

AUTOMATING THE PROCESS OF NETWORK

DOCUMENTATION

BRYAN EDWARD CAMPBELL

Submitted in partial fulfilment of the requirements of

Napier University

for the degree of

Master of Science in Advanced Computer Networking

School of Computing

June 2007

B. E. Campbell, MSc Advanced Computer Networking, 2007 2

Authorship Declaration

I, Bryan Campbell, confirm that this dissertation and the work presented in it are my

own achievement.

1. Where I have consulted the published work of others this is always clearly

attributed.

2. Where I have quoted from the work of others the source is always given. With the

exception of such quotations this dissertation is entirely my own work.

3. I have acknowledged all main sources of help.

4. If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I

have contributed myself.

5. I have read and understand the penalties associated with plagiarism.

Signature Date

Matriculation Number

Data Protection Declaration

Under the 1998 Data Protection Act we cannot disclose your grade to an unauthorised

person. However, other students benefit from studying dissertations that have their

grades attached.

Please sign your name against one of the options below to state your preference.

 The University may make this dissertation, with indicative grade,

available to others.

 The University may make this dissertation available to others, but

the grade may not be disclosed.

 The University may not make this dissertation available to others.

B. E. Campbell, MSc Advanced Computer Networking, 2007 3

Abstract

Knowledge of network topologies is invaluable to system administrators regardless of

the size of an enterprise. Yet this information is time consuming to collect, and even

more so to be processed into easily consumable formats (i.e. visual maps). This is

especially so when the culture within which administrators operate is more concerned

with operational stability and continuity as deliverables rather than documentation and

analysis. The time-cost of documentation impinges upon its own production. This

continues to be the case although documentation is of increasing importance to non-

technical personnel in enterprises, and as a compliment/supplement to network

management systems.

This thesis puts forth a framework to largely automate the process of documenting

network topologies. The framework is based on issues raised in recent research

concerning the needs of IT administrators, and network discovery methods. An

application is also described serving as a proof-of-concept for the central elements of

the framework. This application was realized in the Microsoft Visual C# 2005

Express Edition programming environment using the C#.NET language. The

compiled result is supported by the .NET Framework 2.0 runtime environment. The

application provides for an administrator to control, through a graphical interface, the

sequence of discovering a network and outputting visual documentation. For testing,

Cisco Systems routers and switches, along with a Microsoft Windows-based laptop,

were used to construct a mock network. Measurements of the performance of the

application were recorded against the mock network in order to compare it to other

methods of network discovery.

Central to the application's implementation is a recognition that networks are more

likely than not to be heterogeneous. That is, they will be comprised of equipment

from more than a one vendor. This assumption focused the choices about the

framework design and concept implementation toward open standard technologies.

Namely, SNMP was selected for discovery and data gathering. XML is utilized for

data storage. Data processing and document production is handled by XSL.

Built around these technologies, the application successfully executed its design. It

was able to query network devices and receive information from them about their

configuration. It next stored that information in an XML document. Lastly, with no

change to the source data, HTML and PDF documents were produced demonstrating

details of the network. The work of this thesis finds that the open standard tools

employed are both appropriate for, and capable of, automatically producing network

documentation. Compared to some alternate tools, they are shown to be more capable

in terms of speed, and more appropriate for learning about multiple layers of a

network. The solution is also judged to be widely applicable to networks, and highly

adaptable in the face of changing network environments.

The choices of tools for the implementation were all largely foreign to the author.

Apart from the prima face achievements, programming skills were significantly

stretched, understanding of SNMP architecture was improved, and the basics of these

XML languages was gained: XSLT, XPath, and XSL-FO.

B. E. Campbell, MSc Advanced Computer Networking, 2007 4

Table of Contents

Authorship Declaration 2

Data Protection Declaration 2

Abstract 3

Table of Contents 4

List of Tables 6

List of Figures 6

List of Code Snippets 7

Acknowledgements 8

Chapter 1 Introduction 9

1.1 Context 9

1.2 Aim and Objectives 10

1.3 Background 10

1.4 Thesis Structure 11

Chapter 2 Background 12

2.1 Introduction 12

2.2 Work Environment of System Administrators 12

2.3 Effective Tools 13

2.4 Cost of Network Management 16

2.5 Documentation’s Function in Management Systems 17

2.6 Conclusion 19

Chapter 3 Literature Review 20

3.1 Introduction 20

3.2 Types of Discovery Systems 21

3.2.1 Four Factors for Analyzing Discovery Systems 21

3.2.2 Single Agent Systems 22

3.2.3 Multiple Agent Systems 22

3.2.4 Distributed Systems 23

3.3 Types of Networks 25

3.3.1 Internet 26

3.3.2 WANs 27

3.3.3 LANs 28

3.4 Discovery Mechanisms 30

3.4.1 SNMP 30

3.4.2 Ping 31

3.4.3 Traceroute 31

3.4.4 DNS 32

3.4.5 Other Lookup Tables 32

3.5 Analysis of work by Siamwalla Team 32

3.5.1 Miscellaneous Factors 33

3.5.2 ICMP-based 33

3.5.3 DNS 34

3.5.4 SNMP 35

3.6 Measuring Discovery 36

3.7 Conclusion 37

Chapter 4 Design and Methodology 38

4.1 Introduction 38

B. E. Campbell, MSc Advanced Computer Networking, 2007 5

4.2 Design Motivations 38

4.3 Basic Design 39

4.4 Initialization 40

4.5 Communication 41

4.6 Data Storage 42

4.7 Data Processing & Output 43

4.8 Hypothetical Enhancements 45

4.9 Conclusion 46

Chapter 5 Implementation 48

5.1 Introduction 48

5.2 Overview of the User Interface 48

5.3 Implementation of the Initialization Module 49

5.4 Implementation of the Communication Module 52

5.5 Implementation of the Data Storage Module 54

5.6 Implementation of the Data Processing & Output Modules 56

5.7 Conclusion 59

Chapter 6 Evaluation 61

6.1 Introduction 61

6.2 Analysis of Implementation 61

6.2.1 Initialization Phase 61

6.2.2 Communication Phase 63

6.2.3 Data Storage Phase 66

6.2.4 Cumulative Measurements 68

6.3 Critique of Implementation 70

6.4 Suggestions for Future Work 71

6.5 Conclusion 73

Appendix A – Implementation Resources 76

Appendix B – SNMP Basics 77

Appendix C – XML Basics 78

C.1 XML 78

C.2 XSLT 79

C.3 XSL-FO 80

Appendix D – Application Code 82

D.1 System Generated Code 82

D.2 Global Variables 83

D.3 XML File Initialization 83

D.4 Loader for IANA Interface Type Lookup 84

D.5 Class to Create IP and Hostname List 84

D.6 IP Address Generator 88

D.7 Main Class for SNMP Communication 88

D.8 Asynchronous SNMP Call 91

D.9 Class for Correlating Interfaces’ IP and Index Values 91

D.10 Main Class for Writing Device/Interfaces to XML File 93

D.11 User Interface Controls 94

Appendix E – XML Files 104

E.1 XML Source File (Example) 104

E.2 XSLT Transform File 1 to HTML 105

E.3 XSLT Transform File 2 to HTML 108

E.4 XSLT Transform File 3 to PDF 115

E.5 FO File (Truncated) 118

B. E. Campbell, MSc Advanced Computer Networking, 2007 6

Project Management 122

References 130

Bibliography 134

List of Tables

Table 1 – The OSI reference model 10

Table 2 – Possible sources for determining a list of target nodes 40

Table 3 – Resources utilized in the implementation 76

List of Figures

Figure 1 – Competing factors for the System Administrator 13

Figure 2 – Software Development centred on a structure-lending tool 13

Figure 3 – Disjointed Knowledge Repositories of the System Administrator 15

Figure 4 – Transferring Knowledge into a Management Tool 15

Figure 5 – A Model of Management Systems featuring Tools & Documentation at the

Centre 17

Figure 6 – How Agents are situated in a topology in different Types of Discovery

Systems 21

Figure 7 – Framework of a modular application design 39

Figure 8 – Initialization module defined on the framework 40

Figure 9 – How the PTOPO MIB defines globally unique identifiers for links 41

Figure 10 – Communication module defined on the framework 42

Figure 11 – Data Storage module defined on the framework 43

Figure 12 – Scheme of the XSL system 44

Figure 13 – Final design with all modules defined on the framework 45

Figure 14 – Application design showing extensions of function and external

integration 46

Figure 15 – User interface created for the implementation 48

Figure 16 – Defining a single IP address in the GUI 49

Figure 17 – Defining an IP range in the GUI 49

Figure 18 – Defining an IP network in the GUI 50

Figure 19 – Alert message displayed when the subnet mask is ill defined 50

Figure 20 – Three hostnames and a range of 15 IP addresses defined in the GUI 51

Figure 21 – Target node list of 18 items generated by settings seen in Figure 20 51

Figure 22 – Hovering over the ‘Get Data’ button displays the count of target nodes 52

Figure 23 – Status output showing no response from a target node after 10 seconds

(lines 1 -3) 53

Figure 24 – Content of the initialized XML data file upon application launch 55

Figure 25 – XML data file containing a single device with two interfaces 56

Figure 26 – HTML output of the XML data file transformed by the first .xslt file 57

Figure 27 – HTML output of the XML data file transformed by the second .xslt file 58

B. E. Campbell, MSc Advanced Computer Networking, 2007 7

Figure 28 – PDF output of the XML data file transformed by the third .xslt file 60

Figure 29 – The realized implementation mapped onto the design framework 59

Figure 30 – Configuration of test environment 61

Figure 31 – Actual and estimated time to generate IP addresses 62

Figure 32 – Average time (ms) for the initial SNMP get/response to complete by hop

distance 64

Figure 33 – Average time (ms) for round-trip pings to complete by hop distance 64

Figure 34 – Time (ms) to write a XML “device” element according to its hop distance

and number of interfaces 67

Figure 35 – Time (s) to find an existing duplicate XML “device” element 67

Figure 36 – Growth of the size of an XML file on a megabyte and logarithmic scale 68

Figure 37 – Total time (s) to perform SNMP & XML operations per host by its

number of interfaces 69

Figure 38 – Comparative distribution of total runtime of the SNMP-based application

and a ping script 70

Figure 39 – Architecture of SNMP 77

Figure 40 – MIB Hierarchy showing OID names and numbers 77

List of Code Snippets

Code Snippet 1 – Example of integer range and non-integer validation 50

Code Snippet 2 – The list of nodes is written to a text file for viewing 51

Code Snippet 3 – Reference to the snmp.dll and usage of its classes 52

Code Snippet 4 – Implementation of the asynchronous call 53

Code Snippet 5 – Creating the initial XML file 54

Code Snippet 6 – Clicking the ‘Generate Document’ label sends the XML file to an

external handler 58

B. E. Campbell, MSc Advanced Computer Networking, 2007 8

Acknowledgements

My first thanks goes to Professor Bill Buchanan, my supervisor for this work. I

appreciate his encouraging the pursuit of the concepts presented herein, and allowing

me the latitude, freedom, and time to discover and explore them along with the

dissertation and research process itself.

Most students of networking are less interested in software programming, and I am no

exception. The programming achieved in this work would have been impossible

without the well-designed and well-presented module on programming from Lecturer

Alistair Lawson.

Additional thanks to Dr. Ahmed Al-Dubai for acting as the internal examiner on this

work.

Finally, I must relate that my interest in effective documenting of IT systems stems

from my first IT job under the direction of Ms. Sally Weldon. Her mantra upon

finishing a project was, “Did you document it?” That idea, so often overlooked, has

stuck with me ever since.

Bryan Campbell

31 May 2007

B. E. Campbell, MSc Advanced Computer Networking, 2007 9

Chapter 1 Introduction

1.1 Context

Documenting complex systems has two central problems: expensiveness and error.

Expensiveness is expressed through a large investment of time needed to record

details of a system. More is needed to process and present that information in usable

formats. And even more is required to maintain the ongoing accuracy of the system

details, and the presentation mediums, as complex systems change through time. At

any point in this cycle of gathering data, processing data, presenting data, and

maintaining data, error can be introduced. When error is injected at one step it is

inherited by the subsequent steps.

Attempts to document computer networks are not immune to the factors of

expensiveness and error. Computer networks, after all, are highly complex systems

that incur many changes through time. And, although automation has been embraced

in many areas of computer administration, it has yet to become practiced as a means

for producing network documentation. The spreadsheet and the Visio diagram still

reign as favourites of administrators (Barrett, et al., 2004, Nance, 2005, & Rainge,

2006).

The problem, of course, with spreadsheets and Visio diagram is that they are

manually constructed. Time is invested in gathering information, typing it into cells

or icon captions, and then going back to change it by hand when a change occurs – if

it is remembered. What's more is that each document is likely to be an island of

information. One spreadsheet will contain data about switches while another has all

the information about routers. One Visio diagram will show a LANs physical

topology, and another the IP topology. Some changes might require a visit to every

separate document that is kept.

Describing the problem of expensiveness created by manual efforts at documentation

production also describes a methodology where the other problem of error is naturally

occurring. The overriding source of error is humans themselves. Humans cannot, and

should not, be wholly removed from any area of administration, but

[o]ne thing to consider is whether a human will be involved with

producing a document. No matter how careful we are, we humans tend

to make a lot of mistakes. Validation can find those problems and save

frustration later. But software-created documents tend to be very

predictable and probably never need to be validated (Ray, 2003, p.

113).

Automating the production of network documentation can do much to mitigate both

time expensiveness and human error. Additionally, having up-to-date and accurate

documentation about computer networks is increasingly important to enterprises.

Many are already using network management systems, but they are also beginning to

adopt better, standardized, management paradigms. Both call for documentation to

ensure quality computer network administration.

B. E. Campbell, MSc Advanced Computer Networking, 2007 10

1.2 Aim and Objectives

The aim of this thesis is to explore open standard technologies that can be combined

in a system that automates the production of network documentation. Objectives

supporting the aim are:

1. To conduct a critical review of existing literature relating to network

management and topology discovery systems.

2. To design a novel system framework for producing network documentation.

3. To use a non-proprietary protocol to retrieve information from network

devices.

4. To store network information in an accessible, portable format.

5. To automatically produce network documentation as both paged and non-

paged media.

1.3 Background

The Internet is a non-proprietary system comprised of administrative domains. An

administrative domain is proprietary in that a single entity is responsible for it. The

contents of administrative domains are further network sub-structures ranging from

the large to the small. Examples, respectively, include WANs and LANs. Efforts to

document or map any of these levels of organization have to expect a lack of

homogeneity.

Various elements of all computer networks operate within layers of the OSI model

(Table 1). This is a conceptual framework of seven layers describing the operation of

computer networks. Of most interest for building a functional network are the first

three layers. Layer 1 is the Physical layer dealing with how devices interconnect.

Layer 2 is the Data Link layer. In a LAN, switches operate here to construct the

logical paths along which data frames will travel. Layer 3 is the Network layer.

Routers function in this layer to direct IP packets. Administrators documenting a

network document these layers, often by way of producing topological maps.

Layer Name Common Function Example

7 Application Application services HTTP

6 Presentation Data representation ASCII

5 Session Connection management SSH

4 Transport End-to-end connections TCP

3 Network Logical addressing IP

2 Data Link Physical addressing Ethernet

1 Physical Media and bit transmission 10Base-T
Table 1 – The OSI reference model

In order to produce documentation about a computer network, data must be gathered

first. This process of network discovery might be accomplished in an automated

manner using one of three classes of tools, being proprietary management protocols,

open standard management protocols, or semantic manipulations. A proprietary

protocol is usually not a good choice as it has a hard time being applied to

heterogeneous environments. An open standard protocol will have more success as it

is non-proprietary and can be implemented on any network device regardless of the

B. E. Campbell, MSc Advanced Computer Networking, 2007 11

manufacturer. However, the protocol must be deployed to make it useful. The third

type of tool, a semantic manipulation, functions by taking advantage of some feature

common to the environment in order to discover network elements. The chief

example is the ping tool. Its execution allows for node discovery and identity

validation to be performed in one step. A semantic manipulation generally bypasses

the heterogeneity and deployment problems.

A semantic manipulation is generally only applicable to one of the three OSI layers of

interest. Both proprietary and open standard management protocols are more

powerful in that they are usually capable of discovering information about many

layers concerning a network device.

1.4 Thesis Structure

Chapter 2 provides further background, detailing the need for documentation and

tools. It concentrates on information from relevant literature about documentation’s

relationship with administrators, and network management systems. Work by Barrett,

Kandogan, Maglio, Haber, Takayama, and Prabaker (2004) is especially important

here in establishing the contextual problems of time expensiveness and human error.

Chapter 3 reports on recent literature’s discussion of the mechanics of topology

discovery. Attention is given to system architecture, network types, and

communication methods. To provide a broader discussion of communication

methods, the paper Discovering Internet Topology by Siamwalla, Sharma, and

Keshav (1998) is given notable analysis. Their work was highly informative in the

conception of this thesis.

Chapter 4 proposes a framework designed to gather network device information; store

the gathered information; and finally, output documents valuable to administrators.

The framework flows from the problems, questions, and ideas of the previous

chapters.

Chapter 5 describes a software application implemented based on the principals of the

framework.

Chapter 6 begins with an evaluation of the implementation. It continues with an

overall appraisal of the thesis’ work, points to other interesting ideas, and presents

final conclusions.

B. E. Campbell, MSc Advanced Computer Networking, 2007 12

Chapter 2 Background

2.1 Introduction

Nance (n.d.) begins his paper, invitingly titled Know Your Network, by encapsulating

why networks should be documented, and documented well:

You can do anything you want with a well-designed, well-documented

network. With relative ease, you can expand it, enhance it and

troubleshoot it. You can plan its future and even reduce its costs.

Embedded in this thought are the goals of most networks:

• They should be easy to manage, and more importantly, easy to fix when

faults occur.

• They should operate with quality because the enterprises that rely on them

must do the same.

The people that keep networks well managed and operating with quality are the

administrators. Thus the job of documenting networks falls to them. Their challenges

are presented in Section 2.2. The significance of effective tools available to

administrators is the subject of Section 2.3. Section 2.4 will discuss the cost of

network management, and Section 2.5 looks at documentation’s role in network

management systems (NMS).

2.2 Work Environment of System Administrators

Sandwiched between IT developers/architects, and end users, is the system

administrator. Situated here, sysadmins might be thought of as the “expert end user”

– both end user and super-user of the very things they must keep running at all costs.

They are from one perspective an end user in the sense that they receive output from

the developers. Yet the true end users, relying on systems for their day-to-day

functions, see sysadmins as the provider of a service. Sysadmins are the car

mechanics of computer systems. A service provider, the mechanic must both know

how to use a system the way an end user does, and know in an expert fashion how it

operates. In this way sysadmins straddle and bridge various continuums.

Consideration of the conclusions reached by Barrett, et al. (2004) in a study of this job

role leads here to a synthesis of several scales, or continuums, at the nexus of which is

placed the sysadmin (Figure 1).

Each scale’s two ends push and pull at the centre because both demand attention.

Neglect of one end leads to disequilibrium. Sysadmins must balance between the IT

sphere and the business sphere, where technology must be aligned with organizational

goals. They act as a bridge between highly complex technical and social arenas, often

literally translating jargon-filled tech-speak to layman’s terms and creative analogies.

Sysadmins seek equilibrium between desires of development and demands of

B. E. Campbell, MSc Advanced Computer Networking, 2007 13

production
1
. Finally, they are tasked to manage risk, being sure that neither too much,

nor too little planning and rehearsal occurs at the cost of actually implementing

necessary change. The work performed by sysadmins is usually extremely complex.

Typically more complex than the sum of the parts, because complexity emerges in

impossibly incalculable ways when so many hosts, servers, routers, switches,

databases, applications, and networks are connected together. Competing pressures in

a multi-faceted environment result in work that is decidedly non-linear.

Figure 1 – Competing factors for the System Administrator

Along with being non-linear, work is of a “less formal style [for] sysadmins. The

sysadmin work environment we saw was very different from that required for the

design-develop-test cycle of software developers” (Barrett, et al., 2004, p. 394). As a

comparison to another IT role, software developers rely on authoring environments

where code is checked in and out. Their tools help manage and structure work, while

also providing a framework for collaboration. Work content has the opportunity to be

peer-reviewed, and is put through approval chains. Finally, it is sent to testing from

where it may cycle back through the system, or be released for production. Tools that

allow this (examples of which are Microsoft Visual SourceSafe or IBM’s Rational

suite) help to ‘linearize’ and set structures around the work of software developers

(Figure 2). This characterization is not meant to say that software development is

simplistic compared to system administration. Instead, the comparison attempts to

reveal a contrast in the nature of the approach to the work performed.

Figure 2 – Software Development centred on a structure-lending tool

2.3 Effective Tools

Meanwhile, sysadmins lack similar tools. Any tool intending to lend structure to the

work of sysadmins will run up against the issues of scale of complexity, and

variability between environments. Tool usage is obviously not alien to sysadmins,

1
 Enforcement of security policies is a contemporary example.

B. E. Campbell, MSc Advanced Computer Networking, 2007 14

though. It is certainly not the case that they are doing everything manually.

Automation is often achieved through an amalgam of purchased applications and self-

written, function-specific tools and scripts. What is more is that the self-written tools

contain an added value of trust (Barrett, et al., 2004). This is because the sysadmin

themselves imbue a tool with a specific function to be performed in a specific way.

Likely, this way will be exactly how the sysadmin would execute the action manually,

but recorded in a scripted file. However, even highly trusted applications must be

doubted by the conscientious sysadmin. To hypothesize: perhaps an indicator in a

management or monitoring application stating “everything-is-OK” shows an old

status, or its own underlying process quit running itself some time ago. Thus, most

troubleshooting begins by verifying and/or reproducing the issue at hand. Ultimately

it seems more difficult to fit one tool around the environment that sysadmins

encounter as can be done for software developers. Conversely, what is observed is a

myriad of small, bolt-on utilities each intended to accomplish a specific task for the

sysadmin.

While ad hoc scripts and the like will always have a place in the arsenal employed by

sysadmins, they present longer term challenges and risks, despite their being

“trusted.” First, programming principals are likely to be ignored as programming

skills are not mandatory. Barrett, et al. (2004, p. 394) found only a third of their

survey population of sysadmins had education in programming. In other cases a small

tool or script is likely to go undocumented as to its purpose or function. The attitude

is that “everyone knows about it,” or that any good sysadmin will understand it. A

parallel situation is that processes become dependent on a single tool’s creator/owner.

No recourse exists if that individual is on holiday, out sick, or permanently leaves the

enterprise. On the other side of attrition, new employees have to be trained on, or

possibly left to reverse-engineer for themselves, such solutions. This is a hidden

(although very lightly so) cost of operations.

Therefore, knowledge must be gotten out of the heads of the experts and gurus and

into documentation (Nance, 2005) (Figures 3 and 4). Because IT support functions

provide a service, there is less expectation of tangible deliverables outside keeping

everything functioning as it is supposed to. A car owner simply needs a mechanic to

keep their car running. Likewise, it is often of little interest to the customer of the

sysadmin the intricate details about how a system vital to them is repaired – just that it

runs as expected. In comparison with developers again, we see that they create actual

products: software applications. Documentation, inclusive of performance metrics

and analysis, must become a deliverable product of system administrators. Their

traditionally less formal work environment, though, provides a cultural impediment to

such a transition. Additionally, the historical lack of effective tools bringing

documentation into system monitoring and management processes, essential work of

system administration, provides another significant barrier.

B. E. Campbell, MSc Advanced Computer Networking, 2007 15

Figure 3 – Disjointed Knowledge

Repositories of the System Administrator

Figure 4 – Transferring Knowledge into a

Management Tool

Despite the necessary role that system administrators provide to enterprises as the

“expert end user,” there is perhaps an assumption they are just that: a special case of

the end user. Subsequently, Barrett, et al. (2004), report that “little can be found in

the literature about the practices and problems of these highly specialized computer

users” and that “[d]espite the importance of sysadmins, few HCI [Human-Computer

Interaction] studies report on their particular problems and practices” (p. 388). That

team’s field studies of tools and practices of sysadmins helps fill the observed paucity.

One of their main conclusions is that in relation to the sysadmin, tools are often

lacking correct information, are malfunctioning, or are not aligned with the observed

work practices. Sysadmins themselves reported (albeit in a highly informal survey)

that one of the most pleasing cases was to find a useful tool, while one of their self-

criticisms was a desire to “plan, manage, communicate, document, or organize better”

(Dijker, 1998, p. 18). Thus a useful tool that is designed with the sysadmin in mind is

likely to be welcomed by the community.

A telling case is related by Barrett, et al. (2004) from their field observations of

sysadmins in situ. In the instance described, a sysadmin spent many hours attempting

to achieve communication between two servers through a firewall. While

troubleshooting, he interfaced with eight other persons via direct meetings, phone,

email, and instant messaging. All these individuals were dependent upon the

sysadmin as their source of information about the systems involved. Ultimately the

situation was resolved when a colleague was able to independently analyze and

discover the root cause – one seen, but misinterpreted initially by the sysadmin, and

then propagated to the eight others. He “managed this complexity by rapidly moving

among multiple management tools and working together with many experts, but there

was no single view of the entire system. A simple drawing of the configuration might

have made the situation clear and avoided hours of troubleshooting” (Barrett, et al.,

2004, p. 393). Documentation could have prevented the case from living as long as it

did. Automated documentation may also have proved less immune to the human

error. Any sysadmin stuck working a critical issue for hours would welcome tools

that help avoid such cases.

B. E. Campbell, MSc Advanced Computer Networking, 2007 16

Without question, there are numerous tools that are very advanced and effective at

assisting the sysadmin with monitoring and maintenance. It is less certain that there

are solutions able to assist equally as well with the aspect of documentation.

Researchers (see Barrett, et al., 2004) and industry analysts (see Nance, 2005, and

Rainge, 2006) all point out early in their presentations that the use of spreadsheets to

store and organize critical data is a ubiquitous practice despite the manual effort

involved in creating, maintaining, and interpreting them. The automation of

documentation helps to address the several points raised. It fights the issue of keeping

knowledge in workers heads, or on their own workstations, where it is unshared and

not auditable. It eases attrition events. Its presence and usage helps to formalize the

environment by providing common reference for fault management, and enables

common processes. When demonstrably accurate, tools that provide for the

automation of documentation can become trusted. A well-trusted tool will negate, to

some degree, the need for ad hoc tools with their attendant long term issues.

Ultimately, good documentation balances the scales by allowing transparent and

translated communication between IT and business, technical and social vocabularies,

development and production, the expert and the non-expert.

2.4 Cost of Network Management

The management of IT networks is expensive and potentially daunting in scale.

Integrating automated documentation into management tools and processes has the

potential to lower the costs and tackle problems of scale.

Administration of systems is the most resource-consuming expense of operating IT

systems [see Barrett, et al., (2004), IBM, (2001), Kephart, (2003), McDonough,

(2003), and Patterson, et al., (2002)]. Some studies and estimations put

administration at or over 50 per cent of the total cost of ownership (TCO) of IT

systems. Furthermore, costs are exacerbated beyond what is simply necessary to run

and support systems due to the absence of, or ignoring of, policies and processes. In a

study spanning 29 months of work orders of a university IT support team, it was

found that fully one third of man hours spent correcting problems could be attributed

to an initial cause that failed to comply with established policies (Madigan, Petrulich,

and Motuk, 2004). As discussed in the previous sections, documentation exists to cut

down on costs by cutting down the time needed to train employees, maintain systems,

and recover from failures. But, manually produced documentation does little to help

efficiency efforts in these areas.

In many IT systems, especially large and complex ones, change occurs too fast for

manually maintained documents to keep up. They are not accurate compared to the

actual states of systems. Change is so quick that efforts at visualization (i.e. maps),

asset management and tracking, and task automation become a challenge and

struggle. A report on interviews conducted with IT executives already employing a

tool for network visualization and diagramming suggests automation can help to

lower TCO while supporting administration activities. One comment gathered was

that using sets of “traditional map drawing tools, the result ‘is almost outdated the day

that you finish it’” (Rainge, 2006, p. 12). Furthermore, all too often administrators

are called to the next urgent project before they document what was done in the

previous one. On the other hand, automation and integration of documentation into

daily activities of system maintenance and management provides for self-reinforcing,

B. E. Campbell, MSc Advanced Computer Networking, 2007 17

synergistic, practices. If a tool used for administration helps create the documentation

that is relied upon for reporting, problem solving, and fault recovery, an imperative

exists to use the tool. Documentation can even be the tool. Changes to a system can

cause a change in the tool/documentation. Changes in the tool/documentation can

cause a change in the system. However accomplished, automation provides a vector

for quick and accurate information capture.

Mentioned already is the idea that work cultures are a contributing factor in resisting

change in general. Implementing new methodologies and tools is a form of change

and is susceptible to the same resistance. A study of an IT organization beginning to

address the area of systems change management confirms this aspect. It is observed

that:

It was difficult to get people to change their habits to plan ahead far

enough to submit change requests in enough time for them to be

approved and reviewed. Changes were often implemented regardless

of the status of the request. Sharing the outcome of a change, even

those completed successfully within the timeframe allocated, was also

a new procedure to instill [sic] (Dietel, 2004, p. 190).

Still, working in IT means usually that the only constant is change. Standardizing and

formalizing practices is increasingly a necessity and a demand both by entities

internal and external to an enterprise.

2.5 Documentation’s Function in Management Systems

Internally, IT teams need to manage not just systems, but wrap their whole operations

up in change, configuration, and fault management paradigms. Each of these three

areas certainly overlaps with one another. It is possible to even cover all of them with

a powerful application (Figure 5). There are subtle differences, though, and

documentation adds value to each in different ways.

