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Abstract 

With the increased complexity of Very Large Scale Integrated (VLSI) circuits, 

Computer Aided Design (CAD) plays an even more important role. Top-down 

design methodology and layout of VLSI are reviewed. Moreover, previously 

published algorithms in CAD of VLSI design are outlined. 

In certain applications, Reed-Muller (RM) forms when implemented with 

AND/XOR or OR/XNOR logic have shown some attractive advantages over 

the standard Boolean logic based on AND/OR logic. The RM forms imple­

mented with OR/XNOR logic, known as Dual Forms of Reed-Muller (DFRM), 

is the Dual form of traditional RM implemented with AND /XOR. 

Map folding and transformation techniques are presented for the conversion 

between standard Boolean and DFRM expansions of any polarity. Bidirec­

tional multi-segment computer based conversion algorithms are also proposed 

for large functions based on the concept of Boolean polarity for canonical 

product-of-sums Boolean functions. Furthermore, another two tabular based 

conversion algorithms, serial and parallel tabular techniques, are presented for 

the conversion of large functions between standard Boolean and DFRM ex­

pansions of any polarity. The algorithms were tested for examples of up to 25 

variables using the MCNC and IWLS'93 benchmarks. 

Any n-variable Boolean function can be expressed by a Fixed Polarity 

Reed-Muller (FPRM) form. In order to have a compact Multi-level MPRM 

(MMPRM) expansion, a method called on-set table method is developed. 

The method derives MMPRM expansions directly from FPRM expansions. 

If searching all polarities of FPRM expansions, the MMPRM expansions with 

the least number of literals can be obtained. As a result, it is possible to find 

the best polarity expansion among 2n FPRM expansions instead of searching 

2n2n
-

1 
MPRM expansions within reasonable time for large functions. Further­

more, it uses on-set coefficients only and hence reduces the usage of memory 

dramatically. 
Currently, XOR and XNOR gates can be implemented into Look-Up Ta­

bles (LUT) of Field Programmable Gate Arrays (FPGAs). However, FPGA 
placement is categorised to be NP-complete. Efficient placement algorithms 

are very important to CAD design tools. Two algorithms based on Genetic 

Algorithm (GA) and GA with Simulated Annealing (SA) are presented for the 

placement of symmetrical FPGA. Both of algorithms could achieve compara­

ble results to those obtained by Versatile Placement and Routing (VPR) tools 

in terms of the number of routing channel tracks. 
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Chapter 1 

Introduction 

1.1 Motivation 

In order to reduce the complexity of design process in modern Integrated Cir­

cuit (IC) chips, the typical Computer Aided Design (CAD) system for very 

large scale integration design consists of several intermediate abstraction, such 

as logic synthesis, placement and so on. Hence, it enables designers to work 

progressively down from an abstract level of the design to the layout level. 

In the logic synthesis process, Reed-Muller (RM) representation has drawn 

increasing attention because the AND /XOR realisation of the circuits re­

quire less layout area than their AND/OR counterparts in many applica­

tions [6,101,102]. Furthermore, in some cases, AND/XOR PLAs require fewer 

product terms than AND/OR PLAs [100,120]. Therefore, methods for RM 

expansions are important alternatives to the traditional Canonical Sum-of­

Products (CSOP) and Canonical Product-of-Sums (CPOS) approaches to im­

plement Boolean functions. The RM forms offer designers the opportunity to 

optimise functions that are difficult to simplify in the standard Boolean domain 

1 
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and a large number of alternative representations. Canonical OR-Coincidence 

(COC) expansions [34,51,140]' where the Boolean function is expressed in 

OR/XNOR form, are also known as Dual Forms of Reed-Muller (DFRM) [61]. 

Appendix A shows how a 3-variable function f(X2, Xl, xo) can be better opti­

mised in the OR/XNOR forms. 

XOR/XNOR gates have the disadvantage of low speed and large area con­

sumption. As the Field Programmable Gate Array (FPGA) technology has 

made significant progress in recent years, XOR/XNOR gates can be imple­

mented into Look-up Tables (LUTs), resulting in XOR/XNOR gates that are 

as fast as other gates. 

FPGA was firstly introduced in 1985 [27]. In the past 20 years, FPGAs 

have gained increasing popularity in implementing low volume digital circuits. 

Particularly when the process geometry has shrunk to 90nm process technol­

ogy, the logic capacity has significantly increased up to 2.2 million Application 

Specific Integration Circuit (ASIC) gates in a single device and internal clock 

frequency rate has reached up to 500 MHz. Generic symmetrical FPGA ar­

chitecture consists of routing resources and configurable blocks [97], in which 

routing resources occupy 70-90% of FPGA area [23], therefore efficient Place­

ment and Routing (P&R) are essential. 

1.2 Research Objectives 

The objectives of the research are as follows. 

1. Develop various methods and algorithms for efficient conversion between 

standard Boolean and DFRM forms, 

2. Develop an efficient mapping method to find a good Multi-level Mixed 
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Polarity Reed-Muller (MMPRM) representation from Fixed Polarity Reed­

Muller (FPRM) forms, 

3. Symmetrical FPGA placement is studied and algorithms are developed 

and evaluated using Genetic Algorithm (GA) and GA with Simulated 

Annealing (SA). 

1.3 Thesis Organisation 

The rest of thesis is organised as follows. 

1. In Chapter 2, background information on VLSI design process, VLSI 

layouts and CAD system of FPGA design and algorithms are given. 

2. In Chapter 3, basic definition and terminology of COC expansions and 

transformation matrix of COC expansions are given. Also in Chapter 

3, two map techniques are presented for conversion between standard 

Boolean and COC expansions of any polarity. 

3. Chapter 4 proposes two algorithms for large functions to overcome the 

limitation of map techniques in Chapter 3. 

4. Chapter 5 proposes two tabular techniques, Serial Tabular Technique 

(STT) and Parallel Tabular Technique (PTT), for large functions. 

5. On-set table method is given in details in Chapter 6 for optimisation of 

MMPRM expansions. 

6. In Chapter 7 symmetrical FPGA placement algorithms are developed by 

using GA and GA with SA respectively. 

7. Conclusions and further work are then given in Chapter 8. 



Chapter 2 

Backgrounds 

2.1 VLSI Design Process 

The complexity of modern circuits is of the order of millions of transistors. 

Therefore the design of a VLSI circuit is understandably a complex task. In 

order to reduce the complexity of design process, several intermediate levels 

of abstractions are introduced. A top-down design methodology divides the 

whole design process into 6 phases, as shown in Figure 2.1. 

These phases are summarised as following: 

1. Design specification: 

Several important factors are to be considered, which are 

• the required performance of the system, 

• the architecture of the system, 

• the external interface and protocol, 

• the choice of manufacturing technology and 

• the available design tools 

4 
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Requirement 

Design 
specification 

Specification 

RTLdesign 

Behavioural 
representation 

Logic design 

Logic 
representation 

Circuit design 

Structural 
representation 

Physical design 

Physical 
representation 

Fabrication & 
Test 

Chip 

Figure 2.1: General overview of the levels of abstraction. 

Furthermore, attentions should be paid to the following issues: 

• the design methodology, 

• the cost of the design and 

• required time to complete the design 

5 
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2. Architectural design: 

At this level, the behaviour of the system is described in an abstract 

manner that ignores the low-level details needed. High level abstrac­

tions are commonly known as the Register-Transfer Level (RTL). RTL 

models describe the operation of the system without reference to specific 

components. 

3. Logic design: 

The logic representation that involves in translating the system blocks 

into a logic model is concerned. These representations are simulated at 

transistor, gate and register level. 

4. Circuit design: 

Logic is represented by basic circuit elements such as resistors, transis­

tors, capacitors and inductors. Transistors are sized to meet signal delay 

requirement. Analysis and timing verification are performed in this phase 

to meet signal delay requirement. 

5. Physical design: 

The structural representations are transformed into physical package rep­

resentation that is used in the fabrication of the system. This phase can 

be further subdivided into 4 steps, which are: 

• partitioning, 

• placement, 

• routing and 

• compaction 
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6. Fabrication and Testing: 

An actual Ie is fabricated using physical package representation. Then 

manufacturing errors, if any, are determined and eliminated. 

However, sometimes in order to achieve better performance, optimisation 

in several levels of abstraction are considered at the same time, for example a 

new technology called Wire Load Models (WLMs). They has been available 

since 1985 for wire load independent logic synthesis and timing closure. Born 

out of a need to account for the role of interconnect in delay, they have evolved 

over time to aid in the estimation of chip area and power. One of the princi­

ple advantages of the new technology is its ability to harmoniously merge low 

power and high performance goals. It minimises the coupling between the syn­

thesis and placement and routing stages. Significant improvements in design 

time and quality should be expected as a result of the faster timing optimisa­

tion compared to the combinatorial complexity of standard cell libraries. The 

one-step timing closure eliminates the design iterations allowing more time for 

improving the chip layout since timing closure has turned out to be the biggest 

challenge for high speed sub-micron designs. 

2.2 VLSI Layout 

The current VLSI layout approaches used to generate physical representations 

of circuits are: 

1. Full-custom, 

2. Gate-array, 

3. Standard-cell and 
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4. Macro-cell 

These various layout approaches can be grouped to three general categories 

[99,107]. 

1. The full-custom layout approach in which layout elements are hand­

crafted in any size and can be placed anywhere on the layout surface. 

2. The semi-custom layout approach which imposes some restrictions on 

the layout elements and surface in order to reduce the complexity of the 

layout tasks. 

3. Universal layout approach which are pre-constructed without any knowl­

edge of the circuit to be laid out in order to reduce the time of design 

cycle. 

2.2.1 Full custom layout 

In a full custom design, there are no restrictions on the size and the shape of 

the logic modules. These logic modules can be shaped to any size as needed, 

placed at any location of the surface of the chip board and connected in any 

path that designer wants, as seen in Figure 2.2. Note that the shapes, locations 

and orientations of logic modules are placed in arbitrary. And also note that 

the wires connected between logic modules have minimal constraints on their 

locations. 

With the flexibility of the full custom design layout style, a faster and 

smaller design that efficiently utilises all available spaces on the layout surface 

results. On the other hand, because of the lack of restrictions in full custom 

design, the automation complexity becomes extremely high even for a small 
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Logic module Wire 

Figure 2.2: Full custom layout. 

circuit. In addition, the physical construction of full custom design starts from 

scratch. It is therefore that large start-up costs are involved in full custom 

design and entire process is time consuming. As a result, full custom design is 

only used for the designs in which performance, speed and area, is of the utmost 

importance, or in which the circuits to be manufactured in large volumes to 

justify its extreme expense. 

2.2.2 Semi-custom layout 

In full custom design, since lack of constraints makes synthesis tools difficult to 

develop, the designer is responsible for layout optimisation and span all levels 

of abstraction. Therefore it is important to reduce the costs of design and time 

to market for some other applications without very high performance. With 

some sacrifice of speed or area, some restrictions can be imposed on the design 

in order to result in less complex automation than the full custom design does. 
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Figure 2.3: Gate array layout. (a) Floor plan of a gate-array. (b) A basic cell 
structure of a gate array. 

There are 3 semi-custom layout styles, standard cell layout, gate-array layout 

and macro cell layout [107], which are discussed in the following subsections. 

Gate array 

The gate-array also called Mask Programmable Gate Array (MPGA) is struc-

tured as a regular two-dimensional array of basic cells, as seen in Figure 2.3. 

Each basic cell consists of certain number of uncommitted transistors, which 

have already been prefabricated on a wafer, as seen in Figure 2.3 (a) . 

Initially the transistors in an array are not connected to one another. In 

order to realise a circuit on a gate-array, metal connections must be placed 

using the process of masking, which is called personalisation. There are typ-

ically four necessary masking steps in two layers of wiring, one each for the 

two metal layers and two contact layers. Personalisation involves two types 
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of interconnections. One is intra-cell wiring and the other is inter-cell wiring. 

Intra-cell wiring is carried out in a basic cell of a gate-array that implements 

small circuit module. For example, a two-input NAND gate can be imple­

mented by connecting a group of transistors in a basic cell of a gate array. 

Thus intra-cell wring is independent of the circuit being implemented on the 

gate-array. However, inter-cell wiring is carried out in the horizontal channels 

and vertical channels, as shown in Figure 2.3(b). 

Due to the limited routing space, if the connected basic cells are placed 

close together to avoid long inter-cell wiring, the track density of the channel 

will exceed its capacity. As a result, the local congestion makes the layout un­

routeable. Although routing phase is big challenge in the gate-array layout, it 

takes a very short time to get a gate-array chip fabricated because all the pro­

cessing other than personalisation is identical to all gate-arrays, regardless of 

the circuit to be implemented. 80 gate-array layout is suitable for prototyping 

and low-volume product. 

A special case of the gate array layout is when routing channels are virtually 

absent. As a result, the chip consists of a closely packed array of transistors. 

Wire must therefore be routed over the transistors. This kind of layout IS 

known as channel-less gate arrays and called sea-of-gates. 

Standard cell 

A standard cell, known also as a poly-cell, is a logic block that performs a 

standard function. Examples of standard cells are two-input NAND gate, 

two-input XOR gate, D flip-flop and so on. A cell library is a collection of 

information pertaining to standard cells. The relevant information about a 

cell consists of the name of the cell, its functionality, its pin structure and a 
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Figure 2.4: Standard cell layout. 

layout for the cell in a particular technology such as 0.35 I-lm CMOS cells in 

the same library have standardised layouts, that is, all cells are constrained to 

have the same height. 

In cell-based design, as shown in Figure 2.4, the layout is divided into 

several numbers of rows. Each row consists of cells placed next to each other. 

Since all the cells are pre-designed to have the same height, the height of a 

row is the same as the height of any cell in the row. The horizontal routing 

channels separate rows. Cells within the same row or cells from two facing rows 

can be interconnected by wire segment through the adjacent channel. If two 

cells in non-adjacent rows have to be connected, a more elaborate technique 

called feedthrough cell shown in Figure 2.4 is employed. 

One of the advantages of the standard cell layout is that because many of 

the cell functions are in common in many designs, the circuit design phase can 

be completed rapidly by the reuse of pre-designed cell library. Furthermore, 
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since cell layouts are already available, the consideration of a layout will only 

be the location of each cell and interconnection of the cells. Consequently, the 

routing phase is typically greatly simplified. However, the loss of flexibility 

leads to slower solutions and larger circuits than full custom design does. 

Macro cell 

Both gate-array design and standard-cell design impose restrictions on the cells 

that are used to design the circuit. These restrictions, on one hand, simplify 

the flexibility of layout in full custom design and also significantly reduce the 

design cycle. But on the other hand, the gate-array design prohibits structure 

other than standard digital logic; namely, more complex logic function such as 

memory and analogous elements cannot be implemented in gate-array layout. 

Standard cell design is less restrictive than gate-array, but it is still too expen­

sive to implement memory intensive functions such as RAMs and ROMs or 

regular functions such as datapaths and arithmetic logic units. The macro cell 

design fills in the gap. Since there is no restriction on size and shape of the cell 

in the macro-cell design, the cell can be designed to have efficient layout char­

acteristics for complex logic function. These cells can be accommodated in the 

library. Macro-cell design comes closest to full custom design. It is therefore 

placement and routing phase is much more difficult compared to gate-array 

design and standard cell design. 

2.2.3 Universal layout 

As mentioned above, the design process is very time consuming and costly in 

full custom design. Alternatively, the design can be implemented in the semi­

custom design with sacrifice of the speed and area efficiency to reduce time 
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cycle. But regardless of any alternative, there still exists time delay between 

the completion of the layout design and the physical completion of the circuit. 

Moreover, the layout can only be tested after physical completion ofthe circuit, 

which results in extra time delay. 

In the universal layout, the chip has already been fabricated. There is no 

delay between the completion of the layout design and the physical comple­

tion of the circuit at all, which leads a very efficient design cycle. The pro­

grammable components are placed in a uniform pattern. The routing channels 

are also pre-fabricated separately around programmable components, which is 

very similar to MPGA layout. The routing resources are even more limited 

than semi-custom design does. What the designer needs to do is to pick an 

appropriate device firstly, then interconnect routing recourses between pro­

grammable components to implement the logic function. But the designer has 

to face the challenge of assigning programmable components to the locations 

in which routing can be completed within limited routing resources and also 

minimising the length of connections. 

One typical example of universal circuitry is FPGA. FPGA have become 

very popular in industry because it is so economic to fabricate and has efficient 

design cycle. It is an ideal architecture for applications in which speed and area 

are not extremely important. And also it is ideal for prototyping circuit design. 

Because the test can be carried out before physical completion of the circuit, 

the different circuit designs can be carried out on the FPGA for design and 

testing. The selected design can then be implemented on a more sophisticated 

architecture. 
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2.3 CAD of FPGA Design and Algorithms 

In 1985 Xilinx Inc. introduced the first LUT based FPGA [27]. FPGAs 

are more flexible and complex than other programmable devices such as Pro­

grammable Logic Array (PLA) and Programmable Array Logic (PAL). With 

the rapid improvements in the performance and logic densities of the FPGAs, 

the number of applications where they can be used is increasing. Thus FPGAs 

are used to implement various complex logic circuits. 

The Xilinx FPGA [134,135] consists of Configurable Logic Blocks (CLBs) 

which typically contain either combinational or sequential logic circuit, In­

put/Output Blocks (lOBs) and routing resources such as wire segments and 

programmable switches. Programmable switches configure the wire segments 

between logic blocks and between CLBs and lOBs. In order to achieve efficient 

density and speed of FPGA, several CLBs are grouped together into one block 

called cluster-based CLB [81,82]. Compared with MPGAs, FPGAs have the 

following advantages: 

1. Lower Non-Recurring Engineering (NRE) charges incur. 

2. The product development time decreases substantially and enhancements 

and modifications are made much easier. 

3. The cost of change for a design is small and also errors in design can be 

easily corrected before physical completion of the chip. 

4. In circuit reprogramming for certain programming technology, is permit­

ted. 

FPGAs have some drawbacks that are summarised as follows. 
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1. FPGAs are roughly three times slower than MPGAs [23]. 

2. The logic density of an FPGA is about a factor of eight to twelve times 

less than that of MPGA [23] resulting in a lower yield per wafer. 

The typical CAD system for FPGAs, as illustrated in Figure 2.5 resem­

bles that in VLSI design, which consists of several intermediate abstractions 

summarised as follows. 

1. Logic synthesis: 

Boolean equations are optimised so as to optimise area, delay, power 

dissipation or a combination and converted to logic cells which can be 

implemented on an FPGA. 

2. Placement and routing: 

The specific location of logic blocks and I/O blocks on an FPGA are 

selected for each logic cell and then routing resources are utilised to 

connect those logic cells. In this phase, timing and routing constraints 

must be taken into consideration. 

3. Programming of the FPGA: 

On successful completion of the placement and routing, the programming 

unit configures an FPGA to implement the desired digital logic function. 

2.3.1 Logic optimisation 

The input to the CAD system is a functional description, which is usually 

expressed in standard Boolean equations and can also be represented in other 

forms such as schematic diagrams and Hardware Description Language (HDL). 
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The aim of logic optimisation is to optimise area, speed or a combination of area 

and speed by removing redundant logic expression or using another method 

representing equivalent Boolean equations. Because it does not consider the 

type of the element that will be used for target circuit, logic optimisation is 

also known as technology independent optimisation. 

Any n-variable Boolean function can be expanded by Shannon expansion 
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based on AND/OR operations as follows. 

!(Xn-l, Xn-2, ... ,xo) = xdx;=o + XdXi=l (2.1) 

where !Xi=O and !x;=l are called the cofactors of !(Xn-l, Xn-2, ... ,xo) with 

respect to Xi and 0 :::; i :::; n - 1. 

Various techniques used for logic optimisation were described in combi­

national logic [20-22,62]' sequential logic [14,117] and multi-level simplifica­

tion [122]. 

Alternatively, any Boolean function can be represented based on AND /XOR 

operations, which is called Reed-Muller expansion [90,96]. In contrast to (2.1), 

there are three basic expansions using AND /XOR operations, which are shown 

in (2.2) to (2.4). Equations (2.3) and (2.4) are called positive Davio expansion 

and negative Davio expansion respectively. 

!(Xn-l, Xn-2, ... ,xo) 

!(Xn-l, Xn-2,' .. ,xo) 

!(Xn-l, Xn-2, ... ,xo) 

XdXi=O EEl XdXi=l 

!X;=O EEl Xi (fxi=O EEl !Xi=l) 

!Xi=l EEl Xi (fxi=O EEl !Xi=l) 

(2.2) 

(2.3) 

(2.4) 

By using (2.3) and (2.4) for each variable in function !(Xn-l, Xn-2, ... ,xo), 

several classes of RM expansions [60,101] can be obtained and shown as follows. 

Fixed polarity Reed-Muller expansion 

If (2.3) is used recursively to function !(Xn-l, Xn-2, ... ,xo), an expression 

consisting of positive literals is obtained, in which all variables appear in true 

form. The expansion is called a Positive Polarity Reed-Muller (PPRM) expan­

sion. If (2.4) is used recursively to function !(Xn-l, Xn-2, ... ,xo), an expres­

sion consisting of negative literals is obtained, in which all variables appear in 
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complemented form.· The expansion is called a Negative Polarity Reed-Muller 

(NPRM) expansion. If either the type (2.3) or the type (2.4) expansion is 

applied to each variable, FPRM expansion can be obtained, in which variables 

appear in true form or complemented form but not both. PPRM and NPRM 

expansions are the special cases of the FPRM expansions. 

Kronecker expansion 

When either type (2.2), (2.3) or (2.4) expansion is applied to each variable, an 

expression is called a Kronecker (KRO) expansion, which is more general than 

FPRM expansion. Kronecker expansions may be termed mixed polarity RM 

expansions as each expansion variable may appear in both true and comple­

mented forms throughout an expression and must be present in each product 

terms. A KRO expansion is constructed from an initial switching function by 

expanding the function for each variable using one of the expansions given in 

(2.1) to (2.4). There are 3n possible variations of these three equations. As a 

result, any n-variable switching function can be represented by a total of 3n 

KRO expansions, each of which is a canonical form. 

Each KRO expansion may be identified by means of a polarity number P, 

o :S P :S 3n - 1. The polarity number is the decimal equivalent of the ternary 

n-tuple < PnPn - 1 •.. PI >, where Pi is replaced by 0 if Xi is present throughout 

the KRO expansion, and replaced by 1 if Xi is present in the expansion. If the 

variable is present in both true and complemented forms, namely, Xi and Xi, 

then Pi is replaced by 2. The FPRM expansions will correspond to all polarity 

numbers whose ternary forms consist of only "O"s and "1"s. 
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Example 2.1. Given n = 4 and P = 75, hence P = 75 =< 2210 > 

P3 = 2 :::} X3, X3 

P2 = 2 :::} X2, X2 

PI = 1 :::} Xl 

Po = 0 :::} Xo 

Pseudo Kronecker expansion 

\iVhen either type (2.2), (2.3) or (2.4) expansion is applied to j, two sub­

functions are obtained. A more general expansion than a KRO expansion is 

obtained when either type (2.2), (2.3) or (2.4) expansion is applied to each 

sub-function, assuming that different expansions for each sub-function is used. 

This is called a Pseudo Kronecker (PSDKRO) expansion. There are 32n
-

l 

possible variations of PSDKRO expansions. 

Pseudo Reed-Muller expansion 

When either type (2.3) or (2.4) expansion is applied to j, two sub-functions 

are obtained. A more general expansion than a FPRM expansion is obtained 

when either type (2.3) or (2.4) expansion is applied to each sub-function, as­

suming that different expansions for each sub-function is used. This is called a 

Pseudo Reed-Muller (PSDRM) expansion. There are 22n-l different PSDRM 

expansions. 

Generalised Reed-Muller expansion 

If the polarities of the literals are chosen freely in FPRM expansion, a more 

general expression than a FPRM is obtained, which is called a Generalised 

Reed-Muller (GRM) expansion. There are 2n2n
-

l GRM expansions. 
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Exclusive-OR sum-of-products expansion 

The most general AND-XOR expression is Exclusive-OR Sum-of-Products 

(ESOP) expansion if arbitrary product terms are combined by XORs. There 

are up to 3M GRM expansions, where T is the number of the products. 

Rather than using standard Boolean representation, various methods in 

Reed-Muller representation were also proposed. A coefficient map method 

was introduced for mapping coefficients of a possible polarity RM expansion 

to find the minimum fixed polarity solution without undertaking exhausting 

search of all possible expansions [125]. An efficient computer method based 

on coefficient maps to generate all 2n sets of generalised RM coefficients of 

an n-variable Boolean function [17]. Almaini presented a tabular method for 

generating FPRM expansions for a given polarity vector from CSOP expan­

sions [5]. Tabular techniques were also reported for mixed polarity RM such 

as KRO expansions in [10,87] and PSDRM expansions [70]. Other methods 

based on tabular technique were presented in [86,108,140]. 

A coefficient matrix method [66] was presented by Harking for the construc­

tion of polarity coefficient matrix of RM expansions without matrix multiplica­

tion. The advantage of this method is that the computation of the coefficients 

of RM expansion for a given polarity is possible without construction of the 

whole matrix, resulting in less memory storage. Lui and Muzio [80] identi­

fied fixed polarity modulo-2 canonical expansions and fixed-biased modulo-2 

canonical expansions. Algorithms which perform fast matrix transforms were 

presented and employed to derive fixed polarity and fixed basis expansions 

efficiently. Other coefficient-matrix methods were reported in [65,66,79]. 

Falkowski and Chang [49] presented an low complexity and non-exhaustive 

algorithm for finding optimal FPRM expansions of logic functions using Walsh 
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spectra of logic function to provide information on polarity matrices of FPRM 

expansion. Falkowski and Perkowski [50] presented a technique, in which each 

product term of the initial disjoint Sum-of-Products (SOP) expression is ex­

panded to represent the equivalent product terms of the given polarity FPRM 

expression. Duplicate product terms must then be located and deleted before 

the final FPRM expression is realised. 

Graph-based algorithm such as Ordered Binary Decision Diagram (OBDD) 

and Ordered Function Decision Diagram (OFDD) methods have been proposed 

for the optimisation of RM expansions [42,43,95,111]. However, the size of the 

graph representation of the function is highly sensitive to the variable ordering. 

To find the optimal variable ordering for a Binary Decision Diagram (BDD) 

that minimises the size of the graph is an NP-complete problem due to the 

larger number of permutations involved. 

