Nearest Neighbours placed 2nd with an average per-
formance of 94%.

Malicious URLs vary in their nature depending
on their purpose, for example, a phishing URL might
take advantage of squatting methods to deceive their
victims while a botnet C&C will probably use a ran-
dom generator as its looks are not essential and its
lifespan might be limited. Da Luz and Marques
(da Luz, 2014) expand upon this, building upon the
work of Notos (Antonakakis et al., 2011) and Expo-
sure (Bilge et al., 2011) to detect botnet activity us-
ing both host-based and lexical features. They give
a comparison of the performance of the K-Nearest
Neighbours, Decision Tree and Random Forests algo-
rithms, showing that Random Forests performed sig-
nificantly better. Moreover, in their feature signifi-
cance comparison, the number of digits divided by the
domain name length is shown to be the most influen-
tial feature. Feroz et al. (Feroz and Mengel, 2015)
use a very similar methodology to target phishing do-
mains specifically. Their work uses the K-Means al-
gorithm to perform clustering using the lexical and
host-based features, creating a new set of URL rank-
ing features which is in turn used in the classification.
Their results demonstrate a significant increase in ac-
curacy when the clustering features are included.

Nikiforakis et al. (Nikiforakis et al., 2014) men-
tion the issue of evaluating domain names comprised
of foreign words since they use an English dictionary

to detect and replace accidental words. The issue be-
comes even more complicated as they propose the de-
tection of which language the domain name is written
in. Multilingual domain names would also be flagged
as false positives in their system as it is tough to dis-
tinguish what language each word token is written in.
Another issue that is raised is the splitting of the do-
main into different words, as there is no space sep-
arator in URLs. They extracted soundsquatting do-
mains from the Alexa top 10k dataset and managed to
classify them with an 18.9% false-positive rate. This
paper does not present a solution to the problem but
rather an evaluation of a new squatting method.

Lin et al. (Lin et al., 2013), makes the distinction
between descriptive and lexical features. The purpose
of that division is to separate the features derived di-
rectly from the domain names strings and the features
derived using their bag-of-words model. They use the
Passive-Aggressive algorithm to classify their dataset
and then use the Confidence Weighted algorithm to
alter the characteristic’s weight based on their “confi-
dence”. Their model operates much more efficiently
than other content-based models and is compatible
with the volatile lifetime of malicious URLs.

Our approach differentiates from these as it only
emphasises the descriptive characteristics of URLs in
order to observe and attempt to improve the perfor-
mance of a model without taking into consideration
host-based or lexical (bag-of-words) features. More-
over, none of the approaches in the literature explored
the creation and use of a model in a widely used plat-
form such as Splunk to provide alerting capabilities to
automate the detection of malicious URLs.

3 Methodology

As malicious parties continue to abuse DNS to
achieve their goals, the means of stopping them
should also be constantly developed. When observ-
ing the literature historically, it can be deduced that
modern approaches are becoming more and more fo-
cused on the detection of specific problems. There-
fore, following the same trend, our work will be as-
sisted by the Splunk platform to train and use a clas-
sifier to detect phishing domains through their ex-
tracted descriptive features. This section will describe
the methodology undertaken to select and prepare the
training datasets, choose and extract the features, train
the classifier and use it within the regular Splunk en-
vironment. Figure 1, illustrates the architecture of the
proposed system and Table 1 shows our test environ-
ment’s technical specifications.

Table 1: System Specifications

Model Inspiron 7537
CPU Intelr CoreTM i5-4210U @1.70GHz
OS Windows 10 (64-bit)
RAM 6 GiB

Figure 1: System Architecture Diagram

3.1 Dataset Selection
The quality of the prediction of a ML algorithm is
strongly related to the quality of its training set. The
Machine Learning approach will require a supervised
learning algorithm, and therefore, the samples will
need to be labelled as either ‘benign’ or ‘malicious’.
To reduce bias in our results, three tests were con-
ducted using a total of six lists, three whitelists and
three blacklists.

