
Near-Data Prediction Based Speculative Optimization in

a Distribution Environment

Mingxu Sun1#, Xueyan Wu2#, Dandan Jin3*, Xiaolong Xu3, Qi Liu4, and Xiaodong

Liu5
1 School of Electrical Engineering University of Jinan, Jinan, China

2 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Tech-

nology (CICAEET), Nanjing University of Information Science & Technology, Nanjing,

210044
3 School of Computer and Software Nanjing University of Information Science & Technology,

Nanjing, China
4 Shandong Beiming Medical Technology Co., Ltd., Jinan, China

5 School of Computing Edinburgh Napier University Edinburgh, UK
18751971087@163.com

Abstract. Apache Hadoop is an open source software framework that supports

data-intensive distributed applications and is distributed under the Apache 2.0

licensing agreement, where consumers will no longer deal with complex config-

uration of software and hardware but only pay for cloud services on demand. So

how to make the performance of the cloud platform become more important in a

consumer-centric environment. There exists imbalance between in some distri-

bution of slow tasks, which results in straggling tasks will have a great influence

on the Hadoop framework. By monitoring those tasks in real-time progress and

copying the potential Stragglers to a different node, the speculative execution

(SE) realizes to improve the probability of finishing those backup tasks before

the original ones. The Speculative execution (SE) applies this principle and thus

proposed a solution to handle the Straggling tasks. At present, the performance

of the Hadoop system is unsatisfying because of the erroneous judgement and

inappropriate selection for the backup nodes in the current SE policy. This paper

proposes an SE optimized strategy which can be used in prediction of near data.

In this strategy, the first step is gathering the real-time task execution information

and the remaining runtime required for the task is predicted by a local prediction

method. Then it chooses a proper backup node according to the near data and

actual demand in the second step. On the other side, this model also includes a

cost-effective model in order to make the performance of SE to the peak. The

results show that using this strategy in Hadoop effectively improves the accuracy

of alternative tasks and effects better in heterogeneous Hadoop environments in

various situations, which is beneficial to consumers and cloud platform.

Both authors are the first author due to equal contribution to this paper.

Keywords: Distributed Systems, Hadoop, Speculative Execution, Locally

Weighted Regression, Near Data Prediction.

1 Introduction

As the internet has successfully occupied many aspects of people’s lives, the amount

of data stored in the consumer's private cloud will grow exponentially in the next few

years, many consumers need to pay for the cloud service on demand [1]. Whilst cloud

computing platforms have evolved such as Apache Storm [2], Spark [3], and Hadoop

[4].

Hadoop is widely used in distributed data storage, computing and search functions

areas because of the Apache top project and the prevalent cloud computing frameworks

[5]. Many strategies have been designed to improve the effectiveness and efficiency of

Hadoop clusters and facilitate big data storage and analytics [6], but the inefficient

resource allocation in Hadoop job scheduling still bring many difficulties.

Allocation and Coordination of tasks among TaskTrackers has therefore become

critical and challenging in a JobTracker due to lack of runtime information of

TaskTrackers and difficulty in predicting the completion duration of each tasks [7]. The

most effective mechanism to improve Hadoop's fault tolerance is Speculative

Execution (SE), which identifies and corrects the inefficient allocation of

JobTracker.[8]. Previous research efforts have been conducted to optimize the SE

strategy, Although the purpose of these strategies is to identify the remaining time of

the task through slow tasks, such self-estimation is often inappropriate due to

inaccuracy. [9].

In this paper, we pay attention to real-time task execution and collect the relevant

information during a task’s run time. A local weighted prediction method called LWR-

SE is employed to estimate the running time required for the task. In parallel, the max

cost-consumption model and the more appropriate selection strategy of back up task

execution nodes are combined. In this way, both cloud platform providers and

consumers can take advantage of it. And section 2 lists current user-centric cloud

environment research and Hadoop-based fault-tolerant optimization strategies. Section

3 presents the “LWR-SE” we designed, and the reliability of the method was verified

by experimental methods in Section 4. In Section 5, we summarize this article’s work

and list some key work to be done in the future.