Other methods were proposed for optimisation of FPRM expansions m 

[11,69,89,112,115,118,136] and more recently in [109,119,121,128,130] and 

Mixed Polarity Reed-Muller (MPRM) expansions in [16,40,120,131,133,136]. 

In addition, an Ie chip can be designed for the optimisation of generalised 

FPRM expansions [13]. 

2.3.2 Technology mapping 

After the Boolean equations have been optimised, the optimised network is 

then fed to a program called technology mapping, which transforms Boolean 

network to a certain internal form and then uses an internal optimisation 

function to group simple logic functions together into logic blocks that can 

be placed onto FPGA logic blocks. As it performs optimisation that is di­

rectly dependent upon the particular technology, e.g., technologies used be-
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tween LUT-based FPGA and multiplexer-based FPGA are different. This is 

also referred to as a technology dependent optimiser. The technology mapping 

is responsible for minimising either the total number of logic cells required to 

realise the desired functionality, i.e. area optimisation, or the number of logic 

cells in time-critical paths, i.e. delay optimisation, and also determining the 

distribution of pins for each net. As a result, the overall quality of an electronic 

design automation system depends heavily on the optimisation function used 

by the technology mapping. Some early technology mapping algorithms can 

be found in [32,35,36,52-54,124]. And more recent works [37,38,67,72,98] 

have been published in the literature. 

2.3.3 Placement 

Upon completion of the technology mapping phase, the network of logic func­

tion is in a particular format of FPGA logic block, then those logic blocks are 

assigned a particular place on a FPGA. Part of the goal of placement is to 

predict the quality of the final routing result so as to improve the rout ability 

and performance of final routing. The aim of the P&R tool in an FPGA is to 

utilise prefabricated programmable routing switches and routing channels in 

an FPGA as less as possible to achieve 100% successful P&R. FPGA placement 

is categorised to be NP-complete. Numerous methods have been proposed to 

solve placement problem such as GA, SA and so forth. 

Traditionally, researches on placement can be classified into two categories: 

1. Partitioning based placement, such as bi- and quadri- section min cut, 

2. Iterative search strategies, such as SA and GA. 

The partitioning based placement tools cuts chip area into two sections. 
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The process is applied recursively to each partition until the area is small 

enough to complete the placement easily. 

Simulated annealing is a heuristic based algorithm that is analogous to the 

annealing process in metals. Initially, the temperature is set to a high value 

so that all moves that result in a reduction in cost are accepted and then the 

temperature is gradually reduced to zero. For each temperature, two blocks 

are randomly selected first to generate new positions and then interchanging 

their positions. The moves that result in a reduction in cost are accepted. 

On the other hand, some of the moves that lead to increase in cost are also 

accepted. The probability of acceptance of moves that result in an increase in 

cost depends on the increase in cost and the temperature. At high temperature, 

the probabilities of acceptance of moves that increase the cost are high. As the 

temperature gradually decreases, the moves that result in increase in the cost 

therefore have less chance to be accepted. Ultimately, at very low temperature 

or even zero temperature only moves that result in reduction in the cost are 

accepted. 

SA has achieved a tremendous success in solving VLSI/CAD problems after 

rigorous mathematical models were formulated to explain the behaviour of the 

algorithm and how to select the proper tuning parameters [84]. However, the 

main disadvantage of simulated annealing is that the best results are obtained 

by tuning many controlling parameters [106]. Moreover, SA requires a large 

amount of CPU time and memory. 

The widely used and highly successful placement tool for standard cell 

TimberWolf package [104] and symmetrical FPGA Versatile Placement and 

Routing (VPR) package [18,83] are all based on the SA. Recently developed 

fast FPGA placement techniques [44,45] are still based on SA. 
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The other powerful search strategy, genetic algorithm, is also widely used 

recently, which works by emulating the natural process of evolution as a mean 

of progressing towards the global optimum. 

2.3.4 Global routing 

Although several levels of abstraction are introduced to reduce the complexity 

of design, the complexity of routing phase is still very high. To further reduce 

the complexity in the final routing phase, global routing is sometimes used 

before detailed routing. As is known, the routing resources are already prefab­

ricated and very limited in the FPGA. In order to achieve less expensive and 

faster implementation, global routing tries to balance the channel congestion 

and minimize the channel density, and also reduce the propagation delay for 

each net. Note that in global routing the exact wire segments are not chosen 

yet. Techniques for independent global routing has been published in the lit­

erature [28,29,74,110]. However, there are many CAD tools [1,2,18,30] that 

perform placement and global routing simultaneously. 

2.3.5 Detailed routing 

In detailed routing, each net is assigned to a particular wire segment within a 

given channel. Only when every net is fit into given width channel of FPGA, 

detailed routing is successful. As we have known, connections between wire 

segments are made by "fusing" the programmable switches. The programmable 

switches consume significant area of FPGA. In order to achieve area efficiency, 

none of architecture of switch block and architecture of connection block is 

made universal connection. In addition, the architecture of switch block and 

architecture of connection block are taken into consideration neither in the 
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placement phase nor global routing phase. Therefore, some of the wire seg­

ments within a given channel, which is made from global routing phase, are 

impossible to be connected through the switch block and connection block. De­

tailed routing then will adjust channel width predicated in the global routing 

to achieve successful routing. 

Given same channel width and architecture, some FPGA designs may only 

have a very limited number of ways or even only one way to connect all of 

the nets, while some other designs may have significant number of ways to 

connect all of the nets within sparse routing resources. The primary concern 

in the routing phase of FPGA design is to find a complete routing that legally 

connects all nets to realise logic functionality. When a complete routing of 

the nets can be accomplished in various ways, other performance criteria then 

become important. 

A smaller FPGA with a small channel width is typically less expensive and 

has better performance than a larger FPGA. Detailed routing aims mainly to 

minimise the overall channel width required to route all nets. Because of the 

large parasitic capacitance and resistance of programmable switches, it takes 

significant amount of time to propagate a signal from the source of the net 

to its most distant sink. Furthermore, a net that is spread out across the 

entire FPGA typically takes longer to realise its functionality than a net with 

a smaller length. To achieve high performance of FPGA design, minimisation 

of the net length of the various nets or the delay of the net becomes essential. 

Numerous notable routing algorithms have been proposed to achieve suc­

cessful routing including the CGE router [24] and the SEGA Router [73], one 

two-step router [74], the graph-based router [2], auction-based Quark [85] and 

timing-driven router [31]. 
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2.4 Genetic Algorithms 

G A is a search technique based on the mechanisms of natural genetics and 

natural selection [56], which incorporates a simulation of evolution as a search 

heuristic when finding a good solution. It operates on a population of indi­

viduals that are coded and called chromosomes in the search space instead of 

one solution. Each individual has some fitness value and is measured by an 

evaluation function termed fitness function. The approach of the algorithm is 

to explore the search space and to discover better solutions by allowing the 

individuals to evolve over time termed generations. The GA uses these in­

dividuals in the generation to produce a new generation of hopefully better 

solutions. In each generation, two of the individuals are selected probabilis­

tic ally as parents, with the selection probability proportional to their fitness. 

It is therefore a fitter individual, i.e. possibly containing some useful features, 

has a higher probability of propagating itself. Crossover with high probability 

is then performed on these two individuals to generate two new individuals 

called offspring, by changing parts of their structure. As a result, each off­

spring inherits a combination of features from both parents. This enables the 

GA to tryout various features in different combinations and see whether the 

individuals still retain their fitness. 

Mutation with small probability is then performed to explore new features 

that may not be in the population yet. After mutation on an individual, 

it not only has just the combination of the features inherited from its two 

parents, but also incorporates this additional change caused by mutation. This 

ensures the GA does not converge to local optimum. The main advantage 

lies in the robustness of search and problem independence [56]. Therefore, it 

has been successfully applied to many optimisation problems such as FPGA 
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placement [137,138], Reed-Muller Binary Decision Diagram (RMBDD) [7,9,12, 

111], Finite State Machine (FSM) [129,132]' state assignment [8,126], evolvable 

hardware [3,4], compact test pattens for decision diagram [26], minimisation 

of FPRM expansions [41,42,89,136]' minimisation of MPRM expansions [111], 

standard cell placement [78,84,104-106]' macro cell placement [46,48,84,103]' 

ratio-cut partitioning problem on hyper-graphs [25], channel routing [55, 75-

77,91-94], switch-box routing [77], over-the-cell routing [57,59], power driven 

over-the-cell routing [58]. 

The GA has to evaluate the population of individuals in every generation 

which results in long CPU time, especially in the later part of the process. 

Simulated annealing, which mimics the annealing process in metal, is also a 

widely used technique because of its fast convergence. A combination of the 

GA and simulated annealing algorithms were reported for traveling salesman 

problem [143], macro cell placement [47], non-slicing floorplan design [71] and 

symmetrical FPGA placement [139,141]. 

2.5 Summary 

In this chapter, top down design methodology and existing full custom and 

semi custom layouts of VLSI design process are illustrated. FPGA design has 

its own design flow, which is very similar to that of VLSI design. Optimisation 

algorithms for each level of abstraction are reviewed. Moreover, because GA as 

one of evolutionary computation algorithms is one of main research objectives, 

the procedure of standard GA is given and the various applications in VLSI 

design based on G A are reviewed as well. 



Chapter 3 

Map Techniques for Dual Forms of 

RM Expansions 

3 .1 Introduction 

In logic synthesis, there are some circuits that can not be minimised in the 

standard Boolean domain, but might be optimised well in the Reed-Muller 

forms. Reed-Muller forms increase the search space of optimisation. Exten­

sive research had been carried out in the Reed-Muller forms based on the 

AND/XOR logic. However, sometimes the circuits can be better simplified 

in dual forms of Reed-Muller implemented in OR/XNOR logic, as shown in 

Appendix A. The dual forms of RM expansion is based on the features of 

coincidence operation. Hence the expansion is referred as Canonical OR Co­

incidence expansion. In this chapter, graphical techniques are presented for 

conversion between standard Boolean and fixed polarity COC expansions of 

any polarity. The rest of the chapter is organised as follows. In Section 3.2, 

the basic definitions and preliminary of fixed polarity COC expansions are 

29 
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given. The transformation matrix of fixed polarity COC expansions is given 

in Section 3.3. Map techniques using CPOS maxterms and CSOP minterms 

for conversion of fixed polarity COC expansion of any polarity are shown in 

Section 3.4. 

3.2 Preliminaries 

3.2.1 Basic definitions 

Definition 3.1. aj, Cj and dj are coefficients of CSOP, CPOS and COC ex­

pansions respectively, where 0 ::; j ::; 2n - 1. 

The COC expansion is based on the XNOR and OR operations. The XNOR 

has the following properties: 

080 1 

081 0 

180 0 

181 1 
(3.1) 

x8x 1 

x81 x 

x80 x 

x8y x8fj 

From (3.1), it can be seen that the XNOR operation result is 0 when the 

number of zeros is odd otherwise the XNOR operation result is 1. 
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Definition 3.2. TJ = 0 IT~:;l Cj, where 0 IT is the XNOR operator, Cj E 

{O, I}. The number of "O"s involved in the calculation of TJ is denoted by cjJ(TJ). 

For example, cjJ(TJ) = 3 if TJ = 1808080, and TJ = 0 because cjJ(TJ) = 3 is odd 

number. 

Definition 3.3. The Kronecker matrix sum is defined as 

+ I 

An 

A21 

A(X-l)l 

AXI 

Bn 

B21 

B(x-l)l 

Bxl 

An + Bn 

A11 + Bxl 

AXI + B11 

AXI + Bxl 

A12 

A22 

A(x-l)2 

Ax2 

B12 

B22 

B(x-l)2 

Bx2 

An + B 1y 

A11 + Bxy 

AXI + B 1y 

AXI + Bxy 

A1(y-l) 

A 2(y-l) 

A(x-l)(y-l) 

Ax(y-l) 

B1(y-l) 

A 2(y-l) 

B(x-l)(y-l) 

Bx(y-l) 

A 1y 

A 2y 

A(x-l)y 

Axy 

B 1y 

B 2y 

B(x-l)y 

Bxy 

A 1y + Bn 

A 1y + Bxl 

Axy + B11 

Axy + Bxl 

where + represents Kronecker matrix sum. 

(3.2) 

A 1y + B 1y 

A 1y + Bxy 

Axy + B 1y 

Axy + Bxy 
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Definition 3.4. The matrix multiplication is defined as 

An A12 A1(y-l) A 1y 

A21 A22 A 2(y-l) A 2y 

8 

A(x-l)l A(x-l)2 A(x-l)(y-l) A(x-l)y 

AXI Ax2 Ax(y-l) Axy 

Bn B12 B1(y-l) B 1y 

B21 B22 A 2(y-l) B 2y 

B(X-l)l B(x-l)2 B(X-l)(y-l) B(x-l)y 

Bxl Bx2 BX(y-l) Bxy 

(An + Bn) 8 ... 8 (AlY + B x1 ) (An + B 1y ) 8 ... 8 (A1y + Bxy) 

(A21 + Bn) 8 ... 8 (A2y + Bxd (A21 + B 1y) 8 ... 8 (A2y + Bxy) 

(Axl + Bn) 8 ... 8 (Axy + B x1 ) (AXI + B 1y ) 8 ... 8 (Axy + Bxy) 

(3.3) 

where 8 represents matrix multiplication based on XNOR and OR operations. 
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Example 3.1. Use matrix multiplication based on XNOR and OR operations. 

o 1 1 1 I I Z3 (0 + Z3) 0 (1 + Z2) 0 (1 + Zl) 0 (1 + zo) 

o 0 1 1 I Z2 (0 + Z3) 0 (0 + Z2) 0 (1 + Zl) 0 (1 + zo) e -

00011 Zl (0 + Z3) 0 (0 + Z2) 0 (0 + Zl) 0 (1 + zo) 

o 0 0 0 I I Zo (0 + Z3) 0 (0 + Z2) 0 (0 + Zl) 0 (0 + zo) 

z3010101 Z3 

Z3 0 Z2 0101 Z3 0 Z2 
-

Z3 0 Z2 0 Zl 01 Z3 0 Z2 0 Zl 

Z3 0 Z2 0 Zl 0 Zo Z3 0 Z2 0 Zl 0 Zo 

3.2.2 CSOP minterms, CPOS and COC maxterms 

Given a truth table for a Boolean function, two standard algebraic forms of the 

function can be derived, namely CSOP form and CPOS form. CSOP form is 

in Disjunctive Canonical Form (DCF) and known as minterm expansion while 

CPOS form is in Conjunctive Canonical Form (CCF) and known as maxterm 

expansion. 

Any n-variable Boolean function can be represented in either CSOP or 

CPOS expansion form. The CSOP expansion is shown as 

2n-1 

!(Xn-l, ... ,Xl, Xo) = L ajmj 
j=O 

(3.4) 

where I: is the OR operator, mj is the minterm and 0 :s; j :s; 2n-1 . aj E {O, 1} 

and "l"s indicate the presence of the corresponding CSOP minterms in the 

expansion, known as on-set CSOP minterms. There are 2n CSOP minterms 
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for an n-variable function. Minterm mj can be expressed as 

mj = Xn-l ... xdo (3.5) 

{

Xi 
/ -

Xi -

Xi 

ji = 0 
(3.6) 

ji = 1 

where Xi is the complemented form of Xi , ji is the ith bit of j, j is in the 

binary form and 0 :s; i :s; n - 1. 

The CPOS expansion is shown as 

2n-1 

f(Xn-I,'" ,Xl, Xo) = II (Cj + 1I1j ) 

j=O 

(3.7) 

where II is the AND operator, Nlj is the maxterm and 0 :s; j :s; 2n - l. 

Cj E {O, 1} and "O"s indicate the presence of the corresponding CPOS maxterms 

in the expansion, known as on-set CPOS maxterms. There are 2n CPOS 

maxterms for an n-variable function. Maxterm 1I1j can be expressed as 

L£ / / / 
lVlj = Xn-l + ... + Xl + Xo (3.8) 

/ _ { Xi 
Xi -

Xi 

ji = 1 
(3.9) 

ji = 0 

where Xi is the complemented form of Xi , ji is the ith bit of j, j is in the 

binary form and 0 :s; i :s; n - 1. 
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Equation (3.7) can be rewritten in fixed polarity eoe expansion form as 

2n-1 

f(Xn-I,··· ,Xl, Xo) = 0 II (d~ + Sj) (3.10) 
j=O 

where Sj is the eoe maxterm, ~ E {O, 1}, 0::; j,p::; 2n -1 and "O"s indicate 

the presence of the corresponding eoe maxterms in the expansion, known as 

on-set eoe maxterms. The superscript p of d stands for the number of polarity 

of the fixed polarity eoe expansion. For simplicity, dj is used instead of dJ if 

the polarity is zero. There are 2n eoe maxterms. The eoe maxterm Sj can 

be expressed as 

S ' " j = Xn-l + ... + Xl + Xo (3.11) 

{ 

0 , -
X· -t _ 

Xi 

ji = 1 
(3.12) 

ji = 0 

where ji is the ith bit of j, j is in the binary form and Xi can be in the true 

form or complemented form but not both. 

Definition 3.5. For a given n-variable Boolean function f(Xn-I,··· ,Xl, xo), 

there are 2n fixed polarity eoe expansions. Accordingly the function is no­

tated as f(Xn-l, ... ,Xl, xo). When each Xi appears in true form, the polarity 

is called zero polarity or positive polarity. When each Xi appears in comple-

mented form, the polarity is called 2n - 1 polarity or negative polarity. For 

a 3-variable function f(X2' Xl, xo), f(X2, Xl, Xo) is polarity 0, f(X2' Xl, xo) IS 

polarity 1, f(X2' Xl, Xo) is polarity 6, f(X2, Xl, Xo) is polarity 7 and so on. 
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X1XI X1XI 

" 
aO al a3 aZ do d1 d3 dz 

a4 as a7 a6 d4 ds d7 d6 

~ ~ 

(a) (b) 

Figure 3.1: Coefficients maps. (a) A 3-variable Cj map of CPOS expansion, 
(b) A 3-variable drcoefficient. map. 

3.2.3 Map folding technique for positive polarity using 

maxterms 

The COC expansion can be obtained from CPOS expansion by using map 

folding technique [34]. The map used in the COC expansion is referred as dj 

map [34] in contrast with bj map of the Reed-Muller expansion [125]. 

Example 3.3. Obtain the positive polarity COC expansion by using maxterm 

map folding technique for a 3-variable function f(X2' Xl, xo) = (X2 + Xl + 

XO)(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo). 

The Cj and dj coefficient map can be drawn as shown in Figure 3.1(a) and 

Figure 3.1 (b) respectively. The on-set CPOS maxterms for a given function 

are obtained as f(X2, Xl, Xo) = [1(0,2,5,6) , as shown in Figure 3.2(a). 

Step 1: 

Fold the map along the X2 border (i.e. X2 = 1 is folded on X2 = 0) and 

XNOR the contents of section X2 = 0 ofthe map. Section X2 = 1 is not affected 

by the XNOR operation, as shown in Figure 3.2(a), and then unfold the map. 

Step 2: 

Repeat Step 1 for the remaining variables, as shown in Figure 3.2(b) and 

Figure 3.2(c). 
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Example 3.2. When n = 3, f(X2, Xl, Xo) can be represented by CPOS expan-

slOn as 

f(X2, Xl, xo) (co + X2 + Xl + XO)(CI + X2 + Xl + xo) 

(C2 + X2 + Xl + XO)(C3 + X2 + Xl + xo) 

(C4 + X2 + Xl + XO)(C5 + X2 + Xl + xo) 

(C6 + X2 + Xl + XO)(C7 + X2 + Xl + xo) 

If all the variables appear in complemented form, the negative polarity 

(polarity 7) COC expansion is given as follows. 

f(X2' Xl, xo) (db + So) 8 (di + Sd 8 (d~ + S2) 8 (d~ + S3) 

8(d~ + S4) 8 (d~ + S5) 8 (d~ + S6) 8 (d~ + S7) 

SO X2 + Xl + Xo 

Sl X2 + Xl 

S2 X2 + Xo 

S3 X2 

S4 Xl +Xo 

S5 Xl 

S6 Xo 

S7 0 
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xx xx 
j 0 00 01 11 10 ... j 0 

.... , 

I 0 I 1 I 1 I : I \0 
o 

0 0 1 1 

1 0 1 0 

o 

(a) (b) 

XjXO XjXO 

.... , r .... 
0 0 1 1 

0 0 1 0 
. 

1:1~1~ 
~ 

(c) (d) 

Figure 3.2: Map folding technique for positive polarity using maxterms. (a) 
Folding the map along the X2 border, (b) Folding the map along the Xl border, 
(c) Folding the map along the Xo border, (d) Final coefficients map. 

X,X 

Xz+Xj+Xo Xz+Xj Xz Xz+Xo 

Xj+Xo Xj 0 Xo 

Figure 3.3: A 3-variable COC expansion of dj coefficients map. 

Step 3: 

Read the "O"s from the map as shown in Figure 3.2(d), f(X2, XI, xo) = 

o I1(1, 5, 6) is obtained. Compared the 3-variable dj map shown in Figure 

3.2(d) and Figure 3.3, the positive polarity COC expansion is therefore ob-

tained as 

f(X2, Xl, xo) = (X2 + Xl) 0 Xl 0 Xo 
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3.3 Transformation Matrix for COC Expansions 

One way to generate the transformation matrix for positive polarity COC 

expansion is to derive it from the transformation matrix for RM [34]. It requires 

the transpose of RM matrix and the replacement of the elements of RM matrix 

by changing the "O"s to "l"s and "l"s to "O"s. As a result, large computation 

is involved especially when the number of variables is large. However, there is 

another easy way [61]. 

Corollary 3.1. The relationship between Cj coefficients of CPOS expansion 

and dj coefficients of positive polarity CDC expansion is 

d = [Tnl8c (3.13) 

where C = [C2n-l ... Cl colt, d = [d2n-l ... dl dolt and 

[ 

Tn-l 1 ] 

Tn - l Tn - l 

(3.14) [Tn] 

[TIl [ : ~ ] (3.15) 

Proof. Considering the features of the coincidence operation, Kronecker matrix 

sum and matrix multiplication, equation (3.7) can be rewritten as 

f(xn-l, ... ,Xl, Xo) = {[Xn-l Xn-l] t ... t [Xl xil t [Xo xo]}8c (3.16) 

Because Xi = 00 Xi and Xi = 10 Xi, [.Xi X;] = [0 Xi[El [ : : ]. 
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Let [ : ~ ] = [1)], 

!(Xn-l, ... ,Xl, Xo) = {{[O Xn-l] 8 [TIl} + ... + {[O Xl] 8 [TIl} 

+ {[O Xo] 8 [TIl} }8e 

- {{[O Xn-ll+ .. · + [0 XIl+ [0 xol} 

8{[TI] + ... + [TIl} }8e , ~ 

v 

n 

40 

(3.17) 

(3.18) 

Equation (3.10) for n-variable positive polarity eoe expansion can be 

rewritten as 

!(Xn-l, ... ,Xl, Xo) = {[O Xn-l] + ... + [0 Xl] + [0 xol}8d (3.19) 

Because (3.16) and (3.19) are equal, 

{[O Xn-l] + ... + [0 Xl] + [0 xol}8d = {[O Xn-l] + ... + [0 Xl] + [0 xol} 

8{[TI] + ... + [TIl} }8e 
" v __ J 

n 

As a result, 

d = {ITI] + . ~ . + [TIl} 8e 

n 

Hence, d = [Tn]8e, where 

[ 
Tn-l 1 ] { } [Tn] = = JTIl+' ~. + [TIl 8e 
Tn - l Tn - l 

n 

D 
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Example 3.4. Given a 3-variable f(X2' Xl, Xo) function, derive the relation­

ship between Cj coefficients of CPOS expansion and dj coefficients of positive 

polarity COC expansion. 

