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Abstract. Apache Hadoop is an open source software framework that supports 

data-intensive distributed applications and is distributed under the Apache 2.0 

licensing agreement, where consumers will no longer deal with complex config-

uration of software and hardware but only pay for cloud services on demand. So 

how to make the performance of the cloud platform become more important in a 

consumer-centric environment. There exists imbalance between in some distri-

bution of slow tasks, which results in straggling tasks will have a great influence 

on the Hadoop framework. By monitoring those tasks in real-time progress and 

copying the potential Stragglers to a different node, the speculative execution 

(SE) realizes to improve the probability of finishing those backup tasks before 

the original ones. The Speculative execution (SE) applies this principle and thus 

proposed a solution to handle the Straggling tasks. At present, the performance 

of the Hadoop system is unsatisfying because of the erroneous judgement and 

inappropriate selection for the backup nodes in the current SE policy. This paper 

proposes an SE optimized strategy which can be used in prediction of near data. 

In this strategy, the first step is gathering the real-time task execution information 

and the remaining runtime required for the task is predicted by a local prediction 

method. Then it chooses a proper backup node according to the near data and 

actual demand in the second step. On the other side, this model also includes a 

cost-effective model in order to make the performance of SE to the peak. The 

results show that using this strategy in Hadoop effectively improves the accuracy 

of alternative tasks and effects better in heterogeneous Hadoop environments in 

various situations, which is beneficial to consumers and cloud platform. 

 
# Both authors are the first author due to equal contribution to this paper. 
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1 Introduction 

As the internet has successfully occupied many aspects of people’s lives, the amount 

of data stored in the consumer's private cloud will grow exponentially in the next few 

years, many consumers need to pay for the cloud service on demand [1]. Whilst cloud 

computing platforms have evolved such as Apache Storm [2], Spark [3], and Hadoop 

[4]. 

Hadoop is widely used in distributed data storage, computing and search functions 

areas because of the Apache top project and the prevalent cloud computing frameworks 

[5]. Many strategies have been designed to improve the effectiveness and efficiency of 

Hadoop clusters and facilitate big data storage and analytics [6], but the inefficient 

resource allocation in Hadoop job scheduling still bring many difficulties. 

Allocation and Coordination of tasks among TaskTrackers has therefore become 

critical and challenging in a JobTracker due to lack of runtime information of 

TaskTrackers and difficulty in predicting the completion duration of each tasks [7]. The 

most effective mechanism to improve Hadoop's fault tolerance is Speculative 

Execution (SE), which identifies and corrects the inefficient allocation of 

JobTracker.[8]. Previous research efforts have been conducted to optimize the SE 

strategy, Although the purpose of these strategies is to identify the remaining time of 

the task through slow tasks, such self-estimation is often inappropriate due to 

inaccuracy. [9].  

In this paper, we pay attention to real-time task execution and collect the relevant 

information during a task’s run time. A local weighted prediction method called LWR-

SE is employed to estimate the running time required for the task. In parallel, the max 

cost-consumption model and the more appropriate selection strategy of back up task 

execution nodes are combined. In this way, both cloud platform providers and 

consumers can take advantage of it. And section 2 lists current user-centric cloud 

environment research and Hadoop-based fault-tolerant optimization strategies. Section 

3 presents the “LWR-SE” we designed, and the reliability of the method was verified 

by experimental methods in Section 4. In Section 5, we summarize this article’s work 

and list some key work to be done in the future. 

2 Related Work 

2.1 Service in User-centric cloud 

The combination of the consumer electronics industry and cloud computing has led to 

a growing number of researchers focusing on user-centric cloud services. A new 

architecture called IDM based on privacy and reputation extensions was put forward to 

enhance the security of consumers’ identity [10]. A new architecture “SuSSo” is 

designed to deal with the limitation of service continuity when across different 
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consumer electronic devices combined with the cloud computing [11]. Abolfazli et al 

gave an overall analysis and compared the different solutions on the mobile cloud 

computing in the fields of consumer electronics [12]. Fu et al. proposed a new useful 

multi-keword ranked search strategy towards the encrypted cloud data, which supports 

synonym queries at the same time [13]. Grzonkowski et al. raised a more secure 

authentication method for home networks in user-centric cloud environment [14]. Due 

to the complexity and difference of  big data, they propose a cloud computation 

offloading method, named COM, dynamic schedules of data/control-constrained 

computing tasks are confirmed[15]. A new and systematic smart home management 

system, which was deployed in the cloud and acted as the community broker, is 

presented to provide more electronic information service [16]. 

