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Abstract 

The post-installation verification of wind turbine performance is an essential part of a wind 

energy project. Data collected from meteorological instruments and from the turbine is 

analysed to produce an estimate of the annual energy production (AEP) which is compared 

against expectations. However, turbine warranties can impose very strict data filtering 

criteria which can lead to high rates of data loss. As a consequence, measurement 

campaigns may last longer than expected and incur additional costs for the development. 

This project aims to investigate the extent of the problem and the potential of alternative 

data filtering strategies with respect to data loss, AEP estimates and the dispersion of 

points in the power curve scatter plot. In doing so, it targets a wide range of meteorological 

parameters with theoretical relationships to wind turbine power production with particular 

interest in those not accounted for in the current standard. The identification of viable 

filtering strategies with lower data loss would provide significant benefits to wind energy 

development projects in terms of greater control over timescales and reduced costs. 

Data from a sample of power performance tests is analysed to explore the range and 

severity of the problem of data loss. It confirms the wide variation in warranty conditions, 

demonstrates the extent and likelihood of data losses and quantifies the financial 

implications within the limits of commercial sensitivity. When indirect costs are taken into 

consideration, the impact of extended measurement campaigns can theoretically reach tens 

of millions of pounds. 

A new, high-fidelity dataset is then compiled so that the effects of alternative filtering 

strategies can be examined. The dataset covers the whole of 2017 and consists of over 700 

parameters of which 74 are selected for investigation here. The eFAST method of global 

sensitivity analysis is used in combination with correlation analysis to reduce this number to 

11 parameters which are then used to define alternative filtering criteria.  

Similar AEP estimates are obtained by application of conventional and experimental 

criteria to the research dataset. In the case of the experimental filters, however, the data 

loss was 11% compared to 63% data loss with conventional filters. Conventional filters 

were also shown to increase the dispersion in the power curve scatter plot by over 10%, 

while dispersion did not increase significantly with the experimental filters.   
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1 Introduction 

1.1 Problem outline 

Following the installation of wind energy generation equipment in the form of one or 

more wind turbines, the satisfactory performance of the equipment is assured through a 

power performance test (PPT) as defined in the International Electrotechnical 

Commission (IEC) standard IEC61400-12-1 (IEC, 2017). The existence of an agreed 

standard and associated procedures is crucial in mediating the relationships among 

manufacturers, operators, investors and regulators. During a test, data is collected from 

meteorological instruments and from the turbine supervisory control and data 

acquisition (SCADA) system. The data is analysed to produce an estimate of the annual 

energy production (AEP) in megawatt-hours (MWh) which is compared against the 

expected output of the turbine as defined in the warranty. If the AEP estimate is 

satisfactory, the project proceeds to completion. If not, additional remedial technical 

work may be required and the developer may have a financial claim against the 

manufacturer.  

The standard procedure calls for the identification and control of any extraneous 

influences that might distort the test results. These include, for example, extreme 

meteorological conditions, turbine faults, unwanted interactions between turbines, and 

situations where turbine output is deliberately curtailed for practical or financial reasons. 

Methods are provided in the standard for normalising some aspects of the data in 

certain circumstances to eliminate unwanted influences; however, the more common 

approach is to filter the data to reject any affected records so that they are excluded 

from the final analysis. The standard PPT procedure therefore tests the operation of a 

turbine under a set of ideal conditions, only some of which can be defined objectively. 

For example, deterministic procedures are specified for identifying the free-stream or 

measurement sector, a range of wind directions where the turbine under test is free from 

turbulence due to nearby obstacles and the wakes of other turbines. Other conditions, 

such as the permitted levels of turbulence and wind shear, are the subject of negotiation 



 

  

 
2 

between the parties commissioning the test. Two types of data filter can therefore be 

identified, quality filters which are defined objectively, and contractual filters which can be 

more or less restrictive depending on the concerns of the negotiating parties. Where 

contractual filters impose narrow limits on the data, up to 90% may be rejected in 

extreme cases (Bunse & Mellinghoff, 2008; Rareshide et al., 2009). Large data losses 

mean that it takes longer to accumulate the minimum quantity of data required by the 

standard and a longer measurement campaign incurs additional costs for the project. 

Since the additional costs are a direct consequence of the lost data, finding ways of 

avoiding data rejection is desirable. The question pursued here is whether alternative 

filtering strategies can be defined which reject less data but which still deliver AEP 

estimates similar to those obtained with conventional filters.  

A major constraint on the standard procedure is that it must be reliable in the sense that 

it must produce comparable results in the same physical circumstances irrespective of 

the organisation that is carrying it out. Because of the complex interactions between the 

turbine machinery and the atmosphere, precise numerical calculations are not feasible. 

PPT therefore relies on simplified mathematical models of atmospheric and mechanical 

behaviour. In particular, the main model used to represent turbine performance, the 

power curve, is a simple bivariate relationship between a characteristic wind speed and 

turbine power output. Such a model disregards the effects of many meteorological 

parameters that are known to have an impact on power production. The effects of these 

parameters are treated as uncertainty which appears as unwanted dispersion in the 

power curve scatter plot (Bandi & Apt, 2016; Courtney et al., 2011). The degree of 

dispersion in the power curve can therefore be used as an evaluation criterion for a data 

filters assuming that an effective filter would produce a significant reduction in 

dispersion. 

Research on wind turbine performance tends to be selective, focussing on specific 

combinations of parameters. Often, the data is conditioned for very restrictive criteria 

and the resulting idealised circumstances are not representative of the real contexts in 

which turbines operate. In order to achieve a comprehensive overview, individual 

results have to be combined in a piecemeal fashion and this may overlook unexpected 

influences and interaction between parameters (Kwon, 2010; Morshedizadeh et al., 
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2017). Some parameters such as turbulence and shear appear often in the literature, 

although the measures typically used to quantify them do not necessarily represent the 

full complexity of the phenomenon. This is particularly true for turbulence which is 

usually represented by turbulence intensity, a measure based on the mean and standard 

deviation of wind speed. As one-point statistics, the mean and standard deviation 

introduce assumptions about the distribution of wind speeds within a given averaging 

period, and fail to capture temporal dynamics that could affect power output (Kelley et 

al., 2005; Morales et al., 2010; Wächter et al., 2012). Other measured or statistical 

parameters that may have an impact such as atmospheric stability (Motta et al., 2005; St. 

Martin et al., 2016; Sumner & Masson, 2006b; Van Den Berg, 2008; Wharton & 

Lundquist, 2012), wind veer (Bulaevskaya et al., 2015; Rareshide et al., 2009; Sakagami 

et al., 2015), isotropy (Wächter et al., 2012) and intermittency of turbulence (Schottler et 

al., 2016) are much less common. The significance of stationarity of the wind velocity 

has been acknowledged insofar as it is occasionally used as to condition data before 

analysis (Peña & Floors, 2014), but no studies directly examine its impact on power 

production. The assumption that wind speeds are Gaussian-distributed within the 

standard ten-minute averaging period is noted (Brand et al., 2011), but no studies 

appear even to filter the data according to this criterion. A gap in the literature therefore 

exists around the identification of potentially influential parameters that are not 

traditionally accommodated in established procedures, their main effects and their 

interactions.  

Measurement campaigns are expensive, and to avoid unnecessary costs it is common 

for data collection to satisfy only the minimum requirements of the PPT standard and 

analyses rely on mathematical models to provide information about parameters that are 

not directly observed. Consequently, existing PPT datasets are highly constrained and 

offer few opportunities to examine novel parameters that could improve its accuracy or 

reduce the amount of data discarded through filtering. A need therefore exists for a 

research dataset that supports a wider range of analyses than those currently available. 
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1.2 Aim and objectives 

In the light of the foregoing discussion of the PPT process, this project aims to 

investigate the potential of alternative data filtering strategies with respect to data loss, 

AEP estimates and the dispersion of points in the power curve scatter plot. 

In doing so, it targets a wide range of meteorological parameters with theoretical 

relationships to wind turbine power production with particular interest in those not 

accounted for in the current standard. The identification of viable filtering strategies 

with lower data loss would provide significant benefits to wind energy development 

projects in terms of greater control over timescales and reduced costs. 

The following objectives are addressed in order to achieve the overall aim of the 

project: 

1. Explore and quantify the loss of data through filtering in real PPT contracts 

with an emphasis on the requirements of the standard, the associated costs and 

the potential for savings 

2. Compile a new, high-fidelity dataset corresponding to the wind regime 

impacting on turbine performance which incorporates a wide range of 

parameters that is not constrained by the assumptions embodied in the current 

PPT standard 

3. Evaluate traditional and novel filtering strategies in terms of data loss, 

dispersion in the power curve and estimated AEP 

1.3 Justification 

The discussion in §1.1 identifies the risk of significant data losses through restrictive 

filtering criteria, and the first aim of the project is to compare that risk with reality. If 

significant data losses are identified and the associated costs are shown to be significant, 

then there is clear motivation for improving the PPT process which reinforces the 

rationale for the remainder of the project. 
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Existing PPT datasets are optimised to support the current PPT standard. Data related 

to parameters other than those specifically required by the current standard is therefore 

absent. Any empirical investigation into the relationship of such parameters to power 

output therefore requires an appropriate dataset to be expressly compiled. The overall 

strategy in this project is to cast as wide a net as possible in the search for overlooked 

influences on power performance, and to avoid making assumptions based on a small 

number of known influences from previous works.  

The assumption underlying the bivariate power curve is that points should lie neatly on 

a roughly sigmoid curve once the characteristic wind speed and power output are 

plotted. In practice, there is significant dispersion in a scatter plot based on real data. 

Some of this can be attributed to natural variation, but since the power curve does not 

consider parameters other than a characteristic wind speed on power output, their 

impacts can only appear as a contribution to the dispersion (Hwangbo et al., 2015; Paiva 

et al., 2013). Filtering on a parameter with a significant impact should therefore reduce 

the dispersion of the points in the traditional power curve scatter plot. Some authors 

have crystallised this idea by suggesting that an acceptance band should be defined to 

eliminate outlying values in the power curve (Barthelmie et al., 2011; Hernandez et al., 

2016). The experimental filtering strategies explored here are carried out with this in 

mind and the dispersion evident in the power curve is used as a major evaluation 

criterion. 

1.4 Approach 

The analysis of real PPT projects is carried out in cooperation with Wood Clean 

Energy1 (previously Sgurr Energy). Suitably anonymised data is extracted from the 

project documentation and summarised to produce the required results. 

                                                

1 https://www.woodgroup.com/what-we-do/view-by-products-and-services/clean-energy 



 

  

 
6 

A new, high-fidelity research dataset is created, based primarily on measured data from 

a well-instrumented research turbine operated by the University of Minnesota2 

synchronised with data from other sources. Significant effort is made to ensure the 

quality of the dataset so that later analyses may be seen as reliable including a set of 

stringent tests usually employed only in the analysis of atmospheric fluxes. Statistical 

quantities associated with various physical phenomena are calculated over a standard 

ten-minute averaging period. The final output is a two-layer dataset whose main 

component is a single file of ten-minute average (TMA) values for over 700 parameters 

covering the whole of 2017. The second layer consists of a comprehensive set of ten-

minute data samples each of which corresponds to one record in the main TMA file. 

Global sensitivity analysis and correlation analysis are used to identify those parameters 

in the TMA dataset most strongly related to power output. Experimental filters based 

on these parameters are then evaluated for their impact on data loss, predicted AEP, 

and the dispersion of points in a traditional bivariate power curve scatter plot.  

1.5 Limitations 

Although the data covers the whole of 2017, the fact that results are based on a single 

data source limit the generality of any results and conclusions. The project therefore 

shares features with case studies which provide detailed analysis of a single case, but 

which require further validation to achieve generality. 

The traditional ten-minute averaging period is adopted in this work. No use is made of 

unaggregated data sampled at 1 Hz or above, and no attempt is made to investigate 

aggregation periods of alternative or variable durations. 

The focus of the study is on the meteorological influences on power production; 

therefore, no attempt is made to incorporate data on the turbine machinery, control 

system or grid connection. 

                                                

2 http://eolos.umn.edu/ 
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The study is carried out in the context of power performance testing as envisaged in the 

relevant international standard, IEC-61400-12-1 (IEC, 2017). The scenario involves the 

evaluation of a single turbine under normal flow conditions. Turbine interactions and 

wake effects are therefore not treated. 

Because the intention is to examine novel parameters that are unlikely to be 

implemented in existing tools, the work is not benchmarked against supposedly 

objective models such as those produced using blade-element/momentum (BEM) or 

computational fluid dynamics (CFD) approaches. Instead, a baseline power curve is 

created from the data using the relevant international standard. Later results are 

compared with this self-referential benchmark. This also limits the generality of the 

results and conclusions, and commentary is offered on this issue at various points 

during the report. 

1.6 Structure of the report 

Chapter 2 reviews relevant background topics starting with a discussion of the 

economic, technological, meteorological and regulatory contexts. It continues with an 

overview of wind turbine performance and a summary of important concepts from the 

international standard IEC-61400-12-1 as background to later practical work. A more 

detailed coverage of relevant micrometeorological phenomena is then provided. This 

includes the formulae for derived parameters that are included in the research dataset. 

Finally, several important methodological topics are reviewed including the use of 

artificial neural networks to model complex system behaviour, the use of correlation 

analysis for eliminating redundant parameters and variance-based global sensitivity 

analysis. The eFAST method is covered in detail. 

Chapter 3 outlines the process adopted and provides details on methods used in the 

practical work of the project 

Chapter 4 present the results of the review of commercial PPT contracts focussing on 

the variation in warranty conditions and the effect of more or less restrictive conditions 

on project duration. The novel concept of effective duration is introduced to allow 
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comparison across projects. The cost implications of extended measurement campaign 

durations are also explored. The detail of PPT projects has not previously been reported 

in this form, and this section therefore constitutes one of the novel contributions from 

this project. 

Chapter 5 describes in detail the construction of the research dataset. It includes a 

detailed description of the wind regime at the Eolos turbine site, and discusses issues 

related to data quality control, the removal of spurious data, the conflation of data from 

different sources, the reduction of raw data to ten-minute averages and the addition of 

derived parameters. No extant datasets with appropriate characteristics were identified, 

and the publication of the dataset created here is a further contribution from this 

project. 

Chapter 6 presents the results of the investigation into alternative filtering strategies. It 

describes the identification of the parameters with the strongest relationship with the 

variance in the turbine power output, the creation of comparator power curves using 

the IEC2017 procedure, the specification of alternative filters, and the results of 

applying them to the research dataset. The results from conventional and experimental 

filters are compared and contrasted, and the implications of the alternative strategies on 

the costs of wind energy projects are discussed. For several of the parameters examined 

here, their relationship with power performance has not previously been investigated. In 

addition, the effect of conventional filters on the dispersion of points in the power 

curve scatter plot is presented here for the first time. The results in this chapter also 

constitute a novel contribution from the current work. 

Chapter 7 concludes the report by revisiting the key objectives and explaining how 

these were met. It highlights research limitations and provides recommendations for 

progressing the future work. 
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2 Literature review 

2.1 Introduction 

2.1.1 Economic context 

Amid concerns about global climate change, pollution caused by hydrocarbon-based 

materials and the finite nature of fossil fuels, the generation of energy from renewable 

sources has garnered much attention since the start of the century. The majority of 

developed countries have adopted targets for the reduction of greenhouse emissions. 

Scotland, for example, aims to source 100% of its domestic electricity from renewable 

sources by 2020, and 50% of energy consumption including electricity, heat and 

transport from renewables by 2030 (Scottish Government, 2017). As a mature 

renewable energy source, wind stands to contribute significantly to the achievement of 

such targets. Indeed, the wind industry has seen very strong growth in recent years as 

illustrated by Fig. 1. 

 

Figure 1: Global installed wind capacity (IRENA, 2018) 
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While the wind resource itself is essentially without cost, the equipment to extract 

energy from the wind is expensive to develop, manufacture, install, operate and 

maintain. For onshore wind projects at the end of 2017, the global average installation 

cost was $1477 per kW with turbine purchase accounting for 66-84% (IRENA, 2018). 

While the cost of onshore wind projects is on a downward trend, offshore costs are 

increasing due to the exploitation of more remote sites which entail higher grid 

connection expenses. In 2016, the global average installation cost for offshore projects 

was $4487 per kW with turbine purchase accounting for 30-50% (IRENA, 2018). PPT 

ensures that the installed turbines operate according to their specifications; however, the 

testing procedure adds additional costs to the project. Not only does PPT entail costs 

directly related to its management and operation including specialist measurement 

equipment and staffing costs, the duration of a measurement campaign can also impact 

the overall construction schedule for a wind energy project. This is especially true where 

a campaign takes longer than expected. 

2.1.2 Turbine technology 

All wind turbines operate by using a proportion of the kinetic energy in an air flow to 

develop torque in a shaft. Current designs rely on the aerodynamic properties of rotors 

comprised of two or three rigid blades mounted on a horizontal axis. Vertical-axis 

designs are also in use, but they are less popular due to their lower efficiencies and 

higher cost (Gross, 2007, p.104). Experimental designs include wind concentrators 

(Allaei, 2012), tethered wings (Goldstein, 2013) and airborne generators (Castellani & 

Garinei, 2013). The remainder of this report will only be concerned with the most 

widely-used design involving three horizontally-mounted blades. 

The aerodynamic profile of the blades is a key aspect in the design of a wind turbine. 

Blades have an aerofoil shape in cross-section and are set at an angle to the oncoming 

wind so that the induced aerodynamic lift causes the rotor to rotate. The angle at which 

the flow of air strikes an aerofoil, known as the angle of attack, determines the magnitude 

of aerodynamic lift. Since the tangential speed of a rotating blade is greater the further it 

is measured from the hub, the apparent angle of attack is also larger. Blade design 
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therefore includes a twist to compensate so that the angle of attack is optimised to 

extract maximum energy from the air flow along the whole length of the blade. Because 

the blade design is crucial to the machine’s performance, it is kept confidential by 

manufacturers (Niebsch, 2011).  

A disadvantage of a fixed blade profile is that it cannot accommodate variations in flow 

conditions in different parts of the rotor swept area (Chavan et al., 2017). Although 

horizontal homogeneity is a reasonable assumption, many meteorological quantities 

vary naturally in the vertical dimension. The greater these variations, the more the 

conditions will diverge from those for which the blade profile is optimal leading to a 

degradation in performance. This problem is exacerbated by the trend towards larger 

turbines because as the size of the rotor increases, meteorological measurements taken 

at hub height become less representative of the general conditions across the rotor disk. 

This affects the apparent angle of attack seen at a point on the blade since the air flow it 

experiences is the vector sum of the actual air flow and its own tangential velocity. Over 

the past two decades, hub-heights and power ratings have also increased along with 

rotor diameters. Between 2010 and 2016, the typical power rating has increased from 2 

MW or below to nearly 3 MW, while typical rotors have increased from 80 m or below 

to around 100 m, with some reaching 110 m (IRENA, 2018). 

The operation of a wind turbine is constrained by its connection to the electrical grid. 

When the transmission system is not capable of accommodating the full amount of 

power being generated, power production is curtailed. The mechanism for this is to set a 

limit on the maximum power output of the turbine at a level below rated capacity using 

the turbine’s control system. As well as situations of involuntary curtailment due to grid 

capacity, output can also be voluntarily curtailed for economic reasons (Fine et al., 

2017). In either case, a curtailed turbine deliberately operating below its normal level is 

not indicative of its optimum performance. 

Performance assessment can be applied to a single turbine or to an entire wind farm 

where the impact of turbine wakes on other units in the wind farm layout needs to be 

considered. The rotational turbulence in the wake of one turbine can significantly 

disrupt the inflow to its neighbours. The Park model is one approach to modelling wake 
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interactions, taking into account turbine spacing and the expected rate of decay of the 

wake (Katic et al., 1986). The model was later updated to incorporate considerations of 

atmospheric stability (Peña et al., 2014). The study of wake effects is an important topic 

in the wind industry, as evidenced by the growing number of Google Scholar results 

from 2000 to 2018 shown in Fig. 2. However, wake interactions are not accommodated 

in the international standard for PPT since it is concerned with the correct operation of 

a single turbine under normal operating conditions. Indeed, the procedure specifically 

excludes wind directions where wake interactions might occur. The intention in this 

project is to investigate parameters that vary naturally in the free-stream wind, and 

which could be used to improve the PPT process. For this reason, wake interactions are 

not pursued. 

  

Figure 2: Number of Google Scholar references to turbine wakes by year of publication 

Source: Searches performed on Google Scholar 24 Mar 2019 
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2.1.3 Regulatory context 

IEC-61400, published by the International Electrotechnical Committee (IEC), defines a 

family of standards for the specification and operation of wind turbines3. The purpose 

of IEC-61400-12-1 is “to provide a uniform methodology that will ensure consistency, 

accuracy and reproducibility in the measurement and analysis of power performance by 

wind turbines” (IEC, 2017). The current version (henceforward IEC2017) supersedes 

the 2005 edition (henceforward IEC2005) which constituted a technical revision of the 

original IEC-61400-12, published in 1998. The procedures specified in IEC2005 were 

all based on meteorological measurements by approved and calibrated sensors mounted 

on a hub-height meteorological mast (met mast). IEC2017 adds provision for the use of 

ground-based remote sensing devices under certain circumstances as a complement to 

traditional instruments, but still maintains an emphasis on hub-height wind speed 

measurements. IEC-61400-12-2 published in 2013, specifies PPT procedures for large 

turbines using nacelle-mounted anemometers (IEC, 2013). PPT of small turbines – 

those with a swept rotor area smaller than 200 m² and an AC voltage less than 1000 V 

or DC voltage less than 1500 V – is covered by IEC-61400-2. Other related standards 

concern electromagnetic compatibility (IEC-61400-1), acoustic noise measurement 

(IEC-61400-11) and load measurements (IEC-61400-13), and form part of a 

comprehensive testing and certification regime defined in IEC-61400-22.  

With specific reference to PPT for large turbines, IEC-61400-12-1 was intended to 

address the needs of a wide variety of interests including manufacturers, purchasers, 

operators, planners and regulators, in order to facilitate communication and agreement 

among them. A major output from PPT is an estimate of annual energy production 

(AEP), a theoretical quantity calculated for the purposes of verifying correct operation 

of the turbine under test. It can be estimated based on the distribution of wind speeds 

at the site using either a velocity exceedance curve, or the more involved process 

defined in IEC2017. Both methods assume 100% turbine availability, and therefore do 

not represent a predicted yield from the turbine. For this, a further net AEP value must 

                                                

3 https://collections.iec.ch/std/catalog.nsf/collection.xsp?open&col=IEC%2061400  
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be estimated which takes account of wake effects where a turbine is located in close 

proximity to others, and technical losses including curtailment, turbine faults and 

downtime for maintenance (Mortensen et al., 2015). 

Other notable organisations include MEASNET4, an association of European wind test 

centres which cooperate on the development of common approaches to measurement 

in the wind industry. In particular, MEASNET aims to ensure high-quality, reliable 

measurements to the wind industry, and in order to do so offers additional 

interpretations of international standards such as IEC-61400-12 and guidance on their 

application.  

Another function of MEASNET is the certification of measurement instruments such 

as anemometers. A small number of test centres are certified by MEASNET to carry 

out calibration tests and to provide the associated documentation. 

The Power Curve Working Group (PCWG)5 is a grouping of industry stakeholders who 

came together following the European Wind Energy conference in 2012. Their aim is 

“… to help identify and develop ways to improve the modelling of turbine performance 

in real world wind conditions”. 

2.1.4 Meteorological context 

Wind turbines operate in the atmospheric boundary layer (ABL) where the flow of air is 

affected by interactions with the ground. The ABL varies in height from around 100 m 

to around 3 km, expanding during the daytime as solar warming stimulates convection 

and sinking back during the night as the cold ground absorbs energy from below (Stull, 

1988, p. 9). A horizontal flow of air near the ground encounters roughness elements 

such as vegetation, buildings and changes in topology that create turbulent eddies and 

reduce its velocity. This leads to an increase in wind speed with height known as wind 

shear. As well as mechanically-driven turbulence, eddies are also created as air rises 

                                                

4 http://www.measnet.com/corporate-information/  
5 http://www.pcwg.org/  
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from a warmed surface during the daytime. The largest eddies are of a size comparable 

to the ABL height and break down into smaller eddies over time as they are stretched 

and distorted by stress forces (Davidson, 2004, p. 17).  

  

Figure 3: Turbulence visualised as eddies of different sizes superimposed onto a sheared horizontal air flow 

 

A turbulent atmosphere is composed of many overlapping eddies of different sizes as 

illustrated in Fig. 3. This complexity is extremely challenging to model mathematically 

and the usual approach is to rely on a statistical description (Pope, 2000, p. 8; Roy, 

2012). There is a rough inverse relationship between shear and turbulence. The dynamic 

condition that results from solar warming in which a parcel of air will continue to rise if 

displaced from its original position is known as an unstable atmospheric regime. 

Unstable conditions are characterised by low shear and high turbulence. In contrast, a 

stable regime characterised by relatively low turbulence and high shears is usually found 

at night. A neutral regime can also be found either as a transition between stable and 

unstable atmospheres, or during overcast conditions where solar warming of the surface 

is suppressed (Emeis, 2011, p. 11). 

The daily passage of the sun is one source of heating and cooling of the surface, and the 

changes in day length and solar declination over the course of a year modify the main 

solar effect. Local weather conditions, and cloud cover in particular, modify the overall 
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degree of heating and cooling at a location. Since cloud cover can vary considerably 

over a relatively short distance, different locations may experience different levels of 

heating or cooling at any given moment. Thus, warm air from one location can be 

transported, or advected, over a neighbouring location by the mean flow of wind. This 

gives rise to a second source of temperature differences at the surface, and the reverse 

can obviously occur with cold air being advected over a warmer surface. 