The 3-variable function f(X2' Xl, xo) can be rewritten as in the following 

two equations. 

f(X2' Xl, xo) 

f(X2, Xl, xo) 

{[O X2]t [0 XI]t [0 xo]}8d 

{[O Xl X2 X2 + Xl] + [0 xo]}8d 

{[O Xo Xl Xl + Xo X2 X2 + Xo 

X2 + Xl X2 + Xl + xo]}8d 

(d7 + 0) 8 (d6 + xo) 8 (d5 + Xl) 

8(d4 + Xl + xo) 8 (d3 + X2) 8 (d2 + X2 + xo) 

8(dl + X2 + Xl) 8 (do + X2 + Xl + xo) 

{[X2 X2] + [Xl Xl] + [xo xo]}8c 

{[X2 + Xl X2 + Xl X2 + Xl X2 + Xl] + [Xo xo]}8c 

{[X2 + Xl + Xo X2 + Xl + Xo X2 + Xl + Xo 

X2 + Xl + Xo X2 + Xl + Xo X2 + Xl + Xo 

X2 + Xl + Xo X2 + Xl + xo]}8c 

(C7 + X2 + Xl + xo) 8 (C6 + X2 + Xl + xo) 

8(C5 + X2 + Xl + xo) 8 (C4 + X2 + Xl + xo) 

8(C3 + X2 + Xl + xo) 8 (C2 + X2 + Xl + xo) 

8(CI + X2 + Xl + xo) 8 (co + X2 + Xl + xo) 



3.3 Transformation Matrix for COC Expansions 

Thus 

C7 = 1 (111) = d7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 = d7 

C6 = 1 (11 0) = d7 8 d6 8 1 8 1 8 1 8 1 8 1 8 1 = d7 8 d6 

C5 = 1(101) = d7 8 1 8 d5 8181818181 = d7 8 d5 

C4 = 1 (100) = d7 8 d6 8 d5 8 d4 8 1 8 1 8 1 8 1 = d7 8 d6 8 d5 8 d4 

C3 = 1 (011) = d7 8 1 8 1 8 1 8 a3 8 1 8 1 8 1 = d7 8 d3 

C2 = 1 (010) = d7 8 d6 8 1 8 1 8 d3 8 d2 8 1 8 1 = d7 8 d6 8 d3 8 d2 

Cl = 1(001) = d7 818 d5 818 d3 8 18 d1 81 = d7 8 d5 8 d3 8 d1 

Co = 1(000) = d7 8 d6 8 d5 8 d4 8 d3 8 d2 8 d1 8 do 

42 

dj can then be derived from Cj in above equations. For example, d7 8d6 = C6 

can be rewritten as 

d7 8 d6 8 d7 

d6 81 

d6 

C6 8 d7 

C6 8 d7 

C6 8 C7 

It is straightforward to find the following relationships 

~=08~ 

~=08~8~8~ 

~=08~ 

~=08~8~8~ 

~=08~8~8~ 

~=08~8~8~8~8~8~8~ 
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Corollary 3.2. The conversion between dj coefficients of fixed polarity COC 

expansion and Cj coefficients of CPos expansion is reversible so that 

C = [Tn]8d (3.20) 

Proof. If d = [d2n-ld2n-2 ... dolt is replaced with C = [C2LIC2L2 ... colt in 

(3.19), equation (3.19) can be rewritten as 

f(xn-l, Xn-2 ... ,Xo) = {[O Xn-l] + [0 Xn-2] + ... + [0 xo]}8c 

Similarly, if C = [C2n-lC2n-2 ... colt is replaced with d = [d2n_1d2n-2' .. dolt 

in (3.16), equation (3.16) can be rewritten as 

f(xn-l, Xn-2, ... ,xo) = {[Xn-l Xn-l] + [Xn-2 Xn-2] + ... + [xo xo]}8d 

In the same way as proved in Corollary 3.1, the conversion from dj coef­

ficients of fixed polarity COC expansion to Cj coefficients of CPOS expansion 

IS 

C = [Tn]8d 

where 

Tn - 1 

[ 
1 j 

[Tn] = T
n
-

1 
T

n
-

1 

[Td = [: ~ j 
From (3.13) and (3.20), the conversion is reversible. o 
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Example 3.5. When n = 3, (3.13) can be written as 

d7 0 1 1 1 1 1 1 1 C7 

d6 o 0 1 1 1 1 1 1 C6 

d5 0 1 0 1 1 1 1 1 C5 

d4 o 0 0 0 1 1 1 1 I C4 e 
d3 0 1 1 1 o 1 1 1 C3 

d2 o 0 1 100 1 1 C2 

d1 0 1 0 1 0 1 0 1 Cl 

do o 0 0 0 0 0 0 0 Co 

While (3.20) can be written as 

r 
C7 o 1 1 1 1 1 1 1 d7 

C6 o 0 1 1 1 1 1 1 d6 

C5 o 1 0 1 1 1 1 1 d5 

C4 o 0 001 1 1 1 d4 e 
C3 0 1 1 1 0 1 1 1 d3 

C2 001 100 1 1 d2 

Cl o 1 0 1 010 1 d1 

Co o 0 0 0 0 0 0 0 do 
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Corollary 3.3. If CSOP minterm coefficients C = [C2n-l ... CICO]t is used for 

the transformation to COC maxterm coefficients d = [d2Ll ... d1do]t instead 

of using CPOS maxterm coefficients C = [C2n-l'" CICO]t, the COC maxterm 

coefficients d = [d2n-l'" d1do]t can be obtained in the same way as using 

CPOS maxterm coefficients but the resulting coefficients need to be modified by 

complementing d2n-l' 

Proof. Originally, the transformation from CPOS maxterm coefficients to COC 

maxterm coefficients is d = [Tn]8c. If the CSOP minterms are used instead of 

CPOS maxterms, the coefficients in C = [C2Ll ... CICO]t are complimented. As 

a result, C = [C2n-l ... CICO]t. 

Because x 8 y = x 8 y, the transformation from C = [C2n-l'" CICO]t to 

d = [d2n-l'" d1do]t does not change at all for those rows with even number 

of zeros. There is only one row with odd number of zeros, which is the first 

row, thus d2n-l = C2Ll' Because C2n-l is complemented, d2n-l should be 

complemented to keep the same logic functionality. D 

3.4 Map Techniques 

3.4.1 Map folding technique for positive polarity using 

minterms 

The positive polarity COC expansion can be obtained from CPOS expansion 

by using map folding technique [34]. However, based on Corollary 3.3 the 

positive polarity COC expansion can be obtained from CSOP expansion by 

using map folding technique. This method will be called minterm map folding 

technique and is shown in Procedure 3.1. 
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Procedure 3.1. Minterm map folding technique for positive polarity expan­

sion conversion from Cj map to dj map. 

1. Draw Cj map from esop expansion by marking "0" for on-set esop 

minterm coefficients and "I" otherwise. 

2. Fold the map along the Xi border (i.e. Xi = 1 is folded on Xi = 0), XNOR 

the contents of section Xi = 0 of the map and then unfold the map, where 

O::;i::;n-1. 

3. Repeat Step 2 for the remaining variables. 

4. Modify d2Ll in the map obtained in Step 3 by complementing d2n-l' 

5. Output positive polarity eoe expansion according to on-set eoe max­

terms. 

Example 3.6. Given a 3-variable function f(x2, Xl, Xo) = X2XIXO + X2XIXO + 

X2XIXO+X2XIXO, obtain the positive polarity eoe expansion by using minterm 

map folding technique. 

Step 1: 

The coefficients map is shown in Figure 3.4(a) by marking "0" for the cor­

responding on-set esop minterms, i.e., f(x2' Xl, XO) = 2::(1,3,4,7). 

Step 2: 

Fold the map along the X2 border (i.e. X2 = 1 is folded on X2 = 0) and 

XNOR the contents of section X2 = 0 of the map as shown in Figure 3.4(a). 

Step 3: 

Repeat Step 2 for the remaining variables, as shown in Figure 3.4(b) and 

Figure 3.4( c). 
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XX jOoo 01 11 10 
XjXO 

• "\ 

o I ~ I ~ I ~ I . I \0 
0 0 1 1 

0 1 0 1 

(a) (b) 

XjXO __ '"' _. . . '"' . _ '- XjXO 

- , , -
0 0 1 1 

0 0 0 1 1:1:1':1: , x; , 

(c) (d) 

XjXO 

l:I:I:l: 
~ 

(e) 

Figure 3.4: Map folding technique for positive polarity using minterms. (a) 
Folding the map along the X2 border, (b) Folding the map along the Xl bor­
der, (c) Folding the map along the Xo border, (d) Coefficients map before 
modification, (e) Final coefficients map. 

Step 4: 

Read the "O"s from the map as shown in Figure 3.4(d). f(X2, Xl, xo) = 

o I1(1, 5, 6, 7) is obtained. Complement d7 in the map shown in Figure 3.4(d) 

for d7 . The resulting coefficients map is shown in Figure 3.4(e). 

Step 5: 

On-set COC maxterms are obtained by reading the "O"s from the map 

obtained in Step 4, hence f(X2, Xl, xo) = 0 I1(1, 5, 6). The positive polarity 
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eoe expansion is therefore obtained as 

f(X2, Xl, xo) = (X2 + Xl) 0 Xl 0 Xo 

3.4.2 Map folding technique for any polarity 

Once the coefficient map for a positive polarity expansion is found, the map 

folding technique can be carried out to generated fixed polarity eoe expan­

sions of any polarity for up to six variables. It is shown in the following 

procedure. 

Procedure 3.2. Map folding technique for any polarity p conversion from Cj 

map to dj map. 

1. Determine and mark the variables which need to be altered according to 

polarity p when Pi = 1, where p = (Pn-l ... PIPO) is the polarity in the 

binary form and 0:::; i :::; n - 1. 

2. Fold the map along the Xi border (i.e. Xi = 0 is folded on Xi = 1), XNOR 

the contents of section Xi = 1 of the map and then unfold the map, where 

i is the index of the corresponding variables which need to be altered. 

3. Repeat Step 2 for the remaining variables which need to be altered. 

4. Output the fixed polarity eoe expansion of polarity P by replacing Xi 

with Xi in the positive polarity expansion. 

For example, the maxterm coefficients of the fixed polarity eoe expansion 

for polarity 1 can be generated by folding dj coefficient map along the Xo 

border (i.e. Xo = 0 is folded on Xo = 1), as shown in Figure 3.5. As a result, 

the coefficients map for polarity 1 shown in Figure 3.6 is obtained. 
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o I do 

d4 

d1 

ds 

d3 

d7 

dz 

d6 

Figure 3.5: Folding dj coefficient map along Xo border. 

XIXO 

do dl 0do d3 0 dz dz 

d4 ds0d4 d7 0d6 d6 

Figure 3.6: A 3-variable dj coefficient map for polarity 1 after folding. 

X.X, 

1:1:1~1~ 
Figure 3.7: A 3-variable dj coefficient map for polarity 1. 
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If the on-set eoe maxterm coefficients of a 3-variable positive polarity 

expansion are given as f(X2, Xl, xo) = 0 TI(l, 5, 6). The on-set coe maxterm 

coefficients as shown in Figure 3.7 can be obtained as 

f(X2, Xl, .To) = 0 IT (1,5,6,7) 

The eoe expansion of polarity 1 can be obtained by replacing Xo with .To 

in the positive polarity expansion shown in Figure 3.3. Hence, 

f(X2' Xl, .To) = (X2 + Xl) 8 Xl 8.To 8 0 

The expansion of other polarities can be generated using the same proce-

dure as the generation of the expansion for polarity 1. 
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3.4.3 Map transformation technique for any polarity 

Equation (3.10) can be rewritten by replacing dj with Cj for positive polarity 

eoe expansion as 

2n-1 

f(Xn-l, ... ,Xl, Xo) = 0 II (Cj + 0 II Sh) (3.21) 
j=O e 

hi = { : 
ji = 1 

(3.22) 
ji = 0 

where both hand j are in binary form, e is the number of "l"s in h, Sh is the 

eoe maxterm and ji is the ith bit of j. 

Example 3.7. Given a 3-variable positive polarity eoe expansion, the ex-

pansion can be rewritten as 

f(X2' Xl, xo) (co + (X2 + Xl + xo)) 

8(CI + (X2 + Xl + xo) 8 (X2 + Xl)) 

8(C2 + (X2 + Xl + xo) 8 (X2 + xo)) 

8(C3 + (X2 + Xl + xo) 8 (X2 + Xl) 8 (X2 + xo) 8 X2) 

8(C4 + (X2 + Xl + xo) 8 (Xl + xo) 

8(C5 + (X2 + Xl + xo) 8 (X2 + Xl) 8 (Xl + xo) 8 Xl) 

8(C6 + (X2 + Xl + xo) 8 (X2 + xo) 8 (Xl + xo) 8 xo) 

8(C7 + (X2 + Xl + xo) 8 (X2 + Xl) 8 (X2 + xo) 8 X2 

8(XI + xo) 8 Xl 8 Xo 80) 
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The expansion can be simplified by replacing COC maxterms as shown in 

(3.11) as 

!(X2, Xl, Xo) (co + So) 8 (C1 + So 8 Sl) 8 (C2 + So 8 S2) 

8(C3 + So 8 Sl 8 S2 8 S3) 8 (C4 + So 8 S4) 

8(C5 + So 8 Sl 8 S4 8 S5) 8 (C6 + So 8 S2 8 S4 8 S6) 

8(C7 + So 8 Sl 8 S2 8 S3 8 S4 8 S5 8 S6 8 S7) 

From (3.21), the COC expansion of positive polarity can be obtained di­

rectly from the manipulation of Cj coefficient map. It can be seen in Example 

3.7 for 3-variable function that if Co is on-set CPOS maxterm coefficient, Co 

will only affect So, if C1 is on-set CPOS maxterm coefficient, C1 will affect So 

and Sl, and so on. As off-set CPOS maxterm coefficients will not affect the 

result, the COC expansion can be easily determined from the appearances of 

the on-set CPOS maxterm coefficient Cj in the Cj coefficient map. Only if the 

number of the appearance of the CPOS maxterm in the Cj map is odd, the 

COC maxterms in the same square of dj map is the on-set COC maxterm. 

Definition 3.6. For a given n-variable Boolean function !(Xn -1,'" ,Xl, xo), 

p-point is defined by the position of COC maxterm appearing in the square of 

the dj coefficients map, where p is same number as the number of polarity. 

Example 3.8. Figure 3.3 shows dj coefficients map for 3 variables. COC 

Maxterm X2 + Xl + Xo appears at position 0 (binary position "ODD") of the dj 

coefficients map, p-point is O-point. COC Maxterm Xo appears at position 6 

(binary position "110") of the dj coefficients map, p-point is thus 6-point. 

If Cj replaces d~ in (3.10), an equation similar to (3.21) can be obtained for 

COC expansions of any polarity p. 
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For example, a 3-variable COC expansion of polarity 6 is written as 

f(X2, Xl, xo) (co + So 8 S2 8 S4 8 S6) 

8( C1 + So 8 Sl 8 8 2 8 S3 8 S4 8 S5 8 S6 8 S7) 

8( C2 + S2 8 S6) 8 (C3 + S2 8 S3 8 S6 8 S7) 

8(C4 + S4 8 S6) 8 (C5 + S4 8 S5 8 S6 8 S7) 

8(C6 + S6) 8 (C7 + S6 8 S7) 
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The generation of fixed polarity COC expansions with any polarity is shown 

in following procedure. 

Procedure 3.3. Map Transformation for fixed polarity cac expansion of any 

polarity p from Cj map to dj map. 

1. Draw Cj map according to the Boolean function, in which only on-set 

CPOS maxterms appear on the map as "0". 

2. Find the smallest circle on the map that encloses on-set CPOS maxterms 

and the p-point. 

3. Mark "0" for any square in the map enclosed by the circle obtained in 

Step 2. 

4. Repeat Steps 2 and 3 for the rest of on-set maxterms one by one until 

all the on-set maxterms are enclosed. 

5. When the number of "O"s marked for each square in the map is odd, 

output the corresponding coefficient as the on-set maxterm coefficients 

of polarity p by XORing the coefficients with polarity p. 
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X,X X,x, 

Tr!11 0 I 1m 
0 00 

00 0 0 0000 

(a) (b) 

X,x, 

1;1~1~1:1 
(c) 

Figure 3.8: Map transformation technique for obtaining COC expansion of 
polarity 6 for a 3-variable function in CPOS form f(X2, Xl, xo) = TI(O, 2, 5, 6). 
(a) Circle on-set maxterms via 6-point, (b) Resulting map after marking "O"s, 
(c) Simplified coefficients maps. 

6. Output the fixed polarity COC expansion of polarity p according to the 

on-set COC maxterm coefficients. 

Example 3.9. Obtain fixed polarity COC expansion of polarity 6 using map 

transformation for a function in CPOS form f(X2, Xl, xo) = TI(O, 2, 5, 6). 

The Cj map for the 3-variable function can be drawn and shown in Figure 

3.8(a). There are 4 on-set CPOS maxterms. 

For fixed polarity COC expansion of polarity 6 conversion, a circle should 

enclose the 6-point and on-set CPOS maxterms. For on-set CPOS maxterm 

Co, the circle encloses So, S2 , S4 and S6. Mark "0" for So, S2 , S4 and S6 in 

the corresponding square. For on-set CPOS maxterm C2, the circle encloses S2 

and S6. Mark "0" for S2 and S6 in the corresponding square. For on-set CPOS 

maxterm C5, the circle encloses S4, S5, S6 and S7. Mark "0" for S4, S5, S6 
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and S7 in the corresponding square. For on-set CPOS maxterm C6, the circle 

encloses S6 only. Mark "0" for S6' 

Figure 3.8(a) and Figure 3.8(b) show Cj map after drawing the circles and 

marking "0" respectively. Those with odd number of "O"s appearing "0" in the 

map, as shown in Figure 3.8(c), are the on-set maxterm coefficients of COC 

expansion before XOR operation. Since the polarity is 6, the coefficients need 

to be XORed. Hence, the corresponding on-set maxterm coefficients and fixed 

polarity COC expansion of polarity 6 are given in (3.23) and (3.24) respectively. 

f(X2, Xl, xo) 

f(X2, Xl, xo) 

o II(l, 3, 6) 

(X2+ Xl)8 x28 xo 

(3.23) 

(3.24) 

For other polarities, Figure 3.9 shows the map after marking "O"s and sim­

plified COC coefficient maps are shown in Figure 3.10. The results for other 

polarities are given in following equations. 

f(X2, Xl, xo) (X2 + Xl) 8 Xl 8 Xo (3.25) 

f(X2, Xl, xo) (X2 + Xl) 8 Xl 8 Xo 80 (3.26) 

f(X2, Xl, xo) (X2 + Xl) 8 X2 8 Xl 8 Xo 80 (3.27) 

f(X2' Xl, xo) (X2 + Xl) 8 X2 8 Xl 8 Xo (3.28) 

f(X2, Xl, xo) (X2 + xd 8 Xo (3.29) 

f(X2, Xl, xo) (X2 + Xl) 8 Xo 8 0 (3.30) 

f(X2' Xl, xo) (X2 + Xl) 8 X2 8 Xo 80 (3.31) 
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X.X X.X 

0000 0 00 000 0000 00 00 

00 0 0 0 00 0 0 
..... -

(a) (b) 

X.X X.X X.X 

00 0 0 0000 0 00 0000 000 00 0 

0 0 0 00 0 00 0 0000 0 00 , .. 

(c) (d) (e) 

x.x. X.X X.X 

00 00 0 0 0 00 0 0 00 00 

000 0000 00 00 00 0 0 0000 0 00 0000 000 

(f) (g) (h) 

Figure 3.9: Mapping transformation technique for obtaining eoe expansion of 
any polarity. (a) Polarity 0 via O-point, (b) Polarity 1 via I-point, (c) Polarity 
2 via 2-point, (d) Polarity 3 via 3-point, (e) Polarity 4 via 4-point, (f) Polarity 
5 via 5-point, (g) Polarity 6 via 6-point, (h) Polarity 7 via 7-point. 
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X,X, X,X, 

1:1:1:1: 1:1:1:1: 
(a) (b) 

X,X X,x, X,x, 

1:1:1:1: 1 : 1 : 1 : 1 : 1:1:1:1:1 
(c) (d) (e) 

X,X, X,X X,X, 

1:1:1:1: 1:1:1:1: 1:1:1:1: 
(f) (g) (h) 

Figure 3.10: Coefficients of COC expansion of all the 8 polarities transforma­
tion. (a) Polarity 0, (b) Polarity 1, (c) Polarity 2, (d) Polarity 3, (e) Polarity 
4, (f) Polarity 5, (g) Polarity 6, (h) Polarity 7. 
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3.5 Summary 

In this chapter, the basic definitions for the polarity of fixed polarity cae 
expansions and esop and CPOS expansions are given. Based on the features 

of coincidence operation, the cae expansions of logical functions as DFRM 

form are discussed. The transformation matrix for conversion between cae 
and CPOS expansions is also given. 

Map folding technique is used for conversion between standard Boolean 

and fixed polarity cae expansions for up to 6 variables. It starts with gener­

ating the positive polarity cae expansions first and then derives other fixed 

polarity cae expansions of any polarity. Another simple but useful map trans­

formation technique is introduced to generate fixed polarity cae expansions 

of any polarity directly from the Cj map. Drawing circles, however, becomes 

inconvenient if the number of variables is greater than 4. 



Chapter 4 

Multi-segment Method for Dual 

Forms of RM Conversion 

4.1 Introduction 

Due to the limitation of map methods, map folding and map transformation 

technique can only be used for functions in which the number of variables is less 

than or equal to 6. It is not practical to use map techniques to optimise large 

variable functions. Other methods are required for large functions. Conversion 

method between Canonical Product-of-Sums (CPOS) and fixed polarity COC 

expansions based on the matrix method were proposed in [34]. The method 

based on the matrix multiplication for large functions requires significant CPU 

time. Reference [51] used XNOR operation for on-set maxterms which again 

required significant CPU time for large variables and the results were only given 

for up to 17 variables. In this chapter, algorithms are presented for conversion 

between standard Boolean and fixed polarity COC expansions to any polarity. 

The rest of the chapter is organised as follows. In Section 4.2, generalised 

58 



4.2 Generalised Method Based on On-set Coefficient Coverage 59 

method is proposed for conversion between CPOS and fixed polarity COC 

expansions for large functions. Section 4.3 shows the proposed multi-segment 

methods to achieve efficient conversion in details. In Section 4.4 algorithms are 

further extended to the conversion of any polarity. Moreover, a new minterm 

method utilises on-set CSOP minterms instead of on-set CPOS maxterms to 

reduce CPU time is given in Section 4.5. Experimental results are then given 

in Section 4.6. 

4.2 Generalised Method Based on On-set Coef­

ficient Coverage 

By using map based techniques, COC maxterm coefficients can be obtained 

up to 6 variables. The Cj coefficients and dj coefficients have the following 

relationship if represented in the binary form when n = 3. 

dnl = Cnl 

dno = Cnl 0 Cno 

dlOl = Cnl 0 ClOI 

dlOo = Cnl 0 Cno 0 ClOI 0 ClOO 

don = Cnl 0 COU 

dOlO = CUI 0 Cuo 0 Con 0 COlO 

doOl = CUI 0 ClOI 0 COl1 0 COOl 

dooo = Cnl 0 Cno 0 ClOI 0 ClOO 0 Con 0 COlO 0 Con 0 Cooo 

Based on (3.13) an n-variable function can be rewritten as 

d j = dUn-lun-2 "'UlUO 

= 0 IT cVn-lVn-2 '''VlVO 

(4.1) 
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where U = (Un -IUn -2 ... UIUO) and v = (Vn -IVn -2 ••. VIVO) are in binary form 

and 0::; j,u,V::; 2n-1. 

The ith bit Vi in Cj coefficient and Ui in dj coefficient have the following 

relationship: 

{

X, Ui = 0 
Vi = 

1, Ui = 1 
( 4.2) 

where x stands for "don't care" and 0 ::; i ::; n - 1. 

Definition 4.1. Given two decimal integers, U = (Un-IUn -2 ... UIUO) and V = 

(Vn-I Vn -2 ... VI vo), which are in binary form, U covers V if Ui ::; Vi numerically 

for all i, Ui, Vi E {O, 1} and 0 ::; i ::; n - 1. 

For example, (14ho (1110h covers (15ho (l1l1h and (14ho 

(1110h· 

With reference to (4.1) and (4.2), any dj coefficient depends on gj as 

n-I 

gj = 1\ (Vi, Ui) (4.3) 
i=O 

¢(dj ) = Lgj (4.4) 
v 

where /\ is the bitwise "AND" operator. If the result is "0" for every i, gj = O. 

Otherwise, gj = 1. L is the sum operator and 0 ::; j ::; 2n - 1. 

According to (4.3) and (4.4), the on-set eoe maxterm coefficients can be 

generalised and calculated by using bitwise "INVERSE" and "AND" operations. 

dj is on-set eoe maxterm coefficient when ¢( dj ) is odd number. 
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Example 4.1. Given a 4-variable function in CPOS form f(x3, X2, Xl, Xo) = 

TI(O, 1,3,5,7,9,10,12,13,14), obtain on-set COC maxterm coefficient. 

as 

For example, for the first CPOS on-set coefficient v = 0, g~4 is calculated 

g~4 0000 !\ 1110 

1111!\ 1110 

1110 = 1 

For v = 1, gi4 is calculated as 

gi4 0001 !\ 1110 

1110!\ 1110 

1110 = 1 

In the same way, the rest of g14 for on-set CPOS coefficients are obtained 

as follows. 

gr4 = 1 gf4 = 1 gi4 = 1 gi4 = 1 

g 10 - 1 g12 - 1 g13 - 1 g14 - 0 14 - 14 - 14 - 14 -

Coefficient d14 is then calculated as 

cjJ( d14 ) = L g14 = 1 
v 

Because cjJ(d14 ) is odd number, d14 is on-set COC maxterm coefficient. 

The rest of coefficients are obtained in the same way, which are 

cjJ(d15 ) = 0 cjJ(d13 ) = 1 cjJ(d12 ) = 3 cjJ(dn ) = 0 

cjJ(dlO ) = 2 cjJ(dg) = 2 cjJ(ds) = 5 cjJ(d7 ) = 1 

cjJ(d6 ) = 2 cjJ(d5 ) = 3 cjJ(d4 ) = 5 cjJ(d3 ) = 2 

cjJ(d2 ) = 4 cjJ(d1) = 6 cjJ( do) = 10 

Hence, f(x3, X2, Xl, Xo) = 0 TI(4, 5, 7, 8,12,13,14). 
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4.3 Multi-segment Method Based on Maxterms 

When the number of on-set CPOS maxterms increases, the computation time 

for conversion increases significantly. However, if the number of on-set CPOS 

maxterm coefficients can be divided into several groups and the groups of the 

coefficients can be reused, the CPU time can be reduced considerably. Multi­

segment method was initially introduced in [118]. The multi-segment method 

based on maxterms is called maxterm multi-segment method. 

Definition 4.2. For an n-variable Boolean function f(Xn-l, ... ,Xl, Xo), the 

on-set CPOS maxterm coefficients can be grouped into w segments, assuming 

the on-set CPOS maxterm coefficients are pre-ordered in decreasing order. The 

index of the on-set CPOS maxterm coefficients are assigned to the segments 

following the rule of (4.5). 

j E TVk, k * 21 ::; j < (k + 1) * 21 (4.5) 

where * is the multiplication operator, j is the jth on-set Cj coefficient, vVk is 

the kth segment and 0 ::; k ::; w - 1. 21 is the maximum number of on-set 

coefficients in one segment and 0 ::; l ::; n - 1. w is the number of segments and 

is selected for simplicity ofthe algorithm as in (4.6), i.e., each on-set coefficient 

is divided into two parts. 

w = 2n - 1 = 2n -[%] (4.6) 

where [] is an integer operator and 1 ::; w ::; 2n. 
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Example 4.2. Given a 4-variable function in CPOS form f(x3, X2, Xl, Xo) = 

TI(14, 13, 12, 10,9,7,5,3,1,0), assign the on-set coefficients to the respective 

segments. 

The on-set CPOS maxterm coefficients are grouped into w = 2n-[~J = 4 

segments and each segment has maximum 4 on-set coefficients, hence 

T¥o = {14, 13, 12} 

T¥l = {10,9} 

H12 = {7,5} 

W3 = {3,1,0} 

Corollary 4.1. Given an integeru = (Un -IUn -2 ... UIUO) and a set of integers 

11, where v is an integer and is one of integers in 11. The number of elements in 

11 covered by U remains unchanged after adding an integer (( 2n - 1 - 1) - u") * 21 

to i and elements of 11 if u" v", where u" (Un-l U n -2 ... Ul+1 Ul), v" 

(Vn -IVn -2 ... Vl+IV1), 0 :::; 1 :::; n - 1. 

