
Algorithms in Computer Aided Design

of VLSI Circuits

by

Meng Yang

BEng(Hon.), M.Sc.

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Napier University

School of Engineering

Edinburgh, UK

June 2006

Copyright © by Meng Yang

Dedicated to

my great parents

Mrs. Fengying Zhang and Mr. Yaoshun Yang

my grandpa

Mr. Keshen Zhang

and my uncle

Mr. Yine Zhang

Abstract

With the increased complexity of Very Large Scale Integrated (VLSI) circuits,

Computer Aided Design (CAD) plays an even more important role. Top-down

design methodology and layout of VLSI are reviewed. Moreover, previously

published algorithms in CAD of VLSI design are outlined.

In certain applications, Reed-Muller (RM) forms when implemented with

AND/XOR or OR/XNOR logic have shown some attractive advantages over

the standard Boolean logic based on AND/OR logic. The RM forms imple­

mented with OR/XNOR logic, known as Dual Forms of Reed-Muller (DFRM),

is the Dual form of traditional RM implemented with AND /XOR.

Map folding and transformation techniques are presented for the conversion

between standard Boolean and DFRM expansions of any polarity. Bidirec­

tional multi-segment computer based conversion algorithms are also proposed

for large functions based on the concept of Boolean polarity for canonical

product-of-sums Boolean functions. Furthermore, another two tabular based

conversion algorithms, serial and parallel tabular techniques, are presented for

the conversion of large functions between standard Boolean and DFRM ex­

pansions of any polarity. The algorithms were tested for examples of up to 25

variables using the MCNC and IWLS'93 benchmarks.

Any n-variable Boolean function can be expressed by a Fixed Polarity

Reed-Muller (FPRM) form. In order to have a compact Multi-level MPRM

(MMPRM) expansion, a method called on-set table method is developed.

The method derives MMPRM expansions directly from FPRM expansions.

If searching all polarities of FPRM expansions, the MMPRM expansions with

the least number of literals can be obtained. As a result, it is possible to find

the best polarity expansion among 2n FPRM expansions instead of searching

2n2n
-

1
MPRM expansions within reasonable time for large functions. Further­

more, it uses on-set coefficients only and hence reduces the usage of memory

dramatically.
Currently, XOR and XNOR gates can be implemented into Look-Up Ta­

bles (LUT) of Field Programmable Gate Arrays (FPGAs). However, FPGA
placement is categorised to be NP-complete. Efficient placement algorithms

are very important to CAD design tools. Two algorithms based on Genetic

Algorithm (GA) and GA with Simulated Annealing (SA) are presented for the

placement of symmetrical FPGA. Both of algorithms could achieve compara­

ble results to those obtained by Versatile Placement and Routing (VPR) tools

in terms of the number of routing channel tracks.

Declaration

The work in this thesis is based on research carried out at the School of En­

gineering, Napier University, Edinburgh, UK. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it all my own

work unless referenced to the contrary in the text.

Copyright © 2006 by MENG YANG.

"The copyright of this thesis rests with the author. No quotations from it

should be published without the author's prior written consent and information

derived from it should be acknowledged".

IV

Acknow ledgments

First of all, my wholehearted thanks go to my beloved mum, Fengying Zhang,

and great dad, Yaoshun Yang, who took care of everything for me since I was

a crying baby, for their everlasting love and understanding. Without their

sacrifice, I am nowhere near the completion of this thesis.

I deeply appreciate my research supervisor Prof. A.E.A. Almaini, School

of Engineering, Napier University, for his constant guidance, encouragement,

friendship in the past several years. With his help, I was able to motivate

myself to continue Doctor degree after completing project of Master of Science

with him. Throughout the period of research, he not only provided comments

and invaluable suggestions on the meeting but spent his precious time in cor­

recting each single of my published scientific papers and this thesis patiently

as well. It is my great pleasure and privilege to study under his supervision.

I would like to thank my second supervisor Prof. Lingli Wang, who was

a former member of the digital techniques group and was a senior software

engineer at the Altera European Technology Center, Buckinghamshire, UK,

and is currently with Fudan University, Shanghai, China. His essential and

consistent supports help me learn Linux operating system at the very beginning

of the research and GNU C language programming skills during the research.

In addition, he patiently provided useful comments and suggestions on the

v

Acknowledgements vi

direction of research in the past several years.

I would like to thank my internal supervisor Dr. M. Sharif for his support

and guidance at the very beginning of the research.

My gratitude is given to former members of the digital techniques group,

Prof. Yinshui Xia, Dr Belgasem Ali and current member Miss Pauline Oh, and

also Mr. Lunyao Wang, Prof. Pengjun Wang and Prof. Hongying Xu, who

were visiting Scholars at Napier University, for their interesting and various

discussions.

Extra special thanks must go to Prof. Pengjun Wang, who was a visiting

Scholar at Napier University and is with Ningbo University, Ningbo, China,

for his constant encouragement and friendship during my research.

This research work was funded by the School of Engineering, Napier Uni­

versity, Edinburgh, UK. The support is gratefully acknowledged.

Last certainly not least, many thanks go to my relatives and friends for

their supports in all different kinds of ways throughout my research work,

especially Mr. Vine Zhang, who not only financially supported my Master's

degree in the UK, but gave me priceless suggestions and guidance as well.

Contents

Abstract iii

Declaration IV

Acknowledgements V

List of Abbreviations xi

List of Symbols xv

List of Figures XIX

List of Tables xxi

List of Algorithms xxi

1 Introduction 1

1.1 Motivation. 1

1.2 Research Objectives. 2

1.3 Thesis Organisation . 3

2 Backgrounds 4

2.1 VLSI Design Process 4

2.2 VLSI Layout 7

2.2.1 Full custom layout 8

2.2.2 Semi-custom layout 9

2.2.3 Universal layout .. 13

2.3 CAD of FPGA Design and Algorithms 15

Vll

Contents

2.3.1 Logic optimisation

2.3.2 Technology mapping

2.3.3 Placement

2.3.4 Global routing

2.3.5 Detailed routing

2.4 Genetic Algorithms

2.5 Summary

3 Map Techniques for Dual Forms of RM Expansions

3.1 Introduction.

3.2 Preliminaries

3.2.1 Basic definitions.

3.2.2 CSOP minterms, CPOS and COC maxterms .

viii

16

22

23

25

25

27

28

29

29

30

30

33

3.2.3 Map folding technique for positive polarity using maxterms 37

3.3 Transformation Matrix for COC Expansions

3.4 Map Techniques

39

45

3.4.1 Map folding technique for positive polarity using minterms 45

3.4.2 Map folding technique for any polarity

3.4.3 Map transformation technique for any polarity.

3.5 Summary

48

50

57

4 Multi-segment Method for Dual Forms of RM Conversion 58

4.1 Introduction.......................... 58

4.2 Generalised Method Based on On-set Coefficient Coverage 59

4.3 Multi-segment Method Based on Maxterms . 62

4.4 Generalised Polarity Conversion 68

4.5 Conversion Method Based on Minterms 74

Contents

4.6 Experimental Results

4.7 Summary

ix

76

80

5 Tabular Based Techniques for Dual Forms of RM Conversion 81

5.1 Introduction....... 81

5.2 Serial Tabular Technique 82

5.3 Parallel Tabular Technique . 91

5.4 Experimental Results 98

5.5 Summary 102

6 On-set Table Method for Multi-level Mixed Polarity RM 103

6.1 Introduction..................... . 103

6.2 Properties of On-set Table and Basic Definitions . . 104

6.3 Extraction of Common Variables 117

6.4 On-set Table Method for Multi-Level Mixed Polarity RM . 122

6.5 Experimental Results. . 125

6.6 Summary 127

7 Genetic Algorithms for FPGA Placement 128

7.1 Introduction.......... . 128

7.2 Genetic Algorithm Placement . 129

7.2.1 Genetic encoding .

7.2.2 Selection operator.

7.2.3 Fitness measure . .

7.2.4 Crossover and mutation operators

7.2.5 Local improvement

7.3 GA with SA Placement Algorithm

7.3.1 Fitness function

· 130

· 131

· 132

· 133

· 135

· 135

· 136

Contents x

7.3.2 Reproduction operator 138

7.3.3 Initial temperature and update scheme . 139

7.4 Experimental Results . 140

7.5 Summary 149

8 Conclusions and Future Work 150

Publications 155

References 157

A An Example of a Circuit Optimisation 178

B Input and Output Data Formats 180

C PLA File Format and Its On-set Minterms and Maxterms 185

D Attached Disk 188

List of Abbreviations

ASIC

BDD

CAD

CCF

CLB

COC

CPOS

CSOP

DCF

DFRM

ESOP

FPGA

FPRM

FSM

Application Specific Integrated Circuit

Binary Decision Diagram

Computer Aided Design

Conjunctive Canonical Form

Configurable Logic Block

Canonical OR-Coincidence

Canonical Product-of-Sums

Canonical Sum-of-Products

Disjunctive Canonical Form

Dual Forms of Reed-Muller

Exclusive-OR Sum-of-Products

Field Programmable Gate Array

Fixed Polarity Reed-Muller

Finite State Machine

Xl

List of Abbreviations

GA

GCC

GRM

HDL

HGA

lOB

IWLS

KRO

LUT

MCNC

Genetic Algorithm

GNU C Compiler

Generalised Reed-Muller

Hardware Description Language

Hybrid Genetic Algorithm

Input/Output Block

International Workshop on Logic Synthesis

Kronecker

Look-Up Table

Microelectronics Center of North Carolina

MMPRM Multi-level Mixed Polarity Reed-Muller

MPGA

MPRM

NP

NPRM

NRE

OBDD

OFDD

P&R

Mask Programmable Gate Array

Mixed Polarity Reed-Muller

Nondeterministic Polynomial, N on-Polynomial

Negative Polarity Reed-Muller

N on-Recurring Engineering

Ordered Binary Decision Diagram

Ordered Function Decision Diagram

Placement and Routing

xii

List of Abbreviations Xlli

PAL Programmable Array Logic

PPRM Positive Polarity Reed-Muller

PSDKRO Pseudo Kronecker

PSDRM Pseudo Reed-Muller

PSO Particle Swarm Optimisation

PLA Programmable Logic Array

PTT Parallel Tabular Technique

RM Reed-Muller

RMBDD Reed-Muller Binary Decision Diagram

RTL Register Transfer Level

SA Simulated Annealing

SGA Standard Genetic Algorithm

SOP Sum -of-Prod ucts

STT Serial Tabular Technique

VLSI Very Large Scale Integrated

VPR Versatile Placement and Routing

WLM Wire Load Model

XOR Exclusive-OR operation

XNOR Inclusive-OR operation

List of Symbols

aj CSOP coefficients

bj RM coefficients

c-J CPOS coefficients

d-J COC coefficients

F Reed-Muller expansion

i, iI, i2, i3 index of variables, 0 < il < i2 < i3 < i :::; n - I

J

jl,j2

j3,j4

n,out

p,P

Jr­J

}';Jj

Sj

index of coefficients, 0 :::; j :::; 2n - I

index of coefficients, 0 < jl < j2 < j

index of coefficients, j2 < j3 < j4 < j

the number of input variables and outputs

polarity for fixed and mixed expansion

CSOP minterm

CPOS maxterm

COC maxterm

XIV

List of Symbols xv

o

T

u

+

e

n

on

L:

EBL:

[1

t

1\

«

E9

¢(77)

q

w

T

Tn

on-set coefficient set

on-set coefficient table

the number of sub-tables in T

the Kronecker matrix sum operator

the matrix multiplication operator

the AND operator

the XNOR operator

the sum operator

the XOR operator

the integer operator

the transpose operator

AND bitwise operator

LEFT SHIFT bitwise operator

XOR bitwise operator

the number of "O"s in 77

the possible maximum number of on-set coefficients in one segment

the number of segments

temperature

transformation matrix for the n-variable function

List of Figures

2.1 General overview of the levels of abstraction. 5

2.2 Full custom layout. 9

2.3 Gate array layout. (a) Floor plan of a gate-array. (b) A basic

cell structure of a gate array .. 10

2.4 Standard cell layout. 12

2.5 A Typical FPGA CAD system. 17

3.1 Coefficients maps. (a) A 3-variable Cj map of CPOS expansion,

(b) A 3-variable drcoefficient. map. 37

3.2 Map folding technique for positive polarity using maxterms. (a)

Folding the map along the X2 border, (b) Folding the map along

the Xl border, (c) Folding the map along the Xo border, (d) Final

coefficients map..

3.3 A 3-variable COC expansion of dj coefficients map.

3.4 Map folding technique for positive polarity using minterms. (a)

Folding the map along the X2 border, (b) Folding the map along

38

38

the Xl border, (c) Folding the map along the Xo border, (d)

Coefficients map before modification, (e) Final coefficients map. 47

3.5 Folding dj coefficient map along Xo border. 49

3.6 A 3-variable dj coefficient map for polarity 1 after folding. 49

XVI

List of Figures xvii

3.7 A 3-variable dj coefficient map for polarity 1.. 49

3.8 Map transformation technique for obtaining COC expansion of

polarity 6 for a 3-variable function in CPOS form f(X2, Xl, xo) =

I1(0, 2, 5, 6). (a) Circle on-set maxterms via 6-point, (b) Result-

ing map after marking "O"s, (c) Simplified coefficients maps. 53

3.9 Mapping transformation technique for obtaining COC expan­

sion of any polarity. (a) Polarity 0 via O-point, (b) Polarity 1

via I-point, (c) Polarity 2 via 2-point, (d) Polarity 3 via 3-point,

(e) Polarity 4 via 4-point, (f) Polarity 5 via 5-point, (g) Polarity

6 via 6-point, (h) Polarity 7 via 7-point.

3.10 Coefficients of COC expansion of all the 8 polarities transforma­

tion. (a) Polarity 0, (b) Polarity 1, (c) Polarity 2, (d) Polarity

55

3, (e) Polarity 4, (f) Polarity 5, (g) Polarity 6, (h) Polarity 7. . . 56

5.1 A list of on-set CSOP minterm coefficients. (a) Minterm coeffi­

cients before XOR, (b) Minterm coefficients after XORing with

"110" for polarity 6. 87

5.2 Maxterms generation for variable Xo. 88

5.3 Maxterms generation for variable Xl. 88

5.4 Maxterms generation for variable X2. 88

5.5 Newly generated maxterm. 96

5.6 COC maxterms. 96

5.7 CPU conversion time for randomly generated CPOS expansions

with 30, 300 and 3000 on-set CPOS maxterm coefficients when

15 :::; n :::; 19. 99

List of Figures

5.8 CPU conversion time for randomly generated CPOS expansions

with 30, 300 and 3000 on-set CPOS maxterm coefficients with

20 ::; n ::; 25.

xviii

99

6.1 An example of 7 for a given O 106

6.2 The resulting I' generated after swapping. (a) 7r5 and 7r7 are

swapped, (b) Variable Xo and X2 are swapped. . 107

6.3 3 possible sub-tables of 7. 108

6.4 Exchange two sub-tables, STI and ST2 in the vertical direction.

(a) 7 before exchange, (b) I' after exchange. 109

6.5 Resulting 1" after grouping STI and ST2 into ST3 . . 110

6.6 Exchange two sub-tables, STI and ST2 in the horizontal direc-

tion. (a) 7 before exchange, (b) I' after exchange. . 111

6.7 Resulting 1" after grouping STI and ST2 into Sn. . 112

6.8 Extraction of global common variables. (a) 7 before deletion,

(b) I' after deletion. 113

6.9 On-set table deletion of VVPST, where Vl¥PST = {X3} and

all the elements of W P ST are "I". (a) 7 before deletion, (b) I'

after deletion. 114

6.10 On-set table deletion of liVPST, where VWPST = {X2} and

all the elements of liV P ST are "0". (a) 7 before deletion, (b) I'

after deletion. 114

6.11 Extraction of common sub-table. (a) 7 of a 4-variable function

in FPRM expansion, (b) The resulting I' after changing the

order of variables. . .

6.12 The 7 of a 5-variable FPRM expansion.

6.13 Sub-table STx3 after deleting WPSTx3 from 7.

.116

.119

. 120

List of Figures xix

6.14 Sub-table T after deleting WPSTx1 and TVPSTx3 ' . . .121

6.15 The resulting T after columns and rows are swapped. . . 121

6.16 The circuit implemented with 2-input AND and XOR gates for

PPRM expansion. 124

6.17 The circuit implemented with 2-input AND and XOR gates for

MMPRM expansion. · 124

7.1 Genetic encoding. . · 132

7.2 Modified crossover. · 134

7.3 Selection pie and the rotation of markers. . · 138

7.4 Fitness value of 9symml using SGA .. · 142

7.5 Fitness value of 9symml using HGA. · 142

7.6 Comparison of fitness based on Table 7.3 .. · 143

7.7 Comparison of CAD flow chart. · 145

7.8 Final routing of 9symml using HGA placement with 5 channel

tracks. · 146

C.1 An example of PLA file. · 186

C.2 The product terms of example of PLA file. · 186

C.3 K-map of example PLA file when "don't care" product term

"011" is set to "1". 187

List of Tables

4.1 CPU Conversion time for IWLS93 benchmarks using maxterm

and minterm multi-segment methods. 78

4.2 CPU Conversion time in seconds compared to published work. 79

5.1 Comparison conversion CPU time for IWLS93 benchmarks 100

5.2 STT using maxterm and minterm methods. .101

6.1 Comparison of the number of literals between a FPRM expan-

sion under polarity 0 and a MMPRM expansion. 126

6.2

7.1

7.2

7.3

7.4

7.5

Comparison of the number of literals between a FPRM expan­

sion under best polarity and a MMPRM expansion.

Temperature update scheme.

Characteristics of MCNC benchmark circuits.

Comparison of fitness.

Comparison of channel tracks of VPR, SGA and HGA.

Comparison results of CPU time and routing channel tracks

between GA and GASA.

· 126

.140

· 141

· 143

.147

. 147

7.6 Comparison results of placement cost between VPlace and GASA.148

C.1 Truth table for PLA file when "don't care" product term "011"

is set to "1" · 187

xx

List of Algorithms

4.1 Multi-segment method for conversion from PLA to fixed polar-

ity eoe expansions. 77

5.1 Serial tabular technique for conversion from esop minterm co­

efficients to fixed polarity eoe maxterm coefficients. 86

5.2 Parallel technique technique for conversion from esop minterm

coefficients to fixed polarity eoe maxterm coefficients. 95

7.1 Hybrid genetic algorithm for FPGA placement. . 130

7.2 Genetic algorithm with simulated annealing for symmetrical

FPGA placement. 137

XXI

Chapter 1

Introduction

1.1 Motivation

In order to reduce the complexity of design process in modern Integrated Cir­

cuit (IC) chips, the typical Computer Aided Design (CAD) system for very

large scale integration design consists of several intermediate abstraction, such

as logic synthesis, placement and so on. Hence, it enables designers to work

progressively down from an abstract level of the design to the layout level.

In the logic synthesis process, Reed-Muller (RM) representation has drawn

increasing attention because the AND /XOR realisation of the circuits re­

quire less layout area than their AND/OR counterparts in many applica­

tions [6,101,102]. Furthermore, in some cases, AND/XOR PLAs require fewer

product terms than AND/OR PLAs [100,120]. Therefore, methods for RM

expansions are important alternatives to the traditional Canonical Sum-of­

Products (CSOP) and Canonical Product-of-Sums (CPOS) approaches to im­

plement Boolean functions. The RM forms offer designers the opportunity to

optimise functions that are difficult to simplify in the standard Boolean domain

1

.;

1.2 Research Objectives 2

and a large number of alternative representations. Canonical OR-Coincidence

(COC) expansions [34,51,140]' where the Boolean function is expressed in

OR/XNOR form, are also known as Dual Forms of Reed-Muller (DFRM) [61].

Appendix A shows how a 3-variable function f(X2, Xl, xo) can be better opti­

mised in the OR/XNOR forms.

XOR/XNOR gates have the disadvantage of low speed and large area con­

sumption. As the Field Programmable Gate Array (FPGA) technology has

made significant progress in recent years, XOR/XNOR gates can be imple­

mented into Look-up Tables (LUTs), resulting in XOR/XNOR gates that are

as fast as other gates.

FPGA was firstly introduced in 1985 [27]. In the past 20 years, FPGAs

have gained increasing popularity in implementing low volume digital circuits.

Particularly when the process geometry has shrunk to 90nm process technol­

ogy, the logic capacity has significantly increased up to 2.2 million Application

Specific Integration Circuit (ASIC) gates in a single device and internal clock

frequency rate has reached up to 500 MHz. Generic symmetrical FPGA ar­

chitecture consists of routing resources and configurable blocks [97], in which

routing resources occupy 70-90% of FPGA area [23], therefore efficient Place­

ment and Routing (P&R) are essential.

1.2 Research Objectives

The objectives of the research are as follows.

1. Develop various methods and algorithms for efficient conversion between

standard Boolean and DFRM forms,

2. Develop an efficient mapping method to find a good Multi-level Mixed

1. 3 Thesis Organisation 3

Polarity Reed-Muller (MMPRM) representation from Fixed Polarity Reed­

Muller (FPRM) forms,

3. Symmetrical FPGA placement is studied and algorithms are developed

and evaluated using Genetic Algorithm (GA) and GA with Simulated

Annealing (SA).

1.3 Thesis Organisation

The rest of thesis is organised as follows.

1. In Chapter 2, background information on VLSI design process, VLSI

layouts and CAD system of FPGA design and algorithms are given.

2. In Chapter 3, basic definition and terminology of COC expansions and

transformation matrix of COC expansions are given. Also in Chapter

3, two map techniques are presented for conversion between standard

Boolean and COC expansions of any polarity.

3. Chapter 4 proposes two algorithms for large functions to overcome the

limitation of map techniques in Chapter 3.

4. Chapter 5 proposes two tabular techniques, Serial Tabular Technique

(STT) and Parallel Tabular Technique (PTT), for large functions.

5. On-set table method is given in details in Chapter 6 for optimisation of

MMPRM expansions.

6. In Chapter 7 symmetrical FPGA placement algorithms are developed by

using GA and GA with SA respectively.

7. Conclusions and further work are then given in Chapter 8.

Chapter 2

Backgrounds

2.1 VLSI Design Process

The complexity of modern circuits is of the order of millions of transistors.

Therefore the design of a VLSI circuit is understandably a complex task. In

order to reduce the complexity of design process, several intermediate levels

of abstractions are introduced. A top-down design methodology divides the

whole design process into 6 phases, as shown in Figure 2.1.

These phases are summarised as following:

1. Design specification:

Several important factors are to be considered, which are

• the required performance of the system,

• the architecture of the system,

• the external interface and protocol,

• the choice of manufacturing technology and

• the available design tools

4

2.1 VLSI Design Process

Requirement

Design
specification

Specification

RTLdesign

Behavioural
representation

Logic design

Logic
representation

Circuit design

Structural
representation

Physical design

Physical
representation

Fabrication &
Test

Chip

Figure 2.1: General overview of the levels of abstraction.

Furthermore, attentions should be paid to the following issues:

• the design methodology,

• the cost of the design and

• required time to complete the design

5

2.1 VLSI Design Process 6

2. Architectural design:

At this level, the behaviour of the system is described in an abstract

manner that ignores the low-level details needed. High level abstrac­

tions are commonly known as the Register-Transfer Level (RTL). RTL

models describe the operation of the system without reference to specific

components.

3. Logic design:

The logic representation that involves in translating the system blocks

into a logic model is concerned. These representations are simulated at

transistor, gate and register level.

4. Circuit design:

Logic is represented by basic circuit elements such as resistors, transis­

tors, capacitors and inductors. Transistors are sized to meet signal delay

requirement. Analysis and timing verification are performed in this phase

to meet signal delay requirement.

5. Physical design:

The structural representations are transformed into physical package rep­

resentation that is used in the fabrication of the system. This phase can

be further subdivided into 4 steps, which are:

• partitioning,

• placement,

• routing and

• compaction

2.2 VLSI Layout 7

6. Fabrication and Testing:

An actual Ie is fabricated using physical package representation. Then

manufacturing errors, if any, are determined and eliminated.

However, sometimes in order to achieve better performance, optimisation

in several levels of abstraction are considered at the same time, for example a

new technology called Wire Load Models (WLMs). They has been available

since 1985 for wire load independent logic synthesis and timing closure. Born

out of a need to account for the role of interconnect in delay, they have evolved

over time to aid in the estimation of chip area and power. One of the princi­

ple advantages of the new technology is its ability to harmoniously merge low

power and high performance goals. It minimises the coupling between the syn­

thesis and placement and routing stages. Significant improvements in design

time and quality should be expected as a result of the faster timing optimisa­

tion compared to the combinatorial complexity of standard cell libraries. The

one-step timing closure eliminates the design iterations allowing more time for

improving the chip layout since timing closure has turned out to be the biggest

challenge for high speed sub-micron designs.

2.2 VLSI Layout

The current VLSI layout approaches used to generate physical representations

of circuits are:

1. Full-custom,

2. Gate-array,

3. Standard-cell and

2.2 VLSI Layout 8

4. Macro-cell

These various layout approaches can be grouped to three general categories

[99,107].

1. The full-custom layout approach in which layout elements are hand­

crafted in any size and can be placed anywhere on the layout surface.

2. The semi-custom layout approach which imposes some restrictions on

the layout elements and surface in order to reduce the complexity of the

layout tasks.

3. Universal layout approach which are pre-constructed without any knowl­

edge of the circuit to be laid out in order to reduce the time of design

cycle.

2.2.1 Full custom layout

In a full custom design, there are no restrictions on the size and the shape of

the logic modules. These logic modules can be shaped to any size as needed,

placed at any location of the surface of the chip board and connected in any

path that designer wants, as seen in Figure 2.2. Note that the shapes, locations

and orientations of logic modules are placed in arbitrary. And also note that

the wires connected between logic modules have minimal constraints on their

locations.

With the flexibility of the full custom design layout style, a faster and

smaller design that efficiently utilises all available spaces on the layout surface

results. On the other hand, because of the lack of restrictions in full custom

design, the automation complexity becomes extremely high even for a small

2.2 VLSI Layout 9

Logic module Wire

Figure 2.2: Full custom layout.

circuit. In addition, the physical construction of full custom design starts from

scratch. It is therefore that large start-up costs are involved in full custom

design and entire process is time consuming. As a result, full custom design is

only used for the designs in which performance, speed and area, is of the utmost

importance, or in which the circuits to be manufactured in large volumes to

justify its extreme expense.

2.2.2 Semi-custom layout

In full custom design, since lack of constraints makes synthesis tools difficult to

develop, the designer is responsible for layout optimisation and span all levels

of abstraction. Therefore it is important to reduce the costs of design and time

to market for some other applications without very high performance. With

some sacrifice of speed or area, some restrictions can be imposed on the design

in order to result in less complex automation than the full custom design does.

2.2 VLSI Layout

-I[II II :Jp-

-I[II II :Jp-

-I[II II :Jp-
NMOS GND Vdd PMOS

a

111 Switchbox D

10

000
O DDDDDDO

DDDDQJJ

ODD~~~O qJJ

O~~~t~~O
Horizontal I 0 0 0 Vertical

channel channel

b

Basic cell o Pad

Figure 2.3: Gate array layout. (a) Floor plan of a gate-array. (b) A basic cell
structure of a gate array.

There are 3 semi-custom layout styles, standard cell layout, gate-array layout

and macro cell layout [107], which are discussed in the following subsections.

Gate array

The gate-array also called Mask Programmable Gate Array (MPGA) is struc-

tured as a regular two-dimensional array of basic cells, as seen in Figure 2.3.

Each basic cell consists of certain number of uncommitted transistors, which

have already been prefabricated on a wafer, as seen in Figure 2.3 (a) .

Initially the transistors in an array are not connected to one another. In

order to realise a circuit on a gate-array, metal connections must be placed

using the process of masking, which is called personalisation. There are typ-

ically four necessary masking steps in two layers of wiring, one each for the

two metal layers and two contact layers. Personalisation involves two types

2.2 VLSI Layout 11

of interconnections. One is intra-cell wiring and the other is inter-cell wiring.

Intra-cell wiring is carried out in a basic cell of a gate-array that implements

small circuit module. For example, a two-input NAND gate can be imple­

mented by connecting a group of transistors in a basic cell of a gate array.

Thus intra-cell wring is independent of the circuit being implemented on the

gate-array. However, inter-cell wiring is carried out in the horizontal channels

and vertical channels, as shown in Figure 2.3(b).

Due to the limited routing space, if the connected basic cells are placed

close together to avoid long inter-cell wiring, the track density of the channel

will exceed its capacity. As a result, the local congestion makes the layout un­

routeable. Although routing phase is big challenge in the gate-array layout, it

takes a very short time to get a gate-array chip fabricated because all the pro­

cessing other than personalisation is identical to all gate-arrays, regardless of

the circuit to be implemented. 80 gate-array layout is suitable for prototyping

and low-volume product.

A special case of the gate array layout is when routing channels are virtually

absent. As a result, the chip consists of a closely packed array of transistors.

Wire must therefore be routed over the transistors. This kind of layout IS

known as channel-less gate arrays and called sea-of-gates.

Standard cell

A standard cell, known also as a poly-cell, is a logic block that performs a

standard function. Examples of standard cells are two-input NAND gate,

two-input XOR gate, D flip-flop and so on. A cell library is a collection of

information pertaining to standard cells. The relevant information about a

cell consists of the name of the cell, its functionality, its pin structure and a

2.2 VLSI Layout 12

DDDDDD" Pad

D I I I I II II I (D Unused space

Wire

D ~:J II: :1 D
Feedthrough

D ~ I I I I I I I D cell c:=: I I I I _ .
Routmg

D i--. I channel

L..-....L.-_--L-_..J.....-...I...-_---'-_---ll " Cell row

D D D D D D

Figure 2.4: Standard cell layout.

layout for the cell in a particular technology such as 0.35 I-lm CMOS cells in

the same library have standardised layouts, that is, all cells are constrained to

have the same height.

In cell-based design, as shown in Figure 2.4, the layout is divided into

several numbers of rows. Each row consists of cells placed next to each other.

Since all the cells are pre-designed to have the same height, the height of a

row is the same as the height of any cell in the row. The horizontal routing

channels separate rows. Cells within the same row or cells from two facing rows

can be interconnected by wire segment through the adjacent channel. If two

cells in non-adjacent rows have to be connected, a more elaborate technique

called feedthrough cell shown in Figure 2.4 is employed.

One of the advantages of the standard cell layout is that because many of

the cell functions are in common in many designs, the circuit design phase can

be completed rapidly by the reuse of pre-designed cell library. Furthermore,

2.2 VLSI Layout 13

since cell layouts are already available, the consideration of a layout will only

be the location of each cell and interconnection of the cells. Consequently, the

routing phase is typically greatly simplified. However, the loss of flexibility

leads to slower solutions and larger circuits than full custom design does.

Macro cell

Both gate-array design and standard-cell design impose restrictions on the cells

that are used to design the circuit. These restrictions, on one hand, simplify

the flexibility of layout in full custom design and also significantly reduce the

design cycle. But on the other hand, the gate-array design prohibits structure

other than standard digital logic; namely, more complex logic function such as

memory and analogous elements cannot be implemented in gate-array layout.

Standard cell design is less restrictive than gate-array, but it is still too expen­

sive to implement memory intensive functions such as RAMs and ROMs or

regular functions such as datapaths and arithmetic logic units. The macro cell

design fills in the gap. Since there is no restriction on size and shape of the cell

in the macro-cell design, the cell can be designed to have efficient layout char­

acteristics for complex logic function. These cells can be accommodated in the

library. Macro-cell design comes closest to full custom design. It is therefore

placement and routing phase is much more difficult compared to gate-array

design and standard cell design.

2.2.3 Universal layout

As mentioned above, the design process is very time consuming and costly in

full custom design. Alternatively, the design can be implemented in the semi­

custom design with sacrifice of the speed and area efficiency to reduce time

2.2 VLSI Layout 14

cycle. But regardless of any alternative, there still exists time delay between

the completion of the layout design and the physical completion of the circuit.

Moreover, the layout can only be tested after physical completion ofthe circuit,

which results in extra time delay.

In the universal layout, the chip has already been fabricated. There is no

delay between the completion of the layout design and the physical comple­

tion of the circuit at all, which leads a very efficient design cycle. The pro­

grammable components are placed in a uniform pattern. The routing channels

are also pre-fabricated separately around programmable components, which is

very similar to MPGA layout. The routing resources are even more limited

than semi-custom design does. What the designer needs to do is to pick an

appropriate device firstly, then interconnect routing recourses between pro­

grammable components to implement the logic function. But the designer has

to face the challenge of assigning programmable components to the locations

in which routing can be completed within limited routing resources and also

minimising the length of connections.

One typical example of universal circuitry is FPGA. FPGA have become

very popular in industry because it is so economic to fabricate and has efficient

design cycle. It is an ideal architecture for applications in which speed and area

are not extremely important. And also it is ideal for prototyping circuit design.

Because the test can be carried out before physical completion of the circuit,

the different circuit designs can be carried out on the FPGA for design and

testing. The selected design can then be implemented on a more sophisticated

architecture.

2.3 CAD of FPGA Design and Algorithms 15

2.3 CAD of FPGA Design and Algorithms

In 1985 Xilinx Inc. introduced the first LUT based FPGA [27]. FPGAs

are more flexible and complex than other programmable devices such as Pro­

grammable Logic Array (PLA) and Programmable Array Logic (PAL). With

the rapid improvements in the performance and logic densities of the FPGAs,

the number of applications where they can be used is increasing. Thus FPGAs

are used to implement various complex logic circuits.