2 Related Work

2.1 Service in User-centric cloud

The combination of the consumer electronics industry and cloud computing has led to

a growing number of researchers focusing on user-centric cloud services. A new

architecture called IDM based on privacy and reputation extensions was put forward to

enhance the security of consumers’ identity [10]. A new architecture “SuSSo” is

designed to deal with the limitation of service continuity when across different

3

consumer electronic devices combined with the cloud computing [11]. Abolfazli et al

gave an overall analysis and compared the different solutions on the mobile cloud

computing in the fields of consumer electronics [12]. Fu et al. proposed a new useful

multi-keword ranked search strategy towards the encrypted cloud data, which supports

synonym queries at the same time [13]. Grzonkowski et al. raised a more secure

authentication method for home networks in user-centric cloud environment [14]. Due

to the complexity and difference of big data, they propose a cloud computation

offloading method, named COM, dynamic schedules of data/control-constrained

computing tasks are confirmed[15]. A new and systematic smart home management

system, which was deployed in the cloud and acted as the community broker, is

presented to provide more electronic information service [16].

2.2 Fault Tolerance in Hadoop

On the other hand, the temporal fault-tolerance aims to automatically detect and restore

fault run-time tasks so that it can shorten the execution time, and improve the computing

performance and reliability of a cloud system, which involves strategies on MapReduce

job and task scheduling, enhancement of speculation execution (SE) strategies, etc [17].
The original speculative execution was implemented as Hadoop-Naïve in Hadoop

[18]. Its primary idea was to recognize a task as a “Straggler” if its progress is below

the average level, which can cause misjudged tasks and wasted cluster resources. It

goes even worse in a heterogeneous environment. With regard to the average rate used

in the LATE to calculate the remaining time of running tasks, which may lead to

inaccurate or even incorrect prediction. In 2015, Wu's team improved the accuracy of

the prediction by calculating the remaining time of system load situation calculation

task. [19]

MCP proposal can maximize the startup backup task, which solves the problem that

the previous SE strategy is not old, by dividing Map tasks into map and combiner stages,

and Reduce tasks into copy, sort and reduce phases [20]. In 2014, an SE optimization

algorithm called Ex-MCP was proposed to compare node values with MCP. [21]. On

top of that, there are some optimization methods put forward. A execution was

proposed based on sort nodes out according to the hardware performance of the nodes

[22]. Wang et al. proposed a PSE optimization strategy that can ignore the differences

between different processors to improve the efficiency of speculative execution. [23].

In [24] An effective speculative execution strategy (SECDT) is proposed. The

completion time required for the task is calculated by decision tree. [25]. Besides, an

ATAS strategy can improve the Hadoop’s expansive ability by increasing the estimate

accuracy on the execution time of backing-up tasks [26]. Adaptive allocation

scheduling can also be used for NILM algorithms based on power allocation.[27]. Due

to the imbalance of cloud platform performance, Edge Computing Nodes (ECNS) has

been proposed as an alternative solution for cloud computing in recent years. The team

of Xu uses non-dominated sorting genetic algorithm II (NSGA-II) to achieve multiple

Target optimization, shortening the unloading time of computing tasks and reducing

the energy consumption. [28].

In general, the current SE strategy still has great difficulties in quickly backing up

and accurately identifying1 potential Straggler tasks in appropriate nodes, and how to

balance the overall benefits while maintaining the processing of local universities is

also very large challenge.

3 Model and Algorithm

In this section, we introduce a speculative execution method named “LWR-SE”. The

flow chart of the method is indicated in Fig. 1, with more details discussed in the rest

parts of this section.

3.1 The Recognition of Straggler Candidates

Data Collection of Running Tasks. First, confirm Stragglers by collecting detailed

information such as the progress and execution time of real-time tasks. To collect

features, the raw data is collected from the HDFS (progress, Timestamp) to facilitate

prediction. Then convert the progress pair to (progress, execution time) in order to

simplify the algorithm. The algorithm for data collection is shown as follows.

Table 1. Algorithm for Data Collection

Algorithm 1: Data Collection

Input: Job Status (JS), MapTask Report (MR), The run-

ning task attempt(RT), The id of task attempt (IT), A context

object for task (TC), The progress of a running task (P), Ex-

ecution time (ET)

Steps:

Get the JS from JobClient

Traverse the JS:

Get the MRs from JobId

For each MR in the MRs

Get the RTs from MR

Get the collection containing the IT

Get P from TC

If P has changed

Write the P and ET to the file named with IT

End If

EndFor

End Data Collection

Fig .1 and Fig .2 show examples of detailed execution information when running the

Wordcount and Sort datasets in the Hadoop cluster. The collected data is shown in the

figures.