Proof. The integer numbers, u and v, where v is any integer of 11, can be 

rewritten as 

U Un-l U n -2 ... UI Uo 

U n -IUn -2 ... Ul+IUl Ul-IUI-2 ••. UIUO 
\. v .I, V' .J 

II III 

U U 

V Vn-l Vn -2 •.• VI Vo 

Vn -IVn -2 ... Vl+IVI Vl-IVI-2 •.. VIVO 
\. ",\ ./ 

V' V 

II III 

V V 
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Because the significant bits between land n - 1 are the same for u and V, 

. " "" "b D fi .. 4 1 I.e., u = v ,u covers v y e mtlOn .. 

Let u' and Vi be the integers and Vi be the set of integers after addition. 

After adding an integer ((2n - 1 - 1) - u") * 21 to u and V, all those n - l bits 

between land n - 1 are set to be "l"s for u' and Vi. However, gj remains 

unchanged for those l bits between 0 and l - 1. Thus the number of integers 

in V covered by u remains unchanged after addition. o 

Example 4.3. Given u = (1000h, V = {(1001h, (101Oh, (1011h}, n = 4 and 

l = 2, all of numbers in V and u begin with "(lOh", that is u" = (2)10 and 

" ) v = (2 10. 

Add ((2n - 1 - 1) - u") * 21 = ((24
-

2 - 1) - 2) * 22 = (4 - 1 - 2) * 4 = 4 to 

u and V, u' = (llOOh and Vi = {(llOlh, (1l10h, (llllh}. The number of 

integers in Vi covered by u' is the same as the number of integers in V covered 

by u before addition, which is 3. 

Based on Corollary 4.1, (4.3) and (4.4), the maxterm multi-segment method 

for conversion from CPOS expansion to positive polarity COC expansion is 

achieved as follows. 

Procedure 4.1. The maxterm multi-segment method for conversion from CPOS 

expansion to positive polarity COC expansion. 

1. Obtain on-set CPOS maxterm coefficients from CPOS expansion and 

sort the on-set CPOS maxterm coefficients into decreasing order. 

2. Divide the on-set CPOS coefficients into w segments and modify the 

coefficients in each segment based on Definition 4.2 and Corollary 4.1. 

3. Find the covered coefficients and calculate COC maxterm coefficients 

for each segment by using bitwise "INVERSE" and "AND" operations, 
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according to (4.3) and (4.4). Those numbers of covered coefficients that 

are odd number are the on-set COC maxterm coefficients. 

4. Output the positive polarity COC expansion according to the on-set 

COC maxterm coefficients. 

As it can be seen in (3.20), the conversion from positive polarity COC 

expansion to CPOS expansion is the reserve of the conversion from CPOS 

expansion to positive polarity COC expansion. Thus, the same procedure can 

be applied to obtain CPOS expansion by simply replacing the on-set CPOS 

maxterm coefficients in Procedure 4.1 with on-set COC maxterm coefficients. 

Example 4.4. Given a 4-variable function !(X3, X2, Xl, Xo) = (X3 + X2 + Xl + 

XO)(X3 +X2 +X1 +XO)(X3 +X2 +X1 +XO)(X3 +X2 +X1 +XO)(X3 +X2 +X1 +XO)(X3 + 

X2+ X1 +XO)(X3+ X2+ X1 +XO)(X3+X2+X1 +XO)(X3+ X2+ X1 +XO)(X3+ X2+X1 +xo) 

and w = 4, calculate the positive polarity COC expansion. 

Let D[ 1 store the number of covered coefficients in each segment. 

Step 1: 

Sort the on-set CPOS coefficients into decreasing order as 

!(X3,X2,X1,XO) = ~(14,13,12,10,9, 7,5,3,1,0) 

Step 2: 

The on-set coefficients are divided into 4 segments, Wo = {14, 13, 12}, 

TV1 = {10, 9}, W 2 = {7, 5} and W3 = {3, 1, O} according to (4.5). The segments 

are then modified to TVo = {14, 13, 12}, lV1 = {14,13}, Vl12 = {15,13} and 

Vl13 = {15, 13, 12}. 
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Step 3: 

Firstly, coefficient 15 is found in the VV2 and W3 segments because coeffi­

cient (15ho = (llllh covers coefficient (15ho = (llllh only. The number of 

covered coefficient is stored in 2nd and 3rd segments. As a result, D[O] = 0, 

D[l] = 0, D[2] = 1 and D[3] = l. 

CP(dI5 ) = D[O] = 0 

cp(dll ) = D[O] + D[l] = 0 + 0 = 0 

cp(d7 ) = D[O] + D[2] = 0 + 1 = 1 

cp(d3 ) = D[O] + D[l] + D[2] + D[3] = 0 + 0 + 1 + 1 = 2 

Only d7 should be included because the number of covered coefficients is 

odd. 

Secondly, because coefficient (14ho = (1110h covers coefficients (14ho = 

(1110h and (15)10 = (llllh, both coefficients 14 and 15 need to be found. 

Coefficient 14 is found in the Wo and WI. Coefficient 15 is found in the W2 

and W3 segments. As a result, D[O] = 1, D[l] = 1, D[2] = 1 and D[3] = l. 

CP(d I4 ) = D[O] = 1 

CP(dlO) = D[O] + D[l] = 1 + 1 = 2 

cp(d6 ) = D[O] + D[2] = 1 + 1 = 2 

cp(d2 ) = D[O] + D[l] + D[2] + D[3] = 1 + 1 + 1 + 1 = 4 

Only dI4 should be included because the number of covered coefficients is 

odd. 

Thirdly, because coefficient (13)10 = (llOlh covers coefficients (13)10 = 

(llOlh and (15ho = (llllh, both coefficients 13 and 15 need to be found. 

Coefficient 13 is found in the Wo, T¥I, W2 and H!3. Coefficient 15 is found 

in the W2 and W3 segments. As a result, D[O] = 1, D[l] = 1, D[2] = 2 and 

D[3] = 2. 
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¢(dI3 ) = D[OJ = 1 

¢(dg ) = D[OJ + D[lJ = 1 + 1 = 2 

¢(d5 ) = D[OJ + D[2J = 1 + 2 = 3 

¢(dl ) = D[OJ + D[lJ + D[2J + D[3J = 1 + 1 + 2 + 2 = 6 
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dl3 and d5 should be included because the numbers of covered coefficients 

are odd. 

Fourthly, because coefficient (12ho = (llOOh covers four coefficients (12ho = 

(llOOh, (13)10 = (llOlh, (14)10 = (1110h and (15)10 = (l11lh, coefficients 

12, 13, 14 and 15 need to be found. Coefficient 12 is found in the TVo and TV3 . 

Coefficient 13 is found in the vVo, vVI , vV2 and W3 . Coefficient 14 is found in 

the vVo and WI' Coefficient 15 is found in the W2 and TV3 segments. As a 

result, D[OJ = 3, D[lJ = 2, D[2J = 2 and D[3J = 3. 

¢(dI2 ) = D[OJ = 3 

¢(ds) = D[OJ + D[lJ = 3 + 2 = 5 

¢( d4 ) = D[OJ + D[2J = 3 + 2 = 5 

¢( do) = D[ 0 J + D [1 J + D [2 J + D [3J = 3 + 2 + 2 + 3 = 10 

dl2 , ds and d4 should be included because the numbers of covered coeffi­

cients are odd. 

The final solution is 

f(X3, X2, Xl, Xo) o II (4,5,7,8,12,13,14) 

(X3 + Xl + xo) 8 (X3 + Xl) 8 X3 

8(X2 + Xl + xo) 8 (Xl + xo) 8 Xl 8 Xo 
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4.4 Generalised Polarity Conversion 

For any n-variable Boolean function !(Xn-l,'" ,Xl, Xo), there are 2n fixed 

polarity COC expansions. COC expansions with different polarities may have 

different number of on-set coefficients. To simplify the conversion algorithm, 

the concept of Boolean polarity is adapted from [89,118] and applied to CPOS 

expansion as well, which is given in the following definition. 

Definition 4.3. Any n-variable Boolean function !(Xn-l, ... ,Xl, Xo) that is 

represented in maxterms expansion as in (3.7) is defined as the CPOS expan­

sion with zero polarity. Any n-variable Boolean function !(Xn-l, ... ,Xl, Xo) 

can be in canonical form of expansion with polarity p, where P is the polarity 

in binary form and P = (Pn-l ... PlPO)' Any variable Xi can be represented as 

in (4.7). 

.. _ { Xi Xi -
Xi 

Pi = 1 
(4.7) 

Pi = 0 

where 0 :::; i :::; n - 1. Xi can be in true or complemented form but not both, 

Xi is the complemented form of Xi. There are totally 2n fixed polarities for a 

n-variable Boolean function in CPOS form. 

Accordingly, (3.7) should be extended to (4.8). 

!(Xn-l,'" ,Xl, Xo) 

2n-l 

IT (Cj + JIIlj) 
j=O 

where ]vlj is in the binary form and l'1ij = Xn-l + ... + Xl + xo. 

, _ { Xi Xi -
Xi 

ji = 1 

ji = 0 

where Xi is the complemented form of Xi. 

(4.8) 

(4.9) 
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Equation (4.10) can be derived from (4.9) 

j, = { ~ Xi = Xi 

Xi = Xi 

69 

(4.10) 

Corollary 4.2. Let R be the number of on-set CPos maxterm coefficients 

for a given n-variable Boolean function f(xn-l,··· ,Xl, xo), there is always R 

numbers of on-set CPos maxterm coefficients for any of the 2n fixed polarity 

expansions. 

Proof. Let a be the ath on-set coefficient of n-variable f(xn-l, ... ,Xl, Xo) with 

polarity p and TIl be the TIlth on-set coefficient of n-variable f(xn-l, ... ,Xl, Xo) 

with polarity p. If n-variable f(xn-l,· .. ,Xl, Xo) is converted to n-variable 

f(xn-l, ... ,Xl, xo), there is a one-to-one matching between the on-set CPOS 

maxterm coefficient with polarity p and on-set CPOS maxterm coefficient with 

polarity p, because TIl = aEDpEDp, where 0 :s; a, TIl :s; 2n -1 and 0 :s; p, p :s; 2n -1. 

Hence the number of on-set CPOS maxterm coefficients, R, remains the same 

for the expansion of any polarity. D 

Corollary 4.3. If polarity j5 is applied to both sides of d = [Tnl8c, the trans­

formation for positive polarity expansion, the index of maxterm coefficients of 

CPOS expansion changes for different polarities, but the index of maxterm co­

efficients of CDC expansion remains unchanged. The transformation matrix 

can be used for conversion to fixed polarity CDC expansion of any polarity. 

Proof. If polarity j5 is applied to both sides of d = [Tnl8c for positive polarity, 

d = [Tnl8c can be rewritten as 

d = [Tnl8c (4.11) 
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where C = [C2n_1 ... CICO]t, d = [d2n-1 '" dldo]t and 0:::; p :::; 2n - 1. 

Because C = c ED p, where c = [C2n-1 ... CICO]t, the index of maxterm coef­

ficients of CPOS expansion in C changes for different polarities. Because the 

transformation is for positive polarity expansion, the coefficients need to be 

XORed polarity p again, d = d ED P ED P = d. As a result, the index of maxterm 

coefficients of fixed polarity COC expansion remains unchanged. It is therefore 

that the transformation matrix can be used for the conversion to fixed polarity 

COC expansion of any polarity. 0 

Example 4.5. Obtain the fixed polarity COC expansion of polarity 6 for a 

3-variable function f(X2' Xl, xo) = (X2+XI +XO)(X2+ XI +XO)(X2+XI +XO)(X2+ 

Xl + xo). 

The function in CPOS form is f(X2, Xl, xo) = TI(O, 2, 5, 6). Since the po­

larity jj = 6, from (4.7) X2 = X2, Xl = Xl and Xo = Xo are obtained. Since 

x = X, from (4.8) to (4.10), the function can be represented as f(X2' Xl, Xo) 

with polarity 6 as 

f(X2, Xl, xo) f(X2' Xl, xo) 

(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo) 

~{(110), (100), (OIl), (OOO)} 

~(6,4,3,0) 

Hence, C = [1,0,1,0,0,1,1, O]t and 

d is obtained as 
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d7 o 1 1 1 1 1 1 1 1 1 

d6 001 1 1 1 1 1 0 0 

d5 o 1 0 1 1 1 1 1 1 1 

d4 o 0 0 0 1 1 1 1 I 0 1 
e 

d3 o 1 1 1 o 1 1 1 I 0 0 

d2 001 1 001 1 1 1 

d l 010 1 0 101 1 0 

~ do J L 0 0 0 0 0 000 0 1 

As a result, the coefficients of COC expansion of polarity 6 and its expan-

sion are 

f(x2, Xl, Xo) 

f(x2, Xl, Xo) 

OII(1,3,6) 

(X2 + xd 8 X2 8 Xo 

Thus, any n-variable Boolean function that is converted from CPOS expan­

sion to fixed polarity COC expansion with any polarity p can be generalised 

and is achieved as follows, according to Corollaries 4.2 and 4.3. 

Procedure 4.2. The maxterm multi-segment method for conversion from CPOS 

to fixed polarity cae expansions of any polarity p, where 0 ~ p ~ 2n - 1. 

1. Obtain on-set CPOS maxterm coefficients from CPOS expansion. 

2. Derive on-set CPOS maxterm coefficients with polarity p by XORing 

on-set CPOS maxterm coefficients with polarity p. 

3. Divide the newly generated on-set CPOS maxterm coefficients into w 

segments and modify the coefficients in each segment. 
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4. Find the covered coefficients and calculate COC maxterm coefficients 

for each segment by using bitwise "INVERSE" and "AND" operations. 

Those numbers of covered coefficients that are odd number are the on-set 

COC maxterm coefficients. 

5. Output the fixed polarity COC expansion of polarity p according to the 

on-set COC maxterm coefficients obtained in Step 4. 

Corollary 4.4. The transformation matrix can be used for conversion from 

fixed polarity CDC expansion of any polarity to CPOS expansion. The conver­

sion procedure is the reverse of the procedure used for conversion from CPOS 

expansion to fixed polarity CDC expansion of any polarity. 

Proof. As it is known from Corollary 3.2 and also in (3.13) and (3.20), the 

conversion between CPOS and positive polarity COC expansions is reversible. 

If polarity p is applied to both sides of (3.20) for positive polarity, (3.20) can 

be rewritten as 

c = [Tn]8d (4.12) 

where C = [C2n-l ••. C1CO]t, d = [d2n-l ..• d1do]t and 0 :::; p :::; 2n - 1. The index 

of maxterm coefficients of CPOS expansion in c changes for different polarities. 

Therefore the coefficients need to be XORed polarity p as in c = c ffi p, where 

c = [C2n-l ... C1CO]t. D 

The conversion from fixed polarity COC expansion of polarity p to CPOS 

expansion is the reserve of the conversion from CPOS expansion to fixed po­

larity COC expansion of polarity p. 
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Example 4.6. Obtain the CPOS expansion for a 3-variable fixed polarity 

COC expansion of polarity 6 f(X2, Xl, xo) = f(X2, Xl, xo) = (X2 +XI) 8X2 8xo. 

The function in COC form is f(X2, Xl, xo) = 0 I1(1, 3, 6). Hence, d = 

[1,0,1,1,0,1,0, It 

C is obtained as 

(;7 0 1 1 1 1 1 1 1 1 1 

(;6 001 1 1 1 1 1 0 0 

(;5 010 1 1 1 1 1 1 1 

(;4 o 0 0 0 1 1 1 1 1 0 
8 

(;3 o 1 1 1 0 1 1 1 I 0 0 

(;2 001 100 1 1 1 1 

CI o 1 0 1 0 1 0 1 0 1 

Co o 0 0 0 0 0 0 0 J L 1 J L 0 ~ 

As a result, the coefficients of CPOS expansion of polarity 6 in CPOS form 

is f(X2,XI,XO) = I1(0,3,4,6). Hence, 

f(X2, Xl, xo) IT (0,3,4,6) EB 6 = IT (6,5,2,0) 

IT(0,2,5,6) 

The CPOS expansion is then 

f(X2, Xl, xo) = (X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo) 

Thus, fixed polarity COC expansion of polarity p is converted to CPOS ex­

pansion for any n-variable Boolean function can be generalised and is achieved 

as follows. 
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Procedure 4.3. The maxterm multi-segment method for conversion from COC 

expansion of polarity p to CPOS expansion, where 0 ::; p ::; 2n - 1. 

1. Obtain the on-set COC maxterm coefficients from Fixed polarity COC 

expansion of polarity p. 

2. Divide the newly generated on-set COC maxterm coefficients into w 

segments and modify the coefficients in each segment. 

3. Find the covered coefficients and calculate CPOS maxterm coefficients 

for each segment by using bitwise "INVERSE" and "AND" operations. 

Those numbers of covered coefficients that are odd number are the on-set 

CPOS maxterm coefficients. 

4. Use XOR operation to derive on-set CPOS maxterm coefficients from 

on-set CPOS maxterm coefficients with p polarity obtained in Step 3. 

5. Output the CPOS expansion from on-set CPOS maxterm coefficients. 

4.5 Conversion Method Based on Minterms 

In the previous section, the polarity conversion methods are based on on-set 

CPOS maxterms. In other words, if the conversion is from CPOS expansion to 

COC expansion, the on-set maxterms of CPOS are involved in the conversion. 

However, sometimes the number of on-set CPOS maxterms is quite large which 

increases the conversion time. In addition, most of benchmark circuits are orig­

inally in PLA format, which is in AND/OR plane. The minterms conversion 

method is more convenient and improves the speed of conversion. The theory 

is proved and the same as mentioned in Corollary 3.3 in Chapter 3. The con­

version method based on on-set CSOP minterms is called minterm method. 
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The multi-segment method based on on-set CSOP minterms is achieved as 

follows. 

Procedure 4.4. The minterm multi-segment method for conversion from GSOP 

expansion to fixed polarity GOG expansion with any polarity p. 

1. Generate on-set CSOP minterm coefficients from PLA file. 

2. On-set CSOP minterm coefficients are XORed with polarity p. 

3. Divide the newly generated on-set CSOP minterm coefficients into w 

segments and modify the coefficients in each segment. 

4. Find the coverage of the coefficients and calculate COC maxterm coef­

ficients for each segment by using bitwise "INVERSE" and "AND" oper­

ations. Those numbers of covered coefficients that are odd number are 

the on-set COC maxterm coefficients. 

5. Modify coefficient d2n-1 by complementing d2n_l. 

6. Output the fixed polarity COC expansion of polarity p from the on-set 

COC maxterm coefficients. 

Example 4.7. Given a 4-variable function in CPOS form f(x3, X2, Xl, Xo) = 

TI(14, 13, 12, 10,9,7,5,3,1,0), as shown in Example 4.4, calculate the on-set 

coefficients of positive polarity COC expansion using minterm method. 

dIs is calculated as 

dIS = 0 II Cl1l1 = Cl1l1 = 0 

Similarly dl4 is calculated as 

dl4 = II Cl1lO = Cl1l0 8 Cl1l1 = Cl4 8 CIS = 1 8 0 = 0 
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The rest of the coefficients are obtained in the same way. 

d13 = 0 dl2 = 0 dll = 1 dlO = 1 

dg = 1 dg = 0 d7 = 0 d6 = 1 

d5 = 0 d4 = 0 d3 = 1 d2 = 1 

dl = 1 do = 1 

Because the minterm method is used for conversion, dl5 has to be recalcu­

lated. As a result, dl5 - Cl5 = 1. 

When dj = 0, the coefficient is included so that the final solution is obtained 

and is the same as in the previous Examples 4.1 and 4.4. 

f(X3, X2, Xl, Xo) = 0 II (4,5,7,8,12,13,14) 

4.6 Experimental Results 

The algorithms are implemented in the C language and the programs are 

complied by the GNU C Complier (GCC) as shown in Algorithm 4.1. The 

results are obtained using a PC with Intel Pentium IV (2.4 GHz) with 512 

MB RAM under RedHat Linux AS 3. The algorithm requires time complexity 

of w(w + w * w). Since w is equal to 20
.
5n approximately according to (4.6). 

Therefore time complexity of the multi-segment algorithm is O(21.5n). Space 

complexity is O(2n). 

Table 4.1 shows the CPU conversion time in seconds by using multi-segment 

method, the number of on-set CPOS maxterms and CSOP minterms before 

conversion, the number of on-set COC maxterms after conversion and the 

improvement. 
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Algorithm 4.1 Multi-segment method for conversion from PLA to fixed po­
larity COC expansions. 
q: the possible maximum number of coefficients in each segment 
w: the number of segments 
d: the COC coefficient 
p: the polarity of COC expansion 
GSOP: the flag indicates on-set CSOP or CPOS coefficients used where "I" 
and "O"means on-set CSOP and CSOP coefficients are used respectively. 
G: the number of on-set COC maxterm coefficients 
coef ficients[]: the array stores all CSOP or CPOS coefficients 
D[]: the array stores covered number for the CSOP or CPOS coefficients 
output[ ]: the array stores COC coefficients 
infile: input file used to read in on-set CSOP or CPOS coefficients 
outfile: output file used to output on-set COC coefficients 
begin 

G=O; 
coef ficients = read_input_and_sort_coefficients (infile, GSOP, p); 
divide _ coefficients (q, w, n, coe f f icients ); 
for i = 2n - 1 to 2n - 2n / w do 

for j = 0 to w - 1 do 
find _ covered _ numbers (D [j)); 

end for 
for j = 0 to w - 1 do 

for k = 0 to w - 1 do 
d= 0; 
if (! (k 1\ J) ) 

d+ = D[k)); 
end if 

end for 
if (d 1\ Ox00000001 == 1) 

output[G + +] = (i - j * 2n /w); 
end if 

end for 
end for 
if (GSOP) 

modify _ coc _ coefficients (output, p); 
end if 
output _ data( outfile, output); 

end algorithm 
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Table 4.1: CPU Conversion time for IWLS93 benchmarks using maxterm and 
minterm multi-segment methods. 

CPOS CSOP COC Maxterm Minterm 
Name n before before after multi-seg. multi-seg. Imp 

cony. cony. cony. method (s) method (s) (%) 
5xp1 7 76 52 33 0 0 0 
9sym 9 92 420 211 0 0 0 
alu4 14 6944 9440 291 0.01 0.01 0 

apex4 9 512 0 1 0 - -
b12 15 26624 6144 17 0.02 0.01 50 
bw 5 23 9 13 0 0 0 
clip 9 256 256 117 0 0 0 
con1 7 60 68 19 0 0 0 
cps 24 14745200 2032016 8119 526.7 116.25 77.92 

duke2 22 3829760 364544 19 38.23 11.94 68.77 
ex1010 10 857 167 487 0 0 0 

ex5 8 224 32 2 0 0 0 
inc 7 80 48 21 0 0 0 

misex1 8 224 32 9 0 0 0 
misex2 25 33423360 131072 3 2585.7 51.19 98.02 . 
misex3c 14 7680 8704 107 0.01 0.01 0 
misex3 14 14848 1536 1785 0.02 0.01 50 

pdc 16 60840 4696 33 0.08 0.03 62.5 
rd53 5 26 6 15 0 0 0 
rd73 7 64 64 21 0 0 0 
rd84 8 136 120 37 0 0 0 
sao2 10 1006 18 141 0.01 0.01 0 
spla 16 49151 16385 11 0.05 0.05 0 

squar5 5 23 9 15 0 0 0 
table3 14 14900 1484 1912 0.02 0 100 
table5 17 130956 116 129 0.22 0.06 72.72 

vg2 25 33333248 221184 23 2477.57 90.82 96.33 
xor5 5 16 16 5 0 0 0 

X5xp1 7 103 25 31 0 0 0 
Z9sym 9 92 420 211 0 0 0 

I AVel'age I - r - c - I - I 30.64 I 
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Table 4.2: CPU Conversion time in seconds compared to published work. 

Maxterm Minterm 
Benchmark n [34] [51] multi-seg. multi-seg. 

(s) (s) method(s) method(s) 

apex4 9 0 0 0 0 
alu4 14 2.19 - 0.01 0.01 
b12 15 3.3 - 0.02 0.01 
clip 9 0.06 0 0 0 
con1 7 0 0 0 0 

ex1010 10 0.11 0.01 0 0 
misex1 8 0 - 0 0 
misex3c 14 1.59 - 0.01 0.01 

pdc 16 16.86 - 0.08 0.03 
rd84 8 0 0.05 0 0 
spla 16 15.49 0.931 0.05 0.05 

table5 17 28.4 9.845 0.22 0.06 
--- ----

The improvement is defined in (4.13). 

. CPU for maxterm - CPU for minterm 10 01 
'/,mp= x 010 

CPU for maxterm 

• 

i 

(4.13) 

where CPU for maxterm and CPU for minterm stand for the CPU time 

used for the maxterm and minterm multi-segment methods respectively. 

Each set of on-set CSOP minterms was obtained from benchmark in PLA 

format, in which the "don't cares" are set to O. The set of corresponding on-

set CPOS maxterms was obtained by complimenting the set of on-set CSOP 

minterms. 

The maxterm and minterm multi-segment methods are compared to [34] 

and [51]. Table 4.2 shows the comparison results in terms of CPU conversion 

time in seconds. Experimental results in [34] and [51] were performed on 

PC with Pentium III (1 GHz) CPU with 256 MB RAM under windows and 
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Pentium IV (2.4 GHz) CPU with 512 MB RAM under windows. "-" stands 

for not available, "-0" means CPU time is almost zero and n stands for the 

number of input variables. 

4.7 Summary 

In this chapter, two algorithms based on the minterm and maxterm multi­

segment methods are developed for large functions to overcome the limitation 

of the map methods in Chapter 3. Both of algorithms can be used for con­

version between standard Boolean and COC expansions of any polarity. The 

maxterm multi-segment method took less than 0.22 seconds if the number of 

input variables is less than 17 and outperforms significantly the results given 

in [34] and [51] in terms of conversion time. Furthermore, a minterm method 

is even more efficient. The minterm multi-segment method achieved speed im­

provement of 98.02% and 96.33% for misex2 and vg2 with 25 input variables 

compared to the maxterm method. The average improvement is 30.64% for 

the 30 tested benchmarks. 