Differences in temperature cause changes in the density of the air which in turn lead to 

differences in pressure. Large-scale pressure differences are a major driver for synoptic 

weather patterns while local horizontal pressure gradients are responsible for winds at 

smaller scales (Sun et al., 2013). Because of the greater level of solar heating close to the 

equator, the main pressure gradient induces winds from south to north in the northern 

hemisphere, and from north to south in the southern hemisphere. The rotation of the 

Earth is another large-scale influence on the behaviour of the wind. Through the 

Coriolis effect, winds in the northern hemisphere are turned clockwise with increasing 

height while those in the southern hemisphere are turned anticlockwise, a phenomenon 

known as wind veer. The notional geostrophic wind, R, is a theoretical wind which 

represents a balance between the horizontal pressure gradient and the Coriolis force. 

Within the ABL winds are rarely geostrophic, but they approach geostrophic just above 

the ABL where the isobars on a weather map are relatively straight (Stull, 2015, p. 303).  

2.2 Wind turbine performance 

2.2.1 Energy extraction 

As an energy conversion device, the efficiency of a wind turbine is expressed in terms 

of the power generated compared to the power available. Rotor disc theory treats the 

swept area of a wind turbine rotor as the cross-section of a cylindrical stream of air 

travelling longitudinally at a constant speed (Burton et al., 2011). This simple model, 

captured in Eq. 1, provides the means of quantifying the power available in the wind 

and is the model used by IEC2017. 
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 ot =
1
2 õ4Ö¢ (1) 

 

where 
ot  = power available in the wind (kW) 
õ = density of the air (kg m-3) 
4 = area swept by the turbine rotor (m2) 
Ö = horizontal wind speed (ms-1) 
(Burton et al., 2011, p. 43) 

 
 

 

Not all available power can be converted, and the ratio of the actual power production 

of the machine to the available power gives a dimensionless power coefficient, BC, 

whose formula is given by Eq. 2.  By optimising the formula for BC, it can be shown 

that the maximum possible value is 0.593, known as the Lanchester-Betz limit (Burton 

et al., 2011, p. 43). Because it is derived from theoretical principles rather than with 

reference to any particular turbine design, the Lanchester-Betz limit provides a fixed 

upper bound for the efficiency of any horizontal axis turbine.  

 

 BC =
o

1
2õÖ¢4

 
(2) 

 

where 
o = Output power (W) 
(Burton et al., 2011, p. 43) 

 
 

Rotor disc theory is simple to conceptualise and easy to apply. However, it ignores 

complexities such as the precise aerodynamics of the blades, variations in the wind flow 

and interactions with the turbine machinery such as blockage effects, vortex shedding 

and wake rotations. The impacts of all excluded phenomena are subsumed into the 
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power coefficient. To accommodate unmodeled variation, IEC2017 provides a set of 

procedures for calculating the uncertainty in its output predictions. 

2.2.2 The power curve 

The behaviour of a wind turbine is traditionally described by a power curve in which 

power output is plotted as a function of wind speed. The version provided in table and 

graphical form in manufacturers’ product brochures is referred to as the sales power curve 

and Fig. 4 shows an example for a typical multi-megawatt variable pitch/variable speed 

turbine.  As part of a wind energy development, the manufacturer will provide the 

developer with a warranted power curve which reflects the wind regime at the site. During 

PPT, a measured power curve is created, and the main output of the test is a comparison 

between the warranted and measured power curves. 

 

Figure 4: Typical manufacturer's power curve6 

 

                                                

6http://www.wind-power-program.com/Library/Turbine%20leaflets/Gamesa/Gamesa%20G90%202mw.pdf  
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The power curve can be divided into four main regions as shown schematically in Fig. 

5.   In regions I and IV there is no power output because the wind speed is below cut-in 

or above cut-out wind speed respectively. As the wind speed increases above cut-in, the 

power output of the turbine also increases until the generator is operating at its rated 

capacity. The curve is not linear in region II because the power output is proportional 

to the cube of the wind speed (see Eq. 1). For most of region II therefore the curve is 

slightly concave. As wind speed approaches rated the curve becomes convex and it is 

sometimes useful to refer to this transitional part of region II separately as region IIa. 

Region III covers speeds between rated and cut-out during which the power output 

remains at rated thanks to regulation by the control system. The critical characteristics – 

cut-in wind speed, cut-out wind speed, rated speed and rated capacity – vary from one 

model of turbine to another. 

 

Figure 5: Regions of the power curve 

 

As a simple bivariate relationship between mean horizontal wind speed and power 

output, the power curve has an intuitive appeal. Although the wind speed in question is 

usually assumed to refer to the horizontal wind at hub height, wind speed actually varies 
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in three dimensions across the rotor and the power output reflects this heterogeneity. In 

practice, many of the parameters mentioned in §2.1.4 also influence power output.  

The power curve model also assumes that turbine performance can be adequately 

described with reference to the mean and standard deviation of wind speed and power. 

Since the mean and standard deviation are one-point statistics, they cannot take account 

of dynamic variations over time (Clive, 2012; Hedevang, 2014; Katul et al., 1994; 

Morales et al., 2012; Schottler et al., 2016). With dynamic variations excluded, their 

influence appears as increased uncertainty in the PPT results and are visible as 

unwanted dispersion in the measured power curve scatter plot.  

2.2.3 Annual Energy Production 

All industry stakeholders rely on an estimate of the expected energy yield from a turbine 

for business and technical decision making. PPT therefore yields an estimate of annual 

energy production (AEP) for comparison with the pre-installation estimate based on the 

warranted power curve and the technical specification of the turbine in question. The 

formula, shown as Eq. 3, treats AEP as a function of the measured power curve and the 

wind distribution at the site. It is well-known that the spread of natural wind speed is 

well approximated by a two-parameter Weibull distribution (Burton et al., 2011, p. 12). 

The distribution’s scale parameter, c, and the shape parameter, k, can be adjusted to fit 

the observed wind distribution at a site (G. L. Johnson, 2001).  Generic AEP is calculated 

in IEC2017 using the one-parameter Rayleigh distribution, which is identical to the 

Weibull with a fixed shape parameter value of 2 despite the loss in accuracy (Celik et al., 

2010). Where more detailed information about the local wind regime is known, 

IEC2017 allows for site-specific AEP to be calculated and reported using the Weibull 

distribution in addition to the generic AEP. 
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where 
k* = number of hours in a year = 8760 
k = number of wind speed bins  
Ö. = normalised and averaged wind speed in bin l 
o. = normalised and averaged power in bin l 
K(∙) = cumulative probability distribution 
  either Rayleigh, Rc, or Weibull, Wc given by 
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where 
Öä = annual average hub height wind speed 
> = Weibull scale parameter  
@ = Weibull shape parameter 

 
 

 

The IEC2017 procedure requires that AEP is calculated for a range of mean hub height 

wind speeds from 4 ms-1 to 11 ms-1, and is presented in two forms, measured and 

extrapolated. To calculate measured AEP, only valid wind speed bins are included and 

zero power output is assumed for all other bins below and above this range. A wind 

speed bin is considered valid in IEC2017 if it contains at least 30 minutes of data. 

Where the set of valid bins does not extend up to turbine cut-out, extrapolated AEP is 

calculated by assuming the value of the highest measured bin for all bins between the 

top of the measured range and cut-out wind speed.  

The warranted power curve is intended to represent the prevailing wind regime at the 

turbine location and this typically includes limits on certain parameters such as 

turbulence intensity and wind shear. The data used to create the measured power curve 

is filtered to eliminate data points that do not conform to the warranted conditions. The 

estimated AEP is therefore highly dependent on the filters applied during the test. Thus, 

the estimated AEP provides a means for comparing the effects of different filtering 

strategies. A recent study employing this technique reported on the comparative effects 
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of filtering on TI, atmospheric stability and different methods for measuring wind 

speed (St. Martin et al., 2016). The results showed that AEP calculated using the sales 

power curve with no filters led to a higher figure than with filters applied. This is to be 

expected given the generic nature of the sales power curve and the restricted range for 

which any power curve may be deemed valid. Results also showed statistical difference 

between wind regimes defined by partitioning the data into three categories on each of 

the two parameters of interest. The largest AEP estimate was seen in the case of 

medium TI and unstable atmospheric conditions. The study concluded that site-specific 

power curves could be used to represent different combinations of parameters rather 

than applying filters to reject all but a narrow range of data points. The study did not, 

however, make any claims about which of the various AEP estimates was the most 

accurate. This points to a limitation on the use of the sales power curve for this 

purpose, and on the use of AEP in general as a comparative measure. Without taking 

site-specific conditions into account, the sales power curve can only provide an 

approximate benchmark. In addition, the manufacturer has a theoretical interest in 

providing an optimistic picture of a turbine’s performance since the purpose of the sales 

power curve is to attract customers. In contrast, the manufacturer’s best interests are 

served by applying conservative limitations on the turbine’s performance in the 

warranted power curve. Thus, the sales power curve may overestimate actual 

production while the warranted power curve may underestimate it (Albers, 2012). While 

an objective benchmark for AEP may not therefore exist, an examination of the 

differences in AEP estimates can provide insight into the comparative performance of 

different data filtering strategies as shown by St Martin (2016).  

From a statistical point of view, the optimal AEP estimate will be the one which 

minimises the unexplained variance in the data (Janssens et al., 2016). Since the variance 

in the data appears as scatter in the measured power curve, a filtering strategy which 

minimised the scatter will be preferred in this project. 
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2.2.4 IEC2017 process overview 

At a high level, the PPT procedure set out in IEC 61400-12-1 is a simple one, consisting 

of preparation, measurement and analysis phases while site selection is assumed to have 

already taken place. The main phases can be further broken down as follows: 

1. Preparation 
• Selection of test turbine(s) 
• Determination of the free-stream sector(s) 
• Location of the meteorological mast (met mast) 
• Determination of flow distortion effects and associated uncertainties 
• Traceable calibration of test instruments (ISO, 2005) 
• Site calibration 

2. Measurement 
• Accumulation of data over contiguous ten-minute periods 
• Rejection of data that deviates from agreed constraints for the test 

3. Analysis 
• Production of measured power curves 
• Calculation of AEP 
• Calculation of power coefficient 
• Calculation of measurement uncertainties 
• Extrapolation from test turbine result to the whole wind installation 

There are five normalisation procedures included in IEC2017: 

• Mast flow distortion correction 
• Flow correction from site calibration 
• Rotor equivalent wind speed (REWS) 
• Air density correction 
• Turbulence normalisation 

Power curves and AEP are presented for both sea-level and site-specific air density. The 

reference sea-level density is the ISO standard atmosphere of 1.225 kg/m3 while the 

site-specific value is simply the mean measured density over the course of a 

measurement campaign. Descriptions of the actual procedures used and the results of 

the PPT are presented in a standard test report which also includes estimated 

measurement uncertainty. The following concepts are central to the procedure. 

Measurement sector 

Wind flows are distorted when they interact with obstacles and this can include a 

reduction in velocity through blockage effects (Tindal et al., 2008), an increase in 
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mechanical turbulence due to wake effects (Barthelmie et al., 2011) or changes in 

velocity and direction as the wind flows around the turbine nacelle (Dahlberg et al., 

1999). In the first two cases, the general solution is to eliminate records where the wind 

is flowing from a direction in which there are known obstacles (including turbines and 

met masts) leaving a measurement or free-stream sector. To avoid the third issue, IEC2017 

requires measurement instruments to be mounted on a met mast at a distance of at least 

two rotor diameters from the turbine. 

Site calibration 

During a power curve test, the data collected at the met mast are assumed to be 

representative of conditions at the turbine site. In flat, homogeneous terrain with no 

obstacles, this may be true, but often turbines may be sited close to forests, settlements 

or orographic features which can introduce systematic distortions into the air flow. The 

purpose of site calibration is to identify and correct for predictable distortions. IEC2017 

provides limits on the slope and surface height variation shown in Table 1 to define flat 

terrain. Complex terrain encompasses any terrain that deviates from these conditions. In 

Table 1, L is the distance from the foot of the turbine to the wind measurement 

equipment, H is the turbine hub height and D is the rotor diameter. A site calibration is 

required where the terrain is assessed as complex, and may be performed in other 

situations as agreed by the parties to the PPT contract. 

 

Table 1: Conditions for flat terrain 

Distance Sector Max. slope (%) Max. variation 
from plane 

< 2L 360° < 3 < 1/3 (H – 0.5D) 

>= 2L and < 4L Measurement sector < 5 < 2/3 (H – 0.5D) 

>= 2L and < 4L Outside measurement sector < 10 Not applicable 

>= 4L and < 8L Measurement sector < 10 < (H – 0.5D) 

>= 8L and < 16L Measurement sector < 10 Not applicable 
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Site calibration is a stage of the PPT process that takes place in advance of the 

installation of the turbine to be tested. A second met mast is installed at the turbine site 

(the turbine mast) where data is collected and compared with data from the permanent 

met mast (the reference mast). The data from both masts is divided into wind direction 

bins of 10° and wind shear bins of 0.05, and a slope and offset are calculated for each 

bin. During the test itself, flow distortion corrections are applied to the measured data 

by multiplying by the slope and adding the offset identified for each bin. Slope values 

are usually close to one, and offset values are usually close to zero. IEC2017 mandates a 

minimum quantity of data that must be collected per bin for the site calibration to be 

valid.  

Site calibration represents a significant expense for developers. Not only is the cost of a 

second met mast significant; the PPT process is also extended, possibly by several 

months. This incurs additional professional fees as well as ongoing equipment 

overheads.  

Ten-minute averages 

The data required for PPT is typically sampled at 1 Hz and reduced to statistical 

quantities by aggregation over periods of ten minutes. Each period is then represented 

by its minimum, maximum, mean and standard deviation. The spectral gap identified by 

van der Hoven (1957) shows that high-frequency fluctuations corresponding to 

turbulence occur above 10 cycles per hour, or 1 cycle every six minutes, peaking at just 

below 60 cycles per hour. The choice of ten minutes as the averaging period is therefore 

justified since it captures all frequencies above the spectral gap (Christensen et al., 

1986). However, Wächter et al. (2012) point out that as one-point statistics, the mean 

and standard deviation do not capture the dynamic information within the averaging 

period. Given that the response time of a wind turbine is of the order of 1s, fast 

variations such as wind gusts will have an effect on the turbine machinery which is not 

reflected in the standard statistics. Some authors have suggested that a characteristic 

averaging time should be associated with each type of turbine based on its 

characteristics (Morales et al., 2012). While this idea is not pursued in the current work, 

the alternative of employing alternative statistical measures that preserve information 
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about the dynamic behaviour is investigated. Two-point statistics such as structure 

functions would be suitable for this purpose, and are discussed in §2.3.4. 

Method of bins 

IEC2017 employs the method of bins (Atkins, 1978) for aggregating data into ten-

minute averages (TMA). The procedure is to divide the range of one parameter 

(typically wind speed) into a set of subranges or bins of equal size. The whole dataset is 

then partitioned according to the binned parameter, and ensemble averages of the other 

parameters are computed for each partition. To mitigate the effect of outliers, the 

median value is occasionally used in preference to the mean (Grachev et al., 2005; Türk 

& Emeis, 2010). 

The method of bins is integral to the IEC standard for PPT (IEC, 2005) where it is used 

to calculate the measured power curve of a turbine and also the relationship between 

wind at the reference mast and wind at the turbine site during the site calibration phase. 

In the first case, the data is grouped by wind speed into bins of width 0.5 ms-1, and in 

the second case, data are grouped by direction into 10° bins, and by shear into bins 

corresponding to increments of 0.05 in the value of the wind shear exponent, a.   

When dividing data into bins, a logical requirement is that the bin intervals are closed at 

one end and open at the other. A scheme in which the intervals are closed at both ends 

would risk some data items being double-counted, and using open intervals would risk 

some data items being missed completely if their values happen to fall on a bin 

boundary. Although IEC2017 is silent on the interval to be used when binning data for 

PPT purposes, MEASNET recommends using a left-closed interval.  

Measurement configuration 

The standard allows four combinations of met mast and measurement instrumentation: 

1. Met mast to hub height and remote sensing to all heights 
2. Met mast below hub height and remote sensing to all heights 
3. Met mast above hub height 
4. Met mast to hub height 
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The use of remote sensing devices such as sodar and lidar was introduced into the 

standard with the new edition, and there has not yet been sufficient time to gather data 

about their use in real PPT contracts. A typical installation continues to involve a met 

mast that reaches up to the turbine hub height with at least one anemometer and one 

wind vane at that level and the same configuration lower down. Temperature, humidity 

and pressure are typically measured at a minimum of one level. Sonic anemometers 

capable of 3D measurements are permitted in place of mechanical instruments. 

However, concerns over costs often mean that the installation only satisfies the 

minimum requirement (Henke & Clive, 2017; Sumner & Masson, 2006a). All 

instruments must be professionally calibrated at a MEASNET-approved facility. In all 

configurations, power measurements are provided by the turbine’s supervisory control 

and data acquisition (SCADA) system. 

Data logging 

Data is recorded using a data logger at 1 – 20 Hz, and a script on the logger aggregates 

the data into ten-minute records including the mean, standard deviation, minimum and 

maximum value for each period. The power output from the turbine is measured and 

aggregated in a similar fashion. The scripting capabilities of data loggers are quite 

powerful which has led some authors to suggest other statistics that could be collected 

as a matter of course. While the standard values listed above are all one-point statistics, 

it has been suggested that two point statistics such as transience might capture more 

detail of the actual meteorological conditions (Clive, 2012). So far however this idea has 

not been taken up. 

Data rejection 

The standard PPT procedure tests the operation of a turbine under an ideal set of 

conditions, only some of which can be defined using deterministic procedures. In the 

current work, these are referred to as quality filters because they are applied simply to 

safeguard the quality of the data. As part of a PPT contract additional filters are 

negotiated that reflect the capabilities of the turbine, the limits of applicability of the 

power curve and the expected conditions at the site. These contractual filters can be more 
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or less restrictive depending on the concerns of the negotiating parties. IEC2017 

specifies the following reasons for data rejection: 

a) external conditions other than wind speed are out of the operating range of the 
wind turbine 

b) the wind turbine cannot operate because of a wind turbine fault condition 
c) the wind turbine is manually shut down or in a test or maintenance operating 

mode 
d) failure or degradation (e.g. due to icing) of measurement equipment; 
e) wind direction outside the measurement sector(s) […]; 
f) wind directions outside valid […] site calibration sectors; 
g) any special atmospheric condition filtered during the site calibration shall also 

be filtered during the power curve test 

(IEC, 2017) 

Conditions b), c) and d) are technical requirements that have no relationship to the 

meteorological conditions. A common situation that falls under condition c) is where 

the output of the turbine is constrained by the supervisory control system to a certain 

level. This operational mode, known as curtailment, introduces artificial relationships into 

the data which appear as horizontal trends in the power curve at the curtailment level.  

The detection of icing and the elimination of affected records is mandated by the 

standard, but no specific methods are recommended. MEASET provides a clarification 

which states that icing is likely where the measured temperature is below 2ºC and the 

relative humidity is above 80% (MEASNET, 2009). 

Conditions e) and f) refer to the definition of the free-stream sector. Only records 

where the wind direction is deemed valid in that sense are permitted.  

The conditions discussed so far can all be used to define quality filters as defined above. 

Conditions a) and g) in contrast are open to interpretation and to negotiation and give 

rise to the contractual filters for a particular PPT project. Contractual filters vary 

considerably from one project to another depending on the manufacturer’s assessment 

of the site and primarily define limitations on turbulence intensity, shear and 

occasionally other parameters such as wind veer, inflow angle, temperature and air 

density. Any TMA records where the relevant parameter falls outside the agreed range is 
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normally excluded from the analysis. However, the PCWG has agreed in principle that 

instead of distinguishing between valid and invalid records, it would be more 

appropriate to distinguish between an inner range and an outer range of parameter 

values. The inner range would define a set of conditions under which 100% of 

warranted AEP could be expected whereas a lower performance could be defined for 

the outer range (PCWG, 2013). However, this suggestion has not yet been taken up by 

the industry. To provide an illustration of a contractual filter, the valid range of TI 

might be specified as 0.05	 < 	ÉΩ	 < 	0.15. Alternatively, a more complex filter might be 

defined such the example below taken from the warranty conditions for a real PPT 

project. The complexity in the upper bound arises from the tendency for higher wind 

speeds to suppress turbulence (Ernst & Seume, 2012; K. Y. Lee et al., 2017). 

0.05 < ÉΩ < 0.1 ∗ (1.25 ∗ Ö* + 6)/Ö* 

 

Reporting 

The power curve test defined in IEC2017 requires the reporting of the measured power 

curve, AEP and the turbine power coefficient in tabular and graphical format. Wind 

speeds are normalised separately to sea-level and to the site-mean air density and both 

calculations are presented. 

2.2.5 Uncertainty in IEC2017 

Uncertainties are calculated for each wind speed bin using formulae based on the ISO 

Guide to the Expression of Uncertainty in Measurement (GUM) (JCGM, 2008). GUM 

distinguishes between category A uncertainties which are estimated with reference to 

the statistical distribution of measured values, and category B uncertainties which are 

estimated from other data. The uncertainty in the power curve and in the predicted 

AEP is estimated by combining the bin uncertainties. 

IEC2017 provides a list of more than 60 sources of uncertainty of which only two are 

classified as category A. They are the statistical variation in site calibration and the 
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variability of electrical power. The standard uncertainty in the normalised mean power, 

~Å,., in bin l is given by 

 ~Å,. =
úÅ,.

¿k.
 (4) 

 
where 
k. = number of TMA power values in bin	l 
úÅ,. = standard deviation of TMA power values in bin l 

 
 

 

Category B uncertainties arise from the resolution of the measurement instruments, the 

data acquisition (DAQ) system, the topological characteristics of the site, the prevailing 

wind conditions and the mathematical nature of any methods that are applied to the raw 

data. In cases where the uncertainty is expressed as a limit, (i.e.  ±î), as is the case with 

instrument specifications, and a rectangular probability distribution is assumed, the 

standard uncertainty, ~, is estimated by Eq. 5. 

 ~ =
î
√3

 (5) 

Each category B uncertainty is related to the power by a sensitivity parameter. For 

example, the sensitivity parameter for wind speed is defined by the slope of the power 

curve in the relevant bin. Many category B uncertainties are fixed quantities that do not 

change from one wind speed bin to another. Others are calculated as a percentage of 

the mean value in each bin.  

Category B uncertainties are assumed to be uncorrelated, and are therefore summed 

quadratically. That is, each value is squared, the squares are added together and the 

combined uncertainty is the square root of the total. 
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2.2.6 Costs of PPT 

The costs associated with a PPT project come in two kinds, direct and indirect. The 

direct costs are those concerned with  

• setting up and maintaining the measurement equipment 
• performing a site calibration if necessary 
• monitoring the data collection 
• analysing data 
• writing reports 
• decommissioning measurement equipment not needed in the long term 

Because of the climatic conditions in temperate regions where many wind 

developments take place, the summer period is often critical for the overall construction 

schedule. It is common, for example, to carry out foundation work in one summer 

season, and to install the turbines themselves the following year.  Foundation work 

includes geological surveys, construction of access roads and turbine hardstands and the 

installation of met masts. This means that there is a window of around six months in 

which to complete the site calibration after the installation of the masts and before 

turbine construction is due to begin. If the data collection required for the site 

calibration takes longer than expected, it will then start to impact the overall 

constructions schedule which leads to indirect costs. These can include, for example, 

the cost of cranes required for turbine installation. Continued use of such equipment 

can incur costs of around £250K per additional day (Wood Clean Energy, personal 

communication, 24 July 2019).  

Independent engineers usually cost a PPT project assuming a three-month duration per 

measurement campaign which could refer either to the site calibration or to the test 

period itself. The actual details of a particular project will depend strongly on how the 

costs are accounted for by the various parties to the contract. Given this common 

practice though and assuming 30.4 days per month, an additional day would add 

approximately an extra 1% to the direct cost of the campaign: 

100	 ×
1

3	 × 30.4 ≅ 1% 
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However, this only accounts for the management and operational responsibility for the 

campaign itself. It does not include equipment maintenance costs, or any indirect costs 

that result from over-runs (Wood Clean Energy, personal communication, 24 July 

2019). 

2.3 Meteorological variation 

2.3.1 Introduction 

As intimated in §2.1.4, the meteorological context in which wind turbines operate is 

complex with highly inter-dependent and non-linear parameters, some of which are 

accommodated in the IEC2017 PPT procedure while others are not. Research on wind 

turbine performance tends to be selective, focussing on specific combinations of 

parameters. A common approach is to partition the data according to a parameter of 

interest and estimate AEP for high and low values. St. Martin et al. (2016), for example, 

examined the effect of turbulence on the AEP of a 1.5MW onshore turbine by 

partitioning the data into three categories corresponding to low (ÉΩ	 < 	0.15), medium 

(0.15	 < 	ÉΩ	 < 	0.2) and high (ÉΩ	 > 	0.2) turbulence intensity (TI). Their results showed 

that the AEP for low TI was reduced by 15% compared to the AEP for the medium 

category, and the AEP for high TI was reduced even further by about 32%.  