2.2 Fault Tolerance in Hadoop 

On the other hand, the temporal fault-tolerance aims to automatically detect and restore 

fault run-time tasks so that it can shorten the execution time, and improve the computing 

performance and reliability of a cloud system, which involves strategies on MapReduce 

job and task scheduling, enhancement of speculation execution (SE) strategies, etc [17].  
The original speculative execution was implemented as Hadoop-Naïve in Hadoop 

[18]. Its primary idea was to recognize a task as a “Straggler” if its progress is below 

the average level, which can cause misjudged tasks and wasted cluster resources. It 

goes even worse in a heterogeneous environment. With regard to the average rate used 

in the LATE to calculate the remaining time of running tasks, which may lead to 

inaccurate or even incorrect prediction. In 2015, Wu's team improved the accuracy of 

the prediction by calculating the remaining time of system load situation calculation 

task. [19] 

MCP proposal can maximize the startup backup task, which solves the problem that 

the previous SE strategy is not old, by dividing Map tasks into map and combiner stages, 

and Reduce tasks into copy, sort and reduce phases [20]. In 2014, an SE optimization 

algorithm called Ex-MCP was proposed to compare node values with MCP. [21]. On 

top of that, there are some optimization methods put forward. A execution was 

proposed based on sort nodes out according to the hardware performance of the nodes 

[22]. Wang et al. proposed a PSE optimization strategy that can ignore the differences 

between different processors to improve the efficiency of speculative execution. [23]. 

In [24] An effective speculative execution strategy (SECDT) is proposed. The 

completion time required for the task is calculated by decision tree. [25]. Besides, an 

ATAS strategy can improve the Hadoop’s expansive ability by increasing the estimate 

accuracy on the execution time of backing-up tasks [26]. Adaptive allocation 

scheduling can also be used for NILM algorithms based on power allocation.[27]. Due 

to the imbalance of cloud platform performance, Edge Computing Nodes (ECNS) has 

been proposed as an alternative solution for cloud computing in recent years. The team 

of Xu uses non-dominated sorting genetic algorithm II (NSGA-II) to achieve multiple 

Target optimization, shortening the unloading time of computing tasks and reducing 

the energy consumption. [28]. 

In general, the current SE strategy still has great difficulties in quickly backing up 



 

and accurately identifying1 potential Straggler tasks in appropriate nodes, and how to 

balance the overall benefits while maintaining the processing of local universities is 

also very large challenge. 

3 Model and Algorithm 

In this section, we introduce a  speculative execution method named “LWR-SE”. The 

flow chart of the method is indicated in Fig. 1, with more details discussed in the rest 

parts of this section. 

3.1 The Recognition of Straggler Candidates 

Data Collection of Running Tasks. First, confirm Stragglers by collecting detailed 

information such as the progress and execution time of real-time tasks. To collect 

features, the raw data is collected from the HDFS (progress, Timestamp) to facilitate 

prediction. Then convert the progress pair to (progress, execution time) in order to 

simplify the algorithm. The algorithm for data collection is shown as follows. 

Table 1. Algorithm for Data Collection 

Algorithm 1: Data Collection 

Input: Job Status (JS), MapTask Report (MR), The run-

ning task attempt(RT), The id of task attempt (IT), A context 

object for task (TC), The progress of a running task (P), Ex-

ecution time (ET) 

Steps: 

Get the JS from JobClient 

Traverse the JS: 

Get the MRs from JobId 

For each MR in the MRs 

Get the RTs from MR 

Get the collection containing the IT 

Get P from TC 

If P has changed 

Write the P and ET to the file named with IT 

End If 

EndFor 

End Data Collection 

Fig .1 and Fig .2 show examples of detailed execution information when running the 

Wordcount and Sort datasets in the Hadoop cluster. The collected data is shown in the 

figures. 
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Fig. 1. The execution data collected by running Wordcount 

 
 

Fig. 2. The execution data collected by running Sort 

A Locally Weighted Learning Model. After the running task execution information 

is collected and Sort datasets, similar tendency can be seen in the figures above. In order 

to define such non-traditional linear relationship in between, a non-parametric learning 

algorithm using local weighted regression is designed to establish a linear model on the 

non-linear datasets. The input dataset D= {(pi,ti )|i=1,2,…,n}, and the predicted output 

as below: 
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The number of training set samples is set to n, representing the progress of different 

tasks. p represents the progress which is an input n+1 dimension. t indicates the 

execution time of the task. θ is the regression parameter and it should satisfy that the 

square error Minimize between predicted and true values, which is proposed in 

Equations (2) and (3). 