The Xilinx FPGA [134,135] consists of Configurable Logic Blocks (CLBs)

which typically contain either combinational or sequential logic circuit, In­

put/Output Blocks (lOBs) and routing resources such as wire segments and

programmable switches. Programmable switches configure the wire segments

between logic blocks and between CLBs and lOBs. In order to achieve efficient

density and speed of FPGA, several CLBs are grouped together into one block

called cluster-based CLB [81,82]. Compared with MPGAs, FPGAs have the

following advantages:

1. Lower Non-Recurring Engineering (NRE) charges incur.

2. The product development time decreases substantially and enhancements

and modifications are made much easier.

3. The cost of change for a design is small and also errors in design can be

easily corrected before physical completion of the chip.

4. In circuit reprogramming for certain programming technology, is permit­

ted.

FPGAs have some drawbacks that are summarised as follows.

2.3 CAD of FPGA Design and Algorithms 16

1. FPGAs are roughly three times slower than MPGAs [23].

2. The logic density of an FPGA is about a factor of eight to twelve times

less than that of MPGA [23] resulting in a lower yield per wafer.

The typical CAD system for FPGAs, as illustrated in Figure 2.5 resem­

bles that in VLSI design, which consists of several intermediate abstractions

summarised as follows.

1. Logic synthesis:

Boolean equations are optimised so as to optimise area, delay, power

dissipation or a combination and converted to logic cells which can be

implemented on an FPGA.

2. Placement and routing:

The specific location of logic blocks and I/O blocks on an FPGA are

selected for each logic cell and then routing resources are utilised to

connect those logic cells. In this phase, timing and routing constraints

must be taken into consideration.

3. Programming of the FPGA:

On successful completion of the placement and routing, the programming

unit configures an FPGA to implement the desired digital logic function.

2.3.1 Logic optimisation

The input to the CAD system is a functional description, which is usually

expressed in standard Boolean equations and can also be represented in other

forms such as schematic diagrams and Hardware Description Language (HDL).

2.3 CAD of FPGA Design and Algorithms

RTL
synthesis

Logic
optimisation

Technology
mappmg

routing

Programming
unit

Logic
synthesis

Placement and
routing

Figure 2.5: A Typical FPGA CAD system.

17

The aim of logic optimisation is to optimise area, speed or a combination of area

and speed by removing redundant logic expression or using another method

representing equivalent Boolean equations. Because it does not consider the

type of the element that will be used for target circuit, logic optimisation is

also known as technology independent optimisation.

Any n-variable Boolean function can be expanded by Shannon expansion

2.3 CAD of FPGA Design and Algorithms 18

based on AND/OR operations as follows.

!(Xn-l, Xn-2, ... ,xo) = xdx;=o + XdXi=l (2.1)

where !Xi=O and !x;=l are called the cofactors of !(Xn-l, Xn-2, ... ,xo) with

respect to Xi and 0 :::; i :::; n - 1.

Various techniques used for logic optimisation were described in combi­

national logic [20-22,62]' sequential logic [14,117] and multi-level simplifica­

tion [122].

Alternatively, any Boolean function can be represented based on AND /XOR

operations, which is called Reed-Muller expansion [90,96]. In contrast to (2.1),

there are three basic expansions using AND /XOR operations, which are shown

in (2.2) to (2.4). Equations (2.3) and (2.4) are called positive Davio expansion

and negative Davio expansion respectively.

!(Xn-l, Xn-2, ... ,xo)

!(Xn-l, Xn-2,' .. ,xo)

!(Xn-l, Xn-2, ... ,xo)

XdXi=O EEl XdXi=l

!X;=O EEl Xi (fxi=O EEl !Xi=l)

!Xi=l EEl Xi (fxi=O EEl !Xi=l)

(2.2)

(2.3)

(2.4)

By using (2.3) and (2.4) for each variable in function !(Xn-l, Xn-2, ... ,xo),

several classes of RM expansions [60,101] can be obtained and shown as follows.

Fixed polarity Reed-Muller expansion

If (2.3) is used recursively to function !(Xn-l, Xn-2, ... ,xo), an expression

consisting of positive literals is obtained, in which all variables appear in true

form. The expansion is called a Positive Polarity Reed-Muller (PPRM) expan­

sion. If (2.4) is used recursively to function !(Xn-l, Xn-2, ... ,xo), an expres­

sion consisting of negative literals is obtained, in which all variables appear in

2.3 CAD of FPGA Design and Algorithms 19

complemented form.· The expansion is called a Negative Polarity Reed-Muller

(NPRM) expansion. If either the type (2.3) or the type (2.4) expansion is

applied to each variable, FPRM expansion can be obtained, in which variables

appear in true form or complemented form but not both. PPRM and NPRM

expansions are the special cases of the FPRM expansions.

Kronecker expansion

When either type (2.2), (2.3) or (2.4) expansion is applied to each variable, an

expression is called a Kronecker (KRO) expansion, which is more general than

FPRM expansion. Kronecker expansions may be termed mixed polarity RM

expansions as each expansion variable may appear in both true and comple­

mented forms throughout an expression and must be present in each product

terms. A KRO expansion is constructed from an initial switching function by

expanding the function for each variable using one of the expansions given in

(2.1) to (2.4). There are 3n possible variations of these three equations. As a

result, any n-variable switching function can be represented by a total of 3n

KRO expansions, each of which is a canonical form.

Each KRO expansion may be identified by means of a polarity number P,

o :S P :S 3n - 1. The polarity number is the decimal equivalent of the ternary

n-tuple < PnPn - 1 •.. PI >, where Pi is replaced by 0 if Xi is present throughout

the KRO expansion, and replaced by 1 if Xi is present in the expansion. If the

variable is present in both true and complemented forms, namely, Xi and Xi,

then Pi is replaced by 2. The FPRM expansions will correspond to all polarity

numbers whose ternary forms consist of only "O"s and "1"s.

2.3 CAD of FPGA Design and Algorithms 20

Example 2.1. Given n = 4 and P = 75, hence P = 75 =< 2210 >

P3 = 2 :::} X3, X3

P2 = 2 :::} X2, X2

PI = 1 :::} Xl

Po = 0 :::} Xo

Pseudo Kronecker expansion

\iVhen either type (2.2), (2.3) or (2.4) expansion is applied to j, two sub­

functions are obtained. A more general expansion than a KRO expansion is

obtained when either type (2.2), (2.3) or (2.4) expansion is applied to each

sub-function, assuming that different expansions for each sub-function is used.

This is called a Pseudo Kronecker (PSDKRO) expansion. There are 32n
-

l

possible variations of PSDKRO expansions.

Pseudo Reed-Muller expansion

When either type (2.3) or (2.4) expansion is applied to j, two sub-functions

are obtained. A more general expansion than a FPRM expansion is obtained

when either type (2.3) or (2.4) expansion is applied to each sub-function, as­

suming that different expansions for each sub-function is used. This is called a

Pseudo Reed-Muller (PSDRM) expansion. There are 22n-l different PSDRM

expansions.

Generalised Reed-Muller expansion

If the polarities of the literals are chosen freely in FPRM expansion, a more

general expression than a FPRM is obtained, which is called a Generalised

Reed-Muller (GRM) expansion. There are 2n2n
-

l GRM expansions.

2.3 CAD of FPGA Design and Algorithms 21

Exclusive-OR sum-of-products expansion

The most general AND-XOR expression is Exclusive-OR Sum-of-Products

(ESOP) expansion if arbitrary product terms are combined by XORs. There

are up to 3M GRM expansions, where T is the number of the products.

Rather than using standard Boolean representation, various methods in

Reed-Muller representation were also proposed. A coefficient map method

was introduced for mapping coefficients of a possible polarity RM expansion

to find the minimum fixed polarity solution without undertaking exhausting

search of all possible expansions [125]. An efficient computer method based

on coefficient maps to generate all 2n sets of generalised RM coefficients of

an n-variable Boolean function [17]. Almaini presented a tabular method for

generating FPRM expansions for a given polarity vector from CSOP expan­

sions [5]. Tabular techniques were also reported for mixed polarity RM such

as KRO expansions in [10,87] and PSDRM expansions [70]. Other methods

based on tabular technique were presented in [86,108,140].

A coefficient matrix method [66] was presented by Harking for the construc­

tion of polarity coefficient matrix of RM expansions without matrix multiplica­

tion. The advantage of this method is that the computation of the coefficients

of RM expansion for a given polarity is possible without construction of the

whole matrix, resulting in less memory storage. Lui and Muzio [80] identi­

fied fixed polarity modulo-2 canonical expansions and fixed-biased modulo-2

canonical expansions. Algorithms which perform fast matrix transforms were

presented and employed to derive fixed polarity and fixed basis expansions

efficiently. Other coefficient-matrix methods were reported in [65,66,79].

Falkowski and Chang [49] presented an low complexity and non-exhaustive

algorithm for finding optimal FPRM expansions of logic functions using Walsh

2.3 CAD of FPGA Design and Algorithms 22

spectra of logic function to provide information on polarity matrices of FPRM

expansion. Falkowski and Perkowski [50] presented a technique, in which each

product term of the initial disjoint Sum-of-Products (SOP) expression is ex­

panded to represent the equivalent product terms of the given polarity FPRM

expression. Duplicate product terms must then be located and deleted before

the final FPRM expression is realised.

Graph-based algorithm such as Ordered Binary Decision Diagram (OBDD)

and Ordered Function Decision Diagram (OFDD) methods have been proposed

for the optimisation of RM expansions [42,43,95,111]. However, the size of the

graph representation of the function is highly sensitive to the variable ordering.

To find the optimal variable ordering for a Binary Decision Diagram (BDD)

that minimises the size of the graph is an NP-complete problem due to the

larger number of permutations involved.

Other methods were proposed for optimisation of FPRM expansions m

[11,69,89,112,115,118,136] and more recently in [109,119,121,128,130] and

Mixed Polarity Reed-Muller (MPRM) expansions in [16,40,120,131,133,136].

In addition, an Ie chip can be designed for the optimisation of generalised

FPRM expansions [13].

2.3.2 Technology mapping

After the Boolean equations have been optimised, the optimised network is

then fed to a program called technology mapping, which transforms Boolean

network to a certain internal form and then uses an internal optimisation

function to group simple logic functions together into logic blocks that can

be placed onto FPGA logic blocks. As it performs optimisation that is di­

rectly dependent upon the particular technology, e.g., technologies used be-

2.3 CAD of FPGA Design and Algorithms 23

tween LUT-based FPGA and multiplexer-based FPGA are different. This is

also referred to as a technology dependent optimiser. The technology mapping

is responsible for minimising either the total number of logic cells required to

realise the desired functionality, i.e. area optimisation, or the number of logic

cells in time-critical paths, i.e. delay optimisation, and also determining the

distribution of pins for each net. As a result, the overall quality of an electronic

design automation system depends heavily on the optimisation function used

by the technology mapping. Some early technology mapping algorithms can

be found in [32,35,36,52-54,124]. And more recent works [37,38,67,72,98]

have been published in the literature.

2.3.3 Placement

Upon completion of the technology mapping phase, the network of logic func­

tion is in a particular format of FPGA logic block, then those logic blocks are

assigned a particular place on a FPGA. Part of the goal of placement is to

predict the quality of the final routing result so as to improve the rout ability

and performance of final routing. The aim of the P&R tool in an FPGA is to

utilise prefabricated programmable routing switches and routing channels in

an FPGA as less as possible to achieve 100% successful P&R. FPGA placement

is categorised to be NP-complete. Numerous methods have been proposed to

solve placement problem such as GA, SA and so forth.

Traditionally, researches on placement can be classified into two categories:

1. Partitioning based placement, such as bi- and quadri- section min cut,

2. Iterative search strategies, such as SA and GA.

The partitioning based placement tools cuts chip area into two sections.

2.3 CAD of FPGA Design and Algorithms 24

The process is applied recursively to each partition until the area is small

enough to complete the placement easily.

Simulated annealing is a heuristic based algorithm that is analogous to the

annealing process in metals. Initially, the temperature is set to a high value

so that all moves that result in a reduction in cost are accepted and then the

temperature is gradually reduced to zero. For each temperature, two blocks

are randomly selected first to generate new positions and then interchanging

their positions. The moves that result in a reduction in cost are accepted.

On the other hand, some of the moves that lead to increase in cost are also

accepted. The probability of acceptance of moves that result in an increase in

cost depends on the increase in cost and the temperature. At high temperature,

the probabilities of acceptance of moves that increase the cost are high. As the

temperature gradually decreases, the moves that result in increase in the cost

therefore have less chance to be accepted. Ultimately, at very low temperature

or even zero temperature only moves that result in reduction in the cost are

accepted.

SA has achieved a tremendous success in solving VLSI/CAD problems after

rigorous mathematical models were formulated to explain the behaviour of the

algorithm and how to select the proper tuning parameters [84]. However, the

main disadvantage of simulated annealing is that the best results are obtained

by tuning many controlling parameters [106]. Moreover, SA requires a large

amount of CPU time and memory.

The widely used and highly successful placement tool for standard cell

TimberWolf package [104] and symmetrical FPGA Versatile Placement and

Routing (VPR) package [18,83] are all based on the SA. Recently developed

fast FPGA placement techniques [44,45] are still based on SA.

2.3 CAD of FPGA Design and Algorithms 25

The other powerful search strategy, genetic algorithm, is also widely used

recently, which works by emulating the natural process of evolution as a mean

of progressing towards the global optimum.

2.3.4 Global routing

Although several levels of abstraction are introduced to reduce the complexity

of design, the complexity of routing phase is still very high. To further reduce

the complexity in the final routing phase, global routing is sometimes used

before detailed routing. As is known, the routing resources are already prefab­

ricated and very limited in the FPGA. In order to achieve less expensive and

faster implementation, global routing tries to balance the channel congestion

and minimize the channel density, and also reduce the propagation delay for

each net. Note that in global routing the exact wire segments are not chosen

yet. Techniques for independent global routing has been published in the lit­

erature [28,29,74,110]. However, there are many CAD tools [1,2,18,30] that

perform placement and global routing simultaneously.

2.3.5 Detailed routing

In detailed routing, each net is assigned to a particular wire segment within a

given channel. Only when every net is fit into given width channel of FPGA,

detailed routing is successful. As we have known, connections between wire

segments are made by "fusing" the programmable switches. The programmable

switches consume significant area of FPGA. In order to achieve area efficiency,

none of architecture of switch block and architecture of connection block is

made universal connection. In addition, the architecture of switch block and

architecture of connection block are taken into consideration neither in the

2.3 CAD of FPGA Design and Algorithms 26

placement phase nor global routing phase. Therefore, some of the wire seg­

ments within a given channel, which is made from global routing phase, are

impossible to be connected through the switch block and connection block. De­

tailed routing then will adjust channel width predicated in the global routing

to achieve successful routing.

Given same channel width and architecture, some FPGA designs may only

have a very limited number of ways or even only one way to connect all of

the nets, while some other designs may have significant number of ways to

connect all of the nets within sparse routing resources. The primary concern

in the routing phase of FPGA design is to find a complete routing that legally

connects all nets to realise logic functionality. When a complete routing of

the nets can be accomplished in various ways, other performance criteria then

become important.

A smaller FPGA with a small channel width is typically less expensive and

has better performance than a larger FPGA. Detailed routing aims mainly to

minimise the overall channel width required to route all nets. Because of the

large parasitic capacitance and resistance of programmable switches, it takes

significant amount of time to propagate a signal from the source of the net

to its most distant sink. Furthermore, a net that is spread out across the

entire FPGA typically takes longer to realise its functionality than a net with

a smaller length. To achieve high performance of FPGA design, minimisation

of the net length of the various nets or the delay of the net becomes essential.

Numerous notable routing algorithms have been proposed to achieve suc­

cessful routing including the CGE router [24] and the SEGA Router [73], one

two-step router [74], the graph-based router [2], auction-based Quark [85] and

timing-driven router [31].

2.4 Genetic Algorithms 27

2.4 Genetic Algorithms

G A is a search technique based on the mechanisms of natural genetics and

natural selection [56], which incorporates a simulation of evolution as a search

heuristic when finding a good solution. It operates on a population of indi­

viduals that are coded and called chromosomes in the search space instead of

one solution. Each individual has some fitness value and is measured by an

evaluation function termed fitness function. The approach of the algorithm is

to explore the search space and to discover better solutions by allowing the

individuals to evolve over time termed generations. The GA uses these in­

dividuals in the generation to produce a new generation of hopefully better

solutions. In each generation, two of the individuals are selected probabilis­

tic ally as parents, with the selection probability proportional to their fitness.

It is therefore a fitter individual, i.e. possibly containing some useful features,

has a higher probability of propagating itself. Crossover with high probability

is then performed on these two individuals to generate two new individuals

called offspring, by changing parts of their structure. As a result, each off­

spring inherits a combination of features from both parents. This enables the

GA to tryout various features in different combinations and see whether the

individuals still retain their fitness.

Mutation with small probability is then performed to explore new features

that may not be in the population yet. After mutation on an individual,

it not only has just the combination of the features inherited from its two

parents, but also incorporates this additional change caused by mutation. This

ensures the GA does not converge to local optimum. The main advantage

lies in the robustness of search and problem independence [56]. Therefore, it

has been successfully applied to many optimisation problems such as FPGA

2.5 Summary 28

placement [137,138], Reed-Muller Binary Decision Diagram (RMBDD) [7,9,12,

111], Finite State Machine (FSM) [129,132]' state assignment [8,126], evolvable

hardware [3,4], compact test pattens for decision diagram [26], minimisation

of FPRM expansions [41,42,89,136]' minimisation of MPRM expansions [111],

standard cell placement [78,84,104-106]' macro cell placement [46,48,84,103]'

ratio-cut partitioning problem on hyper-graphs [25], channel routing [55, 75-

77,91-94], switch-box routing [77], over-the-cell routing [57,59], power driven

over-the-cell routing [58].

The GA has to evaluate the population of individuals in every generation

which results in long CPU time, especially in the later part of the process.

Simulated annealing, which mimics the annealing process in metal, is also a

widely used technique because of its fast convergence. A combination of the

GA and simulated annealing algorithms were reported for traveling salesman

problem [143], macro cell placement [47], non-slicing floorplan design [71] and

symmetrical FPGA placement [139,141].

2.5 Summary

In this chapter, top down design methodology and existing full custom and

semi custom layouts of VLSI design process are illustrated. FPGA design has

its own design flow, which is very similar to that of VLSI design. Optimisation

algorithms for each level of abstraction are reviewed. Moreover, because GA as

one of evolutionary computation algorithms is one of main research objectives,

the procedure of standard GA is given and the various applications in VLSI

design based on G A are reviewed as well.

Chapter 3

Map Techniques for Dual Forms of

RM Expansions

3 .1 Introduction

In logic synthesis, there are some circuits that can not be minimised in the

standard Boolean domain, but might be optimised well in the Reed-Muller

forms. Reed-Muller forms increase the search space of optimisation. Exten­

sive research had been carried out in the Reed-Muller forms based on the

AND/XOR logic. However, sometimes the circuits can be better simplified

in dual forms of Reed-Muller implemented in OR/XNOR logic, as shown in

Appendix A. The dual forms of RM expansion is based on the features of

coincidence operation. Hence the expansion is referred as Canonical OR Co­

incidence expansion. In this chapter, graphical techniques are presented for

conversion between standard Boolean and fixed polarity COC expansions of

any polarity. The rest of the chapter is organised as follows. In Section 3.2,

the basic definitions and preliminary of fixed polarity COC expansions are

29

3.2 Preliminaries 30

given. The transformation matrix of fixed polarity COC expansions is given

in Section 3.3. Map techniques using CPOS maxterms and CSOP minterms

for conversion of fixed polarity COC expansion of any polarity are shown in

Section 3.4.

3.2 Preliminaries

3.2.1 Basic definitions

Definition 3.1. aj, Cj and dj are coefficients of CSOP, CPOS and COC ex­

pansions respectively, where 0 ::; j ::; 2n - 1.

The COC expansion is based on the XNOR and OR operations. The XNOR

has the following properties:

080 1

081 0

180 0

181 1
(3.1)

x8x 1

x81 x

x80 x

x8y x8fj

From (3.1), it can be seen that the XNOR operation result is 0 when the

number of zeros is odd otherwise the XNOR operation result is 1.

3.2 Preliminaries 31

Definition 3.2. TJ = 0 IT~:;l Cj, where 0 IT is the XNOR operator, Cj E

{O, I}. The number of "O"s involved in the calculation of TJ is denoted by cjJ(TJ).

For example, cjJ(TJ) = 3 if TJ = 1808080, and TJ = 0 because cjJ(TJ) = 3 is odd

number.

Definition 3.3. The Kronecker matrix sum is defined as

+ I

An

A21

A(X-l)l

AXI

Bn

B21

B(x-l)l

Bxl

An + Bn

A11 + Bxl

AXI + B11

AXI + Bxl

A12

A22

A(x-l)2

Ax2

B12

B22

B(x-l)2

Bx2

An + B 1y

A11 + Bxy

AXI + B 1y

AXI + Bxy

A1(y-l)

A 2(y-l)

A(x-l)(y-l)

Ax(y-l)

B1(y-l)

A 2(y-l)

B(x-l)(y-l)

Bx(y-l)

A 1y

A 2y

A(x-l)y

Axy

B 1y

B 2y

B(x-l)y

Bxy

A 1y + Bn

A 1y + Bxl

Axy + B11

Axy + Bxl

where + represents Kronecker matrix sum.

(3.2)

A 1y + B 1y

A 1y + Bxy

Axy + B 1y

Axy + Bxy

3.2 Preliminaries 32

Definition 3.4. The matrix multiplication is defined as

An A12 A1(y-l) A 1y

A21 A22 A 2(y-l) A 2y

8

A(x-l)l A(x-l)2 A(x-l)(y-l) A(x-l)y

AXI Ax2 Ax(y-l) Axy

Bn B12 B1(y-l) B 1y

B21 B22 A 2(y-l) B 2y

B(X-l)l B(x-l)2 B(X-l)(y-l) B(x-l)y

Bxl Bx2 BX(y-l) Bxy

(An + Bn) 8 ... 8 (AlY + B x1) (An + B 1y) 8 ... 8 (A1y + Bxy)

(A21 + Bn) 8 ... 8 (A2y + Bxd (A21 + B 1y) 8 ... 8 (A2y + Bxy)

(Axl + Bn) 8 ... 8 (Axy + B x1) (AXI + B 1y) 8 ... 8 (Axy + Bxy)

(3.3)

where 8 represents matrix multiplication based on XNOR and OR operations.

3.2 Preliminaries 33

Example 3.1. Use matrix multiplication based on XNOR and OR operations.

o 1 1 1 I I Z3 (0 + Z3) 0 (1 + Z2) 0 (1 + Zl) 0 (1 + zo)

o 0 1 1 I Z2 (0 + Z3) 0 (0 + Z2) 0 (1 + Zl) 0 (1 + zo) e -

00011 Zl (0 + Z3) 0 (0 + Z2) 0 (0 + Zl) 0 (1 + zo)

o 0 0 0 I I Zo (0 + Z3) 0 (0 + Z2) 0 (0 + Zl) 0 (0 + zo)

z3010101 Z3

Z3 0 Z2 0101 Z3 0 Z2
-

Z3 0 Z2 0 Zl 01 Z3 0 Z2 0 Zl

Z3 0 Z2 0 Zl 0 Zo Z3 0 Z2 0 Zl 0 Zo

3.2.2 CSOP minterms, CPOS and COC maxterms

Given a truth table for a Boolean function, two standard algebraic forms of the

function can be derived, namely CSOP form and CPOS form. CSOP form is

in Disjunctive Canonical Form (DCF) and known as minterm expansion while

CPOS form is in Conjunctive Canonical Form (CCF) and known as maxterm

expansion.

Any n-variable Boolean function can be represented in either CSOP or

CPOS expansion form. The CSOP expansion is shown as

2n-1

!(Xn-l, ... ,Xl, Xo) = L ajmj
j=O

(3.4)

where I: is the OR operator, mj is the minterm and 0 :s; j :s; 2n-1 . aj E {O, 1}

and "l"s indicate the presence of the corresponding CSOP minterms in the

expansion, known as on-set CSOP minterms. There are 2n CSOP minterms

3.2 Preliminaries 34

for an n-variable function. Minterm mj can be expressed as

mj = Xn-l ... xdo (3.5)

{

Xi
/ -

Xi -

Xi

ji = 0
(3.6)

ji = 1

where Xi is the complemented form of Xi , ji is the ith bit of j, j is in the

binary form and 0 :s; i :s; n - 1.

The CPOS expansion is shown as

2n-1

f(Xn-I,'" ,Xl, Xo) = II (Cj + 1I1j)

j=O

(3.7)

where II is the AND operator, Nlj is the maxterm and 0 :s; j :s; 2n - l.

Cj E {O, 1} and "O"s indicate the presence of the corresponding CPOS maxterms

in the expansion, known as on-set CPOS maxterms. There are 2n CPOS

maxterms for an n-variable function. Maxterm 1I1j can be expressed as

L£ / / /
lVlj = Xn-l + ... + Xl + Xo (3.8)

/ _ { Xi
Xi -

Xi

ji = 1
(3.9)

ji = 0

where Xi is the complemented form of Xi , ji is the ith bit of j, j is in the

binary form and 0 :s; i :s; n - 1.

3.2 Preliminaries 35

Equation (3.7) can be rewritten in fixed polarity eoe expansion form as

2n-1

f(Xn-I,··· ,Xl, Xo) = 0 II (d~ + Sj) (3.10)
j=O

where Sj is the eoe maxterm, ~ E {O, 1}, 0::; j,p::; 2n -1 and "O"s indicate

the presence of the corresponding eoe maxterms in the expansion, known as

on-set eoe maxterms. The superscript p of d stands for the number of polarity

of the fixed polarity eoe expansion. For simplicity, dj is used instead of dJ if

the polarity is zero. There are 2n eoe maxterms. The eoe maxterm Sj can

be expressed as

S ' " j = Xn-l + ... + Xl + Xo (3.11)

{

0 , -
X· -t _

Xi

ji = 1
(3.12)

ji = 0

where ji is the ith bit of j, j is in the binary form and Xi can be in the true

form or complemented form but not both.

Definition 3.5. For a given n-variable Boolean function f(Xn-I,··· ,Xl, xo),

there are 2n fixed polarity eoe expansions. Accordingly the function is no­

tated as f(Xn-l, ... ,Xl, xo). When each Xi appears in true form, the polarity

is called zero polarity or positive polarity. When each Xi appears in comple-

mented form, the polarity is called 2n - 1 polarity or negative polarity. For

a 3-variable function f(X2' Xl, xo), f(X2, Xl, Xo) is polarity 0, f(X2' Xl, xo) IS

polarity 1, f(X2' Xl, Xo) is polarity 6, f(X2, Xl, Xo) is polarity 7 and so on.

3.2 Preliminaries 37

X1XI X1XI

"
aO al a3 aZ do d1 d3 dz

a4 as a7 a6 d4 ds d7 d6

~ ~

(a) (b)

Figure 3.1: Coefficients maps. (a) A 3-variable Cj map of CPOS expansion,
(b) A 3-variable drcoefficient. map.

3.2.3 Map folding technique for positive polarity using

maxterms

The COC expansion can be obtained from CPOS expansion by using map

folding technique [34]. The map used in the COC expansion is referred as dj

map [34] in contrast with bj map of the Reed-Muller expansion [125].

Example 3.3. Obtain the positive polarity COC expansion by using maxterm

map folding technique for a 3-variable function f(X2' Xl, xo) = (X2 + Xl +

XO)(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo).

The Cj and dj coefficient map can be drawn as shown in Figure 3.1(a) and

Figure 3.1 (b) respectively. The on-set CPOS maxterms for a given function

are obtained as f(X2, Xl, Xo) = [1(0,2,5,6) , as shown in Figure 3.2(a).

Step 1:

Fold the map along the X2 border (i.e. X2 = 1 is folded on X2 = 0) and

XNOR the contents of section X2 = 0 ofthe map. Section X2 = 1 is not affected

by the XNOR operation, as shown in Figure 3.2(a), and then unfold the map.

Step 2:

Repeat Step 1 for the remaining variables, as shown in Figure 3.2(b) and

Figure 3.2(c).

3.2 Preliminaries 36

Example 3.2. When n = 3, f(X2, Xl, Xo) can be represented by CPOS expan-

slOn as

f(X2, Xl, xo) (co + X2 + Xl + XO)(CI + X2 + Xl + xo)

(C2 + X2 + Xl + XO)(C3 + X2 + Xl + xo)

(C4 + X2 + Xl + XO)(C5 + X2 + Xl + xo)

(C6 + X2 + Xl + XO)(C7 + X2 + Xl + xo)

If all the variables appear in complemented form, the negative polarity

(polarity 7) COC expansion is given as follows.

f(X2' Xl, xo) (db + So) 8 (di + Sd 8 (d~ + S2) 8 (d~ + S3)

8(d~ + S4) 8 (d~ + S5) 8 (d~ + S6) 8 (d~ + S7)

SO X2 + Xl + Xo

Sl X2 + Xl

S2 X2 + Xo

S3 X2

S4 Xl +Xo

S5 Xl

S6 Xo

S7 0

3.2 Preliminaries 38

xx xx
j 0 00 01 11 10 ... j 0

.... ,

I 0 I 1 I 1 I : I \0
o

0 0 1 1

1 0 1 0

o

(a) (b)

XjXO XjXO

.... , r
0 0 1 1

0 0 1 0
.

1:1~1~
~

(c) (d)

Figure 3.2: Map folding technique for positive polarity using maxterms. (a)
Folding the map along the X2 border, (b) Folding the map along the Xl border,
(c) Folding the map along the Xo border, (d) Final coefficients map.

X,X

Xz+Xj+Xo Xz+Xj Xz Xz+Xo

Xj+Xo Xj 0 Xo

Figure 3.3: A 3-variable COC expansion of dj coefficients map.

Step 3:

Read the "O"s from the map as shown in Figure 3.2(d), f(X2, XI, xo) =

o I1(1, 5, 6) is obtained. Compared the 3-variable dj map shown in Figure

3.2(d) and Figure 3.3, the positive polarity COC expansion is therefore ob-

tained as

f(X2, Xl, xo) = (X2 + Xl) 0 Xl 0 Xo

3.3 Transformation Matrix for COC Expansions 39

3.3 Transformation Matrix for COC Expansions

One way to generate the transformation matrix for positive polarity COC

expansion is to derive it from the transformation matrix for RM [34]. It requires

the transpose of RM matrix and the replacement of the elements of RM matrix

by changing the "O"s to "l"s and "l"s to "O"s. As a result, large computation

is involved especially when the number of variables is large. However, there is

another easy way [61].

Corollary 3.1. The relationship between Cj coefficients of CPOS expansion

and dj coefficients of positive polarity CDC expansion is

d = [Tnl8c (3.13)

where C = [C2n-l ... Cl colt, d = [d2n-l ... dl dolt and

[

Tn-l 1]

Tn - l Tn - l

(3.14) [Tn]

[TIl [: ~] (3.15)

Proof. Considering the features of the coincidence operation, Kronecker matrix

sum and matrix multiplication, equation (3.7) can be rewritten as

f(xn-l, ... ,Xl, Xo) = {[Xn-l Xn-l] t ... t [Xl xil t [Xo xo]}8c (3.16)

Because Xi = 00 Xi and Xi = 10 Xi, [.Xi X;] = [0 Xi[El [: :].

3.3 Transformation Matrix for eoe Expansions

Let [: ~] = [1)],

!(Xn-l, ... ,Xl, Xo) = {{[O Xn-l] 8 [TIl} + ... + {[O Xl] 8 [TIl}

+ {[O Xo] 8 [TIl} }8e

- {{[O Xn-ll+ .. · + [0 XIl+ [0 xol}

8{[TI] + ... + [TIl} }8e , ~

v

n

40

(3.17)

(3.18)

Equation (3.10) for n-variable positive polarity eoe expansion can be

rewritten as

!(Xn-l, ... ,Xl, Xo) = {[O Xn-l] + ... + [0 Xl] + [0 xol}8d (3.19)

Because (3.16) and (3.19) are equal,

{[O Xn-l] + ... + [0 Xl] + [0 xol}8d = {[O Xn-l] + ... + [0 Xl] + [0 xol}

8{[TI] + ... + [TIl} }8e
" v __ J

n

As a result,

d = {ITI] + . ~ . + [TIl} 8e

n

Hence, d = [Tn]8e, where

[
Tn-l 1] { } [Tn] = = JTIl+' ~. + [TIl 8e
Tn - l Tn - l

n

D

3.3 Transformation Matrix for eoe Expansions 41

Example 3.4. Given a 3-variable f(X2' Xl, Xo) function, derive the relation­

ship between Cj coefficients of CPOS expansion and dj coefficients of positive

polarity COC expansion.