Relationships &

Processes

Technical

Information Fault

ChangeConfiguration

monitoring

alarming

alerting

emergency changes

approval chains

communication

dependencies

peer review

config parameters

version numbers

system state

OS details

Figure 5 – A Model of Management Systems featuring Tools & Documentation at the Centre

Change management involves defining a process to be followed for executing

changes, documenting system inter-dependencies, creating communication channels

between involved teams/parties/user groups, and continual process improvement.

B. E. Campbell, MSc Advanced Computer Networking, 2007 18

This piece of the management spectrum is able to do the most to lend structure to the

work environment. It creates peer review, and supervisory approval chains.

Interdependencies are identified. Change management systems ask that

implementations be planned and contain back-out strategies. Planning causes a need

to know what the “now” and “later” pictures of the IT landscape look like. A change

system fosters that all of these details be input or captured in a tool. When that is

done, documentation exists so that responsibility domains are delineated and work

performed is auditable. Change management is probably the least concerned with

technical details of systems. The most important results are the construction of

communication pathways and establishment of common processes.

Configuration management handshakes with change management, but deals with the

technical side of a change activity. Documentation needed here shows details of

systems’ overall configuration states, specific variable values, and version numbers of

firmware, files, or operating environment. Strung together, historical snapshots of

system states can demonstrate change through time. Documentation from change and

configuration tracking systems becomes very valuable for fault management.

Fault management is usually the first type of management systems that are setup by

and for IT teams. This is because it encompasses monitoring, alerting, and alarming.

These activities are essential so that IT workers know about problems before the

enterprise, or worse external customers, detects them. They are just the first phase

though. When email, pagers, or mobile phones alert administrators of an error

condition the fault management process has just begun. To be completed, the fault

must be corrected. Documentation from change and configuration management is

relied upon here. Invaluable information is present in the change history and in the

heretofore stable system state about conditions before a fault. That data allows

quicker identification of what has changed. It is more straightforward to return

systems to a previously known, correctly running state. The alternative is to perform

troubleshooting in an undisciplined manner, possibly injecting new problems into an

already malfunctioning system. Full resolution of a fault must also include its own

documentation. Usually post-mortem reports and meetings provide analysis and root

cause elucidation. The whole process also plugs back into change and configuration

management making information capture a wheel that does not to be reinvented.

Faults can thus be handled as special types of changes (i.e. emergency/unplanned

changes). It should not be left unsaid that the sum of documentation from systems

management is highly valuable for business continuity/disaster recovery strategies. In

fact, it may be absolutely necessary in situations where facilities and hardware are

physically destroyed.

Fortunately automation already plays a large role in most systems management tools.

But, as pointed out while discussing administrators, integration of documentation is

more tenuous. Especially without this integration, policies need to be in place to align

practices with organizational goals. In regards to security, we now instinctively

recognize the veracity that failure of polices to be extant, be followed, or have

consequences is deleterious (Madigan, et al., 2004). Perhaps this is so due to the

nearly immediate negative effects of security breaches. Likewise, lack of and failure

of policies to guide change, configuration, and fault management, as well as produce

documentation for computer networks, even in the presence of automation, translates

to higher operating costs for the enterprise.

B. E. Campbell, MSc Advanced Computer Networking, 2007 19

While this section limits itself to a few elements of systems management,

documentation plays an increasingly vital role in larger NMS’s. The ISO OSI model

itself contains a Network Management Model which applied the FCAPS paradigm
2

(ISO, 1989) to data networks (Parker, 2005). FCAPS does little more than delineate

functional areas of management activities. It does not mention the role of

documentation in effective IT systems management, but the FCAPS elements are

building blocks to more complex management frameworks. Generally, today’s

management frameworks and standards are described as IT Service Management

systems. ITSM systems are usually bound in their scope to an enterprise’s back-

office infrastructure. Two of the most popular ITSM systems today are the

Information Technology Infrastructure Library (ITIL) and the ISO 20000 standard.

The ISO 20000 standard itself aims to be an ITSM standard which aligns itself with

components of the ITIL.

The ITIL is much larger in scope than a back-office-centric ITSM. It is a set of best

practices divided into eight conceptual disciplines. One, the Service Management

discipline, seems to map onto most of the scope of an ITSM. Its Service Support sub-

discipline contains a chain of processes (Incident, Problem, Change, Release, and

Configuration Management) that all feed a Configuration Management Database

(CMDB). The tool or application found at the centre of Figure 5 could be thought of

as a potential CMDB for recording the process chain and outputting documents for

Quality Management. A second ITIL discipline covering areas of general ITSM is the

Information and Communication Technology (ICT) Infrastructure Management

discipline. Its sub-disciplines are Design and Planning, Deployment, Operations, and

Technical Support. To support these there is the Operational Documentation Library

(ODL). The ODL, too, is a repository of information about IT systems, and a

platform for operational and technical support personnel to document and share their

expertise (OGC, 2002).

2.6 Conclusion

System administrators work in a highly technical environment, but cannot ignore their

position at a boundary with the non-technical world to which they provide a service.

Documentation helps to bridge the communication gap between these areas. System

administrators also face a diverse environment where a diverse set of tools is

employed to manage systems. Effective tools can structure operations and potentially

lower TCO. Moreover, tools can integrate with processes and procedures vital to

NMS’s. NMS’s themselves call for documentation of systems, processes, and

procedures in order to achieve quality. As much as management activities are a

function of the system administrator role, so too is the production of documentation.

2
 FCAPS is a popular acronym for Fault, Configuration, Accounting, Performance, and Security – five

key areas of systems management.

B. E. Campbell, MSc Advanced Computer Networking, 2007 20

Chapter 3 Literature Review

3.1 Introduction

Network administrators need maps of their networks. This type of documentation

serves to communicate information about devices and their relationships. Trying to

relate such data through text is tedious and counter-productive to speedy

understanding. Prose or tables are simply less conducive to rapid consumption by

humans. Intuition guides us instead to visualize information, especially when it

represents large sets and multiple dimensions
3
. Thus network administrators produce

maps both for their own reference and for use as a transmission medium to other

entities. Moreover, businesses and researchers want to understand topological

information for the purposes of evaluating performance of protocols; assessing

security techniques; and provisioning and capacity planning (Alderson, Li, Willinger,

& Doyle, 2005). Automating the visual representation of networks requires data

concerning the objects to be represented. A choice is then to be made about how that

data is collected: manually or automatically. A visualization tool could act on

manually gathered data stored in databases and spreadsheets. In this situation, people

are still involved, along with their typographical and misreading errors, in populating

data fields and spreadsheet cells. Choosing this method does not really alleviate the

long-term cost of generating documentation, though. CA’s netViz is a tool that

depends on these types of sources (netViz, 2003). Although demonstrated to be very

powerful and cost saving (Rainge, 2006), it has no discovery engine
4
. Solutions

reliant upon databases and spreadsheets will only ever be as accurate as their sources.

The sources with the most obvious authority are devices/network nodes themselves.

Tools whose aim is to visualize network data and to collect that data from the

environment directly, must answer several design questions. How will they be

architected? What is the intended scope of the tool? What will be the mechanisms by

which data is collected? Depending on those mechanisms, what are the limitations

and challenges? How will the tool measure and present success? Section 3.2 looks at

the classes of topology discovery systems. Next examined are the target scopes in

Section 3.3. Mechanisms and protocols are discussed in Section 3.4. An extended

analysis of protocols is given in Section 3.5 by way of a detailed review of the paper

Discovering Internet Topology by Siamwalla, et al. (1998). Lastly, Section 3.6

presents some measures by which topology discovery can be evaluated.

3
 See Han (2005), for a technical description of a multi-touch screen device whose interface is

predicated upon the intuitiveness automatically realised out of a highly visual and tactile presentation.

It is seemingly so intuitive that Han himself describes it as “interface-free” in live presentations such as

one given at the TED 2006 conference (offered at http://www.ted.com/index.php/speakers/view/id/65).

Technology such as this is a very powerful demonstration of the ease with which, and affinity humans

have, to interact with data visually.

4
 CA’s netViz is now a suite of eight products per descriptions at http://www.netviz.com. The

historically core product enabling diagramming, netViz Pro/3D, does not contain a discovery engine.

The suite has gained this ability through a bolt-on offering from Concord. CA acquired Concord which

previously acquired netViz.

B. E. Campbell, MSc Advanced Computer Networking, 2007 21

3.2 Types of Discovery Systems

The discovery system itself can consist of a single agent, a network of agents, or a

distributed population of agents reporting back to a central system (Figure 6). Four

factors will be used to discuss these types: redundancy of data; potential to mimic an

attack; resource constraints; and applicability to networks of different scales.

Figure 6 – How Agents are situated in a topology in different Types of Discovery Systems

3.2.1 Four Factors for Analyzing Discovery Systems

Redundancy

Redundancy does not refer in this context to an ability to remain operational in a fault

condition. It is a measurable value of how often a discovery system repeats work by

rediscovering or revisiting already seen nodes in a network. Admittedly, revisiting

nodes is desirable for polling or verifying existing data. However, the discovery

process itself becomes more expensive when it begins visiting nodes more than once.

Donnet, Raoult, Friedman, and Crovella (2005), utilize the term monitor equivalent to

a discovery agent. They go on to define and examine two types of redundancy. The

first is intra-monitor redundancy. This term describes the fact that nodes will be

visited or probed by a single agent multiple times. It is shown that nodes near a

monitor will be visited many times. This measurement gradually declines as a node is

further away. The second type of redundancy identified is inter-monitor. This term

refers to the measurement of how many monitors in a multi-agent system visit the

same node. It is shown that the set of nodes with the highest values of this

measurement are neither close nor far, but those at an intermediate distance.

Redundancy in general introduces questions about how to perform discovery in a way

that is network-friendly. Minimalization of redundancy values leads to a less

expensive discovery process that requires lower utilization of network resources.

Attack Mimicking

Somewhat correlated to the ‘expensiveness’ of a discovery session is the potential for

that session to be perceived as an attack by nodes being probed. High utilization of

available bandwidth might appear as a flood attack. Use of ping might look like some

Denial of Service (DoS) attacks. “Whether or not it triggers alarms, it clearly is not

desirable for a measurement system to consume undue network resources” (Donnet, et

al., 2005, p. 328). Such situations become more likely when redundancy is not

considered. A single agent may poll a node too frequently. Multiple agents may poll

the same node simultaneously, mimicking a Distributed DoS (DDoS) situation. The

likelihood of attack-mimicking relates to the allocation of available resources.

B. E. Campbell, MSc Advanced Computer Networking, 2007 22

Resources

The architecture of a discovery system will determine its sum pool of resources.

Resources can be processing power, aggregate network bandwidth, available memory,

etc. In order to avoid mimicking attacks, and to remain friendly to the network, the

use of resources may have to be metered. This will usually be a trade off between a

resource expense and a time-factor expense.

Applicability of Scale

The resource pool boundaries make different systems applicable to different scales. It

would be overkill, for example, to use a multi-agent or a distributed system to

discover all the nodes on a LAN. By the same token, a single agent would be hard-

pressed to discover the topology of the Internet by itself.

3.2.2 Single Agent Systems

A discovery system comprised of just one agent is mostly static along the four

characteristics. For redundancy, it will always suffer from some degree of the intra-

monitor type. This is in part because it has no external input to notify it not to pursue

probing down a known path, but mainly because all activity originates from a single

point. Any choice to not probe further down known paths can lead to an anaemic

tree-graph, with missing branches or far away leaves. On the other hand, a single

agent system does not suffer at all from inter-monitor redundancy. It is inescapable,

though, that nearby nodes will be subjected to a larger share of traffic generated by

the discovery process. The analysis by Donnet, et al. (2005) found all monitors

displaying similar intra-monitor redundancy patterns, with nodes closest experiencing

the most visitations. This redundancy might be reduced by controlling the frequency

at which probing occurs.

Potential of mimicking an attack is restricted by the single agent’s resources. Again,

control of a discovery tool’s activity and its consumption of resources will curtail this

potential, although it is likely low to begin with. The single agent may have an

advantage in this respect in that it is easily identifiable by administrators as a trusted

source. Minimal overhead is encountered if the probe source were allowed special

access to networks, or through firewalls. Doing so obviates any misinterpretation that

an attack is occurring. Such a practice would quickly encounter problems of scale in

a multi-agent discovery system, though.

Resources available are limited by the agent’s host server. In fact they are static

barring adding hardware or higher capacity network connectivity. A tool will have to

work within the static constraints offered by the server. Mainly the limit on resources

causes the single agent solution to be most appropriate to smaller networks.

Applicability to medium or large networks is certainly possible, but involves a trade

off with time and perhaps completeness. Larger environments will undoubtedly

contain paths unavailable to a single agent since it sees the tree-like nature of a

network from a static vantage point.

3.2.3 Multiple Agent Systems

A multi-agent solution inherits some of the properties of its constituent single agents,

as they act in concert. Each individual agent faces intra-monitor redundancy,

B. E. Campbell, MSc Advanced Computer Networking, 2007 23

certainly. The whole system also faces inter-monitor redundancy. Since each agent

may probe the same area of a network, work is duplicated, expensiveness increases,

and efficiency decreases. Costs can be kept down by allowing the agents to update

each other with their findings, or assigning discreet jobs to each one (Donnet, et al.,

2005).

The risk of appearing as an attack is increased because there are more agents involved

in discovery. The agent population may still be small enough to set trusts and

permissions in a network or in firewalls, but this quickly becomes infeasible. It is

expected, after all, that each agent will likely be resident on different networks to

capture a clearer picture of the topology. If solutions are used that help reduce the

inter-monitor redundancy, the likelihood of false alarm DDoS attacks is lessened

since the system would attempt to avoid multiple monitors hitting the same node.

Attack mimicking may not even be a real consideration given that “the present

generation of systems operates on largely dedicated hosts, numbering between 20 and

200” (Donnet, et al., 2005, p. 327). It actually might be difficult for such sets to

mimic a DDoS attack given that today’s malicious instances employ zombie botnets

of tens of thousands of hosts (Ratliff, 2005).

The resources available to the multi-agent system are, like the single agent system,

relatively static, yet able to be increased linearly. Flex in the sum total of resources

exists since additional servers can be added to (or subtracted from) the pool in a

modular fashion. In this way, the multi-agent solution is extendable and might be

adapted to various tasks, both small and large. Applicability to small networks seems

like overkill, though, seeing that the original impetus for discovery agents running in

parallel was to tackle the job of mapping the largest network of all: the Internet.

Thusly, projects such as CAIDA’s Skitter (Huffaker, Plummer, Moore, & Claffy,

2002) and Route Views (University of Oregon, 2005), using 25 or less monitors, have

demonstrated the ability to map medium and large spaces. Although, results of newer

distributed discovery systems contest the completeness of such attempts.

3.2.4 Distributed Systems

Description of Distributed Discovery Systems

Distributed discovery systems potentially have no limits against the factors under

consideration. First, it should be presented what constitutes and characterizes a

distributed and decentralized discovery architecture. One example is the DIMES

project (Shavitt & Shir, 2005). This project allows any computer to become a

discovery agent by running a very small piece of software. Often the software takes

advantage of free processor cycles, activating along with a screensaver. Alternatively,

the software runs as a background process that limits itself to the host system’s

resources (processor, memory, network bandwidth). The parcelling out of jobs/work

in this fashion was highly popularized by the SETI@Home project (University of

California, Berkeley, 2006) that allows any computer to help analyze data in the hunt

for intelligent radio signals reaching the Earth. Data collected, or results computed,

from each agent are reported back to a central system.

Generally, there are two methods of work distribution in such systems. In one, every

agent can run the same algorithm. The second option is that the central system

B. E. Campbell, MSc Advanced Computer Networking, 2007 24

assigns jobs to each agent. The advantage of the first is that there is very little

overhead to manage the agents. The trade-off is that the central system will likely

have to spend significant time dealing with duplicate information. This is the inter-

monitor redundancy. In any multi-agent discovery system, more than one agent might

discover the same node. The central system will have to try to correlate duplicate

reports so that the node does not appear more than once in the topology. New agents

may even continue to report already-found nodes. Thus, the issue is one that is

ongoing for the life of the operation. The job assignment scenario shifts the trade-off

putting significant time commitment into deciding what each client should be doing

and communicating with them. Redundancy might then be avoided in a calculated

way. Agents in the same local area of a topology might each be told to concentrate on

different branches, or ignore nodes within a specific hop-count radius, for instance.

The DIMES project began in 2004, and added 5,000 agents in its first year. Almost

two years into operations, nearly 11,000 agents were reported (DIMES, 2006). As a

point of comparison and another example of the scale distributed systems can reach,

the SETI@home project was reported to have gained 300,000 computers in its first

week (Whitehouse, 1999, May 25). It now has over 1,000,000 hosts (BOINC

Combined Statistics, 2006). These statistics help show the large populations capable

of being recruited.

Analysis of Distributed Discovery Systems

Turning back to the four characteristics, distributed architectures easily outstrip single

and multi-agent systems. Occurrence of redundancy, especially the inter-monitor

type, becomes of special concern when the number of agents is so high. The Donnet,

et al. (2005) analysis of CAIDA Skitter data, where there are only 24 agents, found

that interfaces 4 to 14 hops away were visited by half (12) of the agents, as a median.

This means that of all interfaces catalogued by Skitter, of those between 4 and 14

hops away, at least 50% were visited by half the monitors. Given that the population

of interfaces at each of these hop distances all numbered between 10
3
 and 10

5
 it is

easy to see how fast the redundancy issue grows. Using the conservative value of 10
3
,

5,000 interfaces were hit by half the monitors. The size of most of the populations

was on the order of 10
4
, though, which causes that figure to jump to 50,000. In the

centre of the heavily-visited populations, interfaces at 8 to 11 hops actually had a

median inter-monitor redundancy value of 24—all monitors in the system. If these

levels of redundancy can be reached by only a small population of discovery agents,

the potential levels achievable by thousands of agents could be seen to rise to non-

network-friendly, or even abusive heights.

The sheer number of agents possible and actually participating in systems today,

makes very real the threat of attack mimicking. The emergence of distributed

discovery systems is stated to be the motivator for the analysis of redundancy:

Unless carefully controlled, these new systems have the potential to

impose a heavy load on parts of the network that are being measured.

They also have the potential to raise alarms, as their traffic can easily

resemble a distributed denial of service (DDoS) attack (Donnet, et al.,

2005, p. 327).

B. E. Campbell, MSc Advanced Computer Networking, 2007 25

This will especially be the case if agents are clones of one another. That is, if every

agent performs the same work, clusters of them might spark regional false alarm

attacks. System designers can hope to avoid offensive results by better coordinating

the actions of their agents. SETI@home, along with the myriad of other distributed

computing projects based on the same client software, already provides a model for

parcelling specific jobs amongst the agent set.

The resources available to a distributed system are limited only by the number of

clients it is able to recruit. Statistics presented above already show how large some

agent sets can become. Some of the real power realised from distributed systems is

their processing power. Indeed, CPU cycles are what agent owners are donating to

help crunch through large data sets. Again looking at the SETI@home project, it was

calculated recently to have a processing rate of 149.8 teraFLOPS
5
 (Anderson &

Fedak, 2006). Other non-verifiable sources state its power is as high as 250

teraFLOPS. Of course, any host is really lending a bit of all its other resources, too:

memory, disk space, and network throughput. The same study by Anderson and

Fedak showed an average throughput of 289 Kbps made available by a SETI@home

host. Multiplied by the number of clients that current projects boast distributed

computing need not worry over lack of resources.

Obviously, a distributed topological discovery system is most applicable to large scale

networks, principally the Internet. Results indicate that they have an advantage over

multi-agent systems in their ability to discover more topological information. After

only its first year of operations, DIMES found “about 61000 AS edges connecting

over 15000 AS nodes. Out of these 61000 edges, almost half are edges that are not

present in main BGP tables repositories such as the RouteView project, making the

Internet 50% denser than previously thought” (Shavitt & Shir, 2005, p 74). A

possible conclusion is that the randomness of location of each agent allows viewing of

previously unseen paths, versus the non-random placement of dedicated servers. The

magnitude of the operation contributes as well. This fact is demonstrated in the data

by Shavitt and Shir (2005), and helps show that as time progresses, existing and new

agents continue to discover novel elements, in this case Autonomous System nodes

and edges.

3.3 Types of Networks

A given topology discovery system will not be applicable to all scales and types of

networks. Design choices will influence and constrain each other. Major

characteristics of a system will be:

• The type of network(s) to which it is to be applied.

• What type of map it aims to output. Physical and logical maps are examples.

• The mechanism for collecting network information. Route tables or the ping

tool are examples.

• How the tool deals with ‘node dynamics.’ That is, it addresses the fact that

information about nodes can change over time.

• The degree of ‘completeness’ that is achievable. Put plainly, the portion of

network elements discovered versus the total.

5
 FLOPS – Floating Point Operations Per Second

B. E. Campbell, MSc Advanced Computer Networking, 2007 26

These five elements are interrelated such that there are inherent trade-offs amongst

them. There are very many characteristics of networks, links, and nodes that might be

used in measuring network structures. The necessity to choose some, while not

others, affects the nature of how well the result represents the actual measured

environment (Alderson, et al., 2005). This issue becomes more conspicuous in larger

networks. The larger potential item set presents a proportionally greater need to select

a definite key characteristic. A system with the mission to map the Internet would not

want to concern itself with end node hosts (a volatile and overwhelmingly large set),

but with a less fine-grained element (such as AS boundaries) in order to achieve a

representation of the structure upon which hosts rely.

Quickly, the fourth characteristic, node dynamics, should be illustrated. This idea is

synthesized from several sources. One aspect of node dynamics is “a process known

as alias resolution” (Spring, Dontcheva, Rodrig, & Wetherall, 2004, cited by

Alderson, et al., 2005, p. 1214) which recognizes the issue of correlating multiple

names to a single node. Names could be IP addresses, DNS names, etc. Another

aspect of node dynamics is identity volatility. This aspect recognizes that a node’s

names or aliases can change with time. Volatility in a network is a strong theme of

the analysis of Siamwalla, et al. (1998), although it is not extended all the way to the

level of a single node.

Concerning the first characteristic of types of networks, reviewed literature indicates

three major divisions of interest. Unsurprisingly, they are the Internet, WANs, and

LANs. Each will be discussed in terms of the other four characteristics.

3.3.1 Internet

Presented in Section 3.2.4 were several examples of systems attempting to map the

Internet. They all aimed to do so by discovering AS nodes and edges. Considering

there are 64,511 possible publicly routable AS numbers (Hawkinson & Bates, 1996),

and, theoretically, a limitless number of interconnections between them, discovering

and mapping their relationships is exceedingly a problem of scale. Also a problem is

the fact that Autonomous Systems are exactly that—autonomous. Each is under its

own administrative control where the only responsibility is for the AS to advertise

how to get traffic in and out. It is counter to the mission of administrators, especially

in light of current security and governmental requirements, to share more information

than necessary for operation (Alderson, et al., 2005). Scale and lack of transparency

are the root issues driving how systems attempt to discover and map the Internet.

Production of a physical map of the Internet is difficult given the number of elements

involved and the discouraging effect that security has on openly sharing topological

information about AS’s. Logical maps are still viable, though. Discovery systems

revealed in the literature focus on the IP (Layer 3) level, and attempt to map AS

boundaries and router interfaces. This is only achievable by reverse-engineering data

gathered from measurement techniques.

Interested parties must “discover” how the Internet is hung together as there is no

central authority able to query Internet devices for information, nor an incentive for

the distributed authorities to share topological information. The mechanisms to do so,

B. E. Campbell, MSc Advanced Computer Networking, 2007 27

therefore, are semantic manipulations of what is allowed to be known (in fact, must be

allowed) in order for Internet communications to function. Traceroute is one such

tool that reveals hop-by-hop routes. The ping tool is still valuable, although to a

lesser and declining extent. Both will be discussed more in Section 3.4. A primary

method of discovering Internet topologies is the action of reading or reconstructing

route tables. This method provides a picture of how a given node (a router or an AS)

is connected to, or reaches other nodes. The RouteView project is an example of an

effort to map the Internet at the AS level, whereby BGP tables are collected, which is

stated by Shavitt and Shir (2005). Their competing system, DIMES, employs

traceroute as the means to explore routing paths and interfaces. Donnet, et al. (2005)

introduce the Doubletree algorithm – a traceroute-like tool that attempts to improve

upon simple traceroute by minimizing discovery costs. Existing research is full of

examples like these three where ping, traceroute, and route tables are used, combined,

modified, or employed in novel algorithms.

Regardless of the tool, Internet topology discovery will be largely confined to

gathering Layer 3 information due to the Internet’s own decentralized nature along

with security and proprietary concerns of its constituent parts. Discovery mechanisms

will therefore operate mostly at this layer and reverse-engineering will be relied upon

to deduce the actual Internet.

A discovery tool applied to the target scope of the Internet will encounter node

dynamics mostly of the alias resolution sub-type. Discovered nodes will usually be

routers. This node type in this domain can be expected to be relatively static – that is,

ISPs and AS’s will be loathe to make frequent changes to devices providing backbone

or network-to-network services. Such devices, however, are likely to possess multiple

interfaces, each participating on disparate networks. How is it to be determined that

two IP addresses, for instance, represent a single router/node? Determining this

answer will be especially a challenge for the case of traceroute being used as the

discovery mechanism. Its resultant data is comprised of nothing but IP addresses.

Coupling data from a higher layer (DNS is an oft used source) can help with resolving

router aliases, but the selected source will always import its own incompleteness,

inaccuracies, or need for interpretation. Should the target node type be AS’s instead

of routers the issue of node dynamics changes from examining IP’s to AS numbers.

Likely, it is of a smaller scale as there is a smaller population of AS’s and numbers

than routers and IP’s. Node dynamics is therefore seen to be related to the target OSI

layer, node type, and discovery mechanism.

Trying to map the complete Internet is a problem of scale sufficiently tempting to

attract much research on the topic. It is highly likely given the sheer number of

elements comprising the Internet that complete topologies are impossible to discover.

Furthermore, the largely proprietary and decentralized nature of the Internet

guarantees a knowledge boundary. So, even if a topology were to be complete, how

is it then to be verifiable also? All of this does not mean to say that it is not possible

to produce highly accurate, although incomplete, maps of the Internet.

3.3.2 WANs

Wide Area Networks present a hybrid of challenges if a discovery system is to

attempt to gain information about them. Constraints arise from the point of view

B. E. Campbell, MSc Advanced Computer Networking, 2007 28

relative to the target network. First, one could be completely external to the target.

This scenario converges with the discussion above about the Internet as the target

where one is in a position of little power, only allowed to deduce information from the

required information exchange that allows the network to function. Greater power to

know a WAN topology exists from perspectives inside the WAN. Here, there are two

significant perspectives. One is that of a customer’s and the other that of the service

provider. An organization might build its own WAN infrastructure, although doing so

is expensive and rare compared to paying for WAN links from a service provider.

Thusly, even inside a WAN there are knowledge boundaries.

One such boundary exits at the physical layer. A customer can only represent a WAN

link as a service provider cloud in between their own nodes. This is even true

logically as a customer only sees end points of any circuit through the cloud, as in

Frame Relay, ATM, or MPLS services. Conversely, the service provider is fully

empowered to graph physical and logical layers of their own service delivery

network. But, they too would be limited to only knowledge of the customer’s

interface device and not beyond. For either perspective it should be recognized that

even inside an Autonomous System there is likely to be divisions of administrative

access and responsibility that would impede physical or logical discovery. As such,

the statement that “[a]n administrator knows their entire network topology in advance,

and can freely choose where to place their monitors” (Donnet, et al., 2005) may not

hold. So, both topology types can be mapped while the success of doing so will be

dependent on the point of view and access rights.

Now that access, and even administrative access, can be considered, additional means

become available to gather information about a target network. Instead of gathering

data and inferring the network structure from it, nodes can be queried directly. Ping

and traceroute fall away as favourite tools. They are replaced by proprietary methods

for communicating with network devices directly, or by the most notable open

standard for doing so, Simple Network Management Protocol. SNMP will be

discussed in Section 3.4.1.

Like the Internet, challenges of node dynamics are likely to be of the alias resolution

type. A topology must continue to avoid representing a node multiple times because

it has multiple identities. The other type of node dynamics, identity volatility, is not

fully muted, but WAN devices and architectures are designed to be more static than

dynamic.

Discovering a complete WAN topology is no longer a problem of scale even though it

may contain many elements. The primary obstacle for this network scope is now the

themes mentioned above: perspective relative to the target, and access, administrative

or otherwise.

3.3.3 LANs

Knowledge of LAN topologies is as important to network managers as WAN or

Internet structure. But research has mostly focused on the larger domains, and indeed

on the higher OSI layer of IP topologies.

B. E. Campbell, MSc Advanced Computer Networking, 2007 29

[T]here has been less work on the automatic determination of LAN

topology than WAN topology. A number of projects have looked at

discovering the topology between IP routers, but because the most

interesting portions of LAN topology are generally formed by level 2

devices, these projects have been unable to address the majority of

LAN topology issues (Lowekamp, O'Hallaron, & Gross, 2001, p. 238).

OSI Layers 1, 2, and 3 will all be of interest when documenting a LAN. For the IP

layer, similar techniques used for Internet and WAN discovery can serve equally well.