 

( )i iE h p t= −  (2) 

 

( )
2

2

0 0

min
m m

i i

i i

i i

E h p t


 
= =

 = = −
    (3) 

Where E represents the error, (pi,ti) is the ith training samples, ωi  is the weight in the 

ith local forecasting area, which depends on the local prediction point. To simplify the 

description, we can transform it into a matrix representation as shown in Equation (4). 
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Where X is a matrix, with m rows training dataset p0, p1…, pm and n being set to 2. W 

is a matrix as the Equation (5) shows. 
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In addition, θ is also ensure that LWR has the minimum loss function at the predicted 

q, and the loss function of the LWR algorithm is shown as follows: 
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Then the regression parameter θ can be calculated using the least square method with a 

prediction point corresponding to a parameter θ. The final calculated θ is substituted 

into the Equation (1) and then the execution time of the corresponding progress is 

predicted, as shown in Equation (7) and (8). 
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The target of LWR is to find θ that minimizes for present prediction, during which the 

most important process is to compute the weight function, which can be obtained in 

two steps: 

Step 1: Distance Calculation. The local region is firstly determined using Euler distance 

when predicting the value of the local point, as described in Equation (9). 

 
( ) ( )( )

2

1

n
q i

i

d p p
=

= −  (9) 

Step 2: Weight Calculation. The calculation of the weight function depends on the 

distance d. The greater the distance from the predicted point, the smaller the weight will 

be assigned. Use the Gaussian kernel function in (10), γ can controls the rate at which 

the weight decreases with distance. Set to 0.08 in this paper. 
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According to the consumption and benefits of launching or non-launching a backup 

task in the cluster, we can compute the profits of launching or no- launching the backup 
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task to the cluster, the profits of launching speculative execution or not can be obtained 

as the following Equations. 

 

𝑝𝑟𝑜𝑓𝑖𝑡𝑏𝑎𝑐𝑘𝑢𝑝 =  𝛼 × (𝑡𝑟𝑒𝑚 − 𝑡𝑏𝑎𝑐𝑘𝑢𝑝) − 2 × 𝛽 × 𝑡𝑏𝑎𝑐𝑘𝑢𝑝 (11) 

 
𝑝𝑟𝑜𝑓𝑖𝑡𝑛𝑜𝑡_𝑏𝑎𝑐𝑘𝑢𝑝 =  −𝛽 × 𝑡𝑏𝑎𝑐𝑘𝑢𝑝 (12) 

 

α and β represent the weight of benefit and the cluster cost. When satisfying the 

following formula, the identified Straggler backup task will be launched so that it can 

reach the maximum efficiency. 
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Here we let  replace  /, then the above Equation can be simplified as follows. 
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  =  𝑙𝑜𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑛𝑢𝑚𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑡𝑎𝑠𝑘𝑠

𝑚𝑢𝑚𝑓𝑟𝑒𝑒_𝑠𝑙𝑜𝑡𝑠
 (15) 

Where  𝑡𝑏𝑎𝑐𝑘𝑢𝑝 is the running time of a backup task,  is the load factor of the cluster, 

which is the ratio of the number of pending tasks to the number of the free containers 

in the cluster. 

4 Results and Evaluation 

In this section, we first test the performance of our model based on linear predictions 

and actual values. After that, the LWR-SE strategy is evaluated compared to Hadoop-

None, LATE, and MCP in a heterogeneous cloud environment in three different 

scenarios. 

4.1 Experimental Environment Preparation 

We use 64-bit Ubuntu Server to be our operating system and our experimental platform 

is Hadoop-2.6.0. There are eight virtual nodes in the Hadoop cluster and each server is 

consist of four Intel® Xeon® CPU, 288GB memory in total and up to 10 TB hard drive. 