The 3-variable function f(X2' Xl, xo) can be rewritten as in the following

two equations.

f(X2' Xl, xo)

f(X2, Xl, xo)

{[O X2]t [0 XI]t [0 xo]}8d

{[O Xl X2 X2 + Xl] + [0 xo]}8d

{[O Xo Xl Xl + Xo X2 X2 + Xo

X2 + Xl X2 + Xl + xo]}8d

(d7 + 0) 8 (d6 + xo) 8 (d5 + Xl)

8(d4 + Xl + xo) 8 (d3 + X2) 8 (d2 + X2 + xo)

8(dl + X2 + Xl) 8 (do + X2 + Xl + xo)

{[X2 X2] + [Xl Xl] + [xo xo]}8c

{[X2 + Xl X2 + Xl X2 + Xl X2 + Xl] + [Xo xo]}8c

{[X2 + Xl + Xo X2 + Xl + Xo X2 + Xl + Xo

X2 + Xl + Xo X2 + Xl + Xo X2 + Xl + Xo

X2 + Xl + Xo X2 + Xl + xo]}8c

(C7 + X2 + Xl + xo) 8 (C6 + X2 + Xl + xo)

8(C5 + X2 + Xl + xo) 8 (C4 + X2 + Xl + xo)

8(C3 + X2 + Xl + xo) 8 (C2 + X2 + Xl + xo)

8(CI + X2 + Xl + xo) 8 (co + X2 + Xl + xo)

3.3 Transformation Matrix for COC Expansions

Thus

C7 = 1 (111) = d7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 = d7

C6 = 1 (11 0) = d7 8 d6 8 1 8 1 8 1 8 1 8 1 8 1 = d7 8 d6

C5 = 1(101) = d7 8 1 8 d5 8181818181 = d7 8 d5

C4 = 1 (100) = d7 8 d6 8 d5 8 d4 8 1 8 1 8 1 8 1 = d7 8 d6 8 d5 8 d4

C3 = 1 (011) = d7 8 1 8 1 8 1 8 a3 8 1 8 1 8 1 = d7 8 d3

C2 = 1 (010) = d7 8 d6 8 1 8 1 8 d3 8 d2 8 1 8 1 = d7 8 d6 8 d3 8 d2

Cl = 1(001) = d7 818 d5 818 d3 8 18 d1 81 = d7 8 d5 8 d3 8 d1

Co = 1(000) = d7 8 d6 8 d5 8 d4 8 d3 8 d2 8 d1 8 do

42

dj can then be derived from Cj in above equations. For example, d7 8d6 = C6

can be rewritten as

d7 8 d6 8 d7

d6 81

d6

C6 8 d7

C6 8 d7

C6 8 C7

It is straightforward to find the following relationships

~=08~

~=08~8~8~

~=08~

~=08~8~8~

~=08~8~8~

~=08~8~8~8~8~8~8~

3.3 Transformation Matrix for COC Expansions 43

Corollary 3.2. The conversion between dj coefficients of fixed polarity COC

expansion and Cj coefficients of CPos expansion is reversible so that

C = [Tn]8d (3.20)

Proof. If d = [d2n-ld2n-2 ... dolt is replaced with C = [C2LIC2L2 ... colt in

(3.19), equation (3.19) can be rewritten as

f(xn-l, Xn-2 ... ,Xo) = {[O Xn-l] + [0 Xn-2] + ... + [0 xo]}8c

Similarly, if C = [C2n-lC2n-2 ... colt is replaced with d = [d2n_1d2n-2' .. dolt

in (3.16), equation (3.16) can be rewritten as

f(xn-l, Xn-2, ... ,xo) = {[Xn-l Xn-l] + [Xn-2 Xn-2] + ... + [xo xo]}8d

In the same way as proved in Corollary 3.1, the conversion from dj coef­

ficients of fixed polarity COC expansion to Cj coefficients of CPOS expansion

IS

C = [Tn]8d

where

Tn - 1

[
1 j

[Tn] = T
n
-

1
T

n
-

1

[Td = [: ~ j
From (3.13) and (3.20), the conversion is reversible. o

3.3 Transformation Matrix for eoe Expansions 44

Example 3.5. When n = 3, (3.13) can be written as

d7 0 1 1 1 1 1 1 1 C7

d6 o 0 1 1 1 1 1 1 C6

d5 0 1 0 1 1 1 1 1 C5

d4 o 0 0 0 1 1 1 1 I C4 e
d3 0 1 1 1 o 1 1 1 C3

d2 o 0 1 100 1 1 C2

d1 0 1 0 1 0 1 0 1 Cl

do o 0 0 0 0 0 0 0 Co

While (3.20) can be written as

r
C7 o 1 1 1 1 1 1 1 d7

C6 o 0 1 1 1 1 1 1 d6

C5 o 1 0 1 1 1 1 1 d5

C4 o 0 001 1 1 1 d4 e
C3 0 1 1 1 0 1 1 1 d3

C2 001 100 1 1 d2

Cl o 1 0 1 010 1 d1

Co o 0 0 0 0 0 0 0 do

3.4 Map Techniques 45

Corollary 3.3. If CSOP minterm coefficients C = [C2n-l ... CICO]t is used for

the transformation to COC maxterm coefficients d = [d2Ll ... d1do]t instead

of using CPOS maxterm coefficients C = [C2n-l'" CICO]t, the COC maxterm

coefficients d = [d2n-l'" d1do]t can be obtained in the same way as using

CPOS maxterm coefficients but the resulting coefficients need to be modified by

complementing d2n-l'

Proof. Originally, the transformation from CPOS maxterm coefficients to COC

maxterm coefficients is d = [Tn]8c. If the CSOP minterms are used instead of

CPOS maxterms, the coefficients in C = [C2Ll ... CICO]t are complimented. As

a result, C = [C2n-l ... CICO]t.

Because x 8 y = x 8 y, the transformation from C = [C2n-l'" CICO]t to

d = [d2n-l'" d1do]t does not change at all for those rows with even number

of zeros. There is only one row with odd number of zeros, which is the first

row, thus d2n-l = C2Ll' Because C2n-l is complemented, d2n-l should be

complemented to keep the same logic functionality. D

3.4 Map Techniques

3.4.1 Map folding technique for positive polarity using

minterms

The positive polarity COC expansion can be obtained from CPOS expansion

by using map folding technique [34]. However, based on Corollary 3.3 the

positive polarity COC expansion can be obtained from CSOP expansion by

using map folding technique. This method will be called minterm map folding

technique and is shown in Procedure 3.1.

3.4 Map Techniques 46

Procedure 3.1. Minterm map folding technique for positive polarity expan­

sion conversion from Cj map to dj map.

1. Draw Cj map from esop expansion by marking "0" for on-set esop

minterm coefficients and "I" otherwise.

2. Fold the map along the Xi border (i.e. Xi = 1 is folded on Xi = 0), XNOR

the contents of section Xi = 0 of the map and then unfold the map, where

O::;i::;n-1.

3. Repeat Step 2 for the remaining variables.

4. Modify d2Ll in the map obtained in Step 3 by complementing d2n-l'

5. Output positive polarity eoe expansion according to on-set eoe max­

terms.

Example 3.6. Given a 3-variable function f(x2, Xl, Xo) = X2XIXO + X2XIXO +

X2XIXO+X2XIXO, obtain the positive polarity eoe expansion by using minterm

map folding technique.

Step 1:

The coefficients map is shown in Figure 3.4(a) by marking "0" for the cor­

responding on-set esop minterms, i.e., f(x2' Xl, XO) = 2::(1,3,4,7).

Step 2:

Fold the map along the X2 border (i.e. X2 = 1 is folded on X2 = 0) and

XNOR the contents of section X2 = 0 of the map as shown in Figure 3.4(a).

Step 3:

Repeat Step 2 for the remaining variables, as shown in Figure 3.4(b) and

Figure 3.4(c).

3.4 Map Techniques 47

XX jOoo 01 11 10
XjXO

• "\

o I ~ I ~ I ~ I . I \0
0 0 1 1

0 1 0 1

(a) (b)

XjXO __ '"' _. . . '"' . _ '- XjXO

- , , -
0 0 1 1

0 0 0 1 1:1:1':1: , x; ,

(c) (d)

XjXO

l:I:I:l:
~

(e)

Figure 3.4: Map folding technique for positive polarity using minterms. (a)
Folding the map along the X2 border, (b) Folding the map along the Xl bor­
der, (c) Folding the map along the Xo border, (d) Coefficients map before
modification, (e) Final coefficients map.

Step 4:

Read the "O"s from the map as shown in Figure 3.4(d). f(X2, Xl, xo) =

o I1(1, 5, 6, 7) is obtained. Complement d7 in the map shown in Figure 3.4(d)

for d7 . The resulting coefficients map is shown in Figure 3.4(e).

Step 5:

On-set COC maxterms are obtained by reading the "O"s from the map

obtained in Step 4, hence f(X2, Xl, xo) = 0 I1(1, 5, 6). The positive polarity

3.4 Map Techniques 48

eoe expansion is therefore obtained as

f(X2, Xl, xo) = (X2 + Xl) 0 Xl 0 Xo

3.4.2 Map folding technique for any polarity

Once the coefficient map for a positive polarity expansion is found, the map

folding technique can be carried out to generated fixed polarity eoe expan­

sions of any polarity for up to six variables. It is shown in the following

procedure.

Procedure 3.2. Map folding technique for any polarity p conversion from Cj

map to dj map.

1. Determine and mark the variables which need to be altered according to

polarity p when Pi = 1, where p = (Pn-l ... PIPO) is the polarity in the

binary form and 0:::; i :::; n - 1.

2. Fold the map along the Xi border (i.e. Xi = 0 is folded on Xi = 1), XNOR

the contents of section Xi = 1 of the map and then unfold the map, where

i is the index of the corresponding variables which need to be altered.

3. Repeat Step 2 for the remaining variables which need to be altered.

4. Output the fixed polarity eoe expansion of polarity P by replacing Xi

with Xi in the positive polarity expansion.

For example, the maxterm coefficients of the fixed polarity eoe expansion

for polarity 1 can be generated by folding dj coefficient map along the Xo

border (i.e. Xo = 0 is folded on Xo = 1), as shown in Figure 3.5. As a result,

the coefficients map for polarity 1 shown in Figure 3.6 is obtained.

3.4 Map Techniques

o I do

d4

d1

ds

d3

d7

dz

d6

Figure 3.5: Folding dj coefficient map along Xo border.

XIXO

do dl 0do d3 0 dz dz

d4 ds0d4 d7 0d6 d6

Figure 3.6: A 3-variable dj coefficient map for polarity 1 after folding.

X.X,

1:1:1~1~
Figure 3.7: A 3-variable dj coefficient map for polarity 1.

49

If the on-set eoe maxterm coefficients of a 3-variable positive polarity

expansion are given as f(X2, Xl, xo) = 0 TI(l, 5, 6). The on-set coe maxterm

coefficients as shown in Figure 3.7 can be obtained as

f(X2, Xl, .To) = 0 IT (1,5,6,7)

The eoe expansion of polarity 1 can be obtained by replacing Xo with .To

in the positive polarity expansion shown in Figure 3.3. Hence,

f(X2' Xl, .To) = (X2 + Xl) 8 Xl 8.To 8 0

The expansion of other polarities can be generated using the same proce-

dure as the generation of the expansion for polarity 1.

3.4 Map Techniques 50

3.4.3 Map transformation technique for any polarity

Equation (3.10) can be rewritten by replacing dj with Cj for positive polarity

eoe expansion as

2n-1

f(Xn-l, ... ,Xl, Xo) = 0 II (Cj + 0 II Sh) (3.21)
j=O e

hi = { :
ji = 1

(3.22)
ji = 0

where both hand j are in binary form, e is the number of "l"s in h, Sh is the

eoe maxterm and ji is the ith bit of j.

Example 3.7. Given a 3-variable positive polarity eoe expansion, the ex-

pansion can be rewritten as

f(X2' Xl, xo) (co + (X2 + Xl + xo))

8(CI + (X2 + Xl + xo) 8 (X2 + Xl))

8(C2 + (X2 + Xl + xo) 8 (X2 + xo))

8(C3 + (X2 + Xl + xo) 8 (X2 + Xl) 8 (X2 + xo) 8 X2)

8(C4 + (X2 + Xl + xo) 8 (Xl + xo)

8(C5 + (X2 + Xl + xo) 8 (X2 + Xl) 8 (Xl + xo) 8 Xl)

8(C6 + (X2 + Xl + xo) 8 (X2 + xo) 8 (Xl + xo) 8 xo)

8(C7 + (X2 + Xl + xo) 8 (X2 + Xl) 8 (X2 + xo) 8 X2

8(XI + xo) 8 Xl 8 Xo 80)

---~ ------ ----------------------------------

3.4 Map Techniques 51

The expansion can be simplified by replacing COC maxterms as shown in

(3.11) as

!(X2, Xl, Xo) (co + So) 8 (C1 + So 8 Sl) 8 (C2 + So 8 S2)

8(C3 + So 8 Sl 8 S2 8 S3) 8 (C4 + So 8 S4)

8(C5 + So 8 Sl 8 S4 8 S5) 8 (C6 + So 8 S2 8 S4 8 S6)

8(C7 + So 8 Sl 8 S2 8 S3 8 S4 8 S5 8 S6 8 S7)

From (3.21), the COC expansion of positive polarity can be obtained di­

rectly from the manipulation of Cj coefficient map. It can be seen in Example

3.7 for 3-variable function that if Co is on-set CPOS maxterm coefficient, Co

will only affect So, if C1 is on-set CPOS maxterm coefficient, C1 will affect So

and Sl, and so on. As off-set CPOS maxterm coefficients will not affect the

result, the COC expansion can be easily determined from the appearances of

the on-set CPOS maxterm coefficient Cj in the Cj coefficient map. Only if the

number of the appearance of the CPOS maxterm in the Cj map is odd, the

COC maxterms in the same square of dj map is the on-set COC maxterm.

Definition 3.6. For a given n-variable Boolean function !(Xn -1,'" ,Xl, xo),

p-point is defined by the position of COC maxterm appearing in the square of

the dj coefficients map, where p is same number as the number of polarity.

Example 3.8. Figure 3.3 shows dj coefficients map for 3 variables. COC

Maxterm X2 + Xl + Xo appears at position 0 (binary position "ODD") of the dj

coefficients map, p-point is O-point. COC Maxterm Xo appears at position 6

(binary position "110") of the dj coefficients map, p-point is thus 6-point.

If Cj replaces d~ in (3.10), an equation similar to (3.21) can be obtained for

COC expansions of any polarity p.

3.4 Map Techniques

For example, a 3-variable COC expansion of polarity 6 is written as

f(X2, Xl, xo) (co + So 8 S2 8 S4 8 S6)

8(C1 + So 8 Sl 8 8 2 8 S3 8 S4 8 S5 8 S6 8 S7)

8(C2 + S2 8 S6) 8 (C3 + S2 8 S3 8 S6 8 S7)

8(C4 + S4 8 S6) 8 (C5 + S4 8 S5 8 S6 8 S7)

8(C6 + S6) 8 (C7 + S6 8 S7)

52

The generation of fixed polarity COC expansions with any polarity is shown

in following procedure.

Procedure 3.3. Map Transformation for fixed polarity cac expansion of any

polarity p from Cj map to dj map.

1. Draw Cj map according to the Boolean function, in which only on-set

CPOS maxterms appear on the map as "0".

2. Find the smallest circle on the map that encloses on-set CPOS maxterms

and the p-point.

3. Mark "0" for any square in the map enclosed by the circle obtained in

Step 2.

4. Repeat Steps 2 and 3 for the rest of on-set maxterms one by one until

all the on-set maxterms are enclosed.

5. When the number of "O"s marked for each square in the map is odd,

output the corresponding coefficient as the on-set maxterm coefficients

of polarity p by XORing the coefficients with polarity p.

3.4 Map Techniques 53

X,X X,x,

Tr!11 0 I 1m
0 00

00 0 0 0000

(a) (b)

X,x,

1;1~1~1:1
(c)

Figure 3.8: Map transformation technique for obtaining COC expansion of
polarity 6 for a 3-variable function in CPOS form f(X2, Xl, xo) = TI(O, 2, 5, 6).
(a) Circle on-set maxterms via 6-point, (b) Resulting map after marking "O"s,
(c) Simplified coefficients maps.

6. Output the fixed polarity COC expansion of polarity p according to the

on-set COC maxterm coefficients.

Example 3.9. Obtain fixed polarity COC expansion of polarity 6 using map

transformation for a function in CPOS form f(X2, Xl, xo) = TI(O, 2, 5, 6).

The Cj map for the 3-variable function can be drawn and shown in Figure

3.8(a). There are 4 on-set CPOS maxterms.

For fixed polarity COC expansion of polarity 6 conversion, a circle should

enclose the 6-point and on-set CPOS maxterms. For on-set CPOS maxterm

Co, the circle encloses So, S2 , S4 and S6. Mark "0" for So, S2 , S4 and S6 in

the corresponding square. For on-set CPOS maxterm C2, the circle encloses S2

and S6. Mark "0" for S2 and S6 in the corresponding square. For on-set CPOS

maxterm C5, the circle encloses S4, S5, S6 and S7. Mark "0" for S4, S5, S6

3.4 Map Techniques 54

and S7 in the corresponding square. For on-set CPOS maxterm C6, the circle

encloses S6 only. Mark "0" for S6'

Figure 3.8(a) and Figure 3.8(b) show Cj map after drawing the circles and

marking "0" respectively. Those with odd number of "O"s appearing "0" in the

map, as shown in Figure 3.8(c), are the on-set maxterm coefficients of COC

expansion before XOR operation. Since the polarity is 6, the coefficients need

to be XORed. Hence, the corresponding on-set maxterm coefficients and fixed

polarity COC expansion of polarity 6 are given in (3.23) and (3.24) respectively.

f(X2, Xl, xo)

f(X2, Xl, xo)

o II(l, 3, 6)

(X2+ Xl)8 x28 xo

(3.23)

(3.24)

For other polarities, Figure 3.9 shows the map after marking "O"s and sim­

plified COC coefficient maps are shown in Figure 3.10. The results for other

polarities are given in following equations.

f(X2, Xl, xo) (X2 + Xl) 8 Xl 8 Xo (3.25)

f(X2, Xl, xo) (X2 + Xl) 8 Xl 8 Xo 80 (3.26)

f(X2, Xl, xo) (X2 + Xl) 8 X2 8 Xl 8 Xo 80 (3.27)

f(X2' Xl, xo) (X2 + Xl) 8 X2 8 Xl 8 Xo (3.28)

f(X2, Xl, xo) (X2 + xd 8 Xo (3.29)

f(X2, Xl, xo) (X2 + Xl) 8 Xo 8 0 (3.30)

f(X2' Xl, xo) (X2 + Xl) 8 X2 8 Xo 80 (3.31)

3.4 Map Techniques 55

X.X X.X

0000 0 00 000 0000 00 00

00 0 0 0 00 0 0
..... -

(a) (b)

X.X X.X X.X

00 0 0 0000 0 00 0000 000 00 0

0 0 0 00 0 00 0 0000 0 00 , ..

(c) (d) (e)

x.x. X.X X.X

00 00 0 0 0 00 0 0 00 00

000 0000 00 00 00 0 0 0000 0 00 0000 000

(f) (g) (h)

Figure 3.9: Mapping transformation technique for obtaining eoe expansion of
any polarity. (a) Polarity 0 via O-point, (b) Polarity 1 via I-point, (c) Polarity
2 via 2-point, (d) Polarity 3 via 3-point, (e) Polarity 4 via 4-point, (f) Polarity
5 via 5-point, (g) Polarity 6 via 6-point, (h) Polarity 7 via 7-point.

3.4 Map Techniques 56

X,X, X,X,

1:1:1:1: 1:1:1:1:
(a) (b)

X,X X,x, X,x,

1:1:1:1: 1 : 1 : 1 : 1 : 1:1:1:1:1
(c) (d) (e)

X,X, X,X X,X,

1:1:1:1: 1:1:1:1: 1:1:1:1:
(f) (g) (h)

Figure 3.10: Coefficients of COC expansion of all the 8 polarities transforma­
tion. (a) Polarity 0, (b) Polarity 1, (c) Polarity 2, (d) Polarity 3, (e) Polarity
4, (f) Polarity 5, (g) Polarity 6, (h) Polarity 7.

3.5 Summary 57

3.5 Summary

In this chapter, the basic definitions for the polarity of fixed polarity cae
expansions and esop and CPOS expansions are given. Based on the features

of coincidence operation, the cae expansions of logical functions as DFRM

form are discussed. The transformation matrix for conversion between cae
and CPOS expansions is also given.

Map folding technique is used for conversion between standard Boolean

and fixed polarity cae expansions for up to 6 variables. It starts with gener­

ating the positive polarity cae expansions first and then derives other fixed

polarity cae expansions of any polarity. Another simple but useful map trans­

formation technique is introduced to generate fixed polarity cae expansions

of any polarity directly from the Cj map. Drawing circles, however, becomes

inconvenient if the number of variables is greater than 4.

Chapter 4

Multi-segment Method for Dual

Forms of RM Conversion

4.1 Introduction

Due to the limitation of map methods, map folding and map transformation

technique can only be used for functions in which the number of variables is less

than or equal to 6. It is not practical to use map techniques to optimise large

variable functions. Other methods are required for large functions. Conversion

method between Canonical Product-of-Sums (CPOS) and fixed polarity COC

expansions based on the matrix method were proposed in [34]. The method

based on the matrix multiplication for large functions requires significant CPU

time. Reference [51] used XNOR operation for on-set maxterms which again

required significant CPU time for large variables and the results were only given

for up to 17 variables. In this chapter, algorithms are presented for conversion

between standard Boolean and fixed polarity COC expansions to any polarity.

The rest of the chapter is organised as follows. In Section 4.2, generalised

58

4.2 Generalised Method Based on On-set Coefficient Coverage 59

method is proposed for conversion between CPOS and fixed polarity COC

expansions for large functions. Section 4.3 shows the proposed multi-segment

methods to achieve efficient conversion in details. In Section 4.4 algorithms are

further extended to the conversion of any polarity. Moreover, a new minterm

method utilises on-set CSOP minterms instead of on-set CPOS maxterms to

reduce CPU time is given in Section 4.5. Experimental results are then given

in Section 4.6.

4.2 Generalised Method Based on On-set Coef­

ficient Coverage

By using map based techniques, COC maxterm coefficients can be obtained

up to 6 variables. The Cj coefficients and dj coefficients have the following

relationship if represented in the binary form when n = 3.

dnl = Cnl

dno = Cnl 0 Cno

dlOl = Cnl 0 ClOI

dlOo = Cnl 0 Cno 0 ClOI 0 ClOO

don = Cnl 0 COU

dOlO = CUI 0 Cuo 0 Con 0 COlO

doOl = CUI 0 ClOI 0 COl1 0 COOl

dooo = Cnl 0 Cno 0 ClOI 0 ClOO 0 Con 0 COlO 0 Con 0 Cooo

Based on (3.13) an n-variable function can be rewritten as

d j = dUn-lun-2 "'UlUO

= 0 IT cVn-lVn-2 '''VlVO

(4.1)

4.2 Generalised Method Based on On-set Coefficient Coverage 60

where U = (Un -IUn -2 ... UIUO) and v = (Vn -IVn -2 ••. VIVO) are in binary form

and 0::; j,u,V::; 2n-1.

The ith bit Vi in Cj coefficient and Ui in dj coefficient have the following

relationship:

{

X, Ui = 0
Vi =

1, Ui = 1
(4.2)

where x stands for "don't care" and 0 ::; i ::; n - 1.

Definition 4.1. Given two decimal integers, U = (Un-IUn -2 ... UIUO) and V =

(Vn-I Vn -2 ... VI vo), which are in binary form, U covers V if Ui ::; Vi numerically

for all i, Ui, Vi E {O, 1} and 0 ::; i ::; n - 1.

For example, (14ho (1110h covers (15ho (l1l1h and (14ho

(1110h·

With reference to (4.1) and (4.2), any dj coefficient depends on gj as

n-I

gj = 1\ (Vi, Ui) (4.3)
i=O

¢(dj) = Lgj (4.4)
v

where /\ is the bitwise "AND" operator. If the result is "0" for every i, gj = O.

Otherwise, gj = 1. L is the sum operator and 0 ::; j ::; 2n - 1.

According to (4.3) and (4.4), the on-set eoe maxterm coefficients can be

generalised and calculated by using bitwise "INVERSE" and "AND" operations.

dj is on-set eoe maxterm coefficient when ¢(dj) is odd number.

4.2 Generalised Method Based on On-set Coefficient Coverage 61

Example 4.1. Given a 4-variable function in CPOS form f(x3, X2, Xl, Xo) =

TI(O, 1,3,5,7,9,10,12,13,14), obtain on-set COC maxterm coefficient.

as

For example, for the first CPOS on-set coefficient v = 0, g~4 is calculated

g~4 0000 !\ 1110

1111!\ 1110

1110 = 1

For v = 1, gi4 is calculated as

gi4 0001 !\ 1110

1110!\ 1110

1110 = 1

In the same way, the rest of g14 for on-set CPOS coefficients are obtained

as follows.

gr4 = 1 gf4 = 1 gi4 = 1 gi4 = 1

g 10 - 1 g12 - 1 g13 - 1 g14 - 0 14 - 14 - 14 - 14 -

Coefficient d14 is then calculated as

cjJ(d14) = L g14 = 1
v

Because cjJ(d14) is odd number, d14 is on-set COC maxterm coefficient.

The rest of coefficients are obtained in the same way, which are

cjJ(d15) = 0 cjJ(d13) = 1 cjJ(d12) = 3 cjJ(dn) = 0

cjJ(dlO) = 2 cjJ(dg) = 2 cjJ(ds) = 5 cjJ(d7) = 1

cjJ(d6) = 2 cjJ(d5) = 3 cjJ(d4) = 5 cjJ(d3) = 2

cjJ(d2) = 4 cjJ(d1) = 6 cjJ(do) = 10

Hence, f(x3, X2, Xl, Xo) = 0 TI(4, 5, 7, 8,12,13,14).

4.3 Multi-segment Method Based on Maxterms 62

4.3 Multi-segment Method Based on Maxterms

When the number of on-set CPOS maxterms increases, the computation time

for conversion increases significantly. However, if the number of on-set CPOS

maxterm coefficients can be divided into several groups and the groups of the

coefficients can be reused, the CPU time can be reduced considerably. Multi­

segment method was initially introduced in [118]. The multi-segment method

based on maxterms is called maxterm multi-segment method.

Definition 4.2. For an n-variable Boolean function f(Xn-l, ... ,Xl, Xo), the

on-set CPOS maxterm coefficients can be grouped into w segments, assuming

the on-set CPOS maxterm coefficients are pre-ordered in decreasing order. The

index of the on-set CPOS maxterm coefficients are assigned to the segments

following the rule of (4.5).

j E TVk, k * 21 ::; j < (k + 1) * 21 (4.5)

where * is the multiplication operator, j is the jth on-set Cj coefficient, vVk is

the kth segment and 0 ::; k ::; w - 1. 21 is the maximum number of on-set

coefficients in one segment and 0 ::; l ::; n - 1. w is the number of segments and

is selected for simplicity ofthe algorithm as in (4.6), i.e., each on-set coefficient

is divided into two parts.

w = 2n - 1 = 2n -[%] (4.6)

where [] is an integer operator and 1 ::; w ::; 2n.

4.3 Multi-segment Method Based on Maxterms 63

Example 4.2. Given a 4-variable function in CPOS form f(x3, X2, Xl, Xo) =

TI(14, 13, 12, 10,9,7,5,3,1,0), assign the on-set coefficients to the respective

segments.

The on-set CPOS maxterm coefficients are grouped into w = 2n-[~J = 4

segments and each segment has maximum 4 on-set coefficients, hence

T¥o = {14, 13, 12}

T¥l = {10,9}

H12 = {7,5}

W3 = {3,1,0}

Corollary 4.1. Given an integeru = (Un -IUn -2 ... UIUO) and a set of integers

11, where v is an integer and is one of integers in 11. The number of elements in

11 covered by U remains unchanged after adding an integer ((2n - 1 - 1) - u") * 21

to i and elements of 11 if u" v", where u" (Un-l U n -2 ... Ul+1 Ul), v"

(Vn -IVn -2 ... Vl+IV1), 0 :::; 1 :::; n - 1.

Proof. The integer numbers, u and v, where v is any integer of 11, can be

rewritten as

U Un-l U n -2 ... UI Uo

U n -IUn -2 ... Ul+IUl Ul-IUI-2 ••. UIUO
\. v .I, V' .J

II III

U U

V Vn-l Vn -2 •.• VI Vo

Vn -IVn -2 ... Vl+IVI Vl-IVI-2 •.. VIVO
\. ",\ ./

V' V

II III

V V

4.3 Multi-segment Method Based on Maxterms 64

Because the significant bits between land n - 1 are the same for u and V,

. " "" "b D fi .. 4 1 I.e., u = v ,u covers v y e mtlOn ..

Let u' and Vi be the integers and Vi be the set of integers after addition.

After adding an integer ((2n - 1 - 1) - u") * 21 to u and V, all those n - l bits

between land n - 1 are set to be "l"s for u' and Vi. However, gj remains

unchanged for those l bits between 0 and l - 1. Thus the number of integers

in V covered by u remains unchanged after addition. o

Example 4.3. Given u = (1000h, V = {(1001h, (101Oh, (1011h}, n = 4 and

l = 2, all of numbers in V and u begin with "(lOh", that is u" = (2)10 and

") v = (2 10.

Add ((2n - 1 - 1) - u") * 21 = ((24
-

2 - 1) - 2) * 22 = (4 - 1 - 2) * 4 = 4 to

u and V, u' = (llOOh and Vi = {(llOlh, (1l10h, (llllh}. The number of

integers in Vi covered by u' is the same as the number of integers in V covered

by u before addition, which is 3.

Based on Corollary 4.1, (4.3) and (4.4), the maxterm multi-segment method

for conversion from CPOS expansion to positive polarity COC expansion is

achieved as follows.

Procedure 4.1. The maxterm multi-segment method for conversion from CPOS

expansion to positive polarity COC expansion.

1. Obtain on-set CPOS maxterm coefficients from CPOS expansion and

sort the on-set CPOS maxterm coefficients into decreasing order.

2. Divide the on-set CPOS coefficients into w segments and modify the

coefficients in each segment based on Definition 4.2 and Corollary 4.1.

3. Find the covered coefficients and calculate COC maxterm coefficients

for each segment by using bitwise "INVERSE" and "AND" operations,

4.3 Multi-segment Method Based on Maxterms 65

according to (4.3) and (4.4). Those numbers of covered coefficients that

are odd number are the on-set COC maxterm coefficients.

4. Output the positive polarity COC expansion according to the on-set

COC maxterm coefficients.

As it can be seen in (3.20), the conversion from positive polarity COC

expansion to CPOS expansion is the reserve of the conversion from CPOS

expansion to positive polarity COC expansion. Thus, the same procedure can

be applied to obtain CPOS expansion by simply replacing the on-set CPOS

maxterm coefficients in Procedure 4.1 with on-set COC maxterm coefficients.

Example 4.4. Given a 4-variable function !(X3, X2, Xl, Xo) = (X3 + X2 + Xl +

XO)(X3 +X2 +X1 +XO)(X3 +X2 +X1 +XO)(X3 +X2 +X1 +XO)(X3 +X2 +X1 +XO)(X3 +

X2+ X1 +XO)(X3+ X2+ X1 +XO)(X3+X2+X1 +XO)(X3+ X2+ X1 +XO)(X3+ X2+X1 +xo)

and w = 4, calculate the positive polarity COC expansion.

Let D[1 store the number of covered coefficients in each segment.

Step 1:

Sort the on-set CPOS coefficients into decreasing order as

!(X3,X2,X1,XO) = ~(14,13,12,10,9, 7,5,3,1,0)

Step 2:

The on-set coefficients are divided into 4 segments, Wo = {14, 13, 12},

TV1 = {10, 9}, W 2 = {7, 5} and W3 = {3, 1, O} according to (4.5). The segments

are then modified to TVo = {14, 13, 12}, lV1 = {14,13}, Vl12 = {15,13} and

Vl13 = {15, 13, 12}.

4.3 Multi-segment Method Based on Maxterms 66

Step 3:

Firstly, coefficient 15 is found in the VV2 and W3 segments because coeffi­

cient (15ho = (llllh covers coefficient (15ho = (llllh only. The number of

covered coefficient is stored in 2nd and 3rd segments. As a result, D[O] = 0,

D[l] = 0, D[2] = 1 and D[3] = l.

CP(dI5) = D[O] = 0

cp(dll) = D[O] + D[l] = 0 + 0 = 0

cp(d7) = D[O] + D[2] = 0 + 1 = 1

cp(d3) = D[O] + D[l] + D[2] + D[3] = 0 + 0 + 1 + 1 = 2

Only d7 should be included because the number of covered coefficients is

odd.

Secondly, because coefficient (14ho = (1110h covers coefficients (14ho =

(1110h and (15)10 = (llllh, both coefficients 14 and 15 need to be found.

Coefficient 14 is found in the Wo and WI. Coefficient 15 is found in the W2

and W3 segments. As a result, D[O] = 1, D[l] = 1, D[2] = 1 and D[3] = l.

CP(d I4) = D[O] = 1

CP(dlO) = D[O] + D[l] = 1 + 1 = 2

cp(d6) = D[O] + D[2] = 1 + 1 = 2

cp(d2) = D[O] + D[l] + D[2] + D[3] = 1 + 1 + 1 + 1 = 4

Only dI4 should be included because the number of covered coefficients is

odd.

Thirdly, because coefficient (13)10 = (llOlh covers coefficients (13)10 =

(llOlh and (15ho = (llllh, both coefficients 13 and 15 need to be found.

Coefficient 13 is found in the Wo, T¥I, W2 and H!3. Coefficient 15 is found

in the W2 and W3 segments. As a result, D[O] = 1, D[l] = 1, D[2] = 2 and

D[3] = 2.

4.3 Multi-segment Method Based on Maxterms

¢(dI3) = D[OJ = 1

¢(dg) = D[OJ + D[lJ = 1 + 1 = 2

¢(d5) = D[OJ + D[2J = 1 + 2 = 3

¢(dl) = D[OJ + D[lJ + D[2J + D[3J = 1 + 1 + 2 + 2 = 6

67

dl3 and d5 should be included because the numbers of covered coefficients

are odd.

