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Abstract: Network based forensic investigations often rely on data provided by properly configured network- 
based devices. The logs from interconnected devices such as routers, servers and Intrusion Detection Systems 
(IDSs) can yield important information, which can be used during an investigation to piece together the events of 
a security incident. A device, such as a router, which performs its intended duties as well as logging tasks, can be 
defined as having in-line logging capabilities.  A system that only performs these duties, such as an IDS, can be 
described as an out-of-line logging system.  
 
The usefulness of these logs, though, must be compared against the impact that they have on the systems that 
produce them.  It is thus possible to introduce a detrimental burden on inline devices. This can thus reduce the 
capability of the device to provide core functionality, and, the extra evidence generated could place an increased 
burden on the forensic investigator. Therefore, when configuring network devices, the security practitioner is the 
key to producing a careful balance between security, performance and generated data volume.  
 
This paper outlines an intensive experiment to compare and contrast different logging schemes. These tests are 
placed within the scenario of a forensic investigation, which involves extensive data logging and analysis. The 
metrics compare CPU utilisation, bandwidth usage, memory buffers, usefulness of these records to the 
investigation, and so on. The two logging systems examined are the Cisco 20x series based routers, for in-line 
logging capabilities with Syslog, and the IDS Snort for out-of-line logging. This work provides an empirical 
perspective by plotting the footprint that this logging scheme has on the core network infrastructure, thus 
providing a proposed optimal logging approach for a network, along with the comparative merits of in-line and 
out-of-line auditing systems.  
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1. Introduction 

Digital Forensics is an emerging and important area of research (Palmer, 2001). It has established 
itself as a major force in the design, implementation, and deployment of IT systems. This paper 
focuses on some of the issues surrounding Network Forensics, which is concerned with the 
investigation and analysis of the data gathered from a network. This information can then be used to 
discover how, and, why, a security incident took place. These investigations are used routinely to 
solve security incidents, such as for automated worm propagation, fraud, and hacking events. Thus, 
the techniques used to gather data for analysis in such investigations is ideal for exploration.  

This paper concentrates on the tools used to gather information about the data traversing the network 
at any given point. With a networking infrastructure offering many different filtering options, such as 
the use of Access Control Lists (ACLs) on routing devices, there are a multitude of logging and 
auditing options. These capabilities can filter, and collect, any form of data destined to, or from, a host 
on the network. With the increase in demand for technologies to observe and collect network data, 
two such categories of system have emerged: 

 Native, or in-line, networking equipment, such as routers and firewalls may block and filter traffic, 
and, in addition, report the number of data packets that have been successfully restricted.  

 Dedicated, or out-of-line, devices, such as Intrusion Detection systems (IDSs), provide a 
mechanism for the system administrator to gather situational awareness regarding the network. 
This can then be used to provide real-time security incident response information, or may be used 
as a later time as evidence in some other investigation (Buchanan et al., 2005; Saliou et al., 
2005).  
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This work proposes a framework for testing such devices, and thus establishing a set of benchmarks 
for both in-line and out-of-line auditing systems. This framework will provide quantitative information 
about the impact that these services have on the devices in question. The quality and quantity of this 
data will be assessed, and finally the effectiveness of this framework will be assessed.  

2. Background and Methodology 

Testing procedures and other quantitative analysis are recommended for the tools and techniques 
used by forensic investigators (Casey, 2002). Such testing regimes can improve the reliability and 
repeatability (Carney et al., 2004) of these data gathering techniques and improve the likelihood that 
this data will be accepted as bona fide evidence (Carrier, 2003). Yet these testing recommendations 
only cover matters such as data integrity, assurance and authentication (Casey, 2002), and affect 
tools that are used in the post mortem analysis of IT systems. Yet, as Buchanan et al. (Buchanan et 
al., 2005) highlight, security and forensics are an interlinked concept. The basis of this theory is that, 
the output of the most commonly deployed security systems, such as IDS, form the basis of any 
investigation. Thus, there is commonly some form of effect of logging and forensic constraints. Yet, 
the impact that these security, and thereby auditing, systems have, tend to focus primarily on the 
performance overheads of common filtering and mitigation systems (Al-Tawil et al., 1999). Within this 
work, the link between security and performance is well known. So far there is very little analysis of 
these systems with relation to the impact that the logging and auditing capabilities have on a system, 
and how effective these systems are at what they do and provide.  