Montes et al. (2009) examined the impact of different values of the wind shear 

exponent on the AEP calculated for three sites in Spain. The data was collected and 

analysed in accordance with IEC2005, and a similar pattern was found across all three 

sites. The whole database was partitioned into three shear classes, and high shear (a	 >

	0.17) was found to significantly reduce the performance of the turbine at low wind 

speeds. However, a high overall wind speed was shown to reduce the effect of shear. 

Elsewhere, very high shears where the shear exponent exceeds 0.35 have been shown to 

decrease power output of a turbine by up to 42% (Wagner et al., 2009). Other studies 

have demonstrated performance impacts of air density (Pandit et al., 2019), wind veer 

(Walter et al., 2009), inflow angle (Pedersen, 2004), atmospheric stability (Sumner & 
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Masson, 2006b; Wharton & Lundquist, 2010) and intermittency (non-Gaussian wind 

statistics) (Schottler et al., 2016).  

Some studies go beyond the direct analysis of a single parameter. Kwon (2010), for 

example, examines the combined influence of air density, wind speed and distribution 

and the surface roughness exponent. Bulaevskaya et al. (2015) investigate wind speed at 

multiple heights, wind veer and air density while Lee et al. (2015) consider wind 

speed, wind direction, air density, humidity, turbulence, and wind shear. By selecting a 

small set of promising parameters to examine these examples improve on single-

parameter studies, but still do not account for the influence of excluded parameters or 

interactions between parameters.  

A further limitation of existing research in this area is the reliance on traditional 

measures of certain meteorological parameters. For example, turbulence is usually 

represented by the coefficient of variation of horizontal wind speed, referred to as 

turbulence intensity (TI) even though other measures have the potential to retain more 

information about turbulent structures and their behaviours. Turbulence kinetic energy, 

for example, incorporates information about turbulent variation in the vertical 

dimension as well as the horizontal (St. Martin et al., 2016) while structure functions 

retain information about temporal variations (Clive, 2012; Davidson, 2004, p. 90). 

This section reviews meteorological parameters with a theoretical impact on turbine 

power production based on work in micrometeorology as well as wind energy. Where 

parameters are addressed in IEC2017, the means for accommodating them is described 

and alternative measures are discussed where appropriate. Through this exercise, 

candidate parameters are identified for further investigation in the current work. The 

intention is to avoid an over-reliance on those parameters and measures which are 

traditionally used, and to open up the possibility of identifying novel parameters or 

alternative representations of traditional parameters which could be incorporated into 

an improved PPT process. 
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2.3.2 Temperature 

Generally speaking, the temperature of the air decreases with increasing height due to 

the dissipation of energy received at the surface via solar warming. In the absence of 

any other effects, the rate of decrease is 9.8 K km-1 (Wallace & Hobbs, 2006, p. 77) 

which is known as the dry adiabatic lapse rate, Γ«. There are two major influences on 

the vertical temperature profile. The first of these is the decrease in pressure with height 

above the surface which results in air parcels of equal mass and enthalpy exhibiting 

different temperatures as predicted by the ideal gas law: 

 

 oã = jyÉ (6) 

 

where 
P = pressure (Pa) 
V = volume (m3) 
n = number of moles of gas 
R = universal gas constant = 8.3144598 J mol-1 K-1 
T = absolute temperature (K) 

 

 

To accommodate height-related pressure effects, a correction can be applied which 

leads to a theoretical quantity known as the potential temperature, q, which represents the 

temperature that a parcel of air would have if it were brought adiabatically to a height of 

zero metres above ground level (Stull, 2015, p. 61). Potential temperature has the 

advantage of being a conserved quantity with changes in height.  

The second factor that affects apparent temperature is the moisture content of the air. 

Because the gas constant for dry air is smaller than that for water vapour, moist air has a 

lower density than dry air under equal temperature and pressure (Jacobson, 2005, p. 33). 

For a dry air parcel to have the same density as a moist air parcel under equal pressure, 

its temperature would need to be higher and another correction can be applied to the 

measured temperature to correct for the degree of humidity. This yields the virtual 

temperature, ÉÑ, defined as the temperature of dry air with the same density and pressure 

as moist air. The virtual temperature of a parcel of moist air is larger than its actual 
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temperature. Temperature values measured with a sonic anemometer are very close to 

the virtual temperature because of the effect of moisture on the speed of sound 

(Schotanus et al., 1983) to the extent that the two can be treated as the same with 

negligible loss of accuracy (Kaimal & Gaynor, 1991). Where the actual temperature is 

required, a correction must be made to values from a sonic instrument. 

The potential virtual temperature, çÑ, is the result of correcting for both height and 

humidity, and can be calculated from the virtual (sonic) temperature using Eq. 7: 

 

 çÑ = ÉÑ ´
1000
< ≠

%.}»…

 (7) 

 
where  
ÉÑ =virtual temperature (K) ≅ sonic temperature, ÉQ 
< = barometric pressure (mbar)  

 
 

 

Temperature variations in the ABL occur slowly and over relatively large distances. 

Differences in temperature over the vertical extent of a wind turbine rotor and within a 

ten-minute averaging period or between periods are likely to be very small. However, 

temperature is essential for the estimation of several other parameters including air 

density in particular. It has been shown that models that include temperature alongside 

wind speed and direction better describe the performance of wind turbines for 

performance monitoring (Schlechtingen et al., 2013). 

2.3.3 Air density 

The amount of energy in the wind available for extraction depends on the mass flow. 

Air density, defined as a function of temperature, pressure and relative humidity, is 

therefore an important parameter. IEC2017 provides Eq. 8 for the estimation of air 

density. 
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 õ =
1
É  

<
y%

− ùot ´
1
yz

−
1
yt

≠À (8) 

 

 
where 
B = barometric pressure (Pa) 
ù = relative humidity (%) 
yz = gas constant for dry air  
yt = gas constant for water vapour  
ot  = vapour pressure given by 
 

ot = 2.05 × 10®Ãe%.%…¢©»Õ…	Œ 

 

 
 

 

Using virtual (sonic) temperature, the humidity correction is not necessary and a simpler 

formula can be used: 

 õ =
<

y%ÉÑ
 (9) 

 

The measured atmospheric pressure can be normalised to a particular height above sea 

level using the hypsometric equation (Stull, 2015, p. 17) as shown in Eq. 10. This can be 

useful, for example, in estimating sea-level pressure from values measured at another 

altitude. 

 <} = <©π
 œ((–®(—)

F“Ç”"""
À
 (10) 

 

where  
<. =barometric pressure measured at height ê. (mbar)  
S =acceleration due to gravity (ms-2)  
yz =gas constant for dry air (2.8704 m3 hPa kg-1 K-1)	
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In order to allow comparison with the warranted power curve, an air density correction 

is applied to the measured wind speed values in IEC2017 using Eq. 11. The standard 

requires two sets of results to be presented – one where the data has been normalised to 

standard sea-level density of 1.225 kgm-3 and the second that uses the site-specific air 

density. This is simply the mean density calculated over the whole dataset.  

 Ö/ = Ö ´
õ
õ%

≠
©

¢‘
 (11) 

 

where 
Ö/ = normalised wind speed (ms-1) 
Ö = TMA value for mean horizontal wind speed (ms-1) 
õ = TMA value for density (kg m-3) 
õ% = reference density (kg m-3) 

 
 

 

2.3.4 Turbulence 

Turbulence is a high-frequency, three-dimensional chaotic component superimposed 

onto the mean direction of fluid flow (Davidson, 2004). The two main sources of 

turbulence are interactions with surface features and convection due to solar warming 

(Burton et al., 2011). Surface interactions create circular eddies primarily because of the 

pressure differential introduced into a smooth flow by viscous forces as the laminar 

flow passes over or around an obstacle. In fluid dynamics, viscous forces tend to damp 

the motion of a fluid while inertial forces act to maintain its motion and the ratio of 

inertial forces to viscous forces is represented by the dimensionless Reynolds number. 

Turbulent eddies break down over time as kinetic energy is passed down from large 

scale structures – which can be similar in size to the ABL itself (Jacobson, 2005) – to 

smaller scales. During this energy cascade vortices become smaller and their kinetic 

energy eventually dissipates as heat at the Kolmogorov microscale around one or two 

millimetres when viscous forces start to dominate (Davidson, 2004; Jacobson, 2005). 

Because eddy formation and dissipation are not coherent, atmospheric turbulence 

consists of many superimposed eddies at different scales moving in different directions. 



 

  

 
38 

This complexity means that turbulent phenomena are resistant to a deterministic 

explanation and must be described in statistical terms (Davidson, 2004).  

Traditionally, turbulent air flow is described in terms of its intensity, TI, defined as the 

coefficient of variation of wind speed given by Eq. 12. 

 

 ÉΩ = 	ú Ö‘  (12) 

 where  
ú = standard deviation of wind speed (ms-1) 

 

 

Turbulence intensity is expressed as a percentage and is calculated over ten-minute 

intervals. This makes it a convenient measure which is simple to calculate and to 

interpret (Roy, 2014). However, since both the mean and standard deviation are one-

point statistics, information about the temporal structure of the wind speed variation is 

lost. In addition, TI contains no information about variation in the vertical dimension. 

Mathematically, the coefficient of variation, ã, has been criticised among other things 

for being sensitive to outliers and to changes in the mean. Kvålseth (2017) proposes a 

second-order coefficient of variation, ã}, defined as the standard deviation divided by 

the root mean sum of squares: 

 

 
ã} =

ú

’1
j∑ é}/

©

 
(13) 

 

Kvålseth argues that the resulting statistic resolves the issues mentioned above, and in 

addition is more amenable to physical interpretation. Taking values strictly between 0 

and 1 it can be interpreted as a percentage representation of the variation in a set of 

data. In contrast, ã can take values greater than 1 which are less intuitive.  
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Within a small enough averaging period, the distribution of deviations from the mean 

of a time series can be approximated by a Gaussian. Based on this observation, 

IEC2017 defines an analytical normalisation procedure that can be carried out using 

standard measurements (Albers, 2010; Clifton & Wagner, 2014). The stated purpose of 

the method is to correct for distortions to the power curve caused by the original 

averaging operation. A 3-step procedure – of which the second step is iterative – is 

provided for determining the zero-turbulence power curve based on characteristics of 

the measured power curve. The central concept is the calculation of a simulated power 

output, oQ.+, using Eq. 14 which is adjusted until it converges with the measured values 

at key points in their distribution. 

 oQ◊+(N)"""""""""" = ÿ opq%(N) ∙ J(N)HN
Ÿ

Ñq%
 (14) 

 

where 
Psim(u) = simulated power output for a given 10-minute period (kW) 
PI=0(u) = zero turbulence power curve 
f(u) = Gaussian distribution of wind speed within the 10-minute period 
 

 
 

 

The power output at a reference turbulence intensity can be calculated using Eq. 15: 

 op012(N)""""""""""" = o(N)"""""" − oQ◊+,p(N)""""""""""" + oQ◊+,p012(N)""""""""""""""" (15) 

 

where 
PIref(u) = power output normalised to reference turbulence intensity Iref 
P(u) = power output measured according to IEC2005 
Psim,I(u) = simulated power output for measured turbulence intensity 
Psim,Iref(u) = simulated power output for the reference turbulence intensity 
 

 
 

 

The turbulence normalisation method offers the possibility of directly comparing 

measurements from a turbine under real conditions with the warranted power curve as 

long as the latter is associated with a specific turbulence intensity as in Fig. 2. With its 

various limitations however, turbulence intensity is a crude measure of high-frequency 
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variation of wind velocity. Nevertheless, it often appears as the default measure in wind 

energy research with no justification or consideration of alternatives. This is the case in 

IEC2017 where the terms turbulence and turbulence intensity are used synonymously. The 

micrometeorology literature describes several other representations of atmospheric 

turbulence, however, and a review is warranted. 

Turbulent variations can be described by making a distinction between a deterministic 

component of flow velocity represented by an average value and a stochastic 

component. Reynolds averaging is one such method which splits a time dependent 

variable such as wind speed into a mean value and associated perturbations as shown by 

Eq. 16. 

 N = N" + N′ (16) 

 
where 
N" = mean wind speed (ms-1) 
N′ = wind speed perturbation (ms-1) 

 
 

 

The perturbations form a series with a mean of zero over the averaging period. 

Reynolds decomposition can be performed separately on measurements in three 

dimensions. Multiplying the perturbation values together and then averaging produce 

covariances which represent the flux of momentum in different directions. Turbulent 

kinetic energy (TKE) is calculated as half of the sum of the wind speed variance in all 

three dimensions (Stull, 1988, p. 45). In Eq. 17, the variance is represented as the mean 

of the squared perturbations within a given averaging period. By convention, an 

Eulerian reference frame is assumed that is aligned with the cardinal geographic 

directions. The zonal direction is west-to-east and the meridional direction is south-to-

north. TKE has the advantage over TI that information about variation in the vertical 

dimension is retained.  

 



 

  

 
41 

 Éb§ =
NåNå"""""" + ÜåÜå"""""" + áåáå"""""""

2  (17) 

 

where  
N′ = perturbation of zonal wind speed 
Üå = perturbation of meridional wind speed 
áå = perturbation of vertical wind speed  

 
 

 

Turbulence has a characteristic length scale of the order of the diameter of the largest 

eddies and is calculated by integrating over the radii of all eddies (Pope, 2000, p. 569). 

While it is not practically possible to do this directly, the integral time scale (turnover 

time) of the eddies can be found by integrating the autocorrelation function of 

horizontal velocity. The integration may be approximated by the sum of the 

autocorrelation sequence for lags from 0 to n-1 (where n is the number of values in the 

series) divided by the sampling frequency (Pope, 2000, p. 197). The autocorrelation 

function x for a lag @ is given by Eq. 18. Mathematically, it is the autocovariance of the 

sequence at the given time lag divided by the variance. Because the autocovariance 

describes the variation in the series at two different time steps, some of the information 

about the temporal structure of the series is preserved. 

 

 xª =
∑ (è. − è")Æ®ª

.q© (è.⁄ª − è")
∑ (è. − è")}Æ

.q©
 (18) 

 

where  
k = number of values in the time series 
è. = series value at time step l 
è" = mean of the time series  

 
 

 

The associated length scale can be found by invoking Taylor’s frozen turbulence 

hypothesis (Burton et al., 2011, p. 227; Taylor, 1935) which simply involves multiplying 

the time scale by the mean wind speed. Since Taylor’s hypothesis depends on the 

assumption of homogeneity, the magnitude of the turbulence intensity must be small 

compared to the mean horizontal wind speed (Stull, 1988, p. 7). 
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A great deal of work on atmospheric turbulence is based on Kolmogorov’s three 

hypotheses (Kolmogorov, 1941). The first is the hypothesis of local isotropy which 

states that any turbulent flow is locally isotropic given a small enough spatial domain 

and a high enough Reynolds number. To be locally isotropic, the flow must first be 

locally homogeneous in the sense that it has the same quantitative structure in all parts 

of the flow field, and in addition it must be invariant to reflections and rotations of the 

coordinate axes (Kolmogorov, 1941; Pope, 2000, p. 190). Simply put, this means that 

the velocity fluctuations have no dominant directional features. A test for isotropy is to 

compare the square of the velocity perturbations (variance) in the longitudinal and 

vertical dimensions (Davidson, 2004, p. 89) where equality indicates isotropy. A great 

deal of work on turbulence is based on wind tunnel experiments where turbulence is 

created by passing the air flow through a wire grid which yields a good approximation 

of isotropic turbulence. However, although the definition of isotropic turbulence allows 

for the existence of a uniform but non-zero mean velocity gradient (Pope, 2000, p. 76), 

it is rarely achieved in natural flows. This can undermine generally-accepted 

assumptions as demonstrated by Stiperski (2018) who demonstrated that different 

similarity scaling relations can be identified for different degrees of isotropy. 

The other two hypotheses, known as the first and second similarity hypotheses, concern 

the rate at which turbulent energy dissipates as heat. Fully-developed turbulence tends 

to dissipate at a constant characteristic rate, ñ, as large eddies break down into smaller 

ones until they are overwhelmed by viscous forces at the Kolmogorov microscale 

(Davidson, 2004, p. 17). The first similarity hypothesis states that for isotropic 

turbulence the probability density function of differences in wind speed at different 

points within the restricted domain is defined solely by the dissipation rate and the 

viscosity. The second states that viscosity can be ignored as long as the distances 

between the measurement points are large relative to the Kolmogorov microscale. The 

dissipation rate can be estimated based on the second-order structure function of the 

wind speed which is a two-point statistic based on differences in speed. While dynamic 

information is lost when single point statistics are used, two-point statistics such as 

structure functions do not have this deficiency (Davidson, 2004, p. 90). The general 

formula for a structure function � of order ∫ is given by Eq. 19. Clive (2012) has argued 
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for the use of �}, which Clive calls transience, as an alternative to the variance in 

turbulence and fatigue loading contexts. The dissipation rate ñ is given by Eq. 20. 

 

 �C = 〈[ΔÜ(x)]C〉 (19) 

 
where 
fiÜ(x) = velocity increment of a lag time x 
and the angle brackets signify expectation. 

 
 

 

 ñ =
~
Ö  

�}

BD
À
¢

}‘

 (20) 

 
where 
~ = sampling frequency (Hz)  
BD  = Kolmogorov constant ≅ 2 (Muñoz-Esparza et al., 2017) 

 
 

 

A further feature of atmospheric turbulence is its intermittent nature. An intermittent 

wind is characterised by frequent gusts caused by the presence of coherent structures 

which are known to affect the turbine loading and could reduce performance. The 

intermittency is visible in the probability density distribution of wind speed increments, 

especially at low time lags, where the tails of the distribution are fatter than they are in a 

Gaussian distribution as shown in Fig. 6  (Boettcher et al., 2003).  

 

Figure 6: Frequency distribution of wind speed increments (Boettcher et al., 2003) 
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Assuming a Gaussian distribution would underestimate the likelihood of extreme events 

(Wächter et al., 2012), and the effect is stronger as Reynolds number increases (Hayot & 

Jayaprakash, 1999).  

An indication of the intermittency of a data series may be obtained by calculating the 

excess kurtosis of the data increments (Mücke et al., 2011). Given that the kurtosis of a 

Gaussian distribution is 3, excess kurtosis, fl}, is calculated from the kurtosis of wind 

speed increments at lag 1 by Eq. 21. The closer this value is to zero, the more 

homogenous the turbulent fluctuations. 

 fl} = b − 3 (21) 

 where 
b = kurtosis  

 
 

 

In summary, turbulence is an extremely difficult phenomenon to describe 

mathematically. The traditional approach of using TI fails to account for certain aspects 

which might be supposed to have an effect on wind turbine power production. In 

particular, the following measures have been identified: 

• Coefficient of variation (turbulence intensity, TI) 
• Second-order coefficient of variation 
• Turbulence kinetic energy (TKE) 
• Turbulence length scale 
• Isotropy 
• Second-order structure function (transience) 
• Turbulence dissipation rate 
• Excess kurtosis of wind speed increments 

Only TI is included in IEC2017 and the impact on power production of the other items 

in the list above has rarely been investigated.  
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2.3.5 Shear 

The tendency of wind speed to increase with height affects the performance of a wind 

turbine as a result of the variation in angle of attack seen by a particular point on a rotor 

blade at different heights. Wind shear can be modelled with the logarithmic formula  

 

 N( =
N∗

ò ‡j
ê
ê%

+ Ψ+ (22) 

 

where 
N( = wind speed at height z (ms-1) 
N∗ = friction velocity (ms-1) 
ò = von Kármán constant (≈ 0.4) 
ê% = roughness length which takes values such as those in Table 2 (m) 
Ψ+ = stability correction 
(Burton et al., 2011, p. 17) 
 

 
 

 

Table 2: Surface roughness lengths 

Type of terrain Roughness length n· (m) 
Cities, forests 0.7 

Suburbs, wooded countryside 0.3 

Villages, countryside with trees and hedges 0.1 

Open farmland, few trees and buildings 0.03 

Flat grassy plains 0.01 

Flat desert, rough sea 0.001 

 

The log law is often approximated by the power law: 

 

 N( = N012 ‚
ê

ê012
„

‰

 (23) 

 
where 
ë = empirically derived constant 
N012  = wind speed at reference height, ê012  
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The power law is often used for its simplicity and because the shear exponent, ë, is a 

more sensitive parameter than surface roughness (Kubik et al., 2011). A further 

advantage of the power law is that ê012 can be taken as any reference height for which a 

wind speed measurement exists. It therefore provides a convenient means for 

estimating the wind speed at a target height ê with respect to the measured reference 

wind speed N(ê012) and rearranging Eq. 23 provides a convenient method for 

calculating ë directly (MEASNET, 2009): 

 ë =
log ÁÖ}

Ö©
‘ Ë

logÈê} ê©‘ Í
 (24) 

 
where  
Ö. =mean wind speed measured at height ê. (ms-1) 	
	

 
 

 

However, α is actually dependent on the stability of the atmosphere (Kubik et al., 2011) 

and ideally a different value of α should be chosen according to the height range over 

which the power law is applied (Burton et al., 2011, p. 17). This has led some authors to 

suggest that the power law is of limited usefulness (Petersen et al., 1998). Both laws 

assume that wind speed increases with height and if that is not the case they may 

become mathematically undefined (Elkinton et al., 2006). Despite these criticisms, the 

power law is used in IEC2017 as the standard means to extrapolate wind speeds above 

the top measurement height. 

The wind speed ratio ë1à (equivalent alpha) is an alternative measure of shear for use 

specifically with wind turbines. It involves taking the ratio of the mean wind speed at 

the top of the rotor to that at the bottom (Colls, 2014). One of the benefits claimed for 

this measure is that it facilitates comparisons between turbines with different 

geometries. 

With the publication of IEC2017, a new method for accommodating shear into the 

PPT process is introduced. The rotor equivalent wind speed (REWS) offers a means of 

deriving a single representative wind speed based on wind speed measurement from at 
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least three heights spanning the whole vertical extent of the rotor where such 

measurements are available. REWS draws on the concept of the driving wind first 

introduced by Christensen et al. (1986) which is a virtual wind speed distinct from the 

measured wind speed, but which is more representative of the input to the turbine. 

 

 

Figure 7: Division of the turbine rotor into segments A1 - A9 for the purposes of calculating the rotor equivalent 

wind speed (Wagner et al., 2011) 

 

REWS divides the rotor into a series of n horizontal segments as shown in Fig. 7 and 

requires a separate representative wind speed measurement, UÓ, for each segment 

(Wagner et al., 2009, 2011). REWS is calculated by summing the cube of the segment 

wind speeds weighted by their area, 4., as a proportion of the total rotor disc area, 4, 

and then taking the cube root as shown in Eq. 25. 

 Ö1à = ´• Ö.
¢ 4.

4
/

.q©
≠
©

¢‘

 (25) 

 

where 
Ö1à  = rotor equivalent wind speed (REWS) (ms-1) 
Ö. = wind speed corresponding to the l th segment (ms-1) 
A = total swept area of the rotor (m2) 
AÓ = area of the l th segment (m2) 
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REWS is designed to represent the hub height wind speed corresponding to the kinetic 

energy flux through the rotor disk (IEC, 2017). While REWS has been shown to reduce 

the scatter in the measured power curve (Eecen et al., 2011), this is not always the case. 

An evaluation of REWS showed the anticipated improvement in only two out of eight 

test datasets (Wagner et al., 2014). 

2.3.6 Veer 

While the major driver of atmospheric wind is the meridional pressure gradient induced 

by solar warming, the Coriolis effect causes the flow of air to turn in the direction of the 

Earth’s rotation which means clockwise in the northern hemisphere (Wallace & Hobbs, 

2006, p. 276). As a result, wind direction changes with height causing further variation 

in the angle of attack seen by a point on a rotor blade as it rotates. In IEC2017, veer is 

usually represented simply as an additional source of uncertainty. Where appropriate 

measurements are available, however, veer can be accommodated into the calculation of 

REWS by multiplying the wind speed in each segment by the cosine of the angle 

difference û.	between the wind direction in segment l and the wind direction at hub 

height as shown in Eq. 26. 

 Ö1à = ´• (Ö. cosû.)¢
4.

4
/

.q©
≠
©

¢‘

 (26) 

 

where 
Ö1à  = rotor equivalent wind speed (REWS) (ms-1) 
Ö. = wind speed corresponding to the l th segment (ms-1) 
A = total swept area of the rotor (m2) 
AÓ = area of the l th segment (m2) 

 

 

 While the approach taken in Eq. 26 is purely local – i.e. relative to the wind direction at 

the hub height of the turbine in question – there are more objective ways that it can be 

represented. One such method is to assume that the effect is linear, and to characterise 

veer in degrees per 100 m (Markowski & Richardson, 2006). Alternatively, the wind 

direction at a particular height can be compared to the direction of the geostrophic 
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wind, R. The horizontal components of the surface geostrophic wind can be estimated 

from  

 

RQ( =
−Δo+
õJ 	

RQ+ =
Δo(
õJ  

(27) 

 

where 
RQ(, RQ+ = zonal and meridional components of the geostrophic wind 
∆o(, ∆o+ = zonal and meridional pressure gradients 
 

 
 

 

A mean horizontal temperature gradient induces a shear in the geostrophic wind known 

as the thermal wind effect. The wind conditions at the top of the ABL are predicted by 

the geostrophic wind formulae plus an increment due to the thermal wind effect which 

is given by Eq. 28 (Stull, 2015, p. 345).  