However, discovery of the IP layer alone will miss the very important LAN

components operating solely beneath Layer 3. Layer 2 devices – switches and bridges

– are invisible to IP, but nonetheless, understanding of this logical network topology

is of great value. Maps of Layer 2 will show a LAN’s Spanning Tree revealing the

actual paths on which data travels. Finally, the Layer 1 – physical – topology is

equally valuable. Knowing it allows for LAN design to provide robustness even in

the face of physical failures. For instance, in conjunction with Spanning Tree

Protocol, physical links can be provisioned for redundancy and fail-over.

Hubs present a special issue in discovering a network’s physical topology. A hub has

no IP address. It has no ability to communicate or be queried, say by SNMP. Their

presence can only be inferred in switched Ethernet by finding, simultaneous in time,

multiple devices on a given port of a switch. This would be seen as multiple entries

associated with a port in the forwarding table. Inferring their presence on a true

bridge might be impossible. A true bridge will always have multiple entries for its

two ports (assuming a port is not connected directly to a host).

The same mechanisms discussed up to this point are available for automatically

discovering LANs: ping, traceroute, routing tables, forwarding tables, proprietary

applications, and SNMP. Work by Lowekamp, et al. (2001) presents SNMP as a way

to effectively learn the LAN topology. The argument they set forth is that topologies

of LANs contain devices of switches, bridges, and hubs that are ignored by Layer 3

approaches. Past efforts to discover ‘transparent’ Layer 2 devices have relied upon

forcing forwarding (bridge) tables to be populated by all other bridging devices

throughout the LAN. This is not native behaviour. The weakness of SNMP is that it

must be universally deployed. The analysis by Siamwalla, et al. (1998) concludes that

SNMP is not as effective regarding completeness as relying on ping, traceroute, and

DNS data sources either alone, or in combination in novel algorithms.

The idea of completeness as applied to LAN topology discovery is malleable. True

completeness would necessitate finding every node connected to the network. This

would include PCs, servers, and printers. It is likely that servers and printers will be

as easy to find as routers and switches. They are nearly always on and usually

assigned a static address. On the other hand, PCs are likely to be shutdown, moved

around, being rebooted, and have their address change through time. All these factors

are magnified for laptop hosts due to their increased mobility. If they are truly

mobile, discovering clients participating on a wireless network may become even

more problematic. DHCP helps contribute to identity volatility, while DNS, and now

Dynamic DNS, introduce alias resolution issues.

B. E. Campbell, MSc Advanced Computer Networking, 2007 30

Network managers might not need to be concerned with such a perfect definition of

completeness. They are likely to be involved with assigning IP ranges for hosts (by

way of DHCP scopes). They are less likely to be involved with managing the

connected devices; a client/desktop support team is usually responsible for those

duties. It is sufficient then to know which routers serve which subnets, and which

switch ports are assigned to which subnets or VLANs. Moreover, maps need to

present concise information. Showing every host in a LAN will be information

overload for even a fully populated class C network. Iconographically, sets of hosts

on subnets can be represented by single graphics, clouds, or simply annotated.

3.4 Discovery Mechanisms

Topology mapping programs must either communicate directly with a node to gather

information from it, or infer characteristics about it based on responses to stimuli or

ancillary information available in the network. The next sections overview the most

common mechanisms used to gather data about a network.

3.4.1 SNMP

Realistically SNMP is but the dominant protocol used to gather information from, and

modify configuration parameters within, networked devices. Other examples are

Windows Management Instrumentation (WMI), Common Information Model (CIM),

and Desktop Management Interface (DMI). SNMP’s ubiquity may lie in the fact that

it was one of the first management protocols. Its first definition came in 1988 (see

IETF RFCs 1065, 1066, and 1067). The present day strengths and weaknesses stem

from this version’s design.

Because of its lack of security, the protocol is purposefully disabled if not used. It is

well known that the first version of SNMP carried with it little in the way of security

features. It simply employed a community string that served as a password. The

string was communicated in clear text. It would be sent as such to any defined target,

even if that target was incapable of responding. The second version, appearing in

1993 and now referred to as v2p, attempted to correct security issues, but was not

received well due to its complexity. An alternate version, v2c defined in 1996, was

instead widely adopted, but still relied on the clear text community string. SNMPv2c

is still the de facto version implemented in networks. The year 2002 saw the release

of v3 which addresses the long-standing security issues, but has been slow to be

adopted.

SNMP is found in nearly any device that can be networked today. Even sub-

components of PCs, such as NICs and other expansion cards, are likely to be able to

speak SNMP even if the host system cannot. Somewhat recently, in 1998 (a decade

after its introduction), according to Siamwalla, et al. (1998), SNMP was still not so

common. On a “department” LAN they examined, consisting of approximately 500

nodes, SNMP was able to discover all of the routers and switches, and 99% of the

hosts. When the same discovery was executed against a larger LAN of approximately

7500 nodes, the values dropped to 90% of routers and 8% of hosts. The results reflect

the areas where SNMP has been adopted – mainly on network devices and not on

PCs. It is recognized that “hosts” in these results included servers, which are more

likely to have been running the protocol. Always an advantage, though, SNMP is

B. E. Campbell, MSc Advanced Computer Networking, 2007 31

fast. For a short explanation of SNMP’s architecture and components, see Appendix

B.

If used as a vector to literally discover network nodes, SNMP encounters several

issues. It will not discover devices where:

• there is a legacy device that does not support SNMP

• a capable device simply does not have the protocol enabled or running

• communication cannot occur because of security configurations (i.e.

router/firewall rules disallowing the protocol)

• community strings to access the device are not known

• a device is configured to respond only to specific query-senders

Because of the lack of universality of SNMP at the time of Siamwalla, et al. (1998),

they went on to use combinations of tools instead of management protocols to achieve

discovery. Those were ping, traceroute, and DNS. These tools are common to many

topology discovery systems.

3.4.2 Ping

Siamwalla, et al. (1998) begin discussing the use of ping by stating “every IP host is

required to echo an ICMP ‘ping’ packet back to its source.” This might have been the

case at some historical point of the Internet, but is certainly not true today. The

advent of viruses and DoS attacks that take advantage of this past truth have forced

ping to be corralled tightly by a network’s routers and firewalls. Indeed, Microsoft’s

Windows XP, arguably the most deployed operating system in the world, now

contains its own firewall software that prevents responses to pings. So, ping is

becoming less and less available as a tool to produce accurate results even inside our

own LANs. When it is available, ping is fast. If not, there is a significant cost paid

while waiting for a timeout to occur.

Broadcast ping is the ability to address a ping to a whole subnet. Each node on the

subnet should receive and then reply to the request. This feature seems quite

attractive as discovery costs can be handsomely reduced. Only one message must be

sent instead of 254 in the case of a classic C-class, or /24 bitmask, network. The use

of broadcast ping is limited by the same factors that limit ping. Moreover, networks

and routers may be especially configured to disallow a ping addressed to a subnet in

order to stop smurf
6
 attacks. In the Siamwalla team’s analysis of cost, broadcast ping

was only marginally more or less efficient as algorithms using combinations of

traceroute and DNS.

3.4.3 Traceroute

Traceroute is not susceptible to just being disabled as ping can be. Routers must

report when time to live values reach zero by sending ttl-expired ICMP messages.

Thus the tool can incrementally discover hops in a path from source to destination.

One of the limitations faced is that traceroute can only provide us information about

6
 The smurf attack, named after its exploit program, is a denial-of-service attack that uses spoofed

broadcast ping messages to flood a target system (Wikipedia, 2007a).

B. E. Campbell, MSc Advanced Computer Networking, 2007 32

the Layer 3 hops in the path. It will be unable to discover lower layer devices like

switches. Administrators may also manipulate ICMP responses in order to prevent

information about the topology from leaking, collapsing the actual structure of the

network from traceroute’s view. Traceroute is costly because it sends multiple probes

per hop and these probes are further spaced in time. It is accurate, but slow.

3.4.4 DNS

DNS almost seems to be a rough map on which we might base attempts to construct

accurate new maps. It contains IP addresses that can be targeted for validation with

probes by ping or traceroute or SNMP. In that sense, it may help reduce cost in time

by avoiding the probing of non-assigned addresses. On the other hand, there is no

guarantee that every IP enabled node is recorded in DNS. Essentially, DNS is a

secondary source that always will require validation at the device/interface itself.

Any discovery based on it will have its accuracy or completeness called into question.

Instead of reducing costs the use of DNS has the potential to double the overhead of a

discovery operation were each address first checked for presence in DNS before

probing. This practice could lead to saving time only if there is a high incidence of

non-present addresses. That is on the high end of cost of utilizing DNS. On the low

end we can simply request all records of a specific type (A records in this case), or

just execute a zone transfer. The zone transfer option is less and less likely to be

available since DNS systems now have to be secured from attacks and to hide

information. Some also disallow the listing of sets of records only allowing singe

queries.

3.4.5 Other Lookup Tables

DNS is really just a name to IP table. Other tables available to exploit for

documenting topologies are routers’ route tables, switches’ forwarding tables, and

ARP caches. Each suffers from their own unique limitations. Route tables only show

the relative position of networks, not a full set of network nodes. Forwarding tables

and ARP caches will only contain information about nodes active on the network.

Entries for inactive nodes will timeout and be purged from the records. Attendant

limitations demand a lookup table’s data to be interpreted, or recognized as possibly

incomplete.

3.5 Analysis of work by Siamwalla Team

After reviewing literature concerning network topology discovery, the work by

Siamwalla, et al. (1998) stood out as being particularly relevant to the scope and aims

of this thesis. The team’s central motivation was to measure ping, traceroute, and

DNS as discovery mechanisms, and compare them to SNMP. They recognized that

SNMP was faster and much less costly, but also that it was not present in legacy

equipment, not universally deployed, and sometimes disabled due to lack of security

in the protocol. The data produced reflected a reality influenced by those factors. A

decade after its introduction, SNMP was less successful in terms of completeness at

discovering network elements.

B. E. Campbell, MSc Advanced Computer Networking, 2007 33

The initial interest in Siamwalla, et al. (1998) was to reproduce their work. It aimed

to discover only the Layer 3, or IP, topology of a LAN environment. Results of a

reproduction would have led to a direct comparison of the state of SNMP after

another eight years in the marketplace. The blockade to performing a reproduction of

their work was access to an analogous environment. The Siamwalla team first had

access to their own department’s LAN of 490 nodes on 7 subnets. Next, to test their

algorithms on a larger scale they had access to an entire university network of “about

8200 hosts and 140 routers in more than 500 subnets” (Siamwalla, et al., 1998, p. 9).

It can be inferred this access was fairly extensive since their algorithms required

SNMP community strings, full DNS tables, and abilities to ping, all across the entire

network.

Being unable to reproduce the Siamwalla team’s work for direct comparison, the rest

of Section 3.5 contains critical analysis focusing on the validity of key assumptions

eight to nine years later.

3.5.1 Miscellaneous Factors

The team’s discovery algorithms rely on three heuristics (their term). Two work to

guess the subnet mask, and the third at guessing valid addresses in a domain. These

heuristics take a seed IP value and generate a list of IP addresses to be validated by

the main algorithm they feed. The heuristics themselves are in turn based on a set of

assumptions. These assumptions were derived from observations about the team’s

test environment (i.e. the Cornell University network). One of the assumptions is that

router interfaces acting as gateways for a LAN segment will always be assigned the

first available address for the segment/subnet. This idea is repeated several times in

various forms. Expecting that routers will be configured in this way may only be

valid for a subset of all networks, therefore limiting the applicability of the team’s

algorithms. There is no standard, or even best practice, regarding LAN gateway

addressing. Equally as valid, and quite common to observe, is the use of last valid IP

address in a range for the gateway. This design choice is detectable on Napier

University’s own wireless and Ethernet LANs.

3.5.2 ICMP-based

Ping and traceroute are the two ICMP-based tools the team use in their algorithms.

Pinging a host is the act of sending an IP address an ICMP packet whose type is 8,

corresponding to an echo-request. The team state “[e]very IP host is required to echo

an ICMP ‘ping’ packet back to its source” (Siamwalla, et al., 1998, p. 2). This is

patently not the case anymore. Security demands have pushed tactics reserved in the

past for routers to be deployed at the PC host level. Now PC’s regularly run their own

firewall software. One of their most basic defences is to not respond to echo-requests.

This is the case with Microsoft’s Windows XP SP2 operating system, arguably one of

the most ubiquitous in the world. Its default configuration turns on a software

firewall and denies the system from responding to ping requests.

Pinging each individual host induces a predictable overhead value proportional to the

number of hosts and how many echo-requests are sent to each. One way the

Siamwalla team attempted to control this overhead was to use broadcast ping. A

B. E. Campbell, MSc Advanced Computer Networking, 2007 34

broadcast ping permits a single echo-request to be addressed to every host in a

network. A segment of 254 hosts could have ping echo-request overhead reduced

from 254 to 1. The echo-reply overhead remains the same at one per request per

responding host. Though useful, the danger of permitting broadcast pings is well

known as a vector assisting DDoS attacks like smurf. Even at the time of their work,

the team could not test broadcast ping outside their department network on the wider

university system. The likelihood of denying broadcast ping has only increased since

then.

Unlike ping, the traceroute tool cannot be deactivated. Traceroute exploits ICMP by

purposefully manipulating Time-to-Live (TTL) values. Routers are required to

decrement TTL values in the normal course of implementing the Internet Protocol.

They are also required to notify senders if the TTL reaches zero through ICMP

messages of types 3 (Destination Unreachable) and 11 (Time Exceeded). Traceroute

remains a viable and un-impinged tool.

3.5.3 DNS

One of the Siamwalla team’s most successful algorithms uses DNS data to seed a

candidate list of nodes. The DNS data were obtained by requesting a zone transfer

from the DNS server. The candidate list was then validated with ping or traceroute.

As has been stated in other parts of this thesis, results relying on DNS are only likely

to be as accurate as the original DNS entries. Especially at the time of the Siamwalla

team’s efforts, DNS tables were populated manually. This practice is an easy vector

for introducing errors. It also allows for hostnames not matching the actual

configured value on a node to be chosen. Hosts might change IP addresses, yet the

hostname mapped to the “before” and “after” IP address in DNS would remain the

same. Neither is there a requirement that a host have an entry in DNS. The team

recognize these weaknesses when they state that DNS zone transfers “may not be

complete, however, since hosts obtaining IP addresses using DHCP are not served by

DNS. Moreover, some network managers disable DNS zone transfer due to security

concerns” (Siamwalla, et al., 1998, p. 3). Ultimately, DNS is a source of data acting as

a proxy for the real data on hosts.

Practices in today’s networks simultaneously strengthen and weaken the value of

relying upon DNS as a data source. The use of Dynamic DNS (DDNS) should help

DNS tables be more accurate. DDNS was defined as a standard in RFC 2136 (Vixie,

et al., 1997). Given the date of its debut, it is unlikely DDNS was deployed on the

Siamwalla team’s target networks. DDNS allows administrators to do away with

manually populating DNS tables. Instead, hosts themselves can interact with a DNS

server reporting their actual hostname and IP address, or DHCP can integrate with

DDNS to provide the same information. In a network with correctly functioning

DDNS, a DNS server might be expected to provide a real-time listing of hosts on the

network and their actual IP assignments. A growing issue is accessing the DNS data,

though. Today’s networks must be more and more cautious about leaking

information due to security concerns. One of the first activities to help harden a DNS

server is to disable anonymous zone transfers. So, although DNS data may be more

accurate, it is less available unless special permissions are configured to allow a

discovery application to receive a full zone transfer.

B. E. Campbell, MSc Advanced Computer Networking, 2007 35

3.5.4 SNMP

The team posits that SNMP cannot be universally relied upon mainly because it is not

universally deployed. The construction of their algorithm that employs SNMP

reflects the deployment issue in two key points. First, only routers are expected to be

running the SNMP protocol, and are the only devices with which communication is

attempted. Second, the initial method used to communicate with a target router is

ping, not SNMP. If the router responds with an echo-reply, then and only then is an

SNMP query sent to request information. The information of interest is the IP route

table and the ARP table. The IP route table is used to find other router addresses.

These routers become new candidates for further testing and discovery of the

network. The ARP table contents provide evidence of hosts on the network.

The SNMP algorithm as defined by the team might face several difficulties stemming

both from its design as well as modern security concerns. The security concern

involves ping. Disabling echo-replies is a common hardening activity today. The

algorithm is likely to be highly ineffectual in a network where pings are not answered

by routers. The completeness achievable by the algorithm is further likely to be

affected by two design choices. First, the algorithm does not attempt to contact hosts

(non-router IP devices in this case) directly. In lieu of direct verification, ARP tables

are relied upon to represent hosts. This is the second potential flaw. Later, Chapter 4,

Section 4.1 sets forth the case that direct querying of nodes allows discovery,

information retrieval, and validation to occur all in a single step. Data retrieved

directly on a per-node basis requires little interpretation or necessity for assumptions.

Not communicating directly with each node means secondary, representative sources

must be used instead of the primary source. Like DNS, ARP is effectively a

secondary, representative look-up table.

Relying on ARP table data mandates at least recognition of its nature and how that

nature might affect a discovery process. The principal detail to recognize is that ARP

table entries do timeout and are flushed accordingly. This may occur even if a host is

physically on the network, but just inactive for the length of the timeout period. The

Siamwalla, et al. (1998) data raises questions around this point, although the affect of

ARP entry timeouts is not determinable from it. On the smaller, department network,

the SNMP algorithm was very successful since all five routers were SNMP-enabled.

The combined ARP tables failed to represent only three hosts (1% of total). Why

these three were not represented in the ARP tables is left to conjecture, but they were

discovered by another algorithm that elicited an echo-reply from them directly. The

data from the larger, university-wide network raises even more questions. Despite

90% of the routers being discovered by the SNMP algorithm, their ARP tables

represented only 8% of all hosts. A likely explanation is that a well-connected,

SNMP-enabled router supplied the identities of most of the network’s routers through

its IP route table. Subsequently, that list responded to pings, but failed in the next

step to provide further information via SNMP. Had they done so, a clearer picture

might emerge concerning ARP. Would a similar 1% of hosts fail to appear?

Essentially, the Siamwalla team’s SNMP algorithm only used SNMP as a mechanism

to carry information discovered from ARP and protocol routing tables. While it is

conceded these sources are highly accurate in representing other network nodes, they

are secondary information sources.

B. E. Campbell, MSc Advanced Computer Networking, 2007 36

Furthermore, the team’s commentary lacks asking a deeper question about what is

being measured. On the face of it the data directly compare SNMP with couplings of

DNS/ping, DNS/traceroute, and ping/traceroute. The resultant differences in

completeness, with SNMP suffering the most, are asked to be viewed as equivalent.

When considered, though, SNMP completeness is a measure of a protocol state – it is

either ‘off’ or ‘on’. On the other hand, ping and traceroute can not help but be in the

‘on’ state as they are semantic manipulations of the ICMP and IP protocol stacks.

With no recognition of the unbalanced nature of the comparison, the team state “that

relying entirely on SNMP to discover network topology is a bad idea: though other

algorithms take more time and more overhead, for a large topology, they are

significantly more complete (Siamwalla, et al., 1998, p. 10). SNMP completeness

would likely be buoyed upwards if the time and overhead were spent to enable the

protocol on a network’s nodes.

3.6 Measuring Discovery

The performance of a discovery system might be measured in various ways.

Measurements can be direct or indirect, as well as ones of runtime or results. The

importance of each is usually relative to the network environment at hand. Some

important measures are:

• Speed (or time) – a direct measure of the runtime of a system’s completion of

a task.

• Overhead – an indirect value of the additional traffic put upon a network

during runtime; redundancy, discussed in Section 3.2.1, is a type of overhead

measurement.

• Efficiency – a ratio of at least two other measurements, such as overhead and

time, revealing a characteristic per unit value.

• Completeness – a direct measure of results where failure to discover every

target network node decreases the value.

• Accuracy – a measure of results expecting returned data to reflect the actual

network environment.

These and other measurements are not only relative to a given network, but to each

other. For instance, an increase in speed without a decrease in overhead causes the

same amount of network load in a shorter timeframe (one type of efficiency). This

could be a problem for a 10 Mbps network, but less of one for a 100 Mbps network.

Modern production networks are held to a high standard of uptime. Administrators

are familiar with the paradigm of the “Five Nines”
7
. Five Nines refers to the

percentage availability of a given system or set of systems. In this case, Five Nines

means 99.999%, which, depending on how it is calculated, can mean as little as five

minutes out of an entire year. Regardless of the feasibility of achieving such high

order availability values, networks today are driven to be highly available. Thusly,

when availability is expected, a discovery tool may concern itself more with accuracy

and completeness versus quickness.

7
 See the Wikipedia entry Myth of the nines (http://en.wikipedia.org/wiki/Myth_of_the_nines) for a

general treatment of the idea.

B. E. Campbell, MSc Advanced Computer Networking, 2007 37

Since the goal under consideration is to produce documentation, it is reasonable then

that speed and overhead might be sacrificed for completeness and accuracy.

Resulting documentation will then be accurate too.

3.7 Conclusion

The design of a discovery system should be appropriate to its target network. Target

network scopes are LANs, WANs, and the Internet. Discovery systems can be

comprised of a single agent, multiple agents, or a distributed set of agents. The scope

and the design should be well-matched, as well as work within the bounds of the

resources available. Respect of resource constraints is especially important to avoid

attack-mimicking and repetition of discovery work. Discovery work itself can be

performed through a variety of tools. Common tools are SNMP, ping, traceroute, and

DNS. Measurement of a system’s performance is a means to confirm it meets design

goals and operates within resource boundaries.

B. E. Campbell, MSc Advanced Computer Networking, 2007 38

Chapter 4 Design and Methodology

4.1 Introduction

This chapter is a response to the issues presented from review of existing literature in

the previous chapters. A concept design will be introduced which is high-level, yet

incorporates specific choices and technologies. The reasons for electing one

methodology or technology over another will be presented. The resultant system is

one possible set of answers about effective means to produce documentation of a

network.

4.2 Design Motivations

The first motivation was that the design be an effective tool for a system

administrator. What defines an effective tool? From Chapter 2 we know that either

circumstance or preference causes many system administrators to create their own

function-specific scripts. These are considered effective because the sysadmin 1)

controls the input; 2) understands the operation mechanics; 3) determines the output;

and 4) desires automation resulting in time savings. All of these factors yield a high

degree of trust placed in the accurate work of the tool by the sysadmin. So, our

design must achieve trustworthiness by satisfying sysadmins’ appeal for the same

factors.

The second motivation was to create a modular architecture while relying on open

standards. Modularity allows any stage’s output to be examined, verified, ported, and

so on by sysadmins. Simply by employing a modular concept to the process of

translating information stored “in” a network into maps on a piece of paper goes a

long way to ensuring that sysadmins understands the operational mechanics. This

choice recognizes that the information about the network belongs to the network and

its proprietors. There is a loss of trust and understanding if work and data is hidden

away in code or proprietary file/db formats. Doing work and storing data using open

standards permits easy examination, verification, porting, and so on of information.

The tool will be flexible enough to allow novel applicability or integration in

unforeseen ways. Additionally, in order to be applicable to any network some non-

proprietary method must be employed against devices from the myriad device

manufacturers. Finally, modularity and open standards allow data gathering and data

storage to be separate from the logic about how to present the data.

The third motivation was that the tool help support, or even integrates with, network

management systems. This is mostly achieved simply by outputting documentation.

Documentation certainly has a role in fault, change, and configuration management as

expressed in Chapter 2. The choice to create a modular and open standards-based

system itself has an emergent quality that allows pursuit of this third design

motivation to a further extent. Because of modularity, other applications might

communicate with our system at distinct points. And by using open standards, such

communications are simple to hook in the system.

B. E. Campbell, MSc Advanced Computer Networking, 2007 39

The last design motivation was to query network nodes as directly as possible. Doing

so causes the system to obtain actual, real-time information directly from network

nodes. What a node reports about itself requires little in the way of verification. Its

data is its configuration. External sources, on the other hand, do require accuracy

checking. Additionally, they may only contain information valuable for a specific

view of the network, such as physical versus logical IP views. DNS is an example of

a source containing names, but not necessarily hostnames, along with IP addresses

most valuable for mapping Layer 3. Such a limited source is of little value about how

a node represents itself in a Layer 2 STP tree. Querying each node for desired data

about itself obviates verification, interpretation, and correlation of multiple external

sources.

4.3 Basic Design

Before haphazardly selecting technologies that might serve as appropriate means

toward the end goal of creating documentation, it was better considered that a simple

framework exist to divide and bound the overall system. A divided framework

delineates internal functionality, much the same was the OSI model does. Each

functional phase then is a module utilizing its predecessor’s outputs and providing its

successor’s inputs. Given the context of our system being applied against a computer

network and its goal to produce documentation, the following five functional phases

need to be present:

1. Initialization – an input operation to define a target node list.

2. Communication – a module where work is performed against the node list to

retrieve information from or about them.

3. Data Storage – the medium in which the information is stored.

4. Data Processing – the manipulation or filtering of the information in

preparation for final delivery/layout.

5. Output – delivery of a desired type and content.

Figure 7 represents this modular framework graphically.

Figure 7 – Framework of a modular application design

The following sections will detail the specific technologies chosen to achieve each

stage.

B. E. Campbell, MSc Advanced Computer Networking, 2007 40

4.4 Initialization

The Initialization module must deliver to the Communication module a list of network

nodes. This list could be any set of network characteristics ultimately leading to a

node being identified. In order to keep within the modular framework, though, the

Initialization module must be responsible for identity resolution work. The output of

this work needs to be in an accessible format for sysadmins, and of an expected

content for the Communication module. The simplest content type is IP addresses.

This conclusion does not limit how we arrive at a list of IP addresses. At disposal for

use as initial sources are all the discovery mechanisms mentioned in Section 3.4, plus

any number of unmentioned mechanisms. Whatever source is relied upon to deliver

an IP list, processing of the source must deal with the node dynamics of alias

resolution and identity volatility, as well as assumptions and limitations deriving from

its own nature. For example, DNS may contain more than one record for an IP

address, may contain inaccurate IP-to-name data, or may not contain a record at all

about a node the Communication module is expected to output information about.

Table 2 summarizes some mechanisms for determining a list of nodes grouping them

by their type and theorized need for processing in order to arrive at an IP list ready for

the system’s subsequent module.

Type Sources/Mechanisms Expected Degree of

Processing & Assumptions

Manually

Defined

List of: IP, IP range(s), IP network(s)
Low

Lookup

Tables

List of hostnames; DNS; route table;

forwarding table; ARP cache
Medium

Semantic Ping; Traceroute Medium-High

Custom Examples from literature: Doubletree;

DIMES; CAIDA skitter; Route Views
High

Table 2 – Possible sources for determining a list of target nodes

There is little motivation to select a singular methodology for creating a node list.

Instead, the Initialization module can itself be modularized allowing for existing and

future node identity sources to be handled as long as each resolves to a consistent

format ready for consumption by the Communications module. This decision

modifies the basic system framework as it appears in Figure 8.

Figure 8 – Initialization module defined on the framework

B. E. Campbell, MSc Advanced Computer Networking, 2007 41

4.5 Communication

The lines are a bit blurry in the literature about what is a discovery mechanism,

communication channel, or data source, as those terms have been utilized so far.

Ping, for example, seems to act as all three simultaneously as it “communicates” a

message to a potential node; “discovers” the node through its response; and allows

data (the node’s IP address) to be “sourced” from the process. The modular approach

to the design suggests the communication channel should be agnostic as to what data

it carries. In order to discover not just nodes, but the topologies of different layers, it

will be necessary to capture data pertinent to each layer. Tools like ping, traceroute,

and DNS only convey IP information. By their design they are also bound to only

being able to carry IP information. Other channels would then need to be utilized for

other layers, not to mention even being aware of switches.

The candidate tool best matching the requirement and deliverables is SNMP. As a

protocol, SNMP says how to communicate with a node. It leaves open what

information it will carry. The node’s SNMP agent database acts as the data source.

This database contains physical port descriptions, MAC addresses, STP port states, IP

addresses, hostnames, route tables, ARP entries, forwarding tables, etc. The SNMP

agent acts as the data source – one authoritative about the node – and the protocol

provides an agnostic channel to carry any information our discovery system desires.

Not only does our system need node information to identify them, but also means to

identify links between nodes. One method by which links can be identified is by

correlating returned data sets between connected devices. Such correlation work

becomes exponential, though, in even a relatively small network. It might be

necessary to examine every port in a network to find which is connected to a given

port. The PTOPO MIB alleviates this work and further justifies the use of SNMP.

The Physical Topology Management Information Base (PTOPO MIB) was

established in the year 2000 by RFC 2922 (Bierman & Jones, 2000). Its definition

requires that each SNMP agent implementing the MIB is responsible for storing:

• a globally unique chassis ID

• a locally unique interface ID for each interface (port)

• a table of remote connections

Links can then be named using the chassis and interface ID’s of devices on both ends

(Figure 9).

Figure 9 – How the PTOPO MIB defines globally unique identifiers for links

B. E. Campbell, MSc Advanced Computer Networking, 2007 42

As a result, each node’s SNMP agent contains the node’s local topology.

Interestingly, a network implementing the PTOPO MIB contains a pre-existing, built-

in, distributed discovery agent architecture.

The advance of the design is shown in Figure 10. Note the addition of the “Node

Pool” module representing the network.

Figure 10 – Communication module defined on the framework

4.6 Data Storage

The design motivation to utilize open standards is really a broader statement having in

mind two specific technologies and a desire to investigate their value in simplifying

the stages of this system framework. The first was SNMP, which provides a fast

communication channel and a wealthy information source. The second is Extensible

Markup Language, or XML.

XML’s own name is a bit misleading. It is not a language. It is really a specification

for building tagging-based languages and applications. It is also intended to serve as

a storage medium containing self-describing data (Ray, 2003). Every time an XML

document is created and tag names are chosen, a new XML language and data store

are being created simultaneously.