This paper aims at starting such an analysis of these issues, from a forensic perspective. With 
reference to existing work, and our hypothesis, we can assert that the main needs of a network can 
be summarised within Figure 1.  

 

Figure 1 – The Balance of Needs 

 Security – Systems should be able to restrict malicious activity and provide situational awareness 
for those in administrative charge. When improperly configured, security can introduce a 
detrimental effect on the system, and be perceived as a barrier to productivity (Viega, 2005). 

 Quality of Service (QoS) – An IT system should be able to provide core services that match the 
objectives of an organisation.  

 Quality of Evidence – The evidence gathered by logging and auditing systems should be 
complete, authenticated and reliable. Wherever possible, the proper configuration of these 
auditing systems should ensure superfluous data is not produced, and, thus, not have a negative 
impact on both the system producing it, and the investigation.  

Thus, if an IT system implements all of these features, there must be a balance. If this balance is lost, 
there may be a detrimental effect on that system. Yet lack of evidence can have a detrimental effect 
on an investigation. If evidence is dropped or missed by auditing devices then the evidence collected 
by this device cannot said to be complete. This missing evidence could contain the crucial information 
that would prove the innocence or guilt of an individual. Markatos et al. (Markatos et al., 2002) 
highlight the amount of data that can be lost by the IDS Snort. Like most of the work in this field, it 
approaches this topic from a security perspective. Yet, the implications for a forensic investigation are 
grave. We therefore present an analysis of this particular problem from an investigative perspective.  



 3 

Additional motivation for this work is highlighted by Mocas (Mocas, 2003), who states, that any work 
conducted in the field of digital investigation is unique, in that the researcher must be conversant with 
theoretical research and, must obtain a knowledge of the realities of investigation, whether it be 
procedural, or technical. Thus, in the development of this framework, we hope to bridge the gap 
between both of the essential fields of theoretical research, and practical application. This work will 
form the basis of a set of metrics and recommendations that may be used by practitioners in order to 
create a careful balance between these factors.  

The framework presented in Section 3, is an adapted and improved version of the testing framework 
presented in (Saliou et al., 2005). This framework was deployed in order to test a network router, 
while agent systems attempted to reconfigure the device in the face of an attack. The framework 
presented in this paper improves upon the previous design by implementing a testing strategy that 
can push a device to its breaking point. In addition, the traffic load placed upon the device more 
accurately represent the types of traffic found on a network. This allows for more realistic testing 
scenarios. In line with the practical and open philosophy outlined by Mocas, all of the software 
components, with exception of the Cisco Internetwork Operating System (IOS, the software that runs 
as standard on Cisco hardware) software, are open source, and can be freely used.  

3. Design and Implementation  

3.1 Configuration 

Figure 2 shows the logical configuration of the framework. It consists of four Pentium III machines with 
100Mbps network cards, and a single Pentium 4 Windows XP machine acting as a Syslog machine. A 
single switch provided separate VLAN access that acted as an inner and outer network. For this 
particular framework, a single Cisco 2611XM router and Cisco 3550 switch were used.  

 

Figure 2 – Logical Configuration of Test System 

Router-firewalls are active devices that are capable of filtering and dropping network packets. The 
logic instructing them to do so, in the case of Cisco devices, is contained in rule definitions, or ACLs. 
The decision to use an ACL that blocks spoofed traffic was made. The choice of  these ACLs allow for  
the testing of a rule set that is likely to be deployed on an actual network device, and are standard 
ACLs that are recommended by Cisco (Cisco Systems, 2004, p.122). In addition, these rules supply a 
large enough range of addresses to fully test the Syslog logging feature without introducing further 
stress on the router. Overall, the more rules that are added to the ACL, the higher an impact this has 
on the device (Lyu et al., 2000). A sample set of the ten ACLs deployed on the device are outlined in 
Figure 3. 