Fourthly, because coefficient (12ho = (llOOh covers four coefficients (12ho =

(llOOh, (13)10 = (llOlh, (14)10 = (1110h and (15)10 = (l11lh, coefficients

12, 13, 14 and 15 need to be found. Coefficient 12 is found in the TVo and TV3 .

Coefficient 13 is found in the vVo, vVI , vV2 and W3 . Coefficient 14 is found in

the vVo and WI' Coefficient 15 is found in the W2 and TV3 segments. As a

result, D[OJ = 3, D[lJ = 2, D[2J = 2 and D[3J = 3.

¢(dI2) = D[OJ = 3

¢(ds) = D[OJ + D[lJ = 3 + 2 = 5

¢(d4) = D[OJ + D[2J = 3 + 2 = 5

¢(do) = D[0 J + D [1 J + D [2 J + D [3J = 3 + 2 + 2 + 3 = 10

dl2 , ds and d4 should be included because the numbers of covered coeffi­

cients are odd.

The final solution is

f(X3, X2, Xl, Xo) o II (4,5,7,8,12,13,14)

(X3 + Xl + xo) 8 (X3 + Xl) 8 X3

8(X2 + Xl + xo) 8 (Xl + xo) 8 Xl 8 Xo

4.4 Generalised Polarity Conversion 68

4.4 Generalised Polarity Conversion

For any n-variable Boolean function !(Xn-l,'" ,Xl, Xo), there are 2n fixed

polarity COC expansions. COC expansions with different polarities may have

different number of on-set coefficients. To simplify the conversion algorithm,

the concept of Boolean polarity is adapted from [89,118] and applied to CPOS

expansion as well, which is given in the following definition.

Definition 4.3. Any n-variable Boolean function !(Xn-l, ... ,Xl, Xo) that is

represented in maxterms expansion as in (3.7) is defined as the CPOS expan­

sion with zero polarity. Any n-variable Boolean function !(Xn-l, ... ,Xl, Xo)

can be in canonical form of expansion with polarity p, where P is the polarity

in binary form and P = (Pn-l ... PlPO)' Any variable Xi can be represented as

in (4.7).

.. _ { Xi Xi -
Xi

Pi = 1
(4.7)

Pi = 0

where 0 :::; i :::; n - 1. Xi can be in true or complemented form but not both,

Xi is the complemented form of Xi. There are totally 2n fixed polarities for a

n-variable Boolean function in CPOS form.

Accordingly, (3.7) should be extended to (4.8).

!(Xn-l,'" ,Xl, Xo)

2n-l

IT (Cj + JIIlj)
j=O

where]vlj is in the binary form and l'1ij = Xn-l + ... + Xl + xo.

, _ { Xi Xi -
Xi

ji = 1

ji = 0

where Xi is the complemented form of Xi.

(4.8)

(4.9)

4.4 Generalised Polarity Conversion

Equation (4.10) can be derived from (4.9)

j, = { ~ Xi = Xi

Xi = Xi

69

(4.10)

Corollary 4.2. Let R be the number of on-set CPos maxterm coefficients

for a given n-variable Boolean function f(xn-l,··· ,Xl, xo), there is always R

numbers of on-set CPos maxterm coefficients for any of the 2n fixed polarity

expansions.

Proof. Let a be the ath on-set coefficient of n-variable f(xn-l, ... ,Xl, Xo) with

polarity p and TIl be the TIlth on-set coefficient of n-variable f(xn-l, ... ,Xl, Xo)

with polarity p. If n-variable f(xn-l,· .. ,Xl, Xo) is converted to n-variable

f(xn-l, ... ,Xl, xo), there is a one-to-one matching between the on-set CPOS

maxterm coefficient with polarity p and on-set CPOS maxterm coefficient with

polarity p, because TIl = aEDpEDp, where 0 :s; a, TIl :s; 2n -1 and 0 :s; p, p :s; 2n -1.

Hence the number of on-set CPOS maxterm coefficients, R, remains the same

for the expansion of any polarity. D

Corollary 4.3. If polarity j5 is applied to both sides of d = [Tnl8c, the trans­

formation for positive polarity expansion, the index of maxterm coefficients of

CPOS expansion changes for different polarities, but the index of maxterm co­

efficients of CDC expansion remains unchanged. The transformation matrix

can be used for conversion to fixed polarity CDC expansion of any polarity.

Proof. If polarity j5 is applied to both sides of d = [Tnl8c for positive polarity,

d = [Tnl8c can be rewritten as

d = [Tnl8c (4.11)

4.4 Generalised Polarity Conversion 70

where C = [C2n_1 ... CICO]t, d = [d2n-1 '" dldo]t and 0:::; p :::; 2n - 1.

Because C = c ED p, where c = [C2n-1 ... CICO]t, the index of maxterm coef­

ficients of CPOS expansion in C changes for different polarities. Because the

transformation is for positive polarity expansion, the coefficients need to be

XORed polarity p again, d = d ED P ED P = d. As a result, the index of maxterm

coefficients of fixed polarity COC expansion remains unchanged. It is therefore

that the transformation matrix can be used for the conversion to fixed polarity

COC expansion of any polarity. 0

Example 4.5. Obtain the fixed polarity COC expansion of polarity 6 for a

3-variable function f(X2' Xl, xo) = (X2+XI +XO)(X2+ XI +XO)(X2+XI +XO)(X2+

Xl + xo).

The function in CPOS form is f(X2, Xl, xo) = TI(O, 2, 5, 6). Since the po­

larity jj = 6, from (4.7) X2 = X2, Xl = Xl and Xo = Xo are obtained. Since

x = X, from (4.8) to (4.10), the function can be represented as f(X2' Xl, Xo)

with polarity 6 as

f(X2, Xl, xo) f(X2' Xl, xo)

(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo)

~{(110), (100), (OIl), (OOO)}

~(6,4,3,0)

Hence, C = [1,0,1,0,0,1,1, O]t and

d is obtained as

4.4 Generalised Polarity Conversion 71

d7 o 1 1 1 1 1 1 1 1 1

d6 001 1 1 1 1 1 0 0

d5 o 1 0 1 1 1 1 1 1 1

d4 o 0 0 0 1 1 1 1 I 0 1
e

d3 o 1 1 1 o 1 1 1 I 0 0

d2 001 1 001 1 1 1

d l 010 1 0 101 1 0

~ do J L 0 0 0 0 0 000 0 1

As a result, the coefficients of COC expansion of polarity 6 and its expan-

sion are

f(x2, Xl, Xo)

f(x2, Xl, Xo)

OII(1,3,6)

(X2 + xd 8 X2 8 Xo

Thus, any n-variable Boolean function that is converted from CPOS expan­

sion to fixed polarity COC expansion with any polarity p can be generalised

and is achieved as follows, according to Corollaries 4.2 and 4.3.

Procedure 4.2. The maxterm multi-segment method for conversion from CPOS

to fixed polarity cae expansions of any polarity p, where 0 ~ p ~ 2n - 1.

1. Obtain on-set CPOS maxterm coefficients from CPOS expansion.

2. Derive on-set CPOS maxterm coefficients with polarity p by XORing

on-set CPOS maxterm coefficients with polarity p.

3. Divide the newly generated on-set CPOS maxterm coefficients into w

segments and modify the coefficients in each segment.

4.4 Generalised Polarity Conversion 72

4. Find the covered coefficients and calculate COC maxterm coefficients

for each segment by using bitwise "INVERSE" and "AND" operations.

Those numbers of covered coefficients that are odd number are the on-set

COC maxterm coefficients.

5. Output the fixed polarity COC expansion of polarity p according to the

on-set COC maxterm coefficients obtained in Step 4.

Corollary 4.4. The transformation matrix can be used for conversion from

fixed polarity CDC expansion of any polarity to CPOS expansion. The conver­

sion procedure is the reverse of the procedure used for conversion from CPOS

expansion to fixed polarity CDC expansion of any polarity.

Proof. As it is known from Corollary 3.2 and also in (3.13) and (3.20), the

conversion between CPOS and positive polarity COC expansions is reversible.

If polarity p is applied to both sides of (3.20) for positive polarity, (3.20) can

be rewritten as

c = [Tn]8d (4.12)

where C = [C2n-l ••. C1CO]t, d = [d2n-l ..• d1do]t and 0 :::; p :::; 2n - 1. The index

of maxterm coefficients of CPOS expansion in c changes for different polarities.

Therefore the coefficients need to be XORed polarity p as in c = c ffi p, where

c = [C2n-l ... C1CO]t. D

The conversion from fixed polarity COC expansion of polarity p to CPOS

expansion is the reserve of the conversion from CPOS expansion to fixed po­

larity COC expansion of polarity p.

4.4 Generalised Polarity Conversion 73

Example 4.6. Obtain the CPOS expansion for a 3-variable fixed polarity

COC expansion of polarity 6 f(X2, Xl, xo) = f(X2, Xl, xo) = (X2 +XI) 8X2 8xo.

The function in COC form is f(X2, Xl, xo) = 0 I1(1, 3, 6). Hence, d =

[1,0,1,1,0,1,0, It

C is obtained as

(;7 0 1 1 1 1 1 1 1 1 1

(;6 001 1 1 1 1 1 0 0

(;5 010 1 1 1 1 1 1 1

(;4 o 0 0 0 1 1 1 1 1 0
8

(;3 o 1 1 1 0 1 1 1 I 0 0

(;2 001 100 1 1 1 1

CI o 1 0 1 0 1 0 1 0 1

Co o 0 0 0 0 0 0 0 J L 1 J L 0 ~

As a result, the coefficients of CPOS expansion of polarity 6 in CPOS form

is f(X2,XI,XO) = I1(0,3,4,6). Hence,

f(X2, Xl, xo) IT (0,3,4,6) EB 6 = IT (6,5,2,0)

IT(0,2,5,6)

The CPOS expansion is then

f(X2, Xl, xo) = (X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo)

Thus, fixed polarity COC expansion of polarity p is converted to CPOS ex­

pansion for any n-variable Boolean function can be generalised and is achieved

as follows.

4.5 Conversion Method Based on Minterms 74

Procedure 4.3. The maxterm multi-segment method for conversion from COC

expansion of polarity p to CPOS expansion, where 0 ::; p ::; 2n - 1.

1. Obtain the on-set COC maxterm coefficients from Fixed polarity COC

expansion of polarity p.

2. Divide the newly generated on-set COC maxterm coefficients into w

segments and modify the coefficients in each segment.

3. Find the covered coefficients and calculate CPOS maxterm coefficients

for each segment by using bitwise "INVERSE" and "AND" operations.

Those numbers of covered coefficients that are odd number are the on-set

CPOS maxterm coefficients.

4. Use XOR operation to derive on-set CPOS maxterm coefficients from

on-set CPOS maxterm coefficients with p polarity obtained in Step 3.

5. Output the CPOS expansion from on-set CPOS maxterm coefficients.

4.5 Conversion Method Based on Minterms

In the previous section, the polarity conversion methods are based on on-set

CPOS maxterms. In other words, if the conversion is from CPOS expansion to

COC expansion, the on-set maxterms of CPOS are involved in the conversion.

However, sometimes the number of on-set CPOS maxterms is quite large which

increases the conversion time. In addition, most of benchmark circuits are orig­

inally in PLA format, which is in AND/OR plane. The minterms conversion

method is more convenient and improves the speed of conversion. The theory

is proved and the same as mentioned in Corollary 3.3 in Chapter 3. The con­

version method based on on-set CSOP minterms is called minterm method.

4.5 Conversion Method Based on Minterms 75

The multi-segment method based on on-set CSOP minterms is achieved as

follows.

Procedure 4.4. The minterm multi-segment method for conversion from GSOP

expansion to fixed polarity GOG expansion with any polarity p.

1. Generate on-set CSOP minterm coefficients from PLA file.

2. On-set CSOP minterm coefficients are XORed with polarity p.

3. Divide the newly generated on-set CSOP minterm coefficients into w

segments and modify the coefficients in each segment.

4. Find the coverage of the coefficients and calculate COC maxterm coef­

ficients for each segment by using bitwise "INVERSE" and "AND" oper­

ations. Those numbers of covered coefficients that are odd number are

the on-set COC maxterm coefficients.

5. Modify coefficient d2n-1 by complementing d2n_l.

6. Output the fixed polarity COC expansion of polarity p from the on-set

COC maxterm coefficients.

Example 4.7. Given a 4-variable function in CPOS form f(x3, X2, Xl, Xo) =

TI(14, 13, 12, 10,9,7,5,3,1,0), as shown in Example 4.4, calculate the on-set

coefficients of positive polarity COC expansion using minterm method.

dIs is calculated as

dIS = 0 II Cl1l1 = Cl1l1 = 0

Similarly dl4 is calculated as

dl4 = II Cl1lO = Cl1l0 8 Cl1l1 = Cl4 8 CIS = 1 8 0 = 0

4.6 Experimental Results 76

The rest of the coefficients are obtained in the same way.

d13 = 0 dl2 = 0 dll = 1 dlO = 1

dg = 1 dg = 0 d7 = 0 d6 = 1

d5 = 0 d4 = 0 d3 = 1 d2 = 1

dl = 1 do = 1

Because the minterm method is used for conversion, dl5 has to be recalcu­

lated. As a result, dl5 - Cl5 = 1.

When dj = 0, the coefficient is included so that the final solution is obtained

and is the same as in the previous Examples 4.1 and 4.4.

f(X3, X2, Xl, Xo) = 0 II (4,5,7,8,12,13,14)

4.6 Experimental Results

The algorithms are implemented in the C language and the programs are

complied by the GNU C Complier (GCC) as shown in Algorithm 4.1. The

results are obtained using a PC with Intel Pentium IV (2.4 GHz) with 512

MB RAM under RedHat Linux AS 3. The algorithm requires time complexity

of w(w + w * w). Since w is equal to 20
.
5n approximately according to (4.6).

Therefore time complexity of the multi-segment algorithm is O(21.5n). Space

complexity is O(2n).

Table 4.1 shows the CPU conversion time in seconds by using multi-segment

method, the number of on-set CPOS maxterms and CSOP minterms before

conversion, the number of on-set COC maxterms after conversion and the

improvement.

4.6 Experimental Results 77

Algorithm 4.1 Multi-segment method for conversion from PLA to fixed po­
larity COC expansions.
q: the possible maximum number of coefficients in each segment
w: the number of segments
d: the COC coefficient
p: the polarity of COC expansion
GSOP: the flag indicates on-set CSOP or CPOS coefficients used where "I"
and "O"means on-set CSOP and CSOP coefficients are used respectively.
G: the number of on-set COC maxterm coefficients
coef ficients[]: the array stores all CSOP or CPOS coefficients
D[]: the array stores covered number for the CSOP or CPOS coefficients
output[]: the array stores COC coefficients
infile: input file used to read in on-set CSOP or CPOS coefficients
outfile: output file used to output on-set COC coefficients
begin

G=O;
coef ficients = read_input_and_sort_coefficients (infile, GSOP, p);
divide _ coefficients (q, w, n, coe f f icients);
for i = 2n - 1 to 2n - 2n / w do

for j = 0 to w - 1 do
find _ covered _ numbers (D [j));

end for
for j = 0 to w - 1 do

for k = 0 to w - 1 do
d= 0;
if (! (k 1\ J))

d+ = D[k));
end if

end for
if (d 1\ Ox00000001 == 1)

output[G + +] = (i - j * 2n /w);
end if

end for
end for
if (GSOP)

modify _ coc _ coefficients (output, p);
end if
output _ data(outfile, output);

end algorithm

4.6 Experimental Results 78

Table 4.1: CPU Conversion time for IWLS93 benchmarks using maxterm and
minterm multi-segment methods.

CPOS CSOP COC Maxterm Minterm
Name n before before after multi-seg. multi-seg. Imp

cony. cony. cony. method (s) method (s) (%)
5xp1 7 76 52 33 0 0 0
9sym 9 92 420 211 0 0 0
alu4 14 6944 9440 291 0.01 0.01 0

apex4 9 512 0 1 0 - -
b12 15 26624 6144 17 0.02 0.01 50
bw 5 23 9 13 0 0 0
clip 9 256 256 117 0 0 0
con1 7 60 68 19 0 0 0
cps 24 14745200 2032016 8119 526.7 116.25 77.92

duke2 22 3829760 364544 19 38.23 11.94 68.77
ex1010 10 857 167 487 0 0 0

ex5 8 224 32 2 0 0 0
inc 7 80 48 21 0 0 0

misex1 8 224 32 9 0 0 0
misex2 25 33423360 131072 3 2585.7 51.19 98.02 .
misex3c 14 7680 8704 107 0.01 0.01 0
misex3 14 14848 1536 1785 0.02 0.01 50

pdc 16 60840 4696 33 0.08 0.03 62.5
rd53 5 26 6 15 0 0 0
rd73 7 64 64 21 0 0 0
rd84 8 136 120 37 0 0 0
sao2 10 1006 18 141 0.01 0.01 0
spla 16 49151 16385 11 0.05 0.05 0

squar5 5 23 9 15 0 0 0
table3 14 14900 1484 1912 0.02 0 100
table5 17 130956 116 129 0.22 0.06 72.72

vg2 25 33333248 221184 23 2477.57 90.82 96.33
xor5 5 16 16 5 0 0 0

X5xp1 7 103 25 31 0 0 0
Z9sym 9 92 420 211 0 0 0

I AVel'age I - r - c - I - I 30.64 I

4.6 Experimental Results 79

Table 4.2: CPU Conversion time in seconds compared to published work.

Maxterm Minterm
Benchmark n [34] [51] multi-seg. multi-seg.

(s) (s) method(s) method(s)

apex4 9 0 0 0 0
alu4 14 2.19 - 0.01 0.01
b12 15 3.3 - 0.02 0.01
clip 9 0.06 0 0 0
con1 7 0 0 0 0

ex1010 10 0.11 0.01 0 0
misex1 8 0 - 0 0
misex3c 14 1.59 - 0.01 0.01

pdc 16 16.86 - 0.08 0.03
rd84 8 0 0.05 0 0
spla 16 15.49 0.931 0.05 0.05

table5 17 28.4 9.845 0.22 0.06
--- ----

The improvement is defined in (4.13).

. CPU for maxterm - CPU for minterm 10 01
'/,mp= x 010

CPU for maxterm

•

i

(4.13)

where CPU for maxterm and CPU for minterm stand for the CPU time

used for the maxterm and minterm multi-segment methods respectively.

Each set of on-set CSOP minterms was obtained from benchmark in PLA

format, in which the "don't cares" are set to O. The set of corresponding on-

set CPOS maxterms was obtained by complimenting the set of on-set CSOP

minterms.

The maxterm and minterm multi-segment methods are compared to [34]

and [51]. Table 4.2 shows the comparison results in terms of CPU conversion

time in seconds. Experimental results in [34] and [51] were performed on

PC with Pentium III (1 GHz) CPU with 256 MB RAM under windows and

------- - --

4.7 Summary 80

Pentium IV (2.4 GHz) CPU with 512 MB RAM under windows. "-" stands

for not available, "-0" means CPU time is almost zero and n stands for the

number of input variables.

4.7 Summary

In this chapter, two algorithms based on the minterm and maxterm multi­

segment methods are developed for large functions to overcome the limitation

of the map methods in Chapter 3. Both of algorithms can be used for con­

version between standard Boolean and COC expansions of any polarity. The

maxterm multi-segment method took less than 0.22 seconds if the number of

input variables is less than 17 and outperforms significantly the results given

in [34] and [51] in terms of conversion time. Furthermore, a minterm method

is even more efficient. The minterm multi-segment method achieved speed im­

provement of 98.02% and 96.33% for misex2 and vg2 with 25 input variables

compared to the maxterm method. The average improvement is 30.64% for

the 30 tested benchmarks.

Chapter 5

Tabular Based Techniques for

Dual Forms of RM Conversion

5 .1 Introduction

Map techniques can only perform for functions which are less than or equal to

6 variables. However, it can be generalised for large functions by using tabular

technique [5,10,87]. Tabular technique is actually derived from the procedure

of map folding technique but generalised for any number of variables. In this

chapter, two tabular based techniques are presented for dual forms of Reed­

Muller conversion. The rest of the chapter is organised as follows. Serial and

parallel tabular techniques for conversion between standard Boolean and fixed

polarity COC expansions of any polarity are given in Section 5.2 and Section

5.3 respectively. Experimental results of algorithms are shown in Section 5.4.

81

5.2 Serial Tabular Technique 82

5.2 Serial Tabular Technique

It is not practical to use map techniques for large functions because of the

limitation of map feature. Based on the map folding technique, the serial

tabular technique is proposed for conversion between CPOS and fixed polarity

COC expansions, which can be used for any number of variables.

Observation 5.1. If the array of data structure is used to store newly gener­

ated coefficients and previous coefficients of the expansion, all the coefficients

of the expansion are actually stored in an increasing order and the index of its

ordered number is the same number as the coefficient.

According to Observation 5.1, an array fZag[] can be used for storing all

coefficients of the expansion. The index of the array fZag[] corresponds to the

coefficient of the expansion. The content of the array f Zag[] represents the

presence of the coefficient of the expansion. If the CPOS maxterm coefficients

are in use, "l"s indicate the CPOS maxterm coefficients are present while "O"s

indicate those maxterm coefficients that are not present. If the CSOP minterm

coefficients are in use, "O"s indicate the CSOP minterm coefficients are present

while "l"s indicate those minterm coefficients that are not present.

The bitwise "AND" operation is used with "mask" to determine whether to

generate new coefficient or not, where "mask" is n-bit binary form. The bitwise

"XOR" operation is used with "mask" to generate new coefficients. And the

bitwise "SHIFT" operation is used to generate new "mask" value for another

variable. n "mask"s with n bits are pre-designed to generate new coefficients

for the ith variable. For example, if the number of variables is 3, the "mask"

value "(OOlh", "(OlOh" and "(100h" are used for the Least Significant Bit

(LSB), the 2nd bit and the Most Significant Bit (MSB) respectively. By using

5.2 Serial Tabular Technique 83

bitwise operations "AND" and "XOR" with mask, new coefficients can be easily

generated. STT for conversion from CPOS to fixed polarity COC expansion

of any polarity is shown in Procedure 5.1. The theory is proved and shown in

Corollary 4.3 in Chapter 4.

Procedure 5.1. Serial tabular technique for conversion from CPOS expansion

to fixed polarity COC expansion of any polarity p.

1. Clear all the contents of the array flag[] to "0".

2. Read in on-set maxterms, XOR the on-set maxterms with polarity p and

set "1" to the corresponding contents of the array, where 0 ::::; p ::::; 2n - 1

and the newly generated coefficients are used as the index of the array.

3. Whenever the content of the array is "1", generate a new coefficient if

the ith bit of the index is "1", where the index of the array is in a binary

form and 0 ::::; i ::::; n - 1, and then replace the ith bit with "0" but leave

others unchanged.

4. Check the existence of the new coefficient. If the content of the array is

"0", set "1" to the content of the array. If the content of the array is "1",

clear the content of the array to "0".

5. Repeat Steps 3 and 4 for the ith variable of all the indices of the array.

6. Repeat Steps 3 to 5 for the other variables.

7. Only when the content of the array is "1", output the index of the array

as the on-set maxterm coefficient of fixed polarity COC expansion of

polarity p.

8. Repeat Step 7 for all the indices of the array.

5.2 Serial Tabular Technique 84

9. Output the COC expansion according to on-set COC maxterm coeffi­

cients.

Because logic synthesis benchmark circuits are originally in PLA format,

which is in AND/OR plane, the generation of on-set CSOP minterms from PLA

file is more convenient than on-set CPOS maxterms. The theory is proved and

the same as mentioned in Corollary 3.3 in Chapter 3. Hence, Procedure 5.1

can be modified to Procedure 5.2 as follows.

Procedure 5.2. Serial tabular technique for conversion from CSOP expansion

to fixed polarity CDC expansion of any polarity p.

1. Set all the contents of the array f lag[1 to "1".

2. Check the number of on-set CSOP minterms. If the number of on-set

CSOP minterms is less than or equal to 2n - 1 , on-set CSOP minterms

will be used, called minterm method. Otherwise on-set CPOS maxterms

will be used, called maxterm method.

3. Read in on-set CSOP minterm coefficients which are generated from PLA

file.

4. XOR the on-set CSOP minterm coefficients with polarity p and set "0"

to the corresponding contents of the array, where 0 ::; p ::; 2n - 1 and the

newly generated coefficients are used as the index of the array.

5. If the minterm method is in use, whenever the content of the array is

"0", generate a new coefficient if the ith bit of the index is "1", where

the index of the array is in a binary form and 0 ::; i ::; n - 1, and then

replace the ith bit with "0" but leave others unchanged. If the maxterm

5.2 Serial Tabular Technique 85

method is in use, whenever the content of the array is "I", generate a

new coefficient in the same way as did for minterm method.

6. eheck the existence of the new coefficient, which is used as the index of

the array. No matter which method is used, minterm method or maxterm

method, if the content of the array is "a", set "I" to the content of the

array. If the content of the array is "I", clear the content of the array to

"a".

7. Repeat Steps 5 and 6 for the ith variable of all the indices of the array.

8. Repeat Steps 5 to 7 for the other variables.

9. Only when minterm method is in use, modify the content of the array

by complementing the content of the array flag[2n - 1].

10. If the minterm method is used, output the index of the array as the on­

set eoe maxterm coefficient of polarity p when the content of the array

is "a". If the maxterm method is used, output the index of the array as

the on-set eoe maxterm coefficient of polarity p when the content of

the array is "I".

11. Repeat Step 10 for all the indices of the array.

12. Output the eoe expansion according to on-set eoe maxterm coeffi­

cients.

The Pseudo code of STT from esop minterm coefficients to fixed polarity

eoe expansion of any polarity is given in Algorithm 5.1. Appendix B shows

the esop minterm and epos maxterm coefficients and eoe maxterm coef­

ficients files format. The esop minterm coefficients are generated from the

PLA file as shown in Appendix e.

5.2 Serial Tabular Technique 86

Algorithm 5.1 Serial tabular technique for conversion from esop minterm
coefficients to fixed polarity eoe maxterm coefficients.
n: the number of variables coef ficients: the number of coefficients
mask: hex constant new: newly generated coefficient
polarity: the polarity of fixed polarity eoe expansion
CSOP: the flag indicates on-set esop minterm coefficients used
f lag[]: an array indicates the occurrence of coefficients
infile: input file used to read on-set esop minterm coefficients
outfile: an output file used to output fixed polarity eoe maxterm coefficients
begin

mas k = OxOOOOOOO 1;
read_input_data(infile, n, coefficients, flag, polarity)
begin

if (coe f f icients ::; 2n
- 1)

CSOP = 1;
else

coef ficients = 2n - coefficients;
allocate_flag_and _set_flag (flag, CSOP);
XOR_ coefficients _ with_polarity (coefficients, flag, polarity);

end
for i = 0 to n - 1 do

for j = 0 to 2n - 1 do
if (!CSOP&& flag[j] == 1) //1 means present

if ((i 1\ mask) == 1)
new = i EB mask; / / generate new coefficient
if (flag[new] == 1) / / check the existence

flag[new] = 0;
else

flag[new] = 1;
else if (CSOP&& flag[j] == 0) / / 0 means term present

if ((i 1\ mask) == 1)
new = i EB mask; / / generate new coefficient
if (flag[new] == 1) / / check the existence

flag[new] = 0;
else

flag[new] = 1;
end for
mask = mask « 1; / / left shift one bit for next variable

end for
if (CSOP)

flag[2n - 1] =!flag[2n - 1];
output_data (outfile, flag, polarity);

end algorithm

5.2 Serial Tabular Technique 87

Minterms Minterms after XO R

X2 Xl Xo X2 Xl Xo

0 000 o
o 0

2 2 0 0
3 o 1 3 0
4 o 0 4
5 0 5 0
6 6 0
7 7 1

(a) (b)

Figure 5.1: A list of on-set esop minterm coefficients. (a) Minterm coefficients
before XOR, (b) Minterm coefficients after XORing with "110" for polarity 6.

Example 5.1. Obtain the on-set maxterm coefficients of fixed polarity eoe
expansion of polarity 6 by using STT for a 3-variable function f(X2, Xl, xo) =

X2XlXO + X2XlXO + X2 X l XO + X2 X l X O + X2 X l X O'

Firstly, allocate and initialise flag[8] so that flag[8] = {I, 1, 1, 1, 1, 1, 1, I}.

Since the number of on-set esop minterms is 5, which is greater than 2n
- l =

23- 1 = 4, maxterm method is used. The 3-variable function in esop form is

f(X2' Xl, XO) = 2:(0,1,3,4,5). Read in all the on-set esop minterms as "O"s

and update flag[8] so that flag[8] = {I, 1,0,0,1,0,0, O} by XORing on-set

esop minterm coefficients with "110" for polarity 6, as shown in Figure 5.1(a)

and Figure 5.1(b) respectively.

Next, start with variable Xo to generate new coefficients. The mask value

for variable Xo is "(OOlh". The first coefficient found in the array with "I" is

flag[O], i.e., "(OOOh" is found. Since the LSB is "0", do nothing. The second

coefficient found in the array with "I" is flag[l], i.e., "(OOlh" is found. Since

the LSB is "I", a new coefficient "(OOOh", as shown in Figure 5.2, is generated

by performing XOR between the coefficient "(OOlh" and the mask "(OOlh".

5.2 Serial Tabular Technique 88

Maxtenus New tenus (xo) New maxtenus

Xz XI Xo Xz XI Xo Xz XI Xo

0 000 000
o 0 1 001

2
3
4 1 0 0 100
5
6
7

Figure 5.2: Maxterms generation for variable Xo.

Maxtenus New tenus (XI) New maxtenus

Xz XI Xo Xz XI Xo Xz XI Xo

0
1 o 0 1 001
2
3
4 1 0 0 100
5
6
7

Figure 5.3: Maxterms generation for variable Xl.

Maxtenus New tenus (XI) New maxtenus

Xz XI Xo Xz XI Xo Xz XI Xo

0 000 000
1 o 0 1 001
2
3
4 1 0 0 100
5
6
7

Figure 5.4: Maxterms generation for variable X2.

The content of the array is updated so that flag[8] = {O, 1, 0, 0,1,0,0, O}. The

last coefficient found in the array with "1" is flag[4], i.e., "(100h" is found.

Since the LSB is "0" , do nothing. The generation of new coefficients for Xo is

completed.

5.2 Serial Tabular Technique 89

The following procedure for Xl and X2 is straightforward and is in the same

way as for Xo. The arrays are flag[8] = {O, 1,0,0,1,0,0, O} and flag[8] =

{1, 1, 0, 0, 1, 0, 0, O} after generation of new coefficients for Xl and X2 respec­

tively, as shown in Figure 5.3 and Figure 5.4. It can be seen that the on-set

maxterm coefficients of fixed polarity COC expansion of polarity 6 presented

in flag[8] are 0, 1 and 4 when the content of the array is "1". Hence,

f(X2, Xl, xo) = 0 II (0,1,4) = (X2 + Xl + xo) 8 (X2 + Xl) 8 (Xl + xo)

The conversion from fixed polarity COC expansion of any polarity p to

CPOS expansion is the reserve of the conversion from CPOS expansion to

fixed polarity COC expansion of any polarity p. The theory is proved and

shown in Corollary 4.4 in Chapter 4.

Procedure 5.3. Serial tabular technique for conversion from fixed polarity

CDC expansion of any polarity p to CPOS expansion.

1. Clear all the contents of the array flag[] to "0".

2. Check the number of on-set COC maxterms. If the number of on-set

COC maxterms is less than or equal to 2n
-

l , on-set COC maxterms will

be used and called maxterm method. Otherwise off-set COC maxterm

will be used and called minterm method.

3. Read in on-set COC maxterm coefficients and set "l"s to contents of the

array, where the on-set COC maxterm coefficients are used as the index

of the array.

5.2 Serial Tabular Technique 90

4. If the maxterm method is used, whenever the content of the array is "1",

generate a new coefficient if the index of the array is in a binary form and

the ith bit of the index is "1", where 0 ~ i ~ n - 1, and then replace the

ith bit with "0" but leave others unchanged. If the minterm method is

used, whenever the content of the array is "0", generate a new coefficient

in the same way as in maxterm method.

5. Check the existence of the new coefficient, where the new coefficient is

used as the index of the array. No matter which method is used, minterm

method or maxterm method, if the content of the array is "0", set "1"

to the content of the array. If the content of the array is "1", clear the

content of the array to "0".

6. Repeat Steps 4 and 5 for the ith variable of all the indices of the array.

7. Repeat Steps 4 to 6 for the other variables.

8. Modify the content of the array by complementing the content of the

array flag[2n - 1], only when minterm method is in use.

9. If the maxterm method is used, when the content of the array is "1", XOR

the index of the array in binary form with polarity p and output it as the

on-set maxterm coefficient of CPOS expansion, where 0 ~ p ~ 2n - l.

If the minterm method is used, when the content of the array is "0",

XOR the index of the array with polarity p and output it as the on-set

maxterm coefficient of CPOS expansion.

10. Repeat Step 9 for all the indices of the array.

11. Output the CPOS expansion according to on-set CPOS maxterm coeffi­

cients.

5.3 Parallel Tabular Technique 91

Example 5.2. Obtain on-set maxterm coefficients of CPOS expansion by

using STT for a 3-variable function in eoe form J(X2, Xl, Xo) = 0 TI(O, 1,4)

for the on-set maxterm coefficients of fixed polarity eoe expansion of polarity

6.

Firstly, allocate and initialise Jlag[8] so that Jlag[8] = {O, 0, 0, 0, 0, 0, 0, O}.