 

R&( = −
Sℎ	ΔÉÑ+

ÉÑ	J
 

R&+ =
Sℎ	ΔÉÑ(

ÉÑ	J
 

(28) 

 

where 
R&(,R&+ = zonal and meridional components of the thermal wind 
∆ÉÑ(, ∆ÉÑ+ = zonal and meridional gradients of virtual temperature 
ÉÑ = virtual (sonic) temperature (K) 

 
 

 

 

With the passage of synoptic scale weather systems, the transient temperature gradients 

can exaggerate the effect of the Coriolis force, or counteract it, sometimes to the extent 

that the wind actually turns anticlockwise with increasing height in the northern 

hemisphere. This is known as backing, while the more usual clockwise rotation is known 

as veering. Evidence of veering or backing can be seen in the difference between the 
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measured wind direction and the predicted direction of the geostrophic wind at the 

ABL top. Since the geostrophic wind tends to flow parallel to the isobars on a weather 

chart, this difference in direction is known as the cross-isobar angle, ë%, and can be 

calculated with a simple angular difference. That is, the cross-isobar angle is calculated 

at a given measurement height as the difference between the measured wind direction 

and the derived geostrophic wind direction. Negative values represent a clockwise 

rotation of the wind with increasing height as expected in the northern hemisphere.  

2.3.7 Inflow angle 

A wind turbine is designed to respond to the horizontal wind; however, when the 

turbine is situated on sloping terrain, or in stable or unstable conditions there is a mean 

vertical component to the flow. In these cases, the mean flow of air enters the rotor 

disc at some non-zero angle to the horizontal and such off-axis flow has been 

demonstrated to reduce performance (Tindal et al., 2008). The inflow angle, ù, is 

calculated as the inverse tangent of the vertical wind speed á divided by the mean 

horizontal wind speed Ö: 

 ù = tan®© Á
á
ÖË (29) 

2.3.8  Stability 

The diurnal cycle of warming and cooling gives rise to a predictable structure of the 

ABL which is illustrated in Fig. 8. During daylight hours, the surface is warmed by solar 

radiation and heat is transmitted to the air in the surface layer by conduction which 

becomes warmer than the air above. This condition in which a parcel of air will 

continue to rise if displaced from its original position is known as an unstable 

atmospheric regime. The surface and Ekman layers together constitute the ABL which 

grows over the course of the day by entrainment at its upper boundary through the 

action of turbulence (Stull, 1988, p. 11). During the night, the source of thermal eddies 
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is absent and the residual layer is the result of the gradual decay of turbulent eddies 

created during the day. At the same time, a stable layer of cooler, denser air develops at 

the bottom of the ABL as heat energy is absorbed by the surface. In stable conditions, a 

displaced parcel of air tends to return to its original altitude. A neutral regime also exists 

either as a transition between stable and unstable atmospheres, or during overcast 

conditions where solar warming of the surface is suppressed (Emeis, 2011, p. 11). 

 

 

Figure 8: Diurnal evolution of the atmospheric boundary layer (Stull, 1988, p. 11) 

 

The literature contains many methods for representing atmospheric stability ranging 

from those that require high-frequency measurements of temperature and wind velocity 

in three dimensions to very broad indicators such as the time of day. Table 3 illustrates 

this abundance and provides indictive references. 
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Table 3: Stability indicators used in the literature 

Method/metric Used by 
Pasquill–Gifford–Turner 
classification (PGT) 

(Ashrafi & Hoshyaripour, 2010; Gualtieri & Secci, 2011) 

Temperature lapse rate (Eecen et al., 2011; Eecen, 2009; Jacobson, 2005, p.55) 

Obukhov length (f) by eddy 
covariance 

(Argyle & Watson, 2012; Bartholy & Radics, 2005; Coelingh et al., 
1996; Lange et al., 2004; Newman et al., 2015; Sumner & 
Masson, 2006b; Van Den Berg, 2008) 

ℎ/f (ℎ = height of ABL) (Donda, 2015) 

Shear exponent (Vanderwende & Lundquist, 2012; Wharton & Lundquist, 2012) 

Wind speed ratio (Tambke et al., 2006) 

Shear + turbulence intensity (Bleeg et al., 2015; Dörenkämper et al., 2014; Hayes et al., 2012) 

Gradient Richardson number (Krogsæter & Reuder, 2015; Newman & Klein, 2014; Newman et 
al., 2015) 

Bulk Richardson number (Alblas et al., 2012; Chambers et al., 2016; Donda, 2015; K. S. 
Hansen et al., 2012; Holtslag et al., 2014; Optis, 2015; Sathe et 
al., 2011; Tambke et al., 2006; Vanderwende & Lundquist, 2012) 

Brunt–Väisälä frequency (Jacobson, 2005, p. 56; S. S. Zilitinkevich & Esau, 2005) 

Shear capacity (van Hooijdonk et al., 2015) 

Variance of vertical wind speed (Contini et al., 2009; Hunter, 2012) 

Turbulence kinetic energy (Éb§) (Wharton & Lundquist, 2011; Wilson & Venayagamoorthy, 2015) 

Wind direction standard 
deviation 

(Barrios et al., 2008; Slade, 1968; USEPA, 2000) 

Time of day (Ashrafi & Hoshyaripour, 2010; Bailey, 1981; Bleeg et al., 2015; 
Istchenko & Turner, 2009) 

 

With 3-dimensional measurements taken at frequencies at or above 1 Hz with a sonic 

anemometer, vertical fluxes of horizontal momentum and sensible heat can be obtained 

as a direct indication of atmospheric stability through the use of the eddy covariance 

technique (Burba, 2013). Such data is not commonly available during measurement 

campaigns for resource estimation or power performance assessment which typically 

rely on cup anemometers and data averaged over ten-minute periods (Newman & 

Klein, 2014). Mathematically, the covariance of the vertical wind velocity and the 

concentration of a quantity of interest provides a measure of vertical flux (Burba, 2013, 

p.17). Because the change in air density over small vertical distances is negligible, fluxes 

can be expressed in kinematic form by dividing by the density of air and by any other 

constant term (Stull, 1988, p.48). This is convenient because the fluxes can then be 

measured directly since they have the same units as quantities such as temperature and 
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wind speed. Positive flux (i.e. away from the surface) indicates unstable conditions and a 

negative flux indicates stable conditions. Common terms in flux studies are 

Nåáå"""""" covariance of longitudinal (along-wind) velocity with vertical velocity 

Üåáå"""""" covariance of lateral (across-wind) velocity with vertical velocity 

çÑ
åáå""""""" covariance of potential virtual temperature with vertical velocity 

The covariances of horizontal and vertical velocities represent the two components of 

the vertical kinematic flux of horizontal momentum, K. Likewise, the covariance of 

temperature and vertical velocity represents the vertical kinematic flux of sensible heat, 

u. Studies have shown that to capture flux-carrying wavelengths in stable conditions 

requires an averaging period of only 5.6 minutes for momentum flux (Biltoft, 2003b). 

However, this requirement rises in unstable conditions to 27.8 minutes for momentum 

flux and to 16.6 minutes for sensible heat flux. Standard practice in eddy-covariance 

studies is to calculate flux values over consecutive averaging periods of 30 minutes 

(Finnigan et al., 2003; Mauder & Foken, 2006). 

Measurements from sonic anemometers must be adjusted to compensate for the fact 

that these instruments cannot be levelled exactly (Burba, 2013). The procedure requires 

the coordinate frame to be rotated such that the x-axis is aligned with the mean wind 

flow, and the vertical and lateral means are minimised. This can either be done directly 

using trigonometric operations (Foken, 2008, p. 109), or by fitting the measurements to 

a plane in 3-dimensional space, and there is little practical difference in the results of 

these two approaches (Mahrt el al, 2000). The planar fit method takes advantage of the 

fact that the mean wind vector can be used to define a plane as the wind direction 

changes. As a first step, the best-fit plane may be calculated by least-squares regression 

using the algorithm of Wilczak (2001). Secondly, unit vectors in the rotated coordinate 

frame may be derived using the approach of Lee et al. (2004). Finally, the new flux 

vectors are determined by projecting the original vectors onto the new frame of 

reference by matrix transformation (X. Lee et al., 2004, p. 62). 
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When using sonic instruments, a further correction must also be applied to the values 

of vertical flux of sensible heat because sonic temperature is sensitive to humidity. The 

method of Schotanus (1983) whose canonical form is given by Eq. 30 can be used for 

this purpose. 

 áåÉQ
å"""""" = áåÉå"""""" ‚1 +

0.51É"BC

ôí „ − 2
É"Öä

>}""" Nåáå"""""" (30) 

 

where  
> = speed of sound (ms-1) 
ô = latent heat of condensation for water (2.5×106 J kg-1) 
í = Bowen ratio (ratio of heat flux to moisture flux) 	
áåÉQ

å"""""" = sensible heat flux calculated using the sonic temperature	ÉQ  
BC""" = specific heat of air at constant pressure (1012 J kg-1 K-1) 	

 
 

 

Since the moisture term is relatively small the Schotanus method assumes a value of 0.4 

for grassland. Eq. 30 can then be rearranged to find the corrected sensible heat flux.	

In a rotated coordinate frame where the lateral wind velocity component is minimised, 

the vertical kinematic flux of horizontal momentum, K, may are estimated using Eq. 31.  

 K = N′á′"""""" (31) 

The lowest 10% of the ABL is the atmospheric surface layer (ASL) in which vertical 

fluxes of momentum and sensible heat are approximately constant. In this region, 

several parameters can be described by self-similar relationships. Two phenomena are 

mathematically similar if the numerical description of one can be applied to the other 

through a simple transformation such as a change of unit of measurement (Barenblatt, 

1996). In self-similar phenomena, the ratio of values at different heights is constant. 

This simplification facilitates dimensional analysis in which terms are combined so that the 

dimensions associated with them cancel out leaving a dimensionless quantity whose 

value is independent of the measurement scale. The main benefit of similarity theory is 

to reduce the number of independent parameters in a mathematical model by 

combining fundamental parameters into dimensionless groups and establishing the 

value of the resulting dimensionless parameter by experiment. Within the ASL, Monin-
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Obukhov similarity theory (Monin & Obukhov, 1954) defines the Obukhov length, f, 

which can be interpreted as the height at which buoyant parameters start to dominate 

shear-driven turbulent production (Stull, 1988, p. 182) given by 

 f =
−N∗

¢	ç%

òS	áåç%
å"""""" (32) 

 

where  
N∗ = friction velocity  
ò = von Karman constant ≅ 0.4 
	ç% = potential virtual temperature at the surface (K) 
 	

 
 

 

The covariance of ç% with the vertical wind speed in the denominator represents 

sensible heat flux. f is positive in stable conditions and negative in unstable conditions 

and tends to infinity in neutral conditions. It is therefore more usual to use the 

Obukhov stability parameter, ó, defined as the ratio ê/f where ê is the measurement 

height as an indicator of stability. While a value of zero nominally indicates neutrality, a 

small range of values is usually used to define a near-neutral band. The customary 

height for making ASL measurements is 10 m above ground level. 

The friction velocity, N∗, is a generalised velocity scale related to the shearing stress in a 

turbulent air flow (Foken, 2008, p. 31) and defined by Eq. 33. 

 N∗ = ÒÈN′á′""""""Í
}
+ ÈÜ′á′""""""Í

}
Ú
©

Õ‘
 (33) 

Because the cross-wind flow is close to zero in a rotated coordinate frame, this 

definition can be simplified to 

 N∗ = ’ÈN′á′""""""Í (34) 
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Other estimates of stability are based on standard measurements of wind speed and 

temperature, and provide approximate representative values over some height range. 

The bulk Richardson number, yl|, is one of a family of related dimensionless numbers 

which also include the gradient Richardson number based on the temperature gradient 

at a particular height, and the flux Richardson number which is calculated based on the 

vertical fluxes of sensible heat and horizontal momentum. As with the Obukhov 

stability parameter, all variants of the Richardson number are negative in stable 

conditions, positive in unstable conditions and zero in neutral conditions. 

The bulk Richardson number, given by Eq. 35, is essentially the ratio of buoyant 

turbulence production, represented by the difference in potential virtual temperature, 

fiçÑ, between the surface and the top measurement height, ê, to the mechanical 

production of turbulence represented by the square of the wind speed, Ö( , measured at 

the same height.  

 yl| =
S
çÑ"""

ΔçÑ	ê
Ö(

}  (35) 

 
where  
çÑ""" =average potential virtual temperature of the layer 	
	

 
 

 

The literature contains many examples of schemes to divide atmospheric stability into a 

set of classes. However, there is little agreement over the precise number of classes and 

the threshold values. Mohan and Siddiqui (1998), for example, define seven classes with 

thresholds based on the bulk Richardson number, while Wharton and Lundquist (2010) 

define only five classes based on the Obukhov length as illustrated in Table 4.  
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Table 4: Stability class thresholds 

Stability class (Mohan 
& Siddiqui, 1998) 

Rib L (m) Stability class (Wharton 
& Lundquist, 2010) 

Extremely stable, low 
wind 

0.084 ≤ Rib 0 < L < 50 Strongly stable 

Extremely stable 0.042 ≤ Rib < 0.084  –  – 
Moderately stable 0.0072 ≤ Rib < 0.042 50 < L < 200 Stable 
Neutral -0.0036 ≤ Rib < 0.0072 L > 200 or L < -300 Neutral 
Slightly unstable -0.011 ≤ Rib < -0.0036 -300 < L < -15 Convective 
Moderately unstable -0.023 ≤ Rib < -0.011 – – 
Highly unstable Rib < -0.023 -15 < L < 0 Strongly convective 

 

These and other similar schemes can be criticised for the arbitrary nature of some of the 

divisions; however, several authors (Nieuwstadt, 1984; Van de Wiel, Moene, & Jonker, 

2012; Vogelezang & Holtslag, 1996) identify a physical transition in the stable regime 

which separates conditions in which continuous turbulence is maintained by higher 

wind speed at a characteristic height from those in which turbulence is intermittent. 

Vogelezang and Holtslag (1996) identify the wind speed at 40 m (ÖÕ%) as the 

appropriate height. Adopting this approach would lead to a scheme which defines 

unstable and neutral classes and which divides stable regimes into strongly and weakly 

stable depending on the mean wind speed. Thus, the two schemes shown in Table 4 can 

be reconciled as shown in Table 5. 

 

Table 5: Four-level stability classification 

Class Obukhov length 
range 

Bulk Richardson number 
range 

Other 
conditions 

Strongly stable 0 < L < 200 Rib > 0.0072 U40 < 5m/s 

Weakly stable 0 < L < 200 Rib > 0.0072 U40 >= 5m/s 

Neutral -300 > L or L > 200 -0.0036 < Rib <= 0.0072  

Unstable 0 > L > -300 Rib < -0.0036  

 

While the main cycle of atmospheric stability is driven by diurnal variations, it is also 

affected by seasonal effects in temperate latitudes. Solar irradiation is greater in the 
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summer because the tilt of the Earth’s axis induces a longer day length with a greater 

solar elevation, í, or the angle between the sun and the horizon, at noon. Seasonality can 

be represented directly by the solar declination, î, which is the angle between the sun and 

the plane of the equator. The time of day can also be defined with reference to solar 

geometry. The hour angle is the direction of the sun as an angular offset from 0 at solar 

noon, or the moment when the sun is at its highest. Using solar geometry to represent 

these time-related parameters has the benefit of accuracy with respect to physical 

processes rather than to the essentially arbitrary system of clock time. The Pasquill–

Gifford–Turner classification (PGT) makes use of solar elevation and cloud cover to 

classify stability regimes (Ashrafi & Hoshyaripour, 2010; Gualtieri & Secci, 2011).  

2.3.9 ABL height 

The height, ℎ, of the ABL is a potentially important scaling length given that it defines 

the limit on the size of turbulent eddies. Changes in ℎ are driven by the solar cycle of 

heating and cooling and it can be estimated in a number of ways including direct 

measurements of temperature changes and the presence of clouds at the capping 

inversion (Stull, 1988, p. 9). Remote sensing methods are also available including 

radiosonde, ceilometer, light detection and ranging (lidar) and sound detection and 

ranging (sodar) (Contini et al., 2009). The value of ℎ can be estimated using surface 

measurements by relying on theoretical scaling relationships; however, Monin-Obukhov 

similarity theory breaks down above the surface layer (Optis et al., 2016) which implies 

that modifications or alternatives are needed. Some success in extrapolating wind 

speeds and estimating ℎ has been achieved using a three-layer model (Gryning et al., 

2007). Recently, Holtslag et al. (2017) achieved a good correlation between measured 

and predicted values for ℎ using the formula of Rossby and Montgomery (1935): 

 ℎ = BFG
N∗

J  (36) 

 

where 
f = Coriolis parameter 
CRM = Rossby-Montgomery coefficient  
N∗ = friction velocity (ms-1) 
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Previously, there was no general consensus on the value of BFG with values in the range 

0.1 – 0.5 being found in the literature (See for example Kinoshita & Niino, 1990; Kraus, 

2008; Peña et al., 2010; Rossby & Montgomery, 1935). Many authors note that a 

constant value for the Rossby-Montgomery coefficient is not realistic since the height 

of the boundary layer is clearly dependent on atmospheric stability. Holtslag et al (2017) 

present modified formulae for BFG , shown as Eqs. 37, based on the Obukhov length, 

thus accommodating atmospheric stability into the estimate of ℎ. A limitation of 

Holtslag’s approach is that the empirical coefficients are derived from data from an 

offshore site and may not be ideally suited to onshore locations. 

Stable BFG = 0.04 + 0.05 ´1 + 2
100
f ≠

®©

 (37) 

Unstable BFG = 0.17 − 0.08 ´1 − 0.5
100
f ≠

®¢

	  
 

2.3.10  Normality 

When averaging a series of values over time, it is common to use the mean and standard 

deviation of the aggregation to characterise the whole sample. While applicable to any 

distribution, this approach implicitly suggests that the data is normally (Gaussian) 

distributed. This can be misleading as illustrated by the plots in Fig. 9 which all have the 

same mean and standard deviation, but very different coverage. 
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 Figure 9: Data distributions with the same mean and standard deviation 

 

Within a short enough averaging period an assumption of normality may be adequate; 

however, violation of this assumption could lead to unwanted variation in the results of 

calculations. Procedures for filtering turbulence data based on their deviation from an 

assumed Gaussian distribution have been developed (Hojstrup, 1993); however, the 

purpose in the current work is not to eliminate such data but to provide a measure of 

normality. A normal distribution has a skewness of 0, which is to say that it is 

symmetric about the mean, and a kurtosis of 3. The Jarque-Bera test (JB) uses these 

benchmark values to calculate a test statistic under the null hypothesis that the data is 

Gaussian distributed (Bera & Jarque, 1981). Thus, a probability value (p-value) smaller 

than 0.05 gives 95% confidence that the data is not normally distributed. The JB 

statistics is calculated as 

 Ù< = k‚
�}

6 +
(b − 3)}

24 „ (38) 

 

where 
� = skew  
b = kurtosis  
k = number of data points 
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2.3.11 Stationarity 

If there are no systematic changes in the mean and variance of a time series, and there 

are no periodic variations, then it is said to be stationary (Chatfield, 2004). Effectively, 

this means that a sample from any point in the time series is representative of the 

whole. Often there is an assumption that the data under study represents a steady state; 

in reality however, meteorological parameters are constantly changing, some faster than 

others. In a strictly stationary time series, the mean is constant and a term in the series 

can be described by: 

 è& = ö + ñ (40) 

 

where 
è& = term at time step t  
ö = constant mean value  
ñ = random noise with a constant variance 

 
 

 

These types of series are simple to work with but this definition is too restrictive for 

many applications. Weaker forms of stationarity have been defined that accommodate 

more realistic situations. Trend stationarity, for example, allows the mean of the series 

to evolve over time through the introduction of a linear function of the time step as 

described in Eq. 41. A trend stationary series can be transformed into a strictly 

stationary series by removal of the deterministic trend. 

 è& = íı + ñ (41) 

 where 
í = constant representing the linear trend  

 
 

 

When the linear function is replaced by an additive reference to the previous value in 

the series, the trend is said to be stochastic. This type of series can be transformed into 

a strictly stationary series by taking the difference between successive terms and is 
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described as difference stationary on account of this property. A series of this kind is also 

known as a random walk with drift and is defined by Eq. 42. 

 è& = í + è&®© + ñ (42) 

 

Realisations of trend and difference stationary series can appear quite similar at first 

glance. However, their differing behaviour becomes clear if several realisations are 

shown together. Fig. 10 shows 20 realisations of each type of series demonstrating the 

tendency of a trend stationary series with a deterministic mean to vary around a straight 

line. A difference stationary series with a stochastic mean, on the other hand, drifts 

away from the deterministic line over time. 

 

 

Figure 10: Deterministic and stochastic trends 

 

Stationarity is often assumed either implicitly or explicitly in order to simplify real 

phenomena under study. Monin-Obukhov similarity theory, for example, is technically 
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only valid in stationary flow conditions (Lange et al., 2004). In certain cases, such as 

studies involving the calculation of atmospheric fluxes, non-stationarity can significantly 

affect the results and data therefore has to be filtered (Foken & Wichura, 1996; Morales 

& Peinke, 2012). Other authors have found that filtering TMA records for stationarity 

can reduce the scatter in resulting plots (Lange et al., 2004).  

Stationarity can be identified locally by directly comparing the values over a short series 

of time steps (Lange et al., 2004; Peña & Floors, 2014). For larger data samples, 

statistical tests such as the augmented Dickey-Fuller test (ADF) are available. ADF 

checks for a unit root to the characteristic polynomial of the first-order autoregressive 

model which best fits the time series (Chamorro et al., 2015; Dickey & Fuller, 1979). 

The test statistic is calculated by optimising the modified Akaike information criterion 

(MAIC) over a range of time lags. The null hypothesis is that a unit root exists, and 

therefore a p-value below 0.05 indicates a 95% probability that the data is either strict 

stationary or difference stationary. The Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) 

checks for stationarity around a linear trend without reference to the existence of a unit 

root (Kwiatkowski et al., 1992). The two tests are therefore complementary and used 

together they can differentiate between the different types of stationarity. The null 

hypothesis in KPSS is that the data is stationary and a p-value below 0.05 indicates a 

95% probability of non-stationarity. Table 6 clarifies how the combined results should 

be interpreted. 

Table 6: Interpreting stationarity indicators 

ADF KPSS Interpretation 
p < 0.05 p > 0.05 Strict stationary 

p > 0.05 p > 0.05 Trend stationary 

p < 0.05 p < 0.05 Difference stationary 

p > 0.05 p < 0.05 Non-stationary 
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2.3.12 Summary 

The complexity of the ABL is illustrated by the large number of micrometeorology 

studies which investigate interdependence between parameters. Van de Wiel et al. 

(2012), for example, explore the minimum mean wind speed required for sustained 

turbulence, while van Hooijdonk et al. (2015) were concerned with the minimum wind 

shear. The relationship between shear and stability represented by the Obukhov length 

was investigated by Tambke et al. (2006), while Newman and Klein (2014) suggest 

separate power-law extrapolations of wind speed for different stability classes. Mahrt et 

al. (2015) suggest a dependence of turbulence intensity on both wind speed and 

stratification with similar findings by Vogelezang and Holtslag (1996). Rodrigues et al. 

(2010) treat both turbulence intensity and shear as functions of mean wind speed, 

while Wilson and Venayagamoorthy (2015) show a systematic relationship between 

turbulence and shear directly.  

The foregoing discussions identify a large number of meteorological parameters that 

have either been shown to influence wind turbine power output, or which have a 

theoretical potential to do so. In current practice, direct measurements are aggregated 

over a standard averaging period to produce a set of meaningful statistics. Some of 

these have been discussed above in relations to specific meteorological influences; 

however, current practice is selective in the way statistical measures are used. For 

example, the coefficient of variation is applied to the horizontal wind speed as an 

indicator of turbulence, but not to any other measured parameter. A more 

comprehensive and agnostic approach would be to apply all statistics equally to all 

measured parameters when seeking to reveal additional influences on power 

production. The parameters that can be directly measured are referred to as base 

parameters, and are listed in Table 7.  
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Table 7: Meteorological base parameters 

Parameter 
Wind speed 

Temperature 

Pressure 

Relative humidity 
 

Table 8: Statistical measures 

Statistic 
Mean 

Standard deviation 

Minimum 

Maximum 

Skew 

Kurtosis 

Coefficient of variation 

Second-order coefficient of variation 

Stationarity 

Normality 
 

 

Base parameters can all be measured at different heights to provide information about 

variation in the vertical dimension. If wind speed and temperature are measured using a 

sonic anemometer, then wind speed measurements are available in three dimensions 

and the sampling frequency can be large enough to support flux calculations. Adopting 

an averaging period of ten minutes, the standard statistics listed in Table 8 can be 

produced for each of the base parameters. The first four entries in Table 8 are already 

included in current practice. Skew and kurtosis are added to complete the set of 

standard moments, while the coefficients of variation are included for all parameters by 

analogy with their specific importance in the characterisation of turbulence. The 

stationarity of each parameter, indicated by the ADF and KPSS tests, provides 

information about variation within the averaging period as does the normality as 

indicated by the JB test.  