The command log, which is highlighted, is an optional command that tells the IOS to log the instances 
of traffic matching that rule to the desired source. The router can log to a local source in memory, or, 
as in this case, to a dedicated Syslog machine.  Conversely, if the option log is absent, the IOS will 
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access-list 150 deny   ip host 255.255.255.255 any            log 

access-list 150 permit ip any  10.0.0.0        0.0.255.255    log 

 

alert ip 16.2.1.0/24 any -> any any (msg:”16.2.1.0  net Trigger”;) 

alert ip 0.0.0.0/8   any -> any any (msg:”0.0.0.0/8 net Trigger”;) 

 

not log instances of that particular rule. Syslog (Lonvick, 2001) is a common standard for forwarding 
and logging  messages in networks. Since it is a standard protocol, it can be implemented in a 
heterogeneous environment.  

 

 
Figure 3 – A sample of the IOS ACLs used 

Snort (Roesch, 2006) (ref. Figure 2), as the out-of-line device, is tasked with analysing, and 
processing all network traffic, in the same manner as the router, and, like the router, will have to filter 
and log all malicious traffic based on a set of rules. The Snort rule set contains precisely the same ten 
filtering values as the ACL used on the router. Although there are database logging options available 
for Snort, in this instance we use the standard, file logging mechanism. Figure 4 is an example of the 
Snort rules used.  

 

Figure 4 – A sample of the Snort rules used.  

The software used to test the hardware components has to provide realistic network traffic. Thus in 
order to satisfy this requirement, Tcpreplay (Turner, 2006) was used. This tool allows data to be 
replayed across devices and networks from data that has been previously captured from a network 
using a tool such as the UNIX tcpdump utility. By using Tcpdump, in conjunction with existing network 
captures, highly realistic network conditions can be simulated as the information being sent across the 
network can be rewritten in order to match the specific logical requirements. In addition, network files 
being played from this utility can be replayed at differing speeds. Thus, it is possible to simulate 
different network conditions without the need to recapture data at different speeds. The data sets 
used are those collected by DARPA for the 1998 offline evaluation challenge (Lippmann et al., 2000). 
This data contains a mix of different network types, including HTTP, FTP and Telnet traffic, along with 
other, more exotic packets. Unlike the main attack data that contains data with malicious items, the 
traffic used for this work was the training data from Monday, Week 1.  

In accordance with the testing methodology outlined in Section 2, the metrics used to evaluate the 
devices under test must provide information about the stress experienced, and also the functionality 
provided under the different network loads. In addition, the amount of evidence collected and quality 
of this evidence will be assessed. The metrics are defined as: 

 Router CPU Usage - This metric was gathered by using the native CPU monitoring function 
present within the Cisco IOS and using a console connection between the device and the 
monitoring computer. By querying the IOS, the CPU usage for the past 60 seconds can be 
displayed, and, an average of the percentage over one minute is used to calculate this metric.  

 Network Latency - This performance metric is gathered using the average response time from 
the Hping tool (Sanfilippo, 2004), which acts very much like the generic Ping utility, in that it sends 
an ICMP packet from one device to another. The round trip of this packet gives an indication of 
network latency as this round trip time tends to increase as network throughput decreases.  

 Network Bandwidth – Is calculated using the Netperf utility (Jones, 2006), which uses two 
software agents. One acts as a server, the other as a client. The packets sent between these two 
are used to calculate the bandwidth available in Mbps.  

 Snort Metrics - The number of packets analysed and dropped by the system at each network 
load was collected from the output of Snort’s own auditing system.  