In Table 3, it shows some detail information about each node. In the framework of 

Hadoop, it is common to use the datasets such as Wordcount and Sort as the 

experimental workloads. They are available on the Purdue MapReduce Benchmarks 

Suite. 

Table 3. The Detailed Information of Each Node 



 

 NodeID Memory (GB) Core Processors 

Node 1 10 8 

Node 2 8 4 

Node 3 8 1 

Node 4 8 8 

Node 5 4 8 

Node 6 4 4 

Node 7 18 4 

Node 8 12 8 

 

4.2 Performance evaluation of the LWR model 

Data prediction of LWR. The prediction results using the LWR model in the 

Wordcount and the Sort datasets are depicted in Fig. 3 and Fig. 4 respectively, where 

the red line represents prediction error rates. It can be depicted that the predictive 

accuracy of the LWR model much outperforms the linear regression, especially while 

the progress reaches 80% and over. RMSE is used to evaluate the accuracy of the 

prediction, and the calculation Equation is as follows. 
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Fig. 3.  Comparison of LWR and Linear Regression during running a Wordcount task  
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Fig. 4. Comparison of LWR and Linear Regression during running a Sort task 

Where p is actual value and pi represents the prediction value. Table 3 and Table 4 show 

the RMSE results of fifteen datasets/tasks, which are randomly selected from the Word-

count and Sort tasks. The average prediction RMSE of Wordcount and Sort are 1.56 

and 1.75. This happens due to some unusual large values, which are mainly caused by 

resource contention and the non-data locality in the copy phrase during the Reduce 

process. If the outliers are ignored, we can find that average prediction RMSE of Word-

count and Sort drops to 0.91 and 0.86. 

Table 3. RMSE of LWR for Wordcount workloads 

 Task 1 Task 2 Task 3 Task 4 Task 5 

RMSE(s) 0.89 1.01 0.94 0.48 0.67 

 Task 6 Task 7 Task 8 Task 9 Task 10 

RMSE(s) 0.77 0.85 0.61 0.84 1.15 

 Task 11 Task 12 Task 13 Task 14 Task 15 

RMSE(s) 10.55 1.09 1.74 1.1 0.65 

Table 4. RMSE of LWR for Sort workloads 

 Task 1 Task 2 Task 3 Task 4 Task 5 

RMSE(s) 0.98 0.97 1.31 1.03 1.13 

 Task 6 Task 7 Task 8 Task 9 Task 10 

RMSE(s) 0.16 0.63 0.91 14.2 0.05 

 Task 11 Task 12 Task 13 Task 14 Task 15 

RMSE(s) 0.7 0.96 0.85 1.14 1.34 

4.3 Evaluate the performance of the LWR-SE strategy in heterogeneous 

situations 

Three different kinds of cluster workload scenarios are configured to evaluate the per-

formance of the LWR-SE, they are Normal Load Scenario, Busy Load Scenario, and 

Busy Load with Data Skew Scenario. In addition, the final results are shown as the best, 



 

worse and average outcomes of each strategy. 

Performance of the LWR-SE Strategy in a Busy Load Scenario. A busy load sce-

nario provides the cluster with limited resources to supply additional replication. It 

therefore is more necessary to ensure the accuracy of speculative execution, since low 

accuracy can cause the cluster resources to be irrationally occupied and consequently 

slow down the performance of the whole cluster. The busy load scenario was config-

ured by running other computing-intensive and/or IO-intensive tasks simultaneously. 

Wordcount and Sort jobs were set up to submit every 150 seconds.  

As can be seen in Fig. 6, the LWR-SE also fits well when running Sort jobs in the 

busy load scenario. in terms of the JET, on average cases, LWR-SE completed 9.7% 

earlier than MCP, 24.9% earlier than LATE and 30.6% earlier than Hadoop-None. 

When considering CT, the cluster throughput of LWR-SE increased by 9.3% compared 

with MCP and 36.1% over LATE. 

 

Fig. 5. Performance of strategies in Wordcount jobs in the busy load scenario 

 

Fig. 6. Performance of strategies in the sorting job in the busy load scenario 

5 Conclusion 

In this paper, we propose a strategy named LWR-SE based on the relationship between 

tasks and job execution schedule, which can obtain higher local prediction accuracy 

and can guarantee the cloud system. Maximize benefits. The experimental results show 

that it is superior to MCP, LATE and Hadoop-None. 
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