In addition to the base parameters and their statistical characteristics, a number of 

derived parameters have also been identified, and those not already covered by the 

contents of Tables 7 and 8 are listed in Table 9. Sunrise and sunset times for a specific 

location may be looked up from appropriate reference sources for use in the derivation 

of solar parameters. In addition to local measurements, the estimation of geostrophic 

wind speed requires knowledge of the local horizontal gradients of temperature and 

pressure which can be readily obtained from ground-based weather stations nearby.  
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Table 9: Derived parameters 

Category Parameter 
General Air density 

 ABL height 

 Rotor equivalent wind speed 

 Geostrophic wind speed 

 Inflow angle 

Turbulence Turbulent kinetic energy 

 Turbulence length scale 

 Isotropy 

 Second-order structure function (transience) 

 Turbulence dissipation rate 

 Excess kurtosis of wind speed increments 

Wind shear Wind shear exponent 

 Wind speed ratio 

Wind veer Degrees per 100 m 

 Cross-isobar angle 

Stability Obukhov length 

 Obukhov stability parameter 

 Bulk Richardson number 

 Vertical flux of horizontal momentum 

 Vertical flux of sensible heat 

 Environmental lapse rate 

Solar geometry Declination 

 Elevation 

 Hour angle 

 

Assuming wind measurements in three dimensions and three measurement heights 

(hub-height, rotor-bottom and rotor-top) a minimum of 83 parameters can be defined 

based on the content of Tables 7 – 9. Other variations could also be introduced such as 

the evaluation of measures of turbulence in three dimensions rather than just one, 

calculation of shear indicators over the lower and upper parts of the rotor in addition to 

the whole, the calculation of different measures of temperature and the estimation of 

parameters such as stability at multiple heights. Applying such variations takes the total 

number of potential parameters to around 140. The actual number of parameters 

available in a particular case would depend on the measurement configuration at the 

turbine location. It is clear that consideration of a comparable range of parameters 
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would lead to a more complete picture of the meteorological influence on power 

production compared to the approach in IEC2017. In addition, Tables 7 – 9 define the 

requirements for an appropriate dataset that could support such an investigation as 

detailed in Table 10. 

Table 10: Dataset requirements 

Requirement 
Measurements of all base parameters 

Multiple measurement heights spanning the vertical extent of the rotor 

Wind speed in three dimensions 

High-frequency wind speed and temperature measurements 

Availability of nearby weather station data 

 

A further data requirement is for turbine SCADA data so that the power output may be 

synchronised with the meteorological measurements. Access to SCADA data also 

provides a means of cross-checking some of the parameters derived from 

meteorological data and opens up the possibility of investigating the value of 

mechanical parameters as predictors of power output (Janssens et al., 2016; Mckay et al., 

2013; Pelletier et al., 2016). 

2.4 Wind turbine modelling 

2.4.1 Types of model 

A model is a simplified mathematical representation of a physical system which can be 

used to predict the output of the system given a particular set of inputs (Cukier et al., 

1978; Jacobson, 2005, p. 7). Two primary types of model can be distinguished. 

Parametric models predict the value of the output variable based on a bounded set of 

input parameters which may or may not have physical counterparts. For example, the 

wind speed values in the power curve represent the speed of the physical wind which 

can be measured, whereas the shape and scale parameters in the Weibull model of wind 

speed distribution are mathematical constructs. In contrast, non-parametric models are the 
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result of fitting mathematical expressions to available data. This process can proceed to 

an arbitrary level of detail with a potentially unbounded set of parameters. Fitting power 

curve data with a polynomial expression, for example, may include as many terms as 

deemed necessary. In general, parametric models are simpler to apply but lack accuracy, 

while non-parametric models have greater accuracy but lack explanatory power since 

they are black-box approaches with no direct relationship with observable quantities 

(Sohoni et al., 2016; Sprenger, 2009; Thapar et al., 2011).  

As a simple parametric model, the power curve has poor explanatory power. Its primary 

input parameter is a single characteristic wind speed which is usually taken as the mean 

measured horizontal component of the hub-height wind. With the application of 

REWS, the driving wind is a virtual quantity that represents the mean energy flux 

through the rotor (Christensen et al., 1986; IEC, 2017). Other parameters are used in 

PPT either to make similar adjustments to the data values as is the case with the 

turbulence normalisation method, or to identify invalid records that may be rejected 

through filtering. Many other potential influences are ignored, and the simplifications 

applied in the model result in a significant degree of uncertainty in the results which 

appears as unwanted dispersion in the power curve scatter plot. 

More complex parametric approaches include blade-element/momentum (BEM) and 

computational fluid dynamics (CFD) models. BEM theory treats a rotor blade as a 

series of thin slices with an aerofoil cross-section. Each element sweeps out an anulus 

within the rotor disk, and it is assumed that the lift and drag forces arising from the air 

flow over the aerofoils not only induce rotation of the blades, but also a rotation in the 

wake. Integrating over all blade elements yields values for mechanical power, thrust and 

blade root bending moment (M. O. L. Hansen, 2008). These modifications account for 

phenomena such as the pressure drop in the wake and this greater physical fidelity can 

be used to predict power output (Arramach et al., 2017; D. A. Johnson et al., 2012).  

CFD uses the Reynolds-averaged Navier-Stokes (RANS) equations for fluid flow to 

deliver a very fine level of detail in the examination of fluid flows. The model domain is 

split into a large number of cells, each of which is small enough that the dynamic 

activity within it can be approximated by linear relationships. Initial conditions are 
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provided to the model, and calculations are performed for each cell individually with 

outputs being propagated to its neighbours. The process is iterative and 

computationally expensive, however, and even for a small model turbine in a wind 

tunnel over a million cells and 500 iterations may be required to reach a result (Kalvig et 

al., 2014). Both BEM and CFD require knowledge of the precise aerodynamic profile of 

the blades which is often proprietary information. Additionally, the detailed knowledge 

of the wind field inflow that they require would make their use in PPT infeasible. 

Non-parametric approaches to wind turbine performance modelling draw on 

techniques from data science and machine learning including data mining, data 

clustering and artificial neural networks (Lydia et al., 2014; Sohoni et al., 2016). Of the 

available techniques, artificial neural networks (ANNs) have been shown to be 

particularly accurate (Li et al., 2002; Pelletier et al., 2016; Sohoni et al., 2016). However, 

a disadvantage of all parametric models is the requirement for them to be trained on 

existing data (Ghahramani, 2013) which ties the model to a very specific context. In this 

way a very accurate representation of the site-specific performance of a particular 

turbine could be created, but it would not be transferable to another turbine in a 

different location. The site-specific nature of non-parametric models is an advantage 

however in the context of ongoing performance and condition monitoring (Janssens et 

al., 2016). 

The ability of an analytical parametric model to relate power output to measurable 

physical inputs is desirable because of its explanatory power and its ease of use. Such a 

model has a bounded set of input parameters which necessarily involve the use of 

simplified expressions to approximate physical phenomena and consequently there 

exists a significant error term. The residual error in a non-parametric model, on the 

other hand, can be reduced to insignificance by extending the fitting process to an 

arbitrary level, the trade-off being that the resulting model is not generalisable. Each 

approach thus has its advantages and disadvantages. A strategy for resolving the 

dichotomy is to examine the sensitivity of a non-parametric model to different input 

parameters. By identifying those with the most significant impact on the output, a more 

representative set of input parameters can be proposed for use in a parametric model. 

The remainder of this section discusses the use of an ANN for creating an accurate 
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representation of a physical system, and the identification of parameters of significance 

using correlation analysis and variance-based sensitivity analysis. 

2.4.2 Artificial neural networks 

An ANN is a computational model that is trained to recognise patterns in sample data 

and which can subsequently be used to identify those same patterns in unseen data, or 

predict outputs based on unseen data (Rojas, 1996). It is composed of a set of 

computational units called neurons arranged in layers of which there are three types, 

input, output and hidden layers. Neurons in one layer are connected to those in the next 

as shown in Fig. 11 which shows two generic types of ANN each with four input 

parameters. The first, network a, has three maximally-connected layers with several 

output neurons. This is a typical configuration for a classifier whose purpose is to assign 

an input vector to a class represented by one of the output nodes. Network b, on the 

other hand, only has a single output node. This is the typical configuration for a 

regressor whose purpose is to predict the value of a dependent variable based on the 

independent variables supplied in the input vector. 

 

 

Figure 11: Artificial neural network configurations. a: classifier; b: regressor 
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The connections between neurons have weights associated with them that are modified 

by the training input, and the nodes themselves have bias values that determine the 

significance of their contribution to the overall communication of data through the 

network. Biases are also modified during training which involves the simultaneous 

presentation of sample input and expected output. Error feedback is propagated 

through the network and the values of the weights and biases are modified until the 

network converges on a stable configuration. Each node has an integration function, S, 

which reduces its inputs to a single value, and an activation function, J, which 

determines the node’s output based on the aggregate input. This arrangement can be 

visualised schematically in Fig. 12 for a node with three inputs, é1, é2 and é3. In order 

to successfully model non-linear systems, it is important that the activation function is 

also non-linear. 

 

 

Figure 12: ANN node with three inputs.  

The output is the result of applying the activation function, f, to the aggregate input determined by the 

integration function, g. (Rojas, 1996, p. 31) 

 

Neural networks have been shown to be capable of approximating any function 

(Hornik et al., 1989). However, there is a risk of overfitting the training data leading to 

poor generalisation on later tasks. A simple method to avoid overfitting known as the 

early stopping strategy is to monitor the error between the current prediction and the 

target value, and to terminate the training when no further improvement is observed 

(Caruana & Lawrence, 2001). Although many numerical schemes have been proposed 

for determining the optimum ANN structure for a given problem and the number of 
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nodes in each hidden layer, there are no definitive methods (Sheela & Deepa, 2014). 

Trial and error approaches are therefore commonly used to develop a working 

configuration. The constructive strategy starts with a small number of nodes and increases 

the number until a successful result is achieved, while the pruning approach starts with a 

large number of nodes and successively decreases the number until a degradation in the 

result is seen (Sheela & Deepa, 2014). It has been observed that a larger number of 

hidden nodes can provide a better fit where in domains where there is significant non-

linearity (Caruana & Lawrence, 2001). 

It has been shown that an ANN can be used to model wind turbine power performance 

with greater accuracy that standard methods. Manobel et al. (2018), for example, 

demonstrate that an ANN with only two inputs, hub height wind speed and direction, 

performs better that several other techniques. Using the root mean square error 

(RMSE) the authors show that the ANN approach leads to a smaller spread of output 

values than four other methods including the IEC standard for nacelle anemometry 

(IEC, 2013). Li et al. (2002) take a similar approach to demonstrate better performance 

than standard regression using RMSE. Pelletier et al. (2016) demonstrate that ANNs 

can be trained to model a power curve with smaller mean absolute error (MAE) than 

alternatives including IEC2005. Their model is based on data from the turbine’s 

SCADA system and includes nacelle wind speed, air density, turbulence intensity, wind 

shear, wind direction, and yaw error as input parameters. Using SCADA data presents 

no problems since an ANN is a universal function approximator and can therefore 

accommodate the flow disturbance around the nacelle during the training process. The 

six input parameters are selected from an initial set of 50 on the basis of correlation 

plots, but the authors provide no information about the rejected parameters. 

2.4.3 Feature selection 

Feature selection is the general term used to describe a process in which the number of 

features (parameters) initially found in a dataset is reduced to a subset which retains 

enough information to provide a good approximation to the whole (Bolón-Canedo et 

al., 2015). It was developed in the context of big data to extract useful information in 
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fields such as image classification, financial transactions and computational biology. In 

such areas, there can be thousands of dimensions leading to the curse of dimensionality, the 

apparent failure of traditional methods for searching and generalising from high-

dimensional spaces (Donoho, 2000). 

When using machine learning to build a non-parametric regression model, the system is 

trained by presenting training data in the form of input vectors and associated output 

values. In the ideal case, the set of input parameters is optimal for the task in the sense 

that all parameters are relevant, and the set contains no redundant parameters (Yu & 

Liu, 2004). Relevance may be judged by the degree to which a parameter is correlated 

with the expected output. This criterion has been used successfully to select parameters 

from those available in turbine SCADA data for predicting power output 

(Morshedizadeh et al., 2017). In a high-dimensional dataset, the problem of 

multicollinearity can arise in which input parameters are highly correlated with each other 

because of causal relationships between the phenomena they represent, the way that the 

original data was collected, or because the parameters share a derivation (Verhoef & 

Leendertse, 2001). The existence of a hidden common factor between parameters can 

lead to errors in standard regression analysis (Kalnins, 2018), and in terms of predictive 

power, the introduction of a new parameter that is correlated with an existing one adds 

no new information. There is no gain in accuracy in output predictions, and the new 

parameter is redundant in an information theoretical sense (Dormann et al., 2013; Hall 

& Smith, 1997). Where redundancy is identified, the input vector can be simplified by 

removing one of the correlated parameters. This reduces the complexity of the model, 

the training time and the amount of training data required (Kowshalya et al., 2019; 

Morshedizadeh et al., 2017).  

Various deterministic procedures based on correlation analysis have been proposed for 

the elimination of irrelevant and redundant parameters (Bolón-Canedo et al., 2015). A 

fully automatic procedure, however, does not allow for the inclusion of domain-specific 

knowledge (Foresti et al., 2011; Morshedizadeh et al., 2017; Pelletier et al., 2016; Yu & 

Liu, 2004) or the application of other non-statistical criteria (Bolón-Canedo et al., 2015, 

p. 117). A simple solution is to construct a pairwise correlation matrix for all parameters 

and to apply judgements based on domain-specific knowledge in combination with the 
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statistical information to select appropriate features (Bolón-Canedo et al., 2015, p. 126; 

Pelletier et al., 2016). 

2.4.4 Sensitivity analysis 

The output of a mathematical model is determined by the value of its input parameters; 

however, some of them may have a more significant effect than others. The objective of 

sensitivity analysis (SA) is to provide a relative measure of this variation (Saltelli et al., 

1999). Local SA examines the immediate effect of varying a parameter value in a 

specific case while holding other parameters constant (Saltelli et al., 1999). Methods can 

be as simple as selecting a small set of values that span the range of the input parameter 

and running the model in order to reveal the effect on the output (See for example Peña 

et al., 2014; Wagner et al., 2009). Alternatively, data can be partitioned according to a 

particular parameter in order to isolate its effects (eg. Kubik et al., 2011). The local 

approach is limited by the choices of parameter and the specific values selected for 

examination. For linear models, this may be sufficient since values elsewhere in the 

model can be determined by simple extrapolation (Saltelli et al., 2008, p. 11). For 

nonlinear models with uncertain inputs, a global approach is required which explores 

the entire space defined by the input parameters and including interactions between 

them. The global approach has the advantage that it can reveal unexpected interactions 

between parameters since it is not restricted by a subjective choice of test values (Cukier 

et al., 1978). 

Tian (2013) identifies four different approaches to global SA which differ in their 

characteristics and applicability to different types of model. Regression models are fast 

and easy to compute but are restricted to linear models. Screening methods proceed by 

fixing the value of one parameter and examining the effect on the model output. They 

are also fast to compute, but do not support the evaluation of significance of a 

parameter compared to the total variation. Variance-based methods decompose the 

total variance in the model and apportion it to parameters in the form of main and total 

effects. The main effect is the direct contribution of the parameter to the variance of 

the output, while the total effects include interactions with other parameters. This is the 
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method advocated by Saltelli et al. who recommend the Fourier Amplitude Sensitivity 

Test (FAST) as its most elegant implementation (Saltelli et al., 1999). Tian also mentions 

meta-models which combine a first step based on regression with a refinement step 

which uses variance-based methods or other non-parametric fitting techniques. The 

remainder of this section will concentrate on the variance-based approach and the 

FAST method in particular. 

Describing or predicting the behaviour of a physical system often involves building a 

mathematical model that relates the combined effect of a series of input parameters on 

the model’s output values. A general model can be represented by 

 ˆ = J( ©̃, ˜} …˜/) (43) 

 

where 
.̃ = set of parameters, l ∈ [1. . j] 

J(∙) = some function  
ˆ = model output 

 
 

 

Throughout this section, uppercase letters are used to represent parameters, and 

lowercase letters are used to refer to parameter values. The sensitivity of the model to 

parameter .̃ can be described in terms of a first-order sensitivity index, �., defined by 

 

 �. =
ã[§(ˆ| .̃)]

ã(ˆ)  (44) 

 

In Eq. 44, ã(ˆ) represents the total variance in the model output, while ã[§(ˆ| .̃)] is 

the conditional variance of parameter .̃. This is interpreted as the variance in the 

output when .̃ is fixed to a particular value, averaged over all possible fixed values of 

.̃. The conditional variance is independent of any subjectively-chosen value, and �. 

takes values strictly in the range 0 – 1. Interactions between parameters can be captured 

along with their main effects by calculating total effects terms, �Ç.. This involves finding 
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the expected variance in the model when all parameters except .̃ are fixed as expressed 

in Eq. 45. 

 �Ç. =
§[ã(ˆ|˜~.)]

ã(ˆ)  (45) 

 

Saltelli et al. demonstrate that a parameter whose total effects term is zero has no 

influence on the model at all and may be removed (Saltelli et al., 2008, p. 32). Thus, SA 

can be useful in simplifying models. 

2.4.5 Fourier Amplitude Sensitivity Test 

The spectrum produced by applying a Fourier transform to coherent data can be 

interpreted as equivalent to the statistical analysis of variance or ANOVA (Emerson, 

1983). Taking advantage of this relationship, the Fourier Amplitude Sensitivity Test 

(FAST) can be used to implement variance-based sensitivity tests of the type discussed 

above (Cukier et al., 1978). Given a model with j parameters, each parameter is 

represented by an oscillating signal at a characteristic frequency, †. Coherence is 

ensured by driving the variation of each signal by a common variable, ~, which takes 

regularly-spaced values over the range [−µ, µ]. The input signal for the lth parameter is 

generated using Eq. 46 (Saltelli et al., 1999). This equation defines a search curve that 

ideally fills the available parameter space. 

 é. =
1
2 +

sin®©(sin†.~)
µ  (46) 

 

Applying a Fourier transform to the model output results in a set of peaks 

corresponding to the frequencies chosen for the input parameters, and the amplitude of 

the peaks corresponds to their contribution to the overall variance. The partial variance of 

each parameter can be calculated by dividing the amplitude of each peak by the total 



 

  

 
77 

energy in the Fourier spectrum. To avoid aliasing, the number of samples, kQ, in the 

input sequence must exceed the Nyquist frequency and is given by: 

 kQ = 2˚†+,- + 1 (47) 

 
where 
˚ = number of harmonics to be included, often taken as 4 
†+,-  = highest frequency in the set 

 
 

 

To avoid interference between parameters, the input frequencies need to be carefully 

chosen to be incommensurate. That is to say, no frequency may be an integer multiple of 

another up to the threshold multiple, ˚, and no frequency may be the sum of any 

subset of frequencies. 

The calculation of total effects terms is achieved by using one frequency, †., for the lth 

parameter, and a second frequency, †~., for all other parameters. This time, the peak at 

†~. represents the variance for all terms and interactions not involving the lth parameter, 

while all other peaks must theoretically be attributable to the lth parameter either directly 

or by interaction. The total effects term for the lth parameter is therefore found by 

subtracting the amplitude of the peak at †~. from the total energy in the spectrum. This 

last step by Saltelli et al. (1999) who refer to it as the extended FAST, or eFAST, and 

claim that it is computationally efficient and robust at small sample sizes. 

Kusiak and Zhang (2010) used the eFAST method to investigate sources of vibration in 

wind turbines. They selected a set of three input parameters, torque, wind speed and 

blade pitch angle, from those available from the turbine SCADA system based on their 

domain knowledge and existing literature. Three derived parameters, wind deviation, 

torque rate and blade pitch rate were added to the set. The authors’ key innovation was 

to represent the turbine response using a trained ANN. The oscillating signals were 

passed into the ANN and the Fourier transform applied to its output. McKay et al. 

(2013) also used an ANN with eFAST to rank eight input parameters in terms of their 

level of influence on wind turbine power output. The parameters were chosen 

according to three general rules of thumb and with a focus on comparing wake and 
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non-wake behaviour. The parameters were yaw angle, rotor speed, blade pitch angle, 

wind speed, ambient temperature, main bearing temperature, wind speed standard 

deviation and yaw angle standard deviation, all collected from the turbine’s SCADA 

system. The importance of density was discussed, but since the majority of the variation 

in density is due to temperature fluctuations, it was not included directly. The focus of 

the study was on turbine structural health monitoring which is reflected in the 

parameter selection. The authors mention the possibility of using the same approach to 

improve power performance, but do not follow this up explicitly. 

2.5 Conclusions from literature review 

All stakeholders in the wind energy industry rely on IEC2017 for verifying the 

performance of installed turbines, and the power curve is fundamental to the procedure. 

As a simple relationship between wind speed and power, however, the power curve fails 

to accommodate the full complexity of the meteorological influences on a turbine. 

Non-parametric models offer a way to identify those excluded parameters which have 

the most impact on uncertainty in the power curve. From the foregoing discussion, the 

following particular conclusions can be drawn: 

• The range of parameters accommodated by IEC2017 is limited 

The base parameters defined in Table 7 are all referenced in the IEC2017 

model; however, statistical measures are used selectively, many derived 

parameters are not considered, and some parameters such as turbulence 

intensity are typically only used as validity thresholds. In particular, there is no 

direct reference to atmospheric stability in the standard. 

• The explanatory power of IEC2017 is poor 

Because of the small range of parameters used, the variance observed in the 

measured power curve is simply treated as stochastic uncertainty. While the 

REWS and turbulence normalisation methods address the issue of data validity 

in a pragmatic way, they are data-driven and do not provide any further 

explanation for the remaining scatter in the power curve.  
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• The measures used to represent parameters in IEC2017 have limitations 

The shortcomings of using the coefficient of variation (TI) to represent 

turbulence are discussed in §2.3.4. Other measures of turbulence are available 

that preserve more information about the high-frequency variations of wind 

speed. These alternatives can be evaluated for their ability to better predict 

power output along with alternative measures of shear, veer and stability. 

• Non-parametric models can represent physical systems to an arbitrary level of 
accuracy 

A non-parametric model can be trained to model a single dataset very closely. 

This can be exploited to evaluate the sensitivity of the model to different 

parameters. Artificial neural networks have been shown to represent wind 

turbine data well, and would be a good choice for this purpose. 

• Conditioning data on a significant parameter should reduce the dispersion in the 
power curve scatter plot 

The appearance of unexplained variation as excessive dispersion in the power 

curve scatter plot can be exploited to evaluate the significance of potentially 

influential parameters. If the dispersion can be reduced by partitioning the data 

based on a given parameter, then it can be concluded that the parameter has a 

non-negligible impact on the power output. It can then be considered a 

candidate for inclusion in the model used for PPT. 

• A dataset with particular characteristics is needed to support investigation into 
the influence of an appropriate range of parameters on power production 

Certain parameters can only be derived using high-frequency raw data, 

measurements from multiple heights or using data not usually collected in PPT. 

Table 10 lists these desirable dataset characteristics, and can be used to select 

appropriate data sources. 

Together, the conclusions summarised here map out a strategy for identifying 

potentially influential parameters and evaluating them with reference to dispersion in 

the measured power curve. The next chapter provides details on how this will be done. 
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3 Methodology 

3.1 Overview 

The aim of this project is to investigate the potential of alternative data filtering 

strategies with respect to data loss, AEP estimates and the dispersion of points in the 

power curve scatter plot. By doing this, improvements to the established PPT process 

can be motivated through the isolation of influences not currently accounted for, or by 

identifying better measures of known influences. Using a more representative set of 

parameters in the PPT process should mitigate the need for restrictive contractual 

filters, thereby reducing the time required to collect PPT data and consequently reduce 

the associated costs. This chapter develops a three-stage process for achieving the 

intended outcome based on the conclusions from the literature review. The main stages 

are described below and are summarised in Figure 13. 

 

 

Figure 13: Methodology overview 

 

As an initial step, an analysis of real PPT contracts is undertaken in order to explore the 

range and severity of the problem of data loss and to evaluate the effect of contractual 

Analysis of PPT contracts 

Creation of the research dataset 

Isolation and evaluation of influential 

parameters as filtering criteria 
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filters on the measurement campaign duration. The purpose of this step is to provide 

the justification for the current project based on recent data rather than relying solely on 

reports from previous publications. The results of this exercise are novel in that they 

provide greater detail than previous works while protecting the anonymity of individual 

projects. They are also visualised in a way that highlights the contribution of contractual 

filters to data loss compared to quality filters. Because of these features, the results of 

this exercise constitute a novel research contribution from the current project. 

The characteristics of a dataset suitable for investigating an appropriate range of 

parameters are identified in §2.4.10. In the absence of a readily-available dataset with the 

necessary features, a new dataset is created as the second stage. Its major components 

come from a well-instrumented research turbine operated by the University of 

Minnesota. Anomalies are first eliminated from the data through a series of quality 

checks and filters. Thereafter, the data is reduced to ten-minute aggregated values and a 

number of statistical quantities are calculated in the process. Further derived quantities 

and complementary data from other sources are added to the dataset so that the final 

result provides a rich platform for analysis. As a new resource capable of supporting a 

wide range of possible analyses beyond the aim of the current work, this dataset 

constitutes a novel contribution to current research.  

In the third stage, the methods reviewed in §2.4 are applied to the research dataset to 

identify the parameters with the most impact on instantaneous power output. In 

preparation for testing these parameters as the basis for filtering criteria, a baseline 

power curve is created from the data using the IEC2017 procedure and filtering criteria 

based on the real PPT examples reviewed in the first stage. The theoretically influential 

parameters are used to define experimental filtering criteria whose effects are compared 

to the baseline in terms of data loss, the degree of dispersion in the point cloud and the 

estimated AEP. The results from the last two stages constitute the main novel 

contribution of the current work. 

Throughout the project, data analysis is carried out using original software built using 

the python language. Python is an appropriate choice because of its wide support for 
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numerical operations7, statistical processing8, digital signal processing9, data science10 

and machine learning11.  Example code is provided in Appendices C and E, and the 

entire codebase can be accessed at https://bitbucket.org/coillarach/phd.  