The first benign list was derived from TLDs in the
Alexa top 1M domain database as of September 2019.
This database contains 1 million entries of the most
popular websites worldwide. As this list contains
domains ranked by popularity, we manually verified
their authenticity and content the first 5,000 domains
from this list. We therefore populated our whitelist
using the 5,000 most popular Alexa domains.

The first malicious list was created using Phish-
tank’s active blacklist (OpenDNS, 2016). The black-
list consists of more than 400,000 phishing domain
entries and is continuously updated with active do-
mains. 5,000 of those domains were selected to pop-
ulate the blacklist. The two lists are joined, and over-
lapping domain names are removed to avoid creating
any noise. More entries from the blacklists are in-
cluded in the following tests.

As the Alexa database is not validated for poten-
tially malicious entries like combosquatting domains

as proved in the related literature (Kintis et al., 2017),
we turned our attention to established datasets used by
the cyber security community. Therefore, the legiti-
mate and malicious lists provided by Sahingoz et al.
(Sahingoz et al., 2019) were used together in the sec-
ond test. The legitimate list is reported to have been
cross-validated and thus can be used at full scale.

The phishing/legitimate URL set published in
“Phishtorm” (Marchal et al., 2014) is used in the third
test. The comparison of the performance of our fea-
ture selection using each of the different sets will
be crucial in determining their relevance through the
elimination of dataset bias from the algorithm’s per-
spective.

3.2 Analysis
The previous sections have illustrated how miscreants
can misuse DNS in their attempts to perform phishing
attacks. From the knowledge extracted from the liter-
ature, a set of features can be selected and extracted
from the gathered pDNS data. The set of features will
allow for the classifier to divide the domain names
into either benign or malicious.

3.2.1 Feature Extraction

The Splunk ML Toolkit has no functionality for ex-
tracting features from strings, and therefore, the fea-
tures were extracted manually using python libraries.
The Pandas Python library was used to import the two
datasets into python for the extraction of the features.
A Type column was created to mark entries as either
benign or malicious as the two datasets were com-
bined in a single dataset. IP addresses that were listed
as domain names in blacklists were removed automat-
ically using regex. Using a simple while loop, it was
possible to iterate through the newly formatted joint
dataset and create the features one by one.

We extracted a total of 18 features (See Tables 2
and 3) from each domain name in the DNS dataset.
Since the benign dataset did not include other details
such as the TTL or the path, certain types of features
could not be derived. Therefore, more weight is given
to analysing the lexical characteristics of our domains.
The features are split into two groups: descriptive fea-
tures and statistical features. The full list can be seen
below in Table 2. The rationale behind the division
of the features into these two categories is that de-
scriptive features are simple variables derived directly
from the domains while statistical features are derived
from applying mathematical statistic operations on ei-
ther the strings themselves or the descriptive features.
A joint CSV file was created containing both the en-
tries from the benign and the malicious datasets. An

Table 2: Descriptive features

ID Feature Description
1 Count of URL unique characters
2 Count of Domain unique characters
3 Count of Suffix unique characters
4 Domain length
5 Suffix length
6 Total length
7 Count of Domain numbers
8 Count of URL numbers
9 Count of Suffix numbers
10 Count of symbol characters in do-

main
11 Count of symbol characters in Suffix
12 Total count of symbol characters

Table 3: Statistical features

ID Feature Description
13 Domain Character Continuity Rate
14 Suffix Character Continuity Rate
15 Shannon entropy of domain string
16 Shannon entropy of suffix string
17 Standard deviation of the two do-

main levels’ entropy.
18 Mean of the entropy of the two do-

main levels.

additional column was created to flag each entry as
either malicious or benign.

3.2.2 Descriptive features
A total of 12 descriptive features were extracted from
each domain name string. These features were ex-
tracted based on the reasoning of the previous ap-
proaches mentioned in the research. Malicious do-
main names tend to have a higher number of sym-
bols or numbers than benign ones, either because of
squatting or because they are randomly generated.
Therefore, we extracted features 10-12 to represent
the number of symbols and numbers found in the dif-
ferent parts of the domain.