Chapter 5 

Tabular Based Techniques for 

Dual Forms of RM Conversion 

5 .1 Introduction 

Map techniques can only perform for functions which are less than or equal to 

6 variables. However, it can be generalised for large functions by using tabular 

technique [5,10,87]. Tabular technique is actually derived from the procedure 

of map folding technique but generalised for any number of variables. In this 

chapter, two tabular based techniques are presented for dual forms of Reed­

Muller conversion. The rest of the chapter is organised as follows. Serial and 

parallel tabular techniques for conversion between standard Boolean and fixed 

polarity COC expansions of any polarity are given in Section 5.2 and Section 

5.3 respectively. Experimental results of algorithms are shown in Section 5.4. 
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5.2 Serial Tabular Technique 

It is not practical to use map techniques for large functions because of the 

limitation of map feature. Based on the map folding technique, the serial 

tabular technique is proposed for conversion between CPOS and fixed polarity 

COC expansions, which can be used for any number of variables. 

Observation 5.1. If the array of data structure is used to store newly gener­

ated coefficients and previous coefficients of the expansion, all the coefficients 

of the expansion are actually stored in an increasing order and the index of its 

ordered number is the same number as the coefficient. 

According to Observation 5.1, an array fZag[] can be used for storing all 

coefficients of the expansion. The index of the array fZag[] corresponds to the 

coefficient of the expansion. The content of the array f Zag[] represents the 

presence of the coefficient of the expansion. If the CPOS maxterm coefficients 

are in use, "l"s indicate the CPOS maxterm coefficients are present while "O"s 

indicate those maxterm coefficients that are not present. If the CSOP minterm 

coefficients are in use, "O"s indicate the CSOP minterm coefficients are present 

while "l"s indicate those minterm coefficients that are not present. 

The bitwise "AND" operation is used with "mask" to determine whether to 

generate new coefficient or not, where "mask" is n-bit binary form. The bitwise 

"XOR" operation is used with "mask" to generate new coefficients. And the 

bitwise "SHIFT" operation is used to generate new "mask" value for another 

variable. n "mask"s with n bits are pre-designed to generate new coefficients 

for the ith variable. For example, if the number of variables is 3, the "mask" 

value "(OOlh", "(OlOh" and "(100h" are used for the Least Significant Bit 

(LSB), the 2nd bit and the Most Significant Bit (MSB) respectively. By using 
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bitwise operations "AND" and "XOR" with mask, new coefficients can be easily 

generated. STT for conversion from CPOS to fixed polarity COC expansion 

of any polarity is shown in Procedure 5.1. The theory is proved and shown in 

Corollary 4.3 in Chapter 4. 

Procedure 5.1. Serial tabular technique for conversion from CPOS expansion 

to fixed polarity COC expansion of any polarity p. 

1. Clear all the contents of the array flag[] to "0". 

2. Read in on-set maxterms, XOR the on-set maxterms with polarity p and 

set "1" to the corresponding contents of the array, where 0 ::::; p ::::; 2n - 1 

and the newly generated coefficients are used as the index of the array. 

3. Whenever the content of the array is "1", generate a new coefficient if 

the ith bit of the index is "1", where the index of the array is in a binary 

form and 0 ::::; i ::::; n - 1, and then replace the ith bit with "0" but leave 

others unchanged. 

4. Check the existence of the new coefficient. If the content of the array is 

"0", set "1" to the content of the array. If the content of the array is "1", 

clear the content of the array to "0". 

5. Repeat Steps 3 and 4 for the ith variable of all the indices of the array. 

6. Repeat Steps 3 to 5 for the other variables. 

7. Only when the content of the array is "1", output the index of the array 

as the on-set maxterm coefficient of fixed polarity COC expansion of 

polarity p. 

8. Repeat Step 7 for all the indices of the array. 
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9. Output the COC expansion according to on-set COC maxterm coeffi­

cients. 

Because logic synthesis benchmark circuits are originally in PLA format, 

which is in AND/OR plane, the generation of on-set CSOP minterms from PLA 

file is more convenient than on-set CPOS maxterms. The theory is proved and 

the same as mentioned in Corollary 3.3 in Chapter 3. Hence, Procedure 5.1 

can be modified to Procedure 5.2 as follows. 

Procedure 5.2. Serial tabular technique for conversion from CSOP expansion 

to fixed polarity CDC expansion of any polarity p. 

1. Set all the contents of the array f lag[ 1 to "1". 

2. Check the number of on-set CSOP minterms. If the number of on-set 

CSOP minterms is less than or equal to 2n - 1 , on-set CSOP minterms 

will be used, called minterm method. Otherwise on-set CPOS maxterms 

will be used, called maxterm method. 

3. Read in on-set CSOP minterm coefficients which are generated from PLA 

file. 

4. XOR the on-set CSOP minterm coefficients with polarity p and set "0" 

to the corresponding contents of the array, where 0 ::; p ::; 2n - 1 and the 

newly generated coefficients are used as the index of the array. 

5. If the minterm method is in use, whenever the content of the array is 

"0", generate a new coefficient if the ith bit of the index is "1", where 

the index of the array is in a binary form and 0 ::; i ::; n - 1, and then 

replace the ith bit with "0" but leave others unchanged. If the maxterm 
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method is in use, whenever the content of the array is "I", generate a 

new coefficient in the same way as did for minterm method. 

6. eheck the existence of the new coefficient, which is used as the index of 

the array. No matter which method is used, minterm method or maxterm 

method, if the content of the array is "a", set "I" to the content of the 

array. If the content of the array is "I", clear the content of the array to 

"a". 

7. Repeat Steps 5 and 6 for the ith variable of all the indices of the array. 

8. Repeat Steps 5 to 7 for the other variables. 

9. Only when minterm method is in use, modify the content of the array 

by complementing the content of the array flag[2n - 1]. 

10. If the minterm method is used, output the index of the array as the on­

set eoe maxterm coefficient of polarity p when the content of the array 

is "a". If the maxterm method is used, output the index of the array as 

the on-set eoe maxterm coefficient of polarity p when the content of 

the array is "I". 

11. Repeat Step 10 for all the indices of the array. 

12. Output the eoe expansion according to on-set eoe maxterm coeffi­

cients. 

The Pseudo code of STT from esop minterm coefficients to fixed polarity 

eoe expansion of any polarity is given in Algorithm 5.1. Appendix B shows 

the esop minterm and epos maxterm coefficients and eoe maxterm coef­

ficients files format. The esop minterm coefficients are generated from the 

PLA file as shown in Appendix e. 
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Algorithm 5.1 Serial tabular technique for conversion from esop minterm 
coefficients to fixed polarity eoe maxterm coefficients. 
n: the number of variables coef ficients: the number of coefficients 
mask: hex constant new: newly generated coefficient 
polarity: the polarity of fixed polarity eoe expansion 
CSOP: the flag indicates on-set esop minterm coefficients used 
f lag[]: an array indicates the occurrence of coefficients 
infile: input file used to read on-set esop minterm coefficients 
outfile: an output file used to output fixed polarity eoe maxterm coefficients 
begin 

mas k = OxOOOOOOO 1; 
read_input_data(infile, n, coefficients, flag, polarity) 
begin 

if (coe f f icients ::; 2n
- 1) 

CSOP = 1; 
else 

coef ficients = 2n - coefficients; 
allocate_flag_and _set_flag (flag, CSOP); 
XOR_ coefficients _ with_polarity (coefficients, flag, polarity); 

end 
for i = 0 to n - 1 do 

for j = 0 to 2n - 1 do 
if ( !CSOP&& flag[j] == 1) //1 means present 

if ((i 1\ mask) == 1) 
new = i EB mask; / / generate new coefficient 
if (flag[new] == 1) / / check the existence 

flag[new] = 0; 
else 

flag[new] = 1; 
else if (CSOP&& flag[j] == 0) / / 0 means term present 

if ((i 1\ mask) == 1) 
new = i EB mask; / / generate new coefficient 
if (flag[new] == 1) / / check the existence 

flag[new] = 0; 
else 

flag[new] = 1; 
end for 
mask = mask « 1; / / left shift one bit for next variable 

end for 
if (CSOP) 

flag[2n - 1] =!flag[2n - 1]; 
output_data (outfile, flag, polarity); 

end algorithm 
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Minterms Minterms after XO R 

X2 Xl Xo X2 Xl Xo 

0 000 o 
o 0 

2 2 0 0 
3 o 1 3 0 
4 o 0 4 
5 0 5 0 
6 6 0 
7 7 1 

(a) (b) 

Figure 5.1: A list of on-set esop minterm coefficients. (a) Minterm coefficients 
before XOR, (b) Minterm coefficients after XORing with "110" for polarity 6. 

Example 5.1. Obtain the on-set maxterm coefficients of fixed polarity eoe 
expansion of polarity 6 by using STT for a 3-variable function f(X2, Xl, xo) = 

X2XlXO + X2XlXO + X2 X l XO + X2 X l X O + X2 X l X O' 

Firstly, allocate and initialise flag[8] so that flag[8] = {I, 1, 1, 1, 1, 1, 1, I}. 

Since the number of on-set esop minterms is 5, which is greater than 2n
- l = 

23- 1 = 4, maxterm method is used. The 3-variable function in esop form is 

f(X2' Xl, XO) = 2:(0,1,3,4,5). Read in all the on-set esop minterms as "O"s 

and update flag[8] so that flag[8] = {I, 1,0,0,1,0,0, O} by XORing on-set 

esop minterm coefficients with "110" for polarity 6, as shown in Figure 5.1(a) 

and Figure 5.1(b) respectively. 

Next, start with variable Xo to generate new coefficients. The mask value 

for variable Xo is "(OOlh". The first coefficient found in the array with "I" is 

flag[O], i.e., "(OOOh" is found. Since the LSB is "0", do nothing. The second 

coefficient found in the array with "I" is flag[l], i.e., "(OOlh" is found. Since 

the LSB is "I", a new coefficient "(OOOh", as shown in Figure 5.2, is generated 

by performing XOR between the coefficient "(OOlh" and the mask "(OOlh". 
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Maxtenus New tenus (xo) New maxtenus 

Xz XI Xo Xz XI Xo Xz XI Xo 

0 000 000 
o 0 1 001 

2 
3 
4 1 0 0 100 
5 
6 
7 

Figure 5.2: Maxterms generation for variable Xo. 

Maxtenus New tenus (XI) New maxtenus 

Xz XI Xo Xz XI Xo Xz XI Xo 

0 
1 o 0 1 001 
2 
3 
4 1 0 0 100 
5 
6 
7 

Figure 5.3: Maxterms generation for variable Xl. 

Maxtenus New tenus (XI) New maxtenus 

Xz XI Xo Xz XI Xo Xz XI Xo 

0 000 000 
1 o 0 1 001 
2 
3 
4 1 0 0 100 
5 
6 
7 

Figure 5.4: Maxterms generation for variable X2. 

The content of the array is updated so that flag[8] = {O, 1, 0, 0,1,0,0, O}. The 

last coefficient found in the array with "1" is flag[4], i.e., "(100h" is found. 

Since the LSB is "0" , do nothing. The generation of new coefficients for Xo is 

completed. 
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The following procedure for Xl and X2 is straightforward and is in the same 

way as for Xo. The arrays are flag[8] = {O, 1,0,0,1,0,0, O} and flag[8] = 

{1, 1, 0, 0, 1, 0, 0, O} after generation of new coefficients for Xl and X2 respec­

tively, as shown in Figure 5.3 and Figure 5.4. It can be seen that the on-set 

maxterm coefficients of fixed polarity COC expansion of polarity 6 presented 

in flag[8] are 0, 1 and 4 when the content of the array is "1". Hence, 

f(X2, Xl, xo) = 0 II (0,1,4) = (X2 + Xl + xo) 8 (X2 + Xl) 8 (Xl + xo) 

The conversion from fixed polarity COC expansion of any polarity p to 

CPOS expansion is the reserve of the conversion from CPOS expansion to 

fixed polarity COC expansion of any polarity p. The theory is proved and 

shown in Corollary 4.4 in Chapter 4. 

Procedure 5.3. Serial tabular technique for conversion from fixed polarity 

CDC expansion of any polarity p to CPOS expansion. 

1. Clear all the contents of the array flag[] to "0". 

2. Check the number of on-set COC maxterms. If the number of on-set 

COC maxterms is less than or equal to 2n
-

l , on-set COC maxterms will 

be used and called maxterm method. Otherwise off-set COC maxterm 

will be used and called minterm method. 

3. Read in on-set COC maxterm coefficients and set "l"s to contents of the 

array, where the on-set COC maxterm coefficients are used as the index 

of the array. 
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4. If the maxterm method is used, whenever the content of the array is "1", 

generate a new coefficient if the index of the array is in a binary form and 

the ith bit of the index is "1", where 0 ~ i ~ n - 1, and then replace the 

ith bit with "0" but leave others unchanged. If the minterm method is 

used, whenever the content of the array is "0", generate a new coefficient 

in the same way as in maxterm method. 

5. Check the existence of the new coefficient, where the new coefficient is 

used as the index of the array. No matter which method is used, minterm 

method or maxterm method, if the content of the array is "0", set "1" 

to the content of the array. If the content of the array is "1", clear the 

content of the array to "0". 

6. Repeat Steps 4 and 5 for the ith variable of all the indices of the array. 

7. Repeat Steps 4 to 6 for the other variables. 

8. Modify the content of the array by complementing the content of the 

array flag[2n - 1], only when minterm method is in use. 

9. If the maxterm method is used, when the content of the array is "1", XOR 

the index of the array in binary form with polarity p and output it as the 

on-set maxterm coefficient of CPOS expansion, where 0 ~ p ~ 2n - l. 

If the minterm method is used, when the content of the array is "0", 

XOR the index of the array with polarity p and output it as the on-set 

maxterm coefficient of CPOS expansion. 

10. Repeat Step 9 for all the indices of the array. 

11. Output the CPOS expansion according to on-set CPOS maxterm coeffi­

cients. 
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Example 5.2. Obtain on-set maxterm coefficients of CPOS expansion by 

using STT for a 3-variable function in eoe form J(X2, Xl, Xo) = 0 TI(O, 1,4) 

for the on-set maxterm coefficients of fixed polarity eoe expansion of polarity 

6. 

Firstly, allocate and initialise Jlag[8] so that Jlag[8] = {O, 0, 0, 0, 0, 0, 0, O}. 

Since the number of on-set eoe maxterms is 3, which is less than 2n
- 1 = 

23- 1 = 4, maxterm method is used. Read in all the on-set eoe maxterms as 

"l"s and update Jlag[8] so that Jlag[8] = {1, 1, 0, 0, 1, 0, 0, O}. 

The procedure to generate respective coefficients for xo, Xl and X2 is straight­

forward. The arrays are updated so that Jlag[8] = {O, 1, 0, 0,1,0,0, O}, Jlag[8] = 

{O, 1,0,0,1,0,0, O}, and Jlag[8] = {1, 1,0,0,1,0,0, O} after generation of new 

coefficients for xo, Xl and X2 respectively. 

The on-set CPOS maxterm coefficients are generated by XORing the index 

of the array with "110" for polarity 6 so that Jlag[8] = {O, 0,1,0,0,0,1,1}, 

where the contents of the array is "1" for the corresponding index. Hence, 

J(X2, Xl, Xo) = II (2,6,7) ~ (X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo) 

5.3 Parallel Tabular Technique 

STT deals with one variable at a time. To overcome the inherent serial aspect 

of STT, parallel tabular technique is proposed to generate new terms for all 

new eoe maxterms in parallel. Similar to the implementation of STT, PTT 

also uses an array to deal with all the maxterm coefficients regardless of the 

number of on-set maxterm coefficients. PTT for conversion from CPOS to 

fixed polarity eoe expansion of any polarity is shown in Procedure 5.4. 
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Procedure 5.4. Parallel tabular technique for conversion from CPos expan­

sion to fixed polarity CDC expansion of any polarity p. 

1. Clear all the contents of the array flag[] to "0". 

2. Read in on-set CPOS maxterms, XOR the on-set CPOS maxterms with 

polarity p and set "1"s to the corresponding contents of the array, where 

o ::; p ::; 2n - 1 and the newly generated coefficients are used as the index 

of the array. 

3. Whenever the content of the array is "1", generate all possible new co­

efficients. The generation of the new coefficients is as follows. If the 

index of the array is in a binary form and the ith bit of the index is "1", 

consider it as "don't care", where 0 ::; i ::; n -1. Based on the new binary 

form with "don't care" but excluding the old CPOS maxterm coefficient, 

2° -1 new coefficients are generated for each CPOS maxterm coefficient, 

where 0 is the number of "1"s in the CPOS maxterm coefficient. The 

newly generated coefficients are used as the index of the array and the 

corresponding contents of the array are all incremented by one. 

4. Count the number of the content of the array. Only when the number is 

odd, the index is the on-set COC maxterm coefficient of polarity p. 

5. Repeat Step 4 for all the indices of the array. 

6. Output the COC expansion according to on-set COC maxterm coeffi­

cients. 

Procedure 5.4 can be modified to Procedure 5.5. PTT for conversion from 

CSOP to fixed polarity COC expansion of any polarity is shown in Procedure 

5.5 as follows. 
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Procedure 5.5. Parallel tabular technique for conversion from GSOP expan­

sion to fixed polarity COC expansion of any polarity p. 

1. Check the number of on-set CSOP minterms. If the number of on-set 

CSOP minterms is less than or equal to 2n - 1 , on-set CSOP minterms will 

be used and clear all the contents ofthe array flag[] to "0". The method 

is called minterm method. Otherwise on-set CPOS maxterms will be 

used and set all the contents of the array flag [] to "1". The method is 

called maxterm method. 

2. Read in on-set CSOP minterms which are generated from PLA file. 

3. XOR the on-set CSOP minterms with polarity p, where 0 :::; p :::; 2n - 1. 

If minterm method is used, set "I" to the corresponding contents of the 

array. If maxterm method is used, set "0" to the corresponding contents 

of the array. The newly generated coefficients are used as the index of 

the array. 

4. Whenever the content of the array is "I", generate all possible new coeffi­

cients. The generation of the new coefficients is as follows. If the index of 

the array is in a binary form and the ith bit of the index is "I", consider 

it as "don't care", where 0 :::; i :::; n - 1. Based on the new binary form 

with "don't care" but excluding the old coefficient, 2° -1 new coefficients 

are generated for each coefficient, where 0 is the number of "l"s in the 

old coefficient. The newly generated coefficients are used as the index of 

the array and the corresponding contents of the array are all added one. 

5. Only when minterm method is in use, modify the content of the array 

by complementing the content of the array flag[2n - 1]. 
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6. Count the number of the content of the array. Only when the number is 

odd, the index is the on-set COC maxterm coefficient of polarity p. 

7. Repeat Step 6 for all the indices of the array. 

8. Output the COC expansion according to on-set COC maxterm coeffi­

cients. 

The Pseudo code of PTT from CSOP minterm coefficients to fixed polarity 

COC expansion of any polarity is given in Algorithm 5.2. 

Example 5.3. Obtain the on-set maxterm coefficients of fixed polarity COC 

expansion of polarity 6 by using PTT for a 3-variable function in CSOP form 

f(X2' Xl, xo) = 2..:(0,1,3,4,5), as shown in Example 5.l. 

Firstly, the number of on-set CSOP minterms is 5, which is greater than 

2n
-

1 = 23- 1 = 4. As a result, maxterm method is used. Allocate and initialise 

flag[8] so that flag[8] = {I, 1, 1, 1, 1, 1, 1, I}. Read in all the on-set CSOP 

minterms as "O"s which is shown in Figure 5.5 and update flag[8] so that 

flag[8] = {I, 1,0,0,1,0,0, O} by XORing on-set CSOP minterm coefficients 

with "110" for polarity 6. 

Then, the first coefficient found in the array with "I" is "(OOOh". Since 

none of the bits is "I", no new coefficients are generated. The second coeffi­

cient found in the array with "I" is "(OOlh". Since the LSB is "I", this bit is 

considered as a "don't care". Thus, two new coefficients "(OOOh" and "(OOlh" 

are generated. But the old coefficient "(OOlh" should be excluded. As a re­

sult, only coefficient" (OOOh" is added to the array and flag[8] is updated as 

flag[8] = {2, 1,0,0,1,0,0, O}. 

The same procedure is applied to coefficient "(100h". Consequently, flag[8] 
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Algorithm 5.2 Parallel technique technique for conversion from esop 
minterm coefficients to fixed polarity eoe maxterm coefficients. 

n: the number of variables 
coef ficients: the number of coefficients 
0: number of ones 
mask: hex constant 
f lag[]: an array indicates the occurrence of coefficients 
GSOP: the flag indicates on-set esop minterm coefficients used 
polarity: the polarity of fixed polarity eoe expansion 
infile: input file used to read in on-set esop minterm coefficients 
outfile: output file used to output fixed polarity eoe maxterm coefficients 

begin 
mask = Ox00000001; 
read_input_data(infile, n, coefficients, flag, polarity) 
begin 

if (coefficients:::; 2n - 1) 

GSOP = 1; 
else 

coef ficients = 2n - coefficients; 
end if 
allocate_flag_and _set_flag (flag, GSOP); 
XOR_ coefficients_ with_polarity (coefficients, flag, polarity); 

end 
for index1 = 0 to coefficients - 1 do 

0= count_the_no_of_one (i); 
save_ the_position_ of_ ones 0; 
for index2 = 1 to 2° - 1 do 

generate_possible_new _terms (index2, mask, index3); 
flag[index3]+ = 1; 

end for 
end for 
if (GSOP) 

flag[2 n - 1] =!flag[2n - 1]; 
end if 
for index 1 = 0 to 2n - 1 

if (flag[index1]/\ mask == 1) / / odd number 
output_data (outfile, polarity); 

end if 
end for 

end algorithm 
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Maxterrns New maxterrns 

X2 Xl Xo 

0 o 0 0 o 0 0, 0 0 0 
1 o 0 1 
2 

3 
4 1 0 0 
5 

6 
7 

Figure 5.5: Newly generated maxterm. 

Maxterms 
Number of 

occurrence 

Xz Xl Xo 
cae 

0 000 3 Maxterms 

o 0 c:) Xz Xl Xo 

2 0 0 0 000 

3 o 1 0 o 0 

4 o 0 o 0 

5 0 0 
6 0 0 
7 0 

Figure 5.6: eoe maxterms. 

is updated as flag[8] = {3, 1,0,0,1,0,0, O}. Figure 5.5 shows the correspond-

ing newly generated coefficients. 

Those indices with odd number are the on-set coefficients of fixed polarity 

eoe expansion of polarity 6. It can be seen in Figure 5.6 that the on-set eoe 
maxterm coefficients are 0, 1 and 4, which are the same as those obtained by 

using STT. 

The conversion from fixed polarity eoe expansion of any polarity p to 

CPOS expansion is the reserve of the conversion from CPOS expansion to 

fixed polarity eoe expansion of any polarity p. 
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Procedure 5.6. Parallel tabular technique for conversion from fixed polarity 

COC expansion of any polarity p to CPOS expansion. 

1. Check the number of on-set COC maxterms. If the number of on-set 

COC maxterms is less than or equal to 2n
-

1
, clear all the contents of the 

array flag[] to "0". The method is called maxterm method. Otherwise 

set all the contents of the array flag[] to "I". The method is called 

minterm method. 

2. Read in on-set COC maxterms and set "l"s to contents of the array, 

where the on-set COC maxterms are used as the index of the array. 

3. Whenever the content of the array is "I", generate all possible new coeffi­

cients. The generation of the new coefficients is as follows. If the index of 

the array is in a binary form and the ith bit of the index is "I", consider 

it as "don't care", where 0 :S i :S n - 1. Based on the new binary form 

with "don't care" but excluding the old coefficient, 2° -1 new coefficients 

are generated for each old coefficient, where 0 is the number of "l"s in the 

old coefficient. The newly generated coefficients are used as the index of 

the array and the corresponding contents of the array are all added one. 

4. Only when minterm method is in use, modify the content of the array 

by complementing the content of the array flag[2n - 1]. 

5. Count the number of the content of the array. Only when the number 

is odd, XOR the index of the array with polarity p and output it as the 

on-set maxterm coefficient of CPOS expansion, where 0 :S p :S 2n - 1. 

6. Repeat Step 5 for all the indices of the array. 

7. Output the CPOS expansion according to on-set CPOS coefficients. 
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Example 5.4. Obtain on-set maxterm coefficients of CPOS expansion by 

using PTT for a function in COC form f(X2' Xl, xo) = 0 I1(0, 1,4) for the 

on-set maxterm coefficients of fixed polarity COC expansion of polarity 6. 

Firstly, since the number of on-set COC maxterms is 3, which is less than 

2n - l = 23- 1 = 4, maxterm method is used. Allocate and initialise flag[8] so 

that flag[8] = {O, 0, 0, 0, 0, 0, 0, O}. Read in all the on-set COC maxterm as 

"l"s and update flag[8] so that flag[8] = {I, 1,0,0,1,0,0, O}. 

The arrays are flag[8] = {I, 1,0,0,1,0,0, O}, flag[8] = {2, 1,0,0,1,0,0, O} 

and flag[8] = {3, 1, 0, 0, 1, 0, 0, O} respectively after the generation of new co­

efficients for each on-set maxterm coefficients using PTT. 

The on-set CPOS maxterm coefficients are generated by XORing the index 

of the array with "110" for polarity 6, where the contents of the array is odd 

number for the corresponding index. Hence, f(X2' Xl, xo) = I1(2, 6, 7), which 

are the same coefficients as in Example 5.2. 

5.4 Experimental Results 

The algorithms are implemented in the C language and the programs are com­

plied by the GCC. The results are obtained using a PC with Intel Celeron 897 

with 256 MB RAM under Linux. 3 sets of on-set CPOS maxterm coefficients 

are randomly generated to test the effectiveness of the algorithms. One set has 

30 on-set CPOS maxterm coefficients. Another has 300. The other has 3000. 

Each set of coefficients is tested for both STT and PTT. When the number of 

variables n < 15, the CPU time is almost zero for both algorithms. The CPU 

time is slightly increased as the number of variables increases. Figure 5.7 and 

Figure 5.8 show the CPU time in seconds for different variables. 
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Figure 5.7: CPU conversion time for randomly generated CPOS expansions 
with 30, 300 and 3000 on-set CPOS maxterm coefficients when 15 ::::; n ::::; 19. 
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Figure 5.8: CPU conversion time for randomly generated CPOS expansions 
with 30, 300 and 3000 on-set CPOS maxterm coefficients with 20 ::::; n ::::; 25. 
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Table 5.1: Comparison conversion CPU time for IWLS93 benchmarks. 