3.2 Analysis of PPT contracts 

The aim of this stage of the process is to develop a clearer appreciation of  

a) The variation in contractual conditions applied in different PPT projects 
b) The quantity of data that is lost as a result of different types of filter 
c) The effect of filters on the overall duration of PPT projects and hence on the 

associated costs 

The next few sections describe the source of the data used in the analysis and the 

analytical steps that are applied. Results appear in Chapter 4. 

3.2.1 Source of data 

The sample consists of data from 42 turbines from 15 independent PPT projects in 

both simple and complex terrain. All the tests were carried out by Wood Clean Energy12 

between June 2014 and May 2018. Because of the sensitivity of this data, no identifying 

details are provided on the PPT projects that are included. In each case, the data comes 

directly from the documentation for the PPT project without manipulation of any kind.  

3.2.2 Minimum and expected campaign duration 

In the ideal situation, all the required data would be collected within a contiguous time 

period with no loss of data. Since the minimum requirement in IEC2017 is for 180 

                                                

7 http://www.numpy.org/ 
8 https://www.statsmodels.org/ 
9 https://docs.scipy.org/doc/scipy/reference/signal.html 
10 https://pandas.pydata.org/ 
11 https://www.tensorflow.org/  
12 https://www.woodplc.com  
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hours of data, or 1080 ten-minute samples and there are 144 ten-minute periods in one 

day, the minimum possible campaign duration is 1080 / 144 = 7.5 days. In cases where 

a proportion of the data is lost through filtering, the minimum duration can be found 

using Eq. 49. 

 I+./ =
7.5

(1 − JOPQQ)
 (49) 

 

where 
I+./  = minimum campaign duration (days) 

JOPQQ =  fraction of data lost through filtering 
 

 

However, the result of this calculation takes no account of practical issues such as 

instrumentation faults, data quality, calibration issues, etc. For this reason, it is 

considerably shorter than the usual three-month period allocated for a PPT 

measurement campaign (Wood Clean Energy, personal communication, 24 July 2019). 

Applying Eq. 49 yields the relationship shown by the red trace in Fig. 14.  

 

Figure 14: Minimum and planned campaign duration as a function of data loss fraction 
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3.2.3 Effective duration and turbine selection 

To evaluate the effect of data filtering on the duration of measurement campaigns, it is 

important to identify and control for extraneous factors. This section describes three 

such quality measures that are applied to the campaign data. 

The first issue is simple to identify and to remedy since it concerns measurement 

campaigns that are curtailed before the measurement database is complete. In this 

situation, the duration of the campaign is artificially short and does not accurately 

reflect the effect of filtering. All records related to turbines with fewer than 180 hours 

of data by the end of the campaign are therefore excluded. 

Practical considerations may extend the duration in a way that has nothing to do with 

filtering and any distortions of this kind need to be eliminated. Measurements may not 

be available for the entire elapsed time for a number of practical reasons such as faults 

with the measurement instruments, calibration issues, errors that required the data 

collection to be restarted, etc. Although the dataset contains no direct information 

about such situations, the actual duration of the data collection can be inferred from the 

number of TMA records before filters are applied. Since there are 144 ten-minute 

periods in a day, dividing the number of TMA records by 144 gives the effective duration 

of the measurement campaign in days.  

Plotting the elapsed and effective durations of real projects against data loss fraction 

and superimposing the limits in Fig. 14 would reveal those that incurred additional costs 

by comparing their elapsed durations to the standard period of 91 days. The same plot 

can be used to infer the priority attached to the end of data collection based on the time 

between the minimum effective duration and the actual effective duration for a project. 

Where the effective duration appears close to the theoretical minimum, data collection 

was terminated as soon as the required amount of data was available. This would be 

expected in cases where the measurement campaign was over-running and incurring 

additional costs. Where the effective duration appeared further from the minimum line 

the termination of data collection was not such a high priority. This would be the 
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expected situation where the elapsed time was under three months because this would 

not incur additional costs. 

Where several turbines are measured as part of the same project they may share a met 

mast. In this situation, it is likely that the measurement campaign will continue until 

sufficient data has been collected for every turbine. It is a matter of convenience for the 

consultant organisation performing the test to cease logging data for all turbines at the 

same time. Such instances can be recognised where the campaign end dates are the 

same for several turbines in a group. This implies that surplus data is collected for some 

turbines while completing the measurement database for others. Only the turbine with 

the shortest effective campaign duration in such cases is therefore be used. 

There are other reasons why campaign durations may be longer than expected, such as 

the need to repeat part of the measurement process or to collect data for other 

purposes, or because it is convenient to terminate the campaign at a later date. These 

additional reasons cannot be inferred from the data available. 

3.2.4 Analysis 

Four main categories of information are drawn from the project documentation: 

• The contractual filter conditions applied to the data 
• The overall duration of each of the measurement campaigns 
• The proportion of measured data lost through filtering 
• The terrain type at the turbine site 

The details of the contractual filters are compared to provide an understanding of the 

typical range for each type of filter and the variation  

First, the conditions applied on turbulence intensity, wind shear exponent and 

temperature on different projects are gathered together and compared. This provides 

insight into the variation in conditions across projects. Results are presented in 

graphical form in order to highlight this variation. 
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Because quality filters are applied before contractual filters, the number of data records 

that are rejected as a result of each category can be evaluated. In the second step, the 

proportion of records eliminated by quality and contractual filters is calculated by 

combining the effects of filters in each category by project, and presenting the results in 

graphical form. Results are arranged in descending order of the proportion of data 

remaining after all filters are applied. The intention is to determine whether the extreme 

cases of up to 90% data loss reported in the literature (Mellinghoff, 2012; Rareshide et 

al., 2009) are isolated cases or whether such losses are relatively common. 

To assess whether terrain type is a major factor in the duration of measurement 

campaigns, sites with flat terrain are compared to those with complex terrain. A 

histogram of campaign durations is presented colour-coded by terrain type. An uneven 

spread of durations in which projects with complex terrain last longer in general than 

those with flat terrain would suggest that terrain is a major factor. Although statistical 

tests such a Student’s t test are designed to differentiate between sample from different 

populations, the small number of instances available in this case is insufficient to justify 

their use. The simple graphical approach is therefore used instead. 

Finally, the elapsed and effective durations of the remaining campaigns are plotted 

against data loss rate. Effective durations are expected to fall close to the minimum 

effective duration line in cases where there is commercial pressure to terminate the 

campaign, and to vary between the minimum theoretical duration and the standard 

three-month planned duration in other cases. 

3.2.5 Limitations 

The set of PPT projects used here constitute a convenience sample from a single 

consultant organisation. It can be argued therefore that they may not be representative 

of PPT projects across the industry. Mathematically, this is true and the same exercise 

could be performed with a larger set of projects from multiple consultants to provide 

more representative results; however, the purpose of IEC2017 and the certification 

scheme operated by MEANET are both designed to ensure the consistency of the 
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assessment process across different consultants. This increases the degree of confidence 

in the sample used here. 

Some projects contribute data from multiple turbines to the sample used here which 

potentially introduces bias into the results since the filtering criteria applied to the 

turbines within a single project are likely to be the same. However, even if such effects 

are present, it is likely that they will simply to introduce redundancy into the data. The 

range of durations will still be evident, and as a precaution, related turbines will be 

identified in the results so that any such duplication can be considered when 

interpreting the results. 

3.3 Compilation of the research dataset 

3.3.1 Introduction 

The analyses envisaged for the current work require a dataset with the characteristics 

listed in Table 10. Datasets collected as part of PPT projects are therefore unsuitable 

since they consist solely of TMA records that are aggregated by the data logger. Storage 

of raw data files would increase the costs for the consultant organisation beyond 

acceptable commercial limits. In addition, customers are often unwilling to allow the 

collection of data over and above the minimum needed to complete the test. Finally, 

PPT data collection rarely includes measurements of meteorological parameters above 

hub height. 

Publicly-available open-access datasets are available, but none with the appropriate 

characteristics. Some research projects such as CASES-99 publish their data for 

verification and reanalysis13; however, all of those investigated for the current work were 

deficient in some respect. CASES-99, for example, provides high-frequency wind data, 

but is not associated with a wind turbine because of the micrometeorological nature of 

                                                

13 https://www.eol.ucar.edu/content/integrated-surface-flux-facility-during-cases99 
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the research (Poulos et al., 2002). The same problem exists for research stations such as 

Cabauw in the Netherlands where detailed wind data is available14 but cannot be related 

to turbine output (Bosveld, 2017). A brief analysis of the data available from 

winddata.com15, a repository of wind-related data maintained by the Danish Technical 

University (DTU) revealed that only four sites out of 60 contained data on output 

power. Of these, one provided high-frequency wind speed data in three dimensions but 

did not offer pressure or relative humidity and was also lacking measurements above 

hub height. For the analysis of the datasets available at winddata.com, please refer to 

Appendix D. 

An adequate dataset could theoretically be obtained from a turbine manufacturer; 

however, close cooperation mediated by a non-disclosure agreement is generally 

required because of the commercial sensitivity of the data. The current project did not 

benefit from this type of relationship, and even if it did, there would be considerable 

restrictions on the detail that could be made public. 

For all of the reasons above, no extant dataset is available to support the type of 

research activity proposed here. The creation of such a dataset is therefore an essential 

element of the current work. By virtue of its generic structure, including many statistical 

characteristics of the base parameters and a wide range of derived parameters, the 

envisaged dataset is capable of supporting a wide range of comparative analyses beyond 

those required for the current work. For this reason, it also constitutes an important 

contribution to knowledge in its own right. 

The following sections outline the methods used to create the research dataset and to 

assure its quality. The practical details of the process application including the specific 

sources used, issues encountered, results and limitations are reported in Chapter 5. 

                                                

14 http://www.cesar-database.nl/ 
15 http://www.winddata.com/ 
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3.3.2 Requirements 

The majority of analyses required for the current work call for the use of synchronised 

meteorological and SCADA data aggregated over ten-minute periods. The primary 

result will therefore be a single file of TMA records indexed by timestamp with 

parameters represented as columns. The parameters required include the statistical 

variations listed in Table 8 for each of the base parameters listed in Table 7 along with 

the derived parameters listed in Table 9.  

Further, the characteristics listed in Table 10 must be ensured: 

• Measurements of all base parameters 

Mirroring the IEC2017 procedure, meteorological data must be available from 

instruments mounted on an appropriate met mast and not from the turbine 

SCADA. This avoids the flow distortion around the turbine nacelle. 

• Multiple measurement heights spanning the vertical extent of the rotor 

This allows the capture of variation in the vertical dimension, and specifically 

facilitates the calculation of REWS as long as a minimum of three wind speed 

measurement heights are present at the rotor top and bottom and at hub height. 

• Wind speed in three dimensions 

Measurements in three dimensions in order to facilitate the estimation of flux-, 

turbulence- and stability-related parameters. Sonic anemometers would be ideal 

for this purpose.  

• High-frequency wind speed and temperature measurements 

High-frequency measurements facilitate the estimation of flux-, turbulence- and 

stability-related parameters. Sonic anemometers would be ideal for this purpose.  

• Availability of nearby weather station data 

Estimation of the geostrophic wind speed requires knowledge of the local 

horizontal gradients of temperature and pressure which can be calculated from 

data from at least three weather stations in the vicinity of the turbine site. 
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Each of the requirements above calls for a source of measured data from 

meteorological instruments, turbine SCADA or surface weather stations. Solar 

elevation, declination and hour angle may be added into the set based on standard 

mathematical expressions. The data from a particular source is referred to here as a 

component of the final dataset.  

3.3.3 Process overview 

The process of conflating the components to create the research dataset is summarised 

in Fig. 15, and important considerations are discussed in the sections below. 

3.3.3.1 Selection of data sources 

The main meteorological and SCADA data used here is provided by the Eolos Wind 

Research Station operated by the University of Minnesota16. Weather data is obtained 

from the Automated Surface Observing Systems (ASOS) network of meteorological 

measurement stations maintained by US government agencies17. Solar parameters are 

calculated based on local sunrise and sunset times from timeanddate.com18. Further 

details of these sources are provided in Chapter 5. 

3.3.3.2 Size and format of data files 

Files from different sources tend to be divided into time periods of different size. To 

facilitate later processing, data is arranged into files of one day in length. Automated and 

manual checks are performed to ensure that records at the start and end of each day are 

correctly located in the appropriate file. In addition, file headers are reduced to a single 

row of column headings. At this point, file metadata is recorded independently of the 

data files to inform later operations. 

                                                

16 http://eolos.umn.edu/facilities/eolos-wind-research-station 
17 http://mesonet.agron.iastate.edu/ASOS/ 
18 https://www.timeanddate.com/sun/usa/minneapolis 
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Figure 15: Overview of the research dataset creation process 

 

3.3.3.3 Quality control 

Before carrying out any manipulation of the data it is checked for erroneous values or 

other issues. Documentary information about the data is employed in addition to 

procedural checks based on the data values themselves. In particular, in the case of 

Identify appropriate sources of data 

Ensure appropriate size and format of data files 

Quality control: 

• Identify component-specific issues 

• Apply corrections 

Calculate horizontal wind speed from velocity 

components (if applicable) 

Split component data into ten-minute samples 

Reduce samples to aggregated values 

Synchronise aggregate data by timestamp 

Add derived parameters 
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sonic anemometer and turbine faults the entire affected set of values is replaced by null 

values. Power values are also suppressed where the reported curtailment level is not 

null.  

Please refer to §3.4.4 for further methodological detail on quality assurance, and §5.1.3 

for details related to the practical application of quality control in constructing the 

research dataset. 

3.3.3.4 Calculation of horizontal wind speed 

The horizontal wind speed is calculated as the magnitude of the vector sum of the 

horizontal wind velocity components in advance of reducing the data to TMA values. It 

is done at this point so that the relevant statistics such as mean and standard deviation 

can be calculated easily at the same time as for the base parameters. The opportunity is 

also taken to calculate the full range of statistics for the horizontal wind speed as listed 

in Table 8. 

3.3.3.5 Division into ten-minute samples 

This step allows the raw data related to a particular TMA record to be preserved for 

easy access should further inspection be required. This might be needed, for example, 

to investigate a value soft-flagged during quality control. 

3.3.3.6 Reduction to TMA values 

In this step, the raw data for each of the base parameters and horizontal wind speed is 

processed independently to derive the statistics listed in Table 8. Where the parameter is 

a direction, mean and standard deviation are estimated using the approximation of 

Yamartino (1984) but no other statistical parameters are stored. The resulting TMA 

values are accumulated into daily files for each component. TMA values are indexed by 

their starting time so that the index 2017-01-01 00:00 indicates the interval [2017-01-01 

00:00 - 2017-01-01 00:10). 

Perturbations from the mean and their products are calculated for wind speed, wind 

velocity components and sonic temperature. The mean of the perturbation products are 
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the covariances that represent atmospheric fluxes. While the averaging period normally 

used in the eddy-covariance method is 30 minutes, ten minutes is used here to match 

the standard practice in PPT. The use of a shorter averaging period here introduces 

some uncertainty into the flux values calculated during unstable conditions.  

As part of the reduction step, several diagnostic values are recorded for each parameter 

including: 

• The number of points in the sample 
• The number of points removed by the despiking algorithm 
• The number of points removed by the relevant absolute limit condition 

These are used as quality filtering criteria during analyses.  

3.3.3.7 Synchronisation 

The daily files resulting from the reduction process are synchronised on their 

timestamps. The output from this stage is one file for each day of the year containing 

data from all components. 

3.3.3.8 Addition of derived parameters 

Derived parameters are added in two steps. The parameters added in the first step only 

reference other parameters within the same ten-minute period. Those added in the 

second step depend on the rotation of the measured flux values into a Lagrangian 

reference frame so that the x-axis is aligned with the mean horizontal wind direction. In 

particular, the planar fit of wind speeds to determine the vertical unit vector relies on 

the fact that the resultant wind vectors from successive averaging periods trace out a 

plane as the azimuth changes over time (Finnigan, 2004). Once the vertical unit vector 

is derived, the other two orthogonal unit vectors can be calculated and the coordinate 

frame for flux values can be rotated (X. Lee et al., 2004). Tables 11 and 12 summarise 

the derived parameters added in steps 1 and 2 respectively along with a reference to the 

relevant python function in the list provided in Appendix E. The tables also indicate 

whether a parameter is evaluated for all measurement heights. 
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Table 11: Derived parameters added in step 1 

Parameter All 
heights 

Python function 

Air density  airDensityFromSonic 

Bulk Richardson number  richardsonBulk 

Horizontal wind speed Y windSpeedFromComponents 

Inflow angle Y inflowAngle 

Lapse rate of potential virtual temperature  lapseRate 

Lapse rate of temperature  lapseRate 

Potential virtual temperature Y potentialVirtualTemperature 

Richardson number stability class  stabilityClass 

Rotor equivalent wind speed  rotorEquivalentWindSpeed 

Sea-level pressure  pressureNormalised 

Specific humidity  specificHumidity 

Surface potential virtual temperature  extrapolate 

Turbulence kinetic energy Y turbulenceKineticEnergy 

Wind direction Y windDirectionFromComponents 

Wind shear exponent  windShearExponentTwoHeights 

Wind shear exponent (lower half of rotor)  windShearExponentTwoHeights 

Wind shear exponent (upper half of rotor)  windShearExponentTwoHeights 

Wind speed ratio  windSpeedRatio 

 

There is a further issue related to the introduction of derived values and the parameters 

used in their calculation. If one of the input parameters is later identified to be invalid 

according to some filtering criterion, it is also important to suppress any derived values 

that rely on it. To address this requirement, a reference list of dependencies is 

maintained. Dependencies are checked during any filtering operation during an analysis, 

and for any values that fail the filtering criterion, dependent derived values are also 

suppressed. The list of dependencies is provided in Appendix G. 
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Table 12: Derived parameters added in step 2 

Parameter All 
heights 

Python function 

Boundary layer height  boundaryLayerHeightRM 

Cross-isobar angle Y signedAngle 

Friction velocity  frictionVelocity 

Geostrophic wind components  surfaceGeostrophicU 
surfaceGeostrophicV 

Geostrophic wind direction  windDirectionFromComponents 

Geostrophic wind speed  windSpeedFromComponents 

Humidity-corrected heat flux Y schotanusFluxCorrection 

Momentum flux components Y rotateTensor 

Obukhov length  obukhovLength 

Obukhov stability parameter  obukhovStabilityParameter 

Obukhov stability class  stabilityClassObukhov 

Rossby-Montgomery coefficient  rossbyMontgomeryCoefficientStable 
rossbyMontgomeryCoefficientUnstable 

Sensible heat flux components Y rotateScalar 

Thermal wind components  thermalU 
thermalV 

Wind veer  signedAngle 

 

3.3.4 Quality assurance 

The purpose of any dataset created on the basis of direct measurement is to represent as 

faithfully as possible the underlying phenomena of interest. However, the process of 

measurement is subject to a range of unwanted variations that can obscure the 

phenomena of interest including 

• Equipment faults 
• Incorrect instrument calibration 
• Electromagnetic disturbances 
• Physical interference with sensors (due to precipitation, for example) 

(Foken et al., 2005; Starkenburg et al., 2016) 

The result of these variations can be missing data points, or data points which are in 

some way incorrect and must be removed in order to avoid unrepresentative bias in the 

dataset. Quality control (QC) is the identification of missing or erroneous data and the 
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possible application of corrections to mitigate their effects (Zahumenský, 2004) while 

quality assurance (QA) is the wider framework of activities used to safeguard confidence 

in the data. 

In the current work, the research dataset is intended as a generic resource capable of 

supporting a wide range of analyses, some of which are not defined at the time of its 

creation. For this reason, the strategy of removing entire records with missing data 

values is not followed since doing so would remove valid data in the remaining 

columns. Instead, individual erroneous or suspect values are replaced by null values. 

The final TMA dataset is therefore expected to have data gaps which will be handled by 

individual analyses.  

As shown in Fig. 15, QC is applied to each of the components before combination and 

the specific checks and actions are dependent on the nature of the data. The current 

work relies on data from existing sources with no influence over the way that data is 

collected, or over the measurement instruments themselves. Therefore, these details are 

simply noted as limitations on the research dataset. Because weather station data is 

typically aggregated to hourly means before it is published, the current work must 

assume that appropriate QC has already been applied. Confidence in this assumption 

can be increased where the data is collected by scientific agencies according to 

published standards. 

Estimations of atmospheric fluxes are particularly sensitive to certain types of data 

error, and more stringent quality control is recommended than for other types of 

meteorological data (Foken et al., 2005). Vickers and Mahrt (1997) provide several tests 

for identifying instrumentation issues, flux sampling problems, and situations where 

erroneous data may appear physically plausible. Their process involves marking data 

with either a hard flag which identifies a clear error such as an instrument fault, or a soft 

flag which indicates unusual values that may optionally be filtered out in certain cases. 

Hard flags are implemented by sonic anemometers, SCADA systems and logger scripts 

which provide diagnostic information in the form of integer values in the data. The 

following tests advocated by Vickers and Mahrt (1997) are implemented in the current 
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work and result in the suppression of individual data values before the data is reduced 

to TMA values: 

• Identification and elimination of spikes 

Spikes are data values which are significantly different from neighbouring points 

as to be considered anomalous outliers. As such, they can bias the results of 

calculation if they are not removed. Spikes can have various causes including 

power supply fluctuations, water droplets on the sensor and physical 

disturbances. Because of their origin, it is likely that spikes will be correlated 

across several data channels. This can be particularly important when using data 

from sonic anemometers to estimate heat and momentum flux (Foken et al., 

2005). Please refer to §3.4.8 for further discussion and details of the despiking 

method used here. 

• Absolute limits 

Certain physical parameters are bounded by upper and lower limits which define 

the range of physically plausible values. These can be used to identify and 

eliminate a particular class of data error. The ranges shown in Table 13 are 

applied in the current work, and values that fall outside these ranges are 

replaced by null values in the component data before its reduction to TMA 

records. 

 

Table 13: Absolute limits applied to component data 

Parameter Lower limit Upper limit 
Wind direction (°) 0 360 

Horizontal wind speed (ms-1) 0 30 

Horizontal wind speed component (ms-1) -30 30 

Vertical wind speed component (ms-1) -10 10 

Temperature (°C) -40 40 
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• Visual inspection 

Vickers and Mahrt (1997) state that the final quality assurance step should be a 

visual examination of records that have been identified as suspect by automated 

checks. While this rule is not adhered to comprehensively here simply because 

of the quantity of data involved, the data sample associated with each TMA 

record is retained in a separate data file so that it is available for inspection if 

needed. Where TMA records are discovered to have data issues which are not 

detected by the automated tests, they are added to a black list which is excluded 

from all analyses. 

In addition, two further recommendations are incorporated into the research dataset as 

soft flags which provide information about the TMA records: 

• Higher-moment statistics 

Vickers and Mahrt (1997) use skewness and kurtosis of wind speed components 

to identify deviations from the mean that exceed normal expectations. These 

statistics are calculated for all base parameters in the current work and are 

therefore available as filtering criteria if required. 

• Non-stationarity of the horizontal wind 

Stationarity is calculated for all base parameters, and may therefore also be used 

to filter the data during analysis. 

In addition to the data-driven tests recommended by Vickers and Mahrt (1997), manual 

inspection of each component is performed as part of QC and any related information 

about the component is also used to determine any corrective actions required. Vickers 

and Mahrt (1997) further recommend that TMA values are rejected where more than 

1% of the sample data is identified as spikes, but also acknowledge that the value is 

“somewhat arbitrary”. A number of other quality criteria shown in Table 14 are also 

recommended. Records that fail on these criteria are not suppressed in the stored 

dataset to allow for flexibility when running analyses. Retaining the TMA values allows 

a criterion to be relaxed if it is thought appropriate. Please refer to §5.3.2 for the 

practical application of QC, the issues found and the specific actions taken. 
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Table 14: Quality filters 

Criterion Description 
Point count A value must be based on at least 90% of the expected number of raw 

data points. 

Spike count The number of spikes in the sample must be less than 1% of the 
expected number of points  (Foken et al., 2005, p. 185; Vickers & 
Mahrt, 1997). 

Free-stream sector Wind directions are excluded to avoid the turbine wake. 

Positive flux Friction velocity and Obukhov length require a negative value for 
momentum flux despite calculated values appearing feasible (Biltoft, 
2003a). Values for these parameters are therefore suppressed when 
momentum flux is positive. 

Precipitation Data is suppressed where relative humidity is 99%  or above (X. Lee et 
al., 2004, p. 47) to avoid problems with the sonic instruments. 

 

3.3.5 Despiking 

Vickers and Mahrt (1997) identify despiking as the first quality control check to be done 

on data recorded for flux calculations, and the only one which involves changing the 

original data. A common approach to spike identification is to select points whose 

deviation from the mean of the signal is greater than a certain multiple of the standard 

deviation (Hojstrup, 1993). There is no agreed standard threshold, however, and 

multiples of 3.5 to 5.5 are found (Mauder et al., 2013). Median absolute deviation 

(MAD) is a related technique for identifying spikes which selects any points whose 

absolute deviation from the median exceeds a multiple of the median (Mauder et al., 

2013). Both of these approaches essentially operate as a band pass filter and points are 

eliminated if they fall beyond the band limits. Fig. 16 illustrates the effect of applying a 

threshold of four times the standard deviation to an example ten-minute wind speed 

record with obvious spikes.  
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Figure 16: Using 4 x standard deviation as a despiking threshold 

 

The algorithm can become too aggressive if the threshold is poorly chosen in relation to 

the data. For illustrative purpose, Fig. 17 shows the effect of using 2.5 times the 

standard deviation instead of 4. The pass band starts to become clearly visible, and real 

data is starting to be lost. 