 Additional Metrics – The quantity and quality of evidence collected by each device will be 
assessed. 
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3.2 Experiment Design 

 
Metric collection occurs while each device is subjected to differing network traffic speeds.  Since the 
ACL and Snort rules used have 10 rules, 10 streams of data are played by Tcpreplay. Each stream of 
data is designed to activate each Snort rule or ACL. The network speed was set to 10 Mbps. 
Tcpreplay is capable of replaying traffic at the original recording speed. Therefore, the speed 
‘nominal’ relates to the original speed at which the traffic was recorded. The speeds were then 
increased incrementally to 1.0, 2.5, 5.0 and 7.5 Mbps. A test stream of 10 Mbps was omitted as it was 
considered that a network at its full capacity is unable to provide a service worth testing.   An 
additional test is included where the network speed is increased to 100 Mbps. This experiment is 
designed to explore whether there is a similar trend with higher baseline network speeds.  
 
Each experiment is conducted over a 15 minute period, to ensure the same amount of data was sent 
in each test run. The experiment scenarios, with their designation, are: 
 

 Baseline (BL) – Traffic which is played across the device at the five speeds, with no ACLs and no 
Syslog logging capabilities.   

 Router with ACL, No Logging (ACLONLY) - The router is loaded with the ACLs, yet the log 
command is absent, and logging capabilities are disabled on the router.  

 ACL and Logging All Traffic (LOGALL) – The router is loaded with the ACLs, and the keyword 
log is present after every rule declaration, and, with the full Syslog logging capabilities. Thus, the 
device logs instances of both friendly, and malicious, traffic. 

 ACL and Logging Attack Traffic Only (LOGAO) - The router is loaded with the ACLs and the 
keyword log is present only after the rules to filter undesirable traffic, and full Syslog logging 
capabilities are configured. Thus, the device only logs instances of malicious traffic.  

 100 Mbps ACL Syslog Test (100MbLOGAO) – The router and switch are configured to operate 
at 100Mbps. The ACL is loaded with the log command for malicious traffic. Full Syslog logging 
capabilities are configured. All traffic speeds are increased accordingly with the new baseline 
network speed. A new baseline for this test is taken with the higher speeds for comparison.   

 Snort (Snort) – Snort was tasked with filtering the traffic in the same manner as the ACL. The 
traffic to be monitored was the attack traffic, thus it follows the LOGAO model.   

 

4. Framework Evaluation 
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Figure 5 – CPU data (10 Mbps)                                   Figure 6 – Netperf Data (10 Mbps) 
 
It can be observed that there is a weakness in the testing framework, when conducting the tests at 
10Mbps. This can be observed particularly in Figure 6, yet is apparent in all of the graphs (ref. Figure 
5, 6 & 7). After the traffic speed exceeds 2.5 Mbps, the results merge together. This is likely to be due 
to the fact that  the traffic throughput is too high. At the higher speeds, packet loss occurs and both 
the traffic generator and the router have problems handling data at these speeds.  
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Additionally, we can observe that the CPU metric is not conclusive piece of evidence when observing 
the effect of this type of test. The trend shown in Figure 5 highlights that CPU usage on this particular 
type of router does not give an accurate representation of the load a device is experiencing, as all of 
the metrics are close together.    

5. Quantitative Analysis 

5.1 In-line device Evaluation 

 
Figure 7 shows the latency data from each experiment. A low latency means higher bandwidth and 
thus better network availability. The test LOGALL is significantly different from all of the other tests, 
with an initially similar latency to the rest, but diverging as much as 55% from the BL test at 2.5 Mbps. 
This shows the effect of a log everything policy on the device. The other traffic profiles are similar. 
When looking at their profiles at the 2.5 Mbps mark, it can be seen that that they offer a fairly good 
insight into the latency of each policy. Yet, after this point, the issues discussed in Section 4 skew the 
results. 
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Figure 7 – Latency Data (10 Mbps) 
 
We observed that the Netperf throughput measurements give the most detailed perspective, and 
therefore is the metric that will be the focus of the rest of this analysis. Figure 8 is a more detailed 
view of the graph produced by netperf. The merged data produced by device stress has been omitted.  
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 Figure 8 – Graph charting 10Mbps Netperf Experiment before Equipment Failure 
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The first thing to note about the results is the immediate difference between the BL and LOGAO test. 
We can see an immediate 13.4% drop in bandwidth across the router.  Yet, the drop in bandwidth 
continues by following the same trend as the baseline, and, up until the device stress, the trend 
remains almost the same.  
 