Malicious domains also tend to be longer than be-
nign ones (Moubayed et al., 2018). However, after
observing the entries in the phishing dataset, it was
noticed that many entries would have longer subdo-
mains but short domains. This would mean that even
though they would look disproportionate, they would
still be flagged as being of a length similar to benign
entries. To counter this issue features 4-6 were set to
contain the length of each domain part.

The number of unique characters also differs in
malicious URLs because legitimate website owners
tend to choose simpler and easier to remember words
for their URLs. Using this reasoning, the number of

unique characters in the domain and suffix of each
URL was used to populate the features 1-3. More-
over, since those unique characters are often numbers,
features 7-9 were selected to represent the number of
numeric characters present in each URL.

3.2.3 Statistical Features

Features 12 & 13 constitute the character continuity
rate of the domain and suffix. In general, as men-
tioned earlier, website owners tend to go for simpler
names for memorisation purposes. Because simpler
domain names are usually more expensive to buy, it is
unlikely for attackers to pay large sums for a domain
that will most likely serve them for a short period.
(Lin et al., 2013), use this idea to design the character
continuity rate feature. To create this feature, the do-
main name is split into tokens of sequential characters
based on their type (letter, number or symbol). Once
the domain is split, the length of each token is mea-
sured and compared to the other tokens in its respec-
tive category. Then, the longest token for each char-
acter type is selected, and their total length is added
together and divided by the total length of the token.

Take for example a domain string of “abcdef-
12345ab1-ab12”. It will be split into the following
tokens: “abcdef” , “-” , “12345” ,“ab” , “1” , “-” , “ab”
, “12”. The longest letter token is “abcdef” which has
a length of 6. The longest number and symbol tokens
are “12345” and “-” with lengths of 5 and 1 respec-
tively. Therefore, 6+5+1=12 and 12 divided by the to-
tal length of 20 will equal 0.6, which is the character
continuity rate. Features 15-16 contain the Shannon
entropy of the domain and suffix strings. This fea-
ture is used to detect randomised domain strings or
at least detect randomisations within them (Lin et al.,
2013). Shannon entropy H is calculated using the for-
mula seen in Equation 4, where pi is the chance for a
character i to appear in a given string (Marchal et al.,
2012).

H = ∑
i

pilogb pi (1)

Equation 1: Shannon Entropy

In our scenario, pi is replaced with the count of
different characters divided by the length of the string.
Features 17 and 18 are the mean and standard devia-
tion of the features 15-16. These features were ex-
tracted to test if using a more median number would
produce better results than using the initially extracted
entropies.

3.3 Training, Application and Alerting

To train the algorithms, the training set containing
all the features and the malicious and benign labels
was exported to a CSV file. Splunk was set to moni-
tor that CSV file so that if any changes needed to be
made to it, they could be updated in Splunk instantly.
This experiment was split into Tests 1, 2 & 3. Test
1 was performed using a set of 10,000 data entries
from the Alexa and Phishtank datasets (Alexa, 2019;
OpenDNS, 2016). A 50/50 split was performed on the
datasets for the training phase using Splunk to provide
a better outlook of the algorithms’ efficiency by using
one half for training and the other for testing.

The chosen algorithms for this experiment are
SVM and Random Forests because of their reported
performance in the literature as mentioned earlier.
Test 1.1 will examine the performance of the Ran-
dom Forests algorithm with minimal changes to its
default configuration of the parameters: infinite max-
imum depth, features and maximum leaf nodes, ten N
estimators and two minimum samples per split. Test
1.2 will take a similar approach against the SVM al-
gorithm, with slight alterations to the C and Gamma
parameters which are set by default to 1 and 1/500
respectively.

Test 2 was separated into Test 2.1 and Test 2.2
to evaluate the SVM and Random Forests algorithms
using a larger dataset of 70,000 data entries (Sahin-
goz et al., 2019). Likewise, Test 3 was divided into
Test 3.1 and Test 3.2 to compare SVM and Random
Forests with the Phishstorm dataset (Marchal et al.,
2014). Test 4 serves as a “what if” scenario that al-
lows the comparison of all the available algorithms in
the Splunk ML toolkit to see if there could have been
alternatives not mentioned in the literature.