Since the number of on-set eoe maxterms is 3, which is less than 2n
- 1 =

23- 1 = 4, maxterm method is used. Read in all the on-set eoe maxterms as

"l"s and update Jlag[8] so that Jlag[8] = {1, 1, 0, 0, 1, 0, 0, O}.

The procedure to generate respective coefficients for xo, Xl and X2 is straight­

forward. The arrays are updated so that Jlag[8] = {O, 1, 0, 0,1,0,0, O}, Jlag[8] =

{O, 1,0,0,1,0,0, O}, and Jlag[8] = {1, 1,0,0,1,0,0, O} after generation of new

coefficients for xo, Xl and X2 respectively.

The on-set CPOS maxterm coefficients are generated by XORing the index

of the array with "110" for polarity 6 so that Jlag[8] = {O, 0,1,0,0,0,1,1},

where the contents of the array is "1" for the corresponding index. Hence,

J(X2, Xl, Xo) = II (2,6,7) ~ (X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo)

5.3 Parallel Tabular Technique

STT deals with one variable at a time. To overcome the inherent serial aspect

of STT, parallel tabular technique is proposed to generate new terms for all

new eoe maxterms in parallel. Similar to the implementation of STT, PTT

also uses an array to deal with all the maxterm coefficients regardless of the

number of on-set maxterm coefficients. PTT for conversion from CPOS to

fixed polarity eoe expansion of any polarity is shown in Procedure 5.4.

5.3 Parallel Tabular Technique 92

Procedure 5.4. Parallel tabular technique for conversion from CPos expan­

sion to fixed polarity CDC expansion of any polarity p.

1. Clear all the contents of the array flag[] to "0".

2. Read in on-set CPOS maxterms, XOR the on-set CPOS maxterms with

polarity p and set "1"s to the corresponding contents of the array, where

o ::; p ::; 2n - 1 and the newly generated coefficients are used as the index

of the array.

3. Whenever the content of the array is "1", generate all possible new co­

efficients. The generation of the new coefficients is as follows. If the

index of the array is in a binary form and the ith bit of the index is "1",

consider it as "don't care", where 0 ::; i ::; n -1. Based on the new binary

form with "don't care" but excluding the old CPOS maxterm coefficient,

2° -1 new coefficients are generated for each CPOS maxterm coefficient,

where 0 is the number of "1"s in the CPOS maxterm coefficient. The

newly generated coefficients are used as the index of the array and the

corresponding contents of the array are all incremented by one.

4. Count the number of the content of the array. Only when the number is

odd, the index is the on-set COC maxterm coefficient of polarity p.

5. Repeat Step 4 for all the indices of the array.

6. Output the COC expansion according to on-set COC maxterm coeffi­

cients.

Procedure 5.4 can be modified to Procedure 5.5. PTT for conversion from

CSOP to fixed polarity COC expansion of any polarity is shown in Procedure

5.5 as follows.

5.3 Parallel Tabular Technique 93

Procedure 5.5. Parallel tabular technique for conversion from GSOP expan­

sion to fixed polarity COC expansion of any polarity p.

1. Check the number of on-set CSOP minterms. If the number of on-set

CSOP minterms is less than or equal to 2n - 1 , on-set CSOP minterms will

be used and clear all the contents ofthe array flag[] to "0". The method

is called minterm method. Otherwise on-set CPOS maxterms will be

used and set all the contents of the array flag [] to "1". The method is

called maxterm method.

2. Read in on-set CSOP minterms which are generated from PLA file.

3. XOR the on-set CSOP minterms with polarity p, where 0 :::; p :::; 2n - 1.

If minterm method is used, set "I" to the corresponding contents of the

array. If maxterm method is used, set "0" to the corresponding contents

of the array. The newly generated coefficients are used as the index of

the array.

4. Whenever the content of the array is "I", generate all possible new coeffi­

cients. The generation of the new coefficients is as follows. If the index of

the array is in a binary form and the ith bit of the index is "I", consider

it as "don't care", where 0 :::; i :::; n - 1. Based on the new binary form

with "don't care" but excluding the old coefficient, 2° -1 new coefficients

are generated for each coefficient, where 0 is the number of "l"s in the

old coefficient. The newly generated coefficients are used as the index of

the array and the corresponding contents of the array are all added one.

5. Only when minterm method is in use, modify the content of the array

by complementing the content of the array flag[2n - 1].

5.3 Parallel Tabular Technique 94

6. Count the number of the content of the array. Only when the number is

odd, the index is the on-set COC maxterm coefficient of polarity p.

7. Repeat Step 6 for all the indices of the array.

8. Output the COC expansion according to on-set COC maxterm coeffi­

cients.

The Pseudo code of PTT from CSOP minterm coefficients to fixed polarity

COC expansion of any polarity is given in Algorithm 5.2.

Example 5.3. Obtain the on-set maxterm coefficients of fixed polarity COC

expansion of polarity 6 by using PTT for a 3-variable function in CSOP form

f(X2' Xl, xo) = 2..:(0,1,3,4,5), as shown in Example 5.l.

Firstly, the number of on-set CSOP minterms is 5, which is greater than

2n
-

1 = 23- 1 = 4. As a result, maxterm method is used. Allocate and initialise

flag[8] so that flag[8] = {I, 1, 1, 1, 1, 1, 1, I}. Read in all the on-set CSOP

minterms as "O"s which is shown in Figure 5.5 and update flag[8] so that

flag[8] = {I, 1,0,0,1,0,0, O} by XORing on-set CSOP minterm coefficients

with "110" for polarity 6.

Then, the first coefficient found in the array with "I" is "(OOOh". Since

none of the bits is "I", no new coefficients are generated. The second coeffi­

cient found in the array with "I" is "(OOlh". Since the LSB is "I", this bit is

considered as a "don't care". Thus, two new coefficients "(OOOh" and "(OOlh"

are generated. But the old coefficient "(OOlh" should be excluded. As a re­

sult, only coefficient" (OOOh" is added to the array and flag[8] is updated as

flag[8] = {2, 1,0,0,1,0,0, O}.

The same procedure is applied to coefficient "(100h". Consequently, flag[8]

5.3 Parallel Tabular Technique 95

Algorithm 5.2 Parallel technique technique for conversion from esop
minterm coefficients to fixed polarity eoe maxterm coefficients.

n: the number of variables
coef ficients: the number of coefficients
0: number of ones
mask: hex constant
f lag[]: an array indicates the occurrence of coefficients
GSOP: the flag indicates on-set esop minterm coefficients used
polarity: the polarity of fixed polarity eoe expansion
infile: input file used to read in on-set esop minterm coefficients
outfile: output file used to output fixed polarity eoe maxterm coefficients

begin
mask = Ox00000001;
read_input_data(infile, n, coefficients, flag, polarity)
begin

if (coefficients:::; 2n - 1)

GSOP = 1;
else

coef ficients = 2n - coefficients;
end if
allocate_flag_and _set_flag (flag, GSOP);
XOR_ coefficients_ with_polarity (coefficients, flag, polarity);

end
for index1 = 0 to coefficients - 1 do

0= count_the_no_of_one (i);
save_ the_position_ of_ ones 0;
for index2 = 1 to 2° - 1 do

generate_possible_new _terms (index2, mask, index3);
flag[index3]+ = 1;

end for
end for
if (GSOP)

flag[2 n - 1] =!flag[2n - 1];
end if
for index 1 = 0 to 2n - 1

if (flag[index1]/\ mask == 1) / / odd number
output_data (outfile, polarity);

end if
end for

end algorithm

5.3 Parallel Tabular Technique 96

Maxterrns New maxterrns

X2 Xl Xo

0 o 0 0 o 0 0, 0 0 0
1 o 0 1
2

3
4 1 0 0
5

6
7

Figure 5.5: Newly generated maxterm.

Maxterms
Number of

occurrence

Xz Xl Xo
cae

0 000 3 Maxterms

o 0 c:) Xz Xl Xo

2 0 0 0 000

3 o 1 0 o 0

4 o 0 o 0

5 0 0
6 0 0
7 0

Figure 5.6: eoe maxterms.

is updated as flag[8] = {3, 1,0,0,1,0,0, O}. Figure 5.5 shows the correspond-

ing newly generated coefficients.

Those indices with odd number are the on-set coefficients of fixed polarity

eoe expansion of polarity 6. It can be seen in Figure 5.6 that the on-set eoe
maxterm coefficients are 0, 1 and 4, which are the same as those obtained by

using STT.

The conversion from fixed polarity eoe expansion of any polarity p to

CPOS expansion is the reserve of the conversion from CPOS expansion to

fixed polarity eoe expansion of any polarity p.

5.3 Parallel Tabular Technique 97

Procedure 5.6. Parallel tabular technique for conversion from fixed polarity

COC expansion of any polarity p to CPOS expansion.

1. Check the number of on-set COC maxterms. If the number of on-set

COC maxterms is less than or equal to 2n
-

1
, clear all the contents of the

array flag[] to "0". The method is called maxterm method. Otherwise

set all the contents of the array flag[] to "I". The method is called

minterm method.

2. Read in on-set COC maxterms and set "l"s to contents of the array,

where the on-set COC maxterms are used as the index of the array.

3. Whenever the content of the array is "I", generate all possible new coeffi­

cients. The generation of the new coefficients is as follows. If the index of

the array is in a binary form and the ith bit of the index is "I", consider

it as "don't care", where 0 :S i :S n - 1. Based on the new binary form

with "don't care" but excluding the old coefficient, 2° -1 new coefficients

are generated for each old coefficient, where 0 is the number of "l"s in the

old coefficient. The newly generated coefficients are used as the index of

the array and the corresponding contents of the array are all added one.

4. Only when minterm method is in use, modify the content of the array

by complementing the content of the array flag[2n - 1].

5. Count the number of the content of the array. Only when the number

is odd, XOR the index of the array with polarity p and output it as the

on-set maxterm coefficient of CPOS expansion, where 0 :S p :S 2n - 1.

6. Repeat Step 5 for all the indices of the array.

7. Output the CPOS expansion according to on-set CPOS coefficients.

5.4 Experimental Results 98

Example 5.4. Obtain on-set maxterm coefficients of CPOS expansion by

using PTT for a function in COC form f(X2' Xl, xo) = 0 I1(0, 1,4) for the

on-set maxterm coefficients of fixed polarity COC expansion of polarity 6.

Firstly, since the number of on-set COC maxterms is 3, which is less than

2n - l = 23- 1 = 4, maxterm method is used. Allocate and initialise flag[8] so

that flag[8] = {O, 0, 0, 0, 0, 0, 0, O}. Read in all the on-set COC maxterm as

"l"s and update flag[8] so that flag[8] = {I, 1,0,0,1,0,0, O}.

The arrays are flag[8] = {I, 1,0,0,1,0,0, O}, flag[8] = {2, 1,0,0,1,0,0, O}

and flag[8] = {3, 1, 0, 0, 1, 0, 0, O} respectively after the generation of new co­

efficients for each on-set maxterm coefficients using PTT.

The on-set CPOS maxterm coefficients are generated by XORing the index

of the array with "110" for polarity 6, where the contents of the array is odd

number for the corresponding index. Hence, f(X2' Xl, xo) = I1(2, 6, 7), which

are the same coefficients as in Example 5.2.

5.4 Experimental Results

The algorithms are implemented in the C language and the programs are com­

plied by the GCC. The results are obtained using a PC with Intel Celeron 897

with 256 MB RAM under Linux. 3 sets of on-set CPOS maxterm coefficients

are randomly generated to test the effectiveness of the algorithms. One set has

30 on-set CPOS maxterm coefficients. Another has 300. The other has 3000.

Each set of coefficients is tested for both STT and PTT. When the number of

variables n < 15, the CPU time is almost zero for both algorithms. The CPU

time is slightly increased as the number of variables increases. Figure 5.7 and

Figure 5.8 show the CPU time in seconds for different variables.

5.4 Experimental Results

2Tr==============~-------------------
1.8 r- [;l STT 30 Q PTT 30 I """

1.6 r- 13 STT 300 I'ZI PTT 300

1.4 - iii STT 3000 1m PTT 3000
:E 1.2 Ii!
Q)

E
:p
;:)

& :.: I I r"

:: I~ =l3,:Ji dilHlJ
15 16 17 18 19

99

Figure 5.7: CPU conversion time for randomly generated CPOS expansions
with 30, 300 and 3000 on-set CPOS maxterm coefficients when 15 ::::; n ::::; 19.

34
32 I E3STT 30 DPTT30 30
28 I !3STT 300 mPTT 300
26
24 I E:] STT 3000 IlJPTT 3000 22

Em I
~ 18 J iii'rL--f:::Io-Nli :p 16

~ 14 r==------------=1I,

o ~~ '-~i) _ "jiR~ ~I ~m ,l(~ I,~
2 ..rxfilf r-1.MSli/ir F~ ", _ i., o =- 1: - "~I: ..

20 21 22 23 24 25

Figure 5.8: CPU conversion time for randomly generated CPOS expansions
with 30, 300 and 3000 on-set CPOS maxterm coefficients with 20 ::::; n ::::; 25.

5.4 Experimental Results 100

Table 5.1: Comparison conversion CPU time for IWLS93 benchmarks.

Multi-seg. Multi-seg.
Name n [34] [51] tech. using tech. using STT PTT

(s) (s) maxterms minterms (s) (s)
(s) (s)

apex4 9 0 0 0 0 0 0
alu4 14 2.19 - 0.01 0.01 0.01 0.32
b12 15 3.3 - 0.02 0.01 0.02 0.53
clip 9 0.06 0 0 0 0 0
con1 7 0 0 0 0 0 0

misex1 8 0 - 0 0 0 0
misex3c 14 1.59 - 0.01 0.01 0 0.06

pdc 16 16.86 0.931 0.08 0.03 0.11 0.13
rd84 8 0 0.05 0 0 0 0
spla 16 15.49 0.931 0.05 0.05 0.11 0.07

table5 17 28.4 9.845 0.22 0.06 0.2 0.15

Our methods are compared to [34] and [51]. Table 5.1 shows the comparison

results, in which experimental results in [34] and [51] were performed on a

PC with Pentium III (1 GHz) CPU with 256 MB RAM under windows and

Pentium IV (2.4 GHz) CPU with 512 MB RAM under windows. "-0" means

CPU time almost zero, n stands for the number of variables. In all cases, STT

and PTT outperform [34] and [51] significantly.

Time complexity of the STT and PTT are O(n2n) and O(caef ficients2°)

respectively, where a is the number of "l"s in each maxterm and caef ficients

is the number of maxterms or minterms. Space complexity of the STT and

PTT are both O(2n).

Table 5.2 shows the CPU time in seconds for maxterm STT method,

minterm STT method for large randomly generated functions and percent-

age of improvement, where first column is the number of variables, the second

one is the number of on-set CPOS maxterms before conversion and the third

5.4 Experimental Results 101

Table 5.2: STT using maxterm and minterm methods.

n no. of CPOS no. of COC maxterm minterm imp.
before conversion after conversion STT (s) STT (s) %

20 1048546 146737 1.96 1.88 4.08
20 1048276 308855 2.14 2.05 4.21
20 1045576 461047 2.33 2.26 3.00
21 2097122 285795 4.15 3.88 6.51
21 2096852 499257 4.38 4.09 6.62 I

21 2094152 885755 4.8 4.66 2.92
22 4194274 337843 8.25 7.75 6.06
22 4194004 724669 8.65 8.4 2.89
22 4191304 1622279 9.67 9.28 4.03
23 8388578 372491 16.54 15.63 5.50
23 8388308 1118017 17.28 16.21 6.19
23 8385608 2962567 19.42 18.55 4.48
24 16777186 428775 33.57 31.84 5.15
24 16776916 1953563 34.78 33.64 3.28
24 16774216 5485627 39.07 37.16 4.89
25 33554402 570823 69.74 66.03 5.32
25 33554132 3360689 72.17 68.15 5.57
25 33551432 9989185 79.96 76.00 4.95 -_ _----_ ... _ .. - ~--- -.-- '-------------------

I Ave. I 11008938 I --1750776 - I 23.83 -, 22.64 I4.99 J

one is the number of on-set COC maxterms after conversion.

The improvement rate is defined in (5.1).

. CPU in maxterm method - CPU in minterm method 1 01 ()
'imp = x 0010 5.1

CPU in maxterm method

where CPU in maxterm method and CPU in minterm method stand for the

CPU time used for maxterm and minterm methods respectively.

5.5 Summary 102

5.5 Summary

STT and PTT for conversion between standard Boolean and fixed polarity

COC expansions of any polarity are proposed in this chapter. By using bitwise

operations and paying penalty of memory requirement, STT outperforms the

other methods in the literature. PTT generates new terms in parallel instead

of dealing with one variable at a time. However, as the number of product

terms increases the performance of PTT degrades and can not achieve better

performance than STT because of overhead computation. As a result, PTT is

suitable for large sparse functions. While STT can be used when PTT can not

perform well for those functions with a large number of coefficients. Minterm

STT method can achieve improvement of 4.99% over maxterm STT method

in terms of CPU conversion time for randomly generated large functions.

Chapter 6

On-set Table Method for

Multi-level Mixed Polarity RM

6.1 Introduction

Conversion algorithms between standard Boolean and DFRM expansions have

been investigated in [118,140]. Furthermore, many optimisation techniques

for two-level FPRM and MPRM forms were proposed in terms of area min­

imisation and/or power minimisation in [121,127,130,131,133]. The method

in [121] proposed an exact minimisation by exhaustively searching all the pos­

sible fixed polarities to find the best polarity with least number of 7r-terms. For

an n-variable function, there are 2n polarities of the FPRM forms. It would be

difficult to exhaustively search all possible MPRM forms since the number of

polarities could be 2n2n
-

1
• Recently, truth vector based method for MMPRM

optimisation was proposed in [131]. This method uses a truth vector with

length of 2n to represent an n-variable FPRM expansion. By elimination and

decomposition, the compact representation of MMPRM form can be obtained

103

6.2 Properties of On-set Table and Basic Definitions 104

from the FPRM expansion. The main disadvantage of this method is the rapid

increase in memory for large functions.

In this chapter, a novel onset table method is presented to obtain the MM-

PRM form directly from the FPRM expansion, which requires less memory so

that it can target large functions. The rest of the chapter is organised as fol-

lows. Section 6.2 gives the properties of onset table. In Section 6.3, extraction

of common variables from on-set table is given. The proposed algorithm for

the optimisation of MMPRM is detailed in Section 6.4. Experimental results

are presented in Section 6.5.

6.2 Properties of On-set Table and Basic Defi-

nitions

Any n-variable Boolean function can be expressed canonically by the SOP

form in (6.1).
2n-1

f(X n -1, ... ,Xl, Xo) = ED 2: b{Trj

j=O

(6.1)

where "ED z.=" is the XOR operator, bj E {O, I} and "l"s indicate the presence

of the corresponding 1T-terms in the expansion. The subscript j is expressed

in the binary form as j = (jn-1 ... jdo). The 1T-term can be expressed as

. . .
1Tj = Xn-1 ..• X1XO (6.2)

X' = { 1 z •
Xi

ji = 0
(6.3)

Ji = 1

where 0 :::; i :::; n - 1.

6.2 Properties of On-set Table and Basic Definitions 105

Definition 6.1. Any n-variable FPRM expansion of any polarity can be ex­

pressed with Set 0, which is composed of the decimal numbers equivalent to

the coefficients of 7f-terms.

Example 6.1. Given a 3-variable function as an FPRM expansion of any

polarity F(X2' :h, xo) = Xo ED X1XO ED X2XO ED X2X1XO , it can be represented by

7f-terms as in F(X2' Xl, Xo) = 7f1 ED 7f3 ED 7f5 ED 7f7. It also can be expressed by a

Set 0 as 0 = {1, 3, 5, 7}, in which the decimal numbers are the subscript of

bj in (6.1).

Definition 6.2. Onset table, called T table (briefly T), is to describe the

existence of each variable in each 7f-term of a FPRM expansion. The T has

the following properties:

1. Each row of the T represents each element of Set 0 in binary form;

2. Each column of the T represents an input variable of the FPRM expan-

slOn;

3. Qsi E {O, 1} is a bit on the 8th row and ith column of T. Qsi = 1 means

that the variable Xi on the ith column and 8th row of T appears in its

true form in the expansion. Qsi = 0 means that the variable Xi on the

ith column and 8th row of T does not appear in the expansion.

Example 6.2. Given 0 = {1, 3, 5, 7} for FPRM expansion of positive polarity,

the corresponding T is shown in Figure 6.1.

Definition 6.3. F -+ T indicates that the FPRM expansion of any polarity F

is mapped to T. T -+ F indicates that the T is mapped to FPRM expansion

of any polarity F.

6.2 Properties of On-set Table and Basic Definitions 106

x2 -Xi Xo

7rl 0 0 1

7r3 0 1 1

7r5 1 0 1

7r7 1 1 1

Figure 6.1: An example of T for a given G.

Corollary 6.1. Given a FPRM expansion of any polarity F and F ----+ T. If

any two columns of T are swapped, new T is generated but F = :F, where

T ----+ :F.

Proof. Swapping any two columns of T does not change the logic functionality

of F but the order of the variables in F. Hence, F = :F. o

Corollary 6.2. Given a FPRM expansion of any polarity F and F ----+ T.

If any two rows of T are swapped, new T is generated but F = :F, where

T ----+ :F.

Proof. If any two rows of T are swapped, it is equivalent to swapping any two

on-set coefficients of F, because XOR operator is commutative. As a result,

F =:F. o

Example 6.3. Given a 3-variable function in the FPRM expansion of positive

polarity in Example 6.1, T is generated after swapping the third row and forth

row of T, i.e., 7r5 and 7r7 are swapped, as shown in Figure 6.2(a). Equation

(6.4) shows that the FPRM expansion remains unchanged.

T is generated after swapping the first column and third column of T, i.e.,

variable Xo and X2 are swapped, as shown in Figure 6.2(b). Equation (6.5)

6.2 Properties of On-set Table and Basic Definitions 107

X2 Xi Xo Xo .AI X2

, ,
7l'1 0 0 1 7l'1 1 0 0

,
7l'3 0 1 1 7l'3 1 1 0

7l's 1 1 1 7l's 1 0 1
,

7l'7 1 0 1 7l'7 1 1 1

(a) (b)

Figure 6.2: The resulting T generated after swapping. (a) 1f5 and 1f7 are
swapped, (b) Variable Xo and X2 are swapped.

shows that the FPRM expansion remains unchanged.

:;::' (X2' Xl, Xo)
I , I I

1fl EEl 1f3 EEl 1f5 EEl 1f7

1fl EEl 1f3 EEl 1f7 EEl 1f5

Xo EEl XlXO EEl X2XlXO EEl X2XO (6.4)

Xo EEl XlXO EEl X2XO EEl X2XlXO

:;::(X2' Xl, Xo)

:;::' (X2' Xl, Xo)
I , I I

1fl EEl 1f3 EEl 1f5 EEl 1f7

Xo EEl XOXI EEl XOX2 EEl XOXlX2 (6.5)

Xo EEl XlXO EEl X2XO EEl X2XlXO

:;::(X2' Xl, Xo)

6.2 Properties of On-set Table and Basic Definitions 108

X2 .A1 Xo

Jr1 II 01 D Jr3 II I
ST2

0 I 1

Jr5 1111D
ST3

Jr7 II U 1 1
STI

Figure 6.3: 3 possible sub-tables of T.

Definition 6.4. T can be divided into U sub-tables either in the horizontal or

vertical direction, where U is an integer and U ~ 1. The sub-table is notated

as 8Tt, where 0 ::; t ::; U - 1. The sub-table STt that includes some of the 7f-

terms of T in horizontal direction is notated as P STt . Any sub-table STt that

includes some of the variables of T in vertical direction is notated as V STt .

Example 6.4. If T shown in Figure 6.1 is divided into 3 sub-tables, as seen

in Figure 6.3, PSTl = {7fl,7f3,7f5,7f7} and VSTl = {X2}' PST2 = {7fl,7f3} and

VST2 = {Xl,XO}' PST3 = {7f5,7f7} and VST3 = {Xl,XO}.

Definition 6.5. If sub-table ST includes all the 7f-terms of the T, it is defined

as TiV P ST. The variables included by the TiV P ST are notated as VTiV P ST. If

sub-table ST includes all the variables of the T, it is defined as TiVV ST.

Corollary 6.3. Given any two sub-tables, STl and ST2, where STl C T

and ST2 C T, if P STl = P ST2, these two sub-tables, STl and 8T2 can be

grouped into another sub-table ST3 in vertical direction without changing the

logic functionality of F, where ST3 = {STl, 8T2}.

Proof. Because P STl = P ST2, STl and ST2 are located at the same row of T,

as shown in Figure 6.4(a). T can be reorganised and generates r, as shown

6.2 Properties of On-set Table and Basic Definitions 109

Xn- 1 Xi2 Xil Xo Xn- 1 XiI'" Xo X;2 X;1+1

%1 %1

%jl-l

,
%}1-1

- - - - - - - - -r - - - - - - - - - - - - --, ,
%}1 %}1

STI ST2 ST1 ST2

%}2-1
,

%}2-1

----------~--------------.
%j2

,
%}2

%}3
,

%}3

(a) (b)

Figure 6.4: Exchange two sub-tables, STl and ST2 in the vertical direction.
(a) T before exchange, (b) 7' after exchange.

in Figure 6.4(b). Let T and 7' be on-set tables before and after changing

the position of ST2 . Let F -+ T and 7' -+ :;::'. According to Corollary 6.1,

F=:;::'.

Let 7" be on-set table after grouping STl and ST2 and 7" -+ :;::", as shown

in Figure 6.5. Because after grouping, 7" = 7'. Hence, :;::' = :;::".
, ,.,-',

As a result, F = F =.r . o

Corollary 6.4. Given any two sub-tables, STl and ST2 , where STl C T and

ST2 C T, if 11 STl = 11 ST2 , these two sub-tables, STl and ST2 can be grouped

into another sub-table ST3 in horizontal direction without changing the logic

functionality of F, where ST3 = {STl, ST2 }.

Proof. Because 11 STl = 11 ST2 , STl and ST2 are located at the same column of

6.2 Properties of On-set Table and Basic Definitions

1C1

1CJ1- 1

.
1Cj1

.
1Cj2- 1

.
1Cj2

1CJ3

Xn-1 X]1 Xo X]2 Xi l+1

--------------.&--------1

ST3

, , , , , ,

. , ,
------------------------,

Figure 6.5: Resulting T" after grouping STI and ST2 into ST3 •

110

T, as shown in Figure 6.6(a). T can be reorganised and generates T', as shown

in Figure 6.6(b). Let T and T' be on-set tables before and after changing the

position of ST2 . Let F ---+ T and T' ---+ :F'. According to Corollary 6.2,

F=:F'.

Let T" be on-set table after grouping STI and ST2 and T" ---+ :F", as shown

in Figure 6.7. Because after grouping, T" = T'. Hence, :F' = :F".

As a result, F = :F' = :F" . o

Corollary 6.5. Given a FPRM expansion F, T and WPST, where F ---+ T,

VWPST = {Xi2,Xi2-l,'" ,Xil+l,Xil} and all the elements ofliVPST are "1".

If T' is generated by deletion of vV P ST from T and T' ---+ :F',

F s7rF
,

(6.6)

where S7r = Xi2Xi2-l' . 'Xil+lXil and 0 :::; il :::; i2 :::; n - 1.

6.2 Properties of On-set Table and Basic Definitions 111

Xn- 1 Xi2 XiI Xo Xn- 1 Xi2 XiI x o

1(1 1(1

STI STI

1(Jl-l 1(Jl-l . ---------------,
1(jl 1(j2

ST2

1(j2-1 1(j3-1

1(j2 1(jl

ST2

1(j3-1 1(j2-1

1(j3 1(j3

1(j4 1(j4

(a) (b)

Figure 6.6: Exchange two sub-tables, STl and ST2 in the horizontal direction.
(a) T before exchange, (b) T after exchange.

Proof. Because F -+ T, VWPST = {Xi2,Xi2-l,··· ,Xi1+l,Xil}, 0::::; il::::; i2::::;

n, and lV P ST c T, the corresponding T can be drawn as shown in Figure

6.8(a).

Let n-variable function F = EEl 2:..:~:~l b{lfj be the expansion before extrac­

tion and :F = EEl 2:..:~:~l b~7r~ be the one after extraction. After extraction of

common variables, the number of variables changes but the number of 7r - terms

does not change. Hence bj = b~.

I (I For any 7rj and 7rj' because all the elements of WPST are "I", 7rj = S7r)7rj ,

6.2 Properties of On-set Table and Basic Definitions 112

Xn-1 Xj2 xi! Xo

,
JZ'1

JZ'j1-1

, ST3
JZ'j2

,
JZ'j3-1

t _______________ _

,
JZ'jl

JZ'j2-1

,
JZ'j3

JZ'i4

Figure 6.7: Resulting T" after grouping STI and ST2 into ST3 .

where S7r Xi2Xi2-l·· ·Xil+1Xil. Hence, F can be rewritten as F s7fF,

namely, S7f and F have the logic "AND" relationship as in (6.6). If S7f -t

lIVPST, the variables included in the S7f can be extracted from F, resulting in

new T' generated by deleting WPST from T, as shown in Figure 6.8(b). 0

Corollary 6.6. Given a FPRM expansion F, T and WPST, where F -t T,

1fliVPST = {Xi2,Xi2-l,··· ,Xi1+l,Xil} and all the elements ofliVPST are ((0".

If T' is generated by deletion of W P ST from T and T' -t F,

F = F' (6.7)

where S7f = Xi2Xi2-l· . ·Xi1+lXil and 0 S; il S; i2 S; n - 1.

6.2 Properties of On-set Table and Basic Definitions 113

Xn- I Xi2 XiI Xo Xn- 1 Xi 2+1 Xil - 1 X o

,
1[1 1[1

,
1[j1-1 1[j_1

· 1[jl · · · 1[j1

WPST

.
7rj2

. 1[j2

1[j3
1[j3

(a) (b)

Figure 6.8: Extraction of global common variables. (a) T before deletion, (b)
T after deletion.

Proof. Let n-variable function F = EEl L:~:~l bj 7rj be the expansion before ex­

traction and :F' = EEl L:~:~l b~7r~ be the one after extraction. After extrac­

tion of common variables, the number of 7r-terms does not change. Hence

bj = b~. T is generated from T by deleting TtV P ST, where VW P ST =

{Xi2,Xi2-1,'" ,Xil+l,Xil}, 0::; i1 ::; i2 ::; n and all the elements of WPST

are "0". According to Definition 6.2, the variables do not appear in the F if

Qsi = 0, i.e., VWPST = {Xi2,Xi2-1,'" ,Xil+l,Xil} do not appear either in F

and :F'. As a result, F = :F'. D

Example 6.5. Given a 4-variable function in the FPRM expansion of positive

polarity F(X3, X2, Xl, Xo) = X3 EEl X3XO EEl X3XI EEl X3XIXO, VW P ST = {X3} and

all the elements of W P ST are "1". Variable X3 can be extracted from F, as

shown in Figure 6.9. Hence, :F' (X2, Xl, Xo) = 1 EElxo EEl Xl EElXIXO and S7r = X3. If

6.2 Properties of On-set Table and Basic Definitions 114

X3 Xz ;; xo Xz ;; xo
,

1[8 1 0 0 0 1[8 0 0 0

1[9 1 0 0 1 1[9 0 0 1

1[10 1 0 1 0 1[10 0 1 0
,

1[11 1 0 1 1 1[11 0 1 1

(a) (b)

Figure 6.9: On-set table deletion of TiVPST, where FWPST = {xa} and all
the elements of HlP ST are "I". (a) T before deletion, (b) T after deletion.

X3 x 2 Xl xo X3 ;; xo

1[8 1 0 0 0 1[8 1 0 0

1[9 1 0 0 1 1[9 1 0 1
,

1[10 1 0 1 0 1[10 1 1 0

1[11 1 0 1 1 1[11 1 1 1

(a) (b)

Figure 6.10: On-set table deletion of TiV P ST, where FW P ST = {X2} and all
the elements of TiV P ST are "0". (a) T before deletion, (b) T after deletion.

the function is expanded, F(X3' X2, Xl, Xo) = S7rF = x3(1 EB Xo EB Xl EB XIXO) =

X3 EB X3XO EB X3Xl EB X3XIXO, the logic functionality remains unchanged.

It can be seen in Figure 6.10(a), Qsi 0 for the column of variable X2

in the T. According to Definition 6.2, X2 does not appear in the expansion

F, where F ---+ T. T is generated shown in Figure 6.10(b) after deletion of

FlVPST = {X2} and all the elements of H1PST are "0", where T ---+ F.

6.2 Properties of On-set Table and Basic Definitions 115

Although T changed, the function does not change. Hence F = :F.

Definition 6.6. Given a T. Let STl C T and ST2 C T. STl ST2 if

VSTl = VST2 is satisfied, i.e., the variables included by STl and ST2 are

same and also all the elements of STl and the corresponding elements of ST2

are bitwise identical.

Corollary 6.7. Given F ----+ T and T consists of two sub-tables, WVSTl

and TVVST2, where T = {vVVST1 , TVVST2}. In addition, SSTl = SST2,

where S STl c TVV STl and S ST2 C TVV ST2. F can be rewritten as F =

(S7fl EEl S7f2):F, where SSTl ----+ :F or SST2 ----+ :F. S7fl and S7f2 are common

variables of WV STl and WV ST2 respectively.