Multi-seg. Multi-seg. 
Name n [34] [51] tech. using tech. using STT PTT 

(s) (s) maxterms minterms (s) (s) 
(s) (s) 

apex4 9 0 0 0 0 0 0 
alu4 14 2.19 - 0.01 0.01 0.01 0.32 
b12 15 3.3 - 0.02 0.01 0.02 0.53 
clip 9 0.06 0 0 0 0 0 
con1 7 0 0 0 0 0 0 

misex1 8 0 - 0 0 0 0 
misex3c 14 1.59 - 0.01 0.01 0 0.06 

pdc 16 16.86 0.931 0.08 0.03 0.11 0.13 
rd84 8 0 0.05 0 0 0 0 
spla 16 15.49 0.931 0.05 0.05 0.11 0.07 

table5 17 28.4 9.845 0.22 0.06 0.2 0.15 

Our methods are compared to [34] and [51]. Table 5.1 shows the comparison 

results, in which experimental results in [34] and [51] were performed on a 

PC with Pentium III (1 GHz) CPU with 256 MB RAM under windows and 

Pentium IV (2.4 GHz) CPU with 512 MB RAM under windows. "-0" means 

CPU time almost zero, n stands for the number of variables. In all cases, STT 

and PTT outperform [34] and [51] significantly. 

Time complexity of the STT and PTT are O(n2n) and O(caef ficients2°) 

respectively, where a is the number of "l"s in each maxterm and caef ficients 

is the number of maxterms or minterms. Space complexity of the STT and 

PTT are both O(2n). 

Table 5.2 shows the CPU time in seconds for maxterm STT method, 

minterm STT method for large randomly generated functions and percent-

age of improvement, where first column is the number of variables, the second 

one is the number of on-set CPOS maxterms before conversion and the third 
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Table 5.2: STT using maxterm and minterm methods. 

n no. of CPOS no. of COC maxterm minterm imp. 
before conversion after conversion STT (s) STT (s) % 

20 1048546 146737 1.96 1.88 4.08 
20 1048276 308855 2.14 2.05 4.21 
20 1045576 461047 2.33 2.26 3.00 
21 2097122 285795 4.15 3.88 6.51 
21 2096852 499257 4.38 4.09 6.62 I 

21 2094152 885755 4.8 4.66 2.92 
22 4194274 337843 8.25 7.75 6.06 
22 4194004 724669 8.65 8.4 2.89 
22 4191304 1622279 9.67 9.28 4.03 
23 8388578 372491 16.54 15.63 5.50 
23 8388308 1118017 17.28 16.21 6.19 
23 8385608 2962567 19.42 18.55 4.48 
24 16777186 428775 33.57 31.84 5.15 
24 16776916 1953563 34.78 33.64 3.28 
24 16774216 5485627 39.07 37.16 4.89 
25 33554402 570823 69.74 66.03 5.32 
25 33554132 3360689 72.17 68.15 5.57 
25 33551432 9989185 79.96 76.00 4.95 -_ ..... _----_ ... _ .. - ~--- .... -.-- '-------------------

I Ave. I 11008938 I --1750776 - I 23.83 -, 22.64 I4.99 J 

one is the number of on-set COC maxterms after conversion. 

The improvement rate is defined in (5.1). 

. CPU in maxterm method - CPU in minterm method 1 01 ( ) 
'imp = x 0010 5.1 

CPU in maxterm method 

where CPU in maxterm method and CPU in minterm method stand for the 

CPU time used for maxterm and minterm methods respectively. 
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5.5 Summary 

STT and PTT for conversion between standard Boolean and fixed polarity 

COC expansions of any polarity are proposed in this chapter. By using bitwise 

operations and paying penalty of memory requirement, STT outperforms the 

other methods in the literature. PTT generates new terms in parallel instead 

of dealing with one variable at a time. However, as the number of product 

terms increases the performance of PTT degrades and can not achieve better 

performance than STT because of overhead computation. As a result, PTT is 

suitable for large sparse functions. While STT can be used when PTT can not 

perform well for those functions with a large number of coefficients. Minterm 

STT method can achieve improvement of 4.99% over maxterm STT method 

in terms of CPU conversion time for randomly generated large functions. 



Chapter 6 

On-set Table Method for 

Multi-level Mixed Polarity RM 

6.1 Introduction 

Conversion algorithms between standard Boolean and DFRM expansions have 

been investigated in [118,140]. Furthermore, many optimisation techniques 

for two-level FPRM and MPRM forms were proposed in terms of area min­

imisation and/or power minimisation in [121,127,130,131,133]. The method 

in [121] proposed an exact minimisation by exhaustively searching all the pos­

sible fixed polarities to find the best polarity with least number of 7r-terms. For 

an n-variable function, there are 2n polarities of the FPRM forms. It would be 

difficult to exhaustively search all possible MPRM forms since the number of 

polarities could be 2n2n
-

1
• Recently, truth vector based method for MMPRM 

optimisation was proposed in [131]. This method uses a truth vector with 

length of 2n to represent an n-variable FPRM expansion. By elimination and 

decomposition, the compact representation of MMPRM form can be obtained 
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from the FPRM expansion. The main disadvantage of this method is the rapid 

increase in memory for large functions. 

In this chapter, a novel onset table method is presented to obtain the MM-

PRM form directly from the FPRM expansion, which requires less memory so 

that it can target large functions. The rest of the chapter is organised as fol-

lows. Section 6.2 gives the properties of onset table. In Section 6.3, extraction 

of common variables from on-set table is given. The proposed algorithm for 

the optimisation of MMPRM is detailed in Section 6.4. Experimental results 

are presented in Section 6.5. 

6.2 Properties of On-set Table and Basic Defi-

nitions 

Any n-variable Boolean function can be expressed canonically by the SOP 

form in (6.1). 
2n-1 

f(X n -1, ... ,Xl, Xo) = ED 2: b{Trj 

j=O 

(6.1) 

where "ED z.=" is the XOR operator, bj E {O, I} and "l"s indicate the presence 

of the corresponding 1T-terms in the expansion. The subscript j is expressed 

in the binary form as j = (jn-1 ... jdo). The 1T-term can be expressed as 

. . . 
1Tj = Xn-1 ..• X1XO (6.2) 

X' = { 1 z • 
Xi 

ji = 0 
(6.3) 

Ji = 1 

where 0 :::; i :::; n - 1. 
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Definition 6.1. Any n-variable FPRM expansion of any polarity can be ex­

pressed with Set 0, which is composed of the decimal numbers equivalent to 

the coefficients of 7f-terms. 

Example 6.1. Given a 3-variable function as an FPRM expansion of any 

polarity F(X2' :h, xo) = Xo ED X1XO ED X2XO ED X2X1XO , it can be represented by 

7f-terms as in F(X2' Xl, Xo) = 7f1 ED 7f3 ED 7f5 ED 7f7. It also can be expressed by a 

Set 0 as 0 = {1, 3, 5, 7}, in which the decimal numbers are the subscript of 

bj in (6.1). 

Definition 6.2. Onset table, called T table (briefly T), is to describe the 

existence of each variable in each 7f-term of a FPRM expansion. The T has 

the following properties: 

1. Each row of the T represents each element of Set 0 in binary form; 

2. Each column of the T represents an input variable of the FPRM expan-

slOn; 

3. Qsi E {O, 1} is a bit on the 8th row and ith column of T. Qsi = 1 means 

that the variable Xi on the ith column and 8th row of T appears in its 

true form in the expansion. Qsi = 0 means that the variable Xi on the 

ith column and 8th row of T does not appear in the expansion. 

Example 6.2. Given 0 = {1, 3, 5, 7} for FPRM expansion of positive polarity, 

the corresponding T is shown in Figure 6.1. 

Definition 6.3. F -+ T indicates that the FPRM expansion of any polarity F 

is mapped to T. T -+ F indicates that the T is mapped to FPRM expansion 

of any polarity F. 
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x2 -Xi Xo 

7rl 0 0 1 

7r3 0 1 1 

7r5 1 0 1 

7r7 1 1 1 

Figure 6.1: An example of T for a given G. 

Corollary 6.1. Given a FPRM expansion of any polarity F and F ----+ T. If 

any two columns of T are swapped, new T is generated but F = :F, where 

T ----+ :F. 

Proof. Swapping any two columns of T does not change the logic functionality 

of F but the order of the variables in F. Hence, F = :F. o 

Corollary 6.2. Given a FPRM expansion of any polarity F and F ----+ T. 

If any two rows of T are swapped, new T is generated but F = :F, where 

T ----+ :F. 

Proof. If any two rows of T are swapped, it is equivalent to swapping any two 

on-set coefficients of F, because XOR operator is commutative. As a result, 

F =:F. o 

Example 6.3. Given a 3-variable function in the FPRM expansion of positive 

polarity in Example 6.1, T is generated after swapping the third row and forth 

row of T, i.e., 7r5 and 7r7 are swapped, as shown in Figure 6.2(a). Equation 

(6.4) shows that the FPRM expansion remains unchanged. 

T is generated after swapping the first column and third column of T, i.e., 

variable Xo and X2 are swapped, as shown in Figure 6.2(b). Equation (6.5) 
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X2 Xi Xo Xo .AI X2 

, , 
7l'1 0 0 1 7l'1 1 0 0 

, 
7l'3 0 1 1 7l'3 1 1 0 

7l's 1 1 1 7l's 1 0 1 
, 

7l'7 1 0 1 7l'7 1 1 1 

(a) (b) 

Figure 6.2: The resulting T generated after swapping. (a) 1f5 and 1f7 are 
swapped, (b) Variable Xo and X2 are swapped. 

shows that the FPRM expansion remains unchanged. 

:;::' (X2' Xl, Xo) 
I , I I 

1fl EEl 1f3 EEl 1f5 EEl 1f7 

1fl EEl 1f3 EEl 1f7 EEl 1f5 

Xo EEl XlXO EEl X2XlXO EEl X2XO (6.4) 

Xo EEl XlXO EEl X2XO EEl X2XlXO 

:;::(X2' Xl, Xo) 

:;::' (X2' Xl, Xo) 
I , I I 

1fl EEl 1f3 EEl 1f5 EEl 1f7 

Xo EEl XOXI EEl XOX2 EEl XOXlX2 (6.5) 

Xo EEl XlXO EEl X2XO EEl X2XlXO 

:;::(X2' Xl, Xo) 
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X2 .A1 Xo 

Jr1 II 01 D Jr3 II I 
ST2 

0 I 1 

Jr5 1111D 
ST3 

Jr7 II U 1 1 
STI 

Figure 6.3: 3 possible sub-tables of T. 

Definition 6.4. T can be divided into U sub-tables either in the horizontal or 

vertical direction, where U is an integer and U ~ 1. The sub-table is notated 

as 8Tt, where 0 ::; t ::; U - 1. The sub-table STt that includes some of the 7f-

terms of T in horizontal direction is notated as P STt . Any sub-table STt that 

includes some of the variables of T in vertical direction is notated as V STt . 

Example 6.4. If T shown in Figure 6.1 is divided into 3 sub-tables, as seen 

in Figure 6.3, PSTl = {7fl,7f3,7f5,7f7} and VSTl = {X2}' PST2 = {7fl,7f3} and 

VST2 = {Xl,XO}' PST3 = {7f5,7f7} and VST3 = {Xl,XO}. 

Definition 6.5. If sub-table ST includes all the 7f-terms of the T, it is defined 

as TiV P ST. The variables included by the TiV P ST are notated as VTiV P ST. If 

sub-table ST includes all the variables of the T, it is defined as TiVV ST. 

Corollary 6.3. Given any two sub-tables, STl and ST2, where STl C T 

and ST2 C T, if P STl = P ST2, these two sub-tables, STl and 8T2 can be 

grouped into another sub-table ST3 in vertical direction without changing the 

logic functionality of F, where ST3 = {STl, 8T2}. 

Proof. Because P STl = P ST2, STl and ST2 are located at the same row of T, 

as shown in Figure 6.4(a). T can be reorganised and generates r, as shown 
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Xn- 1 Xi2 Xil Xo Xn- 1 XiI'" Xo X;2 X;1+1 

%1 %1 

%jl-l 

, 
%}1-1 

- - - - - - - - -r - - - - - - - - - - - - --, , 
%}1 %}1 

STI ST2 ST1 ST2 

%}2-1 
, 

%}2-1 

----------~--------------. 
%j2 

, 
%}2 

%}3 
, 

%}3 

(a) (b) 

Figure 6.4: Exchange two sub-tables, STl and ST2 in the vertical direction. 
(a) T before exchange, (b) 7' after exchange. 

in Figure 6.4(b). Let T and 7' be on-set tables before and after changing 

the position of ST2 . Let F -+ T and 7' -+ :;::'. According to Corollary 6.1, 

F=:;::'. 

Let 7" be on-set table after grouping STl and ST2 and 7" -+ :;::", as shown 

in Figure 6.5. Because after grouping, 7" = 7'. Hence, :;::' = :;::". 
, ,.,-', 

As a result, F = F =.r . o 

Corollary 6.4. Given any two sub-tables, STl and ST2 , where STl C T and 

ST2 C T, if 11 STl = 11 ST2 , these two sub-tables, STl and ST2 can be grouped 

into another sub-table ST3 in horizontal direction without changing the logic 

functionality of F, where ST3 = {STl, ST2 }. 

Proof. Because 11 STl = 11 ST2 , STl and ST2 are located at the same column of 
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1C1 

1CJ1- 1 

. 
1Cj1 

. 
1Cj2- 1 

. 
1Cj2 

1CJ3 

Xn-1 X]1 Xo X]2 Xi l+1 

--------------.&--------1 

ST3 

, , , , , , 

. , , 
------------------------, 

Figure 6.5: Resulting T" after grouping STI and ST2 into ST3 • 
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T, as shown in Figure 6.6(a). T can be reorganised and generates T', as shown 

in Figure 6.6(b). Let T and T' be on-set tables before and after changing the 

position of ST2 . Let F ---+ T and T' ---+ :F'. According to Corollary 6.2, 

F=:F'. 

Let T" be on-set table after grouping STI and ST2 and T" ---+ :F", as shown 

in Figure 6.7. Because after grouping, T" = T'. Hence, :F' = :F". 

As a result, F = :F' = :F" . o 

Corollary 6.5. Given a FPRM expansion F, T and WPST, where F ---+ T, 

VWPST = {Xi2,Xi2-l,'" ,Xil+l,Xil} and all the elements ofliVPST are "1". 

If T' is generated by deletion of vV P ST from T and T' ---+ :F', 

F s7rF 
, 

(6.6) 

where S7r = Xi2Xi2-l' . 'Xil+lXil and 0 :::; il :::; i2 :::; n - 1. 
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Xn- 1 Xi2 XiI Xo Xn- 1 Xi2 XiI x o 

1(1 1(1 

STI STI 

1(Jl-l 1(Jl-l . ---------------, 
1(jl 1(j2 

ST2 

1(j2-1 1(j3-1 

1(j2 1(jl 

ST2 

1(j3-1 1(j2-1 

1(j3 1(j3 

1(j4 1(j4 

(a) (b) 

Figure 6.6: Exchange two sub-tables, STl and ST2 in the horizontal direction. 
(a) T before exchange, (b) T after exchange. 

Proof. Because F -+ T, VWPST = {Xi2,Xi2-l,··· ,Xi1+l,Xil}, 0::::; il::::; i2::::; 

n, and lV P ST c T, the corresponding T can be drawn as shown in Figure 

6.8(a). 

Let n-variable function F = EEl 2:..:~:~l b{lfj be the expansion before extrac­

tion and :F = EEl 2:..:~:~l b~7r~ be the one after extraction. After extraction of 

common variables, the number of variables changes but the number of 7r - terms 

does not change. Hence bj = b~. 

I ( I For any 7rj and 7rj' because all the elements of WPST are "I", 7rj = S7r)7rj , 
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Xn-1 Xj2 xi! Xo 

, 
JZ'1 

JZ'j1-1 

, ST3 
JZ'j2 

, 
JZ'j3-1 

t _______________ _ 

, 
JZ'jl 

JZ'j2-1 

, 
JZ'j3 

JZ'i4 

Figure 6.7: Resulting T" after grouping STI and ST2 into ST3 . 

where S7r Xi2Xi2-l·· ·Xil+1Xil. Hence, F can be rewritten as F s7fF, 

namely, S7f and F have the logic "AND" relationship as in (6.6). If S7f -t 

lIVPST, the variables included in the S7f can be extracted from F, resulting in 

new T' generated by deleting WPST from T, as shown in Figure 6.8(b). 0 

Corollary 6.6. Given a FPRM expansion F, T and WPST, where F -t T, 

1fliVPST = {Xi2,Xi2-l,··· ,Xi1+l,Xil} and all the elements ofliVPST are ((0". 

If T' is generated by deletion of W P ST from T and T' -t F, 

F = F' (6.7) 

where S7f = Xi2Xi2-l· . ·Xi1+lXil and 0 S; il S; i2 S; n - 1. 
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Xn- I Xi2 XiI Xo Xn- 1 Xi 2+1 Xil - 1 X o 

, 
1[1 1[1 

, 
1[j1-1 1[j_1 

· 1[jl · · · 1[j1 

WPST 

. 
7rj2 

. 1[j2 

1[j3 
1[j3 

(a) (b) 

Figure 6.8: Extraction of global common variables. (a) T before deletion, (b) 
T after deletion. 

Proof. Let n-variable function F = EEl L:~:~l bj 7rj be the expansion before ex­

traction and :F' = EEl L:~:~l b~7r~ be the one after extraction. After extrac­

tion of common variables, the number of 7r-terms does not change. Hence 

bj = b~. T is generated from T by deleting TtV P ST, where VW P ST = 

{Xi2,Xi2-1,'" ,Xil+l,Xil}, 0::; i1 ::; i2 ::; n and all the elements of WPST 

are "0". According to Definition 6.2, the variables do not appear in the F if 

Qsi = 0, i.e., VWPST = {Xi2,Xi2-1,'" ,Xil+l,Xil} do not appear either in F 

and :F'. As a result, F = :F'. D 

Example 6.5. Given a 4-variable function in the FPRM expansion of positive 

polarity F(X3, X2, Xl, Xo) = X3 EEl X3XO EEl X3XI EEl X3XIXO, VW P ST = {X3} and 

all the elements of W P ST are "1". Variable X3 can be extracted from F, as 

shown in Figure 6.9. Hence, :F' (X2, Xl, Xo) = 1 EElxo EEl Xl EElXIXO and S7r = X3. If 
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X3 Xz ;; xo Xz ;; xo 
, 

1[8 1 0 0 0 1[8 0 0 0 

1[9 1 0 0 1 1[9 0 0 1 

1[10 1 0 1 0 1[10 0 1 0 
, 

1[11 1 0 1 1 1[11 0 1 1 

(a) (b) 

Figure 6.9: On-set table deletion of TiVPST, where FWPST = {xa} and all 
the elements of HlP ST are "I". (a) T before deletion, (b) T after deletion. 

X3 x 2 Xl xo X3 ;; xo 

1[8 1 0 0 0 1[8 1 0 0 

1[9 1 0 0 1 1[9 1 0 1 
, 

1[10 1 0 1 0 1[10 1 1 0 

1[11 1 0 1 1 1[11 1 1 1 

(a) (b) 

Figure 6.10: On-set table deletion of TiV P ST, where FW P ST = {X2} and all 
the elements of TiV P ST are "0". (a) T before deletion, (b) T after deletion. 

the function is expanded, F(X3' X2, Xl, Xo) = S7rF = x3(1 EB Xo EB Xl EB XIXO) = 

X3 EB X3XO EB X3Xl EB X3XIXO, the logic functionality remains unchanged. 

It can be seen in Figure 6.10(a), Qsi 0 for the column of variable X2 

in the T. According to Definition 6.2, X2 does not appear in the expansion 

F, where F ---+ T. T is generated shown in Figure 6.10(b) after deletion of 

FlVPST = {X2} and all the elements of H1PST are "0", where T ---+ F. 
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Although T changed, the function does not change. Hence F = :F. 

Definition 6.6. Given a T. Let STl C T and ST2 C T. STl ST2 if 

VSTl = VST2 is satisfied, i.e., the variables included by STl and ST2 are 

same and also all the elements of STl and the corresponding elements of ST2 

are bitwise identical. 

Corollary 6.7. Given F ----+ T and T consists of two sub-tables, WVSTl 

and TVVST2, where T = {vVVST1 , TVVST2}. In addition, SSTl = SST2, 

where S STl c TVV STl and S ST2 C TVV ST2. F can be rewritten as F = 

(S7fl EEl S7f2):F, where SSTl ----+ :F or SST2 ----+ :F. S7fl and S7f2 are common 

variables of WV STl and WV ST2 respectively. 

Proof. Let TVV STl ----+ Fl and VVV ST2 ----+ F 2. Because F ----+ T and T = 

{TiVVST1 , TVVST2 } , hence, 

F = Fl EEl F2 (6.8) 

Given SSTl ----+ ~ and SST2 ----+~. According to Corollary 6.5, 

I 

Fl = s7fl F l (6.9) 

I 

F2 = s7f2F2 (6.10) 

Equation (6.8) can be rewritten as 

F = (S7fl~) EEl (s7f2F~) (6.11) 

Because :F ----+ S STl or :F ----+ S ST2 and S STl = S ST2, 

I I I 

F =Fl =F2 (6.12) 
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X3 X2 Xi Xo Xi X3 Xz Xo 

7r6 0 1 1 0 7r6 

7r7 0 1 1 1 7r7 

1 0 8 SST} 
1 0 1 1 

WVST} 

n;.2 1 1 0 0 7r12 

n;.3 1 1 0 1 7r13 I: 1 81 1 
WVST2 

(a) (b) 

Figure 6.11: Extraction of common sub-table. (a) T of a 4-variable function in 
FPRM expansion, (b) The resulting T' after changing the order of variables. 

As a result, F = (S7rl EB S7r2):F. o 

Example 6.6. Given a 4-variable function F(X3, X2, Xl, Xo) and its FPRM 

expansion F(X3, X2, XI, xo) = X2Xl EBX2XIXO EBX3X2 EBX3X2XO, 0 = {6, 7,12, 13}. 

According to 0, T can be obtained as shown in Figure 6.11(a). After 

exchanging variable order in T, T' can be obtained as shown in Figure 6.11(b). 

As it can be seen from Figure 6.11(b), T' can be divided into two sub-tables, 

WF STI and WF ST2, where vVF STI = {7r~, 7r~} and TiVF ST2 = {7r~2' 7r~3}' 

TiVFSTI can be further divided into sub-table SSTI, where SSTI is sub­

table of TiVF STI' Similarly, TiVF ST2 can be further divided into sub-table 

SST2, where SST2 is sub-table of WFST2. As it can be seen, SSTI = SST2 

and it includes variables X2 and X2XO' Let WF STI -+ F I , TiVF ST2 -+ F2 and 

SSTI, SST2 -+ :F. As a result, 

F = FI EB F2 = xlF' EB X3F' = (Xl EB X3)F' 

where :F = X2 EB X2XO' 
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6.3 Extraction of Common Variables 

In the process of simplification of the FPRM expansion, the extraction of 

common variables is of importance. There are two kinds of common variables 

called global and local common variables, where "global" means the variable 

exists in all 7f-terms or does not exist at all in all 7f-terms while "local" means 

the variable exists in some of the 7f -terms. 

Definition 6.7. If ·WPST only includes variable Xi, the sub-table is notated 

as l'VPST:i;i. ST:i;i is defined as the sub-table after deletion of WPST:i;i from 

T, where W P ST:i;i C T. 

According to Corollaries 6.5 and 6.6, the global common variables can be 

easily obtained. Following is the procedure of extraction of global common 

variables, assuming R rows and n columns in T for n variables and R 7f-terms 

in the FPRM expansion. 

Procedure 6.1. Extraction of global common variables 

1. Find sub-table W P ST:i;i from T and check whether all the elements of 

TV P ST:i;i are "1" for all variables, where 0 < i < n - 1. Mark the 

corresponding TV P ST:i;i. 

2. Store xi as the global common variables. 

3. Find sub-table W P ST:i;i from T and check whether all the elements of 

W P ST:i;i are "0" for all variables, where 0 < i < n - 1. Mark the 

corresponding liV P ST:i;i. 

4. Repeat Steps 1 to 3 for other variables. Count the number of W P ST:i;i 

with all "l"s and with all "O"s respectively. The numbers are notated as 

G and H for TV P ST:i;i with all "l"s and with all "O"s respectively. 
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5. Generate sub-table T by deletion of G + H number of W P STxi from T, 

where T has R rows and n - G - H columns. 

It is however not straightforward to extract local common variables. Fol­

lowing is the procedure of extraction of local common variables, assuming R 

rows and n columns in T for n variables and R 7r-terms in the FPRM expan-

slOn. 

Procedure 6.2. Extraction of local common variables 

1. Generate sub-table STxi by deletion of W P STxi from T, where STxi has 

R rows and n - 1 columns. 

2. Categorise 7r-terms into different class by the number of "l"s in STxi ' The 

class that has the greatest number of "l"s is notated as max(STxi)' 

3. Repeat Steps 1 to 2 to obtain n number of max(STxi) for each STxi . 

4. Generate T from T by deletion of E numbers of Tl1 P STxi in which the 

STxi has the largest number max(STxi ), where E = [n/2] and [] is an 

integer operator. Put the variables Xi for the corresponding deleted sub­

table VV P STxi into {V AR}. As a result, the T has R rows and n - E 

columns. 

5. Categorise 7r-terms into different classes by the number of"l"s in T. The 

class that has the greatest number of "l"s is notated as max(T'). Put 

the 7r-terms which are in the class with the largest max(T) into {PI}. 

6. Reorganise T as follows. Carry out row exchange first so that {PI} C 

TlVVSTl and the rest of 7r-terms in WVST2 . Carry out column ex­

changes so that VSTl1 = {V AR}, where WVST1 = {STl1 , ST12 } and 
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x4 X3 x2 .AJ. Xo 

1f1 0 0 0 0 1 

1f6 0 0 1 1 0 

1f9 0 1 0 0 1 

1f21 1 0 1 0 1 

1f23 1 0 1 1 1 

1f26 1 1 0 1 0 

1f31 1 1 1 1 1 

Figure 6.12: The T of a 5-variable FPRM expansion. 