5

Fig. 1. The execution data collected by running Wordcount

Fig. 2. The execution data collected by running Sort

A Locally Weighted Learning Model. After the running task execution information

is collected and Sort datasets, similar tendency can be seen in the figures above. In order

to define such non-traditional linear relationship in between, a non-parametric learning

algorithm using local weighted regression is designed to establish a linear model on the

non-linear datasets. The input dataset D= {(pi,ti)|i=1,2,…,n}, and the predicted output

as below:

()
0

n
T

i i

i

t h p p p  
=

= = =$ (1)

The number of training set samples is set to n, representing the progress of different

tasks. p represents the progress which is an input n+1 dimension. t indicates the

execution time of the task. θ is the regression parameter and it should satisfy that the

square error Minimize between predicted and true values, which is proposed in

Equations (2) and (3).

()i iE h p t= − (2)

()
2

2

0 0

min
m m

i i

i i

i i

E h p t


 
= =

 = = −
   (3)

Where E represents the error, (pi,ti) is the ith training samples, ωi is the weight in the

ith local forecasting area, which depends on the local prediction point. To simplify the

description, we can transform it into a matrix representation as shown in Equation (4).

() ()min
T

X Y W X Y


 = − − (4)

Where X is a matrix, with m rows training dataset p0, p1…, pm and n being set to 2. W

is a matrix as the Equation (5) shows.

1

2

0

0 n

W







 
 
 =
 
 
 

L L

M L M

M M O M

L L

 (5)

In addition, θ is also ensure that LWR has the minimum loss function at the predicted

q, and the loss function of the LWR algorithm is shown as follows:

()
() () ()

2

1

2 2


 

 =

 −
  − −

= =


n
i i

Ti

i

h p t
X Y W X Y

J (6)

Then the regression parameter θ can be calculated using the least square method with a

prediction point corresponding to a parameter θ. The final calculated θ is substituted

into the Equation (1) and then the execution time of the corresponding progress is

predicted, as shown in Equation (7) and (8).

()

0T T
J

X WX X WY






= − =


 (7)

 ()
1

T TX WX X WY
−

= (8)

The target of LWR is to find θ that minimizes for present prediction, during which the

most important process is to compute the weight function, which can be obtained in

two steps:

Step 1: Distance Calculation. The local region is firstly determined using Euler distance

when predicting the value of the local point, as described in Equation (9).

() ()()

2

1

n
q i

i

d p p
=

= − (9)

Step 2: Weight Calculation. The calculation of the weight function depends on the

distance d. The greater the distance from the predicted point, the smaller the weight will

be assigned. Use the Gaussian kernel function in (10), γ can controls the rate at which

the weight decreases with distance. Set to 0.08 in this paper.

()

() ()()
2

2

1

2 2
exp exp

2 2


 
=

 
−  

 = − = − 
  
 
 


n

q i

i

p p
d

d (10)

According to the consumption and benefits of launching or non-launching a backup

task in the cluster, we can compute the profits of launching or no- launching the backup

7

task to the cluster, the profits of launching speculative execution or not can be obtained

as the following Equations.

𝑝𝑟𝑜𝑓𝑖𝑡𝑏𝑎𝑐𝑘𝑢𝑝 = 𝛼 × (𝑡𝑟𝑒𝑚 − 𝑡𝑏𝑎𝑐𝑘𝑢𝑝) − 2 × 𝛽 × 𝑡𝑏𝑎𝑐𝑘𝑢𝑝 (11)

𝑝𝑟𝑜𝑓𝑖𝑡𝑛𝑜𝑡_𝑏𝑎𝑐𝑘𝑢𝑝 = −𝛽 × 𝑡𝑏𝑎𝑐𝑘𝑢𝑝 (12)

α and β represent the weight of benefit and the cluster cost. When satisfying the

following formula, the identified Straggler backup task will be launched so that it can

reach the maximum efficiency.

 𝑝𝑟𝑜𝑓𝑖𝑡𝑏𝑎𝑐𝑘𝑢𝑝 > 𝑝𝑟𝑜𝑓𝑖𝑡𝑛𝑜𝑡_𝑏𝑎𝑐𝑘𝑢𝑝
𝑡𝑟𝑒𝑚

𝑡𝑏𝑎𝑐𝑘𝑢𝑝

>
𝛼 + 2𝛽

𝛼 + 𝛽
 (13)

Here we let  replace  /, then the above Equation can be simplified as follows.