Nonetheless, it is still important that XML meets the other design motivations. It does

in fact do so. This is as a result of the way XML is stored: as a file. An XML

document file is easily accessible and its contents can be inspected by a system

administrator. There are no needs for special file systems on which to store an XML

file, or files, as there might be for a database. XML files can be sent to and stored at

multiple locations either when they are created or at any time in the future. All these

factors allow for a high degree of modularity. Applications could easily take

advantage of this natural integration point in the design to enhance or extend the

system, or be fed copies of the XML data for their own functional proposes.

It will be seen that the choice to rely on XML technologies in this middle data storage

module leads to handsome opportunities in the ancestor modules. The evolution of

the design is shown in Figure 11.

B. E. Campbell, MSc Advanced Computer Networking, 2007 43

Figure 11 – Data Storage module defined on the framework

4.7 Data Processing & Output

Whatever is chosen to process the network information now stored in XML

documents, must take that fact into account along with what output formats are

desired. Since the final deliverable of the system is to be documentation, it makes

sense to emulate the function and use of documents generated by existing means.

Existing documents, like spreadsheets and Visio drawings, are stored as files, printed

to paper, published to websites, and emailed as attachments. If our data processing

engine can output documents that can be used in the same ways, it should deliver

value to system administrators. This does not mean output must be in the same

format, although it could be.

One of the ways much information is presented and shared is by publishing to

websites. Thinking of our data in an HTML format is an interesting proposition since

it is already in a XML format. Recall that XML is a specification for tagging

languages. HTML itself is a tagging language. Despite the fact that HTML debuted

10 years before XML, HTML can be employed as well-formed XML (Ray, 2003).

Any tagging language is considered well-formed if it follows the rules of XML. For

HTML this means following the rules of XML while still adhering to HTML’s own

standards. When this is done, well-formed HTML is called XHTML. Still thinking

about our data, it only needs one step – a transformation step – to go from XML tags

to XHTML tags. After transformation, it would be its own web page, or content to be

inserted into an existing web page.

It certainly would be possible to write an application that would perform such

transformations. A significant drawback to such an approach is that different sets of

code would likely be needed for each type of output format desired – one for

XHTML, one for spreadsheets, etc. Investigation into technologies able to perform

transformations reveals the solution is XML itself. Extensible Stylesheet Language

(XSL) is another XML language/application specifically designed to take XML input,

apply another XML transform document and output any type of content based on the

combination of the two. XSL is an open standard consisting of three languages:

• XML Path Language (XPath) – a non-XML language for addressing (or

navigating) XML document elements.

• XSL Transforms (XSLT) – XML language containing rule sets to transform

documents.

• XSL Formatting Objects (XSL-FO) – XML language to describe paged media

document formatting

B. E. Campbell, MSc Advanced Computer Networking, 2007 44

XPath is used inside an XSLT document to address/navigate/select elements inside

another XML document. The two documents can then be passed through an XSLT

processor that outputs a new or reformed XML tree. To achieve document formats

that are XML languages, like XHTML, this is all that is necessary. To achieve some

other document formats, like the especially popular and portable PDF format, the

XSLT processor must output an XML Formatting Objects, or .fo, file. This file can

next be sent through a XSL-FO processor where a file is output. The scheme of the

XSL system appears in Figure 12.

Figure 12 – Scheme of the XSL system

The XSL application is highly modular and agnostic concerning input and output,

content, and format. An XSL processing engine will accept XML and XSLT

documents as long as each avoids violating its own standards. As such, the

processing engine does not contain any intelligence about what the final output

document literally looks like. Instead, the final output document layout is determined

at the front end of the process in the XSLT file. An XLST file acts in the place of a

program’s section of code to output different file formats. So, a separate transform

file is needed for each file type (.html, .pdf, .doc, .xls, etc.) to be output. The

advantage to this is that each transform file can be independently applied to the same

XML data source. Also, a transform file can be edited, or a whole new one added,

with no affect on the others. The implication is that a library of XSLT transforms

needs to be kept. This is less daunting than might be imagined. Transforms aiming

for different file types will be quite similar. Their XPath content will be nearly

identical if they are intended for use against the same XML source. Their differences

will be in how they decide to format the XML tree elements that are discovered in the

source.

A transform library also seems preferable to a layout template into which source data

is poured. A change in the source data structure might necessitate a modification of

the layout template’s logic. An XSLT transform, on the other hand, is free to ignore

data it is not defined to address. Our system’s XML documents can contain many,

many elements of information from network nodes. A transform file only needs to

deal with the data that is desired to be presented in a webpage or PDF file.

The final high level system design, showing the XSLT Library, a processing engine,

and modular output document formats, is shown in Figure 13.

B. E. Campbell, MSc Advanced Computer Networking, 2007 45

Figure 13 – Final design with all modules defined on the framework

4.8 Hypothetical Enhancements

To this point the design motivations have been sufficiently met through selecting

technologies for each module in the framework. The implementation work to be

shown in Chapter 5 will not attempt to go beyond demonstrating the elements of the

system shown in Figure 13 above. It is easy to conceive, though, that the system can

accommodate enhancement and extension. Due to the modular design it is not

possible to account for every way this might be done, but a few ideas are discussed

here.

A simple way to extend the automation of the system, and therefore its value and

effectiveness for system administrators, is by adding job scheduling. Two natural

points to implement scheduling are at the Communication and Data Processing

modules. At the first, the SNMP-based communications engine would regularly poll

nodes for data. It would then regularly output XML data. This is an ideal point at

which to discover configuration changes though comparing old and new data. The

second engine is also a good candidate for scheduling. As the XML data is updated

the processing engine can automatically execute against it to produce up-to-date

maps, web pages, etc. Both document sources serve as invaluable resources in

attempts to backwardly track change in a network, as is necessary in fault

management actions.

The job schedulers are placed at action points just prior to points where a type of

document or file is produced. Tangential to document production is the authenticity

and security of documents. Data showing details about network and nodes is sensitive

and will no doubt be in our system’s output documentation. When it is accessed or

shared there may be needs to ensure it is controlled and verifiable as authentic.

Another sub-module that can be inserted to provide such services is digital signing

and/or digital encryption.

Section 4.5 briefly mentioned application integration. Integration can come in the

form of a new module, which is inherently highly-coupled to the system. Imagine the

Data Storage module is a repository to which multiple data processing modules might

attach. Alternatively, an external application might have a more loosely coupled

relationship to the system. Instead, imagine documents from the Output module

serving as input to them. A Content Management system is a good example of such a

relationship.

Integration can come on the front-end, too. The Initialization module’s own

modularity allows a large range of sources to inform the Communication Engine. An

B. E. Campbell, MSc Advanced Computer Networking, 2007 46

appealing source is SNMP alarms and alerts from the node pool. Alarms, also called

traps, could trigger an alert action by a monitoring system. One of those actions could

then serve as input to the Communication Engine causing it to poll specific nodes.

Subsequently, comparisons between new and previous data might reveal the root

cause of the initial alarm condition. To go a step further, the system could act as the

monitoring system itself where alarms are sent to it. Utilizing this example is one

method by which network management activities as a whole become more integrated

with documenting networks.

Reliance on open standards and modularity allow integrating new functionality in the

overall design. Integration of the ideas presented in this section is shown in Figure

14.

Al
ar
m
s

S
ig
n
in
g
 /
 E
n
c
ry
p
ti
o
n

Figure 14 – Application design showing extensions of function and external integration

4.9 Conclusion

A framework whose goal is to deliver documentation was discussed, motivated in its

design by open standards, modularity, integration with network management, direct

communication with nodes, and value to system administrators. The resulting

framework consisted of five modules with distinct missions to initialize the system,

communicate with nodes, store data, process data, and output documentation. The

first and last modules, where a target node list and document formats are determined,

respectively, were themselves modularized allowing the overall system to accept

multiple inputs and deliver multiple outputs.

SNMP was selected as the technology upon which communications to nodes would

rely. SNMP has been demonstrated to be a fast and relatively less costly channel than

semantic manipulations (Siamwalla, et al., 1998). It also provides the option to post

changes back to a device. Furthermore, it provides access to data about links between

nodes via the PTOPO MIB. This MIB theoretically supplants the need to compute

how nodes are linked.

XML technologies provide the design with storage mediums as well as a data agnostic

processor capable of outputting many types of formats. Data will itself be stored in

XML files. The XSL family of languages provides first XSLT and XPath to define

how the source XML will be transformed. It then provides standards about XSL

B. E. Campbell, MSc Advanced Computer Networking, 2007 47

processors that can deliver well-formed XML content, or proceed through another

processing step to deliver visually formatted document types, such as PDF.

Lastly, extensions and enhancements to the design were theorized. The extensibility

of the design is due to the initial motivations to utilize open standard technologies

along with modularity.

B. E. Campbell, MSc Advanced Computer Networking, 2007 48

Chapter 5 Implementation

5.1 Introduction

The system designed in Chapter 4 was implemented. This chapter describes the tools

used to realize the design and the implementation work. The result of the work is a

software application that integrates all five of the modules in the design framework.

An overview of the application will be given for orientation, followed by reporting on

each module.

The purpose of the application is to explore and understand the methodologies and

technologies, both in terms of their feasibility and limitations, by which each of the

five design modules can be accomplished. Table 3 in Appendix A gives a list of

resources utilized to realize the proof-of-concept application. The table’s entries are

annotated as either primary or secondary types. Primary types of resources were

necessary in implementing the application. Secondary types were used for

background research and verification.

5.2 Overview of the User Interface

Figure 15 – User interface created for the implementation

B. E. Campbell, MSc Advanced Computer Networking, 2007 49

REFERENCES FOR FIGURE 15

1. Create/Update List – button to create a list of nodes based on user input values.

2. View List – button to launch list for inspection into a text viewer.

3. Get Data – button to initiate main function of contacting nodes via SNMP, and outputting

discovered data to an XML file.

4. View XML File – button to launch XML file for inspection into a text viewer.

5. Generate Document – button to send XML file to XSLT processor for transformation.

6. SNMP Community string – text field to enter the SNMP ‘password.’

7. Host/Range/Network – area to define target nodes by IP address, range of IP addresses, or by

IP network using CIDR bitmask or subnet mask.

8. Hostname(s) – text list to enter node names to be resolved by DNS.

9. Unlabeled text area to for the tool to show status messages and progress results.

Figure 15 displays the application’s user interface. Subsequent sections will expound

on the relevant elements of the interface, and then continue to concentrate on how a

given module from the design was addressed. Appendix D contains the complete

code written to create the application.

5.3 Implementation of the Initialization Module

The Initialization module made no demands of a specific means by which to produce

a list of target nodes. Because SNMP is employed, it is only necessary to deliver IP

addresses for the Communication module that follows. SNMP can also rely on a

network’s DNS to resolve hostnames, so they might be permitted, too. The

implementation chooses to allow both IP addresses and hostnames. These data are

determined manually through user input.

Hostnames are permitted to be entered in a list box control that accepts multiple lines

of text. Hostnames must be entered one per line. IP addresses can be defined in one

of three ways. Option one is that a single host’s IP address may be entered. Option

two allows a start and end address defining a continuous range of addresses to be

entered. Option three requires a network number to be entered along with a Classless

Inter-Domain Routing (CIDR) bitmask or a subnet mask. The initial choice of host,

range, or network is controlled by three corresponding radio buttons. The selected

radio button controls the availability of the entry fields below, only allowing fields to

be accessible pertinent to the selection (Figures 16, 17, & 18).

Figure 16 – Defining a single IP address in the GUI

Figure 17 – Defining an IP range in the

GUI

B. E. Campbell, MSc Advanced Computer Networking, 2007 50

Figure 18 – Defining an IP network in the GUI

Regardless of which type of IP address is chosen by the user, the individual fields

where IP octets are entered check that the entries are valid (Code Snippet 1) Should

an entered value be outside the allowed range for an IP octet (whether numeric, text,

or null), the field informs the user by changing to a red colour. If the Bitmask or

Subnet Mask field is being used, an orange text alert is displayed (Figure 19).

Furthermore, if the user attempts to create or update the host list based on non-valid

values, a message is displayed in the status box below.

private void txtStartOctet1_TextChanged(object sender,
System.EventArgs e)
{try
 { if ((Convert.ToInt32(txtStartOctet1.Text)<0)^
 (Convert.ToInt32(txtStartOctet1.Text))>255)
 txtStartOctet1.BackColor=Color.LightPink;
 else txtStartOctet1.BackColor=Color.White;
 }
 catch{txtStartOctet1.BackColor=Color.LightPink;}
}

Code Snippet 1 – Example of integer range and non-integer validation

Figure 19 – Alert message displayed when the subnet mask is ill defined

Once hostnames and/or IP addresses are defined, the user must activate the ‘Create

List’ button. The code behind the button completes two main tasks (see Appendix D,

Section D.11). The first is to generate any and all addresses when an IP range or

network is defined (see Appendix D, Section D.6). The second is to add all the

defined hosts to an array in memory. This array is later passed to code dealing with

node communication. After the initial creation of a list, the button changes its label to

‘Update List,’ and makes available the additional buttons ‘View List’ and ‘Get Data.’

B. E. Campbell, MSc Advanced Computer Networking, 2007 51

Activating the ‘Update List’ button does little different than before, although it will

reinitialize the array in memory and repopulate it with elements based on the actual

settings and values of the fields controllable by the user (Figure 20).

Figure 20 – Three hostnames and a range of 15 IP addresses defined in the GUI

Pressing the ‘View List’ button writes a text file to the disk containing the elements of

the array (Code Snippet 2). Selecting to view the list always destroys any existing

text file by creating a new one based on the current contents of the array in memory.

After the file is written, it is sent to the system to be handled by whatever external

application is responsible for file types of .txt (usually Notepad in Microsoft Windows

operating systems) (Figure 21).

private void llblViewList_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
{ if (File.Exists("list.txt"))
 File.Delete("list.txt");
 using (StreamWriter writer = new StreamWriter("list.txt"))
 { for (int i=0;i<IPAR.Count;i++)
 writer.WriteLine(IPAR[i]);
 }
 System.Diagnostics.Process.Start("list.txt");
}

Code Snippet 2 – The list of nodes is written to a text file for viewing

Figure 21 – Target node list of 18 items generated by settings seen in Figure 20

The implementation of the Initialization phase only allows manual user input. This is

but one of the methods pointed out in Section 4.4. This method of input was chosen

for its relative simplicity. Explicit and actual device discovery is not performed. The

tool takes user-provided “seed” values to generate a host and IP list. This manual

B. E. Campbell, MSc Advanced Computer Networking, 2007 52

method still permits the implementation to demonstrate value to the user, modularity,

and the ability of the user to verify the work of the tool. The value to the user comes

in permitting the tool to do the work of computing IP ranges. This is a time-

consuming task, otherwise. The tool also controls for invalid IP octets, bitmasks, and

subnet values. Modularity is shown by the option to utilize the very simply formatted

text file, as it is available as a separate file on the system’s hard disk. These same

results are easily accessible and verifiable by viewing the host list prior to initiating

the communications phase.

5.4 Implementation of the Communication Module

The design of the Communication module is more specific than its predecessor. It

calls for the use of SNMP to gather information directly from nodes. It also asks that

information about links between nodes be gathered through the PTOPO MIB.

The only way this module is represented in the user interface is through the ‘Get

Data’ button. Behind this button lies all the code that implements SNMP

communication to nodes supplied in the node list. As a final feedback mechanism to

the user, hovering the mouse pointer over this button reports the number of items in

the node list array (Figure 22).

Figure 22 – Hovering over the ‘Get Data’ button displays the count of target nodes

The last unacceptable condition that may exist is that of the user not supplying a

password. If the ‘SNMP Community string’ field is blank, clicking the ‘Get Data’

button results in a message stating so in the status area below. If the value of the

string field is not null, communication to each of the list elements in initiated.

Microsoft’s set of libraries provided with the Visual Studio suite of products and the

.NET Framework does not include a library for the SNMP protocol. As indicated in

Table 3 of Appendix A, a library written in 2003 by Malcolm Crowe of the University

of Paisley was employed (Code Snippet 3).

using Snmp;

uint[] ciscotype = new uint[] {1,3,6,1,4,1,9,2,1,3,0};
ManagerSession sess = new ManagerSession(IPAdd,CommString);
ManagerItem mi3 = new ManagerItem(sess,ciscotype);

Code Snippet 3 – Reference to the snmp.dll and usage of its classes

Because SNMP is a UDP protocol, it is not possible to establish an end-to-end

connection. SNMP is only capable of sending a request for information. It must then

wait for responses as they come. The proof-of-concept application parses the node

list serially, contacting each element one at a time. Should a node not exist, or not

send a SNMP response, it is undesirable that the application wait forever. To deal

with this situation the initial SNMP request is implemented through an asynchronous

call (Code Snippet 4).

B. E. Campbell, MSc Advanced Computer Networking, 2007 53

AsyncMethodCaller caller = new AsyncMethodCaller(CallHost);
IAsyncResult myresult = caller.BeginInvoke(IPAdd,
CommString,null,null);

public delegate Universal[] AsyncMethodCaller(string IPAdd, string
CommString);

private Universal[] CallHost(string IPAdd, string CommString)
{ uint[] sysName = new uint[] { 1, 3, 6, 1, 2, 1, 1, 5, 0 };
 uint[] ifNumber = new uint[] { 1, 3, 6, 1, 2, 1, 2, 1, 0 };
 uint[] sysDescr = new uint[] { 1, 3, 6, 1, 2, 1, 1, 1, 0 };
 ManagerSession sess = new ManagerSession(IPAdd, CommString);
 Universal[] oids = sess.Get(sess.VarBind(sysName),
sess.VarBind(ifNumber), sess.VarBind(sysDescr));
 sess.Close();
 return oids;
}

Code Snippet 4 – Implementation of the asynchronous call

After the call is initiated, another section of code keeps a timer running while

checking the completion status of the call. The call either will receive a response,

thereby completing successfully, or will timeout after 10,000 milliseconds (10

seconds) (Figure 23). If successful, the host will have returned values for the system

name, the number of interfaces on the system, and the system description. Later,

additional requests retrieve eight more values describing each individual interface on

the system. These subsequent calls are not implemented asynchronously. It is

assumed the node will continue to respond as it already did.

Figure 23 – Status output showing no response from a target node after 10 seconds (lines 1 -3)

In line with the design, information is retrieved via SNMP. Indeed, any information

stored in the node’s SNMP agent database is available. The application code simply

needs to be tasked with the proper Object Identifiers (OIDs) to request, and then deal

with the response message and content. The basic information gathered about each

node’s system and interface attributes is the limit of what was actually implemented.

The output of this data will be seen in the next section dealing with XML and data

storage.

Another aim of the design was to gather link information by retrieving it from the

PTOPO MIB data on each node’s SNMP agent. This was not achieved. As might be

guessed from the previous paragraph, this was simply because it was not available; it

did not exist. Further investigation revealed that Cisco Systems did not implement the

PTOPO MIB on the platforms available for testing (see Table 3, Appendix A). And,

despite the PTOPO standard being 6 years old, Cisco have only implemented it on

B. E. Campbell, MSc Advanced Computer Networking, 2007 54

two of their products. Both are high-end, optical networking platforms intended for

use by organizations such as large Internet Service Providers
8
.

Overall, the implementation still demonstrates the core principals of the design. It

takes a list of nodes then gathers information directly from responding nodes using

SNMP, an open standard protocol.

5.5 Implementation of the Data Storage Module

The choice of technology in the design of the Data Storage module was XML.

Information retrieved by the application’s code is so far still in memory. Now it must

be written to a file external to the application.

Upon launch, the application checks if the target XML file already exists. If it does

not, it is created (Code Snippet 5). When created for the first time, the XML file only

contains the minimum elements necessary to build an XML tree. These elements are

an XML header identifying the content as XML, and a document root. Respectively,

each is analogous to an HTML head section, and a body, albeit null of content. See

Appendix C, Section C.1 for further information about XML.

public void DocTest ()
{ if (!(File.Exists(xmlFile))) //test for/creates XML file
 { lstOutputStatus.Items.Add("XML file does not exist! Creating..");
 XmlTextWriter docmaker = null;
 docmaker = new XmlTextWriter (xmlFile, Encoding.UTF8);
 try
 { docmaker.Formatting = Formatting.Indented;
 docmaker.Indentation= 6; docmaker.Namespaces = false;
 docmaker.WriteStartDocument();
 docmaker.WriteProcessingInstruction("xml-stylesheet",
"type='text/xsl' href='web-device-report.xslt'");
 docmaker.WriteStartElement("topology", "");
 docmaker.WriteComment("Start of device listing");
 docmaker.WriteEndElement(); docmaker.Flush();
 lstOutputStatus.Items.Add("Created topology.xml.");
 llblViewXML.Visible=true;
 llblGenDoc.Visible=true;
 }
 catch(Exception e) {lstOutputStatus.Items.Add("Error creating
XML file: "+e.ToString()+".");}
 finally { if (docmaker != null) {docmaker.Close();}
 }
 }
 else
 { lstOutputStatus.Items.Add("topology.xml already exists.");
 llblViewXML.Visible=true; llblGenDoc.Visible=true;
 }
}

Code Snippet 5 – Creating the initial XML file

8
 Cisco’s MIB Locator tool was used to confirm support of the PTOPO-MIB on their product range.

The tool is located at http://tools.cisco.com/ITDIT/MIBS/.

B. E. Campbell, MSc Advanced Computer Networking, 2007 55

Figure 24 shows the actual initialized text of the XML file the application creates.

The first line is the document header. The opening and closing tags with the name

“topology” comprise the document root with only a single commentary line as a body.

Figure 24 – Content of the initialized XML data file upon application launch

N.B. The second line is not absolutely necessary for well-formed XML; it is present to prepare the file

for transformation into a final output document.

Because the application ensures an XML file exists, the ‘View XML File’ button is

always available to the user. Activating it sends the XML file to Windows’ Notepad

text editor. Otherwise, the user interface offers little to indicate a separation of the

data retrieval process and the creation of the XML store for that data. Indeed, to the

user the ‘Get Data’ button activates and completes both processes. The code behind

the control is contained in distinct programming objects. Once information has been

gathered from a node, it is stored in an array in memory. The last action of the main

code block responsible for handling SNMP communication is to call another code

block (see Section D.7 of Appendix D). This second section of code writes the given

node’s information into the XML file.

The code block which writes to the XML file is only concerned with adding the

current network host information and the information for each of its interfaces (see

Section D.10 of Appendix D). It first checks for any existing device in the XML file

that has an identical system name. The system name is expected to be a unique value.

If a duplicate is found, no writing occurs and a message is output to the user that the

specific device already exists. Else, the information about the network node is

appended to the list of devices in the XML file. Figure 25 show the content of the file

after a single device with two interfaces has been added. Appendix E, Section E.1

contains an example XML file containing two devices, each with multiple interfaces.

Figure 25 allows the grammar of this particular XML language to be seen. Recall that

any implementation of XML is its own XML language, standardized or not. This

non-standard, unnamed language has a root element named “topology.” The

“topology” element contains a single child element of “device.” It could contain any

number of child elements and any number of “device” child elements. “Device” has

an attribute named “type,” along with three children: “sysName,” “ifNumber,” and

“interface.” Like its parent element, “interface” has an attribute named “ifIndex” and

seven child elements.

Due to the SNMP and XML actions being performed in customized code, the

implementation achieves only a low degree of modularity between the

Communication and Data Storage modules. The modules are implemented in distinct

code blocks, but remain coupled to each other. If a new OID value is to be retrieved

from nodes, additional code must be added to do so. Arrays must be expanded and re-

ordered. Likewise, the code responsible for writing data to the XML file must be

modified in accordance with modification to the source data array, and new XML

element tags must be chosen. The application does output an XML file which puts a

distinct line between it and the successor module of Data Processing.

B. E. Campbell, MSc Advanced Computer Networking, 2007 56

Figure 25 – XML data file containing a single device with two interfaces

5.6 Implementation of the Data Processing & Output
Modules

To move from the Data Storage module through Data Processing into the Output

module, the design decided to use the XSL family of technologies. In practice this

first requires XSLT files for defining transformations. Each XSLT file maps to a

single file type and visual layout combination. Next, the original XML-stored data

and transforms are passed to XSLT and XSL-FO processors for final output. The

implementation of these stages did achieve transformation from XML to both HTML

and PDF.

Transformation to HTML only requires the fist half of the XSL framework (see

Figure 12 in Chapter 4, Section 4.6). That is, only an XML file, a transform file, and

a XSLT processor are used to produce an HTML document. There is no need to pass

the HTML through the second half’s XSL-FO processor. Neither is there usually a

need to produce the resultant HTML as an actual file. Instead, the HTML is only

produced in memory for presentation in an HTML interpreter – almost always a web

browser. Fortunately, modern web browsers have their own built-in XML and XSLT

processors.

When an XML file is loaded by a web browser, it notifies the browser that its content

should be transformed and presented according to a specific .xslt transform file. This

is accomplished through a special XML Standard-defined tag, ‘xml-stylesheet.’ The

tag contains attributes telling the browser that the stylesheet will be of an XSL type,

and the path to the transform file. This is shown in the second line of Figure 24,

above.

B. E. Campbell, MSc Advanced Computer Networking, 2007 57

Two .xslt files were written that each transform the same XML source to HTML, but

produce different layouts. The first is shown in Appendix E, Section E.2. Its product

is a table format containing information about each device and their interfaces (Figure

26).

Figure 26 – HTML output of the XML data file transformed by the first .xslt file

The second .xslt file (Appendix E, Section E.3) presents the same information from

the same XML source file. Its presentation is graphical instead of tabular. Hovering

the mouse pointer over an interface shows information about it (Figure 27).

B. E. Campbell, MSc Advanced Computer Networking, 2007 58

Figure 27 – HTML output of the XML data file transformed by the second .xslt file

The application’s user interface presents a button named ‘Generate Document.’ The

limit of the functionality of this button is to send the XML data file to the system’s

default handler for .xml file types (Code Snippet 6). This is usually a web browser.

The XML file is already seeded with the ‘xml-stylesheet’ tag pointing to the first

(table layout) transform file. The second transform result (graphic layout) can be

produced by manually editing the XML data file and changing the value of the file

name referenced by the ‘xml-stylesheet’ tag.

private void llblGenDoc_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
{
 System.Diagnostics.Process.Start(xmlFile);
}

Code Snippet 6 – Clicking the ‘Generate Document’ label sends the XML file to an external

handler

Production of a PDF file is not a dissimilar process. Again, a transform file must be

written. The XML data file and transform file are passed through a XSLT processor.

Instead of HTML, the result is a Formatting Objects XML tree. Formatting Objects is

itself a standardized XML language for describing how text and pictures (objects) are

to be laid out (formatted) in a defined space. Most commonly these defined spaces

are dimensions of a sheet of paper. A FO processor takes the FO tree and outputs a

file format suitable for printing. A preferred file format is PDF.

The .xslt transform written to create a FO tree is presented in Appendix E, Section

E.4. Normally, the .xml and .xslt files are passed into a processor and a PDF is output

directly. The intermediate step of creating the FO tree is performed only in memory.

This is the case with the processor employed, fop 0.92 beta. However, it did allow for

the procedure to be halted midway through, and the FO tree to be written to a .fo file.

Such .fo files can be quite lengthy due to the many attributes that must be described in

forming even a single page layout. Therefore the .fo file appears, but truncated, in

Appendix E, Section E.5.

This third .xslt file, written to produce the FO tree and PDF document, was

purposefully engineered to mimic the tabular layout achieved by the first HTML-

B. E. Campbell, MSc Advanced Computer Networking, 2007 59

generating .xslt file. The first page of the PDF file result is shown in Figure 28 (one

page on).

The application’s user interface does not provide any access to, nor does the

application code integrate with, the FO processor. Transformation and PDF

document production were executed solely through fop 0.92 beta’s command line

interface.

At its conclusion the implementation successfully realized the design’s elements for

data processing and output. It employed XSL as the operational framework. A small

XSLT library of three transforms was built. These transforms were independently

combined with a single XML data file to produce three different documents with their

own distinct layouts. The documents produced were of differing types; one PDF and

two HTML. Web browsers and a FO engine were used as processors. This

demonstrated modularity in that multiple applications could act as the Data

Processing module depending on the type of output required. Doing so did not

demand a change to the source XML data. The final output documents produced

were in formats that are easy to store, print, publish to a website, or attach to email

messages.

5.7 Conclusion

The realized application is modelled within the design framework in Figure 29.

Figure 28 – The realized implementation mapped onto the design framework

Each module of the design was implemented successfully enough to act as a proof-of-

concept. The implementation adhered in most places to the motivating concepts of

being an effective and transparent tool employing open standard technologies in a

modular way. It also directly queried network devices versus relying on secondary

sources from which only inferences can be made about a device’s attributes and

configuration values. The implementation keeps in mind, but does not directly

address, integration with network management systems.

B. E. Campbell, MSc Advanced Computer Networking, 2007 60

Figure 29 – PDF output of the XML data file transformed by the third .xslt file

B. E. Campbell, MSc Advanced Computer Networking, 2007 61

Chapter 6 Evaluation

6.1 Introduction

This chapter gives in Section 6.2 an analysis of the implementation just concluded.

Section 6.3 critiques the implementation on several points, leading to a look into ideas

either not explored or discovered in the course of research in Section 6.4. The last

section, 6.5, appraises the overall work against the stated thesis objectives and offers

final conclusions.