STu, STl2 c WVSTI . All of the elements in STl2 should be "I". VST12 

is local common variables. 

Example 6.7. Given a 5-variable FPRM expansion of positive polarity, as 

shown in (6.13). The onset coefficients are 0 = {I, 6, 9,21,23,26,31}. 

F(X4' X3, X2, Xl, Xo) = Xo EB X2XI EB X3XO EB X4X2XO EB X4 X 2X I X O 

EBX4X3Xl EB X4X3X2XIXO 

(6.13) 

The corresponding T for the given FPRM expansion is shown in Figure 

6.12. Since it is positive polarity expansion, all the variables appear in the 

true forms, i.e., Xi = Xi. Because the original on-set table is carried out 

deletion until the variables are extracted from the original on-set table so as to 

simplify the FPRM expansion. For purpose of the simple representation, T is 

notated as an old on-set table before the deletion of on-set table. T is notated 

as an newly generated one after the deletion of on-set table to distinguish itself 

from before old on-set table. The notation is the same as for 'if-terms. 'if' is 
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x4 x2 Xi X 0 

1f1 0 0 0 1 
. 

1f6 0 1 1 0 
. 

1f9 0 0 0 1 

1f21 1 1 0 1 
. 

1f23 1 1 1 1 

1f26 1 0 1 0 
. 

1f31 1 1 1 1 

Figure 6.13: Sub-table STx3 after deleting W P STx3 from T. 

notated as a new 1f-term to distinguish itselffrom old 1f-term after the deletion 

of table. Because of deletion of the table, 1f' sometimes might become partial 

1f-term (part of a term) but 1f' is used even if it is partial1f-term. 

Step 1: 

Generate sub-table STxi by deletion of W P STxi from T. If lV P STx3 is 

deleted for the corresponding variable X3, as shown in Figure 6.13, STx3 is 

generated, where STx3 = {T¥PSTx4 , WPSTx2 , vVPSTx1 , WPSTxo}. 

Step 2: 

According to the content in each row of STx3 , STx3 can be categorised into 

5 classes: {1f~,1f~}, {1f;3,1f;d, {1f~}, {1f;1} and {1f;6}' The number of "1"s in 

each class is 2, 8, 2, 3 and 2 respectively. Hence max(STx3 ) = 8. 

Step 3: 

Similarly, max(STxi ) for the rest of the variables can be obtained by re­

peating Steps 1 and 2 as max(STxo) = 4, max(STx1 ) = 6, max(STx2 ) = 4 and 

max(STx4 ) = 4. 
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x4 x2 Xo 

1r1 0 0 I 

1r6 0 I 0 
. 

1r9 0 0 1 

1r21 1 1 1 
. 

1r23 1 1 1 
. 

1r26 1 0 0 

1r31 1 1 1 

Figure 6.14: Sub-table T after deleting WPSTxl and l¥PSTx3 ' 

X4 X2 Xo X3 .x; 

7(1 0 0 1 0 0 
. 

7(6 0 1 0 0 1 
WVST2 

7(9 0 0 1 1 0 
. 

7(26 1 0 0 1 1 

7(21 1 1 1 0 0 
. ST12 STl1 

7(23 1 1 1 0 1 WVST1 

7(31 1 1 1 1 1 

Figure 6.15: The resulting T after columns and rows are swapped. 

Step 4: 

E = [n/2] = 2. {V AR} = {Xl, X3} is recorded. T is generated by deleting 

WPSrd and WPSTx3 ' Figure 6.14 shows the resulting T. 

Step 5: 

According to the content in each row of T , T can be categorised into 4 
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. "} {'} '} {' , '} {' , '} classes, whIch are {7fI ,7f9 , 7f6 , {7f26 and 7f2I,7f23,7f31. 7f2I,7f23,7f3I has 

the greatest number of "l"s. Hence, {PI} = {7f;I, 7f;3, 7f;I}. 

Step 6: 

Reorganise T by exchanging rows so that {7f2l, 7f23, 7f3l} c lVV STl and the 

rest of the 7f-terms in TiVVST2 . As a result, T' = {TiVVSTl , vVVST2 }. Reor­

ganise T' by exchanging columns so that VST11 = {Xl,X3}, where WVSTl = 

{ STu, STl2 }, STu, STl2 c WV STl and all of the elements in STl2 should 

be "I". Hence, T' = {TiVVSTl , WVSTd = {{STu, STl2 }, TiVVST2 } and 

VSTl2 = {X4X2XO}, as shown in Figure 6.15. 

If WV ST2 ---+ :F2 , STl2 ---+ S7fl2 and STu ---+ :F11 , where S7fl2 is local 

common variables and S7fl2 = X4X2XO, then 

:F = S7fl2:FU EEl :F2 

6.4 On-set Table Method for Multi-Level Mixed 

Polarity RM 

Any function of a given FPRM expansion can be represented as an onset table. 

Using the properties of onset table and the proposed extraction of common 

variables in Sections 6.2 and 6.3, the onset table can be divided into smaller 

sub-tables by extracting common variables, which leads to compact MMPRM 

expansion. 

There are two stop criteria of the algorithm for determining the smallest 

onset truth table. 

1. Only one 7f-term appears in the T. 

2. Only one variable appears in each 7f-term. 
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The MMPRM expansion is obtained in Procedure 6.3 as follows. 

Procedure 6.3. On-set table method for obtaining the MMPRM expansion. 

1. Obtain T from a given two-level FPRM expansion F, where F -----+ T. 

2. Use Procedure 6.1 to extract global common variables and generate T 

from T. Save the extracted global common variables and update T as 

T. 

3. According to Corollary 6.7, extract and save common sub-table from T 

if it exists. 

4. Use Procedure 6.2 to extract local common variables so that T becomes 

T = {TVVST1 , WVST2} = {{ST11 , ST1d, WVST2 }, where TVVST1 -----+ 

F 1, TVV ST2 -----+ F 2 , ST12 -----+ S7f12, ST11 -----+ F 11 , S7f12 is local common 

variables and F = S7f12F ll EB F2 • Save the extracted local common 

variables and update ST11 as T. 

5. Determine if the stop criteria are satisfied. If satisfied, save the expan­

sion. Otherwise repeat Steps 2 to 4 for T. 

6. Update TVV ST2 as T and repeat Steps 2 to 5 for T. 

7. Output the MMPRM expansion F = F1 EB F 2 . 

If the expansion in Example 6.7 is carried out further using the proposed 

algorithm, the expressions of F 1 , F2 and the compact MMPRM expansion are 

obtained respectively as 

F1 

F2 

F 

X4 X 2X O(X1 EB X3 X 1) 

X3 X O EB Xl (X2 EB X4X3) 

X4X2XO(X1 EBX3X1) EBX3XO EBX1(X2 EB X 4 X 3) 

(6.14) 

(6.15) 

(6.16) 
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Figure 6.16: The circuit implemented with 2-input AND and XOR gates for 
PPRM expansion. 

X4 

X2 

xo 

X1bN' 

X3 

XI 

X3bM 

MD2 

Figure 6.17: The circuit implemented with 2-input AND and XOR gates for 
MMPRM expansion. 

It can be seen that in (6.13), the number of literals is 20. This is reduced 

to 12 literals in (6.16) representing 40% saving. If 2-input AND and 2-input 

XOR gates are used to implement expansions, the circuits for PPRM and 

MMPRM expansions can be obtained as shown in Figure 6.16 and Figure 6.17 
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respectively. It can be seen that in Figure 6.16, the number of gates in the 

circuit is 19. This is reduced to 11 gates in Figure 6.16 resulting in 42.1% 

saving. 

6.5 Experimental Results 

The proposed algorithm is implemented in C. The results are obtained using 

a PC with Pentium IV (1.8 GHz). The proposed algorithm is applied to 

Microelectronics Center of North Carolina (MCNC) benchmark circuits [142]. 

Performance is measured on 7 MCNC benchmark circuits and three randomly 

generated circuits. The test circuit size is up to 25 input variables. The number 

of literals is used to measure the area of the circuit implementation. 

Table 6.1 shows the comparison of the number of literals between positive 

polarity expansion of FPRM expansions and MMPRM expansion obtained 

from the positive polarity expansion of FPRM expansions. The first column 

in Table 6.1 is the benchmark circuit name, the second is the input variable 

number, the third and the fourth list the number of literals, and the last column 

is the percentage improvement. The improvement is defined as in ( 6.17). 

. literals - literals in M 1\;[ PRIM 01 
zmp = . l X 10010 

lztera s 
(6.17) 

where "literals" stands for the results from [121] while the "literals in MMPRM" 

stands for the number of literals obtained by the proposed method. It can be 

seen that the maximum improvement could be up to 80% and the average 

improvement is 68%. 

Table 6.2 shows the comparison of the number of literals between the best 

polarity expansion of FPRM and MMPRM expansions. The MMPRM is de-
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Table 6.1: Comparison of the number of literals between a FPRM expansion 
under polarity 0 and a MMPRM expansion. 

No. of literals No. of literals 
Benchmarks n under polarity 0 using the imp (%) 

[121] proposed method* 

9sym 9 756 304 60 
newill 8 237 70 70 

newtag 8 88 27 69 
life 9 792 321 59 

ryy6 16 624 168 73 
sym10 10 1300 528 59 
t481 16 108 55 49 

test 21 21 135273 27304 80 
test 22 22 153654 30262 80 
test 25 25 90209 20399 77 
average , --=- , -, - 68 

*The MMPRM expansion is obtained from positive polarity. 

Table 6.2: Comparison of the number of literals between a FPRM expansion 
under best polarity and a MMPRM expansion. 

No. of literals No. of literals 
Benchmarks n under best polarity using the imp (%) 

[121] proposed method* 

9sym 9 636 276 57 
newill 8 78 24 69 

newtag 8 27 15 44 
life 9 596 218 63 

ryy6 16 464 171 63 
sym10 10 1300 528 59 
t481 16 40 28 30 

test 21 21 135273 27304 80 
• test 22 22 153654 30262 80 

test 25 25 90209 20399 77 I 

C average~ - 62 

*The MMPRM expansion is obtained from the best polarity expansion of 
FPRM expansions. 
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rived from the best FPRM expansion. In this case, the maximum and average 

improvements are 69% and 62%, respectively. 

In terms of the space complexity, the proposed algorithm only needs to store 

T. Therefore, the space complexity is O(coej jicients*n), where coej jicients 

is the number of the onset coefficients and n is the number of input variables 

for a given function. For the time complexity, the CPU time used to solve a 

function with 25 input variables is 236 seconds using stated PC. This should 

not be a major problem for the computer nowadays. 

6.6 Summary 

In this chapter, a novel onset table based method is proposed to obtain a 

compact MMPRM form from an FPRM form. This method takes much less 

memory than previous method [131]. With the efficient extraction of common 

variables, the onset table is divided into smaller sub-tables. Using the mapping 

relationship between the T and the FPRM expansion, the compact MMPRM 

form can be obtained. The experimental results show a great improvement of 

literals count can be achieved compared to the published results [121]. 

The main advantage of the method is that it can search in the 2n FPRM 

expansions, i.e. small space, rather than large space but have good result in the 

MPRM expansion. As a result, significant CPU time is reduced. Although it 

does not guarantee the best solution in the MPRM expansion, it does produce 

a very good solution. 



Chapter 7 

Genetic Algorithms for FPGA 

Placement 

7 .1 Introduction 

Circuits based on AND /XOR operations have great advantage of easy testa­

bility [39]. Applications of Reed-Muller logic to function classification [112], 

Boolean matching [113], and symmetry detection [114] have also been at­

tempted. However, XOR gate has the disadvantage of low speed and large 

area consumption compared to AND/OR. As the FPGA technology has made 

significant progress in recent years, XOR/XNOR gates can be implemented 

into LUTs, which changes the situation. As a result, XOR/XNOR gates can 

achieve comparable speed and area as other gates. Generic symmetrical FPGA 

architecture consists of routing resources and configurable blocks [97], in which 

routing resources occupy 70-90% of the FPGA area [23], therefore efficient 

P&R are essential. FPGA placement is categorised to be NP-complete. The 

aim of the P &R tool is to utilise prefabricated programmable routing switches 

128 
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and routing channels in an FPGA to achieve 100% successful P&R. 

In this chapter, symmetrical (Xilinx-style) FPGA placement algorithms are 

proposed, which incorporate the idea of using GA to find solutions for FPGA 

placement. The rest of the chapter is organised as follows. In Section7.2 

GA for FPGA placement is given including the representation, crossover and 

mutation operators. Section 7.3 proposes a FPGA placement algorithm which 

unifies GA with SA to reduce the CPU time. Experimental results are given 

in Section 7.4. 

7.2 Genetic Algorithm Placement 

Hybrid GA (HGA) is a standard GA (SGA) which performs local optimisation 

in every generation to overcome long computation time and improve fitness of 

SGA. The HGA is shown in Algorithm 7.l. 

The algorithm begins with an initial set of random population. After eval­

uating fitness of current population, the population is reproduced according to 

fitness. The fitter the individual, the more chance it has to be selected. Two 

individuals are randomly selected as parents to generate offsprings by using 

crossover operator based on high probability of crossover. Mutation operator 

with low probability rate is carried out. After that, local improvement with 

low probability rate is applied to randomly selected individuals so that visible 

improvement can be achieved, resulting in shorter search time. The elitism is 

employed to retain the good solutions. After a fixed number of generations, 

the fittest individual, namely the one with highest fitness value, is obtained as 

the desired solution. 
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Algorithm 7.1 Hybrid genetic algorithm for FPGA placement. 
MAX_ GENS: maximum number of generations 
POP _SIZE: population size 
NUM_ GENE: number of genes 
NUM BLOCK: number of blocks for each benchmark 
NUM_MOVE: number of moves per individual in local improvement 
Pcrossover: probability of crossover rate 
Pmutation: probability of mutation rate 
Plocal: probability of local improvement rate 
begin 

generate an initial population 
for generation = 1 to MAX _ GENS do 

evaluate population fitness values; 
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reproduce population probabilistic ally based on the individual's fitness 
value; 

for i = 1 to POP _SIZE/2 do 
pair two parents randomly; 
crossover based on Pcrossover; 
produce two new offspring; 

end for 
for j = 1 to NUM_ GENE do 

mutate offsprings based on Pmutation; 
end for 
for k = 1 to POP SIZE do 

local improvement based on Plocal and NUM_MOVE; 
end for 
elitism; 

end for 
end algorithm 

7.2.1 Genetic encoding 

The genotype of a problem is the representation of an individual in the GA. 

For our placement problem, the chromosome structure is (L1' L2 , L3 , •.• ,LN ), 

where N depends on K and N = K *K. K is the size of a symmetrical FPGA. 

For example, If the size of an FPGA K = 4, then N = 16 . Each Lr can be 

either positive integer number or "-I", where 0 < 7' :::; N - 1. The positive 

number can be in the range of [0, ELKS], where ELKS is the number of 
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CLBs [134,135] of the circuit. "-I" represents empty block. The CLB has a 

corresponding position in the chromosome. The position POS is calculated as 

POS = (x - 1) * K + (y - 1) (7.1) 

where POS is the position of gene, (x, y) is the location of the block. 

In the above GA procedure, a chromosome pertaining to a possible place­

ment solution is represented as a string with length which equals to the num­

bers oflogic blocks in the symmetrical FPGA. For example, ifthe size of FPGA 

is 4 by 4, the numbers of the blocks are 16 and the length of chromosome is 16. 

The values of string can be either positive integer or "-I". The positive integer 

represents ID of the block and the value "-I" represents empty block. The 

position of block in a symmetrical FPGA is numbered according to its X-Y 

position. The block ID is mapped to chromosome according to its number, e.g. 

Block 10 at (4,4) in the FPGA is mapped to position 15 of the chromosome 

as shown in Figure 7.1. 

7.2.2 Selection operator 

The GA procedure carries out the genetic selection operator in which individ­

ual strings are chosen according to their fitness values. A proportional selection 

scheme as suggested by Goldberg is employed to select fitter parents which are 

required for reproduction. There are a number of ways to implement the se­

lection operator. The easiest way is to create a biased roulette wheel where 

each current chromosome in the population has a roulette wheel slot sized in 

proportion to its fitness as in [7]. An individual is selected by spinning the 

roulette wheel and noting the position of the marker. However, the absolute 



7.2 Genetic Algorithm Placement 

~D~ 
~~DD 
hl,CJ~~ 

10 

6 

1\21 D~ 
2, 1 3, 1 4, 1 

Figure 7.1: Genetic encoding. 
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difference between an individual's actual sampling probability and its expected 

value is nonzero, resulting in inefficient reproduction. Hence stochastic uni-

versal selection with zero bias [15] is employed in the reproduction process. 

7.2.3 Fitness measure 

A fitness function is used to evaluate the quality of placement. Its functional 

form is the sum of all nets in the circuit, as shown in (7.2). 

NET { 100 } 
P =.~ C(inet) [bbx(inet) + bby(inet)] 

~net=l 

(7.2) 

where NET stands for number of nets. For each net i, bbx (i) and bby (i) denote 

the horizontal and vertical spans of its bounding box respectively. C(inet) , 

which is adapted from [19], compensates for the fact that the bounding box 

wire length model underestimates the wiring necessary to connect nets with 

more than three terminals. Its value depends on the number of terminals of 
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the net inet. It should be noted that high fitness value indicates a placement 

with shorter wire length, hence a better solution. 

7.2.4 Crossover and mutation operators 

Crossover is the main genetic operator. It operates on two individuals and 

generates two offsprings. It is an inheritance mechanism where the offspring 

inherits some of the characteristics of the parents. The operation consists of 

choosing a random cut point and generating the offsprings from two parents. 

Unfortunately, the elements to the left of crossover cut point in one parent 

appear on the right of the second parent, which results in element duplication 

in one offspring. This duplication does not represent a feasible placement 

solution. Modification of crossover to avoid duplication has to be carried out. 

The modification is implemented as follows. Choose a random cut point and 

copy the entire segments following the cut point in parent 2 to the offspring. 

Next, the left segment of parent 1 is scanned from the left most, gene by gene, 

to the cut point. If a gene does not appear in the offspring then it is copied to 

the offspring. However, if it already exists in the offspring, then its position 

in parent 2 is determined and a gene from parent 1 in the determined position 

is copied. If the determined gene still exists in the offspring, determine the 

position in parent 2 as before until the gene does not exist in the offspring. 

One particular case is the gene "-1" which means the block is empty. If there 

is no empty block in parent 2, the empty gene is copied to the offspring in the 

same way as a gene does not appear in the offspring. However, if empty blocks 

do exist, it will randomly select anyone of the empty positions in parent 2 and 

the gene from parent 1 in the selected position is then copied to the offspring. 

The selected empty position is marked to avoid being used again. 
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Parent 1 9 7 8 2 -1 3 1 I 6 15 12 5 10 4 14 13 11 

Parent 2 5 -1 3 7 9 11 14110 2 6 1 12 13 8 4 9 

1 1 1 1 
Offspring 11 7 14 15 -1 3 5 10 2 6 1 12 13 8 4 9 

Random cut point=7 

Figure 7.2: Modified crossover. 

An example is shown in Figure 7.2. One possible placement, is encoded 

as a string of 16 bits, namely, {9" 7, 8, 2, -1, 3, 1, 6, 15, 12, 5, 10, 4, 14, 13, 

11}. The other parent is {5, -1, 3, 7, 9, 11, 14, 10, 2, 6, 1, 12, 13, 8, 4, 9}. 

The random cut point is 7. The segment following the cut point in parent 

2 is copied to offspring. Then the left segment of parent 1 is scanned from 

the left most. Because gene 9 is already in the offspring, position of gene 9 is 

determined in parent 2 so that gene 11 is found in parent 1. Gene 11 is not 

in the offspring so that it is copied to the offspring with the same position as 

in parent 1. Next gene is 7 which is not in the offspring so that it is copied 

to the offspring in the corresponding position. Again, gene 8 is already in the 

offspring. Gene 14 is copied to the offspring in the same way as was done for 

gene 11. The other genes in the left segment of parent 1 is processed in the 

same way. As a result, one offspring is generated as {11, 7, 14, 15, -1, 3, 5, 10, 

2, 6, 1, 12, 13, 8, 4, 9}. 

Mutation produces incremental random changes in the offspring generated 

by the crossover to overcome early converge to a local optimum. In the place-

ment, the mutation is pair-wise interchange, namely, two genes of the chro-
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mosome are randomly selected according to probability of mutation rate and 

their positions swapped. 

7.2.5 Local improvement 

After reproduction, crossover and mutation are performed, a local improve­

ment is applied to the selected offspring in the current population based on 

the probability of local improvement rate. The local improvement is performed 

in every generation and keeps switching the position of the blocks in the sym­

metrical FPGA a number of times for randomly selected individual in order 

to improve the fitness of this particular individual. Some good schema of this 

individual is more likely to be selected and passed to next generation. The 

main goal of this process is to get some visible improvement in the offspring 

rather than obtaining a local optimum value. So the improvement rate is kept 

as low as possible and movement per individual is also kept to small value. As 

a result, the time for convergence is reduced significantly. 

7.3 GA with SA Placement Algorithm 

Although HGA performs better than SGA, excessive CPU time is consumed 

during the late process of the GA. To reduce the CPU time consumed in the 

late process of the GA, unified GA and SA algorithm that has two stages is 

proposed. The first stage is called global search stage, which is performed by 

GA. The second stage is called local search stage, which is performed by SA. 

Our algorithm starts with GA and works on a population of individuals by 

using reproduction, crossover, mutation and elitism operators with local im­

provement in order to obtain good solution. After a number of generations, the 
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solution is improved and has already jumped out of the local optimum. Then 

SA will take over to "fine-tune" the solution by swapping two nearby blocks 

at the low temperature. The pseudo code of unified GA with SA (GASA) is 

shown in Algorithm 7.2. 

7.3.1 Fitness function 

The quality of placement is evaluated by fitness function. The higher the 

fitness value, the better the placement. Since a benchmark circuit will have 

hundreds of nets or even more, the measure is judged by average fitness of all 

nets not just by partial ones, as follows 

NET 

P = maxcost - L C(inet) [bbx(inet) + bby(inet)] (7.3) 
inet=l 

maxcost = NET * K2 (7.4) 

where max cost stands for the worst case of cost for placement, NET stands 

for the total numbers of nets, and K stands for the size of symmetrical FPGA. 

For each net inet, bbx(inet) and bby(inet) denote the horizontal and vertical 

spans of its bounding box respectively. C(inet) compensates for the fact that 

the bounding box wire length model underestimates the wiring necessary to 

connect nets with more than three terminals. Its value depends on the number 

of terminals of the net inet . The value of C(inet) is 1 for nets with 3 or fewer 

terminals and slowly increases to 2.79 for nets with 50 or more terminals [33]. 
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Algorithm 7.2 Genetic algorithm with simulated annealing for symmetrical 
FPGA placement. 
MAX_ GENS: maximum number of generations 
POP _SIZE: population size 
NUM_ GENE: number of genes 
Pcrossover: probability of crossover rate 
Pmutation: probability of mutation rate 
Plocal: probability of local improvement rate 
Preserve: the percent of population are reserved in the generation 
RANDOM: random number between 0 and 1 
Pnew: new placement 
Pold: old placement 
T: temperature 
e: constant of 2.732 
begin 

initialise _population 0; 
while (generation < MAX_GENS) do 

eval uate _ population _ fitness 0; 
reproduce _population (Preserve); 
for index = 1 to POP _SIZE/2 do 

crossover (Pcrossover); 
end for 
for index = 1 to NUM GENES do 

mutate (Pmutation); 
end for 
for index = 1 to POP SIZE do 

local_ improvement (Plocal); 
end for 
elitismO; 

end while 
select _ the _ best _ one 0; 
T = set_temperature 0; 
while (exit_criteria 0 == FALSE) do 

while (inner_criteria 0 == FALSE) do 
Pnew = generate_movement 0; 
6.C = C(Pnew ) - C(Pold ); 
RANDOM = generate_number 0; 
if (RANDOM < e-b.C/T) 

Pnew = Pold; 
end while 

end while 
end algorithm 
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Before rotation After rotation 

Figure 7.3: Selection pie and the rotation of markers. 

7.3.2 Reproduction operator 

In the algorithm, the population is initialised and evaluated according to fit­

ness function. The fitness values of population are sorted in increasing order 

according to the fitness of individual. A small number of individuals of popu­

lation with higher fitness value in the current generation are intact and remain 

in the population to the next generation. The rest works as follows. 

The fitness of each individual is considered as a slot of a sized pie. Equidis­

tant markers are placed around the pie, where 'ljJ is the number of markers 

and equal to the number of individuals that do not remain in the population 

to the next generation. Figure 7.3 shows the sized pie and 'ljJ = 6 equidistant 

markers around the pie. The sum of fitness value of individuals that do not 

remain in the population to the next generation corresponds to the whole size. 

A random number is generated. This number corresponds to the rotation of 

the markers. If the equidistant markers are inside the slot, the corresponding 

individuals are selected. As a result, individuals are simultaneously selected. 
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Although the selection procedure is random, the chance of being selected for 

each individual is directly proportional to its fitness. 

For example, if there are 6 markers and the random number is 0.125, the 

6 equidistant markers will rotate 45 degrees simultaneously. The selected in­

dividuals are therefore 2, 3, 3, 4, 5 and 5, as shown in Figure 7.3. 

7.3.3 Initial temperature and update scheme 

Once GA has done the global search in the first stage, SA will take over 

to do the fine tuning. The initial temperature T in the second local search 

stage is important to the overall performance of the algorithm. If the initial 

temperature is set too high, i.e., a large number of movements are allowed, the 

SA might not do the local search but tries to do the global search instead. As a 

result, it ruins the good global solution obtained by GA. If initial temperature 

is set too low, i.e., nearly no movements are allowed, SA can hardly do the 

local search. It is therefore that the initial temperature T is set at the low 

temperature. 

As the process of SA continues, the temperature gradually drops, which 

limits the movements of blocks. New temperature is computed as 

Tnew = (3Told (7.5) 

where the value of (3 depends on the value of a. a is the percentage of trial 

movements that have been accepted. Table 7.1 shows the respective values of 

a and (3. For example, if Told = 0.8 and a = 0.1, thus (3 = 0.8 and Tnew = 0.64. 
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Table 7.1: Temperature update scheme. 

i- a-·-17l 
-_ ........ _._ ........ _ .......... - _ ........ -

a 2: 0.3 0.6 
0.15 < a < 0.3 0.95 

0.03 S a S 0.15 0.8 
a < 0.05 0.6 

7.4 Experimental Results 

In this section, experimental results obtained with an implementation of SGA, 

HGA and GASA to symmetrical FPGA are reported. Each CLB has a 4-input 

LUT, which is used to implemented combinational logic only, one D flip-flop 

and one multiplexer, which is used to select combinational or sequential logic. 