 𝑝𝑟𝑜𝑓𝑖𝑡𝑏𝑎𝑐𝑘𝑢𝑝 > 𝑝𝑟𝑜𝑓𝑖𝑡𝑛𝑜𝑡_𝑏𝑎𝑐𝑘𝑢𝑝
𝑡𝑟𝑒𝑚

𝑡𝑏𝑎𝑐𝑘𝑢𝑝

>
1 + 2

1 + 
 (14)

  = 𝑙𝑜𝑎𝑑_𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑛𝑢𝑚𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑡𝑎𝑠𝑘𝑠

𝑚𝑢𝑚𝑓𝑟𝑒𝑒_𝑠𝑙𝑜𝑡𝑠
 (15)

Where 𝑡𝑏𝑎𝑐𝑘𝑢𝑝 is the running time of a backup task,  is the load factor of the cluster,

which is the ratio of the number of pending tasks to the number of the free containers

in the cluster.

4 Results and Evaluation

In this section, we first test the performance of our model based on linear predictions

and actual values. After that, the LWR-SE strategy is evaluated compared to Hadoop-

None, LATE, and MCP in a heterogeneous cloud environment in three different

scenarios.

4.1 Experimental Environment Preparation

We use 64-bit Ubuntu Server to be our operating system and our experimental platform

is Hadoop-2.6.0. There are eight virtual nodes in the Hadoop cluster and each server is

consist of four Intel® Xeon® CPU, 288GB memory in total and up to 10 TB hard drive.

In Table 3, it shows some detail information about each node. In the framework of

Hadoop, it is common to use the datasets such as Wordcount and Sort as the

experimental workloads. They are available on the Purdue MapReduce Benchmarks

Suite.

Table 3. The Detailed Information of Each Node

 NodeID Memory (GB) Core Processors

Node 1 10 8

Node 2 8 4

Node 3 8 1

Node 4 8 8

Node 5 4 8

Node 6 4 4

Node 7 18 4

Node 8 12 8

4.2 Performance evaluation of the LWR model

Data prediction of LWR. The prediction results using the LWR model in the

Wordcount and the Sort datasets are depicted in Fig. 3 and Fig. 4 respectively, where

the red line represents prediction error rates. It can be depicted that the predictive

accuracy of the LWR model much outperforms the linear regression, especially while

the progress reaches 80% and over. RMSE is used to evaluate the accuracy of the

prediction, and the calculation Equation is as follows.

()
2

1

n

i

i

p p

RMSE
n

=

−

=


(18)

Fig. 3. Comparison of LWR and Linear Regression during running a Wordcount task

9

Fig. 4. Comparison of LWR and Linear Regression during running a Sort task

Where p is actual value and pi represents the prediction value. Table 3 and Table 4 show

the RMSE results of fifteen datasets/tasks, which are randomly selected from the Word-

count and Sort tasks. The average prediction RMSE of Wordcount and Sort are 1.56

and 1.75. This happens due to some unusual large values, which are mainly caused by

resource contention and the non-data locality in the copy phrase during the Reduce

process. If the outliers are ignored, we can find that average prediction RMSE of Word-

count and Sort drops to 0.91 and 0.86.

Table 3. RMSE of LWR for Wordcount workloads

 Task 1 Task 2 Task 3 Task 4 Task 5

RMSE(s) 0.89 1.01 0.94 0.48 0.67

 Task 6 Task 7 Task 8 Task 9 Task 10

RMSE(s) 0.77 0.85 0.61 0.84 1.15

 Task 11 Task 12 Task 13 Task 14 Task 15

RMSE(s) 10.55 1.09 1.74 1.1 0.65

Table 4. RMSE of LWR for Sort workloads

 Task 1 Task 2 Task 3 Task 4 Task 5

RMSE(s) 0.98 0.97 1.31 1.03 1.13

 Task 6 Task 7 Task 8 Task 9 Task 10

RMSE(s) 0.16 0.63 0.91 14.2 0.05

 Task 11 Task 12 Task 13 Task 14 Task 15

RMSE(s) 0.7 0.96 0.85 1.14 1.34

4.3 Evaluate the performance of the LWR-SE strategy in heterogeneous

situations

Three different kinds of cluster workload scenarios are configured to evaluate the per-

formance of the LWR-SE, they are Normal Load Scenario, Busy Load Scenario, and

Busy Load with Data Skew Scenario. In addition, the final results are shown as the best,

worse and average outcomes of each strategy.