 

Figure 17: Using 2.5 x standard deviation as a despiking threshold 
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Brock (1986) defines a more robust method for identifying spikes based on a median 

filter. In a first step, a histogram is produced of differences between the raw signal and 

a median filtered version. Valid values tend to cluster in the centre while outliers are 

separated from the central population by a gap. The location of the gap is then used to 

define a local threshold for spike identification that is dependent only on the size of the 

data selection window. Applying the median filter approach to the data sample shown 

in Fig. 16 identifies the same six points as spikes. The implementation here uses a third-

order median filter as recommended by Starkenburg et al. (2016) with a data selection 

window of 60 s. 

3.4 Accounting for variation in the power curve 

3.4.1 Introduction 

The aim of this project is to investigate the potential of alternative data filtering 

strategies with respect to data loss, AEP estimates and the dispersion of points in the 

power curve scatter plot. This section describes the methods used to do this based on 

the research dataset. Candidate parameters are identified using sensitivity and 

correlation analysis. They are then evaluated against comparator power curves also 

derived from the research dataset. The performance of a filter is determined on the 

basis of the dispersion evident in the power curve scatter plot and on the quantity of 

data lost through the application of the filter. The ideal filter is the one which minimises 

both measures while producing an AEP estimate comparable to that obtained using 

traditional filters such as those for TI and wind shear. The main stages of the approach 

are shown in Figure 18.  

The research dataset provides a rich array of parameters that can be evaluated for their 

influence on instantaneous power output. However, not all of the parameters 

represented by columns in the data file are relevant – some provide diagnostic 

information only while others provide information on turbine characteristics rather than 

meteorological phenomena. The process therefore begins with the manual selection of 
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candidate parameters based on the nature of the columns in the data file and on 

expectations drawn from the material covered in the literature review. 

 

 

Figure 18: Overview of methodology 

 

3.4.2 Quantifying dispersion 

In linear regression studies, the goodness-of-fit is typically quantified by measures such 

as the mean error (MA), mean absolute error (MAE) or the root mean squared error 

(RMSE) whose formula is shown as Eq. 50. Of these the RMSE offers a larger range 

and gives more weight to large errors than do the other measures, and is therefore 

adopted here. For a series of length k, the squared differences between the values é. 

Manual selection of candidate parameters 

Initial sensitivity analysis  

Elimination of redundant parameters through 

correlation analysis 

Second sensitivity analysis 

Creation of comparator power curves 

Development of novel filtering criteria 
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and the expected values é3. are summed and divided by k to yield the mean squared 

deviation. Solutions to regression problems are found by minimising the RMSE which 

is found by taking the square root. 

 y˚�§ = ¸
1
k• (é3. − é.)}

Æ

.q©
 (50) 

 

Although turbine power output is a non-linear function of wind speed, residual values 

can be calculated if the expected values are taken as those predicted by the reference or 

measured power curves. The binned power curve is first interpolated to provide 

appropriate resolution of the data values, taken here to be three decimal places. This 

ensures the existence of an expected value for every data point and the RMSE can then 

be calculated using the standard formula. The result is a positive integer whose 

magnitude is a relative indication of the dispersion of the data. The lower the RMSE 

value, the more tightly grouped the data is around the expected values.  

3.4.3 Sensitivity analysis 

The eFAST method described in §2.6.2 represents the input parameters to a model with 

a series of oscillating signals at incommensurate frequencies. After the synthetic input is 

run through the model implemented as a trained ANN, a Fourier transform of the 

output reveals the model’s sensitivity to the different parameters in the amplitude of the 

peaks in the frequency spectrum. Each pass through the eFAST algorithm includes the 

following steps: 

1. Create and train the ANN 
2. Synthesise a signal for each parameter using its assigned frequency 
3. Feed the synthesised data into the ANN to produce a predicted power output 
4. Calculate and report the variance of the simulated power signal 
5. Apply a fast Fourier transform to the simulated power signal to create a 

spectrum 
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Schaibly and Shuler (1973) provide tabulated lists of suitable frequencies ranging from 5 

to 19 in length that were prepared through trial and error. Since these are unlikely to be 

sufficient to represent the number of frequencies required for the present task, three 

python routines were created. The first recursively checks a value against a list to 

determine whether it is the sum of a subset of the list values.  The second routine 

checks that no integer multiple of a value is within ±5 of any other, and the third takes 

a maximum starting frequency and explores the range of numbers towards zero for 

compatible values which once found are added to the generated set. This approach 

yields a compact set of incommensurate frequencies with a narrower range that those of 

Schaibly and Shuler. The code for the python functions is provided in Appendix C. 

Once the maximum frequency is known, the number of required records is calculated 

using Eq. 47 and a synthetic dataset is generated using the transformation defined by 

Eq. 46. The resulting synthetic signal is detrended before applying a Fourier transform. 

In order to accommodate the natural variation in the training of the ANN, the entire 

process is repeated 10 times and average power densities are calculated for each of the 

parameters. Following McKay et al. (2013), any output above the highest frequency 

used is discarded on the assumption that any energy at higher frequencies are the result 

of imperfections in the structure of the ANN.  

In a second stage, total effects are calculated using only two frequencies instead of the 

full set. The frequencies 139 Hz and 202 Hz were selected for this purpose. Each 

parameter in turn is set to the higher frequency (202 Hz) while all other parameters 

were assigned the lower frequency (139 Hz). Thus, the peak at 139 Hz in the resulting 

spectrum comprises the main effects of all parameters other than the one assigned to 

202 Hz, and any other variance is due to the main effect of the selected parameter and 

its second and higher order interactions. In order to minimise the noise in the spectrum, 

frequencies above 207 Hz are discarded. This makes the total effects values more 

precise, but it means that the amplitude of the spectral peaks is not directly comparable 

with the main effects calculated in the previous stage; however, the difference between 

the two figures is a reasonable indication of a parameter’s interaction with others. 
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Once the process is complete, a suitable threshold is identified based on the total effects 

of the parameters and those which fall below the threshold are eliminated. 

3.4.4 Model building with ANN 

The python library TensorFlow19 provides a packaged implementation of a wide range 

of functionality for building, training and testing ANNs although the precise structure 

of a particular network is left to the user. Decisions therefore need to be made about 

the number of layers and the number of nodes in each hidden layer. While there is no 

shortage of advice on possible structures, there are no deterministic methods for 

choosing an optimal structure, and a certain amount of experimentation is required 

(Sarle, 2001). Adopting a principle of simplicity, a constructive approach is applied in 

which smaller structures are tested for adequacy first, adding structure when a 

deficiency is identified. In all cases, the ANN is trained using the early stopping strategy 

to avoid over-fitting. In advance of each run, the initial dataset is randomly split and 

20% set aside for testing. Of the 80% used during training, 20% is used for validation. 

The type of network required here is a regressor, and the output layer therefore consists 

of a single node representing the estimated power output. The number of nodes in the 

input layer is also fixed by the number of input parameters. Most examples in the 

literature have a smaller number of input parameters than is likely to be required here 

(Mckay et al., 2013; Pelletier et al., 2016). Typical examples also make use of two hidden 

layers with a relatively small number of nodes although the rationale for using two 

hidden layers is rarely justified. Given that it has been shown that a single input layer 

can approximate any measurable function to an arbitrary degree of accuracy with a 

sufficient number of hidden nodes (Hornik et al., 1989), the initial configuration is one 

hidden layer and 8 nodes. The performance of the trained ANN can be evaluated using 

the RMSE to compare predicted and observed power values. 

                                                

19 https://www.tensorflow.org/ 



 

  

 
106 

3.4.5 Correlation analysis 

Parameters may be correlated in the research dataset either because the quantities they 

measure are physically related, or for the more mundane reason that their mathematical 

derivations follow a similar path. This is especially true for the derived parameters in the 

dataset which share a common set of measured parameters and where correlations may 

be spurious (Baas et al., 2006; Kim, 1999). Whatever the source of a correlation, 

including both variables in a model is redundant, and it can be simplified by eliminating 

one of them (L. Lee et al., 2017, p. 6). The Pearson correlation coefficient, x}, is 

calculated for all pairs of parameters in a set, and for those pairs with a resulting value 

greater than or equal to a threshold value of 0.7, one parameter is eliminated. In 

deciding which parameter in a pair to eliminate, the following simplicity criteria are 

applied: 

1. Where one parameter is derived and the other is measured, the measured one is 
retained 

2. Where one parameter is a traditionally-collected value and the other is speculative, 
the traditional one is retained 

3. Where one parameter requires three-dimensional wind data and the other does not, 
the one requiring two-dimensional data is retained 

3.4.6 Creation of comparator power curves 

To provide a benchmark for comparison, two power curves are created. The first, 

referred to here as the baseline power curve, only has quality filters applied, while the 

second, referred to here as the contractual power curve is also subject to artificial filters 

based on those used in real PPT projects. These filters are also referred to as contractual 

filters to distinguish them from the experimental filters that are to be tested. The 

baseline curve provides a common point of reference for the contractual curve and for 

those created using the experimental filters. This is useful in comparing the effects on 

data loss, measurement campaign duration and dispersion; however, because of the 

established value of current filters, the AEP estimate used as a benchmark will be the 

one from the contractual curve. 
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The comparator curves are created according to the methodology defined in IEC2017 

including rules for data selection, data aggregation and uncertainty analysis. IEC2017 

requires two sets of results to be presented, one normalised to standard sea level 

pressure of 1.225 kg m-3 and the second normalised to the mean density measured at 

the site. The site-specific values are used as benchmarks in the current work. 

3.4.7 Development of novel filtering criteria 

The purpose of a filter is to set limits on the validity of the data based on the value of 

the parameter in question, and to exclude values that fall outside those limits. A 

symmetrical filter is one in which both upper and lower bounds define a pass band and 

both lower and higher values are excluded. An asymmetric filter is one which defines only 

a single bound beyond which values are excluded. An asymmetric filter would be 

appropriate, for example, where the value of a parameter is typically close to zero, but in 

rare circumstances is much higher. A filter would define an upper bound to exclude the 

abnormal cases.  

An ideal filter for use with a power curve would exclude a relatively small proportion of 

records, say around 10%, at the extremes of its range. Because the values of a parameter 

are not necessarily Gaussian distributed, a Pearson type III distribution is used to fit the 

data and the 5th and 95th percentiles are used as the lower and upper bounds. If the 

parameter is asymmetric, zero is used as the lower bound. 

With its bounds defined and appropriate benchmarks available, the effects of a new 

filter can be observed. In the ideal case, the 10% of data excluded by the filter would be 

entirely located in the periphery of the power curve point cloud, thus reducing the 

overall dispersion. It would also produce an AEP estimate similar to that of the 

contractual power curve.  
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4 Analysis of PPT contracts 

Previous studies have reported significant loss of data during power curve measurement 

projects as a result of filtering out records that do not conform to the warranted 

conditions (Mellinghoff, 2012; Rareshide et al., 2009). This chapter presents the results 

of applying the methods described in §3.3 to data from 15 PPT projects carried out by 

Wood Clean Energy from January 2014 to November 2018 inclusive. Both the analysis 

itself and the graphical presentation of the results are novel contributions of this 

project. While the limitations of wind turbine warranties have been discussed (Albers, 

2012), this is the first attempt to quantify the impacts of filtering strategies. The results 

therefore inform the rest of the current project and provide insights into a significant 

source of variation across PPT projects. 

4.1 Contractual filter criteria 

The three most common filters in PPT contracts place limits on TI, wind shear and 

temperature for which the turbine performance is guaranteed by the manufacturer. Of 

the 15 projects covered by the present dataset, 12 defined a temperature filter, and 11 

defined both TI and shear filters. While the existence of contractual filters demonstrates 

the importance of the associated meteorological phenomena for turbine performance, 

the range of limits applied in different projects has not previously received attention.  

Fig. 19 contrasts the different restrictions imposed on the data for temperature, 

turbulence intensity and shear for each of the 15 projects labelled A – O. The grey bars 

indicate that the relevant project did not define a filter for that particular quantity. The 

variation is quite wide for all three quantities with some projects imposing much tighter 

restrictions than others. The temperature range specified by project J, for example, was 

2 – 25 ºC while the valid range for project O was -40 – 50 ºC which more or less 

includes the full range of temperatures in temperate regions where the majority of wind 

turbines are located. Projects K – N are very restrictive in terms of turbulence intensity 

and only allow values in the range 0.06 – 0.12. In addition to the three types of filter 

illustrated in the figure, three of the projects excluded records where the inflow angle 
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exceeded a threshold of either ±2° or ±4°, two projects excluded records where the 

veer exceeded ± 10 degrees per 100 m, and one project required the air density to be 

greater than 1.13 kgm-3. 

 

Figure 19: Comparison of filter criteria by project 

 

The more restrictive the filters applied to a measurement campaign, the longer it will 

take to accumulate the required amount of data. Such disparities across projects create 

problems for project planning and costing, since for the more restrictive cases, it is 

likely that the elapsed duration will exceed the customary three-month period. The 

patterns in the data in Fig. 19 suggest that there are commonly-used ranges for all three 

filters, but there is no dominant range in any of the three cases. It could be proposed 

that a standard range be adopted for each filter criterion; however, that would restrict 

the ability of a PPT contract to reflect site-specific conditions and would almost 

certainly be unacceptable to manufacturers and developers alike. Alternative filters that 

target more specific aspects of the wind regime could help avoid the sort of tight 

restrictions seen here. 
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4.2 Data loss 

Ranking the turbines according to the proportion of data remaining reveals which type 

of filter is mainly responsible for data loss. In Fig. 20, the series labelled IEC represents 

the minimum filtering requirements defined in the standard. For the most part, losses 

due to these filters are fairly modest with some notable exceptions. The IEC losses 

related to turbine O2, for example, are mainly the result of the turbine operating with 

active curtailment, and those related to turbine J1 are caused by an intermittent grid 

connection. The large losses related to turbine B3 are reportedly due to turbine 

unavailability and those related to turbine F1 are the result of a combination of turbine 

unavailability and blade icing. Apart from those individual cases, the majority of losses 

are due to the contractual filters. In the best case of turbine C3, 10% of data is lost 

because of technical availability, and a further 6% because of extreme temperatures. 

Temperature losses in this case are most likely due to measurement issues such as spikes 

since the valid range is defined as -20 – 40 ºC and the expected range of temperatures at 

the turbine location is -3 – 34 ºC. It is notable though that no filters for turbulence 

intensity or shear were defined for turbine C3 or for the next three turbines in sequence 

in Fig. 20. At the other end of the scale, most of the data losses related to turbine M1 

are a result of the very restrictive turbulence intensity filter identified previously. 

Excluding turbine F1 with its technical availability issues, the six turbines at the right-

hand end of Fig. 20 all have the same restriction. 

 

Figure 20: Quantity of data lost through mandatory and contractual filters by turbine 
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This small sample of PPT results shows that the extreme data losses of up to 90% 

reported in the literature are not isolated instances. The two turbines at the low end of 

the scale in Fig. 20 retain only 5% of the measured data, mainly due to a very restrictive 

condition on turbulence intensity. Both turbines are part of the same project, but there 

are a further 12 turbines out of 42 which retain less than 20% of the measured data 

mainly due to contractual restrictions. The measurement campaigns for these 12 

turbines range from 99 to 308 days, and all are sited in simple terrain. 

4.3 Controlling for terrain effects 

Local topology can disturb the flow of air and IEC2017 differentiates between flat and 

complex terrain for this reason. Flat terrain is relatively homogeneous, while complex 

terrain can include forestry, obstacles or significant variations in local topography such 

as abrupt changes in height or steep inclines. It could be hypothesised that PPT data 

collection for turbines in complex terrain would take longer because of the greater 

variation in inflow conditions. If that were the case, the impact of filtering strategies on 

measurement campaign duration would potentially be less significant. The terrain type 

for each project is recorded in the PPT reports, and is used to categorise the effective 

duration of each valid measurement campaign in Fig. 21. Applying the quality criteria 

defined in §3.3.4 to the original 42 turbines in the dataset, 30 were excluded leaving 12.  

 

Figure 21: Campaign durations by terrain type 
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The two sets of effective durations are clearly coincident and the two highest durations 

are for sites with flat terrain. Apart from one outlying case, the plot of elapsed duration 

is clearly skewed with projects in complex terrain typically taking longer to complete 

than those in flat terrain. While the terrain clearly has an impact, using the measure of 

effective duration removes the bias in the data and makes comparison across projects 

meaningful. It must always be borne in mind using this measure that it is a theoretical 

quantity that is always shorter than the elapsed duration. 

4.4 Impact of data loss on project duration 

A premise of the current work is that PPT measurement campaigns of long duration are 

undesirable. Theoretically, there are three types of financial benefit that follow from a 

short PPT process. The first concerns the control of direct costs by terminating the 

PPT project at the earliest opportunity, and thereby moving the development project 

onto the next stage. The other types of benefit on successful conclusion of the test are 

that final contractual payments between parties can be completed and valuable 

resources assigned to the project can be released. Because information about specific 

project costs are commercially sensitive, it is not possible to report on them directly; 

however, if it can be shown that PPT projects are indeed terminated as soon as possible 

then it can be inferred that fast completion is a priority for the project client. This 

would further imply that it is financially valuable since it forms part of a commercial 

activity. 

The elapsed and effective durations of each valid measurement campaign are plotted in 

Fig. 22 against the proportion of data remaining after filtering. Five out of the 12 values 

for effective duration lie very close to the minimum duration limit. Measurement in 

these cases ceased as soon as the required quantity of data had been accumulated which 

implies is that a fast completion was a priority for the project client. In four of the 

cases, the elapsed duration is far above the planned duration suggesting that there were 

considerable financial reasons to terminate the measurement campaign as soon as 

possible.  
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Figure 22: Effective campaign durations 

The points are related in the vertical dimension: an orange point represents the same project as the blue point 

directly below it. 

 

There is a clear trend in Fig. 22 for projects with greater percentage data loss to have 

longer elapsed durations. Two thirds of the measurement campaigns exceeded the 

standard three-month duration with the most extreme case lasting three times as long as 

expected. The direct financial implications of these delays are summarised in Table 15; 

however, the indirect costs are not so easily quantifiable. Where a measurement 

campaign takes nine months rather than three, the consequences for the overall project 

schedule could be severe to the extent of adding an additional year to the construction 

if the window of good weather in the summer is overshot. Even assuming no such 

major extension, such an overshoot on a site calibration campaign could incur 

considerable costs because of the need to retain heavy-duty construction equipment and 

vehicles. Assuming a rate of around £250K per day, a six-month overshoot could add 

an additional £45.6M to construction. In Table 15, the cost is shown as a percentage of 

the planned cost assuming an additional 1% of the planned cost per extra day and the 

results are presented in order of cost/duration. 
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Table 15: Direct campaign costs 

Campaign Elapsed duration Percentage cost 
H1 77 100 

O2 88 100 

O4 60 100 

E1 92 101 

I1 99 108 

D1 119 128 

O6 153 162 

B1 175 184 

B4 175 184 

N4 180 189 

A1 185 194 

K2 303 312 

 

4.5 Conclusions from the project analysis 

The foregoing discussion can be summarised as follows: 

• Contractual filter criteria vary considerably between projects and can be very 
restrictive 

Although there appear to be commonly-used ranges for typical filters, none are 

dominant across projects. The introduction of standard reference ranges is 

unlikely to be acceptable for commercial and practical reasons. 

• Large data losses through contractual filters are not exceptional 

In the small sample of projects examined, an even spread of data losses from 

10% to 95% is observed. This confirms the results of previous studies reporting 

losses of up to 90%, and suggests that large losses are quite common. 

• Terrain type is a major factor on elapsed duration 

As expected, measurement campaigns in complex terrain typically take longer 

than those in flat terrain. However, the relationship is not deterministic, and the 

project with the longest elapsed duration in this sample was in flat terrain. 
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• The concept of effective duration allows comparison across projects 

The effective duration is calculated from the valid data that is collected before 

filters are applied. It provides an indication of the priority attached to the 

termination of the campaign through a comparison with the minimum 

theoretical duration. 

• The pressure to terminate data collection increases with the rate of data loss 

It is observed that as the elapsed duration of a campaign increases, the effective 

duration tends to be minimised. This provides evidence that there is a financial 

imperative to control the duration of campaigns. 

• Direct campaign costs often exceed the original budget by up to twice the 
planned amount 

Two thirds of the valid projects reviewed exceeded the standard three-month 

period, some by a small amount and others by over 200%. This shows that the 

issue of controlling the duration of a campaign is significant. 

• Indirect costs can theoretically add tens of millions to the overall construction 
project 

Although it is difficult to be specific because of the commercial sensitivity of 

costs, it is possible to examine campaign costs in proportional terms. In 

addition, every project will have its own specific characteristics that determine 

its actual costs. Nevertheless, the rough estimates presented here show that both 

direct and indirect costs resulting from long campaign durations can be 

significant. 

There are obvious limitations to the investigation carried out here. Firstly, the data 

come only from one consulting organisation. To ensure generality of the results, a wider 

review would need to take in data from several organisation to ensure there are no 

organisational or operational factors at play.  

Secondly, the sample of projects is small and consequently the results presented here 

must be considered indicative rather than generally applicable. However, the results are 
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supported by industry experts, and confirm previously reported observations about the 

extent of data losses. These factors increase the confidence in the conclusions drawn 

here. 

Thirdly, limited information was available concerning the reasons for the low rate of 

accumulation of data during each campaign leading to the difference between elapsed 

and effective duration. Greater knowledge of these factors could provide additional 

insights into how campaign duration could be better controlled. However, the focus in 

the current work is on the data itself, and the patterns observed above appear to be 

internally consistent. 
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5 Compilation of research dataset 

5.1 Introduction 

The range of parameters having a potential impact on instantaneous power output 

requires a dataset with particular characteristics summarised in Table 10 and explained 

in greater detail in §3.3. No extant dataset was found to satisfy the requirements, and a 

new dataset is therefore constructed from original sources using the methods described 

in §3.3. The result of this exercise is a general resource capable of supporting 

comparative research beyond the current aims, and therefore constitutes a core 

contribution from the current work. Its main element is a single file of TMA values 

which contains 727 columns including the timestamp. In addition, the raw data sample 

used to derive each TMA record is preserved for more detailed investigation if required.  

This chapter provides details of the practical implementation of the methods set out in 

§3.3 with particular focus on the sources of data, and the process of constructing the 

final dataset including  

• data quality control 
• removal of spurious data 
• the conflation of data from different sources 
• the reduction of raw data to ten-minute averages 
• the addition of derived parameters 

Wind speed and direction values are calculated from wind velocity components 

measured using sonic anemometers. As a simple validation of the process, the 

calculated hub-height wind speed and direction are compared to measurements from 

the turbine SCADA and are found to agree within expected limits. A description of the 

format of the TMA file is provided in Appendix F along with a data excerpt; however, 

because of the dimensions of the data, the excerpt is necessarily abbreviated. The entire 

dataset is available via the University of Minnesota Digital Conservancy (Davison, 

2019).  
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5.2 Sources 

5.2.1 Eolos research turbine 

The Eolos Wind Energy Research Field Station is operated by the University of 

Minnesota, and is located at 44.73N, -93.05E, approximately 30km south-east of the 

centre of Minneapolis. A 2.5 MW Clipper Liberty C96 turbine, commissioned in 2011, 

with a rotor diameter of 96 m and a hub height of 80 m is paired with a meteorological 

mast (met mast) located 160 m to the south. The relative positions of the turbine and 

met mast are shown as red circles in Fig. 23.  

 

Figure 23: Turbine location showing excluded sector 

 

The immediate vicinity of the turbine is rolling farmland with no more than a 3 m 

change in elevation in a 2 km radius with respect to the turbine base (Howard & Guala, 

1.4km 
 

Excluded sector: 320-40° 
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2016). Within the same area there are some small wooded areas and two-storey 

buildings which introduce localised changes in surface roughness. The sector indicated 

by the arc is excluded to avoid disturbance from the turbine wake and flow distortion 

due to the met mast.  

 

 

Figure 24: Eolos turbine dimensions and instrumentation 

 

The mast is equipped with sonic anemometers at four elevations as shown in Fig. 24 

which sample temperature and wind speed in three dimensions at a frequency of 20 Hz. 

Data sample at 1 Hz is provided for pressure and relative humidity measured at hub 

height, and temperature measured at six heights. SCADA data is also sampled at 1 Hz 

and includes measurements of a number of meteorological and turbine parameters 

including active power.  

In a commercial PPT, the manufacturer usually provides a site-specific power curve 

with associated limits of validity which forms the basis of the turbine warranty and the 

benchmark for the test itself (Albers, 2012). Here the sales power curve is used, and the 
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data has been recovered from an online database20. The reference power curve is shown 

in graphical form in Fig. 25 which is based on the table in Appendix A. 

 

Figure 25: Clipper Liberty C96 reference power curve 

 

Since data is collected using several data loggers, the Eolos data is supplied in parts 

which are summarised in Table 16.  