After training the algorithm, Splunk will be con-
figured to periodically fit the algorithm on a con-
tinuously monitored file so that any new entries are
checked immediately for their maliciousness. If the
algorithm is accurate enough, it will be configured
for scheduled re-training to ensure that it is up to date
with recently found phishing domain entries.

4 Results & Evaluation
This section will include the outcome of the ex-

periment using the methodology described previously
in the form of tables. The results for each test will
be displayed, explained and evaluated. The tables
will show the performance of each of the algorithms
against a small, medium and large-sized dataset. Fi-
nally, the selected features will be evaluated for their
importance.

4.1 Results
4.1.1 Training
The first algorithm to be tested was Random Forests
in Test 1.1. In Table 4, the performance of the al-
gorithm is evaluated. Moreover, the fine-tuning of the
algorithm’s parameters to achieve its full potential can
also be seen. The final run used ten N estimators, ten
minimum samples per split, two maximum features,
two minimum samples per split and infinite maximum
leaf nodes.

Table 4: Test 1.1 Random Forests Alexa Evaluation

N Es-
tima-
tors

Max
Depth

Max
Fea-
tures

Precision Recall

10 ∞ ∞ 0.87 0.86
10 10 ∞ 0.89 0.86
10 10 2 0.89 0.87

Test 1.2 implemented the SVM algorithm against
the same dataset as Test 1.1, with an initial precision
& recall of 0.89 and 0.86 respectively as shown in
Table 5. The algorithm’s performance increased im-
mensely by simply using a larger C value to increase
the hyperplane’s flexibility. However, reducing the in-
fluence of the points placed far from the hyperplane
resulted in a drop in accuracy. As shown in Table 5,
a precision of 0.90 and a recall of 0.88 was achieved
after the tweaking.

Table 5: Test 1.2 SVM Alexa Evaluation

C Gamma Precision Recall
1 1/18 0.89 0.87
1 1/50 0.83 0.83
10 1/18 0.90 0.88

Test 2.1 evaluated the performance of the Random
Forests algorithm using a larger dataset containing
70,000 entries. Once again, the features were tweaked
until the perfect combination was found. As shown in
Table 6, the performance of Random Forests peaked
with a 0.84 precision and recall when 10 Estimators
(Decision Trees) and an infinite max depth of nested
statements were set. The alteration of the minimum
samples per split had no impact on the overall perfor-
mance, and therefore, it was kept to its default value.
The decrease of the maximum number of features to
consider per split negatively impacted the overall ac-
curacy and thus was kept as the default value.

The same procedure as earlier is repeated using
the SVM algorithm in Test 2.2. Using the default set-
tings with a C of 1 and a Gamma of 1/18, the algo-
rithm achieved a 0.79 precision and a 0.77 recall. In
Table 7, it can be observed that this time, the peak

performance was achieved using a C value of 100 and
a Gamma of 1/500.

Table 6: Test 2.1 Random Forests

N Es-
tima-
tors

Max
Depth

Max
Fea-
tures

Precision Recall

10 ∞ ∞ 0.84 0.84
1 ∞ ∞ 0.81 0.81
10 10 ∞ 0.80 0.80
10 ∞ 2 0.84 0.84

Table 7: Test 2.2 SVM

C Gamma Precision Recall
1 1/18 0.76 0.76
10 1/18 0.77 0.77
100 1/18 0.78 0.77
100 1/500 0.79 0.77

Table 8 shows the performance of the Ran-
dom Forests algorithm against the Phishstorm dataset
(Marchal et al., 2014) with 96,000 data entries in Test
3.1. Tweaking the algorithm parameters did not yield
better results and thus the default configuration of the
algorithm was kept.