Performance of the LWR-SE Strategy in a Busy Load Scenario. A busy load sce-

nario provides the cluster with limited resources to supply additional replication. It

therefore is more necessary to ensure the accuracy of speculative execution, since low

accuracy can cause the cluster resources to be irrationally occupied and consequently

slow down the performance of the whole cluster. The busy load scenario was config-

ured by running other computing-intensive and/or IO-intensive tasks simultaneously.

Wordcount and Sort jobs were set up to submit every 150 seconds.

As can be seen in Fig. 6, the LWR-SE also fits well when running Sort jobs in the

busy load scenario. in terms of the JET, on average cases, LWR-SE completed 9.7%

earlier than MCP, 24.9% earlier than LATE and 30.6% earlier than Hadoop-None.

When considering CT, the cluster throughput of LWR-SE increased by 9.3% compared

with MCP and 36.1% over LATE.

Fig. 5. Performance of strategies in Wordcount jobs in the busy load scenario

Fig. 6. Performance of strategies in the sorting job in the busy load scenario

5 Conclusion

In this paper, we propose a strategy named LWR-SE based on the relationship between

tasks and job execution schedule, which can obtain higher local prediction accuracy

and can guarantee the cloud system. Maximize benefits. The experimental results show

that it is superior to MCP, LATE and Hadoop-None.

11

Acknowledgement

This work has received funding from 5150 Spring Specialists (05492018012,

05762018039), Major Program of the National Social Science Fund of China (Grant

No.17ZDA092), 333 High-Level Talent Cultivation Project of Jiangsu Province

(BRA2018332), Royal Society of Edinburgh, UK and China Natural Science Founda-

tion Council (RSE Reference: 62967_Liu_2018_2) under their Joint International Pro-

jects funding scheme and basic Research Programs (Natural Science Foundation) of

Jiangsu Province (BK20191398).

References

[1] L. F. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the clouds: to-

wards a cloud definition,” Acm Sigcomm Computer Communication Review, vol. 39, no. 1,

pp. 50-55, 2008.

[2] M.H. Iqbal and T.R. Soomro. “Big Data Analysis: Apache Storm Perspective,” Interna-

tional Journal of Computer Trends & Technology, vol. 19, no. 1, pp. 9-14, 2015.

[3] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica, “Spark: cluster com-

puting with working sets,” in Proc. USENIX Conference on Hot Topics in Cloud Computing,

pp. 1765-1773, 2010.

[4] Z. Li, H. Shen, W. Ligon, and J. Denton, “An Exploration of Designing a Hybrid Scale-

Up/Out Hadoop Architecture Based on Performance Measurements,” IEEE Trans. Parallel

Distrib. Syst., vol. 28, no. 2, pp. 386-400, 2017.

[5] T. Gunarathne, T.L. Wu, J. Qiu, and G. Fox, “MapReduce in the Clouds for Science,” in

Proc. Second international conference on Cloud computing, pp. 565-572.,2010.

[6] J. Dean and S. Ghemawa, “MapReduce：Simplified Data Processing on Large Clusters,”

in Proc. OSDI, pp.107-113, 2004.

[7] Q. Liu, W. Cai, D. Jin, J. Shen, Z. Fu, and X, Liu, “Estimation Accuracy on Execution Time

of Run-Time Tasks in a Heterogeneous Distributed Environment,” Sensors, vol. 16, no. 9,

2016

[8] H, Xu, and W. C. Lau, “Xu H, Lau W C. Optimization for Speculative Execution in Big

Data Processing Clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 530-545,

2017.

[9] H. Xu, and W. C. Lau, “Optimization for Speculative Execution in a MapReduce-like Clus-

ter,” in Proc. IEEE Conference on Computer Communications (INFOCOM), pp. 1071-1079,

2015.

[10] R. Sanchez, F. Almenares, P. Arias, D. Diaz-sanchez, and A. Marin, “Enhancing privacy

and dynamic federation in IdM for consumer cloud computing,” IEEE Trans. Consumer

Electron, vol. 58, no.1, pp. 95-103, 2012.

[11] P. A. Cabarcos, F. A. Mendoza, R. S., Guerrero, A. M. Lopez, and D. Diaz-Sanchez “SuSSo:

seamless and ubiquitous single sign-on for cloud service continuity across devices,” IEEE

Trans. Consumer Electron, vol. 58, no.4, pp. 1425-1433, 2012.