6.2 Analysis of Implementation

The application realized from the implementation of the design framework was tested

and measured against a topology illustrated in Figure 30. The equipment is the same

as reported on in Table 3 from Appendix A. The switch was configured with its

management VLAN interface on the same IP network as the devices attached to it.

All routers were configured with RIPv2 as the routing protocol. All activities were

conducted with no load induced on the network. The population of ARP caches was

not controlled for, thereby possibly introducing additional time should any device

have the need to initiate an ARP query. All interfaces were running at 100 Mbps/Full

Duplex.

Switch

0.2
RouterA

0.1 | 1.1

Workstation

192.168.0.x

192.168.0.0/24

RouterB

1.2 | 2.1

192.168.1.0/24

RouterC

3.1 | 2.2

192.168.3.0/24

RouterD

4.1 | 3.2

192.168.4.0/24

RouterE

 4.2

192.168.2.0/24

Figure 30 – Configuration of test environment

The following sub-sections report on the testing and measurement, discussing each

module, in turn, which is touched by the application code (see Figure 29 at the

conclusion of Chapter 5).

6.2.1 Initialization Phase

The job of the Initialization module is to provide a list of candidate nodes to be

contacted by the Communication module. The selected method to generate this list in

the implementation takes user input in the form of hostnames and IP addresses. Entry

B. E. Campbell, MSc Advanced Computer Networking, 2007 62

by the user of hostnames or solitary IP addresses are simply added to the list. The

GUI interface further allows for defining IP ranges and networks. When the user

defines IP spaces, the application computes all the IP addresses in the space.

The code accomplishes computing IP addresses by setting the starting and ending

values of the IP space, adding 1 to the start value, and testing if the new value is equal

to the ending value. As each new value is computed it is added to an array in

memory. The durations were recorded to compute the number of usable IP addresses

in networks with decreasing subnet mask values. The count of usable IP addresses is

then represented by 2
(32-N)

-2, where N is the bitmask value. The measured times are

shown along two scales in Figure 31.

The left-hand decimal scale in seconds corresponds to the curve exhibiting an

exponential growth pattern. This curve plots the average number of seconds to

compute a range of IP addresses. Minimum and maximum values are shown with

variance bars extending below and above each plot point, although at lower values

they are not apparent on this scale. The hardware (an Intel Centrino 1.6 GHz

processor paired with 512 MB RAM) easily handled about 250,000 values before

breaking the 1 second mark. After this point, the doubling of time along with the

doubling of IP addresses with each increment of N, becomes visually apparent in the

graph. The plot points roughly go up to 2, 4, 8, 16, and 32 seconds. The curve stops

at this final point where almost 8.4 million addresses were computed in about 30

seconds on average. The hardware’s memory limitations did not allow an array much

larger than 8.4 million elements to exist before the system had to resort to page-file

swapping on the hard disk. Doing so dramatically affected completion times. Where

the expected duration would be about 60 seconds for 16.7 million values with N = 8,

the system was allowed to run for more than an hour without finishing.

0

5

10

15

20

25

30

35

2 14 62 25
4
10
22

40
94

16
38
2

65
53
4

26
21
42

10
48
57
4

41
94
30
2

1.
7E
+0
7

6.
7E
+0
7

2.
7E
+0
8

1.
1E
+0
9

4.
3E
+0
9

Count of IP Addresses

s
e
c
o
n
d
s

 .

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

lo
g
 [
s
e
c
o
n
d
s
]

.

Actual Averages log [IP count/250ms] log [act. ms]

Figure 31 – Actual and estimated time to generate IP addresses

To demonstrate the full expected growth pattern for the largest possible set of values,

an actual and extrapolated curve is plotted against a logarithmic scale on the right-

hand side of the graph. This curve shows a linear growth pattern expected of an

B. E. Campbell, MSc Advanced Computer Networking, 2007 63

exponential one mapped onto a logarithmic scale. The actual average time values are

plotted first against the logarithmic scale. Where the actual measurements stopped at

~8.4 million, with N = 9, a break in the line is present. The remaining values to the

right of the break are estimated values. The estimated values were arrived at by

calculating the average processing rate from the actual measurements. Already noted

above was the point that approximately 250,000 values were seen to be handled in the

1 second range. This suggests a processing rate of 250 values per millisecond. When

the processor was under a sustained load (observed above ~130,000 values), the

average processing rate indeed began to converge around the 250 ms range. Thusly,

250 ms was divided into the IP count to return estimated completion times. The last

value on the graph represents the time to compute every possible IPv4 address at ~4.7

hours.

Although the hardware showed its own limits, it did demonstrate that a slightly aged

laptop could output half the IP addresses of a traditional Class A IP space in only 30

seconds. Clearly, the majority of networks do not approach such sizes. Therefore, in

its ability to define a target list, the application seems validly applicable to a wide

population of networks. Additionally, this computational method imposes zero load

on a network, whereas obtaining target information from DNS, route tables, and ARP

caches does induce traffic to query and receive data.

6.2.2 Communication Phase

Implementation of the Communication module used only SNMP to attempt to

communicate with every candidate node in the list delivered by the Initialization

phase. A timer was wrapped around the section of code responsible for the initial

SNMP communication. This initial SNMP Get message requested only three OID

values from the target node. Once the node responded, the timer was stopped and the

duration between messages recorded. A separate counter acted as a timeout by

quitting listening for a response after 10 seconds. In this condition, no further

attempts were made to contact the node, and the code proceeded to the next candidate

node from the list of targets. If the node did respond, several more SNMP

Get/Response cycles were executed to retrieve specific OID values. These were not

timed. The duration values recorded only reflect the initial SNMP communication

attempt. This attempt is seen as comparable to a ping in that it validates the presence

of a network node while providing identifying information about that node. The

average duration of the SNMP Get/Response cycle is graphed in Figure 32, as a

function of the physical distance of the node from the querying workstation.

The SNMP Get/Response cycle completed very quickly with a statistical average of

21 ms; a statistical median value of 16 ms; and a statistical mode value of 0 ms

(realistically in the sub-millisecond range). The timers relied on the system clock

which returned values in nothing finer than milliseconds.

To compare these results with the ping tool a similar test was run using it. A simple

batch script was executed sending two echo-requests, each with a timeout of 5

seconds. Failure of both would approximate the 10 second timeout used in the

application code. Ping, too, only returns values as fine as one millisecond. It is able

to report when lesser values are detected, but only outputs a value of “<1 ms.”

B. E. Campbell, MSc Advanced Computer Networking, 2007 64

Instances reported as such were assigned a value of 0.5 ms. The results of the ping

tests are in Figure 33.

Figure 32 – Average time (ms) for the initial SNMP get/response to complete by hop distance

Values in the graph are the mean values, seen connected by a line. Distribution of values is also shown

according to hop distance and degree of relative occurrence. For example, at 2 hops away, the SNMP

get/response completed in 78 ms twice as often (represented by a cross) as it did in 63 ms (represented

by a dot).

1 1

0.95

1 1

1.05

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1 2 3 4 5 6

physical hops

m
s
 (
1
/1
0
0
0
 s
)

.

Figure 33 – Average time (ms) for round-trip pings to complete by hop distance

Of the values recorded concerning ping, several were reported as being less than 1 ms,

and a few also as 2 ms. Otherwise, the value of 1 ms. was unwavering in its

occurrence. Comparison of the two graphs seems to confirm ping being the quicker

of the two methods. The contrary, however, will be shown in Section 6.2.4 reporting

overall runtime measurements.

All of the tests conducted were positive in terms of the target node responding to

either a SNMP or ping message. However, the negative case is important to consider.

Failure of a node to respond manifests the worst-case scenario of having to wait a

designated period of time before being able to process the next target. The

implementation selected a value of 10 seconds as the timeout. Its maximum

approximate runtime is therefore 10×N seconds, N being the number of list items.

The work by Siamwalla, et al. (1998) states explicitly that two pings were sent to each

B. E. Campbell, MSc Advanced Computer Networking, 2007 65

host, and also refers to an interval of 20 seconds per non-answering hosts. The

inference is that the timeout value was 10 seconds per ping. Their estimated

maximum runtime would be 20×N seconds, twice as long as our implementation.

Aside from the timeout value, the manner in which the target node list is determined

has a direct affect on the full runtime. The count of items is a linear multiplier of the

timeout, after all. So, there is a possibility that using complete lists of all IP values in

an IP space (range or network) may result in a high rate of non-answering hosts. On

the other hand, the Siamwalla team’s algorithms avoid attempts to poll non-existent

hosts. This is so because they rely on IP data from network sources, principally DNS

and route tables, which are highly indicative of IP assignments.

Apart from awareness of the measurements of speed and overhead imposed on the

network, awareness must exist about the information SNMP has to offer versus what

is wished to be gathered from each node. Certain limitations were observed in the

course of the implementation. As mentioned in Chapter 5, absence of the PTOPO

MIB made identification of links between devices difficult compared to the ease it

would provide if present. Identifying links remains the same problem it has always

been of correlating data from different devices after the data has been collected. It is

still not possible to collect link identity data directly from a non-proprietary source.

Likewise, the type of device, whether router, switch, or PC, is somewhat difficult to

determine. Although a definitive SNMP OID may contain such data, it was not

observed in the course of this work. Where this data was seen to be more obvious,

but still not definitive, was in the manufacturer-specific OID’s of the hierarchical

SNMP tree. But knowing which manufacturer OID to query already tells a great deal

about the type of chassis one is likely to confirm. Looking in the Cisco OID branch

of 1.3.6.1.4.1.9 creates a high likelihood of finding the device to be some type of

network gear (router or switch). Looking in Microsoft’s (1.3.6.1.4.1.311) is equally as

likely to be a network host. The implementation got around this stumbling block

simply by examining the text contained in the system description OID

(1.3.6.1.2.1.1.1). This OID is outside the manufacturer-specific branch, but such a

solution is hardly ideal as the field is free-form text determined by the vendor

anyway.

Difficulties in knowing a device’s type point to larger issues about interpretations by

manufacturers when they implement SNMP agents. Even in critically important

standard OID’s Microsoft and Cisco were seen to behave differently. Of critical

importance to this thesis was collecting information about each interface on a device.

The MIBs dealing with interfaces call for each to be assigned an index number. The

index number is then used as a reference by other OID’s to store nearly every piece of

information about the interface, such as IP address, MAC address, etc. For external

viewers, like our system, it is critical that the index numbers remain static. Indeed,

this is required by the SNMP standards from the time a device boots up until it powers

off or restarts. Moreover, even disabled interfaces should be indexed since they are

still physically present in the chassis.

The Microsoft workstation revealed SNMP agent behaviour that failed to conform to

the standard. First, interface indexes were only assigned when an interface was

enabled. Disabling an interface caused the overall interface count to decrement.

B. E. Campbell, MSc Advanced Computer Networking, 2007 66

Neither were index numbers assigned incrementally. Reading the OID which reports

the count of interfaces did not allow knowledge of what the index values would be.

An interface count of ‘3’ resulted in index values of ‘1,’ ‘2,’ and ‘65540.’ Gathering

data on this third interface required reading in the index value so that additional OID’s

which use this value in their addressing could be read, too. These issues become a

problem across time should a discovery system want to monitor information about a

device’s interfaces.

Behaviour on Cisco hardware revealed other interpretations of the SNMP agent.

Thankfully, disabled interfaces still remained present in the interface table and the

indexing occurred sequentially. A different difficulty encountered dealt with finding

an interface’s IP address. A table apart from the interface table stores IP information

in the SNMP database. It is the IP Address Table. This table contains data organized

with the IP address itself acting as the key value. One of the sub-values contains the

interface index allowing data from the two tables to be correlated. This correlation is

not one-to-one, though. Interfaces without IP assignments do not appear in the IP

Address Table. Thus, the two main tables identifying interfaces are not of the same

dimensions unless every interface is configured for IP operation.

6.2.3 Data Storage Phase

Regarding the Data Storage module, measurements were taken examining two areas.

First, how long write and search operations performed by the application code could

be performed. Secondly, how the size of the XML file grew as device elements were

added.

The XML file structure, recall, contained three main elements. The first was the

XML root called ‘topology’ which contains any number of child ‘device’ elements.

These in turn contain any number of ‘interface’ elements. Measurements were

recorded about how long it took the application code to write new interfaces and

devices into the XML file. Writing a new interface was implemented using 17 lines

of code to write 9 values into 9 lines of text. Every measurement of this action

resulted in an output value of 0 ms. Again, the system’s timer could not return fine

enough times to capture the shorter duration of the event.

Measuring the time to write all interfaces of a single device, however, did produce

events spanning longer than 1 ms. Figure 34 graphs this data in three manners. First,

the solid diamonds plot the duration to write a device as a function of its number of

interfaces. A general trend is seen that the time is proportional to the interface count.

This feature is accented by the second graph, a heavy-marked curve denoting the

trendline for the same data set. The trendline illustrates a linear growth pattern

expected from a proportional relationship. The third graph is marked with triangles.

It plots the same data as a function of distance from the polling workstation. This

graph shows a spike, then dip close to the workstation, then flatter area moving

further away. This is mostly explained by the fact that the switch, with its relatively

high interface count of 26, was positioned adjacent to the workstation. Understanding

these measurements better would require normalizing the data somehow, or using

devices all with an equal number of interfaces at each hop.

B. E. Campbell, MSc Advanced Computer Networking, 2007 67

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

m
s
 (
1
/1
0
0
0
 s
)

.

by interface count by physical hop count trendline (by interface count)

Figure 34 – Time (ms) to write a XML “device” element according to its hop distance and

number of interfaces

While Figure 34 deals with creating content of the XML file, Figure 35 examines the

case when stored data already exists. The application code was written such that

when a device is discovered it is appended to the list of ‘device’ elements in the XML

file. The list of ‘device’ elements is not ordered in any way. To qualify for being

appended, the XML file is searched for any existing ‘device’ element with the same

value for its system name. The system name value is meant to be unique in the XML

file. To measure the duration of the search algorithm, the XML file was seeded with

devices containing on average 13 interfaces and 104 values per device. A device

entry with a known value for its system name was then positioned in the XML with a

known number of preceding devices. Measurements were taken beginning at 100

preceding devices, incrementing by 100, up to 2,000. From 2,000, the increment is

1,000 stopping at 10,000 preceding device entries. Please note, then, that this range

on the right end of the x-axis of Figure 35 is compressed by a factor of 10. While the

left-hand side demonstrates a slowly growing, linear curve, the compression of the

right-hand side allows us to view a larger range along that same curve.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

30
00

50
00

70
00

90
00

count of preceding XML "device" elements

s
e
c
o
n
d
s

 .

Figure 35 – Time (s) to find an existing duplicate XML “device” element

B. E. Campbell, MSc Advanced Computer Networking, 2007 68

The ability to find pre-existing nodes in our XML-stored data set is a vital one.

Continued polling of devices, monitoring of their status, and detection of changes

could be realized through finding the original entry in the XML for comparison. That

duplicate searching is achievable for large sets in less than 3 seconds per device seems

a good result, but the time can add up quickly. Given a set of 1,000 nodes already

present in an XML file, the time to find every node’s existing entry would be the

arithmetical sum from 1 to 1,000 of the search function. Represented in mathematical

notation, this would be: ∑
1000

1
)(sf . What existing function might approximate ()sf

is unknown, but is undoubtedly linear in nature. It would also need to account for the

speed of the processor on which it is run.

0

5

10

15

20

25

30

35

40

0 100 1,000 10,000

count of XML "device" elements

fil
e
 s
iz
e
 (
M
B
)

.

0

0

0

0

1

10

100

decimal logarithmic

Figure 36 – Growth of the size of an XML file on a megabyte and logarithmic scale

The size of the XML file is another factor to examine. An initial file of 100 devices is

about 350 KB, or .34 MB. Increasing the device count by a factor of 10 also increases

the file size by a factor of 10 to 3.4 MB. A 10,000 device-count XML file was

measured to be 34.3 MB. These plot points are shown in Figure 36 along both a

decimal and logarithmic scale. Simple arithmetic produces a file of just over 14 TB to

contain data on every one of the possible IPv4 addresses (almost 4.3 billion). The

same average interface-to-device ratio of 13 was used in the sample files to obtain

these values. Still, if most networks contain less than 10,000 devices, the ability to

store an XML file poses no threat to physical storage mediums. The more

information that is stored per device could easily grow the file, though.

6.2.4 Cumulative Measurements

The previous three sections each addressed the work performed by the application

code relative to a single design module. This section adds all measurements together

to illustrate total runtimes per device and per application run.

The graphs in Figure 37 continue to show a data set on a per device basis. Now the

solid diamonds are plotting the total time for the application to address a single device

including all SNMP communications and the information being written into the XML

B. E. Campbell, MSc Advanced Computer Networking, 2007 69

file as a function of the device’s interface count. A trendline is present to show the

estimated curve around which durations would likely cluster. Even for a device with

26 interfaces, all communications and data storage is accomplished in just over 7/10

of a second.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

interface count

s
e
c
o
n
d
s

 .

data points trendline

Figure 37 – Total time (s) to perform SNMP & XML operations per host by its number of

interfaces

The next graphs in Figure 38 compare the SNMP-based application and the ping

script referred to in Section 6.2.2. Each plot point represents the total time to execute

against seven devices configured per Figure 30. For the application, this is from the

point the user clicks the ‘Get Data’ button. From that point the application attempts

communication to each node in the target list using SNMP, receives back information,

processes the information in preparation for storage, and writes the information into

the XML file.

For the ping script the time represents sending two pings to each of the seven hosts.

Although Figure 33 demonstrated that each individual ping was answered in 1 ms,

there is enough delay in the ping tool itself, and/or processing time of the batch file

that the full runtime clustered around 7.5 seconds. And, although the values from

Figure 32 show an individual SNMP communication completing in 21 ms on average,

the rest of the application code is sufficiently fast enough to process all seven hosts in

about 1.5 seconds.

The data presented in this section, especially this last graph, should bolster the

argument that comparing SNMP’s protocol state to a tool like ping using

completeness as the measuring stick does not tell the whole story. Here, the evidence

begins to suggest that the difference in speed is more significant than the difference in

completeness when both the tools being measured are deployed and “on” in the

network. Also, due to such speed, SNMP and XML appear to be scalable to

moderately large networks, whereas manipulations of the IP stack continue to be

closed off in the face of security concerns.

B. E. Campbell, MSc Advanced Computer Networking, 2007 70

0

1

2

0 1 2 3 4 5 6 7 8

seconds

SNMP (1) Ping (2)

Figure 38 – Comparative distribution of total runtime of the SNMP-based application and a ping

script

6.3 Critique of Implementation

There was an original aspiration to capture snapshots through time of devices’

configurations. Then, series of data sets could be compared to reveal changes. The

idea was introduced in Section 4.8 using hypothetical schedulers to automate periodic

data collection or polling activities. The implementation did not achieve this idea.

Questions arise, though, about how to store and when to compare the data. Data

might be compared at collection time as was done with searching for existing system

names in the XML file. Any value or attribute might be compared in the same way.

Were a comparison to reveal a variance between a past and present value, the

application must somehow preserve both. One option would be to add the new value

to the existing XML. This choice seems to ask that the data be time-stamped.

Alternatively, comparison of data could occur after collection. This choice requires

the newly acquired data to be stored, either in a new XML file or in the existing XML

file. Again, it seems necessary to look to implementing document versioning or time-

stamping so that later comparisons will be understood in a chronological context.

Although the ideas of this thesis propose a heavy shift towards automating

documentation production, this is not meant to wholly remove the humans, that is the

system administrators, which are involved. Essentially there is an effort to try to

remain mindful of “Automation Irony,” described thusly:

Automation usually addresses the easy tasks for humans, leaving to the

operator the complex, rare tasks that were not successfully

automated… The irony is that automation reduces the chance for

operators to get hands-on control experience… The challenge is to

design systems that are synergistic with human operators (Patterson, et

al., 2002, p. 3-4).

The modular framework design attempted to recognize the continuing importance of

human involvement by allowing degrees of interaction or control around each

module, as well as viewing of the output and work of the modules.

Indeed, the human factor is of an utmost importance. After all, the overarching

motivation is to produce visual representations of network topologies. The question

B. E. Campbell, MSc Advanced Computer Networking, 2007 71

of how to visualize data moves easily into areas of HCI where some less technical

questions need addressing. Mainly, we refer to questions of aesthetics. It is simple

enough to produce visualized documents, but effective ones will have to be mindful of

their aesthetic appeal. While doing so, documents should deliver sufficient

information regarding their purpose, but not cause information overload for the

viewers. Some work related to spatial layout of topological information is available

in Au, et al. (2004), and Buchanan and Zellweger (2005). The work of this thesis did

achieve some visualized outputs, but did not go so far as tackling spatial layout or

aesthetic challenges.

There was a special interest in using SNMP due to the possibilities of the PTOPO

MIB delivering valuable, pre-computed link information. The version of SNMP

employed was v2c. This version still contains flaws and remains susceptible to

several types of attacks. So, despite SNMP v2c being the de facto version used in

today’s networks, it is looked upon with a certain amount of suspicion by the same

administrators who deploy it. The framework introduced in Chapter 4 does not call

for a specific version of SNMP. The implementation was forced to use SNMP v2c by

the capabilities of the Cisco IOS on the available switches and routers, and by the

workstation’s Windows OS. Further work would be very much interested in an

SNMP architecture employing v3 agents and security.

6.4 Suggestions for Future Work

Reproduce work by Siamwalla Team

The reading and research undertaken while exploring network discovery, network

management systems, open standard tools, and document production point to several

areas worthy of further investigation. The first of these would be a reproduction of

the work by Siamwalla, et al. (1998). As previously discussed, changes in technology

and management systems are likely to reveal modern networks that behave differently

when examined by the Siamwalla team’s algorithms. Their conclusions that SNMP

was an ineffective tool for discovery might lose ground since the better performing

tools are now subject to more security risks. SNMP is also more common in modern

operating systems along with the uses of management systems. Hurdles to implement

SNMP across a network, and not just on routers, are much lower than a decade ago.

Link Discovery

While device discovery might be considered fairly mature, link discovery is still

hobbled by the need to re-compute relationships between devices. The PTOPO MIB

theoretically solved this issue when it became defined in 2000. It faltered, though,

without a standard protocol defined for populating the MIB space. Industry has

largely ignored implementing PTOPO, preferring their own proprietary protocols and

MIB spaces (Cisco’s CDP is a prime example). So, although little work is to be had

in exploiting easily available data from PTOPO, continued observation of link

discovery technology is warranted. This is mainly due to the adoption of the Link

Layer Discovery Protocol in 2005. LLDP was ratified as IEEE standard 802.1AB

(IEEE, 2005). LLDP is supposed to finally provide a standard protocol for link

discovery. Perhaps as exciting, LLDP is also supposed to populate its data into its

own SNMP MIB space while simultaneously updating the PTOPO MIB. If LLDP

takes hold, PTOPO might get widespread implementation too. A result such as this

B. E. Campbell, MSc Advanced Computer Networking, 2007 72

would provide SNMP-accessible, pre-computed data on both physical links and

logical, Layer 2 links.

Visualisation

Visualising a data set is perhaps more important than the data set itself. Spreadsheets

certainly tell less compelling stories than coloured, iconographic maps when it comes

to networks. But, producing a well laid-out map is its own challenge. An individual

person drafting a map manually is able to choose object positioning to maximize

aesthetic design, as well as clearly relate the object’s connections, context, and

relationships. How can the same output be accomplished automatically? Work by

Au, et al. (2004), and Buchanan and Zellweger (2005) provides a technical starting

point. Presentations by Jeff Han
9
 and Hans Rosling

10
 provide inspiration.

GIS & Visualised Temporal Sequencing

Visualisation is a building block to further contextualization of data. A map of a

network’s physical topology carries even more information when presented in the

context of its physical environment, such as a building floor plan. A WAN map

might be more effective placed against a geographical map of cities and countries.

The area of Geographic Information Systems seems it might offer synergies with

presenting data about a network. GIS mainly deals with layering multiple data sets on

top of the same context. Imagine a building floor plan with subsets of the network

layered on by the choice of the end-user. All switches could be selected for to see the

STP topology. Or, all routers selected to show the IP layout.

Contextualization can take other forms. Important to network management

(especially fault management) is understanding changes through time. If we have

data on a topology captured at intervals, it would seem we have the frames of a movie

showing an evolving network. Since XML technologies were of special interest for

data storage and document production purposes, they might offer a way to produce

time-contextualized presentations. Indeed there is an XML language called SMIL (an

acronym for Synchronized Multimedia Integration Language, and pronounced

“smile”) that “describes multimedia presentations. It defines timing mark-up, layout

mark-up, animations, visual transitions, and media embedding, among other things”

(Wikipedia, 2007b).

XML Language for Network Topologies

The most interesting idea generated from this research is that of an XML language for

describing network topologies. This concept was largely inspired by a cursory review

of CML. CML is the Chemical Markup Language, a standard language to describe

molecules. CML interpreters take only CML text and produce three-dimensional

renderings of the molecules described. When considered, molecules are substantially

similar to a network topology. Atoms are like network nodes. Chemical bonds are

like network links. There are rules about how atoms can bond just like there are rules

about how routers, switches, and hosts can interconnect. The vision of a language for

describing networks coupled with a visualization platform would seem to be a

9
 See Han (2005) for his paper, or his TED 2006 presentation at http://www.ted.com/index.php/talks/

view/id/65.
10
 Hans Rosling relied upon Trendalyzer, software now owned by Google, but developed by

Gapminder. His presentation can be seen at http://www.ted.com/index.php/talks/view/id/92, while the

software can be found at http://tools.google.com/gapminder/.

B. E. Campbell, MSc Advanced Computer Networking, 2007 73

powerful one. Different scales of a network could be viewed without a need to switch

between sources from a library of documents. Instead, one could zoom in or out to

see small-scale LAN segments or large scale WAN connections. This approach is

already common in presenting geographical data (think Google Maps). It seems a

small leap to apply this presentation method to other kinds of maps, and specifically

to maps of network topologies.

6.5 Conclusion

This chapter put forth measurements of the proof-of-concept application. These

measurements showed the application to be faster compared to the ping tool while

returning significantly more information about each network node. Also, the

application is projected to be applicable to networks ranging from the very small to

moderately large. This is concluded based on several factors. The application has the

ability to generate an initial target list of nodes numbering in the thousands, or even

millions, in under 15 seconds, and usually much less. It is also predicted to be able to

store large amounts of information well inside the limits of today’s storage mediums.

Aside from these technical data, several critiques of the implementation and

suggestions on future work were offered.

Like the review of the implementation’s success, the overall work of the thesis must

be considered according to its scope and goals. The objectives serve as the agenda for

this revision. Here they are as stated in Chapter 1:

1. To conduct a critical review of existing literature relating to network

management and topology discovery systems.

2. To design a novel system framework for producing network documentation.

3. To use a non-proprietary protocol to retrieve information from network

devices.

4. To store network information in an accessible, portable format.

5. To automatically produce network documentation as both paged and non-

paged media.

Objective 1 was accomplished and reported on in both Chapters 2 and 3. Exploration

of background issues in system administration and network management paradigms,

along with an understanding of previous research into topology discovery systems,

was key to accomplishing the remaining objectives. The review of literature informed

the ideas to be challenged and validated. It helped form the questions that the design

and implementation stages attempted to answer and investigate.

Chapter 4 dealt with Objective 2. Therein was demonstrated the evolution of a design

built first from motivations that were responses to the issues discovered in the

literature review. This simple framework was then gradually completed with specific

technological answers to the questions of operations. The method of presenting the

framework by building up its parts is deliberate to show it is arrived at though

synthesis and not by reliance on existing paradigms. In this way it is a novel solution

to the problem set at hand.

Meeting objective 3 required first a choice of protocol followed by actually using that

protocol for communication with network nodes to retrieve data. The protocol chosen

B. E. Campbell, MSc Advanced Computer Networking, 2007 74

was SNMP, as justified in Section 4.5. Its main strength is that it is a well-

established, non-proprietary, open standard. It is also a widely implemented protocol

by many hardware and software vendors. Through a borrowed programming library,

the implementation successfully sent requests to network devices for specific data

stored by the devices’ SNMP agents. Those devices appropriately returned

information carried by SNMP protocol packets to the implemented application. By

employing SNMP the application is not constrained to information about a single OSI

layer. Instead, all the information in a device’s agent database is available. These

databases’ information will cover the primary layers of interest (Layers 1 to 3), if not

all OSI layers. Analysis of the implementation found SNMP to be fast at information

retrieval. Its continuing challenge is to be deployed widely across an enterprise, and

to have its secure versions adopted over legacy ones.

Objective 4 was achieved through using XML documents as data storage mediums.

XML files are both accessible and portable. They are accessible in the same way that

any stand-alone file is. They can be shared through file systems, published to web

sites, subjected to document control and versioning, and emailed as attachments.

Furthermore, XML files are readable by a variety of tools from simple text editors to

web browsers to specialized integrated development environments. XML content is

also intended to be machine and human readable. The fact that it is both makes XML

highly portable, too. Content is self-describing through names of elements and

attributes. It is easily parsed by machines by recognition of elements, tags, and the

hierarchical structure which emerges from their organization. These properties make

XML portable because it is simple to read and in a ready state for transformation to

other formats.

The use of XML to store network node information found it to be an easy fit to the

nature of the data. XML naturally has a hierarchical, tree-like structure which is well-

suited to represent network devices. Any device can be seen as a single container of

one or more interfaces. These interfaces are then containers of their own descriptive

information, or possibly even virtual interfaces. XML elements, too, act as containers

of both data and other elements. They naturally nest inside one another with no

limitations as to quantity of elements. The grammar chosen in our XML document

demonstrates this concept. It is further likely that XML’s nature would be equally

appropriate for representing the tree-like structure of network topologies. The

analysis and projections of the actual XML data stores realized suggests their size and

parsing time might be appropriate for even moderately large networks. Certainly,

there is a potential for efficiency gains in smaller networks where XML data storage

could supplant the need for deploying, running, and supporting a complex database

solution.