Proof. Let TVV STl ----+ Fl and VVV ST2 ----+ F 2. Because F ----+ T and T =

{TiVVST1 , TVVST2 } , hence,

F = Fl EEl F2 (6.8)

Given SSTl ----+ ~ and SST2 ----+~. According to Corollary 6.5,

I

Fl = s7fl F l (6.9)

I

F2 = s7f2F2 (6.10)

Equation (6.8) can be rewritten as

F = (S7fl~) EEl (s7f2F~) (6.11)

Because :F ----+ S STl or :F ----+ S ST2 and S STl = S ST2,

I I I

F =Fl =F2 (6.12)

6.2 Properties of On-set Table and Basic Definitions 116

X3 X2 Xi Xo Xi X3 Xz Xo

7r6 0 1 1 0 7r6

7r7 0 1 1 1 7r7

1 0 8 SST}
1 0 1 1

WVST}

n;.2 1 1 0 0 7r12

n;.3 1 1 0 1 7r13 I: 1 81 1
WVST2

(a) (b)

Figure 6.11: Extraction of common sub-table. (a) T of a 4-variable function in
FPRM expansion, (b) The resulting T' after changing the order of variables.

As a result, F = (S7rl EB S7r2):F. o

Example 6.6. Given a 4-variable function F(X3, X2, Xl, Xo) and its FPRM

expansion F(X3, X2, XI, xo) = X2Xl EBX2XIXO EBX3X2 EBX3X2XO, 0 = {6, 7,12, 13}.

According to 0, T can be obtained as shown in Figure 6.11(a). After

exchanging variable order in T, T' can be obtained as shown in Figure 6.11(b).

As it can be seen from Figure 6.11(b), T' can be divided into two sub-tables,

WF STI and WF ST2, where vVF STI = {7r~, 7r~} and TiVF ST2 = {7r~2' 7r~3}'

TiVFSTI can be further divided into sub-table SSTI, where SSTI is sub­

table of TiVF STI' Similarly, TiVF ST2 can be further divided into sub-table

SST2, where SST2 is sub-table of WFST2. As it can be seen, SSTI = SST2

and it includes variables X2 and X2XO' Let WF STI -+ F I , TiVF ST2 -+ F2 and

SSTI, SST2 -+ :F. As a result,

F = FI EB F2 = xlF' EB X3F' = (Xl EB X3)F'

where :F = X2 EB X2XO'

6.3 Extraction of Common Variables 117

6.3 Extraction of Common Variables

In the process of simplification of the FPRM expansion, the extraction of

common variables is of importance. There are two kinds of common variables

called global and local common variables, where "global" means the variable

exists in all 7f-terms or does not exist at all in all 7f-terms while "local" means

the variable exists in some of the 7f -terms.

Definition 6.7. If ·WPST only includes variable Xi, the sub-table is notated

as l'VPST:i;i. ST:i;i is defined as the sub-table after deletion of WPST:i;i from

T, where W P ST:i;i C T.

According to Corollaries 6.5 and 6.6, the global common variables can be

easily obtained. Following is the procedure of extraction of global common

variables, assuming R rows and n columns in T for n variables and R 7f-terms

in the FPRM expansion.

Procedure 6.1. Extraction of global common variables

1. Find sub-table W P ST:i;i from T and check whether all the elements of

TV P ST:i;i are "1" for all variables, where 0 < i < n - 1. Mark the

corresponding TV P ST:i;i.

2. Store xi as the global common variables.

3. Find sub-table W P ST:i;i from T and check whether all the elements of

W P ST:i;i are "0" for all variables, where 0 < i < n - 1. Mark the

corresponding liV P ST:i;i.

4. Repeat Steps 1 to 3 for other variables. Count the number of W P ST:i;i

with all "l"s and with all "O"s respectively. The numbers are notated as

G and H for TV P ST:i;i with all "l"s and with all "O"s respectively.

6.3 Extraction of Common Variables 118

5. Generate sub-table T by deletion of G + H number of W P STxi from T,

where T has R rows and n - G - H columns.

It is however not straightforward to extract local common variables. Fol­

lowing is the procedure of extraction of local common variables, assuming R

rows and n columns in T for n variables and R 7r-terms in the FPRM expan-

slOn.

Procedure 6.2. Extraction of local common variables

1. Generate sub-table STxi by deletion of W P STxi from T, where STxi has

R rows and n - 1 columns.

2. Categorise 7r-terms into different class by the number of "l"s in STxi ' The

class that has the greatest number of "l"s is notated as max(STxi)'

3. Repeat Steps 1 to 2 to obtain n number of max(STxi) for each STxi .

4. Generate T from T by deletion of E numbers of Tl1 P STxi in which the

STxi has the largest number max(STxi), where E = [n/2] and [] is an

integer operator. Put the variables Xi for the corresponding deleted sub­

table VV P STxi into {V AR}. As a result, the T has R rows and n - E

columns.

5. Categorise 7r-terms into different classes by the number of"l"s in T. The

class that has the greatest number of "l"s is notated as max(T'). Put

the 7r-terms which are in the class with the largest max(T) into {PI}.

6. Reorganise T as follows. Carry out row exchange first so that {PI} C

TlVVSTl and the rest of 7r-terms in WVST2 . Carry out column ex­

changes so that VSTl1 = {V AR}, where WVST1 = {STl1 , ST12 } and

6.3 Extraction of Common Variables 119

x4 X3 x2 .AJ. Xo

1f1 0 0 0 0 1

1f6 0 0 1 1 0

1f9 0 1 0 0 1

1f21 1 0 1 0 1

1f23 1 0 1 1 1

1f26 1 1 0 1 0

1f31 1 1 1 1 1

Figure 6.12: The T of a 5-variable FPRM expansion.

STu, STl2 c WVSTI . All of the elements in STl2 should be "I". VST12

is local common variables.

Example 6.7. Given a 5-variable FPRM expansion of positive polarity, as

shown in (6.13). The onset coefficients are 0 = {I, 6, 9,21,23,26,31}.

F(X4' X3, X2, Xl, Xo) = Xo EB X2XI EB X3XO EB X4X2XO EB X4 X 2X I X O

EBX4X3Xl EB X4X3X2XIXO

(6.13)

The corresponding T for the given FPRM expansion is shown in Figure

6.12. Since it is positive polarity expansion, all the variables appear in the

true forms, i.e., Xi = Xi. Because the original on-set table is carried out

deletion until the variables are extracted from the original on-set table so as to

simplify the FPRM expansion. For purpose of the simple representation, T is

notated as an old on-set table before the deletion of on-set table. T is notated

as an newly generated one after the deletion of on-set table to distinguish itself

from before old on-set table. The notation is the same as for 'if-terms. 'if' is

6.3 Extraction of Common Variables 120

x4 x2 Xi X 0

1f1 0 0 0 1
.

1f6 0 1 1 0
.

1f9 0 0 0 1

1f21 1 1 0 1
.

1f23 1 1 1 1

1f26 1 0 1 0
.

1f31 1 1 1 1

Figure 6.13: Sub-table STx3 after deleting W P STx3 from T.

notated as a new 1f-term to distinguish itselffrom old 1f-term after the deletion

of table. Because of deletion of the table, 1f' sometimes might become partial

1f-term (part of a term) but 1f' is used even if it is partial1f-term.

Step 1:

Generate sub-table STxi by deletion of W P STxi from T. If lV P STx3 is

deleted for the corresponding variable X3, as shown in Figure 6.13, STx3 is

generated, where STx3 = {T¥PSTx4 , WPSTx2 , vVPSTx1 , WPSTxo}.

Step 2:

According to the content in each row of STx3 , STx3 can be categorised into

5 classes: {1f~,1f~}, {1f;3,1f;d, {1f~}, {1f;1} and {1f;6}' The number of "1"s in

each class is 2, 8, 2, 3 and 2 respectively. Hence max(STx3) = 8.

Step 3:

Similarly, max(STxi) for the rest of the variables can be obtained by re­

peating Steps 1 and 2 as max(STxo) = 4, max(STx1) = 6, max(STx2) = 4 and

max(STx4) = 4.

6.3 Extraction of Common Variables 121

x4 x2 Xo

1r1 0 0 I

1r6 0 I 0
.

1r9 0 0 1

1r21 1 1 1
.

1r23 1 1 1
.

1r26 1 0 0

1r31 1 1 1

Figure 6.14: Sub-table T after deleting WPSTxl and l¥PSTx3 '

X4 X2 Xo X3 .x;

7(1 0 0 1 0 0
.

7(6 0 1 0 0 1
WVST2

7(9 0 0 1 1 0
.

7(26 1 0 0 1 1

7(21 1 1 1 0 0
. ST12 STl1

7(23 1 1 1 0 1 WVST1

7(31 1 1 1 1 1

Figure 6.15: The resulting T after columns and rows are swapped.

Step 4:

E = [n/2] = 2. {V AR} = {Xl, X3} is recorded. T is generated by deleting

WPSrd and WPSTx3 ' Figure 6.14 shows the resulting T.

Step 5:

According to the content in each row of T , T can be categorised into 4

6.4 On-set Table Method for Multi-Level Mixed Polarity RM 122

. "} {'} '} {' , '} {' , '} classes, whIch are {7fI ,7f9 , 7f6 , {7f26 and 7f2I,7f23,7f31. 7f2I,7f23,7f3I has

the greatest number of "l"s. Hence, {PI} = {7f;I, 7f;3, 7f;I}.

Step 6:

Reorganise T by exchanging rows so that {7f2l, 7f23, 7f3l} c lVV STl and the

rest of the 7f-terms in TiVVST2 . As a result, T' = {TiVVSTl , vVVST2 }. Reor­

ganise T' by exchanging columns so that VST11 = {Xl,X3}, where WVSTl =

{ STu, STl2 }, STu, STl2 c WV STl and all of the elements in STl2 should

be "I". Hence, T' = {TiVVSTl , WVSTd = {{STu, STl2 }, TiVVST2 } and

VSTl2 = {X4X2XO}, as shown in Figure 6.15.

If WV ST2 ---+ :F2 , STl2 ---+ S7fl2 and STu ---+ :F11 , where S7fl2 is local

common variables and S7fl2 = X4X2XO, then

:F = S7fl2:FU EEl :F2

6.4 On-set Table Method for Multi-Level Mixed

Polarity RM

Any function of a given FPRM expansion can be represented as an onset table.

Using the properties of onset table and the proposed extraction of common

variables in Sections 6.2 and 6.3, the onset table can be divided into smaller

sub-tables by extracting common variables, which leads to compact MMPRM

expansion.

There are two stop criteria of the algorithm for determining the smallest

onset truth table.

1. Only one 7f-term appears in the T.

2. Only one variable appears in each 7f-term.

6.4 On-set Table Method for Multi-Level Mixed Polarity RM 123

The MMPRM expansion is obtained in Procedure 6.3 as follows.

Procedure 6.3. On-set table method for obtaining the MMPRM expansion.

1. Obtain T from a given two-level FPRM expansion F, where F -----+ T.

2. Use Procedure 6.1 to extract global common variables and generate T

from T. Save the extracted global common variables and update T as

T.

3. According to Corollary 6.7, extract and save common sub-table from T

if it exists.

4. Use Procedure 6.2 to extract local common variables so that T becomes

T = {TVVST1 , WVST2} = {{ST11 , ST1d, WVST2 }, where TVVST1 -----+

F 1, TVV ST2 -----+ F 2 , ST12 -----+ S7f12, ST11 -----+ F 11 , S7f12 is local common

variables and F = S7f12F ll EB F2 • Save the extracted local common

variables and update ST11 as T.

5. Determine if the stop criteria are satisfied. If satisfied, save the expan­

sion. Otherwise repeat Steps 2 to 4 for T.

6. Update TVV ST2 as T and repeat Steps 2 to 5 for T.

7. Output the MMPRM expansion F = F1 EB F 2 .

If the expansion in Example 6.7 is carried out further using the proposed

algorithm, the expressions of F 1 , F2 and the compact MMPRM expansion are

obtained respectively as

F1

F2

F

X4 X 2X O(X1 EB X3 X 1)

X3 X O EB Xl (X2 EB X4X3)

X4X2XO(X1 EBX3X1) EBX3XO EBX1(X2 EB X 4 X 3)

(6.14)

(6.15)

(6.16)

6.4 On-set Table Method for Multi-Level Mixed Polarity RM 124

:~)~ ::,)--J x~'
I MD2 ~ x~

X3

mR2

X4

AUD2

Figure 6.16: The circuit implemented with 2-input AND and XOR gates for
PPRM expansion.

X4

X2

xo

X1bN'

X3

XI

X3bM

MD2

Figure 6.17: The circuit implemented with 2-input AND and XOR gates for
MMPRM expansion.

It can be seen that in (6.13), the number of literals is 20. This is reduced

to 12 literals in (6.16) representing 40% saving. If 2-input AND and 2-input

XOR gates are used to implement expansions, the circuits for PPRM and

MMPRM expansions can be obtained as shown in Figure 6.16 and Figure 6.17

6.5 Experimental Results 125

respectively. It can be seen that in Figure 6.16, the number of gates in the

circuit is 19. This is reduced to 11 gates in Figure 6.16 resulting in 42.1%

saving.

6.5 Experimental Results

The proposed algorithm is implemented in C. The results are obtained using

a PC with Pentium IV (1.8 GHz). The proposed algorithm is applied to

Microelectronics Center of North Carolina (MCNC) benchmark circuits [142].

Performance is measured on 7 MCNC benchmark circuits and three randomly

generated circuits. The test circuit size is up to 25 input variables. The number

of literals is used to measure the area of the circuit implementation.

Table 6.1 shows the comparison of the number of literals between positive

polarity expansion of FPRM expansions and MMPRM expansion obtained

from the positive polarity expansion of FPRM expansions. The first column

in Table 6.1 is the benchmark circuit name, the second is the input variable

number, the third and the fourth list the number of literals, and the last column

is the percentage improvement. The improvement is defined as in (6.17).

. literals - literals in M 1\;[PRIM 01
zmp = . l X 10010

lztera s
(6.17)

where "literals" stands for the results from [121] while the "literals in MMPRM"

stands for the number of literals obtained by the proposed method. It can be

seen that the maximum improvement could be up to 80% and the average

improvement is 68%.

Table 6.2 shows the comparison of the number of literals between the best

polarity expansion of FPRM and MMPRM expansions. The MMPRM is de-

6.5 Experimental Results 126

Table 6.1: Comparison of the number of literals between a FPRM expansion
under polarity 0 and a MMPRM expansion.

No. of literals No. of literals
Benchmarks n under polarity 0 using the imp (%)

[121] proposed method*

9sym 9 756 304 60
newill 8 237 70 70

newtag 8 88 27 69
life 9 792 321 59

ryy6 16 624 168 73
sym10 10 1300 528 59
t481 16 108 55 49

test 21 21 135273 27304 80
test 22 22 153654 30262 80
test 25 25 90209 20399 77
average , --=- , -, - 68

*The MMPRM expansion is obtained from positive polarity.

Table 6.2: Comparison of the number of literals between a FPRM expansion
under best polarity and a MMPRM expansion.

No. of literals No. of literals
Benchmarks n under best polarity using the imp (%)

[121] proposed method*

9sym 9 636 276 57
newill 8 78 24 69

newtag 8 27 15 44
life 9 596 218 63

ryy6 16 464 171 63
sym10 10 1300 528 59
t481 16 40 28 30

test 21 21 135273 27304 80
• test 22 22 153654 30262 80

test 25 25 90209 20399 77 I

C average~ - 62

*The MMPRM expansion is obtained from the best polarity expansion of
FPRM expansions.

6.6 Summary 127

rived from the best FPRM expansion. In this case, the maximum and average

improvements are 69% and 62%, respectively.

In terms of the space complexity, the proposed algorithm only needs to store

T. Therefore, the space complexity is O(coej jicients*n), where coej jicients

is the number of the onset coefficients and n is the number of input variables

for a given function. For the time complexity, the CPU time used to solve a

function with 25 input variables is 236 seconds using stated PC. This should

not be a major problem for the computer nowadays.

6.6 Summary

In this chapter, a novel onset table based method is proposed to obtain a

compact MMPRM form from an FPRM form. This method takes much less

memory than previous method [131]. With the efficient extraction of common

variables, the onset table is divided into smaller sub-tables. Using the mapping

relationship between the T and the FPRM expansion, the compact MMPRM

form can be obtained. The experimental results show a great improvement of

literals count can be achieved compared to the published results [121].

The main advantage of the method is that it can search in the 2n FPRM

expansions, i.e. small space, rather than large space but have good result in the

MPRM expansion. As a result, significant CPU time is reduced. Although it

does not guarantee the best solution in the MPRM expansion, it does produce

a very good solution.

Chapter 7

Genetic Algorithms for FPGA

Placement

7 .1 Introduction

Circuits based on AND /XOR operations have great advantage of easy testa­

bility [39]. Applications of Reed-Muller logic to function classification [112],

Boolean matching [113], and symmetry detection [114] have also been at­

tempted. However, XOR gate has the disadvantage of low speed and large

area consumption compared to AND/OR. As the FPGA technology has made

significant progress in recent years, XOR/XNOR gates can be implemented

into LUTs, which changes the situation. As a result, XOR/XNOR gates can

achieve comparable speed and area as other gates. Generic symmetrical FPGA

architecture consists of routing resources and configurable blocks [97], in which

routing resources occupy 70-90% of the FPGA area [23], therefore efficient

P&R are essential. FPGA placement is categorised to be NP-complete. The

aim of the P &R tool is to utilise prefabricated programmable routing switches

128

7.2 Genetic Algorithm Placement 129

and routing channels in an FPGA to achieve 100% successful P&R.

In this chapter, symmetrical (Xilinx-style) FPGA placement algorithms are

proposed, which incorporate the idea of using GA to find solutions for FPGA

placement. The rest of the chapter is organised as follows. In Section7.2

GA for FPGA placement is given including the representation, crossover and

mutation operators. Section 7.3 proposes a FPGA placement algorithm which

unifies GA with SA to reduce the CPU time. Experimental results are given

in Section 7.4.

7.2 Genetic Algorithm Placement

Hybrid GA (HGA) is a standard GA (SGA) which performs local optimisation

in every generation to overcome long computation time and improve fitness of

SGA. The HGA is shown in Algorithm 7.l.

The algorithm begins with an initial set of random population. After eval­

uating fitness of current population, the population is reproduced according to

fitness. The fitter the individual, the more chance it has to be selected. Two

individuals are randomly selected as parents to generate offsprings by using

crossover operator based on high probability of crossover. Mutation operator

with low probability rate is carried out. After that, local improvement with

low probability rate is applied to randomly selected individuals so that visible

improvement can be achieved, resulting in shorter search time. The elitism is

employed to retain the good solutions. After a fixed number of generations,

the fittest individual, namely the one with highest fitness value, is obtained as

the desired solution.

7.2 Genetic Algorithm Placement

Algorithm 7.1 Hybrid genetic algorithm for FPGA placement.
MAX_ GENS: maximum number of generations
POP _SIZE: population size
NUM_ GENE: number of genes
NUM BLOCK: number of blocks for each benchmark
NUM_MOVE: number of moves per individual in local improvement
Pcrossover: probability of crossover rate
Pmutation: probability of mutation rate
Plocal: probability of local improvement rate
begin

generate an initial population
for generation = 1 to MAX _ GENS do

evaluate population fitness values;

130

reproduce population probabilistic ally based on the individual's fitness
value;

for i = 1 to POP _SIZE/2 do
pair two parents randomly;
crossover based on Pcrossover;
produce two new offspring;

end for
for j = 1 to NUM_ GENE do

mutate offsprings based on Pmutation;
end for
for k = 1 to POP SIZE do

local improvement based on Plocal and NUM_MOVE;
end for
elitism;

end for
end algorithm

7.2.1 Genetic encoding

The genotype of a problem is the representation of an individual in the GA.

For our placement problem, the chromosome structure is (L1' L2 , L3 , •.• ,LN),

where N depends on K and N = K *K. K is the size of a symmetrical FPGA.

For example, If the size of an FPGA K = 4, then N = 16 . Each Lr can be

either positive integer number or "-I", where 0 < 7' :::; N - 1. The positive

number can be in the range of [0, ELKS], where ELKS is the number of

7.2 Genetic Algorithm Placement 131

CLBs [134,135] of the circuit. "-I" represents empty block. The CLB has a

corresponding position in the chromosome. The position POS is calculated as

POS = (x - 1) * K + (y - 1) (7.1)

where POS is the position of gene, (x, y) is the location of the block.

In the above GA procedure, a chromosome pertaining to a possible place­

ment solution is represented as a string with length which equals to the num­

bers oflogic blocks in the symmetrical FPGA. For example, ifthe size of FPGA

is 4 by 4, the numbers of the blocks are 16 and the length of chromosome is 16.

The values of string can be either positive integer or "-I". The positive integer

represents ID of the block and the value "-I" represents empty block. The

position of block in a symmetrical FPGA is numbered according to its X-Y

position. The block ID is mapped to chromosome according to its number, e.g.

Block 10 at (4,4) in the FPGA is mapped to position 15 of the chromosome

as shown in Figure 7.1.

7.2.2 Selection operator

The GA procedure carries out the genetic selection operator in which individ­

ual strings are chosen according to their fitness values. A proportional selection

scheme as suggested by Goldberg is employed to select fitter parents which are

required for reproduction. There are a number of ways to implement the se­

lection operator. The easiest way is to create a biased roulette wheel where

each current chromosome in the population has a roulette wheel slot sized in

proportion to its fitness as in [7]. An individual is selected by spinning the

roulette wheel and noting the position of the marker. However, the absolute

7.2 Genetic Algorithm Placement

~D~
~~DD
hl,CJ~~

10

6

1\21 D~
2, 1 3, 1 4, 1

Figure 7.1: Genetic encoding.

132

difference between an individual's actual sampling probability and its expected

value is nonzero, resulting in inefficient reproduction. Hence stochastic uni-

versal selection with zero bias [15] is employed in the reproduction process.

7.2.3 Fitness measure

A fitness function is used to evaluate the quality of placement. Its functional

form is the sum of all nets in the circuit, as shown in (7.2).

NET { 100 }
P =.~ C(inet) [bbx(inet) + bby(inet)]

~net=l

(7.2)

where NET stands for number of nets. For each net i, bbx (i) and bby (i) denote

the horizontal and vertical spans of its bounding box respectively. C(inet) ,

which is adapted from [19], compensates for the fact that the bounding box

wire length model underestimates the wiring necessary to connect nets with

more than three terminals. Its value depends on the number of terminals of

7.2 Genetic Algorithm Placement 133

the net inet. It should be noted that high fitness value indicates a placement

with shorter wire length, hence a better solution.

7.2.4 Crossover and mutation operators

Crossover is the main genetic operator. It operates on two individuals and

generates two offsprings. It is an inheritance mechanism where the offspring

inherits some of the characteristics of the parents. The operation consists of

choosing a random cut point and generating the offsprings from two parents.

Unfortunately, the elements to the left of crossover cut point in one parent

appear on the right of the second parent, which results in element duplication

in one offspring. This duplication does not represent a feasible placement

solution. Modification of crossover to avoid duplication has to be carried out.

The modification is implemented as follows. Choose a random cut point and

copy the entire segments following the cut point in parent 2 to the offspring.

Next, the left segment of parent 1 is scanned from the left most, gene by gene,

to the cut point. If a gene does not appear in the offspring then it is copied to

the offspring. However, if it already exists in the offspring, then its position

in parent 2 is determined and a gene from parent 1 in the determined position

is copied. If the determined gene still exists in the offspring, determine the

position in parent 2 as before until the gene does not exist in the offspring.

One particular case is the gene "-1" which means the block is empty. If there

is no empty block in parent 2, the empty gene is copied to the offspring in the

same way as a gene does not appear in the offspring. However, if empty blocks

do exist, it will randomly select anyone of the empty positions in parent 2 and

the gene from parent 1 in the selected position is then copied to the offspring.

The selected empty position is marked to avoid being used again.

7.2 Genetic Algorithm Placement 134

Parent 1 9 7 8 2 -1 3 1 I 6 15 12 5 10 4 14 13 11

Parent 2 5 -1 3 7 9 11 14110 2 6 1 12 13 8 4 9

1 1 1 1
Offspring 11 7 14 15 -1 3 5 10 2 6 1 12 13 8 4 9

Random cut point=7

Figure 7.2: Modified crossover.

An example is shown in Figure 7.2. One possible placement, is encoded

as a string of 16 bits, namely, {9" 7, 8, 2, -1, 3, 1, 6, 15, 12, 5, 10, 4, 14, 13,

11}. The other parent is {5, -1, 3, 7, 9, 11, 14, 10, 2, 6, 1, 12, 13, 8, 4, 9}.

The random cut point is 7. The segment following the cut point in parent

2 is copied to offspring. Then the left segment of parent 1 is scanned from

the left most. Because gene 9 is already in the offspring, position of gene 9 is

determined in parent 2 so that gene 11 is found in parent 1. Gene 11 is not

in the offspring so that it is copied to the offspring with the same position as

in parent 1. Next gene is 7 which is not in the offspring so that it is copied

to the offspring in the corresponding position. Again, gene 8 is already in the

offspring. Gene 14 is copied to the offspring in the same way as was done for

gene 11. The other genes in the left segment of parent 1 is processed in the

same way. As a result, one offspring is generated as {11, 7, 14, 15, -1, 3, 5, 10,

2, 6, 1, 12, 13, 8, 4, 9}.

Mutation produces incremental random changes in the offspring generated

by the crossover to overcome early converge to a local optimum. In the place-

ment, the mutation is pair-wise interchange, namely, two genes of the chro-

7.3 GA with SA Placement Algorithm 135

mosome are randomly selected according to probability of mutation rate and

their positions swapped.

7.2.5 Local improvement

After reproduction, crossover and mutation are performed, a local improve­

ment is applied to the selected offspring in the current population based on

the probability of local improvement rate. The local improvement is performed

in every generation and keeps switching the position of the blocks in the sym­

metrical FPGA a number of times for randomly selected individual in order

to improve the fitness of this particular individual. Some good schema of this

individual is more likely to be selected and passed to next generation. The

main goal of this process is to get some visible improvement in the offspring

rather than obtaining a local optimum value. So the improvement rate is kept

as low as possible and movement per individual is also kept to small value. As

a result, the time for convergence is reduced significantly.

7.3 GA with SA Placement Algorithm

Although HGA performs better than SGA, excessive CPU time is consumed

during the late process of the GA. To reduce the CPU time consumed in the

late process of the GA, unified GA and SA algorithm that has two stages is

proposed. The first stage is called global search stage, which is performed by

GA. The second stage is called local search stage, which is performed by SA.

Our algorithm starts with GA and works on a population of individuals by

using reproduction, crossover, mutation and elitism operators with local im­

provement in order to obtain good solution. After a number of generations, the

7.3 GA with SA Placement Algorithm 136

solution is improved and has already jumped out of the local optimum. Then

SA will take over to "fine-tune" the solution by swapping two nearby blocks

at the low temperature. The pseudo code of unified GA with SA (GASA) is

shown in Algorithm 7.2.

7.3.1 Fitness function

The quality of placement is evaluated by fitness function. The higher the

fitness value, the better the placement. Since a benchmark circuit will have

hundreds of nets or even more, the measure is judged by average fitness of all

nets not just by partial ones, as follows

NET

P = maxcost - L C(inet) [bbx(inet) + bby(inet)] (7.3)
inet=l

maxcost = NET * K2 (7.4)

where max cost stands for the worst case of cost for placement, NET stands

for the total numbers of nets, and K stands for the size of symmetrical FPGA.

For each net inet, bbx(inet) and bby(inet) denote the horizontal and vertical

spans of its bounding box respectively. C(inet) compensates for the fact that

the bounding box wire length model underestimates the wiring necessary to

connect nets with more than three terminals. Its value depends on the number

of terminals of the net inet . The value of C(inet) is 1 for nets with 3 or fewer

terminals and slowly increases to 2.79 for nets with 50 or more terminals [33].

7.3 GA with SA Placement Algorithm 137

Algorithm 7.2 Genetic algorithm with simulated annealing for symmetrical
FPGA placement.
MAX_ GENS: maximum number of generations
POP _SIZE: population size
NUM_ GENE: number of genes
Pcrossover: probability of crossover rate
Pmutation: probability of mutation rate
Plocal: probability of local improvement rate
Preserve: the percent of population are reserved in the generation
RANDOM: random number between 0 and 1
Pnew: new placement
Pold: old placement
T: temperature
e: constant of 2.732
begin

initialise _population 0;
while (generation < MAX_GENS) do

eval uate _ population _ fitness 0;
reproduce _population (Preserve);
for index = 1 to POP _SIZE/2 do

crossover (Pcrossover);
end for
for index = 1 to NUM GENES do

mutate (Pmutation);
end for
for index = 1 to POP SIZE do

local_ improvement (Plocal);
end for
elitismO;

end while
select _ the _ best _ one 0;
T = set_temperature 0;
while (exit_criteria 0 == FALSE) do

while (inner_criteria 0 == FALSE) do
Pnew = generate_movement 0;
6.C = C(Pnew) - C(Pold);
RANDOM = generate_number 0;
if (RANDOM < e-b.C/T)

Pnew = Pold;
end while

end while
end algorithm

7.3 GA with SA Placement Algorithm 138

Before rotation After rotation

Figure 7.3: Selection pie and the rotation of markers.

7.3.2 Reproduction operator

In the algorithm, the population is initialised and evaluated according to fit­

ness function. The fitness values of population are sorted in increasing order

according to the fitness of individual. A small number of individuals of popu­

lation with higher fitness value in the current generation are intact and remain

in the population to the next generation. The rest works as follows.

The fitness of each individual is considered as a slot of a sized pie. Equidis­

tant markers are placed around the pie, where 'ljJ is the number of markers

and equal to the number of individuals that do not remain in the population

to the next generation. Figure 7.3 shows the sized pie and 'ljJ = 6 equidistant

markers around the pie. The sum of fitness value of individuals that do not

remain in the population to the next generation corresponds to the whole size.

A random number is generated. This number corresponds to the rotation of

the markers. If the equidistant markers are inside the slot, the corresponding

individuals are selected. As a result, individuals are simultaneously selected.

7.3 GA with SA Placement Algorithm 139

Although the selection procedure is random, the chance of being selected for

each individual is directly proportional to its fitness.

For example, if there are 6 markers and the random number is 0.125, the

6 equidistant markers will rotate 45 degrees simultaneously. The selected in­

dividuals are therefore 2, 3, 3, 4, 5 and 5, as shown in Figure 7.3.

7.3.3 Initial temperature and update scheme

Once GA has done the global search in the first stage, SA will take over

to do the fine tuning. The initial temperature T in the second local search

stage is important to the overall performance of the algorithm. If the initial

temperature is set too high, i.e., a large number of movements are allowed, the

SA might not do the local search but tries to do the global search instead. As a

result, it ruins the good global solution obtained by GA. If initial temperature

is set too low, i.e., nearly no movements are allowed, SA can hardly do the

local search. It is therefore that the initial temperature T is set at the low

temperature.

As the process of SA continues, the temperature gradually drops, which

limits the movements of blocks. New temperature is computed as

Tnew = (3Told (7.5)

where the value of (3 depends on the value of a. a is the percentage of trial

movements that have been accepted. Table 7.1 shows the respective values of

a and (3. For example, if Told = 0.8 and a = 0.1, thus (3 = 0.8 and Tnew = 0.64.

7.4 Experimental Results 140

Table 7.1: Temperature update scheme.

i- a-·-17l
-_ _._ _ - _ -

a 2: 0.3 0.6
0.15 < a < 0.3 0.95

0.03 S a S 0.15 0.8
a < 0.05 0.6

7.4 Experimental Results

In this section, experimental results obtained with an implementation of SGA,

HGA and GASA to symmetrical FPGA are reported. Each CLB has a 4-input

LUT, which is used to implemented combinational logic only, one D flip-flop

and one multiplexer, which is used to select combinational or sequential logic.

There are horizontal channel and vertical channel. Each routing channel is

assumed to have a fixed number of channel tracks. At every intersection of a

horizontal channel and vertical channel, there is a programmable switch. It

configures the wire segments between CLBs and CLBs and lOBs. Each wire

segment spans the distance of one CLB. Two lOBs fit in the space of each CLB

along the periphery of the symmetrical FPGA. The implementations of SGA

and HGA are written in the C programming language. The proposed algorithm

was applied to MCNC benchmark circuits [142]. Performance is measured

using 9 MCNC benchmark circuits. Table 7.2 lists the main characteristics of

these benchmark circuits.

The parameter values are selected following some experiments and based

on previous experience. Pcrossover=0.6, Pmutation=0.005, POP _SIZE=50.

Since SGA does not involve local improvement mutation operator, the pa-

rameter values are Plocal=O and MAX_ GENS=1000. The parameter val­

ues are set for HGA as Plocal=0.05, NUM_MOVE=10*NUM_BLOCK and

7.4 Experimental Results 141

Table 7.2: Characteristics of MCNC benchmark circuits.

I Bellchmarks I No. ()f blocks I No. of llets I N(). of CLBs I N(). of I/Os I
- -~ --- ----- -- - -

9symml 107 106 97 9/1 .

alu2 213 207 197 10/6
apex7 188 151 102 49/37

e64 404 339 274 65/65
example2 289 223 138 85/66

k2 609 564 519 45/45
term1 132 122 88 34/10
too-Irg 228 225 187 38/3

vda 374 308 291 17/39

MAX GENS=200. POP SIZE, MAX GENS, Pcrossover, Pmutation and - -

Plocal stand for population size, the maximum number of generations, prob-

ability of crossover rate, probability of mutation rate and probability of local

improvement rate, respectively. NUM_MOVE stands for the number of block

movements in the local improvement. For example, NUM_MOVE =1070 for

circuit 9symml.