[12] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia, “An experimental analysis on

cloud-based mobile augmentation in mobile cloud computing,” IEEE Trans. Consumer

Electron, vol. 58, no.1, pp. 146-154, 2014.

[13] Z. Fu, X. Sun, N. Linge and L. Zhou, “Achieving effective cloud search services: multi-

keyword ranked search over encrypted cloud data supporting synonym query,” IEEE Trans.

Consumer Electron, vol. 60, no.1, pp. 164-172, 2014.

[14] B. Eom, C. Lee, H. Lee and W. Ryu, “An adaptive remote display scheme to deliver mobile

cloud services,” IEEE Trans. Consumer Electron, vol. 60, no.3, pp. 540-547, 2014.

[15] Xiaolong Xu, Yuan Xue, Yuan Yuan, Lianyong Qi, Xuyun Zhang, Tariq Umer, Shaohua

Wan, “An Edge Computing-Enabled Computation Offloading Method with Privacy Preser-

vation for Internet of Connected Vehicles”. Future Generation Computer Systems, vol. 96,

pp. 89-100, 2019.

[16] Y. Lee, “An integrated cloud-based smart home management system with community hier-

archy” IEEE Trans. Consumer Electron, vol. 62, no.1, pp. 1-9, 2016.

[17] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu and N. Linge, “A speculative approach to spatial-

temporal efficiency with multi-objective optimization in a heterogeneous cloud environ-

ment,” Security and Communication Networks, vol. 7, no. 17, pp. 4002-4012, 2016.

[18] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu and N. Linge, “An adaptive approach to better load

balancing in a consumer-centric cloud environment,”, IEEE Trans. Consumer Electron, vol.

62, no. 3, pp. 243-250, 2016.

[19] X. Huang, L. Zhang, R. Li, L. Wan, and K. Li, “Novel Heuristic Speculative Execution

Strategies in Heterogeneous Distributed Environments,”. Computers and Electrical Engi-

neering, 2015.

[20] Q. Chen, C. Liu, and Z. Xiao, “Improving MapReduce Performance Using Smart Specula-

tive Execution Strategy,” IEEE Trans. Comput, vol. 63, no. 4, pp. 954-967, 2014.

[21] H. Wu, K. Li, Z. Tang, L. Zhang, “A Heuristic speculative execution strategy in heteroge-

neous distributed environments,” in in Proc. Sixth International symposium on Parallel Ar-

chitectures, Algorithms and Programming (PAAP), pp. 268–273, 2014.

[22] Q. Liu, W. Cai, J. Shen, Z. Fu, and N. Linge, “A Smart Strategy for Speculative Execution

based on Hardware Resource in a Heterogeneous Distributed Environment,” International

Journal of Grid Distributed Computing, vol. 9, pp. 203–214, 2015.

[23] Y. Wang, W. Lu, R. Lou, and B. Wei, “Improving MapReduce Performance with Partial

Speculative Execution,” Journal of Grid Computing, vol. 13, pp. 587–604, 2015.

[24] Y. Li, Q. Yang, S. Lai, B. Li, “A New Speculative Execution Algorithm based on C4.5

Decision Tree for Hadoop,” In Proc. the International Conference of Young Computer Sci-

entists, Engineers and Educators (ICYCSEE 2015), pp. 284–291, 2015.

[25] S. Tang, B. Lee, and B, He, “DynamicMR: A Dynamic Slot Allocation Optimization Frame-

work for MapReduce Clusters,” IEEE Trans. Cloud Comput, vol. 2, no. 3, pp. 333-347,

2014.

[26] S. Yang, and Y. Chen, “Design Adaptive Task Allocation Scheduler to improve MapReduce

Performance in Heterogeneous Clouds,” Journal of Network & Computer Applications. vol.

57, pp. 61–70, 2015.

[27] Q, Liu, F. Chen, F. Chen, Z. Wu, X. Liu, and N. Linge, "Home appliances classification

based on multi-feature using ELM," International Journal of Sensor Networks, Vol. 28, No.

1, pp. 34-42, 2018.

[28] Xiaolong Xu, Yuancheng Li, Tao Huang, Yuan Xue, Kai Peng, Lianyong Qi, Wanchun Dou,

“An Energy-Aware Computation Offloading Method for Smart Edge Computing in Wire-

less Metropolitan Area Networks”, Journal of Network and Computer Applications, vol.

133, pp. 75-85, 2019.