Objective 5 was of the utmost importance to the aim of the thesis. Three example

documents were produced in the implementation phase. Two were non-paged,

HTML documents suitable primarily for consumption through web browsers. The

third was a PDF document. It was output as its own file apart from the source data

XML document, unlike the HTML outputs. As its own file, it could be shared,

emailed, etc. Since it is a paged media, the PDF document could be viewed with a

PDF reader or printed, with no discrepancy of layout between the soft and hard

mediums. All of these outputs were constructed automatically by transforming the

XML data store using XSL.

B. E. Campbell, MSc Advanced Computer Networking, 2007 75

XSL is extremely powerful for reorganizing data and/or transforming it into alternate

languages. Due to its initial design goals, XSL is very adept at producing paged

media, like PDF. And, owing to the co-opting of XSLT by the web development

community, it is exceptional at outputting XHTML, among other XML languages.

By meeting each of the objectives, the aim is largely accomplished. Several open

standard technologies were explored to discover ones both capable and appropriate to

fulfil a functional role in the design of a system. Those selected were SNMP, XML,

and the XSL family. The system into which they were inserted was one designed to

automatically produce documentation about a network. The marrying of each of these

technologies was then demonstrated through a proof-of-concept application.

Automation was accomplished using two programming vectors. First, custom code

was written to employ SNMP for data gathering, and to store that data in XML

documents. Second, customized XSLT transforms were written to convert the

network data into both screen-based and paper-based formats (HTML and PDF).

The aim of producing such a system as the one described is but one answer to the

problem of documenting IT systems. Investigation of producing documentation

reveals it to be a necessary activity in both theoretical and practical management

systems. In practice, though, it is traditionally a manual process, meaning producing

documentation is time-consuming, expensive, or ignored altogether. Looking to do so

in a fast, inexpensive manner led this solution to rely upon open standard tools. This

results in several strengths. The solution is not affiliated to a specific vendor making

it applicable to any network. It should also remain adaptable, even in the face of

evolving standards or networking environments. Finally, it produces network

documentation – a highly valuable resource for administration of modern, advanced

computer networks.

B. E. Campbell, MSc Advanced Computer Networking, 2007 76

Appendix A – Implementation Resources

Resource Sourced from Purpose Type

Microsoft

Visual C# 2005

Express

Edition

Microsoft Corporation Software Development

Environment

Primary

C#.NET Microsoft Corporation Programming Language Primary

.NET

Framework 2.0

Microsoft Corporation Runtime Environment Primary

snmp.dll

v0.3.3f

Malcolm Crowe,

University of Paisley,

2003

(http://cis.paisley.ac.uk

/crow-ci0/)

Runtime for SNMP

Protocol

Primary

Apache FOP

0.92 beta

http://xmlgraphics.apac

he.org/fop/

XSL-FO processor Primary

Cisco Catalyst

2950 switches

& Cisco 2600-

series routers

Napier University

School of Computing

Networking laboratory

(C27)

Hardware for SNMP

polling and mock network

Primary

Computer

(Intel Centrino

1.6 GHz, 512

MB RAM,

Windows XP

SP2)

Self provided Development and testing

platform

Primary

MIB Navigator http://sourceforge.net/p

rojects/mibnavigator/

Utility for browsing SNMP

agent trees

Secondary

MIBToXML

Converter

http://sourceforge.net/p

rojects/mibnavigator/

Utility to convert standard

MIB files for use in MIB

Navigator

Secondary

FreeSNMP NsaSoft

(http://www.nsauditor.c

om/network_tools/snm

p_mib_browser.html)

Utility for browsing SNMP

agent trees

Secondary

Treebeard

v0.9.0

http://treebeard.sourcef

orge.net/

XSLT Integrated

Development Environment

Secondary

Table 3 – Resources utilized in the implementation

B. E. Campbell, MSc Advanced Computer Networking, 2007 77

Appendix B – SNMP Basics

There are many good texts providing a treatment of SNMP. Black (1995) was

consulted to verify the details offered here. The main components of the Simple

Network Management Protocol architecture are:

• Managed Systems – any device running a management agent.

• Management Agents – software for handling SNMP communications and the

local information store.

• Management Station – a central system for initiating management activities

via SNMP, and for receiving alarms from managed systems.

A management agent runs as a service, or daemon, on each managed system. It

maintains information about the managed system in a local Management Information

Base (MIB) (Figure 39).

Figure 39 – Architecture of SNMP

MIBs are hierarchically organized. Elements in a MIB can be referenced by a

canonical name, or by their Object Identifier (OID) (Figure 40). The full name or

OID of a given element is built by naming each branch in the hierarchy starting from

the root. In order to translate between canonical names and OIDs, MIB definition

files are stored on the Management Station. The station’s management software

consults the appropriate MIB definition file corresponding to a given OID.

Figure 40 – MIB Hierarchy showing OID names and numbers

The left pane shows the MIB branch “system,” which contains general information such as “sysDescr”

and “sysName.” The right pane shows the vendor-specific branch, highlighting “microsoft.” Vendors

have the authority to define MIBs inside their designated branch. Microsoft’s OID number is 311,

while Cisco’s is 9.

B. E. Campbell, MSc Advanced Computer Networking, 2007 78

Appendix C – XML Basics

The Extensible Markup Language is a generic markup language standard

recommended by the World Wide Web Consortium (W3C). It is the basis for all

other XML languages, or applications. Examples include XHTML, SVG, CSS, CML,

MathML, SOAP, WSDL, UDDI, and many more. XML is designed for the storage,

retrieval, and validation of data, and document transforming and formatting. This

appendix was informed by Ray (2003), Pawson (2002), and Tidwell (2001), and is

cited where appropriate.

C.1 XML

The basic component of XML is the tag. Tags must open and close, may contain

data, and may have attributes. Tag and attribute names can be almost any string of

alphanumeric characters, although there are some restrictions. Here are some basic

examples of tag syntax:

<tag1>data</tag1>
<tag2 attribute-A=”value” attribute-B=”value”>data</tag2>
<tag3 attribute-C=’value’/>

An XML document is split into two sections. They are the document prologue and

the document element. Their functions are analogous to an HTML document’s

header and body, respectively. The document prologue consists of special tags called

declarations. Declarations are denoted through the use of special characters as

opening delimiters (<?, <!), along with some cases of special syntax. The most

common declaration is an XML declaration which informs an XML processor about

the document.

Analogous to the body, the document element (also called the root element) of the

XML document begins with the first tag element lacking the use of special opening

delimiters. The document element ends when this element is closed. Elements can

contain other elements in a hierarchy. The hierarchical organization produces data,

described through their tags and attributes, organized in a tree-like structure.

Important to the use of XSLT and XSL-FO are XML namespaces. Namespaces allow

elements to belong to different vocabularies in the same document. Were a

namespace given the name “napier,” elements become members by prefixing them

with the name. So, a “napier:student” element is different from a regular

“student” element. Namespaces are defined like an attribute, but must adhere to the

syntax of: Xmlns:name=”URI”.

Here is a very basic, yet valid, XML document showing the document prologue,

definition and use of namespaces, the document element, and hierarchical structure:

<?xml version="1.0" encoding="utf-8"?>
<address-book xmlns:oc=”http://occupant.com”
xmlns:ad=”http://address.com”>
 <house descr=”Holyrood Palace”>
 <oc:person>Queen Elizabeth II</oc:person>
 <ad:number> Canongate, The Royal Mile, EH8 8DX</ad:number>

B. E. Campbell, MSc Advanced Computer Networking, 2007 79

 <number>5 Horse Wynd</number>
 </house>
</address-book>

C.2 XSLT

The Extensible Stylesheet Language for Transformations is another W3C

recommendation. XSLT is a language for transforming XML documents into other

formats, usually still XML. XSLT is itself XML. An XSLT document contains

iterative and recursive rules that pattern-match data in source documents. An XSLT

processor interprets the source document according to the rules and outputs a new

document according to them.

One way to apply the XSLT document to transform an XML document, the XML

document itself can contain a declaration as to what, if any, stylesheets should be

applied to it. Like most declarations, this occurs in the document prologue. The

declaration is a processing instruction with the name xml-stylesheet. It is able to

declare the location of the stylesheet and the stylesheet’s MIME
11

 type. The xml-

stylesheet element can equally be used to call Cascading Style Sheets (CSS). Here

is an example of a declaration to an XSLT transform located in a directory relative to

the XML document’s location named ‘web’:

<?xml-stylesheet type='text/xsl' href='web/tform.xslt'?>

Now, the XSLT document must be built. The root element of an XSLT tree, at its

most basic, opens a stylesheet element in the xsl namespace, states the XSLT

version, and declares the xsl namespace. This is vitally important as an XSLT

processor interprets the xsl namespace elements. These “elements control the

process. Any elements or attributes not in that namespace… will be interpreted as

data to be output in the result tree” (Ray, 2003, p. 232).

Next, pattern-matching rules are defined using instances of the template element

from the xsl namespace. An attribute called match is then employed to define the

pattern to be searched for in the source XML document. The values of this and other

attributes conform to XPath rules and syntax. (See either Ray (2003) or Tidwell

(2001) for more on XPath.) Everything that follows between the opening and closing

template element tags comprises the rule, or set of actions, that the XSLT processor

will perform. Here is a simple stylesheet that builds a web page based on our earlier

address book example XML document:

<xsl:stylesheet
 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>
 <xsl:template match="address-book">
 <html>
 <head>
 <title>My Address Book</title>
 </head>
 <body>
 <h1>Entries in the address book</h1>
 <xsl:apply-templates/>
 </body>

11
 Multipurpose Internet Mail Extensions

B. E. Campbell, MSc Advanced Computer Networking, 2007 80

 </html>
 </xsl:template>
</xsl:stylesheet>

Note that the resulting HTML document contains only one line of text in its body. To

add more content, more xsl:template rules must exist to handle other types of

elements from the source XML document. Additional templates would also be child

nodes to the root element, but sibling nodes of other xsl:template elements in the

XSLT document’s hierarchy. To reference the sibling templates, the element

xsl:apply-templates is used.

The xsl:apply-templates element is a good example of an XSLT processor’s

iterative nature. At the point this element occurs, the instruction tells the processor to

proceed to interpret all further defined xsl:template elements. It iterates each rule.

Each rule defines its own pattern to be matched along with actions. Each instance of

a found pattern is itself iterated until the given xsl:template element is exhausted.

So, to handle the house elements in the XML address book, an additional XSLT rule

might output the name and address of entry like this:

 <xsl:template match="house">
 <xsl:value-of select="oc:person"></xsl:value-of>
 <xsl:value-of select="ad:number"></xsl:value-of>
 <xsl:value-of select="number"></xsl:value-of>
 </xsl:template>

C.3 XSL-FO

Formatting Objects is the third component of the original W3C XSL recommended

standard. An FO document is an XML syntax arrived at through XSLT+XPath

transformation of an XML source document. The FO hierarchical tree is a series of

containers for discreet portions of content, each then associated directly with page

layout, formatting, and presentational characteristics. FO documents are rarely

needed except as they are passed to an FO processor. The processor is driven by the

content to produce paged media. This is as opposed to paged media that is layout-

driven, such as a newspaper. Generally, there is the most interest in outputs of PDF

and PostScript as the paged media types. PDF is easily printable, or shareable in its

electronic form. PostScript output can be sent directly to print devices for hard copy

production.

FO follows a model built around areas. The first area defined is the page itself.

Further sub-areas will then be defined within the page’s dimensions for placing

content (text, images, etc.). The geometry of pages and their sequences are setup in

the required fo:layout-master-set element (note the use of the fo namespace).

The layout master has children elements (hence, a set) of page masters and sequence

masters. Page masters prescribe the height, width, margins, orientation, text direction,

flow direction, and so on. Sequence masters setup the order in which pages can

occur, like when odd and even pages in a book require distinct layouts. Page and

sequence masters are templates that are later invoked through a globally unique

naming reference.

After the stylistic parameters have been established, a page is instantiated with a

fo:page-sequence element. This element calls the unique name of a page/sequence

B. E. Campbell, MSc Advanced Computer Networking, 2007 81

master combination thereby setting the geometrical environment into which a flow of

content will be “poured.” A flow is started with the fo:flow element. The flow must

declare and attach itself, via the flow-name attribute, to one of the pre-defined regions

of a page. Page regions would be the body, or left margin, for example. Child

elements’ content will then appear in the page region defined.

In Western layouts, text flows from top to bottom and left to right. An established FO

flow will fill a page region in the same fashion using blocks and inlines. A block is a

rectangular area containing content. The simplest usage would be to use a block for

each paragraph of text. An inline element can be used to modify content, as its name

implies, without having to split the content among multiple areas. This is the same

concept of wrapping a single word in HTML inside and elements

to create a hyperlink. An inline element can be used in the same way to, say, modify

the font, colour, etc. of the text it encloses.

XSL-FO is very much more complicated and powerful than the very basic concepts

presented here. However, if we imagine an XSLT transform were applied to our

simple XML address book from above, it would be simple to construct the following

FO tree for delivery to an FO processor:

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

 <fo:layout-master-set>
 <fo:simple-page-master margin-right="1in" margin-left="1in"
 margin-bottom="1in" margin-top="1in" page-width="11in"
 page-height="8.5in" master-name="simple">
 <fo:region-body margin-top="0in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="simple">
 <fo:flow flow-name="xsl-region-body">
 <fo:block space-after="12pt" background-color="black"
 color="white" font-family="sans-serif" font-size="12pt">
 <fo:inline font-style=”italic”>Holyrood Palace</fo:inline>
 <nl/>
 Queen Elizabeth II, Canongate, The Royal Mile, EH8 8DX
 </fo:block>
 </fo:flow>
 </fo:page-sequence>
</fo:root>

This FO tree demonstrates most of the basic concepts presented above. An FO

processor would output an 8½ by 11 inch, landscape oriented page with text very

much like this:

Holyrood Palace

Queen Elizabeth II, Canongate, The Royal Mile, EH8 8DX

B. E. Campbell, MSc Advanced Computer Networking, 2007 82

Appendix D – Application Code

D.1 System Generated Code
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using Snmp;
using X690;
using System.Xml;
using System.Text;
using System.IO;
using System.Threading;

namespace WinSNMPtoXML
{

 /// <summary> ...

 public class Form1 : System.Windows.Forms.Form
 {
 private System.Windows.Forms.LinkLabel llblViewXML;
 private System.Windows.Forms.ListBox lstOutputStatus;
 private System.Windows.Forms.LinkLabel llblGenDoc;
 private System.Windows.Forms.LinkLabel llblGetData;
 private System.Windows.Forms.TextBox txtStartOctet1;
 private System.Windows.Forms.Label lblCommString;
 private System.Windows.Forms.TextBox txtPassword;
 private System.Windows.Forms.Label lblHostname;
 private System.Windows.Forms.TextBox txtHostname;
 private System.Windows.Forms.Label lblStartIP;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.TextBox txtStartOctet2;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.TextBox txtStartOctet3;
 private System.Windows.Forms.Label label3;
 private System.Windows.Forms.TextBox txtStartOctet4;
 private System.Windows.Forms.TextBox txtEndOctet4;
 private System.Windows.Forms.Label label4;
 private System.Windows.Forms.TextBox txtEndOctet3;
 private System.Windows.Forms.Label label5;
 private System.Windows.Forms.TextBox txtEndOctet2;
 private System.Windows.Forms.Label label6;
 private System.Windows.Forms.Label lblEndIP;
 private System.Windows.Forms.TextBox txtEndOctet1;
 private System.Windows.Forms.Label label7;
 private System.Windows.Forms.Label label8;
 private System.Windows.Forms.Label label9;
 private System.Windows.Forms.Label label10;
 private System.Windows.Forms.Label lblBitmask;
 private System.Windows.Forms.TextBox txtBitmask;
 private System.Windows.Forms.Label label11;
 private System.Windows.Forms.Label label12;
 private System.Windows.Forms.TextBox txtMask4;
 private System.Windows.Forms.TextBox txtMask3;
 private System.Windows.Forms.TextBox txtMask2;
 private System.Windows.Forms.TextBox txtMask1;

B. E. Campbell, MSc Advanced Computer Networking, 2007 83

 private System.Windows.Forms.Label lblTip;
 private System.Windows.Forms.Label lblNote;
 private System.Windows.Forms.Label lblHostnameDir;
 private System.Windows.Forms.RadioButton rbtnHost;
 private System.Windows.Forms.RadioButton rbtnRange;
 private System.Windows.Forms.RadioButton rbtnNetwork;
 private System.Windows.Forms.Label lblPassword;
 private System.Windows.Forms.LinkLabel llblCreateList;
 private System.Windows.Forms.LinkLabel llblViewList;
 private System.Windows.Forms.Label lblListCount;
 private Label lblArrow;
 /// <summary> ...

 private System.ComponentModel.Container components = null;

 public Form1()...

 protected override void Dispose(bool disposing)...

 #region Windows Form Designer generated code

 /// <summary> ...

 private void InitializeComponent()...

 #endregion

 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

D.2 Global Variables
 private const string xmlFile = "topology.xml";
 private const string ifTypeFile="ifTypes.csv";
 ArrayList IPAR;
 string[,] ifTypesAR;
 double runtime;

D.3 XML File Initialization
 public void DocTest ()
 {
 if (!(File.Exists(xmlFile))) //test for/creates XML file
 {
 lstOutputStatus.Items.Add("XML file does not exist!
Creating...");
 XmlTextWriter docmaker = null;
 docmaker = new XmlTextWriter (xmlFile, Encoding.UTF8);
 try
 {
 docmaker.Formatting = Formatting.Indented;
 docmaker.Indentation= 6;
 docmaker.Namespaces = false;
 docmaker.WriteStartDocument();
 docmaker.WriteProcessingInstruction("xml-stylesheet",
"type='text/xsl' href='web-device-report.xslt'");
 docmaker.WriteStartElement("topology", "");
 docmaker.WriteComment("Start of device listing");
 docmaker.WriteEndElement();
 docmaker.Flush();
 lstOutputStatus.Items.Add("Created topology.xml.");
 llblViewXML.Visible=true;

B. E. Campbell, MSc Advanced Computer Networking, 2007 84

 llblGenDoc.Visible=true;
 }
 catch(Exception e)
 {lstOutputStatus.Items.Add("Error creating XML file:
"+e.ToString()+".");}
 finally
 {
 if (docmaker != null)
 {docmaker.Close();}
 }
 }
 else
 {
 lstOutputStatus.Items.Add("topology.xml already exists.");
 llblViewXML.Visible=true;
 llblGenDoc.Visible=true;
 }
 }

D.4 Loader for IANA Interface Type Lookup
 public string[,] LoadifTypes()
 {
 //loads .csv file with interface type codes & descriptions
 //per the IANA ifType-MIB, revision September 25, 2006
 string[] flatstrAR = File.ReadAllLines(ifTypeFile);
 string[,] dimstrAR = new string[flatstrAR.Length,2];
 int i = 0;
 foreach (string s in flatstrAR)
 {
 string[] tempS=s.Split(',');
 dimstrAR[i, 0] = tempS[0];
 dimstrAR[i, 1] = tempS[1];
 i++;
 }
 return dimstrAR;
 }

D.5 Class to Create IP and Hostname List
 public ArrayList CreateHostList ()
 {
 //populates array with all hosts & IPs indicated by user
 ArrayList v = new ArrayList();
 string text = null;
 string dot = ".";
 int a= new int();
 int b= new int();
 int c= new int();
 int d= new int();
 //check for non-integer condition
 try
 {
 a=Convert.ToInt32(txtStartOctet1.Text);
 b=Convert.ToInt32(txtStartOctet2.Text);
 c=Convert.ToInt32(txtStartOctet3.Text);
 d=Convert.ToInt32(txtStartOctet4.Text);
 }
 catch
 {
 lstOutputStatus.Items.Add("Host/Start/Network IP: check for
non-integer condition.");

B. E. Campbell, MSc Advanced Computer Networking, 2007 85

 goto End;
 }
 //check for blank hostname field
 if (txtHostname.Text==null)
 goto Skip1;
 else
 //add hostnames to list
 {
 StringReader reader = new StringReader(txtHostname.Text);
 do
 {
 text=reader.ReadLine();
 if (text==null) break;
 v.Add(text);
 }
 while (text != null);
 reader.Close();
 }
 //section to handle all IP validation, generation, & addition
to list
 Skip1:
 {
 //test start IP octets for non-int & out of range
 bool ok = CheckIP(a,b,c,d);
 if (ok==false)
 {
 lstOutputStatus.Items.Add("Host/Start/Network IP: check for
out of range issue.");
 goto End;
 }
 //add single host IP
 if (rbtnHost.Checked)
 {

text=txtStartOctet1.Text+dot+txtStartOctet2.Text+dot+txtStartOctet3.T
ext+dot+txtStartOctet4.Text;
 v.Add(text);
 goto End;
 }
 //for IP ranges, validate end IP, create range, add to list
 if (rbtnRange.Checked)
 {
 //test end IP octets for non-int & out of range
 try
 {
 ok =
CheckIP(Convert.ToInt32(txtEndOctet1.Text),Convert.ToInt32(txtEndOcte
t2.Text),Convert.ToInt32(txtEndOctet3.Text),Convert.ToInt32(txtEndOct
et4.Text));
 if (ok==false)
 {
 lstOutputStatus.Items.Add("End IP: check for out of
range issue.");
 goto End;
 }
 }
 catch
 {
 lstOutputStatus.Items.Add("End IP: check for non-integer
condition.");
 goto End;

B. E. Campbell, MSc Advanced Computer Networking, 2007 86

 }
 //build IPs in range & add to list
 v=IPGenerator(a,b,c,d,

txtEndOctet1.Text,txtEndOctet2.Text,txtEndOctet3.Text,txtEndOctet4.Te
xt,v);
 goto End;
 }
 //for networks, validate bitmask, compute end IP, create
range, add to list
 if (rbtnNetwork.Checked)
 {
 //test bitmask for non-int & out of range
 try
 {
 if
((Convert.ToInt32(txtBitmask.Text)<0)^(Convert.ToInt32(txtBitmask.Tex
t)>32))
 {
 lstOutputStatus.Items.Add("Bimask: check for non-
integer or out of range issue.");
 goto End;
 }
 }
 catch
 {
 lstOutputStatus.Items.Add("Bitmask: check for non-integer
or out of range issue.");
 goto End;
 }
 //validate start IP is valid network ID
 int bm=Convert.ToInt32(txtBitmask.Text);
 double Z=System.Math.Pow(2,32-bm);
 if (bm>=24)
 {
 if (d%Z!=0)
 {
 lstOutputStatus.Items.Add("Invalid Network ID for given
Bimtask.");
 goto End;
 }
 else
 {
 txtEndOctet1.Text=txtStartOctet1.Text;
 txtEndOctet2.Text=txtStartOctet2.Text;
 txtEndOctet3.Text=txtStartOctet3.Text;
 txtEndOctet4.Text=Convert.ToString(d+(Z-2));
 v =
IPGenerator(a,b,c,d+1,a.ToString(),b.ToString(),c.ToString(),Convert.
ToString(d+(Z-2)),v);
 goto End;
 }
 }
 if (bm>=16)
 {
 if (c%Z/256!=0)
 {
 lstOutputStatus.Items.Add("Invalid Network ID for given
Bimtask.");
 goto End;
 }

B. E. Campbell, MSc Advanced Computer Networking, 2007 87

 else
 {
 d=0;
 txtStartOctet4.Text="0";
 txtEndOctet1.Text=txtStartOctet1.Text;
 txtEndOctet2.Text=txtStartOctet2.Text;
 txtEndOctet3.Text=Convert.ToString(c+((Z/256)-1));
 txtEndOctet4.Text="254";
 v =
IPGenerator(a,b,c,d+1,a.ToString(),b.ToString(),Convert.ToString(c+((
Z/256)-1)),"254",v);
 goto End;
 }
 }
 if (bm>=8)
 {
 if (b%Z/65536!=0)
 {
 lstOutputStatus.Items.Add("Invalid Network ID for given
Bimtask.");
 goto End;
 }
 else
 {
 c=0;d=0;
 txtStartOctet3.Text="0";
 txtStartOctet4.Text="0";
 txtEndOctet1.Text=txtStartOctet1.Text;
 txtEndOctet2.Text=Convert.ToString(b+((Z/65536)-1));
 txtEndOctet3.Text="255";
 txtEndOctet4.Text="254";

v=IPGenerator(a,b,c,d+1,a.ToString(),Convert.ToString(b+((Z/65536)-
1)),"255","254",v);
 goto End;
 }
 }
 if (bm>=0)
 {
 if (a%Z/16777216!=0)
 {
 lstOutputStatus.Items.Add("Invalid Network ID for given
Bimtask.");
 goto End;
 }
 else
 {
 b=0;c=0;d=0;
 txtStartOctet2.Text="0";
 txtStartOctet3.Text="0";
 txtStartOctet4.Text="0";
 txtEndOctet1.Text= Convert.ToString(a+((Z/16777216)-
1));
 txtEndOctet2.Text="255";
 txtEndOctet3.Text="255";
 txtEndOctet4.Text="254";
 v= IPGenerator
(a,b,c,d+1,Convert.ToString(a+((Z/16777216)-1)),"255","255","254",v);
 goto End;
 }
 }

B. E. Campbell, MSc Advanced Computer Networking, 2007 88

 }
 }
 End:
 return v;
 }

D.6 IP Address Generator
 public ArrayList IPGenerator (int a,int b,int c,int d,string
e1,string e2,string e3,string e4,ArrayList w)
 {
 //generates all IPs in a defined range or network
 string txt=null;
 string dot=".";
 //build IPs in range & add to list
 do
 {
 if (d>255)
 {
 c++;d=0;
 if (c>255)
 {
 b++;c=0;
 if (b>255)
 {a++;b=0;}
 }
 }

txt=a.ToString()+dot+b.ToString()+dot+c.ToString()+dot+d.ToString();
 w.Add(txt);
 d++;
 }
 while (txt != e1+dot+e2+dot+e3+dot+e4);
 return w;
 }
D.7
 public bool CheckIP (int a,int b,int c,int d)
 {
 //checks IP octets for numerical range validity
 bool oklocal = true;
 if ((a<0)^(a>255))
 oklocal=false;
 if ((b<0)^(b>255))
 oklocal=false;
 if ((c<0)^(c>255))
 oklocal=false;
 if ((d<0)^(d>255))
 oklocal=false;
 return oklocal;
 }

D.7 Main Class for SNMP Communication
 public void GetData (string IPAdd, string CommString)
 {
 //main function for SNMP communication with list items
 lstOutputStatus.Items.Add("Attempting to connect to " + IPAdd +
".");
 lstOutputStatus.Refresh();
 try
 {
 //array to store device name & # of if's.