Table 8: Test 3.1 Random Forests

N Es-
tima-
tors

Max
Depth

Max
Fea-
tures

Precision Recall

10 ∞ ∞ 0.85 0.85
1 ∞ ∞ 0.83 0.83
10 10 ∞ 0.83 0.83
10 ∞ 2 0.85 0.85

Once more, the process is repeated using SVM in
Test 3.2 (See Table 9). When a C value of 100 was
used the algorithm reached its peak precision & recall
rates of 0.81 and 0.81. Altering the Gamma value
only reduced our rates and thus was kept to its default
of 1/18. Table 9: Test 3.2 SVM

C Gamma Precision Recall
1 1/18 0.79 0.79
100 1/18 0.81 0.81
100 1/100 0.81 0.80
100 1/500 0.80 0.79

4.1.2 Alerting
After completing the experiments, the experimental
setup of Test 3.1 was chosen to create a model in
Splunk. The model allows for the fitting of the now

trained algorithm into other datasets which are im-
ported in Splunk. The method to fit it is straightfor-
ward and is shown in Figure 2 where “randomforests-
full” is the name of the model and “inputtest.csv” is
the new input file.

Figure 2: Model fit method in Splunk Search

Figure 3 illustrates the top 3 results from the pre-
vious query. All the features from the entries in the
input file are now separate fields of events in Splunk.
Each entry in the results now has a new field named
“predicted(Type)” which is the algorithm’s prediction
for if it will be malicious or benign.

Figure 3: Sample results from Splunk Search model fit

Splunk was configured to continuously monitor
the input file to update any further additions or re-
movals. An alert was created as seen in Figure 4,
which runs the query against the input file every hour
and notifies the user if a new entry is flagged as mali-
cious. The alert is then added to the triggered alerts.
With this, the automated detection system is com-
plete. Finally, the model is set to re-train itself using
any new data added to the initial dataset.

Figure 4: Splunk Machine Learning alert

4.2 Evaluation
The outcomes of Tests 1.1 & 1.2 established that
SVM performed slightly better than Random Forests.
With Random Forests, the precision & recall rates did
not vary significantly when changing the algorithm’s
parameters. Decreasing the Gamma value in SVM
however proved to have great significance on its re-
sults, indicating that even the furthest points from the
hyperplane were of great importance. The evaluation

of Tests 1.1 & 1.2 should yield better results than the
other tests due to the reduced number of entries.

The full dataset containing 70,000 entries was
used in Tests 2.1 & 2.2 as the benign entries were
already validated (Sahingoz et al., 2019). Test 2.1
hit its peak performance without any tweaking, while
Test 2.2 required a less straight hyperplane to do so.
The evaluation results of SVM and Random Forests
were not ideal for an automated filtration system but
are still usable in our experiment. This time Random
Forests was the predominant algorithm with a signifi-
cant difference in precision & recall. Overall both al-
gorithms achieved lower rates, the sudden drop in ac-
curacy of SVM indicates that Random Forests could
be more ideal for a large-scale application.

Using the Phishstorm dataset (Marchal et al.,
2014) of 90,000 entries in Tests 3.1 & 3.2 achieved
very similar but slightly better results than Tests 2.1
& 2.2. This means that the selected feature set is not
dataset-biased and is robust when handling new data.
Even though the achieved rates are not perfect, the
model can still be used in the passive detection of ma-
licious URLs.

While SVM performed better than Random
Forests in Test 1, Tests 2 & 3 showed that Random
Forests does not perform much differently when us-
ing a larger dataset, contrary to SVM’s performance
drop. Finally, Random Forests was selected for the
final model simply because of the stability in the out-
come it provides by utilising results from multiple de-
cision trees.

After the model was created, it could be used as
a standard search parameter in the original search
and reporting app by Splunk and not just in the ML
toolkit. This allowed for the easy creation of cus-
tomised periodic checks for new malicious entries in
the original dataset. In combination with the pDNS
collector, this finalises the automated phishing URL
detector. The feature for scheduled training could also
be very easily implemented. However, in this sce-
nario, it was not feasible to schedule the script to ex-
tract the features periodically because of the script’s
long execution time duration on the system used (3
days). In a realistic scenario where the system is more
powerful than an old laptop, the system would cer-
tainly have worked.

4.2.1 Feature Comparison

After the “publishing” of the model, the summary
command in Splunk was used to evaluate the individ-
ual importance of the features used using the Random
Forests algorithm. The chart in Figure 5 illustrates a
comparison of the performance in all three tests, list-
ing them using the IDs defined previously in Table 2.