Fitness value of benchmark circuit 9symml in each generation obtained

by SGA and HGA are illustrated in Figure 7.4 and Figure 7.5 respectively

for demonstration. The best fitness value and average fitness value of each

generation are shown in the two figures. In either of the two figures, the

fitness value becomes fitter and fitter as the number of generations increases.

Furthermore, observing the fitness value curve in Figure 7.4 and the fitness

value curve in Figure 7.5, the fitness values from HGA are fitter than those

obtained by SGA and HGA needs less number of generations than SGA does.

7.4 Experimental Results 142

9symml using SGA
2500

... __ .JIIlII

2000

I/) 1500
I/)
CIJ

/~
.....

..... .A. """" T -... -...

V
C

;!::
.... 1000

500

I ; average fitness best fitness I
0

100 200 300 400 500 600 700 800 900 1000

generations

Figure 7.4: Fitness value of 9symml using SGA.

Figure 7.5: Fitness value of 9symml using HGA.

7.4 Experimental Results

Benchmarks

9symml
alu2

apex7
e64

example2
k2

term1
too-lrg

vda
average

10000

9000

8000

7000

III 6000

~ 5000 -I;::: 4000

3000

2000

1000

0
E
E
;>.
II)
0)

Table 7.3: Comparison of fitness.

init. avg.
fitness

f
1349
1732
1495
2246
1528
3062
1323
1957
2033

-

N
:;:,
(ij

fitness of imprvmnt.
SGA cmpr. to init.

f fitness (%)
2147 59
2921 69
3299 121
3638 62
3626 137
4749 55
2375 80
3239 66
3258 60

- 79

Comparison of fitness

"- q- N N
~ CD <I) .>C

<I) a.
Cl. E (II

(II

><
<I)

benchmark

fitness of
HGA

f
2799
4159
4364
6391
6746
8261
2944
4557
5293

.....
E
2

-

~

~

Figure 7.6: Comparison of fitness based on Table 7.3.

143

imprvmnt.
cmpr. to
SGA (%)

30
42
32
76
86
74
24
41
62
52

(II

~

7.4 Experimental Results 144

The full comparison results of 9 tested benchmark circuits are summarised

in Table 7.3. As can be seen in Table 7.3, the fitness is improved on average by

79% in 1000 generations compared to initial random cost of placement. Fur­

ther 52% improvement just in 200 generations is gained when HGA is employed

compared to SGA. Figure 7.6 illustrates initial fitness before optimisation, fit­

ness obtained by SGA and percentage improvement compared to initial fitness

and fitness obtained by HGA and percentage improvement compared to SGA

for 9 MCNC benchmark circuits respectively.

The placement from VPR Placer (VPlace) [18,19] and our SGA and HGA

placements are routed by VPR Router (VRouter) [18,19]. The resulting chan­

nel tracks are compared. The main steps are illustrated by the flow chart in

Figure 7.7. All parameter values for the routing are set equal for the purpose

of fair comparison.

As expected, a poor placement will result in more tracks needed in the final

routing for the same circuit. Therefore, we make practical assumption that the

less the channel tracks needed for final routing, the better the placement is. As

a result, the number of channel tracks is counted for comparison. Figure 7.8

shows the final routing of benchmark circuit 9symml, which needs 5 channel

tracks.

The comparison of channel tracks needed by our algorithms with the state­

of-the-art results from VPR [18,19] of 9 tested benchmark circuits are shown

in Table 7.4.

The implementation of GAS A algorithm was written in C programming

language as well. The population size used by the GA is controversy. A smaller

population size increases the efficiency of the GA and makes it competitive with

other heuristic algorithms in terms of CPU time. On the other hand, a larger

7.4 Experimental Results

1/0 pins
location

Routing
architecture
parameters

Circuits

n
Logic optimisation (SIS)

Tec~nology map to 4-LUTS
(FlowMap + Flowpack)

n
Group Flip-Flops and LUTs
into Basic Logic Elements

{l
Placement
(VPlace)

~

<;y
Placement

(GA)

t?
Routing

(VRouter)

n
Channel density

Figure 7.7: Comparison of CAD flow chart.

1/0 pins
location

145

population size is able to reduce the errors associated with the selection of the

parents for propagation. It is found that the diversity of the population is

maintained when small population size of 20 is used. Due to small population

size, only one individual of population with the highest fitness value in the cur-

rent generation is intact and remains in the population to the next generation.

In other word, 5 percent of population remains in the population to the next

generation. The following fixed parameter values are selected and found suit-

7.4 Exp erimental Results

,- -,

~
L

r-

~
L

,
~
L

,-
~
L _ ,

,- -

~
L _ ,

'-r~ '-r~
~l~ ~l~

146

,-r ~
, I ,
L.L_

,- -,

~
L

,- -.,

f---l
L _ ,

r-- .,

~
L _ ,

,- -.,

~
L __ I

,- -.,
~
L _ ,

Figure 7.8: Final routing of 9symml using HGA placement with 5 channel
tracks.

able for the tested benchmark circuits following some experiments and based on

previous experience. POP _SIZE=20, Pcrossover=OA, Pmutation=O.01, Plo­

cal=O.3, Preserve=O.05 and MAX_ GENS=50, where POP _SIZE, Pcrossover,

Pmutation, Plocal, Preserve and MAX_ GENS stand for population size, prob-

ability of crossover rate, probability of mutation rate, probability of local im-

provement rate, the percent of reserved population and the maximum number

of generations, respectively. If the improvement does not gain in the GA for 5

7.4 Experimental Results 147

Table 7.4: Comparison of channel tracks of VPR, SGA and HGA.

[Ben(:hmar~s I FPGA size I V~lace [~8-, 19LI§GAJ_ HGA I
9symml 10 * 10 5 6 5

alu2 15 * 15 6 10 7
apex7 11*11 5 8 5

e64 17 * 17 8 17 8
example2 19 * 19 5 8 5

k2 23 * 23 9 20 11 I

term1 10 * 10 5 7 5
I

too-lrg 14 * 14 7 12 8
vda 18 * 18 8 14 9
total - 58 102 63

Table 7.5: Comparison results of CPU time and routing channel tracks between
GA and GASA.

L -=_-=~ ____ . ____ ~GA ... - __ L~-_GASA

Benchmarks CPU (s) No. of tracks CPU (s) No. of tracks
9symml 25.74 5 22.86 5

alu2 91.76 6 74.27 6
apex7 38.39 5 38.11 5

e64 163.70 8 155.21 8
example2 107.57 5 95.23 5

k2 461.59 10 364.77 9
term1 28.06 5 26.35 5
too-lrg 82.51 7 74.37 7

vda 179.17 8 148.33 8
total 1178.49 59 999.5 58

generations or the number of generations is greater than the maximum number

of generations, SA will start to work on individual instead of entire population.

The proposed GASA is compared to GA in terms of CPU time. Table 7.5

shows that GASA consumes less CPU time than GA in all cases. To further

compare the quality of placement between GA and GASA, same router is used

to route placement solutions generated by GA and GASA. Placements are

7.4 Experimental Results 148

Table 7.6: Comparison results of placement cost between VPlace and GASA.

L ~ ~ Vf~lace [18,}~ G~SA
Benchmarks cost No. of tracks cost No. of tracks

9symml 690 5 693 5
alu2 1670 6 1678 6

apex7 785 5 785 5
e64 2853 8 2849 8

example2 1348 5 1345 5
k2 5874 9 5873 9

term1 700 5 700 5
too-Irg 1750 7 1748 7

vda 3067 8 3067 8
total 18737 58 18738 58

routed on the smallest possible size of a symmetrical FPGA. The number of

routing channel tracks is used to measure the performance. If a circuit can be

placed and routed in an FPGA with fewer channel tracks, the area of an FPGA

will be smaller and wire length and critical path of the circuit will be reduced.

Thus the fewer channel tracks the better. For the purpose of fair comparison,

parameters of routing tool from VRouter [18] are set to same values. The

numbers of tracks obtained by GA and GASA are shown in Table 7.5.

The GASA is further compared to the state-of-art VPlace in terms of place-

ment costs, as shown in Table 7.6. The cost is defined according to the cost

function in [18,19]. As it can be seen in Table 7.6, GASA outperforms VPlace

in 4 benchmark circuits, such as e64, example2, k2 and too-lrg.

7.5 Summary 149

7.5 Summary

In this chapter, SGA and HGA for symmetrical (Xilinx-style) FPGA placement

are presented in the first part. The experiment results verify that the proposed

SGA is effective for small size circuits. The fitness improved by 79% on average

compared to fitness without optimization for 9 MCNC benchmark circuits,

though a large number of generations is required. However, the proposed

HGA can overcome this problem. It can obtain further improvement of 52%

on fitness on average compared to the results obtained by SGA and significantly

reduce the numbers of generations for convergence.

Our results are also compared to the state-of-the-art results from VPR.

VPR needs 58 channel tracks to route tested benchmarks while SGA needs

102 channel tracks and HGA needs 63 channel tracks respectively.

In the second part, a two-step unified GASA method for symmetrical

FPGA placement is presented. The experimental results show that the pro­

posed GASA is effective in improving the quality of placement for the tested

MCNC benchmark circuits. It consumes less CPU time than GA. Furthermore,

the proposed placement algorithm could achieve as good performance as the

state-of-the-art placement tool VPlace in terms of placement cost required for

all benchmark circuits.

Chapter 8

Conclusions and Future Work

The objective of the research is to develop various CAD methods and algo­

rithms for the synthesis and optimisation of logic function in the Reed-Muller

forms, which are based on AND /XOR and OR/XNOR operations respectively.

Additionally, FPGA placement is studied and algorithms are developed using

GA and GA with SA. The main contributions can be summarised as follows.

1. In Chapter 3, an efficient way of generation of transformation matrix

between CPOS and fixed polarity COC expansions is introduced. Based

on the transformation matrix, two map techniques, map folding and

transformation techniques, are presented for the generation of the fixed

polarity COC expansion of any polarity. Map folding technique generates

the expansion of any polarity by folding map of the positive polarity

COC expansion. For some cases, the number of folding times becomes

high. To overcome this, map transformation technique is proposed which

generates the expansion of any polarity directly from the coefficients

map. However, when the number of variables is greater than 4 drawing

circles becomes inconvenient. In addition, it was observed that in most

150

Chapter 8. Conclusions and Future Work 151

cases the number of on-set CSOP minterms is much less than on-set

CPOS maxterms. Hence, map folding techniques for conversion of fixed

polarity COC expansion of any polarity based on on-set minterms of

CSOP expansion is also proposed. Minterm method is further discussed

in the Chapters 4 and 5.

2. Map techniques is straightforward but it can only be used for up to

6 variables. In Chapter 4, generalised on-set coefficients method is first

proposed based on the bitwise implementation for large functions. Multi­

segment algorithm is then proposed, which divides coefficients into sev­

eral segments in order to achieve conversion between CPOS and fixed

polarity COC expansions more efficiently. The proposed algorithms not

only overcome the limitation of map methods in Chapter 3 and but also

can be used for the bidirectional conversion between CPOS and fixed

polarity COC expansions of any polarity. With the introduced concept

of CPOS polarity, the fixed polarity COC expansions of any polarity is

generated directly from on-set CPOS maxterms. It avoids generating

positive expansion first before generating other polarity expansions like

the procedure in map folding technique. Minterm method in Chapter 3 is

generalised for large functions. Experimental results show that the pro­

posed multi-segment algorithm is very efficient in terms of time and space

for large functions, especially when minterm method is used. The average

improvement is 30.64% for the 30 tested benchmarks compared to max­

term multi-segment method. The time and space complexity are 21.5n

and 2n respectively, where n is the number of input variables. The max­

term and minterm multi-segment methods took less than 0.22 seconds

and 0.06 respectively for the tested benchmark circuits if the number

Chapter 8. Conclusions and Future Work 152

of input variables is less than 17. Both minterm and maxterm multi­

segment methods outperform significantly published results [34,51].

3. Chapter 5 proposes two conversion algorithms based on tabular tech­

nique, that is serial and parallel tabular techniques. Space complexity of

the STT and PTT are both O(2n). STT deals with variable one at a time

in sequence. PTT generates product terms at the same time. Although

PTT produces products in parallel, if the number of product terms in­

creases, the overhead of computation in each product term makes PTT

under-performs compared to STT, in which STT adapts every efficient

way of bitwise implementation. Time complexity of the STT and PTT

are O(n2n) and O(coej jicients2°) respectively, where coej jicients and

n are the number of product terms and the number of input variables

respectively and 0 is the number of "1"s in each on-set CPOS maxterm

or CSOP minterm, depending on the method used. Experimental results

show that both proposed STT and PTT achieve better performance than

multi-segment method in Chapter 4 and other methods [34,51].

4. Any n-variable function can be expressed in two-level FPRM forms. The

on-set coefficients of FPRM forms can be represented in T. In Chapter

6, on-set table method for obtaining MMPRM expansions is proposed. It

deals with on-set coefficients only, resulting in significantly reduced mem­

ory. The space complexity is O(coej jicients * n), where coej jicients is

the number of product terms and n is the number of input variables. By

extracting common variables in the on-set table, the on-set table becomes

smaller and smaller, the logical functionality of the circuit remains un­

changed. As a result more compact expansion is obtained. Experimental

Chapter 8. Conclusions and Future Work 153

results show that the proposed method can achieve on average 68% and

55% area improvement compared to those under positive polarity and

best polarity of FPRM expansions, respectively. By searching 2n polari­

ties of FPRM expansions, a good polarity out of the 2n2n
-

1
polarities of

MPRM can be obtained in reasonable time.

5. Symmetrical FPGA placement by using GAs is studied in Chapter 7.

Genotype using integer representation is proposed for Symmetrical FPGA

placement. With the proposed fitness function, selection, crossover and

mutation operators, GA Placement algorithm is developed. However,

it still spends long time in searching good solutions. To overcome the

limitation of GA in large CPU consumption, Chapter 7 also proposes a

unified GA and SA for Symmetrical FPGA placement based on two-step

model. The unified GA and SA algorithm has two stages. The first

stage is called global search stage, which is performed by GA. And the

second stage is called local search stage, which is performed by SA. The

algorithm achieves less CPU time than GA but without degrading the

quality of the placement. Experimental results show that both GA and

GA with SA placement could achieve as good performance as VPlace [18]

in terms of final routing channel tracks.

The above works can be further carried out as follows.

1. The conversion methods in Chapters 4 and 5 for DFRM forms opti­

misation can be further generalised to incompletely specified Boolean

functions.

2. Evolutionary computation algorithm, Particle Swarm Optimisation (PSO)

[68], proved to be effective to many applications such as FPGA place-

Chapter 8. Conclusions and Future Work 154

ment [64] and Evolvable digital circuits [63]. It can be used for finding

best fixed polarity and mixed polarity in RM and DFRM expansions.

3. The multi-segment methods, STT, PTT and on-set table based MMPRM

optimisation method in Chapters 4 to 6 can be generalised for multiple

output Boolean functions by using redundancy removal method as in

[119].

4. The proposed GA and GA with SA pay penalty in CPU time for ob­

taining good results. PSO can however be applied to FPGA place­

ment [64,116] to reduce CPU time consumption. In addition, GA with

SA placement, adapted two-step model, can be further carried out in

other more complex models to achieve even better performance in terms

of CPU time.

Publications

The following list shows the papers published or submitted during the research.

1. Yang, M., and Almaini, A.E.A., "Hybrid Genetic Algorithm for Xilinx­

style FPGA Placement", Proceedings of the 1st International Confer­

ence on ECAD/ECAE, University of Durham, England, UK, pp.95-100,

November 2004.

2. Yang, M., Almaini, A.E.A., Wang, L., and Wang, P.J., "An Evolutionary

Approach for Symmetrical Field Programmable Gate Array Placement",

Proceedings of the 1st IEEE PhD Research in Microelectronics and Elec­

tronics (PRIME '05), EPFL, Lausanne, Switzerland, pp.169-172, July

2005.

3. Yang, M., Almaini, A.E.A., Wang, L., and Wang, P.J., "FPGA Place-

ment Using Genetic Algorithm with Simulated Annealing", Proceedings

of the 6th IEEE International Conference on ASIC (ASICON '05), Shang­

hai, China, pp.808-811, October 2005.

4. Yang, M., Wang, P.J., Chen, X., and Almaini, A.E.A., "Fast Tabular

Based Conversion Method for Canonical OR-Coincidence", Proceedings

of the 2005 IEEE International Conference on computer as a tool (EU­

ROCON '05), Belgrade, Serbia, pp.507-510, November 2005.

155

Publications 156

5. Yang, M., and Almaini, A.E.A., "FPGA Placement Optimization by

Two-step Unified Genetic Algorithm and Simulated Annealing Algo­

rithm", (accepted and in press) Journal of Electronics (China).

6. Wang, P.J., Liu, Y., Yang, M., and Almaini, A.E.A, "Five Valued Circuit

Quantitative Theory and Design of Five-valued Twisted Ring Counter",

Proceedings of the 6th IEEE International conference on ASIC (ASICON

'05), Shanghai, China, pp.354-357, October 2005.

7. Yang, M., Almaini, A.E.A., and Wang, L., "Multi-segment Conversion

Method between Large Boolean Functions and Canonical OR-Coincidence

Expansions", lEE Proceedings on Circuits, Devices and Systems (submit­

ted).

8. Yang, M., Almaini, A.E.A., and Wang, L., "Map and Tabular Techniques

for Dual Forms of Reed-Muller Expansions Conversion", Integration, the

VLSI Journal (submitted).

References

[1] Alexander, M.J., Cohoon, J.P., Ganley, J.L., and Robins, G.,

"Performance-oriented Placement and Routing for Field Programmable

Gate Arrays", Proceedings of the 1995 European Design Automation Con­

ference (EURO-DAC '95), Brighton, England, UK, pp.80-85, September

1995.

[2] Alexander, M.J., and Robins, G., "New Performance-driven FPGA Rout­

ing Algorithm", IEEE Transactions on Computer Aided Design, Vol.15,

No.12, pp.1505-1517, December 1996.

[3] Ali, B., Kalganova, T., and Almaini, A.E.A., "Extrinsic Evolution of Fi­

nite State Machines", Proceedings of the 5th International Conference on

Adaptive Computing in Design and Manufacture (ACDM '2002), Uni­

versity of Exeter, Devon, UK, pp.157-168, April 2002.

[4] Ali, B., Kalganova, T., and Almaini, A.E.A., "Evolutionary Algorithms

and Their Use in the Design of Sequential Logic Circuits", Genetic Pro­

gramming and Evolvable Machines, Vol.5, No.1, pp.11-29, 2004.

[5] Almaini, A.E.A., Thomson, P., and Hanson, D., "Tabular Techniques for

Reed-Muller Logic", International Journal of Electronics, Vol. 70, No.1,

pp.23-34, 1991.

157

References 158

[6] Almaini, A.E.A., Electronic Logic Systems, 3rd ed., Prentice-Hall Inter­

national, London, UK, 1994.

[7] Almaini, A.E.A., and Zhuang, N., and Bourset, F., "Minimisation of

Multioutput Reed-Muller Binary Decision Diagrams Using Hybrid Ge­

netic Algorithm", lEE Electronics Letters, Vo1.31 , No.20, pp.1722-1723,

1995.

[8] Almaini, A.E.A., Billina, S., Miller, J., and Thomson, P., "State Assign­

ment of Finite State Machines Using a Genetic Algorithm" , lEE Proceed­

ings on Computers and Digital Techniques, Vol. 142, No.4, pp.279-286,

1995.

[9] Almaini, A.E.A., and Zhuang, N., "Using Genetic Algorithms for the

Variable Ordering of Reed-Muller Binary Decision Diagrams", Micro­

electronics Journal, Vol. 24, No.4, pp.471-480, 1995.

[10] Almaini, A.E.A., and McKenzie, L., "Tabular Techniques for Generat­

ing Kronecker Expansions", lEE Proceedings on Computers and Digital

Techniques, Vol. 143, No.4, pp.205-212, 1996.

[11] Almaini, A.E.A., and Ping, S., "Algorithm for Reed-Muller Expansions

of Boolean Functions and Optimization of Fixed Polarities", Proceedings

of the 4th IEEE International Conference on Electronics, Circuits and

Systems (ICECS '97), Cairo, Egypt, pp.148-153, December 1997.

[12] Almaini, A.E.A., and Zhuang, N., "Variable Ordering ofBDDs for Multi­

output Boolean Functions Using Evolutionary Techniques", Proceedings

of the 4th IEEE International Conference on Electronics, Circuits and

Systems (ICECS '97), Cairo, Egypt, pp.1239-1244, December 1997.

References 159

[13] Almaini, A.E.A., "A Semicustom IC for Generating Optimum General­

ized Reed-Muller Expansions", Microelectronics Journal, Vol. 28, No.2,

pp.129-142, 1997.

[14] Ashar, P., Devadas, S., Newton, A.R, Sequential Logic Synthesis,

Kluwer Academic Publishers, Boston, MA, USA, 1992.

[15] Baker, J.E., "Reducing Bias and Inefficiency in the Selection Algorithm",

Proceedings of the 2nd International Conference on GAs and Their Ap­

plication, Hillsdale, NJ, USA, pp.14-21, July 1987.

[16] Becker, B., and Drechsler, R, "Exact Minimisation of Kronecker Ex­

pressions for Symmetric Functions", lEE Proceedings on Computers and

Digital Techniques, Vol.143, No.6, pp.349-354, 1996.

[17] Besslich, Ph.W., "Efficient Computer Method for ExOR Logic Design",

lEE Proceedings on Computers and Digital Techniques, Vol. 130, Pt. E,

No.6, pp.203-206, 1983.

[18] Betz, V., and Rose, J., "VPR: A New Packing, Placement and Routing

Tool for FPGA Research", Proceedings of the 7th International Workshop

on Field Programmable Logic and Applications (FPL '97), London, UK,

pp.213-222, September 1997.

[19] Betz, V., Rose, J., and Marquardt, A., Architecture and CAD for

Deep-Submicron FPGAs, Kluwer Academic Publishers, Norwell, Mas­

sachusetts, USA, 1999.

[20] Brayton, RK., and McMullen, C.T., "The Decomposition and Factoriza­

tion of Boolean Expression", Proceedings of the 1982 IEEE International

References 160

Symposium on Circuit and Systems (ISCAS '82), Rome, Italy, pp.49-54,

May 1982.

[21] Brayton, RK, and Sangiovanni-Vincentelli, A.L., McMullen, C.T.,

and Hachtel, G.D., Logic Minimization Algorithms for VLSI Synthesis,

Kluwer Academic Publishers, Boston, MA, USA, 1984.

[22] Brayton, RK., and Rudell, R, Sangiovanni-Vincentelli, A.L., and Wang,

A., "MIS: A Multiple-level Logic Optimization System", IEEE Transac­

tions on Computer Aided Design, Vol.CAD-6, No.6, pp.1062-1081, 1987.

[23] Brown, S., Francis, RJ., Rose, J., and Vranesic, Z.G., Field Pro­

grammable Gate Arrays, Kluwer Academic Publishers, Norwell, MA,

USA, 1992.

[24] Brown, S., and Rose, J. "A Detailed Router for Field Programmable Gate

Arrays", IEEE Transactions on Computer Aided Design, Vol. 11 , No.5,

pp.620-628, 1992.

[25] Bui, T., and Moon, B., "A Fast and Stable Hybrid Genetic Algorithm for

the Ratio-cut Partitioning Problem on Hypergraphs", Proceedings of the

31st ACMjIEEE Design Automation Conference (DAC '94), San Diego,

California, USA, pp.664-669, June 1994.

[26] Bystrov, A., and Almaini, A.E.A., "Testability and Test Compaction for

Decision Diagram Circuits", lEE Proceedings on Circuits Devices and

Systems, Vol.146, No.4, pp.153-158, 1999.

[27] Carter, W.S., Duong, K, Freeman, RH., and Hsieh, H., Ja, J.y', Ma­

honey, J.E., Ngo, L.T., Sze, S.L., "A User Programmable Reconfigurable

References 161

Logic Array", Proceedings of the 1986 IEEE Custom Integrated Circuits

Conference (CICC '86), Rochester, NY, USA, pp.233-235, May 1986.

[28] Chang, YW., Thakur, S., Zhu, K., and Wong, D.F., "A New Global

Routing Algorithm for FPGAs", Proceedings of the 1994 IEEE/ACM

International Conference on Computer Aided Design (ICCAD '94), San

Jose, California, USA, pp.356-361, November 1994.

[29] Chang, YW., Wong, D.F., and Wong, C.K., "FPGA Global Routing

Based on A New Congestion Metric", Proceedings of the 1995 IEEE In­

ternational Conference on Computer Design: VLSI in Computers and

Processors (ICCD '95), Austin, Texas, USA, pp.372-378, October 1995.

[30] Chang, YW., and Chang, YT., "An Architecture-driven Metric for Si­

multaneous Placement and Global Routing for FPGAs", Proceedings of

the 37th ACM/IEEE Design Automation Conference (DAC '2000), Los

Angeles, California, USA, pp.567-572, June 2000.

[31] Chang, Y.W., Zhu, K., and Wong, D.F., "Timing-driven Routing for

Symmetrical-Array-Based FPGAs", ACM Transactions on Design Au­

tomation of Electronic Systems, Vo1.5, No.3, pp.433-450, July 2000.

[32] Chen, K.C., Cong, J., Ding, Y., Kahng, A.B., and Trajmar, P., "DAG­

MAP: Graph-based FPGA Technology Mapping for Delay Optimiza­

tion", IEEE Design and Test of Computers, Vo1.9, No.3, pp.7-20, Septem­

ber 1992.

[33] Cheng, C. "RISA: Accurate and Efficient Placement Routability Mod­

eling", Proceedings of the 1994 IEEE/ A CM International Conference

References 162

on Computer Aided Design (ICCAD '94), San Jose, California, USA,

pp.690-695, November 1994.

[34] Cheng, J., Chen, X., Faraj, K. M. and Almaini, A.E.A., "Expansion

of Logical Function in the OR-coincidence System and the Transform

between It and Maxterm Expansion", lEE Proceedings on Computers

and Digital Techniques, Vol. 150, No.6, pp.397-402, 2003.

[35] Cong, J., and Ding, Y., "An Optimal Technology Mapping Algorithm for

Delay Optimization in Lookup-Table Based FPGA Designs", Proceedings

of the 1992 IEEE/ ACM International Conference on Computer Aided

Design (ICCAD '92), pp.48-53, November 1992.

[36] Cong, J., and Ding, Y, "FlowMap: An Optimal Technology Mapping Al­

gorithm for Delay Optimization in Lookup-Table Based FPGA Designs",

IEEE Transactions on Computer Aided Design, Vol. 3, No.1, pp.I-12,

1994.

[37] Cong, J., and Xu, S., "Delay-optimal Technology Mapping for FPGAs

with Heterogeneous LUTs". Proceedings of the 35th ACM/IEEE Design

Automation Conference (DAC '98), San Francisco, California, USA,

pp.704-707, June 1998.

[38] Cong, J., Hwang, Y.Y, and Xu., S., "Technology Mapping for FPGAs

with Non-uniform Pin Delays and Fast Interconnections". Proceedings of

the 36th ACM/IEEE Design Automation Conference (DAC '99), New

Orleans, Louisiana, pp.373-378, June 1999.

[39] Damarla, T., and Karpovsky, M., "Detection of Stuck-at and Bridging

Faults in Reed-Muller Canonical (RMC) Networks", lEE Proceedings on

References 163

Computers and Digital Techniques, Pt.E., Vol. 136, No.5, pp.430-433,

1989.

[40] Debnath, D., and Sasao, T., "GRMIN2: A Heuristic Simplification Al­

gorithm for Generalised Reed-Muller Expressions", lEE Proceedings on

Computers and Digital Techniques, Vol. 143, No.6, 376-384, 1996.

[41] Drechsler, R, Becker, B., and Drechsler, N., "Genetic Algorithm for Min­

imisation of Fixed Polarity Reed-Muller Expressions", lEE Proceedings

on Computers and Digital Techniques, Vol.147, No.5, pp.349-353, 2000.

[42] Drechsler, R, Theobald, M., and Becker, B., "Fast OFDD-based Minimi­

sation of Fixed Polarity Reed-Muller Expressions", IEEE Transactions

on Computers, Vol. 45 , No.ll, pp.1294-1299, 1996.

[43] Drechsler, R, and Becker, B., "Relation between OFDDs and FPRMs",

lEE Electronics Letters, Vol. 32 , No.21, pp.1975-1976, 1996.

[44] Du, P., Grewal, G., Areibi, S., and Banerji, D., "A Fast Hierarchical

Approach to FPGA Placement", Proceedings of the 2004 International

Conference on Embedded Systems and Applications (ESA '04), Las Ve­

gas, Nevada, USA, pp.497-503, June 2004.

[45] Du, P., Grewal, G., Areibi, S., and Banerji, D., "A Fast Adaptive Heuris­

tic for FPGA Placement", Proceedings of the 2nd IEEE Northwest Work­

shop on Circuits and Systems, Montreal, Canada, pp.373-376, June 2004.

[46] Esbensen, H., "A Genetic Algorithm for Macro Cell Placement", Proceed­

ings of the 1992 European Design Automation Conference (EURO-DAC

'92), Hamburg, Germany, pp.52-57, September 1992.

References 164

[47] Esbensen, H. and Mazumder, P., "SAGA: Unification Of Genetic Al­

gorithm with Simulated Annealing and Its Application to Macro-Cell

Placement", Proceedings of the 7th IEEE International Conference on

VLSI Design (VLSI Design '94), Calcutta, India, pp. 211-214, January

1994.

[48] Esbensen, H., "A Macro-Cell Global Router Based on Two Genetic Algo­

rithms", Proceedings of the 1994 European Design Automation Confer­

ence (EURO-DAC '94), Grenoble, France, pp.428-433, September 1994.

[49] Falkowski, B.J., and Chang, C.H., "An Exact Minimizer of Fixed Polarity

Reed-Muller Expansions", International Journal of Electronics, Vol. 79,

No.4, pp.389-409, 1995.

[50] Falkowski, B.J., and Perkowski, M.A., "One More Way to Calculate Gen­

eralized Reed-Muller Expansions of Boolean Functions", International

Journal of Electronics, Vol.71, No.3, pp.385-396, 1991.

[51] Faraj, K.M., Combinational Logic Synthesis Based on the Dual Form

of Reed-Muller Representation, Ph.D. Thesis, Napier University, Edin­

burgh, UK, 2005.

[52] Francis, R.J., Rose, J., and Chung, K., "Chortle: A Technology Map­

ping Program for Lookup Table-Based FPGAs", Proceedings of the

27th ACM/IEEE Design Automation Conference (DAC '90), Orlando,

Florida, USA, pp.613-619, June 1990.

[53] Francis, R.J., Rose, J., and Vranesic, Z., "Chortle-crf: Fast Technol­

ogy Mapping for Lookup Table-Based FPGAs", Proceedings of the 28th

References 165

ACM/IEEE Design Automation Conference (DAC '91), San Francisco,

California, USA, pp.227-233, June 1991.

[54] Francis, R.J., "A Tutorial on Logic Synthesis for Lookup-Table Based

FPGAs", Proceedings of the 1992 IEEE/ACM International Conference

on Computer Aided Design (lCCAD '92), Santa Clara, California, USA,

pp.40-47, November 1992.

[55] Gockel, N., Pudelko, G.,Drechsler, R., and Becker, B., "A Hybrid Genetic

Algorithm for the Channel Routing Problem", Proceedings of the the 1996

IEEE International Symposium on. Circuits and Systems" Connecting the

World" (lSCAS '96), Atlanta, GA, USA, pp.675-678, May 1996.

[56] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Ma­

chine Learning, Addison Wesley Longman Publishing, Boston, MA,

USA, 1989.

[57] Goni, B.M., and Arslan, T., "An Evolutionary 3D Over-the-cell Router",

Proceedings of the 12th IEEE International ASIC/SOC Conference,

Washington, DC, USA, pp.206 -209, September 1999.

[58] Goni, B. M., Arslan, T., and Turton, B., "Power Driven Routing Using

a Genetic Algorithm", Proceedings of the Joint Conference of the 3rd

World Multiconference on Systemics, Cybernetics and Informatics (SCI

'99) and 5th International Conference on Information Systems Analysis

and Synthesis (lSAS '99), Orlando, Florida, pp.444-448, August, 1999.

[59] Goni, B.M., Arslan, T., and Turton, B., "A Genetic Algorithm for

Over-the-cell and Channel Area Optimization", Proceedings of the 2000

References 166

Congress on Evolutionary Computation (CEC '00), La Jolla, CA, USA,

Vol.1, pp.586-592, July 2000.

[60] Green, D.H., "Families of Reed-Muller Canonical Forms", International

Journal of Electronics, Vol. 70, No.2, pp.259-280, 1991.

[61] Green, D.H., "Dual Forms of Reed-Muller Expansions", lEE Proceedings

on Computers and Digital Techniques, Vol.141, No.3, pp.184-192, 1994.

[62] Gregory, D., Bartlett, K., Geus, A., and Hachtel, Gary, "Socrates: A

System for Automatically Synthesizing and Optimizing Combinational

Logic", Proceedings of the 23rd ACM/IEEE Design Automation Confer­

ence (DAC '86), Las Vegas, Nevada, pp.79-85, June 1986.

[63] Gudise, V.G., and Venayagamoorthy, G.K., "Evolving Digital Circuits

Using Particle Swarm", Proceedings of the 2003 IEEE International Joint

Conference on Neural Networks (IJCNN '03), Portland, Oregon, USA,

ppA68-472, July 2003.

[64] Gudise, V.G., and Venayagamoorthy, G.K., "FPGA Placement and

Routing Using Particle Swarm Optimization", Proceedings of the 2004

IEEE Annual Symposium on VLSI Emerging Trends in VLSI Systems

Design (ISVLSI '04), Lafayette, Louisiana, USA, pp.307-308, February

2004.