B. E. Campbell, MSc Advanced Computer Networking, 2007 89

 ArrayList DeviceAL = new ArrayList(2);
 int rowcount = 0;
 //set oid of cisco description
 uint[] ciscotype = new uint[] {1,3,6,1,4,1,9,2,1,3,0};
 //create snmp session with agent
 ManagerSession sess = new ManagerSession(IPAdd,CommString);
 AsyncMethodCaller caller = new AsyncMethodCaller(CallHost);
 bool contact = false;
 IAsyncResult myresult = caller.BeginInvoke(IPAdd,
CommString,null,null);
 double starttime = System.Environment.TickCount;
 do
 {
 if (myresult.IsCompleted == false)
 Thread.Sleep(10);
 else
 {
 Universal[] Oids = caller.EndInvoke(myresult);
 for (int i = 0; i < Oids.Length; i++)
 {
 Universal result = Oids[i];
 DeviceAL.Add(result[1].ToString());
 }
 lstOutputStatus.Items.Add("Successful response from " +
IPAdd + ".");
 lstOutputStatus.Items.Add("SNMP discovery runtime was " +
runtime + " ms.");
 contact = true;
 break;
 }
 }
 while ((System.Environment.TickCount - starttime) < 10000);
 if (contact == false)
 {
 lstOutputStatus.Items.Add("No response from " + IPAdd +
".");
 goto End;
 }
 if (DeviceAL[2].ToString().ToLower().Contains("windows"))
 DeviceAL[2]="Windows host";
 else
 {
 ManagerItem mi3 = new ManagerItem(sess,ciscotype);
 DeviceAL[2]=mi3.Value.ToString();
 }
 lstOutputStatus.Items.Add("\t\tHost
"+DeviceAL[0].ToString()+" (a "+DeviceAL[2].ToString()+"), has "+
DeviceAL[1].ToString()+" interface(s).");
 //retrieve IP to Index mapping
 string[,] IndxToIp = GetIPtoIndex(sess);
 //array to store if. characteristics
 string[,] InterfaceAR = new
string[Convert.ToInt16(DeviceAL[1].ToString()),8];
 //initialize variable names to store info on each interface
 uint[] ifIndex = new uint[] {1,3,6,1,2,1,2,2,1,1};
 uint[] ifDescr;
 uint[] ifType;
 uint[] ifSpeed;
 //uint[] ifPhysAddress;
 uint[] ifAdminStatus;
 uint[] ifOperStatus;

B. E. Campbell, MSc Advanced Computer Networking, 2007 90

 //get index #'s of interfaces
 ManagerSubTree mst = new ManagerSubTree(sess,ifIndex);
 if (mst.Length==0)
 lstOutputStatus.Items.Add("\t\tHost "+IPAdd+" has no
interfaces.");
 else
 foreach(ManagerItem mi in mst)
 {
 //get info for each interface
 InterfaceAR[rowcount,0]=mi.Value.ToString();
 ifDescr = new uint[]
{1,3,6,1,2,1,2,2,1,2,Convert.ToUInt32(mi.Value.ToString())};
 ifType = new uint[]
{1,3,6,1,2,1,2,2,1,3,Convert.ToUInt32(mi.Value.ToString())};
 ifSpeed = new uint[]
{1,3,6,1,2,1,2,2,1,5,Convert.ToUInt32(mi.Value.ToString())};
 ifAdminStatus = new uint[]
{1,3,6,1,2,1,2,2,1,7,Convert.ToUInt32(mi.Value.ToString())};
 ifOperStatus = new uint[]
{1,3,6,1,2,1,2,2,1,8,Convert.ToUInt32(mi.Value.ToString())};
 Universal[] Oids = sess.Get(sess.VarBind(ifDescr),
sess.VarBind(ifType), sess.VarBind(ifSpeed),
 sess.VarBind(ifAdminStatus),
sess.VarBind(ifOperStatus));
 //write out interface values
 for (int i=0; i<Oids.Length; i++)
 {
 Universal result = Oids[i];
 InterfaceAR[rowcount,i+1]=result[1].ToString();
 }
 rowcount++;
 }
 for (int b = 0; b < (IndxToIp.Length / 3); b++)
 {
 for (int c=0; c<Convert.ToInt16(DeviceAL[1]); c++)
 if (IndxToIp[b, 0] == InterfaceAR[c, 0].ToString())
 {
 InterfaceAR[c,6]=IndxToIp[b,1];
 InterfaceAR[c,7]=IndxToIp[b,2];
 break;
 }
 }
 for (int n = 0; n < Convert.ToInt16(DeviceAL[1].ToString());
n++)
 {
 int m=0;
 bool found=false;
 while (found==false)
 if (InterfaceAR[n, 2] == ifTypesAR[m, 0])
 {
 InterfaceAR[n, 2] = ifTypesAR[m, 1];
 found = true;
 }
 else
 m++;
 }
 //call function to write data to XML file
 CreateDevice(DeviceAL[0].ToString().Replace("\"", ""),
DeviceAL[1].ToString(), DeviceAL[2].ToString(), InterfaceAR,
rowcount);
 sess.Close();

B. E. Campbell, MSc Advanced Computer Networking, 2007 91

 }
 catch
 {
 lstOutputStatus.Items.Add("Error while processing host:
"+IPAdd+".");
 }
 End: ;
 }

D.8 Asynchronous SNMP Call
 public delegate Universal[] AsyncMethodCaller(string IPAdd,
string CommString);

 private Universal[] CallHost(string IPAdd, string CommString)
 {
 //initial 'SNMP GET' function called asynchronously
 //set oid of system name
 uint[] sysName = new uint[] { 1, 3, 6, 1, 2, 1, 1, 5, 0 };
 //set oid of # of interfaces
 uint[] ifNumber = new uint[] { 1, 3, 6, 1, 2, 1, 2, 1, 0 };
 //set oid of system description
 uint[] sysDescr = new uint[] { 1, 3, 6, 1, 2, 1, 1, 1, 0 };
 ManagerSession sess = new ManagerSession(IPAdd, CommString);
 double starttime = new double();
 double stoptime = new double();
 starttime = System.Environment.TickCount;
 //get name & # of interfaces to store in array
 Universal[] oids = sess.Get(sess.VarBind(sysName),
sess.VarBind(ifNumber), sess.VarBind(sysDescr));
 stoptime = System.Environment.TickCount;
 sess.Close();
 runtime = stoptime - starttime;
 return oids;
 }

D.9 Class for Correlating Interfaces’ IP and Index Values
 public string[,] GetIPtoIndex (ManagerSession s)
 {
 //function correlates interface indexes and IP addresses
 uint[] ipAdEntAddr = new uint[] {1,3,6,1,2,1,4,20,1,1};
 ManagerSubTree mst = new ManagerSubTree(s,ipAdEntAddr);
 int ni=mst.Length;
 string[,] iptondxAR = new string[ni,3];
 int rowcount = 0;
 uint[] ipAdEntIfIndex;
 uint[] ipAdEntNetMask;
 if (ni==0)
 lstOutputStatus.Items.Add("\t\tHost has no interfaces!");
 else
 foreach(ManagerItem mi in mst)
 {
 iptondxAR[rowcount,1]=mi.Value.ToString();
 //convert IP to csv integers here.
 char[] ipcommas = mi.Value.ToString().Replace('.',
',').ToCharArray();
 int j = 0;
 int k = 0;
 int[,] octetAR = new int[4,4];
 octetAR[0,3]=0;
 foreach (char c in ipcommas)

B. E. Campbell, MSc Advanced Computer Networking, 2007 92

 {
 if (c==',')
 {
 j++;
 k=0;
 octetAR[j,3]=0;
 }
 else
 {
 octetAR[j,k]=Convert.ToInt32(c.ToString());
 k++;
 octetAR[j,3]++;
 }
 }
 uint[] ipoctets = new uint[4];
 for (int y=0;y<4;y++)
 {
 switch (octetAR[y,3])
 {
 case 3:

ipoctets[y]=Convert.ToUInt32((octetAR[y,0]*100+octetAR[y,1]*10+octetA
R[y,2]));
 break;
 case 2:

ipoctets[y]=Convert.ToUInt32((octetAR[y,0]*10+octetAR[y,1]));
 break;
 case 1:
 ipoctets[y]=Convert.ToUInt32(octetAR[y,0]);
 break;
 }
 }
 ipAdEntIfIndex = new uint[]
{1,3,6,1,2,1,4,20,1,2,ipoctets[0],ipoctets[1],ipoctets[2],ipoctets[3]
};
 ipAdEntNetMask = new uint[]
{1,3,6,1,2,1,4,20,1,3,ipoctets[0],ipoctets[1],ipoctets[2],ipoctets[3]
};
 ManagerItem mi2 = new ManagerItem(s,ipAdEntIfIndex);
 ManagerItem mi3 = new ManagerItem(s,ipAdEntNetMask);
 iptondxAR[rowcount,0]=mi2.Value.ToString();
 iptondxAR[rowcount,2]=mi3.Value.ToString();
 rowcount++;
 j=0;
 k=0;
 ipcommas.Initialize();
 octetAR.Initialize();
 ipoctets.Initialize();
 }
 //sort the iptondxAR before returning
 int[] tempAR = new int[ni];
 for (int w=0;w<ni;w++)
 tempAR[w]=Convert.ToInt32(iptondxAR[w,0]);
 Array.Sort(tempAR);
 string[,] FinalAR = new string[ni,3];
 int v=0;
 for (int z=0;z<ni;z++)
 {
 do
 {

B. E. Campbell, MSc Advanced Computer Networking, 2007 93

 if (tempAR[z].ToString()==iptondxAR[v,0])
 {
 FinalAR[z,0]=iptondxAR[v,0];
 FinalAR[z,1]=iptondxAR[v,1];
 FinalAR[z,2]=iptondxAR[v,2];
 v=0;
 }
 else
 v++;
 }
 while (FinalAR[z,0]==null);
 }
 return FinalAR;
 }

D.10 Main Class for Writing Device/Interfaces to XML File
 public void CreateDevice(string s1, string s2, string s3,
string[,] oa, int rc)
 {
 //main function to write data into XML file
 XmlDocument toposource = new XmlDocument();
 toposource.Load(xmlFile);
 double loadnodeend = new double();
 double loadnodebeg = System.Environment.TickCount;
 XmlNodeList nodelist = toposource.SelectNodes("//device");
 loadnodeend = System.Environment.TickCount;
 lstOutputStatus.Items.Add("\t\tTime to load device nodes was "
+ (loadnodeend - loadnodebeg) + " ms.");
 switch (nodelist.Count)
 {
 case 0:
 goto MakeDevNode;
 default:
 goto TestDevNode;
 }
 TestDevNode:
 {
 double findnodeend = new double();
 double findnodebeg = System.Environment.TickCount;
 for (int i = 0; i < nodelist.Count; i++)
 if
(nodelist[i].ChildNodes[0].InnerText.ToLower().Equals(s1.ToLower()))
 {
 findnodeend = System.Environment.TickCount;
 lstOutputStatus.Items.Add("\t\tXML device node " + s1 + "
already exists!");
 lstOutputStatus.Items.Add("\t\tTime to find existing node
was " + (findnodeend-findnodebeg) + " ms.");
 goto End;
 }
 }
 MakeDevNode:
 {
 double newdevnodebeg = System.Environment.TickCount;
 lstOutputStatus.Items.Add("\t\tCreating XML device node:
"+s1+" ...");
 XmlElement newDevice = toposource.CreateElement("device");
 XmlAttribute newAttr = toposource.CreateAttribute("type");
 newAttr.Value = s3.Replace("\"", "");
 newDevice.Attributes.Append(newAttr);

B. E. Campbell, MSc Advanced Computer Networking, 2007 94

 newDevice.InnerXml =
"<sysName></sysName><ifNumber></ifNumber>";
 newDevice["sysName"].InnerText=s1.Replace("\"","");
 newDevice["ifNumber"].InnerText = s2.Replace("\"", "");
 for (int i=0;i<rc;i++)
 {
 lstOutputStatus.Items.Add("\t\tCreating XML interface node:
"+(oa[i,1].Replace("\"", "")).Replace("\0", "")+".");
 double newinfnodebeg = System.Environment.TickCount;
 XmlElement newInterface =
toposource.CreateElement("interface");
 newAttr = toposource.CreateAttribute("ifIndex");
 newAttr.Value = oa[i,0];
 newInterface.Attributes.Append(newAttr);
 newInterface.InnerXml =
"<ifDescr></ifDescr><ifType></ifType><ifSpeed></ifSpeed><ifAdminStatu
s></ifAdminStatus><ifOperStatus></ifOperStatus><IPAddress></IPAddress
><NetMask></NetMask>";
 newInterface["ifDescr"].InnerText = (oa[i, 1].Replace("\"",
"")).Replace("\0", "");
 newInterface["ifType"].InnerText=oa[i,2];
 newInterface["ifSpeed"].InnerText=oa[i,3];
 newInterface["ifAdminStatus"].InnerText=oa[i,4];
 newInterface["ifOperStatus"].InnerText=oa[i,5];
 newInterface["IPAddress"].InnerText=oa[i,6];
 newInterface["NetMask"].InnerText=oa[i,7];
 newDevice.AppendChild(newInterface);
 double newinfnodeend = System.Environment.TickCount;
 lstOutputStatus.Items.Add("\t\t XML interface " + (oa[i,
1].Replace("\"", "")).Replace("\0", "") + " created in " +
(newinfnodeend - newinfnodebeg) + " ms.");
 }
 toposource.DocumentElement.AppendChild(newDevice);
 toposource.Save(xmlFile);
 double newdevnodeend = System.Environment.TickCount;
 lstOutputStatus.Items.Add("\t\t XML device node " + s1 + "
creation time was "+(newdevnodeend-newdevnodebeg)+" ms.");
 }
 End:{}

 }

D.11 User Interface Controls
 private void Form1_Load(object sender, System.EventArgs e)
 {
 DocTest();
 ifTypesAR=LoadifTypes();
 txtBitmask.Text="32";
 }
 private void llblCreateList_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
 {
 double createlistbeg = System.Environment.TickCount;
 IPAR = CreateHostList();
 double createlistend = System.Environment.TickCount;
 if (IPAR.Count==0)
 lstOutputStatus.Items.Add("No hostnames or valid IP Addresses
provided.");
 else
 {

B. E. Campbell, MSc Advanced Computer Networking, 2007 95

 lstOutputStatus.Items.Add("List of hostnames & IPs
created.");
 lstOutputStatus.Items.Add("Time to create list of
"+IPAR.Count.ToString()+" hosts was "+(createlistend-createlistbeg)+"
ms.");
 llblViewList.Visible=true;
 llblGetData.Visible=true;
 lblListCount.Text="List contains "+IPAR.Count.ToString()+"
item(s).";
 llblCreateList.Text="Update List";
 }
 lstOutputStatus.TopIndex = (lstOutputStatus.Items.Count -
(lstOutputStatus.Height / lstOutputStatus.ItemHeight));
 }
 private void llblViewList_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
 {
 if (File.Exists("list.txt"))
 File.Delete("list.txt");
 using (StreamWriter writer = new StreamWriter("list.txt"))
 {
 for (int i=0;i<IPAR.Count;i++)
 writer.WriteLine(IPAR[i]);
 }
 System.Diagnostics.Process.Start("list.txt");
 }
 private void llblGetData_MouseEnter(object sender,
System.EventArgs e)
 {
 lblListCount.Visible=true;
 }
 private void llblGetData_MouseLeave(object sender,
System.EventArgs e)
 {
 lblListCount.Visible=false;
 }
 private void llblGetData_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
 {
 if (txtPassword.Text.Length==0)
 {
 lstOutputStatus.Items.Add("Community String cannot be
blank.");
 goto End;
 }
 double fulltimebeg = System.Environment.TickCount;
 foreach (string j in IPAR)
 {
 double hosttimebeg = System.Environment.TickCount;
 GetData(j, txtPassword.Text);
 double hosttimeend = System.Environment.TickCount;
 lstOutputStatus.Items.Add("Time to process host "+j+" was " +
(hosttimeend - hosttimebeg) + " ms.");
 }
 double fulltimeend = System.Environment.TickCount;
 lstOutputStatus.Items.Add("Total runtime was "+ (fulltimeend-
fulltimebeg)+" ms.");
 lstOutputStatus.Items.Add("DONE.");
 lstOutputStatus.Items.Add("******************************");
 lstOutputStatus.Items.Add("");

B. E. Campbell, MSc Advanced Computer Networking, 2007 96

 lstOutputStatus.TopIndex = (lstOutputStatus.Items.Count -
(lstOutputStatus.Height / lstOutputStatus.ItemHeight));
 End:;
 }
 private void llblViewXML_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
 {
 System.Diagnostics.Process.Start("notepad.exe", xmlFile);
 }
 private void llblGenDoc_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
 {
 System.Diagnostics.Process.Start(xmlFile);
 }
 private void txtPassword_Enter(object sender, System.EventArgs e)
 {
 lblPassword.Visible=true;
 lblArrow.Visible = true;
 }
 private void txtPassword_Leave(object sender, System.EventArgs e)
 {
 lblPassword.Visible=false;
 lblArrow.Visible = false;
 }
 private void txtHostname_Enter(object sender, EventArgs e)
 {
 lblHostnameDir.Visible = true;
 }
 private void txtHostname_Leave(object sender, EventArgs e)
 {
 lblHostnameDir.Visible = false;
 }
 private void rbtnHost_Click(object sender, System.EventArgs e)
 {
 rbtnHost.Checked=true;
 rbtnRange.Checked=false;
 rbtnNetwork.Checked=false;
 lblStartIP.Text="Host IP:";
 txtEndOctet1.Enabled=false;
 txtEndOctet2.Enabled=false;
 txtEndOctet3.Enabled=false;
 txtEndOctet4.Enabled=false;
 txtBitmask.Enabled=false;
 txtBitmask.Text="32";
 lblTip.Visible=false;
 }
 private void rbtnRange_Click(object sender, System.EventArgs e)
 {
 rbtnHost.Checked=false;
 rbtnRange.Checked=true;
 rbtnNetwork.Checked=false;
 lblStartIP.Text="Start IP:";
 txtEndOctet1.Enabled=true;
 txtEndOctet2.Enabled=true;
 txtEndOctet3.Enabled=true;
 txtEndOctet4.Enabled=true;
 txtBitmask.Enabled=false;
 txtBitmask.Text="24";
 lblNote.Text=null;
 lblTip.Visible=false;
 }

B. E. Campbell, MSc Advanced Computer Networking, 2007 97

 private void rbtnNetwork_Click(object sender, System.EventArgs e)
 {
 rbtnHost.Checked=false;
 rbtnRange.Checked=false;
 rbtnNetwork.Checked=true;
 lblStartIP.Text="Network ID:";
 txtEndOctet1.Enabled=false;
 txtEndOctet2.Enabled=false;
 txtEndOctet3.Enabled=false;
 txtEndOctet4.Enabled=false;
 txtBitmask.Enabled=true;
 txtBitmask.Text=null;
 txtBitmask.Text="24";
 lblTip.Visible=true;
 }
 private void txtStartOctet1_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtStartOctet1.Text)<0)^(Convert.ToInt32(txtStartOc
tet1.Text))>255)
 txtStartOctet1.BackColor=Color.LightPink;
 else
 txtStartOctet1.BackColor=Color.White;
 }
 catch{txtStartOctet1.BackColor=Color.LightPink;}
 }
 private void txtStartOctet2_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtStartOctet2.Text)<0)^(Convert.ToInt32(txtStartOc
tet2.Text))>255)
 txtStartOctet2.BackColor=Color.LightPink;
 else
 txtStartOctet2.BackColor=Color.White;
 }
 catch{txtStartOctet2.BackColor=Color.LightPink;}
 }
 private void txtStartOctet3_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtStartOctet3.Text)<0)^(Convert.ToInt32(txtStartOc
tet3.Text))>255)
 txtStartOctet3.BackColor=Color.LightPink;
 else
 txtStartOctet3.BackColor=Color.White;
 }
 catch{txtStartOctet3.BackColor=Color.LightPink;}
 }
 private void txtStartOctet4_TextChanged(object sender,
System.EventArgs e)
 {
 try

B. E. Campbell, MSc Advanced Computer Networking, 2007 98

 {
 if
((Convert.ToInt32(txtStartOctet4.Text)<0)^(Convert.ToInt32(txtStartOc
tet4.Text))>255)
 txtStartOctet4.BackColor=Color.LightPink;
 else
 txtStartOctet4.BackColor=Color.White;
 }
 catch{txtStartOctet4.BackColor=Color.LightPink;}
 }
 private void txtEndOctet1_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtEndOctet1.Text)<0)^(Convert.ToInt32(txtEndOctet1
.Text))>255)
 txtEndOctet1.BackColor=Color.LightPink;
 else
 txtEndOctet1.BackColor=Color.White;
 }
 catch{txtEndOctet1.BackColor=Color.LightPink;}
 }
 private void txtEndOctet2_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtEndOctet2.Text)<0)^(Convert.ToInt32(txtEndOctet2
.Text))>255)
 txtEndOctet2.BackColor=Color.LightPink;
 else
 txtEndOctet2.BackColor=Color.White;
 }
 catch{txtEndOctet2.BackColor=Color.LightPink;}
 }
 private void txtEndOctet3_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtEndOctet3.Text)<0)^(Convert.ToInt32(txtEndOctet3
.Text))>255)
 txtEndOctet3.BackColor=Color.LightPink;
 else
 txtEndOctet3.BackColor=Color.White;
 }
 catch{txtEndOctet3.BackColor=Color.LightPink;}
 }
 private void txtEndOctet4_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 if
((Convert.ToInt32(txtEndOctet4.Text)<0)^(Convert.ToInt32(txtEndOctet4
.Text))>255)
 txtEndOctet4.BackColor=Color.LightPink;

B. E. Campbell, MSc Advanced Computer Networking, 2007 99

 else
 txtEndOctet4.BackColor=Color.White;
 }
 catch{txtEndOctet4.BackColor=Color.LightPink;}
 }
 private void txtBitmask_TextChanged(object sender,
System.EventArgs e)
 {
 try
 {
 switch (txtBitmask.Text.Length.Equals(0))
 {
 case true:
 txtMask1.Enabled=true;
 txtMask2.Enabled=true;
 txtMask3.Enabled=true;
 txtMask4.Enabled=true;
 lblNote.Text="";
 break;
 case false:
 txtMask1.Enabled=false;
 txtMask2.Enabled=false;
 txtMask3.Enabled=false;
 txtMask4.Enabled=false;
 if
(Convert.ToInt32(txtBitmask.Text)<0^Convert.ToInt32(txtBitmask.Text)>
32)
 {
 lblNote.Text="Invalid mask; value must be in range: 0 -
32";
 goto End;
 }
 if
(txtBitmask.Text.Equals("32")^txtBitmask.Text.Equals("31"))
 {
 txtEndOctet1.Enabled=false;
 txtEndOctet2.Enabled=false;
 txtEndOctet3.Enabled=false;
 txtEndOctet4.Enabled=false;
 txtBitmask.Text="32";
 lblNote.Text="Tool will try to contact 1 host.";
 goto End;
 }
 if (Convert.ToInt32(txtBitmask.Text)>=0)
 {
 lblNote.Text="Tool will try to contact
"+(System.Math.Pow(2,32-Convert.ToDouble(txtBitmask.Text))-2)+"
hosts.";
 goto End;
 }
 break;
 }
 }
 catch
 {lblNote.Text="Bitmask must be integer.";}
 End:;
 }
 private void txtMask1_TextChanged(object sender, System.EventArgs
e)
 {
 try

B. E. Campbell, MSc Advanced Computer Networking, 2007 100

 {Convert.ToInt32(txtMask1.Text);}
 catch
 {
 lblNote.Text="Octet 1 invalid. Allowed: 128, 192, 224, 240,
248, 252, 254, 255.";
 goto End;
 }
 if (!(txtMask1.Text.Length==0)&(txtMask1.Enabled==true))
 {
 switch (Convert.ToInt32(txtMask1.Text))
 {
 case 255:
 txtBitmask.Text="8";
 goto Set;
 case 254:
 txtBitmask.Text="7";
 goto Set;
 case 252:
 txtBitmask.Text="6";
 goto Set;
 case 248:
 txtBitmask.Text="5";
 goto Set;
 case 240:
 txtBitmask.Text="4";
 goto Set;
 case 224:
 txtBitmask.Text="3";
 goto Set;
 case 192:
 txtBitmask.Text="2";
 goto Set;
 case 128:
 txtBitmask.Text="1";
 goto Set;
 default:
 lblNote.Text="Octet 1 invalid. Allowed: 128, 192, 224,
240, 248, 252, 254, 255.";
 goto End;
 }
 }
 else
 goto End;
 Set:
 txtMask2.Text="0";
 txtMask3.Text="0";
 txtMask4.Text="0";
 End:;
 }
 private void txtMask2_TextChanged(object sender, System.EventArgs
e)
 {
 try
 {Convert.ToInt32(txtMask2.Text);}
 catch
 {
 lblNote.Text="Octet 2 invalid. Allowed: 128, 192, 224, 240,
248, 252, 254, 255.";
 goto End;
 }
 if (!(txtMask2.Text.Length==0)&(txtMask2.Enabled==true))

B. E. Campbell, MSc Advanced Computer Networking, 2007 101

 {
 switch (Convert.ToInt32(txtMask2.Text))
 {
 case 255:
 txtBitmask.Text="16";
 goto Set;
 case 254:
 txtBitmask.Text="15";
 goto Set;
 case 252:
 txtBitmask.Text="14";
 goto Set;
 case 248:
 txtBitmask.Text="13";
 goto Set;
 case 240:
 txtBitmask.Text="12";
 goto Set;
 case 224:
 txtBitmask.Text="11";
 goto Set;
 case 192:
 txtBitmask.Text="10";
 goto Set;
 case 128:
 txtBitmask.Text="9";
 goto Set;
 default:
 lblNote.Text="Octet 2 invalid. Allowed: 128, 192, 224,
240, 248, 252, 254, 255.";
 goto End;
 }
 }
 else
 goto End;
 Set:
 txtMask1.Text="255";
 txtMask3.Text="0";
 txtMask4.Text="0";
 End:;
 }
 private void txtMask3_TextChanged(object sender, System.EventArgs
e)
 {
 if (!(txtMask3.Text.Length==0)&(txtMask1.Enabled==true))
 {
 try
 {Convert.ToInt32(txtMask3.Text);}
 catch
 {
 lblNote.Text="Octet 3 invalid. Allowed: 128, 192, 224, 240,
248, 252, 254, 255.";
 goto End;
 }
 switch (Convert.ToInt32(txtMask3.Text))
 {
 case 255:
 txtBitmask.Text="24";
 goto Set;
 case 254:
 txtBitmask.Text="23";

B. E. Campbell, MSc Advanced Computer Networking, 2007 102

 goto Set;
 case 252:
 txtBitmask.Text="22";
 goto Set;
 case 248:
 txtBitmask.Text="21";
 goto Set;
 case 240:
 txtBitmask.Text="20";
 goto Set;
 case 224:
 txtBitmask.Text="19";
 goto Set;
 case 192:
 txtBitmask.Text="18";
 goto Set;
 case 128:
 txtBitmask.Text="17";
 goto Set;
 default:
 lblNote.Text="Octet 3 invalid. Allowed: 128, 192, 224,
240, 248, 252, 254, 255.";
 goto End;
 }
 }
 else
 goto End;
 Set:
 txtMask1.Text="255";
 txtMask2.Text="255";
 txtMask4.Text="0";
 End:;
 }
 private void txtMask4_TextChanged(object sender, System.EventArgs
e)
 {
 if (!(txtMask4.Text.Length==0)&(txtMask1.Enabled==true))
 {
 try
 {Convert.ToInt32(txtMask4.Text);}
 catch
 {
 lblNote.Text="Octet 4 invalid. Allowed: 128, 192, 224, 240,
248, 252, 254, 255.";
 goto End;
 }
 switch (Convert.ToInt32(txtMask4.Text))
 {
 case 255:
 txtBitmask.Text="32";
 goto Set;
 case 254:
 txtBitmask.Text="31";
 goto Set;
 case 252:
 txtBitmask.Text="30";
 goto Set;
 case 248:
 txtBitmask.Text="29";
 goto Set;
 case 240:

B. E. Campbell, MSc Advanced Computer Networking, 2007 103

 txtBitmask.Text="28";
 goto Set;
 case 224:
 txtBitmask.Text="27";
 goto Set;
 case 192:
 txtBitmask.Text="26";
 goto Set;
 case 128:
 txtBitmask.Text="25";
 goto Set;
 default:
 lblNote.Text="Octet 4 invalid. Allowed: 128, 192, 224,
240, 248, 252, 254, 255.";
 goto End;
 }
 }
 else
 goto End;
 Set:
 txtMask1.Text="255";
 txtMask2.Text="255";
 txtMask3.Text="255";
 End:;
 }
 }
}

B. E. Campbell, MSc Advanced Computer Networking, 2007 104

Appendix E – XML Files

E.1 XML Source File (Example)
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type='text/xsl' href='web-device-report.xslt'?>
<topology>
 <!--Start of device listing-->
 <device type="Windows host">
 <sysName>NEONFISH</sysName>
 <ifNumber>3</ifNumber>
 <interface ifIndex="1">
 <ifDescr>MS TCP Loopback interface</ifDescr>
 <ifType>softwareLoopback</ifType>
 <ifSpeed>10000000</ifSpeed>
 <ifAdminStatus>1</ifAdminStatus>
 <ifOperStatus>1</ifOperStatus>
 <IPAddress>127.0.0.1</IPAddress>
 <NetMask>255.0.0.0</NetMask>
 </interface>
 <interface ifIndex="2">
 <ifDescr>Intel(R) PRO/Wireless 2200BG Network Connection -
Packet Scheduler Miniport</ifDescr>
 <ifType>ethernetCsmacd</ifType>
 <ifSpeed>54000000</ifSpeed>
 <ifAdminStatus>1</ifAdminStatus>
 <ifOperStatus>2</ifOperStatus>
 <IPAddress>0.0.0.0</IPAddress>
 <NetMask>0.0.0.0</NetMask>
 </interface>
 <interface ifIndex="65540">
 <ifDescr>Broadcom 440x 10/100 Integrated Controller - Packet
Scheduler Miniport</ifDescr>
 <ifType>ethernetCsmacd</ifType>
 <ifSpeed>100000000</ifSpeed>
 <ifAdminStatus>1</ifAdminStatus>
 <ifOperStatus>1</ifOperStatus>
 <IPAddress>192.168.0.3</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 </interface>
 </device>
 <device type="Router">
 <sysName>RouterA</sysName>
 <ifNumber>6</ifNumber>
 <interface ifIndex="1">
 <ifDescr>FastEthernet0/0</ifDescr>
 <ifType>ethernetCsmacd</ifType>
 <ifSpeed>100000000</ifSpeed>
 <ifAdminStatus>1</ifAdminStatus>
 <ifOperStatus>1</ifOperStatus>
 <IPAddress>192.168.0.1</IPAddress>
 <NetMask>255.255.255.0</NetMask>
 </interface>
 <interface ifIndex="2">
 <ifDescr>Serial0/0</ifDescr>
 <ifType>propPointToPointSerial</ifType>
 <ifSpeed>128000</ifSpeed>
 <ifAdminStatus>2</ifAdminStatus>

B. E. Campbell, MSc Advanced Computer Networking, 2007 105

 <ifOperStatus>2</ifOperStatus>
 <IPAddress>
 </IPAddress>
 <NetMask>
 </NetMask>
 </interface>
 <interface ifIndex="3">
 <ifDescr>Serial0/1</ifDescr>
 <ifType>propPointToPointSerial</ifType>
 <ifSpeed>128000</ifSpeed>
 <ifAdminStatus>2</ifAdminStatus>
 <ifOperStatus>2</ifOperStatus>
 <IPAddress>
 </IPAddress>
 <NetMask>
 </NetMask>
 </interface>
 <interface ifIndex="4">
 <ifDescr>Serial0/2</ifDescr>
 <ifType>propPointToPointSerial</ifType>
 <ifSpeed>128000</ifSpeed>
 <ifAdminStatus>2</ifAdminStatus>
 <ifOperStatus>2</ifOperStatus>
 <IPAddress>
 </IPAddress>
 <NetMask>
 </NetMask>
 </interface>
 <interface ifIndex="5">
 <ifDescr>Serial0/3</ifDescr>
 <ifType>propPointToPointSerial</ifType>
 <ifSpeed>128000</ifSpeed>
 <ifAdminStatus>2</ifAdminStatus>
 <ifOperStatus>2</ifOperStatus>
 <IPAddress>
 </IPAddress>
 <NetMask>
 </NetMask>
 </interface>
 <interface ifIndex="6">
 <ifDescr>Null0</ifDescr>
 <ifType>other</ifType>
 <ifSpeed>4294967295</ifSpeed>
 <ifAdminStatus>1</ifAdminStatus>
 <ifOperStatus>1</ifOperStatus>
 <IPAddress>
 </IPAddress>
 <NetMask>
 </NetMask>
 </interface>
 </device>
</topology>