When comparing the BL and LOGALL experiments, although there is no immediate decrease in the 
available bandwidth, as the traffic throughput increases, there is a significant decrease in the amount 
of bandwidth available. This trend does not follow the same trend of the BL data.  The difference is 
most noticeable with the throughput at 1 Mbps. At this point, there is a 43.1% drop in throughput.  
 
When comparing the LOGAO and LOGALL experiments, the effect of a log all policy and a log attack 
data only policy can be seen. Although the policy to log only attack data has a significant effect on the 
device immediately, overall, the policy to log all data has the most detrimental effect on the device. 
The difference between these two, at its most noticeable is 24%.  
 
The test ACLONLY, was performed to ensure that the loss of bandwidth was not primarily due to the 
ACLs deployed on the device. Lyu et al. (Lyu et al., 2000) have already established this as a factor to 
be considered when deploying these configurations. Thus when comparing the ACLONLY test and 
the BL, it can be observed that there is a 16.4% effect on bandwidth at the 2.5 Mbps throughput, but it 
is not as great as the effect caused by the tests LOGAO and LOGALL, which have logging enabled.  
 
Finally, Figure 9 shows a comparison of the netperf data from the 100Mbps baseline test and the 
100MbLOGAO test. This graph shows that the performance of the device does suffer at higher 
speeds, yet the trend is different from that experienced during the 10 Mbps tests. When the traffic 
reaches 50Mbps, the device stops responding, and in effect, all network provision is lost.  This test 
data shows us the failure point of the device under a high load. This is something that the 10Mbps 
test does not show.  
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     Figure 9 – Netperf data (100 Mbps) 

5.1 Out-of-line device Evaluation 

 
When analysing the data from the Snort test results (ref. Figure 10), it is difficult to directly compare 
them to those provided by the in-line tests. Thus, Snort needs to be judged by its ability to log all 
relevant data, and what that data can be used for. A qualitative analysis of this data is provided in the 
next Section.  With the nominal traffic, Snort drops, or does not analyse 33.5% of the data it receives. 
This increases significantly to 96.2% when the traffic is at its highest. The loss of this data could have 
a significant impact on a given investigation, and in this instance, it can be said that Snort does not 
provide a complete record of network evidence. Table 1, which shows the size of log directory against 
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[**] 192.0.2.0 net trigger [**] 

02/17-14:08:49.291973 0:C0:4F:A3:58:23 -> 0:D:29:62:BB:81 type:0x800 

len:0x436 

192.0.60.182:2129 -> 192.0.112.149:25 TCP TTL:64 TOS:0x0 ID:5488 IpLen:20 

DgmLen:1064 DF 

***AP*** Seq: 0xB149828E  Ack: 0x8702B20  Win: 0x7D78  TcpLen: 20 

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 

 

packets dropped and analysed, highlights this trend. Although these poor results may be attributed to 
the speed of the machine, it is surprising to see such a poor performance at even nominal speeds.  
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Figure 10 – Packets Analysed and Dropped by Snort 
 
Table 1 – Comparison of Directory Size and Dropped vs. Analysed Packets  

 

Test (Mbps)  Dir Size (MB) Dropped (%) Analysed (%) 

nominal 47 33.5 66.5 

1 435 69.9 30.1 

2.5 344 91 8.9 

5 247 96.3 3.7 

7.5 253 96.2 3.8 

 