[65] Habib, M.K., "Boolean Matrix Representation for the Conversion of

Minterms to Reed-Muller Coefficients and the Minimization of Exclusive­

OR Switching Functions", International Journal of Electronics, Vol.68,

NoA, ppA93-506, 1990.

References 167

[66] Harking, B., "Efficient Algorithm for Canonical Reed-Muller Expansions

of Boolean Functions", lEE Proceedings on Computers and Digital Tech­

niques, Vol. 137, Pt.E. No.5, pp.366-370, 1991.

[67] Kaviani, A., and Brown, S., "Technology Mapping Issues for an FPGA

with Lookup Tables and PLA-like Blocks", Proceedings of the 2000

ACM/SIGDA International Symposium on FPGAs (FPGA '00), Mon­

terey, California, USA, pp.60-66, February 2000.

[68] Kennedy, J., Eberhart, R.C., and Shi, Y, Swarm Intelligence, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[69] Khan, M.M.H.A., and Alam, M.S., "Mapping of On-set Fixed Polarity

Reed-Muller Coefficients from Minterms and the Minimization of Fixed

Polarity Reed-Muller Expressions", International Journal of Electronics,

Vo1.83, No.2, pp.235-247, 1997.

[70] Khan, M.M.H.A., and Alam, M.S., "Mapping of On-set Fixed polar­

ity Reed-Muller Coefficients from On-set Canonical Sum of Products

Coefficients and the Minimization of Pseudo Reed-Muller Expressions",

International Journal of Electronics, Vol. 86, No.3, pp.255-268, 1999.

[71] Koakutsu, S., Kang, M., and Dai, W.W.-M., "Genetic Simulated An­

nealing and Application to Non-slicing Floorplan Design", Proceedings

of the 5th ACM/SIGDA Physical Design Workshop (PDW '96), Reston

Sheraton, Virginia, USA, pp.134-141, April 1996.

[72] Korupolu, M.R., Lee, K.K., and Wong, D.F., "Exact Tree-Based FPGA

Technology Mapping for Logic Blocks with Independent LUTs", Proceed-

References 168

ings of the 35th ACM/IEEE Design Automation Conference (DAC '98),

San Francisco, California, USA, pp.708-711, June 1998.

[73] Lemieux, G., and Brown, S.D., "A Detailed Router for Allocating Wire

Segments in FPGAs", Proceedings of the 4th ACM/SIGDA Physical De­

sign Workshop (PDW '93), Lake Arrowhead, California, USA, pp.215-

226, April 1993.

[74] Lemieux, G., Brown, S.D., and Vranesic, D., "On Two-Step Routing for

FPGA", Proceedings of the 1997 ACM/SIGDA International Symposium

on Physical Design (ISPD '97), Napa Valley, California, USA, pp.60-66,

April 1997.

[75] Lienig, J., and Thulasiraman, K., "A New Genetic Algorithm for the

Channel Routing Problem", Proceedings of the 7th International Confer­

ence on VLSI Design (VLSI Design '94), Calcutta, India, pp.133-136,

January 1994.

[76] Lienig, J., and Thulasiraman, K., "A Genetic Algorithm for Chan­

nel Routing in VLSI Circuits", Evolutionary Computation, Vol.1, No.4,

pp.133-136, 1994.

[77] Lienig, J., "A Parallel Genetic Algorithm for Performance-driven VLSI

Routing", IEEE Transactions on Evolutionary Computation, Vol.1, No.1,

pp.29-39, 1994.

[78] Lu, G., and Areibi, S., "An Island Based GA Implementation for VLSI

Standard Cell Placement", Proceedings of the 2004 Genetic and Evolu­

tionary Computation Conference (GECCO '04), Seattle, Washington,

USA, pp. 1138-1150, June 2004.

References 169

[79] Lui, P.K., and Muzio, J., "Boolean Matrix Transforms for the Parity

Spectrum and the Minimization of Modulo-2 Canonical Expansions",

lEE Proceedings on Computers and Digital Techniques, Vol. 138, Pt.E.

No.6, pp.411-417, 1991.

[80] Lui, P.K., and Muzio, J., "Boolean Matrix Transforms for the Mini­

mization of Modulo-2 Canonical Expressions", IEEE Transactions on

Computers, Vol.41 , No.3, pp.342-347, 1992.

[81] Marquardt, A., Betz, V., and Rose, J., "Using Cluster-based Logic

Blocks to Improve FPGA Speed and Density", Proceedings of the 1999

ACM/SIGDA International Symposium on FPGAs (FPGA '99), Mon­

terey, California, USA, pp.37-46, February 1999.

[82] Marquardt, A., Betz, V., and Rose, J., "Speed and Area Tradeoffs in

Cluster-Based FPGA Architectures", IEEE Transactions on VLSI Sys­

tems, Vol.8, No.1, pp.84-93, 2000.

[83] Marquardt, A. Betz, V. and Rose, J., "Timing-driven Placement for FP­

GAs", Proceedings of the 2000 ACM/SIGDA International Symposium

on FPGAs (FPGA '00), Monterey, California, USA, pp.203-213, Febru­

ary 2000.

[84] Mazumder, P., and Rudnick, E. M., "Genetic Algorithms for VLSI De­

sign, Layout and Test Automation", Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1999.

[85] McCulloch, S., Auction-based Routing for Field-Programmable Gate Ar­

rays, Ph.D. Thesis, University of Virginia, USA, May 2002.

References 170

[86] McKenzie, L., Almaini, A.E.A., Miller, J.F., and Thomson, P., "Opti­

mization of Reed-Muller Logic Functions", International Journal of Elec­

tronics, Vol.75, No.3, pp.451-466, 1993.

[87] McKenzie, L., and Almaini, A.E.A., "Generating Kronecker Expansions

from Reduced Boolean Forms Using Tabular Methods", International

Journal of Electronics, Vol. 82, No.4, pp. 313-325, 1997.

[88] Miller, J.F., Luchian, H., Bradbeer, P.V.G., and Barclay, P.J., "Using

a Genetic Algorithm for Optimizing Fixed Polarity Reed-Muller Expan­

sions of Boolean Functions", International Journal of Electronics, Vol. 76,

No.4, pp.601-609, 1994.

[89] Miller, J.F., and Thomson, P., "Highly Efficient Exhaustive Search Al­

gorithm for Optimizing Canonical Reed-Muller Expansions of Boolean

Functions", International Journal of Electronics, Vol. 76, No.1, pp.37-56,

1994.

[90] Muller, D.E., "Application of Boolean Algebra to Switching Circuits De­

sign and to Error Detection", IRE Transactions on Electronic Computers,

Vol.EC-3, 6-12, 1954.

[91] Rahmani, A.T., and Ono, N., "A Genetic Algorithm for Channel Routing

Problem", Proceedings of the 5th International Conference on GAs and

their Application, Urbana-Champaign, IL, USA, pp.494-498, June 1993.

[92] Prahlada Rao, B.B., Patnaik, L.M., and Hansdah, R.C., "Parallel Ge­

netic Algorithm for Channel Routing Problem", Proceedings of the 3rd

IEEE Great Lake Symposium on VLSI Design, Kalamazoo, Michigan,

USA, pp.69-70, March 1993.

References 171

[93] Prahlada Rao, B.B., Patnaik, L.M., and Hansdah, R.C., "A Genetic Al­

gorithm for Channel Routing Using Inter-cluster Mutation", Proceedings

of the 1st IEEE Conference on World Congress on Computation Intelli­

gence, Orlando, Florida, USA, pp.97-103, June 1994.

[94] Prahlada Rao, B.B., Patnaik, L.M., and Hansdah, R.C., "An Extended

Evolutionary Programming Algorithm for VLSI Channel Routing", Pro­

ceedings of the 4th Annual Conference Evolutionary Programming, San

Diego, CA, USA, pp.521-544, March 1995.

[95] Purwar, S., "An Efficient Method of Computing Generalised Reed-Muller

Expansions from Binary Decision Diagram", IEEE Transactions on Com­

puters, Vo1.40, No.11, pp.1298-1301, 1996.

[96] Reed, LS., "A Class of Multiple-Error-Correcting Codes and the Decod­

ing Scheme", IRE Transactions Information Theory, Vol.PGIT-4, pp.38-

49, 1954.

[97] Rose, J., El Gamal, A., and Sangiovanni-Vincentelli, A.L., "Architecture

of FPGAs", Proceedings of IEEE, Vo1.81, No.7, pp.1013-1029, 1993.

[98] Roy, S., Belkhale, K., and Banerjee, P., "An a-approximate Algo­

rithm for Delay-Constraint Technology Mapping", Proceedings of the 36th

ACM/IEEE Design Automation Conference (DAC '99), New Orleans,

Louisiana, USA, pp.367-372, June 1999.

[99] Sarrafzadeh, M., and Wong, C.K., An Introduction to VLSI Physical

Design, McGraw-Hill, New York, USA, 1996.

[100] Sasao, T., and Besslich, P., "On the Complexity of MOD-2 Sum PLA's",

IEEE Transactions on Computers, Vol. 39, No.2, 262-266, 1990.

References 172

[101] Sasao, T., "Logic Synthesis with EXOR Gates", Logic Synthesis and

Optimization, Kluwer Academic Publishers, Norwell, MA, USA, pp.259-

285, 1993.

[102] Sasao, T., "AND-EXOR Expressions and Their Optimization", Logic

Synthesis and Optimization, Kluwer Academic Publishers, Norwell, MA,

USA, pp.287-312, 1993.

[103] Schnecke, V., and Vornberger, 0., "Hybrid Genetic Algorithms for

Constrained Placement Problems", IEEE Transactions on Evolutionary

Computation, Vol.1, No.4, pp.266-277, 1994.

[104] Sechen, C., and Sangiovanni-Vincentelli, A.L., "Timber Wolf 3.2: A

New Standard Cell Placement and Routing Package", Proceedings of the

23rd ACM/IEEE Design Automation Conference (DAC '86), Las Vegas,

Nevada, USA, pp.432-439, June, 1986.

[105] Shahookar, K, and Mazumder, P., "A Genetic Approach to Stan­

dard Cell Placement with Meta-genetic Parameter Optimization", IEEE

Transactions on Computer Aided Design, Vol. 9, No.5, pp.500-511, 1990.

[106] Shahookar, K, and Mazumder, P., "VLSI Placement Techniques", ACM

Computing Surveys, Vol.23, No.2, pp.143-220, 1991.

[107] Smith, M., Application-Specific Integrated Circuits, Addison-Wesley

Longman, USA, 1997.

[108] Tan, E.C., and Yang, H., "Fast Tabular Technique for Fixed Polarity

Reed-Muller Logic with Inherent Parallel Processes", International Jour­

nal of Electronics, Vol.85, No.4, pp.511-520, 1998.

References 173

[109] Tan, E.C., and Yang, H., "Optimization of Fixed Polarity Reed-Muller

Circuits Using Dual-polarity Property", Circuits Systems Signal Process,

Vol.19, No.6, pp.535-548, 2000.

[110] Thakur, S., and Chang, Y., "Algorithms for an FPGA Switch Module

Routing Problem with Application to Global Routing", IEEE Transac­

tions on Computer Aided Design, Vol.16, No.1, pp.32-46, 1997.

[111] Thomson, P., and Miller, J.F., "Symbolic Method for Simplifying AND­

EXOR Representations of Boolean Functions Using a Binary Decision

Technique and a Genetic Algorithm", lEE Proceedings on Computers

and Digital Techniques, Vol.143, No.2, pp.151-155, 1996.

[112] Tsai, C.C., and Marek-Sadowska, M., "Boolean Functions Classification

via Fixed Polarity Reed-Muller Forms", IEEE Transactions on Comput­

ers, Vol. 46 , No.2, pp.173-186, 1997.

[113] Tsai, C.C., and Marek-Sadowska, M., "Boolean Matching Using Gener­

alized Reed-Muller Forms", Proceedings of the 31st ACMjIEEE Design

Automation Conference (DAC '94), San Diego, USA, pp.339-344, June

1994.

[114] Tsai, C.C., and Marek-Sadowska, M., "Generalized Reed-Muller Forms as

a Tool to Detect Symmetries", IEEE Transactions on Computer, Vo1.45,

No.1, pp.33-40, 1996.

[115] Tsai, C.C., and Marek-Sadowska, M., "Minimisation of Fixed-Polarity

AND/XOR Canonical Networks", lEE Proceedings on Computers and

Digital Techniques, Vol.141, No.6, 369-374, 1994.

---- ---

References 174

[116] Venayagamoorthy, G.K., and Gudise, V.G., "Swarm Intelligence for Dig­

ital Circuits Implementation on Field Programmable Gate Arrays Plat­

forms", Proceeding of the 2004 NASA/DoD Conference on Evolvable

Hardware (EH '04), Seattle, Washington, USA, pp.83-86, June 2004.

[117] Villa, T., Kam, T., Brayton, R.K., and Sangiovanni-Vincentelli, A.L.,

Synthesis of Finite State Machines: Logic Optimization, Kluwer Aca­

demic Publishers, Boston, MA, USA, 1997.

[118] Wang, L., and Almaini, A.E.A., and Bystrov, A., "Efficient Polarity

Conversion for Large Boolean Functions", lEE Proceedings on Computers

and Digital Techniques, Vol.146, No.4, pp.197-204, 1999.

[119] Wang, L., and Almaini, A.E.A., "Fast Conversion Algorithm for Very

Large Boolean Functions, lEE Electronics Letters, Vol. 36 , No.16, 1370-

1371, 2000.

[120] Wang, L., and Almaini, A.E.A., "Optimisation of Reed-Muller PLA

Implementations", lEE Proceeding on Circuits Devices and Systems,

Vol. 149, No.2, pp.119-128, 2002.

[121] Wang, L., and Almaini, A.E.A., "Exact Minimisation of Large Multiple

Output FPRM Functions", lEE Proceedings on Computers and Digital

Techniques, Vol.149, No.4, pp.203-212, 2002.

[122] Wang, L., and Almaini, A.E.A. "Multilevel Logic Simplification Based

on Containment Recursive Paradigm", lEE Proceedings on Computers

and Digital Techniques, Vol. 150, No.4. pp.218-226, 2003.

[123] Wang, P.J., Liu, Y., Yang, M., and Almaini, A.E.A, "Five Valued Circuit

Quantitative Theory and Design of Five-valued Twisted Ring Counter",

References 175

Proceedings of the 6th IEEE International Conference on ASIC (ASI­

CON '05), Shanghai, China, pp.354-357, October 2005.

[124] Woo, N.S., "A Heuristic Method for FPGA Technology Mapping Based

on Edge Visibility", Proceedings of the 28th ACM/IEEE Design Automa­

tion Conference (DAC '91), San Francisco, California, USA, pp. 248-251,

June 1991.

[125] Wu, X., Chen, X., and Hurst,S.L. "Mapping of Reed-Muller Coefficients

and the Minimization of Exclusive-OR Switching Functions", lEE Pro­

ceedings on Computers and Digital Techniques, Vol.129, Pt. E, No.1,

pp.15-20, 1982.

[126] Xia, Y., Almaini, A.E.A., "Genetic Algorithms Based State Assignment

for Power and Area Optimisation", lEE Proceedings on Computers and

Digital Techniques, Vol.149, No.4, pp.128-133, 2002.

[127] Xia, Y., Almaini, A.E.A., "Best Polarity for Low Power XOR Gate De­

composition", Proceedings of Euromicro Symposium on Digital System

Design (DSD '2002), Dortmund, Germany, pp.53-59, September 2002.

[128] Xia, Y., Ali, B., and Almaini, A.E.A., "Area and Power Optimisation

of FPRM Function Based Circuits", Proceedings of IEEE International

Symposium on Circuits and Systems (ISCAS '03), Bangkok, Thailand,

pp.329-332, May 2003.

[129] Xia, Y., Almaini, A.E.A., and Wu, X., "Power Optimisation of Finite

State Machines Based on Genetic Algorithms", Journal of Electronics

(China), P.R. China, Vol. 20, No.3, pp.194-201, 2003.

References 176

[130] Xia, Y., Wu, X. and Almaini, A.E.A., "Power Minimization of FPRM

Functions Based on Polarity Conversion", Journal of Computer Science

and Technology, Vol.18, No.3, pp.325-331, 2003.

[131] Xia, Y., Wang, L., Zhou, Z., Ye, X., Hu, J. and Almaini, A.E.A., "Novel

Synthesis and Optimization of Multi-level Mixed Polarity Reed-Muller

Functions", Journal of Computer Science and Technology, Vol. 20, No.6,

pp.895-900, 2005.

[132] Xia, Y., Ye, X., Wang, L., Tap, J., and Almaini, A.E.A., "A Novel Low

Power FSM Partition Approach and Its Implementation", Proceedings of

IEEE Conference on NORCHIP, Oulu, Finland, pp. 102-105, November

2005.

[133] Xia, Y., Ye, X., Wang, L., Zou, Z., Almaini, A.E.A. , "Novel Synthesis

Method of Mixed Polarity Reed-Muller Functions", Proceedings of the

3rd lASTED Conference on Circuits Signals and Systems, CA, USA ,

pp.148-153, October 2005.

[134] Xilinx XC4000E(XL) FPGAs, Data Sheet, Version 1.6, May 1999.

[135] Xilinx Virtex-4 Family, Data Sheet, Version 1.1, September 2004.

[136] Yang, H., and Tan, E.C., "Optimization of Multi-output Fixed Polarity

Reed-Muller Circuits Using the Genetic Algorithm", International Jour­

nal of Electronics, Vol.86, No.6, pp.663-670, 1999.

[137] Yang, M., and Almaini, A.E.A., "Hybrid Genetic Algorithm for Xilinx­

style FPGA Placement", Proceedings of the 1st International Confer­

ence on ECAD /ECAE, University of Durham, England, UK, pp. 95-100,

November 2004.

References 177

[138] Yang, M., Almaini, A.E.A., Wang, L., and Wang, P.J., "An Evolutionary

Approach for Symmetrical Field Programmable Gate Array Placement",

Proceedings of the 1st IEEE PhD Research in Microelectronics and Elec­

tronics (PRIME '05), EPFL, Lausanne, Switzerland, pp.169-172, July

2005.

[139] Yang, M., Almaini, A.E.A., Wang, L., and Wang, P.J., "FPGA Place­

ment Using Genetic Algorithm with Simulated Annealing", Proceedings

of the 6th IEEE International Conference on ASIC (ASICON '05),

Shanghai, China, pp.808-811, October 2005.

[140] Yang, M., Wang, P.J., Chen, X., and Almaini, A.E.A., "Fast Tabular

Based Conversion Method for Canonical OR-Coincidence", Proceedings

of the 2005 IEEE International Conference on Computer as a Tool (EU­

ROCON '05), Belgrade, Serbia, pp.507-510, November 2005.

[141] Yang, M., Almaini, A.E.A., and Wang, P.J.,"FPGA Placement Opti­

mization by Two-step Unified Genetic Algorithm and Simulated Anneal­

ing Algorithm", (accepted and in press) Journal of Electronics (China).

[142] Yang, S., Logic Synthesis and Optimization Benchmark User Guide Ver­

sion 3.0, Technical Report, 1991.

[143] Yao, X., "Optimization by Genetic Annealing", Proceedings of the 2nd

Australian Conference on Neural Networks (ACNN '91), Sydney, Aus­

tralia, pp.94-97, February 1991.

Appendix A

An Example of a Circuit

Optimisation

As it is known, some circuits might perform better in RM forms if they can

not be optimised well in standard Boolean domain. In some cases, the circuits

can be better simplified in OR/XNOR forms. Following is an example to show

that the 3-variable function f(X2' Xl, xo) can be better optimised in the DFRM

expansions instead of either standard Boolean or RM expansions.

Let 3-variable Boolean function be CSOP expansion f(X2, Xl, xo) = X2X1XO+

X2X1XO+X2X1XO+X2X1XO+X2X1XO+X2X1XO' It can be simplified as f(X2' Xl, XO) =

Xo + X2X1 + X2X1. As it can be seen, the number of product terms and literals

are 3 and 5 if using AND/OR forms, respectively. The following 2 sets of

equations, (A.9) to (A.8) and (A.9) to (A.16) are respective polarity expan­

sions in RM and DFRM expansions. The least number of product terms is 3

if implemented with AND /XOR forms. However, the least number of product

terms is only 2 in (A.9) for polarity 0 and (A.15) for polarity 6 if implemented

with OR/XNOR forms. In terms of number of literals, if using AND /XOR

178

Appendix A 179

forms) the least number of literals is 4 in (A.2) for polarity 1 and (A.8) for

polarity 7. The least number of literals is 4 in (A. g) for polarity 0 and (A.15)

for polarity 6 if using OR/XNOR forms. In this case) the circuit implemented

in OR/XNOR forms outperforms other implementations.

f(X2) Xl) Xo) 1 EB Xl EB XlXO EB X2 EB X2XO (A.I)

f(X2) Xl) Xo) 1 EB XlXO EB X2XO (A.2)

f(X2) Xl) Xo) Xo EB Xl EB XlXO EB X2 EB X2XO (A.3)

f(X2) Xl) Xo) 1 EB Xo EB Xl Xo EB X2XO (A.4)

f(X2) Xl) Xo) Xo EB Xl EB XlXO EB X2 EB X2XO (A.5)

f(X2) Xl) Xo) 1 EB Xo EB XlXO EB X2XO (A.6)

f(X2) Xl) Xo) 1 EB Xl EB XlXO EB X2 EB X2XO (A.7)

f(X2) Xl) Xo) 1 EB XlXO EB X2XO (A.8)

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) (A.9)

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl (A.I0)

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) 8 Xo (A.11)

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl 8 Xo 8 0 (A.12)

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) 8 Xo (A.13)

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl 8 Xo 8 0 (A.14)

f(X2) Xl) Xo) (X2 + xo) 8 (Xl + xo) (A.15)

f(X2) Xl) Xo) (X2 + xo) 8 X2 8 (Xl + xo) 8 Xl (A.16)

Appendix B

Input and Output Data Formats

1. On-set CPos maxterm (.max), CSOP minterm (.min) and COC max­

term (.coc) file formats are used for programs, named COCmultiseg as

given in Chapter 4 and COCtabular as given in Chapter 5, respectively.

Those formats are shown as follows. ".input", ".output", ".CPOS", ".CSOP",

".COC", ".polarity" and ".end" are the keywords of input, output, on-set

CPOS maxterms, on-set CSOP minterms, on-set COC maxterms, the

polarity of the expansion and the end of file. nand p indicate the num­

ber of variables and the number of polarity, respectively. "number" is the

number of on-set coefficients and lies in the range of [0, 2n
- 1].

CPOS minterm coefficient format: (.min)

.input n

.output 1

. CPOS number

one set of on-set CPOS maxterm coefficients with integer number

.end

180

Appendix B

CSOP maxterm coefficient format: (.max)

.input n

.output 1

.CSOP number

one set of on-set CSOP minterm coefficients with integer number

.end

COC maxterm coefficient format: (.coc)

.input n

.output 1

.polarity p

.COC number

one set of on-set COC maxterm coefficients with integer number

.end

181

2. The program used in Chapter 6 is named MMmapping. It reads on-set

FPRM coefficients as an input and output on-set MMPRM coefficients

as an output. On-set FPRM coefficients and on-set MMPRM coefficients

file formats are shown as follows. ".input", ".output", ".FPRM", ".MM­

PRM", ".polarity" and ".end" are the keywords of input, output, on-set

FPRM expansion coefficients, on-set MMPRM expansion coefficients,

the polarity of the expansion and the end of file.

nand p indicate the number of variables and the number of polarity,

respectively. "number" is the number of on-set coefficients and can be

any integer number but lies in the range of [0, 2n - 1].

Appendix B

FPRM on-set expansion coefficient format: (.fprm)

.input n

.output 1

.polarity p

.FPRM number

one set of on-set FPRM expansion coefficients with integer number

.end

MMPRM on-set expansion coefficient format: (.mmprm)

.input n

.output 1

.MMPRM number

182

one set of on-set MMPRM expansion coefficients with integer number

.end

3. The program used in Chapter 7 is named GPlacer. It requires netlist

and architecture input files.

An example netlist input file (.net) in which the logic block is a single

LUT and one D-flipflop is given as follows. More details can be found

in [19] .

.input a pinlist: a

.input b pinlist: b

.input c pinlist: c

.input d pinlist: d

Appendix B

.input e pinlist: e

.output out:xor5

pinlist: xor5

.clb [3]

pinlist: abc d [3] open

subblock: [3] 0 1 2 3 4 open

.clb xor5

pinlist: e [3] open open xor5 open

sub block: xor5 0 1 open open 4 open

183

An example of simple architecture input file (.arch) is given as follows.

More details can be found in [19].

io rat 2

chan width io 1

chan width x uniform 1

chan _ width _y uniform 1

inpin class: 0 bottom

inpin class: 0 left

inpin class: 0 top

inpin class: 0 right

out pin class: 1 bottom

inpin class: 2 global top

Appendix B

subblocks_pel"_ db 1

subblock lut size 4

The output file of GPlacer (.gplacement) is given as follows:

184

The first line of the placement file list the netlist and architecture files

used to generated placement. All the following lines have the format as

follows.

block name x y subblock block_number

The block name is the name of the block given in the .net file. x and y

are the row and column in which the block is placed, respectively. The

subblock number is "0" for CLBs and can be any number but lies in the

range of [0, io rat] for lOBs, where io rat is the 10 ratio.

An example placement file (.gplacement) is given as follows.

Netlist file: example.net

Array size:

#block_name

a

b

c

d

e

out:xor5

xor5

[3]

5x5

x y

0 1

1 0

0 2

1 6

1 6

0 2

1 4

1 2

Architecture file: example. arch

logic blocks

subblock block number

0 #0

0 #1

0 #2

1 #3

0 #4

1 #5

0 #6

0 #7

Appendix C

PLA File Format and Its On-set

Minterms and Maxterms

This format is used by programs which manipulate PLAs to describe the physi­

cal implementation. Lines beginning with a "#" are comments and are ignored.

Lines beginning with a "." contain control information about the PLA. The

control information is given in the following order:

.i <number of inputs>

.0 <number of outputs>

.p <number of product terms (1f-terms»

.e <the end of the pIa description>

What follows then is a description of the AND and OR planes of the PLA

with one line per product term. Connections in the AND plane are represented

with a "1" for connection to the non-inverted input line and a "0" for connection

to the inverted input line. No connection to an input line is indicated with "-".

Connections in the OR plane are indicated by a "1" with no connection being

indicated with "0". "-" indicates "don't care". Spaces or tabs may be used freely

185

Appendix C

.n 3

.0 1

.p 3
1 0 1

o 1 1
1 1
.e

Figure C.1: An example of PLA file.

X2 Xl Xo f(X2, Xl, xo)
- 1 0 1
0 1 1 -
1 - - 1

Figure C.2: The product terms of example of PLA file.

and are ignored.

186

An example of PLA file is given in Figure C.l. Its equivalent functionality

is shown in Figure C.2. The function can be expanded to canonical form in

the corresponding truth table depending on the value of "don't care". For

example, Table C.1 shows a tabular representation when "don't care" product

term "011" is set to "1". The K-map is shown in Figure C.3. As a result,

switching function is

f(X2' Xl, xo) = X2 + Xl (C.1)

The respective CSOP minterm and CPOS maxterm expansions are

f(X2, Xl, xo) = X2XIXO + X2 XIXO + X2 XIXO
(C.2)

+X2 XIXO + X2 XIXO + X2 XIXO

f(X2' Xl, XO) = (X2 + Xl + XO)(X2 + Xl + xo) (C.3)

Appendix C 187

Table Col: Truth table for PLA file when "don't care" product term "011" is
set to "1"0

X2 Xl Xo f(X2' Xl, Xo)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

XjXO

010

Xz

Figure C03: K-map of example PLA file when "don't care" product term "011"
is set to "1"0

But if the "don't care" product term "011" is set to "0", the switching

function is

f(X2, Xl, xo) = X2 + XlXO (C.4)

The CSOP minterm CPOS maxterm expansions are

f(X2' Xl, xo) X2 XlXO + X2XlXO + x2xixo + X2XlXO + X2XlXO (C05)

f(X2, Xl, xo) (X2 + Xl + XO)(X2 + Xl + XO)(X2 + Xl + xo) (C06)

Appendix D

Attached Disk

The attached disk contains the programs developed in the thesis and electronics

version of the thesis.

1. Bidirectional multi-segment conversion program (COCmultiseg) between

Standard Boolean and fixed polarity COC expansions of any polarity.

This program can read CSOP minterms generated from the PLA file as

an input and output fixed polarity COC expansions of any polarity. It

can also read fixed polarity COC expansions of any polarity as an input

and output CPOS maxterms. The input and output file formats can be

found in Appendix B. More details can be found in Chapter 4.

2. Bidirectional serial and parallel tabular conversion program (COCtab­

ular) between Standard Boolean and fixed polarity COC expansions of

any polarity. This program can read CSOP minterms and CPOS max­

terms generated from the PLA file as an input and output fixed polarity

COC expansions of any polarity.' It can also read fixed polarity COC ex­

pansions of any polarity as an input and output CPOS maxterms. The

input and output file formats can be found in Appendix B. More details

188

Appendix D 189

can be found in Chapter 5.

3. On-set table method program (MMmapping) mapping from FPRM ex­

pansion to MMPRM expansion. This program reads FPRM expansion

generated from the PLA file as an input and output MMPRM expansion.

The input and output file formats can be found in Appendix B. More

details can be found in Chapter 6.

4. Symmetrical FPGA Genetic algorithm program (GPlacer). This pro­

gram reads ".net" file generated from VPack from VPR [18, 19] and

".arch". The ".net" file includes each net information and ".arch" file

includes symmetrical FPGA architecture information, as shown in Ap­

pendix B. The placement output file format can also be found in Ap­

pendix B. More details can be found in Chapter 7.

5. Script language verifies that on-set CSOP minterms and CPOS maxterms

generated from PLA are correct.

6. Script language is used to run programs against the benchmarks.

	430604_0001
	430604_0002
	430604_0003
	430604_0004
	430604_0005
	430604_0006
	430604_0007
	430604_0008
	430604_0009
	430604_0010
	430604_0011
	430604_0012
	430604_0013
	430604_0014
	430604_0015
	430604_0016
	430604_0017
	430604_0018
	430604_0019
	430604_0020
	430604_0021
	430604_0022
	430604_0023
	430604_0024
	430604_0025
	430604_0026
	430604_0027
	430604_0028
	430604_0029
	430604_0030
	430604_0031
	430604_0032
	430604_0033
	430604_0034
	430604_0035
	430604_0036
	430604_0037
	430604_0038
	430604_0039
	430604_0040
	430604_0041
	430604_0042
	430604_0043
	430604_0044
	430604_0045
	430604_0046
	430604_0047
	430604_0048
	430604_0049
	430604_0050
	430604_0051
	430604_0052
	430604_0053
	430604_0054
	430604_0055
	430604_0056
	430604_0057
	430604_0058
	430604_0059
	430604_0060
	430604_0061
	430604_0062
	430604_0063
	430604_0064
	430604_0065
	430604_0066
	430604_0067
	430604_0068
	430604_0069
	430604_0070
	430604_0071
	430604_0072
	430604_0073
	430604_0074
	430604_0075
	430604_0076
	430604_0077
	430604_0078
	430604_0079
	430604_0080
	430604_0081
	430604_0082
	430604_0083
	430604_0084
	430604_0085
	430604_0086
	430604_0087
	430604_0088
	430604_0089
	430604_0090
	430604_0091
	430604_0092
	430604_0093
	430604_0094
	430604_0095
	430604_0096
	430604_0097
	430604_0098
	430604_0099
	430604_0100
	430604_0101
	430604_0102
	430604_0103
	430604_0104
	430604_0105
	430604_0106
	430604_0107
	430604_0108
	430604_0109
	430604_0110
	430604_0111
	430604_0112
	430604_0113
	430604_0114
	430604_0115
	430604_0116
	430604_0117
	430604_0118
	430604_0119
	430604_0120
	430604_0121
	430604_0122
	430604_0123
	430604_0124
	430604_0125
	430604_0126
	430604_0127
	430604_0128
	430604_0129
	430604_0130
	430604_0131
	430604_0132
	430604_0133
	430604_0134
	430604_0135
	430604_0136
	430604_0137
	430604_0138
	430604_0139
	430604_0140
	430604_0141
	430604_0142
	430604_0143
	430604_0144
	430604_0145
	430604_0146
	430604_0147
	430604_0148
	430604_0149
	430604_0150
	430604_0151
	430604_0152
	430604_0153
	430604_0154
	430604_0155
	430604_0156
	430604_0157
	430604_0158
	430604_0159
	430604_0160
	430604_0161
	430604_0162
	430604_0163
	430604_0164
	430604_0165
	430604_0166
	430604_0167
	430604_0168
	430604_0169
	430604_0170
	430604_0171
	430604_0172
	430604_0173
	430604_0174
	430604_0175
	430604_0176
	430604_0177
	430604_0178
	430604_0179
	430604_0180
	430604_0181
	430604_0182
	430604_0183
	430604_0184
	430604_0185
	430604_0186
	430604_0187
	430604_0188
	430604_0189
	430604_0190
	430604_0191
	430604_0192
	430604_0193
	430604_0194
	430604_0195
	430604_0196
	430604_0197
	430604_0198
	430604_0199
	430604_0200
	430604_0201
	430604_0202
	430604_0203
	430604_0204
	430604_0205
	430604_0206
	430604_0207
	430604_0208
	430604_0209
	430604_0210