From the chart, it is clear that F1, F6, F16 and F18
held the most weight for Test 1, all of which indi-
cate that longer URLs (with more unique characters)
tend to be malicious. These however may also be the
differences between popular-expensive domains and
cheaper ones. Test 2’s results were much more close,
with F10, F17 and F18 being the most important ones.
For Test 3, F6, F10 and F13 were the top 3. An inter-
esting observation can be made about the similarity
in feature importance in Tests 2 & 3 and their extreme
contrast in performance with some features with Test
1 such as F10 or F13. Another interesting observation
is that the F13, Character Continuity Rate feature pre-
sented by (Lin et al., 2013) had the third least impor-
tance of all the other features in Test 1, while in their
experiment it ranked first. F9, the count of numbers in
the domain suffix was of no importance as there were
no numbers in any of our URL suffixes.

5 Discussion
The precision and recall rates achieved here are

good enough to indicate that the approach may be use-
ful in real-life scenarios. They may not be ideal for an
automated filtration system but can still provide a list
of possibly malicious URLs, narrowing the list down
and reducing the human input required to spot them.
The sole use of descriptive features in a single clas-
sification may not be the correct approach if the goal
is to achieve the efficiency levels required for an au-
tomated detection system to work. If the system had
reached higher efficiency levels, then that would mean
that the multi-lingual domain classification difficul-
ties mentioned by (Nikiforakis et al., 2014) would be
avoided. The purpose of selecting this specific ap-
proach was to further the trend of separate classifica-
tion of features seen in the literature by not consid-
ering lexical features. It is an essential step towards
understanding which groups of features work best to-
gether so that future developed multi-classifier sys-
tems are built knowing those relationships.

The detection of phishing URLs is more challeng-
ing than the detection of botnet C&C URLs as by
their nature, phishing domain names attempt to mir-
ror the appearance of benign domains. In retrospect,
this model could have been a better fit for detecting
randomly generated C&C domains as their randomi-
sation would lead to higher entropy values, longer
URLs and would have used a multitude of unique
characters and symbols. This would yield higher pre-
cision and recall rates which would, in turn, pro-
duce more accurate alerts once the model was “pub-
lished” in the Splunk search and reporting app. For
the detection of phishing domains, more focus should
have been given towards features explicitly targeting

the detection of squatting domains (Moubayed et al.,
2018).

This difference in feature importance between the
three tests as well as from other approaches in the lit-
erature suggests that the quality of the datasets used
can entirely change which features will be more crit-
ical for the classification. It is concerning how a fea-
ture such as F13, Character Continuity Rate, had so
little importance in the first experiment while in Tests
2 & 3 and in the literature (Mamun et al., 2016), it was
one of the most important. In the second approach
taken by (da Luz, 2014), their Shannon entropy fea-
tures are of similar importance to F15 and F16 in Test
1: high in 3LD and low in 2LD. However, in their first
approach, which used a different dataset, they differed
completely, with both features holding no importance.
The positive evaluation of the Unique Characters fea-
tures by (Moubayed et al., 2018), mirrored their per-
formance in the first test. The domains’ length and
symbol count features proved to be the most impor-
tant in Tests 2 & 3 but not the count of unique char-
acters; homograph spoofed and typosquatted domains
are the likely culprits responsible for this.

As demonstrated, it is possible to use the trained
model to make predictions against new data within the
Splunk Search and Reporting app. Though with the
current model, it would be ill-advised to do so as the
surge of false positive and false negative alerts gener-
ated would cause more harm than good. It would be
best, however, if a classifier with higher accuracy was
used.

5.1 Attacks against Machine Learning
The best method of evading detection from a ML al-
gorithm is to just use an expensive domain name,
meaning that a wealthy assailant can operate rela-
tively unhindered. For this reason, a lexical analysis
system should never be relied upon exclusively, but
should be incorporated into a larger system.

The ML system is at its most vulnerable during
training (Pitropakis et al., 2019), as that is where hu-
man error can thrive. If a malicious entry is included
in the benign training dataset then not only will that
particular entry not be detected later, but other mali-
cious URLs with similar characteristics may also es-
cape detection. A malicious entry in a whitelist (poi-
soning) has much more potential to cause damage
than a benign entry in a blacklist.