6 Qualitative Analysis 

 
This Section establishes how useful the data logged by either system would be for an investigation. 
The kind of investigation that would be conducted when spoofed traffic is detected originating from an 
internal, trusted network, would involve tracing the spoofed packet back to the originating host. The 
information needed to do so would be the physical MAC address of the machine sending the packet. 
Snort can be configured to log this information, along with any other details of the packet, yet the 
overhead that this incurs is highlighted in Section 5.1. Although Snort did drop a substantial number of 
malicious packets, for those that were logged, some form of follow up investigation would have been 
possible (Figure 11). For investigations that require more data to be logged for analysis (Casey, 
2004), the performance of Snort may decrease even further, as data relating to the application layer 
would need to be analysed and logged, as well as the network and transport data.  

Figure 11 – Snort log data.  
 
Figure 12 show the messages that are logged to Syslog. This is one example of a number of 
messages logged. When compared against the data logged by Snort (ref. Figure 11), the information 
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 2006-01-26 12:14:49 Local7.Info 100.0.1.1 1563: 1d01h: %SEC-6-

IPACCESSLOGP: list 150 denied tcp 169.254.69.104(0) -> 

196.254.114.207(0), 10 packets 

provided does not form any basis for back-tracking, as all that is provided is the originating and 
destination IP address, the  ACL that the packet contravenes, and a time stamp. There are no 
additional logging options available, as what is provided is a synopsis of the number of packets that 
have contravened the ACLs on the device. Yet the information provided, which is highlighted in Figure 
12, does not correlate with the counter information provided by the IOS when queried via the console 
connection. Thus the aggregate information sent to the Syslog server does not give an accurate 
picture of the number of packets being processed by the device.  

Figure 12 – Syslog log data 

7 Conclusions and Future Work 

This paper shows that in-line logging techniques do have a significant effect on the devices 
implementing them. It has been shown by using a minimal, recommended rule set, deployed on 
routing devices, reporting to a Syslog server. This effect can be seen when logging, not only all 
instances of policy circumvention, but also malicious data. It highlights that the policy to log only the 
malicious data places an instant 13.4% throughput performance loss on the device, and that the 
policy to log all malicious data has an even more damaging effect on the device, where the maximum 
throughput loss observed is 43.1%.  

From a forensic perspective, the Syslog data shows that the information supplied by this in-line device 
is ineffective, not only for a back tracking investigation, but, also in its precision at reporting the 
number of ACLs circumvented. Yet, not all Syslog data needs to be discounted. In many 
circumstances, situational data relating to the function of the router, such as system and 
administrative information can provide useful data in determining whether these core devices have 
been compromised.  

The results from the out-of-line Snort analysis shows that, although the data provided is useful, and 
provides detailed information about the packets that are logged, the packet analysis has a detrimental 
effect on Snorts ability to analyse and collect data. A packet loss of 33% at nominal throughput, 
increasing to a 96.2% loss at the highest throughput, represents a significant amount of data loss. 
Thus, Snort cannot be relied upon to provide a complete record of evidence.  

The framework presented in this paper does show the effect that different traffic throughput has on 
devices, and could be used for benchmarking production networks. This paper shows that in order to 
fully evaluate the balance of needs for an organisation (ref. Figure 1), a strong testing methodology of 
Design, Testing, Evaluation and Refinement is needed.  

Therefore the recommendations from this paper are: 

 In-line logging techniques need to be restricted to provide minimal information about the device 
itself, and not the traffic it is processing.  

 That further work on out-of-line devices needs to be conducted to establish how much data is lost 
by these auditing systems, and the effect that this data loss can have on an investigation.  

 Further work needs to be conducted in order to establish those of out-of-line devices that can 
provide sufficient, complete evidence for an investigation. Improvements need to be made so that 
detailed analysis can take place.  

 An improved framework would include fine grained control of traffic speeds and a variable 
malicious-to-friendly traffic ratio. 
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