E.2 XSLT Transform File 1 to HTML
<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>

B. E. Campbell, MSc Advanced Computer Networking, 2007 106

 <!--use document element to create html page-->
 <xsl:template match="topology">
 <html>
 <head>
 <link rel="stylesheet" href="topology.css" />
 <title>My Network Nodes</title>
 </head>
 <body>
 <h1>Discovered Network Nodes</h1>

</br>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <!--output device & icon-->
 <xsl:template match="device">
 <h1>
 <table>
 <tr>
 <td>
 <xsl:choose>
 <xsl:when test="@type='Router'">

 </xsl:when>
 <xsl:when test="@type='Switch'">

 </xsl:when>
 <xsl:when test="@type='Windows host'">

 </xsl:when>
 </xsl:choose>
 </td>
 <td>
 <h1>
 <xsl:value-of select="sysName"></xsl:value-of>
 </h1>
 Device has <xsl:value-of select="ifNumber"></xsl:value-
of> interfaces.
 </td>
 </tr>
 </table>
 </h1>
 <table border="1">
 <tr>
 <td>Index</td>
 <td>Description</td>
 <td>Interface Type

 <a href="http://www.iana.org/assignments/ianaiftype-
mib">Reference

 </br>
 </td>
 <td>Speed</td>
 <td>Status</td>
 <td>IP Address
NetMask</br></td>
 </tr>
 <xsl:apply-templates select="interface"/>
 </table>

B. E. Campbell, MSc Advanced Computer Networking, 2007 107

</br>

</br>
 </xsl:template>
 <xsl:template match="interface">
 <tr>
 <td>
 <xsl:value-of select="@ifIndex"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of select="ifDescr"></xsl:value-of>
 </td>
 <td>
 <xsl:value-of select="ifType"></xsl:value-of>
 </td>
 <xsl:choose>
 <xsl:when test="((ifSpeed)div(1000000000))>=1">
 <td>
 <xsl:value-of
select="(ifSpeed)div(1000000000)"></xsl:value-of>
 <xsl:text> Gbps</xsl:text>
 </td>
 </xsl:when>
 <xsl:when test="((ifSpeed)div(1000000))>=1">
 <td>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-
of>
 <xsl:text> Mbps</xsl:text>
 </td>
 </xsl:when>
 <xsl:when test="((ifSpeed)div(1000))>=1">
 <td>
 <xsl:value-of select="(ifSpeed)div(1000)"></xsl:value-of>
 <xsl:text> Kbps</xsl:text>
 </td>
 </xsl:when>
 </xsl:choose>
 <xsl:choose>
 <xsl:when test="ifOperStatus=2 and ifAdminStatus=2">
 <td>
 DOWN
 </td>
 </xsl:when>
 <xsl:when test="ifOperStatus=2">
 <td>
 DOWN
 </td>
 </xsl:when>
 <xsl:when test="ifOperStatus=1">
 <td>
 UP
 </td>
 </xsl:when>
 </xsl:choose>
 <td>
 <xsl:value-of select="IPAddress"></xsl:value-of>

</br>
 <xsl:value-of select="NetMask"></xsl:value-of>
 </td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

B. E. Campbell, MSc Advanced Computer Networking, 2007 108

E.3 XSLT Transform File 2 to HTML
<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 <!--use document element to create html page-->
 <xsl:template match="topology">
 <html>
 <head>
 <link rel="stylesheet" href="topology.css" />
 <title>My Network Devices</title>
 </head>
 <body>
 <h1>Discovered Network Devices</h1>

</br>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>
 <!--output device & icon-->
 <xsl:template match="device">
 <h2>
 <xsl:value-of select="sysName"></xsl:value-of>
 </h2>
 <p></p>
 <xsl:choose>
 <xsl:when test="@type='Router'">
 <img src="r2620.jpg" usemap="#r2650_map" style="border-
style:none"/>
 <map id="r2650_map" name="r2650_map">
 <xsl:apply-templates mode="router" select="interface"/>
 </map>
 </xsl:when>
 <xsl:when test="@type='Switch'">
 <img src="cat2950.jpg" usemap="#cat2950_map" style="border-
style:none">
 <map id="cat2950_map" name="cat2950_map">
 <xsl:apply-templates mode="switch" select="interface"/>
 </map>
 </xsl:when>
 <xsl:when test="@type='Windows host'">

 </xsl:when>
 </xsl:choose>

</br>

</br>

</br>
 <hr></hr>
 </xsl:template>
 <xsl:template mode="router" match="interface">
 <xsl:choose>
 <xsl:when test="ifDescr='FastEthernet0/0'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="702,60,744,92" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>

B. E. Campbell, MSc Advanced Computer Networking, 2007 109

 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='Serial0/0'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="755,7,841,23" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000)"></xsl:value-of>
 <xsl:text> Kbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 </xsl:when>
 <xsl:when test="ifDescr='Serial0/1'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="755,25,841,41" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000)"></xsl:value-of>
 <xsl:text> Kbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 </xsl:when>
 <xsl:when test="ifDescr='Serial0/2'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="544,7,631,22" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000)"></xsl:value-of>
 <xsl:text> Kbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 </xsl:when>
 <xsl:when test="ifDescr='Serial0/3'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="544,24,631,39" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000)"></xsl:value-of>
 <xsl:text> Kbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 </xsl:when>
 </xsl:choose>

B. E. Campbell, MSc Advanced Computer Networking, 2007 110

 </xsl:template>
 <xsl:template mode="switch" match="interface">
 <xsl:choose>
 <xsl:when test="ifDescr='FastEthernet0/1'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="126,25,157,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/2'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="160,25,189,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/3'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="192,25,225,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/4'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="227,25,257,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/5'">

B. E. Campbell, MSc Advanced Computer Networking, 2007 111

 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="258,25,291,83" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/6'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="292,24,324,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/7'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="326,24,357,83" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/8'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="359,24,391,84" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/9'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="404,23,436,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>

B. E. Campbell, MSc Advanced Computer Networking, 2007 112

 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/10'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="437,24,468,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/11'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="471,24,502,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/12'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="505,24,535,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/13'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="538,25,568,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>

B. E. Campbell, MSc Advanced Computer Networking, 2007 113

 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/14'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="571,24,602,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/15'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="604,24,636,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/16'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="637,25,668,83" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/17'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="683,24,714,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/18'">

B. E. Campbell, MSc Advanced Computer Networking, 2007 114

 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="717,25,748,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/19'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="750,26,781,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/20'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="784,26,815,84" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/21'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="818,26,848,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/22'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="850,27,880,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>

B. E. Campbell, MSc Advanced Computer Networking, 2007 115

 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/23'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="883,27,913,81" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 <xsl:when test="ifDescr='FastEthernet0/24'">
 <xsl:text disable-output-escaping="yes"><area shape="rect"
href=# coords="917,27,947,82" title="</xsl:text>
 <xsl:value-of select="ifDescr"/>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="(ifSpeed)div(1000000)"></xsl:value-of>
 <xsl:text> Mbps</xsl:text>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="IPAddress"></xsl:value-of>
 <xsl:text> -- </xsl:text>
 <xsl:value-of select="NetMask"></xsl:value-of>
 <xsl:text disable-output-escaping="yes">"/></xsl:text>
 <xsl:text/>
 </xsl:when>
 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

E.4 XSLT Transform File 3 to PDF
<?xml version="1.0" encoding="utf-8"?>
<!--
 Author:
 File:
 Date:
 Purpose:
 -->
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <!--<xsl:output method="xml"/>-->
 <xsl:template match="topology">
 <fo:root>
 <fo:layout-master-set>
 <fo:simple-page-master master-name="simple"
 page-height="8.5in" page-width="11in"

B. E. Campbell, MSc Advanced Computer Networking, 2007 116

 margin-top="1in" margin-bottom="1in"
 margin-left="1in" margin-right="1in">
 <fo:region-body margin-top="0in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="simple">
 <fo:flow flow-name="xsl-region-body">
 <fo:block font-size="20pt"
 font-family="sans-serif"
 color="white"
 background-color="blue"
 space-after="12pt"
 border-after-style="solid"
 border-after-width="4pt"
 border-after-color="cyan">
 Discovered Network Nodes
 </fo:block>
 <xsl:apply-templates select="device"/>
 </fo:flow>
 </fo:page-sequence>
 </fo:root>
 </xsl:template>
 <xsl:template match="device">
 <xsl:choose>
 <xsl:when test="@type='Router'">
 <fo:block font-size="20pt"
 font-family="sans-serif"
 color="white"
 background-color="blue"
 border-after-style="solid"
 border-after-width="4pt"
 border-after-color="black">
 <fo:external-graphic src="router.jpg"/>
 <xsl:value-of select="sysName"/>
 </fo:block>
 </xsl:when>
 <xsl:when test="@type='Switch'">
 <fo:block font-size="20pt"
 font-family="sans-serif"
 color="white"
 background-color="blue"
 border-after-style="solid"
 border-after-width="4pt"
 border-after-color="black">
 <fo:external-graphic src="switch.jpg"/>
 <xsl:value-of select="sysName"/>
 </fo:block>
 </xsl:when>
 <xsl:when test="@type='Windows host'">
 <fo:block font-size="20pt"
 font-family="sans-serif"
 color="white"
 background-color="blue"
 border-after-style="solid"
 border-after-width="4pt"
 border-after-color="black">
 <fo:external-graphic src="windows.jpg"/>
 <xsl:value-of select="sysName"/>
 </fo:block>
 </xsl:when>

B. E. Campbell, MSc Advanced Computer Networking, 2007 117

 </xsl:choose>
 <fo:table space-after="12pt" table-layout="fixed" font-
size="10pt">
 <fo:table-column column-number="1" column-width="proportional-
column-width(.5)"></fo:table-column>
 <fo:table-column column-number="2" column-width="proportional-
column-width(2)"></fo:table-column>
 <fo:table-column column-number="3" column-width="proportional-
column-width(2)"></fo:table-column>
 <fo:table-column column-number="4" column-width="proportional-
column-width(1)"></fo:table-column>
 <fo:table-column column-number="5" column-width="proportional-
column-width(.5)"></fo:table-column>
 <fo:table-column column-number="6" column-width="proportional-
column-width(1)"></fo:table-column>

 <fo:table-body>
 <fo:table-row background-color="gray">
 <fo:table-cell border-collapse="collapse" border="solid
black 1px">
 <fo:block>Index</fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid
black 1px">
 <fo:block>Description</fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid
black 1px">
 <fo:block>Interface Type</fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid
black 1px">
 <fo:block>Speed</fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid
black 1px">
 <fo:block>Status</fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid
black 1px">
 <fo:block>IP Address</fo:block>
 <fo:block>NetMask</fo:block>
 </fo:table-cell>
 </fo:table-row>
 <xsl:apply-templates select="interface"/>
 </fo:table-body>
 </fo:table>
 </xsl:template>
 <xsl:template match="interface">
 <fo:table-row>
 <fo:table-cell border-collapse="collapse" border="solid black
1px">
 <fo:block>
 <xsl:value-of select="@ifIndex"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid black
1px">
 <fo:block>
 <xsl:value-of select="ifDescr"/>
 </fo:block>

B. E. Campbell, MSc Advanced Computer Networking, 2007 118

 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid black
1px">
 <fo:block>
 <xsl:value-of select="ifType"/>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid black
1px">
 <fo:block>
 <xsl:choose>
 <xsl:when test="((ifSpeed)div(1000000000))>=1">
 <xsl:value-of
select="(ifSpeed)div(1000000000)"></xsl:value-of> Gbps
 </xsl:when>
 <xsl:when test="((ifSpeed)div(1000000))>=1">
 <xsl:value-of
select="(ifSpeed)div(1000000)"></xsl:value-of> Mbps
 </xsl:when>
 <xsl:when test="((ifSpeed)div(1000))>=1">
 <xsl:value-of select="(ifSpeed)div(1000)"></xsl:value-
of> Kbps
 </xsl:when>
 </xsl:choose>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid black
1px" text-align="center">
 <fo:block>
 <xsl:choose>
 <xsl:when test="ifOperStatus=2 and ifAdminStatus=2">
 <fo:inline color="blue">DOWN</fo:inline>
 </xsl:when>
 <xsl:when test="ifOperStatus=2">
 <fo:inline color="red">DOWN</fo:inline>
 </xsl:when>
 <xsl:when test="ifOperStatus=1">
 <fo:inline color="green">UP</fo:inline>
 </xsl:when>
 </xsl:choose>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border-collapse="collapse" border="solid black
1px">
 <fo:block>
 <xsl:value-of select="IPAddress"/>
 </fo:block>
 <fo:block>
 <xsl:value-of select="NetMask"/>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </xsl:template>
</xsl:stylesheet>

E.5 FO File (Truncated)
<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

B. E. Campbell, MSc Advanced Computer Networking, 2007 119

 <fo:layout-master-set>
 <fo:simple-page-master margin-right="1in" margin-left="1in" margin-
bottom="1in" margin-top="1in" page-width="11in" page-height="8.5in"
master-name="simple">
 <fo:region-body margin-top="0in"/>
 </fo:simple-page-master>
 </fo:layout-master-set>

 <fo:page-sequence master-reference="simple">
 <fo:flow flow-name="xsl-region-body">
 <fo:block border-after-color="cyan" border-after-width="4pt"
border-after-style="solid" space-after="12pt" background-color="blue"
color="white" font-family="sans-serif" font-size="20pt"> Discovered
Network Nodes
 </fo:block>
 <fo:block border-after-color="black" border-after-width="4pt"
border-after-style="solid" background-color="blue" color="white"
font-family="sans-serif" font-size="20pt">
 <fo:external-graphic src="windows.jpg"/>NEONFISH
 </fo:block>
 <fo:table font-size="10pt" table-layout="fixed" space-
after="12pt">
 <fo:table-column column-width="proportional-column-width(.5)"
column-number="1"/>
 <fo:table-column column-width="proportional-column-width(2)"
column-number="2"/>
 <fo:table-column column-width="proportional-column-width(2)"
column-number="3"/>
 <fo:table-column column-width="proportional-column-width(1)"
column-number="4"/>
 <fo:table-column column-width="proportional-column-width(.5)"
column-number="5"/>
 <fo:table-column column-width="proportional-column-width(1)"
column-number="6"/>
 <fo:table-body>
 <fo:table-row background-color="gray">
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Index</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Description</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Interface Type</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Speed</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Status</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>IP Address</fo:block>
 <fo:block>NetMask</fo:block>

B. E. Campbell, MSc Advanced Computer Networking, 2007 120

 </fo:table-cell>
 </fo:table-row>
 <fo:table-row>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>1</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>MS TCP Loopback interface</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>softwareLoopback</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>10 Mbps</fo:block>
 </fo:table-cell>
 <fo:table-cell text-align="center" border="solid black 1px"
border-collapse="collapse">
 <fo:block>
 <fo:inline color="green">UP</fo:inline>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>127.0.0.1</fo:block>
 <fo:block>255.0.0.0</fo:block>
 </fo:table-cell>
 </fo:table-row>
 <fo:table-row>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>2</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Intel(R) PRO/Wireless 2200BG Network Connection -
Packet Scheduler Miniport</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>ethernetCsmacd</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>54 Mbps</fo:block>
 </fo:table-cell>
 <fo:table-cell text-align="center" border="solid black 1px"
border-collapse="collapse">
 <fo:block>
 <fo:inline color="red">DOWN</fo:inline>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>0.0.0.0</fo:block>
 <fo:block>0.0.0.0</fo:block>
 </fo:table-cell>
 </fo:table-row>

B. E. Campbell, MSc Advanced Computer Networking, 2007 121

 <fo:table-row>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>65540</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>Broadcom 440x 10/100 Integrated Controller - Packet
Scheduler Miniport</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>ethernetCsmacd</fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>100 Mbps</fo:block>
 </fo:table-cell>
 <fo:table-cell text-align="center" border="solid black 1px"
border-collapse="collapse">
 <fo:block>
 <fo:inline color="green">UP</fo:inline>
 </fo:block>
 </fo:table-cell>
 <fo:table-cell border="solid black 1px" border-
collapse="collapse">
 <fo:block>192.168.0.3</fo:block>
 <fo:block>255.255.255.0</fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-body>
 </fo:table>
 <!-- TRUNCATED CONTENT -->
 </fo:flow>
 </fo:page-sequence>
</fo:root>

B. E. Campbell, MSc Advanced Computer Networking, 2007 122

Project Management

B. E. Campbell, MSc Advanced Computer Networking, 2007 123

B. E. Campbell, MSc Advanced Computer Networking, 2007 124

B. E. Campbell, MSc Advanced Computer Networking, 2007 125

B. E. Campbell, MSc Advanced Computer Networking, 2007 126

B. E. Campbell, MSc Advanced Computer Networking, 2007 127

B. E. Campbell, MSc Advanced Computer Networking, 2007 128

B. E. Campbell, MSc Advanced Computer Networking, 2007 129

B. E. Campbell, MSc Advanced Computer Networking, 2007 130

References

Alderson, D., Li, L., Willinger, W., & Doyle, J. C. (2005). Understanding Internet

Topology: Principles, Models, and Validation. IEEE/ACM Transactions on

Networking, 13(6), 1205-1218. Retrieved 1 June, 2006 from ACM Digital

Library at http://portal.acm.org/citation.cfm?id=1115527.

Anderson, D. P., & Fedak, G. (2006). The Computational and Storage Potential of

Volunteer Computing. Proceedings of the 2006 IEEE/ACM International

Symposium on Cluster Computing and the Grid, Singapore, 73-80. Retrieved

21 August, 2006 at http://boinc.berkeley.edu/papers.php.

Au, S. C., Leckie, C., Parhar, A., & Wong, G. (2004). Efficient visualization of large

routing topologies. International Journal of Network Management, 14(2),

105-118. Retrieved 1 June, 2006 from ACM Digital Library at

http://portal.acm.org/citation.cfm?id=987189.

Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M., Takayama, L. A., & Prabaker,

M. (2004). Field Studies of Computer System Administrators: Analysis of

System Management Tools and Practices. Proceedings of the 2004 ACM

Conference on Computer Supported Cooperative Work, Chicago, IL, USA,

388-395. Retrieved 13 June, 2006 from ACM Digital Library at

http://doi.acm.org/10.1145/1031607.1031672.

Bierman, A. & Jones, K. (2000). RFC 2922: Physical Topology MIB. Retrieved 4

July, 2006 from The Internet Engineering Task Force at

http://www.ietf.org/rfc/rfc2922.

Black, U. (1995). Network Management Standards: SNMP, CMIP, TMN, MIBs, and

Object Libraries (2
nd

 ed.). New York, NY, USA: McGraw-Hill, Inc.

BOINC Combined Statistics (2006). BOINC Combined Statistics. Retrieved 19

August, 2006 at http://boinc.netsoft-online.com.

Buchanan, M. C. & Zellweger, P. T. (2005). Automatic Temporal Layout

Mechanisms Revisited. ACM Transactions on Multimedia Computing,

Communications and Applications, 1(1), 60-88. Retrieved 13 June, 2006 from

ACM Digital Library at http://doi.acm.org/10.1145/1047936.1047942.

Dietel, K. (2004). Mastering IT Change Management Step Two: Moving from

Ignorant Anarchy to Informed Anarchy. Proceedings of the 32nd Annual

ACM SIGUCCS Conference on User Services, Baltimore, MD, USA, 188-190.

Retrieved 13 June, 2006 from ACM Digital Library at

http://doi.acm.org/10.1145/1027802.1027846.

Dijker, B. (1998). A Day in the Life of System Administrators. Retrieved 24 July,

2006 from SAGE at http://www.sage.org/field/ditl.pdf.

B. E. Campbell, MSc Advanced Computer Networking, 2007 131

DIMES (2006). The DIMES home/statistics and data. Retrieved 19 August, 2006 at

http://www.netdimes.org/data.php.

Donnet, B., Raoult, P., Friedman, T., & Crovella, M. (2005). Efficient Algorithms for

Large-Scale Topology Discovery. Proceedings of the 2005 ACM

SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, Banff, Alberta, Canada, 327-338. Retrieved 4 July, 2006

from ACM Digital Library at http://doi.acm.org/10.1145/1064212.1064256.

Han, J. Y. (2005). Low-cost multi-touch sensing through frustrated total internal

reflection. Proceedings of the 18th Annual ACM Symposium on User interface

Software and Technology, Seattle, WA, USA, 115-118. Retrieved 13 June,

2006 from ACM Digital Library at http://doi.acm.org/10.1145/

1095034.1095054.

Hawkinson, J. & Bates, T. (1996). RFC 1930: Guidelines for creation, selection, and

registration of an Autonomous System (AS). Retrieved 22 August, 2006 from

The Internet Engineering Task Force at http://www.ietf.org/rfc/rfc1930.txt.

Huffaker, B., Plummer, D., Moore, D., & Claffy, K. (2002). Topology Discovery by

Active Probing. Proceedings of the 2002 Symposium on Applications and the

Internet, Washington, D.C., USA, 90. Retrieved 18 August, 2006 from

CAIDA at http://www.caida.org/publications/papers/2002/SkitterOverview.

IBM (2001). Autonomic Computing: IBM’s Perspective on the State of Information

Technology. Armonk, NY, USA: IBM. Retrieved 7 August, 2006 at

http://www.ibm.com/industries/government/doc/content/resource/thought/278

606109.html.

IEEE (2005). 802.1AB IEEE Standard for Local and metropolitan area networks:

Station and Media Access Control Connectivity Discovery. New York, NY,

USA: Institute of Electrical and Electronics Engineers, Inc. Retrieved 19

September, 2006 at http://standards.ieee.org/getieee802/802.1.html.

ISO (1989). Information processing systems – Open Systems Interconnection – Basic

Reference Model – Part 4: Management framework. International

Organization for Standardization. Retrieved 8 June, 2006 at

http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvaila

bleStandards.htm.

Kephart, J. O. & Chess, D. M. (2003, January). The Vision of Autonomic

Computing. Computer 36(1), 41-50. Retrieved 7 August, 2006 at

http://www.research.ibm.com/autonomic/research/papers.

Lowekamp, B., O'Hallaron, D., & Gross, T. (2001). Topology Discovery for Large

Ethernet Networks. Proceedings of the 2001 Conference on Applications,

Technologies, Architectures, and Protocols For Computer Communications,

San Diego, CA, USA, 237-248. Retrieved 4 July, 2006 from ACM Digital

Library at http://doi.acm.org/10.1145/383059.383078.

B. E. Campbell, MSc Advanced Computer Networking, 2007 132

Madigan, E. M., Petrulich, C., & Motuk, K. (2004). The Cost of Non-Compliance:

When Policies Fail. Proceedings of the 32nd Annual ACM SIGUCCS

Conference on User Services, Baltimore, MD, USA, 47-51. Retrieved 13

June, 2006 from ACM Digital Library at

http://doi.acm.org/10.1145/1027802.1027815.

McDonough, B. (2003). netViz: Delivering Complex System Information

Graphically. Framingham, MA, USA: IDC. Retrieved 10 July, 2006 at

http://www.netviz.com/forms/download_wp4.asp.

Nance, B. (n.d.). Know Your Network. Network Testing Labs. Retrieved 10 July,

2006 at http://www.netviz.com/forms/download_wp4.asp.

Nance, B. (2005). Best Practices for IT Documentation. Network Testing Labs.

Retrieved 10 July, 2006 at http://www.netviz.com/forms/download_wp4.asp.

netViz Corporation (2003). netViz – A New Approach to Information Visualization

and System Modeling. Gaithersburg, MD, USA: netViz Corporation.

Retrieved 10 July, 2006 at http://www.netviz.com/forms/download_wp4.asp.

OGC, (2002). ICT Infrastructure Management. London: Great Britain Office of

Government Commerce.

Parker, J. (2005). FCAPS, TMN, & ITIL: Three Key Ingredients to Effective IT

Management. OpenWater Solutions, LLC. Retrieved 7 June, 2006 at

http://www.openwatersolutions.com/docs/FCAPS_TMN_%20ITIL.pdf.

Patterson, D. A., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J.,

Enriquez, P., Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry,

N., Tetzlaff, W., Traupman, J., & Treuhaft, N. (2002, March 15). Recovery-

Oriented Computing (ROC): Motivation, Definition, Techniques, and Case

Studies. UC Berkeley Computer Science Technical Report UCB//CSD-02-

1175. Retrieved 7 August, 2006 at http://roc.cs.berkeley.edu/#pubs.

Pawson, D. (2002). XSL-FO. Sebastopol, CA, USA: O’Reilly Media, Inc.

Rainge, E. (2006). Making the Business Case for Deploying Data Visualization and

Network Diagramming Tools. Framingham, MA, USA: IDC. Retrieved 10

July, 2006 at http://www.netviz.com/forms/download_wp4.asp.

Ratliff, E. (2005). The Zombie Hunters. The New Yorker, 10 October, 2005, 44-49.

Ray, E. T. (2003). Learning XML (2
nd

 ed.). Sebastopol, CA, USA: O’Reilly Media,

Inc.

Shavitt, Y. & Shir, E., (2005). DIMES: Let the Internet Measure Itself. ACM

SIGCOMM Computer Communication Review 35(5), 71-74. Retrieved 4 July,

2006 from ACM Digital Library at http://doi.acm.org/10.1145/

1096536.1096546.

B. E. Campbell, MSc Advanced Computer Networking, 2007 133

Siamwalla, R., Sharma, R., & Keshav, S. (1998). Discovering Internet Topology.

Retrieved 4 July, 2006 at http://www.cs.cornell.edu/skeshav/papers/

discovery.pdf.

Tidwell, D. (2001). XSLT. Sebastopol, CA, USA: O’Reilly Media, Inc.

University of California, Berkeley (2006). SETI@home. Retrieved 19 August, 2006

at http://setiathome.berkeley.edu.

University of Oregon (2005, January 25). Route Views Project Page. Retrieved 18

August, 2006 at http://www.routeviews.org.

Vixie, P., Thomson, S., Rekhter, Y., & Bound, J. (1997). RFC 2136: Dynamic

Updates in the Domain Name System (DNS UPDATE). Retrieved 30 April,

2007 from The Internet Engineering Task Force at

http://tools.ietf.org/html/rfc2136.

Whitehouse, D. (1999, May 25). Interstellar message says 'ET call Earth'. BBC News

Online. Retrieved 19 August, 2006 at http://news.bbc.co.uk/1/hi/sci/tech/

351461.stm.

Wikipedia (2007a). Smurf attack. Retrieved 11 April, 2007 at

http://en.wikipedia.org/wiki/Smurf_attack.

Wikipedia (2007b). Synchronized Multimedia Integration Language. Retrieved 8

May, 2007 at http://en.wikipedia.org/wiki/Synchronized_Multimedia

Integration_Language.

B. E. Campbell, MSc Advanced Computer Networking, 2007 134

Bibliography

Bejerano, Y., Breitbart, Y., Garofalakis, M., & Rastogi, R. (2003). Physical Topology

Discovery for Large Multi-Subnet Networks. The 22nd Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM

2003), San Francisco, CA, USA. Retrieved 24 July, 2006 from ACM Digital

Library at http://www.comsoc.org/confs/ieee-infocom/2003/papers/

09_02.PDF.

Brietbart, Y., Garofalakis, M., Jai, B., Martin, C., Rastogi, R., & Silverschatz, A.

(2004). Topology Discovery in Heterogeneous IP Networks: The

NetInventory System. IEEE/ACM Transactions on Networking, 12(3), 401-

414. Retrieved 13 June, 2006 from IEEE Xplore at

http://dx.doi.org/10.1109/TNET.2004.828963.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A Diary Study of Task Switching

and Interruptions. Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 6(1), 175-182. Retrieved 13 June, 2006 from ACM

Digital Library at http://doi.acm.org/10.1145/985692.985715.

Harold, E. R., & Means, W. S., (2004). XML in a Nutshell (3
rd
 ed.). Sebastopol, CA,

USA: O’Reilly Media, Inc.

Kamoun, F. (2005). Toward best maintenance practices in communications network

management. International Journal of Network Management, 15(5), 321-334.

Retrieved 13 June, 2006 from Wiley InterScience at

http://dx.doi.org/10.1002/nem.576.

McDonough, B. (2004). netViz : Visually Presenting Complex Network and Business

Process Information. Framingham, MA, USA: IDC. Retrieved 10 July, 2006

at http://www.netviz.com/forms/download_wp4.asp.

Opsware Inc. (n.d.). Network Automation: A fundamental shift in network

management. Sunnyvale, CA, USA: Opsware Inc. Retrieved 14 July, 2006 at

http://www.opsware.com/products/networkautomation/

NetworkAutomation.pdf.

Wikipedia (2007a). Information Technology Infrastructure Library. Retrieved 13

May, 2007 at http://en.wikipedia.org/wiki/ITIL.