A creative adversarial approach to invalidate a ML
system and avoid detection would be to buy a swarm
of malicious names with similar features and asso-
ciate them with malicious activity. In time, after they
are included in blacklists because their similarities are
known to the adversary, it would be easier to select
domain names which would bypass detection as they

Figure 5: Feature importance comparison graph

would have a hand in the training. Although in a
smaller scale, this method would not have much ac-
curacy, it is always a possibility in a grandiose cyber-
warfare scenario. However, with so many resources,
it would be much easier to simply buy an expensive
domain.

6 Conclusions and future work
As adversaries keep inventing different means of

abusing the DNS, the only certainty is that Machine
Learning will continue to play a vital role in the future
of malicious URL filtering. In this work, the descrip-
tive features derived from a benign and malicious do-
main name datasets were used to make predictions on
their nature using the Random Forests and SVM algo-
rithms. The final precision and recall rates produced
when only using descriptive features and not consid-
ering host-based features were up to 85% and 87% for
Random Forests and up to 90% and 88% for SVM re-
spectively. Those results play a vital role in the under-
standing of the operational relationship between fea-
tures and thus contribute knowledge into the correct
grouping of features and the creation of multi-model
classifiers. The features were found to have signifi-
cantly different impact factors than some other cases
in the literature, proving the importance of placing
great care in the selection of training datasets. After
the model was finalised and fine-tuned, it was “pub-
lished” in the Splunk Search and Reporting app where
it was used against new data to generate alerts. This
was the final step toward the automation of the detec-
tion process. Scheduled training was also configured
using Splunk, furthering the system’s autonomy.

There are several research pathways which can be
undertaken to improve the performance of this sys-
tem, some being parallel to and some being stem-
ming from the existing literature. A great addition to

our methodology would be the use of a dataset com-
posed of real-world passive DNS data for the training
phase that would allow for the generation of more fea-
tures, thus leading towards the elimination of noise.
As we have a passive DNS infrastructure under devel-
opment, we plan in the near future to make use of a
higher volume of real-world data as training datasets,
which would lead to the further improvement of our
model.

REFERENCES

Alexa (2019). The top 1.000.000 sites on the web.
Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., and

Feamster, N. (2010). Building a dynamic reputation
system for dns. In USENIX security symposium, pages
273–290.

Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou, N., and
Dagon, D. (2011). Detecting malware domains at the
upper dns hierarchy. In USENIX security symposium,
volume 11, pages 1–16.

Bilge, L., Kirda, E., Kruegel, C., and Balduzzi, M. (2011).
Exposure: Finding malicious domains using passive
dns analysis. In Ndss, pages 1–17.

Blum, A., Wardman, B., Solorio, T., and Warner, G. (2010).
Lexical feature based phishing url detection using on-
line learning. In Proceedings of the 3rd ACM Work-
shop on Artificial Intelligence and Security, pages 54–
60. ACM.

da Luz, P. M. (2014). Botnet detection using passive dns.
Radboud University: Nijmegen, The Netherlands.

Darling, M., Heileman, G., Gressel, G., Ashok, A., and
Poornachandran, P. (2015). A lexical approach for
classifying malicious urls. In 2015 international con-
ference on high performance computing & simulation
(HPCS), pages 195–202. IEEE.

Feroz, M. N. and Mengel, S. (2015). Phishing url detection
using url ranking. In 2015 ieee international congress
on big data, pages 635–638. IEEE.

Fouchereau, R. and Rychkov, K. (2019). Global DNS
Threat Report Understanding the Critical Role of
DNS in Network Security.

Hirani, M., Jones, S., and Read, B. (2019). Global dns hi-
jacking campaign: Dns record manipulation at scale.
blog, Jan.

Jain, A. K. and Gupta, B. B. (2017). Phishing detection:
analysis of visual similarity based approaches. Secu-
rity and Communication Networks, 2017.

Khalil, I., Yu, T., and Guan, B. (2016). Discovering ma-
licious domains through passive dns data graph anal-
ysis. In Proceedings of the 11th ACM on Asia Con-
ference on Computer and Communications Security,
pages 663–674. ACM.