There are horizontal channel and vertical channel. Each routing channel is 

assumed to have a fixed number of channel tracks. At every intersection of a 

horizontal channel and vertical channel, there is a programmable switch. It 

configures the wire segments between CLBs and CLBs and lOBs. Each wire 

segment spans the distance of one CLB. Two lOBs fit in the space of each CLB 

along the periphery of the symmetrical FPGA. The implementations of SGA 

and HGA are written in the C programming language. The proposed algorithm 

was applied to MCNC benchmark circuits [142]. Performance is measured 

using 9 MCNC benchmark circuits. Table 7.2 lists the main characteristics of 

these benchmark circuits. 

The parameter values are selected following some experiments and based 

on previous experience. Pcrossover=0.6, Pmutation=0.005, POP _SIZE=50. 

Since SGA does not involve local improvement mutation operator, the pa-

rameter values are Plocal=O and MAX_ GENS=1000. The parameter val­

ues are set for HGA as Plocal=0.05, NUM_MOVE=10*NUM_BLOCK and 
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Table 7.2: Characteristics of MCNC benchmark circuits. 

I Bellchmarks I No. ()f blocks I No. of llets I N(). of CLBs I N(). of I/Os I 
- -~ --- ----- -- - -

9symml 107 106 97 9/1 . 

alu2 213 207 197 10/6 
apex7 188 151 102 49/37 

e64 404 339 274 65/65 
example2 289 223 138 85/66 

k2 609 564 519 45/45 
term1 132 122 88 34/10 
too-Irg 228 225 187 38/3 

vda 374 308 291 17/39 

MAX GENS=200. POP SIZE, MAX GENS, Pcrossover, Pmutation and - -

Plocal stand for population size, the maximum number of generations, prob-

ability of crossover rate, probability of mutation rate and probability of local 

improvement rate, respectively. NUM_MOVE stands for the number of block 

movements in the local improvement. For example, NUM_MOVE =1070 for 

circuit 9symml. 

Fitness value of benchmark circuit 9symml in each generation obtained 

by SGA and HGA are illustrated in Figure 7.4 and Figure 7.5 respectively 

for demonstration. The best fitness value and average fitness value of each 

generation are shown in the two figures. In either of the two figures, the 

fitness value becomes fitter and fitter as the number of generations increases. 

Furthermore, observing the fitness value curve in Figure 7.4 and the fitness 

value curve in Figure 7.5, the fitness values from HGA are fitter than those 

obtained by SGA and HGA needs less number of generations than SGA does. 
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Figure 7.4: Fitness value of 9symml using SGA. 

Figure 7.5: Fitness value of 9symml using HGA. 
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The full comparison results of 9 tested benchmark circuits are summarised 

in Table 7.3. As can be seen in Table 7.3, the fitness is improved on average by 

79% in 1000 generations compared to initial random cost of placement. Fur­

ther 52% improvement just in 200 generations is gained when HGA is employed 

compared to SGA. Figure 7.6 illustrates initial fitness before optimisation, fit­

ness obtained by SGA and percentage improvement compared to initial fitness 

and fitness obtained by HGA and percentage improvement compared to SGA 

for 9 MCNC benchmark circuits respectively. 

The placement from VPR Placer (VPlace) [18,19] and our SGA and HGA 

placements are routed by VPR Router (VRouter) [18,19]. The resulting chan­

nel tracks are compared. The main steps are illustrated by the flow chart in 

Figure 7.7. All parameter values for the routing are set equal for the purpose 

of fair comparison. 

As expected, a poor placement will result in more tracks needed in the final 

routing for the same circuit. Therefore, we make practical assumption that the 

less the channel tracks needed for final routing, the better the placement is. As 

a result, the number of channel tracks is counted for comparison. Figure 7.8 

shows the final routing of benchmark circuit 9symml, which needs 5 channel 

tracks. 

The comparison of channel tracks needed by our algorithms with the state­

of-the-art results from VPR [18,19] of 9 tested benchmark circuits are shown 

in Table 7.4. 

The implementation of GAS A algorithm was written in C programming 

language as well. The population size used by the GA is controversy. A smaller 

population size increases the efficiency of the GA and makes it competitive with 

other heuristic algorithms in terms of CPU time. On the other hand, a larger 
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population size is able to reduce the errors associated with the selection of the 

parents for propagation. It is found that the diversity of the population is 

maintained when small population size of 20 is used. Due to small population 

size, only one individual of population with the highest fitness value in the cur-

rent generation is intact and remains in the population to the next generation. 

In other word, 5 percent of population remains in the population to the next 

generation. The following fixed parameter values are selected and found suit-
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Figure 7.8: Final routing of 9symml using HGA placement with 5 channel 
tracks. 

able for the tested benchmark circuits following some experiments and based on 

previous experience. POP _SIZE=20, Pcrossover=OA, Pmutation=O.01, Plo­

cal=O.3, Preserve=O.05 and MAX_ GENS=50, where POP _SIZE, Pcrossover, 

Pmutation, Plocal, Preserve and MAX_ GENS stand for population size, prob-

ability of crossover rate, probability of mutation rate, probability of local im-

provement rate, the percent of reserved population and the maximum number 

of generations, respectively. If the improvement does not gain in the GA for 5 
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Table 7.4: Comparison of channel tracks of VPR, SGA and HGA. 

[Ben(:hmar~s I FPGA size I V~lace [~8-, 19LI§GAJ_ HGA I 
9symml 10 * 10 5 6 5 

alu2 15 * 15 6 10 7 
apex7 11*11 5 8 5 

e64 17 * 17 8 17 8 
example2 19 * 19 5 8 5 

k2 23 * 23 9 20 11 I 

term1 10 * 10 5 7 5 
I 

too-lrg 14 * 14 7 12 8 
vda 18 * 18 8 14 9 
total - 58 102 63 

Table 7.5: Comparison results of CPU time and routing channel tracks between 
GA and GASA. 

L -=_-=~ ____ . ____ ~GA ... - __ L~-_GASA 

Benchmarks CPU (s) No. of tracks CPU (s) No. of tracks 
9symml 25.74 5 22.86 5 

alu2 91.76 6 74.27 6 
apex7 38.39 5 38.11 5 

e64 163.70 8 155.21 8 
example2 107.57 5 95.23 5 

k2 461.59 10 364.77 9 
term1 28.06 5 26.35 5 
too-lrg 82.51 7 74.37 7 

vda 179.17 8 148.33 8 
total 1178.49 59 999.5 58 

generations or the number of generations is greater than the maximum number 

of generations, SA will start to work on individual instead of entire population. 

The proposed GASA is compared to GA in terms of CPU time. Table 7.5 

shows that GASA consumes less CPU time than GA in all cases. To further 

compare the quality of placement between GA and GASA, same router is used 

to route placement solutions generated by GA and GASA. Placements are 
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Table 7.6: Comparison results of placement cost between VPlace and GASA. 

L ~ ~ Vf~lace [18,}~ G~SA 
Benchmarks cost No. of tracks cost No. of tracks 

9symml 690 5 693 5 
alu2 1670 6 1678 6 

apex7 785 5 785 5 
e64 2853 8 2849 8 

example2 1348 5 1345 5 
k2 5874 9 5873 9 

term1 700 5 700 5 
too-Irg 1750 7 1748 7 

vda 3067 8 3067 8 
total 18737 58 18738 58 

routed on the smallest possible size of a symmetrical FPGA. The number of 

routing channel tracks is used to measure the performance. If a circuit can be 

placed and routed in an FPGA with fewer channel tracks, the area of an FPGA 

will be smaller and wire length and critical path of the circuit will be reduced. 

Thus the fewer channel tracks the better. For the purpose of fair comparison, 

parameters of routing tool from VRouter [18] are set to same values. The 

numbers of tracks obtained by GA and GASA are shown in Table 7.5. 

The GASA is further compared to the state-of-art VPlace in terms of place-

ment costs, as shown in Table 7.6. The cost is defined according to the cost 

function in [18,19]. As it can be seen in Table 7.6, GASA outperforms VPlace 

in 4 benchmark circuits, such as e64, example2, k2 and too-lrg. 
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7.5 Summary 

In this chapter, SGA and HGA for symmetrical (Xilinx-style) FPGA placement 

are presented in the first part. The experiment results verify that the proposed 

SGA is effective for small size circuits. The fitness improved by 79% on average 

compared to fitness without optimization for 9 MCNC benchmark circuits, 

though a large number of generations is required. However, the proposed 

HGA can overcome this problem. It can obtain further improvement of 52% 

on fitness on average compared to the results obtained by SGA and significantly 

reduce the numbers of generations for convergence. 

Our results are also compared to the state-of-the-art results from VPR. 

VPR needs 58 channel tracks to route tested benchmarks while SGA needs 

102 channel tracks and HGA needs 63 channel tracks respectively. 

In the second part, a two-step unified GASA method for symmetrical 

FPGA placement is presented. The experimental results show that the pro­

posed GASA is effective in improving the quality of placement for the tested 

MCNC benchmark circuits. It consumes less CPU time than GA. Furthermore, 

the proposed placement algorithm could achieve as good performance as the 

state-of-the-art placement tool VPlace in terms of placement cost required for 

all benchmark circuits. 



Chapter 8 

Conclusions and Future Work 

The objective of the research is to develop various CAD methods and algo­

rithms for the synthesis and optimisation of logic function in the Reed-Muller 

forms, which are based on AND /XOR and OR/XNOR operations respectively. 

Additionally, FPGA placement is studied and algorithms are developed using 

GA and GA with SA. The main contributions can be summarised as follows. 

1. In Chapter 3, an efficient way of generation of transformation matrix 

between CPOS and fixed polarity COC expansions is introduced. Based 

on the transformation matrix, two map techniques, map folding and 

transformation techniques, are presented for the generation of the fixed 

polarity COC expansion of any polarity. Map folding technique generates 

the expansion of any polarity by folding map of the positive polarity 

COC expansion. For some cases, the number of folding times becomes 

high. To overcome this, map transformation technique is proposed which 

generates the expansion of any polarity directly from the coefficients 

map. However, when the number of variables is greater than 4 drawing 

circles becomes inconvenient. In addition, it was observed that in most 

150 
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cases the number of on-set CSOP minterms is much less than on-set 

CPOS maxterms. Hence, map folding techniques for conversion of fixed 

polarity COC expansion of any polarity based on on-set minterms of 

CSOP expansion is also proposed. Minterm method is further discussed 

in the Chapters 4 and 5. 

2. Map techniques is straightforward but it can only be used for up to 

6 variables. In Chapter 4, generalised on-set coefficients method is first 

proposed based on the bitwise implementation for large functions. Multi­

segment algorithm is then proposed, which divides coefficients into sev­

eral segments in order to achieve conversion between CPOS and fixed 

polarity COC expansions more efficiently. The proposed algorithms not 

only overcome the limitation of map methods in Chapter 3 and but also 

can be used for the bidirectional conversion between CPOS and fixed 

polarity COC expansions of any polarity. With the introduced concept 

of CPOS polarity, the fixed polarity COC expansions of any polarity is 

generated directly from on-set CPOS maxterms. It avoids generating 

positive expansion first before generating other polarity expansions like 

the procedure in map folding technique. Minterm method in Chapter 3 is 

generalised for large functions. Experimental results show that the pro­

posed multi-segment algorithm is very efficient in terms of time and space 

for large functions, especially when minterm method is used. The average 

improvement is 30.64% for the 30 tested benchmarks compared to max­

term multi-segment method. The time and space complexity are 21.5n 

and 2n respectively, where n is the number of input variables. The max­

term and minterm multi-segment methods took less than 0.22 seconds 

and 0.06 respectively for the tested benchmark circuits if the number 
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of input variables is less than 17. Both minterm and maxterm multi­

segment methods outperform significantly published results [34,51]. 

3. Chapter 5 proposes two conversion algorithms based on tabular tech­

nique, that is serial and parallel tabular techniques. Space complexity of 

the STT and PTT are both O(2n). STT deals with variable one at a time 

in sequence. PTT generates product terms at the same time. Although 

PTT produces products in parallel, if the number of product terms in­

creases, the overhead of computation in each product term makes PTT 

under-performs compared to STT, in which STT adapts every efficient 

way of bitwise implementation. Time complexity of the STT and PTT 

are O(n2n) and O(coej jicients2°) respectively, where coej jicients and 

n are the number of product terms and the number of input variables 

respectively and 0 is the number of "1"s in each on-set CPOS maxterm 

or CSOP minterm, depending on the method used. Experimental results 

show that both proposed STT and PTT achieve better performance than 

multi-segment method in Chapter 4 and other methods [34,51]. 

4. Any n-variable function can be expressed in two-level FPRM forms. The 

on-set coefficients of FPRM forms can be represented in T. In Chapter 

6, on-set table method for obtaining MMPRM expansions is proposed. It 

deals with on-set coefficients only, resulting in significantly reduced mem­

ory. The space complexity is O(coej jicients * n), where coej jicients is 

the number of product terms and n is the number of input variables. By 

extracting common variables in the on-set table, the on-set table becomes 

smaller and smaller, the logical functionality of the circuit remains un­

changed. As a result more compact expansion is obtained. Experimental 
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results show that the proposed method can achieve on average 68% and 

55% area improvement compared to those under positive polarity and 

best polarity of FPRM expansions, respectively. By searching 2n polari­

ties of FPRM expansions, a good polarity out of the 2n2n
-

1 
polarities of 

MPRM can be obtained in reasonable time. 

5. Symmetrical FPGA placement by using GAs is studied in Chapter 7. 

Genotype using integer representation is proposed for Symmetrical FPGA 

placement. With the proposed fitness function, selection, crossover and 

mutation operators, GA Placement algorithm is developed. However, 

it still spends long time in searching good solutions. To overcome the 

limitation of GA in large CPU consumption, Chapter 7 also proposes a 

unified GA and SA for Symmetrical FPGA placement based on two-step 

model. The unified GA and SA algorithm has two stages. The first 

stage is called global search stage, which is performed by GA. And the 

second stage is called local search stage, which is performed by SA. The 

algorithm achieves less CPU time than GA but without degrading the 

quality of the placement. Experimental results show that both GA and 

GA with SA placement could achieve as good performance as VPlace [18] 

in terms of final routing channel tracks. 

The above works can be further carried out as follows. 

1. The conversion methods in Chapters 4 and 5 for DFRM forms opti­

misation can be further generalised to incompletely specified Boolean 

functions. 

2. Evolutionary computation algorithm, Particle Swarm Optimisation (PSO) 

[68], proved to be effective to many applications such as FPGA place-
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ment [64] and Evolvable digital circuits [63]. It can be used for finding 

best fixed polarity and mixed polarity in RM and DFRM expansions. 

3. The multi-segment methods, STT, PTT and on-set table based MMPRM 

optimisation method in Chapters 4 to 6 can be generalised for multiple 

output Boolean functions by using redundancy removal method as in 

[119]. 

4. The proposed GA and GA with SA pay penalty in CPU time for ob­

taining good results. PSO can however be applied to FPGA place­

ment [64,116] to reduce CPU time consumption. In addition, GA with 

SA placement, adapted two-step model, can be further carried out in 

other more complex models to achieve even better performance in terms 

of CPU time. 
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Appendix A 

An Example of a Circuit 

Optimisation 

As it is known, some circuits might perform better in RM forms if they can 

not be optimised well in standard Boolean domain. In some cases, the circuits 

can be better simplified in OR/XNOR forms. Following is an example to show 

that the 3-variable function f(X2' Xl, xo) can be better optimised in the DFRM 

expansions instead of either standard Boolean or RM expansions. 

Let 3-variable Boolean function be CSOP expansion f(X2, Xl, xo) = X2X1XO+ 

X2X1XO+X2X1XO+X2X1XO+X2X1XO+X2X1XO' It can be simplified as f(X2' Xl, XO) = 

Xo + X2X1 + X2X1. As it can be seen, the number of product terms and literals 

are 3 and 5 if using AND/OR forms, respectively. The following 2 sets of 

equations, (A.9) to (A.8) and (A.9) to (A.16) are respective polarity expan­

sions in RM and DFRM expansions. The least number of product terms is 3 

if implemented with AND /XOR forms. However, the least number of product 

terms is only 2 in (A.9) for polarity 0 and (A.15) for polarity 6 if implemented 

with OR/XNOR forms. In terms of number of literals, if using AND /XOR 
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forms) the least number of literals is 4 in (A.2) for polarity 1 and (A.8) for 

polarity 7. The least number of literals is 4 in (A. g) for polarity 0 and (A.15) 

for polarity 6 if using OR/XNOR forms. In this case) the circuit implemented 

in OR/XNOR forms outperforms other implementations. 

f(X2) Xl) Xo) 1 EB Xl EB XlXO EB X2 EB X2XO (A.I) 

f(X2) Xl) Xo) 1 EB XlXO EB X2XO (A.2) 

f(X2) Xl) Xo) Xo EB Xl EB XlXO EB X2 EB X2XO (A.3) 

f(X2) Xl) Xo) 1 EB Xo EB Xl Xo EB X2XO (A.4) 

f(X2) Xl) Xo) Xo EB Xl EB XlXO EB X2 EB X2XO (A.5) 

f(X2) Xl) Xo) 1 EB Xo EB XlXO EB X2XO (A.6) 

f(X2) Xl) Xo) 1 EB Xl EB XlXO EB X2 EB X2XO (A.7) 

f(X2) Xl) Xo) 1 EB XlXO EB X2XO (A.8) 

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) (A.9) 

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl (A.I0) 

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) 8 Xo (A.11) 

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl 8 Xo 8 0 (A.12) 

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) 8 Xo (A.13) 

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl 8 Xo 8 0 (A.14) 

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) (A.15) 

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl (A.16) 
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Input and Output Data Formats 

1. On-set CPos maxterm (.max), CSOP minterm (.min) and COC max­

term (.coc) file formats are used for programs, named COCmultiseg as 

given in Chapter 4 and COCtabular as given in Chapter 5, respectively. 

Those formats are shown as follows. ".input", ".output", ".CPOS", ".CSOP", 

".COC", ".polarity" and ".end" are the keywords of input, output, on-set 

CPOS maxterms, on-set CSOP minterms, on-set COC maxterms, the 

polarity of the expansion and the end of file. nand p indicate the num­

ber of variables and the number of polarity, respectively. "number" is the 

number of on-set coefficients and lies in the range of [0, 2n 
- 1]. 

CPOS minterm coefficient format: (.min) 

.input n 

.output 1 

. CPOS number 

one set of on-set CPOS maxterm coefficients with integer number 

.end 
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CSOP maxterm coefficient format: (.max) 

.input n 

.output 1 

.CSOP number 

one set of on-set CSOP minterm coefficients with integer number 

.end 

COC maxterm coefficient format: (.coc) 

.input n 

.output 1 

.polarity p 

.COC number 

one set of on-set COC maxterm coefficients with integer number 

.end 
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2. The program used in Chapter 6 is named MMmapping. It reads on-set 

FPRM coefficients as an input and output on-set MMPRM coefficients 

as an output. On-set FPRM coefficients and on-set MMPRM coefficients 

file formats are shown as follows. ".input", ".output", ".FPRM", ".MM­

PRM", ".polarity" and ".end" are the keywords of input, output, on-set 

FPRM expansion coefficients, on-set MMPRM expansion coefficients, 

the polarity of the expansion and the end of file. 

nand p indicate the number of variables and the number of polarity, 

respectively. "number" is the number of on-set coefficients and can be 

any integer number but lies in the range of [0, 2n - 1]. 
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FPRM on-set expansion coefficient format: (.fprm) 

.input n 

.output 1 

.polarity p 

.FPRM number 

one set of on-set FPRM expansion coefficients with integer number 

.end 

MMPRM on-set expansion coefficient format: (.mmprm) 

.input n 

.output 1 

.MMPRM number 
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one set of on-set MMPRM expansion coefficients with integer number 

.end 

3. The program used in Chapter 7 is named GPlacer. It requires netlist 

and architecture input files. 

An example netlist input file (.net) in which the logic block is a single 

LUT and one D-flipflop is given as follows. More details can be found 

in [19] . 

.input a pinlist: a 

.input b pinlist: b 

.input c pinlist: c 

.input d pinlist: d 
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.input e pinlist: e 

.output out:xor5 

pinlist: xor5 

.clb [3] 

pinlist: abc d [3] open 

subblock: [3] 0 1 2 3 4 open 

.clb xor5 

pinlist: e [3] open open xor5 open 

sub block: xor5 0 1 open open 4 open 
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An example of simple architecture input file (.arch) is given as follows. 

More details can be found in [19]. 

io rat 2 

chan width io 1 

chan width x uniform 1 

chan _ width _y uniform 1 

inpin class: 0 bottom 

inpin class: 0 left 

inpin class: 0 top 

inpin class: 0 right 

out pin class: 1 bottom 

inpin class: 2 global top 
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subblocks_pel"_ db 1 

subblock lut size 4 

The output file of GPlacer (.gplacement) is given as follows: 
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The first line of the placement file list the netlist and architecture files 

used to generated placement. All the following lines have the format as 

follows. 

block name x y subblock block_number 

The block name is the name of the block given in the .net file. x and y 

are the row and column in which the block is placed, respectively. The 

subblock number is "0" for CLBs and can be any number but lies in the 

range of [0, io rat] for lOBs, where io rat is the 10 ratio. 

An example placement file (.gplacement) is given as follows. 

Netlist file: example.net 

Array size: 

#block_name 

a 

b 

c 

d 

e 

out:xor5 

xor5 

[3] 

5x5 

x y 

0 1 

1 0 

0 2 

1 6 

1 6 

0 2 

1 4 

1 2 

Architecture file: example. arch 

logic blocks 

subblock block number 

0 #0 

0 #1 

0 #2 

1 #3 

0 #4 

1 #5 

0 #6 

0 #7 
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PLA File Format and Its On-set 

Minterms and Maxterms 

This format is used by programs which manipulate PLAs to describe the physi­

cal implementation. Lines beginning with a "#" are comments and are ignored. 

Lines beginning with a "." contain control information about the PLA. The 

control information is given in the following order: 

.i <number of inputs> 

.0 <number of outputs> 

.p <number of product terms (1f-terms» 

.e <the end of the pIa description> 

What follows then is a description of the AND and OR planes of the PLA 

with one line per product term. Connections in the AND plane are represented 

with a "1" for connection to the non-inverted input line and a "0" for connection 

to the inverted input line. No connection to an input line is indicated with "-". 

Connections in the OR plane are indicated by a "1" with no connection being 

indicated with "0". "-" indicates "don't care". Spaces or tabs may be used freely 
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.n 3 

.0 1 

.p 3 
1 0 1 

o 1 1 
1 1 
.e 

Figure C.1: An example of PLA file. 

X2 Xl Xo f(X2, Xl, xo) 
- 1 0 1 
0 1 1 -
1 - - 1 

Figure C.2: The product terms of example of PLA file. 

and are ignored. 
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An example of PLA file is given in Figure C.l. Its equivalent functionality 

is shown in Figure C.2. The function can be expanded to canonical form in 

the corresponding truth table depending on the value of "don't care". For 

example, Table C.1 shows a tabular representation when "don't care" product 

term "011" is set to "1". The K-map is shown in Figure C.3. As a result, 

switching function is 

f(X2' Xl, xo) = X2 + Xl (C.1) 

The respective CSOP minterm and CPOS maxterm expansions are 

f(X2, Xl, xo) = X2XIXO + X2 XIXO + X2 XIXO 
(C.2) 

+X2 XIXO + X2 XIXO + X2 XIXO 

f(X2' Xl, XO) = (X2 + Xl + XO)(X2 + Xl + xo) (C.3) 
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Table Col: Truth table for PLA file when "don't care" product term "011" is 
set to "1"0 

X2 Xl Xo f(X2' Xl, Xo) 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

XjXO 

010 

Xz 

Figure C03: K-map of example PLA file when "don't care" product term "011" 
is set to "1"0 

But if the "don't care" product term "011" is set to "0", the switching 

function is 

f(X2, Xl, xo) = X2 + XlXO (C.4) 

The CSOP minterm CPOS maxterm expansions are 

f(X2' Xl, xo) X2 XlXO + X2XlXO + x2xixo + X2XlXO + X2XlXO (C05) 

f(X2, Xl, xo) (X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo) (C06) 
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Attached Disk 

The attached disk contains the programs developed in the thesis and electronics 

version of the thesis. 

1. Bidirectional multi-segment conversion program (COCmultiseg) between 

Standard Boolean and fixed polarity COC expansions of any polarity. 

This program can read CSOP minterms generated from the PLA file as 

an input and output fixed polarity COC expansions of any polarity. It 

can also read fixed polarity COC expansions of any polarity as an input 

and output CPOS maxterms. The input and output file formats can be 

found in Appendix B. More details can be found in Chapter 4. 

2. Bidirectional serial and parallel tabular conversion program (COCtab­

ular) between Standard Boolean and fixed polarity COC expansions of 

any polarity. This program can read CSOP minterms and CPOS max­

terms generated from the PLA file as an input and output fixed polarity 

COC expansions of any polarity.' It can also read fixed polarity COC ex­

pansions of any polarity as an input and output CPOS maxterms. The 

input and output file formats can be found in Appendix B. More details 
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can be found in Chapter 5. 

3. On-set table method program (MMmapping) mapping from FPRM ex­

pansion to MMPRM expansion. This program reads FPRM expansion 

generated from the PLA file as an input and output MMPRM expansion. 

The input and output file formats can be found in Appendix B. More 

details can be found in Chapter 6. 

4. Symmetrical FPGA Genetic algorithm program (GPlacer). This pro­

gram reads ".net" file generated from VPack from VPR [18, 19] and 

".arch". The ".net" file includes each net information and ".arch" file 

includes symmetrical FPGA architecture information, as shown in Ap­

pendix B. The placement output file format can also be found in Ap­

pendix B. More details can be found in Chapter 7. 

5. Script language verifies that on-set CSOP minterms and CPOS maxterms 

generated from PLA are correct. 

6. Script language is used to run programs against the benchmarks. 
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