Kintis, P., Miramirkhani, N., Lever, C., Chen, Y., Romero-
Gómez, R., Pitropakis, N., Nikiforakis, N., and An-
tonakakis, M. (2017). Hiding in plain sight: A longitu-
dinal study of combosquatting abuse. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 569–586. ACM.

Krebs, B. (2018). The Year Targeted Phishing Went Main-
stream.

Kulczyński, S. (1928). Die pflanzenassoziationen der pieni-
nen. Imprimerie de l’Université.

Lam, I.-F., Xiao, W.-C., Wang, S.-C., and Chen, K.-T.
(2009). Counteracting phishing page polymorphism:
An image layout analysis approach. In International
Conference on Information Security and Assurance,
pages 270–279. Springer.

Lin, M.-S., Chiu, C.-Y., Lee, Y.-J., and Pao, H.-K. (2013).
Malicious url filteringa big data application. In 2013
IEEE international conference on big data, pages
589–596. IEEE.

López Sánchez, J. (2019). Métodos y técnicas de detección
temprana de casos de phishing.

Mamun, M. S. I., Rathore, M. A., Lashkari, A. H.,
Stakhanova, N., and Ghorbani, A. A. (2016). Detect-
ing malicious urls using lexical analysis. In Interna-
tional Conference on Network and System Security,
pages 467–482. Springer.

Marchal, S., François, J., State, R., and Engel, T. (2014).
Phishstorm: Detecting phishing with streaming ana-
lytics. IEEE Transactions on Network and Service
Management, 11(4):458–471.

Marchal, S., François, J., Wagner, C., State, R., Dulaunoy,
A., Engel, T., and Festor, O. (2012). Dnssm: A
large scale passive dns security monitoring frame-
work. In 2012 IEEE Network Operations and Man-
agement Symposium, pages 988–993. IEEE.

Moubayed, A., Injadat, M., Shami, A., and Lutfiyya, H.
(2018). Dns typo-squatting domain detection: A data
analytics & machine learning based approach. In 2018
IEEE Global Communications Conference (GLOBE-
COM), pages 1–7. IEEE.

Nikiforakis, N., Balduzzi, M., Desmet, L., Piessens, F., and
Joosen, W. (2014). Soundsquatting: Uncovering the
use of homophones in domain squatting. In Inter-
national Conference on Information Security, pages
291–308. Springer.

Okayasu, S. and Sasaki, R. (2015). Proposal and evalu-
ation of methods using the quantification theory and
machine learning for detecting c&c server used in a
botnet. In 2015 IEEE 39th Annual Computer Software
and Applications Conference, volume 3, pages 24–29.
IEEE.

Ollmann, G. (2004). The phishing guide–understanding &
preventing phishing attacks. NGS Software Insight Se-
curity Research.

OpenDNS, L. (2016). Phishtank: An anti-phishing site. On-
line: https://www. phishtank. com.

Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis,
E., and Loukas, G. (2019). A taxonomy and survey of
attacks against machine learning. Computer Science
Review.

Proofpoint (2018). THE HUMAN FACTOR: PEO-
PLE CENTERED THREATS DEFINE THE LAND-
SCAPE.

Rouse, M., Bedell, C., and Cobb, M. (2019). DEFINITION
phishing.

Sahingoz, O. K., Buber, E., Demir, O., and Diri, B. (2019).
Machine learning based phishing detection from urls.
Expert Systems with Applications, 117:345–357.

Spring, J. M. and Huth, C. L. (2012). The impact of pas-
sive dns collection on end-user privacy. Securing and
Trusting Internet Names.

Vergelis, M. and Shcherbakova, T. (2019). Spam and phish-
ing in Q1 2019.

Verizon (2018). 2018 Data Breach Investigations Report.
Verizon (2019). 2019 Data Breach Investigations Report.
Wardman, B., Warner, G., McCalley, H., Turner, S., and

Skjellum, A. (2010). Reeling in big phish with a deep
md5 net. Journal of Digital Forensics, Security and
Law, 5(3):2.