 

Table 16: Data sources from the Eolos research turbine 

Identifier Data Levels Sampling 
frequency 

MetA Sonic anemometer data 79.1 m, 127.9 m 20 Hz 

MetB Sonic anemometer data 9.9 m, 29.6 m 20 Hz 

RH Pressure and relative humidity 80 m 1 Hz 

Temp Temperature 7.3 m, 27.1 m, 51.5 m, 76.7 
m, 101.5 m, 125.9 m 

1 Hz 

SCADA Data from instruments on board the 
turbine including power  

80 m 1 Hz 

                                                

20 https://www.thewindpower.net/turbine_en_296_clipper_liberty-c96.php  
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5.2.2 ASOS weather observation stations 

Surface measurements at several locations in the vicinity of the turbine in order to 

calculate the local gradients of pressure and temperature. These are needed for the 

rotation of the flux vectors as described in §3.3.3.8. The Automated Surface Observing 

Systems (ASOS) network is a system of meteorological measurement stations 

maintained by the US National Weather Service, the Federal Aviation Administration, 

and the Department of Defence. Surface temperature and pressure are measured in 

accordance with the procedures set out by the US Office of the Federal Coordinator for 

Meteorological Services and Supporting Research (OFCM, 2017) at hourly intervals.  

 

 

Figure 26: Network of weather stations in Minnesota. The location of the Eolos turbine is highlighted in red 
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Data is freely available via the aggregation site operated by Iowa State University. 

Although there are 106 ASOS stations in the state of Minnesota, some are a long way 

north of the Eolos turbine site, and could exaggerate the local temperature gradient if 

they were included in the calculation. In addition, not all stations were able to provide a 

complete record of pressure for 2017. Eventually, 13 stations within a 240 km radius of 

the turbine site were selected as shown in Fig. 26. 

5.2.3 Solar data 

Basic solar data including sunrise and sunset times and azimuths was obtained for the 

whole of 2017 from the Internet site timeanddate.com. On the basis of this initial data 

and the julian day number, hour angle, elevation and declination can be calculated using 

standard formulae whose implementation can be found in Appendix E. 

5.2.4 Wind regime 

This section describes the wind regime at the Eolos turbine location based on the 

content of the research dataset. Meteorological characteristics are described primarily 

with reference to standard hub-height parameters.  

5.2.4.1 Stability 

The state of Minnesota is characterised by its flat terrain and continental climate. The 

average high temperature for July is 28.6º and the average low in January is -4.6º (US 

Climate Data, n.d.). This is reflected in the distribution of stability classes throughout 

the year as shown in Fig. 27 where the proportion of unstable conditions peaks in June. 

The figure uses stability classes based on the Obukhov length, f, based on the limits in 

Table 5. 
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Figure 27: Distribution of stability classes during 2017 

 

5.2.4.2 Wind direction 

The prevailing wind direction has previously been reported as southerly (Chamorro et 

al., 2015). The wind rose of the hub height wind in Fig. 28 however shows that in 2017 

the predominant direction was approximately 300º.  

 

Figure 28: Wind rose for 2017 
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Breaking the wind direction down by stability class as shown in Fig. 29 reveals a greater 

spread of directions in strongly stable conditions when wind speeds are low compared 

to other classes. 

 

Figure 29: Wind roses for 2017 broken down by stability class.  
Top-left: strongly stable (28902 records); top-right: weakly stable (8844 records);  
bottom-left: neutral (3750 records); bottom-right: unstable (9202 records). 

 

Wind direction shows a small dependence on time of day as shown in Fig. 30. There is a 

consistent tendency for the wind direction to veer shortly after solar noon by around 

20º and to back by a similar amount towards evening. This observation is congruent 

with the content of the wind roses in Fig. 29 where the wind from the north west is 
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stronger in neutral and unstable conditions. During the night when stable conditions 

dominate, the wind direction is more likely to be from the south. Also evident in Fig. 30 

is the tendency for stronger wind veer during stable conditions. This can be illustrated 

more clearly by plotting veer in degrees per 100 m against hour angle as in Fig. 31. 

 

Figure 30: Wind direction by time of day represented by the hour angle 

 

 

Figure 31: Wind veer by time of day represented by the hour angle 



 

  

 
126 

5.2.4.3 Wind speed distribution 

Overall the site is characterised by moderate winds with a hub height mean of 5.79 ms-1 

for the year and a standard deviation of 2.57 ms-1. The turbine’s rated speed of 15 ms-1 

is rarely achieved implying that the turbine operates predominantly in region II of the 

power curve. Fitting a Weibull distribution to the wind speed histogram as required for 

the IEC AEP calculation results in a shape parameter of 2.39 and a scale parameter of 

6.53 as shown in Fig. 32. 

 

Figure 32: Hub-height wind speed histogram and Weibull fit for 2017 

 

Fitting a Weibull distribution to the data from the four available measurement heights 

shows the expected evolution of wind speed with both the mean and standard deviation 

increasing with height. 
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Figure 33: Wind speed histograms from four heights with Weibull fits for 2017 

 

The variation in conditions across the year can be demonstrated by fitting a Weibull 

distribution to the hub height wind speed for each successive quarter. Although the 

standard deviation does not vary significantly, there is a 1.26 ms-1 difference in the mean 

between the third and fourth period. While not very large in absolute terms, this 

represents a 25% increase in average wind speed given the overall moderate regime. The 

implication for PPT is that the timing of the campaign could be a significant parameter 

in the final AEP calculation. Since the period from September to November is the 

preferred time for carrying out a site calibration, there is a risk that wind speeds 

measured during that time might not be representative of the whole year. 
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Figure 34: Hub-height wind speed histogram and Weibull fits by season 

 

The description of the Eolos wind regime exhibits expected patterns of behaviour, and 

to that extent confirms that the measurements have no anomalous features. The 

distribution of wind direction contrasts with that previously reported and could be an 

indication of incorrect processing of the sonic anemometer data. However, comparison 

with the turbine’s SCADA system in Fig. 39 confirms that the wind directions have 

been correctly calculated. The anomaly therefore remains unexplained. The Eolos site is 

characterised by a low mean wind speed and modest turbulence, to the extent that the 

rated wind speed of the Clipper Liberty C96 turbine of 15 ms-1 is rarely achieved. This is 

most clearly appreciated with reference to the velocity exceedance curve in Fig. 35. 
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Figure 35: Velocity exceedance curve 

 

5.2.4.4 Turbulence and shear 

Plotting hub height turbulence intensity and wind shear exponent against time of day 

represented by the hour angle as in Fig. 36 shows the expected pattern of variation. 

During the stable conditions that prevail during the night, turbulence intensity is low 

and shear is high and the opposite is true in unstable conditions. 

Examining the turbulence intensity binned by wind direction provides a verification of 

the definition of the free-stream sector, and also facilitates the identification of any 

other surface roughness influences that need to be eliminated. The higher proportion of 

values above 0.25 in the sector 340-20º due to the turbine wake is clearly visible in Fig. 

37. The excluded sector was calculated as 320-40º using the IEC recommendations, and 

disturbances due to the turbine are therefore eliminated from analyses. In all other 

sectors, the spread of values is fairly even in proportion to the number of data points 

revealing no major disturbances due to the turbine’s immediate surroundings.  
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Figure 36: Turbulence intensity and wind shear exponent by time of day represented by the hour angle 

 

 

Figure 37: Turbulence rose for 2017 
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5.3 Data preparation process 

This section reports on the application of the methods described in §3.3.3 – 3.3.5. 

Minor variations to the planned methods were required to accommodate practical issues 

during the data preparation process, and they are also described here. 

5.3.1 Quality control 

The characteristics of each original source of data were examined to identify any 

limitations or corrective actions that need to be applied. Table 17 summarises the issues 

found. Appropriate action is then taken to resolve or work around these issues.  

 

Table 17: data issues 

 Dataset Issue Description 
1 MetA, MetB Calibration There is no evidence that recalibration has been carried 

out since installation in June 2013 

2 MetA, MetB Sample 
consistency 

The 5-minute samples provided do not have consistent 
length or boundary 

3 MetA, MetB Anemometer 
faults 

A significant minority of records show an anemometer 
fault code 

4 MetA, MetB Coordinate 
frame 

The sonic wind speed components are recorded using a 
left-handed coordinate frame in which north to south is 
taken as positive in contrast to the usual convention 
(Stull, 2015, p. 2) 

5 MetA Misalignment Sonic anemometer at 79.1 m requires a correction of        
-12.8 degrees (Information provided by the University of 
Minnesota) 

6 MetB Misalignment Sonic anemometer at 29.6 m requires a correction of -6.4 
degrees (Information provided by the University of 
Minnesota) 

7 SCADA Turbine faults A significant minority of records show a turbine fault 
code 

8 SCADA Curtailment A significant number of records show that the turbine 
output is curtailed 

9 ASOS Sampling 
frequency 

The sampling frequency is lower that the target 
frequency of the final dataset 
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Most instruments require recalibration within one to two years of installation which 

helps to guard against drift. Since there is no information about any recalibrations since 

installation (1), some inaccuracy in pressure and relative humidity readings is expected. 

The Campbell Scientific CSAT3 sonic anemometers should not require field calibration 

(Campbell Scientific, 1998); however, see the discussion regarding temperature readings 

below. 

The sampling problem (2) is resolved by partitioning the data by day rather than by 

periods of five minutes. This resolves most of the anomalies leaving only a small 

number of cases where records from one day appear in the file corresponding to a 

different day. These last few anomalies are resolved manually. 

The CSAT3 sonic anemometer provides a diagnostic signal to help filter out invalid 

readings. It appears in the instrument output as an integer value which indicates an 

error condition if its value is 61440 or greater. The fault issue (3) is resolved by filtering 

out data where a fault code greater than or equal to 61440 is reported. The filtering code 

suppresses values from the relevant anemometer only. Because data from two separate 

anemometers occur in each of the MetA and MetB files, removing an entire record 

when a fault code appears would risk removing valid data from the second instrument. 

To simplify the application of existing meteorological formulae (4), the coordinate 

frame was changed from left-handed to right-handed by flipping the sign of the 

meridional (south-north) readings.  

The misalignment issues (5 & 6) are resolved by explicitly correcting the data. To 

perform the correction, the resultant wind vector is calculated and rotated by the 

relevant angle. The corrected vector is then decomposed back into zonal (west-east) and 

meridional (south-north) components. 

The turbine fault issue (7) is similar to that related to anemometer faults in that it relies 

on reported values in the data. Valid SCADA records were identified by a turbine state 

value of Run (corresponding to internal code 8), and a fault code of either 0 (no fault) or 

920 (feather check warning) (Stone, 2015). Records showing any other fault codes are 

suppressed. 
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Curtailment (8) refers to the situation where the power output of the turbine is 

deliberately constrained to a particular level. Records that correspond to a period of 

operation where output was curtailed can introduce misleading biases into any analyses. 

27.5M SCADA records out of 28.5M (96%) reported a curtailment level below 2,500 

kW. However, only 16.8M (59%) of records reported a curtailment level below 2,300 

kW. According to the published power curve, a hub height wind speed of 11.5 m/s is 

required to produce 2,300 kW. A later examination of the TMA data revealed that this 

wind speed was only exceeded during 1048 periods out of 51,050 (2%). The risk of 

distortion associated with such a small proportion of the data was considered minimal, 

and all records with a curtailment level of 2,300 kW were retained. 

The low ASOS sampling frequency (9) implies gaps in the data at the point it is 

synchronised at 0.00167 Hz (ten-minute intervals) with data from other sources. The 

solution is to upsample the data in advance of synchronisation, and to fill the resulting 

gaps using a second order spline interpolation. 

5.3.2 Despiking 

The value of visual inspection is illustrated by the sample shown in Fig. 38 where an 

apparent failure of the despiking routine demonstrates the need for manual exclusion of 

certain TMA records. The discontinuity seen at 12:59 actually represents the sonic 

anemometer recovering from an error condition which was not flagged by the 

instrument’s fault code.  

 

Figure 38: Example of a data anomaly not identified by the anemometer fault code 



 

  

 
134 

5.3.3 Data reduction 

Cross comparison between the hub height wind speed and direction calculated from the 

sonic instruments and those on board the turbine shows good agreement, and therefore 

supports the conclusion that no errors have been made in handling the sonic data. The 

correlations shown in Fig. 39 are not expected to be perfect because of the flow 

disturbance around the turbine nacelle. This is particularly evident in the wind speed 

plot at low wind speeds. The truncation of the direction plot at 40º and at 320º is the 

result of including only the free-stream sector. 

During data reduction there was an issue with the calculation of the coefficient of 

variation for temperature parameters. In most cases, temperatures are recorded in 

degrees Celsius, and consequently the coefficient of variation becomes undefined at 

0°C. However, because temperature varies only slowly, changes within a ten-minute 

averaging period are assumed to be unimportant for present purposes. This issue could 

have been avoided by converting all temperatures to Kelvin before performing the 

calculation. Coefficients of variation for temperature parameters do not appear in the 

final dataset. 

 

Figure 39: Comparison between wind direction and speed from the hub-height sonic anemometer and the 

turbine SCADA 
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5.3.4 Addition of derived parameters 

The calculation of air density is based on the sonic temperature and therefore differs 

from the formula given in IEC2017 which assumes that the temperature is measured 

with a PT100 temperature probe. The IEC formula includes a correction for humidity 

which is not needed with sonic measurements. The calculation used here is based on 

Eq. 9. 

The Eolos dataset provides a wind speed measurement at hub height and at the two 

vertical extremes of the rotor. This is the minimum number of measurements for 

REWS to be applied. However, please see the note in §5.4 regarding the quantity of 

data. 

Because Monin-Obukhov similarity theory is only valid within the atmospheric surface 

layer (Optis et al., 2016), the flux values measured at the lowest level of 9.9m are used to 

derive f. 

When deriving the zero-turbulence power curve during turbulence normalisation, the 

iterative step involves simulating the cut-in wind speed, maximum power coefficient 

and the rated power. When these three values converge on the reference values, the 

iteration terminates. Because the site is dominated by moderate wind speeds, rated 

power output is not reached at any point. This makes it impossible to use the 

turbulence normalisation procedure since the convergence with the rated power cannot 

be achieved. Turbulence normalisation therefore cannot be applied here, and its 

limitations are clear. 

5.4 Quantity of data 

The TMA file contains a total of 727 columns including the minimum requirements 

listed in Tables 7 – 9, diagnostic values such as spike count added during data reduction, 

intermediate values produced during certain calculations and parameters related to the 

SCADA data other than active power. The latter values are included for completeness, 

but are not relevant to the current work. A full description of the columns is provided 

in Appendix F. 
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The TMA file contains a total of 52,560 records; however, not all of the columns are 

fully populated either because of instrument faults or for other reasons. In the first half 

of the year, for example, the turbine was either operating with a curtailment level lower 

than 2,300 kW, or not operating at all. Consequently, only 12,628 records have power 

values. When all of the relevant quality filters are applied, this number falls further. As 

discussed in §3.5.1, TMA values for wind speed and power are suppressed if they are 

based on fewer than 90% the expected number of raw data points, and where more 

than 1% of the sample has been removed because of spikes. In addition, the data needs 

to be filtered by direction to include only the free-stream sector. The result is a final 

dataset of around 8,000 records which is just 15% of the possible total.  

 

Table 18: Quantity of wind speed data lost through quality filtering and number of records remaining 

Height 
(m) 

Physically 
implausible values 

(0-30 ms-1) 

Less than 90% of 
expected points 

More than 1% 
spikes 

Remaining 

127.9 410 17,794 4,327 30,029 57% 

79.1 15 1,069 454 51,022 97% 

29.6 2 710 232 51,616 98% 

9.9 17 261 41 52,241 99% 

 

Table 18 summarises the data lost when the dataset is filtered for validity of the mean 

wind speed values at the four measurement heights and the number of records 

remaining after the filters are applied. While a high proportion of data remains for the 

lower three instruments, a lot of data is lost at the top tip height because of instrument 

issues. This constrains the possible analyses that rely on measurements across the full 

rotor diameter including the use of the rotor equivalent wind speed (REWS). When 

applying filters to limit the dataset to only those TMA records containing the data 

required for REWS, the number of records is reduced to 2,818 or 5.4% of the possible 

total. 
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5.5 Summary and limitations 

The main result from the data preparation process is a single file of coordinated ten-

minute average (TMA) values drawn from the various sources and synchronised on 

their timestamps. In contrast to current practice, the data contains a wider range of 

statistics that have the potential to provide insight into the behaviour of the measured 

values within each averaging period. Care is taken to eliminate data that could bias the 

results of analyses unduly, and additional quality indicators have been added which 

characterise the ten-minute data samples from which each TMA value is derived.  

In addition to the TMA data, the preparation process preserves all ten-minute samples 

from the various sources which are used to create a TMA record. In this way, the 

original data is available for further examination should any interesting or anomalous 

features be identified. This not only provides a means of providing further evidence for 

any apparent effects; it also helps to eliminate false positive situations in which an effect 

appears to be present, but which is in fact the result of poor data quality, calculation 

errors or other oversights. 

The following limitations on the final dataset have been identified: 

• No recent instrument calibrations have been performed 

The measurement instruments were already installed and there was no 

opportunity to perform calibrations. There was also no information about 

calibration activity since their installation in 2011. The results presented here 

must therefore assume that adequate equipment maintenance has been 

performed. 

• The low-wind location means that rated power is not achieved 

Although it is the behaviour of the turbine in region II of the power curve that 

is of most interest, the low mean wind speed limits the analyses that can be 

performed. One very specific limitation is that the turbulence normalisation 

procedure cannot be used since it requires a point of reference at rated speed. 

Likewise, no observation of other behaviour related to high-speed wind regimes 
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is possible. This limits the observations that can be made, for example, 

regarding the interaction of wind speed with other meteorological phenomena. 

• The dataset has a large number of missing values 

The dataset nominally covers an entire calendar year; however, there are many 

missing values related to instrument failure and turbine curtailment. 

Nevertheless, the remaining data is still substantial at around 7000 – 8000 

records depending on the filters applied, and also has the desirable feature of 

spanning the seasons. 

• A number of SCADA parameters are not included in the final TMA file 

The focus of the current work is on meteorological impacts on power 

production, and therefore meteorological parameters are prioritised. The 

exclusion of some SCADA parameters does not impact the current work, but 

might limit future analyses that can be performed on the research dataset. 

• A small number of TMA records are affected by curtailment 

A pragmatic decision was taken to retain records with a curtailment level of 

2,300 kW to avoid eliminating a large number of records. Checks indicated that 

a very small number of records would be affected by the curtailment because of 

the low mean wind speed. However, it is expected that a small number of points 

will appear as a horizontal anomaly in the power curve scatter plot at 2,300 kW. 

The effect of this small set of data points is thought to be negligible with respect 

to data analyses. 

• Visual inspection of all samples was not possible due to the quantity of data 

Some anomalies such as the one illustrated in Fig. 38 were identified and 

eliminated; however, other such issues may still exist undetected in the data. 

Because no obvious anomalies have been observed in the TMA records, 

however, there is a reasonable level of confidence that even if such issues do 

exist, the reduction process used to produce the TMA records has largely 

mitigated their effects. 
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• Wind speed and direction are based solely on sonic measurements 

One aspect of the Eolos data that was not explored was the incorporation of 

the wind speed measurements taken with cup anemometers. This decision was 

mainly taken to control the quantity of data that needed to be processed, and to 

avoid issues related to the combination of data from different types of 

instrument. This does not pose any problems for the current work, but again 

limits future analyses based on the research dataset. 

• Flux calculations use a ten-minute averaging period rather than the standard 30 
minutes 

A ten-minute averaging period is used here so that flux values can easily be 

calculated along with other derived parameters. This potentially introduces 

uncertainty into flux values calculated for unstable conditions as discussed in 

§3.4.3.6.  
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6 Accounting for variation in the 

power curve 

This chapter reports on the results of applying the methods described in §3.5 to the 

research dataset. Candidate parameters are selected from those available and evaluated 

for their relationship with power performance through a sensitivity analysis using the 

eFAST method applied to an ANN trained on the Eolos data. Parameters with 

relatively low total effects are excluded and correlation analysis is used to eliminate 

redundancy. The aim is to drive the identification of a set of experimental filters from 

the data in order to eliminate subjective decisions as far as possible. There are two types 

of subjective decision which cannot be avoided, however. The first is the initial 

selection of candidate parameters which is mitigated by the deliberate inclusion of 

parameters not currently used in PPT and alternative measures for traditional 

phenomena such as turbulence and shear. The second type of subjective decision is 

related to the thresholds for retaining parameters following sensitivity and correlation 

analysis. As far as possible, thresholds are selected based on the form of the data, and 

this is discussed in the appropriate places below. 

6.1 Initial parameter selection 

With over 700 parameters, the research dataset can support a huge array of possible 

analyses and the first step must be to identify those parameters that are most relevant to 

a particular case. For the current work, all diagnostic parameters are eliminated as are all 

SCADA parameters except active power. Hub-height parameters are used for 

comparison with existing methods and the majority of parameters relating to other 

measurement heights are therefore excluded. Table 19 lists the base parameters included 

in the analysis along with the measurement height and statistical or derived variations 

where relevant. 

 



 

  

 
141 

Table 19: Initial set of selected parameters 

Base parameter Height Variations 
Horizontal wind speed 79.1m Basic moments (mean, standard deviation, 

skew, kurtosis) 
Stationarity (ADF, KPSS) 
Turbulence (V, V2, dissipation, length scale) 
Intermittency (í2) 
Normality (jb) 
Structure (transience) 

Vertical wind speed 79.1m As above 

Air density 80 m  

Temperature 76.7m Basic moments (mean, standard deviation, 
skew, kurtosis) 
Stationarity (ADF, KPSS) 
Normality (jb) 
Structure (transience) 

Relative humidity 80m As above 

Pressure 80m As above 

Flux 79.1m Vertical flux of horizontal momentum 
Vertical flux of sensible heat 
Turbulence kinetic energy (TKE) 

Cross-isobar angle 79.1m  

Inflow angle 79.1m  

Potential virtual temperature 79.1m  

Wind veer 79.1m  

Obukhov stability parameter 9.9m  

Bulk Richardson number   

Wind shear exponent  Lower half of rotor 
Upper half of rotor 
Whole rotor 

Wind speed ratio   

Lapse rate  Measured temperature 
Potential virtual temperature 

Solar declination   

Solar elevation   

Hour angle   

Geostrophic wind speed   

REWS   

Specific humidity   

Sea-level pressure   

ABL height   

 



 

  

 
142 

6.2 First-stage application of eFAST 

The dataset was first prepared by excluding parameters other than those in Table 19 

and by applying quality filters related to the following list of directly-measured 

quantities: 

• Power 
• Vertical wind speed at hub height 
• Temperature, relative humidity and pressure at hub height 
• Wind direction at hub height and rotor top 
• Horizontal wind speed measurements at rotor bottom, hub height and 

rotor top 

In addition, the data was quality filtered for the Obukhov stability parameter which is 

dependent on the measured fluxes of momentum and sensible heat. These criteria are 

more stringent than would normally be applied, but are needed to ensure that 

parameters such as REWS and the shear in the top half of the rotor cab calculated for 

all TMA records. This produced a maximally-populated grid of data values containing 

2,818 TMA records with 74 columns representing the selected parameters. A set of 74 

incommensurate frequencies was generated using the code in Appendix C. The eFAST 

method was applied as described in §3.5.3 

6.2.1 ANN configuration 

Through training the network following the procedure outlined in §3.4 and plotting the 

correlation between predicted and actual output values, it was found that the initial 

configuration of only eight hidden nodes was not capable of modelling the full range of 

output values. Incrementally increasing the number of nodes by a small amount was 

found to increase the coverage as illustrated in the correlation plots in Fig. 40. 
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Figure 40: Truncation of the output from the ANN with too few training records. a: 8 nodes, b: 38, c: 128, d: 218 

 

Examining the RMSE in the power output predicted by the ANN compared to the 

observed values, it was clear that after a large improvement in performance the accuracy 

gain above 120 nodes was marginal. On the other hand, it was observed that the 

required number of training epochs reached a local minimum at 218 nodes peaking 

again at around 300 nodes before falling at higher numbers. On the basis of these 

figures, shown in Fig. 41, the number of hidden nodes was set to 218. 
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Figure 41: Performance and time to convergence of the ANN with different numbers of hidden nodes 

 

6.2.2 Initial results 

The spectrum of main parameter effects shown in the upper plot in Fig. 42 has the 

expected format. Parameters expected to make a large contribution to the variance in 

the power output have higher peaks than others. This is particularly true for the two 

highest peaks which correspond to the measured hub-height wind speed and REWS; 

however, this also illustrates the problem with multicollinearity. These parameters are 

highly correlated since REWS is calculated from the measured wind speed. That is to 

say, they represent the same physical phenomenon. In an optimum set of parameters, 

only one of the them would appear, ideally the one which explains the largest 

proportion of variance in the output. The other would be considered redundant from a 

mathematical point of view. The multicollinearity appears as unwanted interaction 

effects make up the difference between the main effect and the total effect of each 

parameter in the lower plot in Fig. 42. 

 



 

  

 
145 

 

Figure 42: Main (top) and total (bottom) effects of initial set of 74 parameters 

 

The partial variance due to a particular phenomenon is not apportioned linearly to 

parameters that are correlated. This can be seen in the upper plot in Fig. 43 which is the 

result of repeating the first trial but omitting REWS. The peak related to the measured 

hub-height horizontal wind has increased from approximately 0.024 to 0.041 while the 

sum of the partial variances due to the two wind speeds was approximately 0.049. Some 
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of the other peaks in the spectrum also show a slight difference in amplitude which can 

be attributed to interactions with REWS in the first trial. 

 

Figure 43: Main (top) and total (bottom) effects of initial set of parameters except REWS 

The specific frequency values are different because of the exclusion of one of the input parameters 

 

One approach to eliminating redundant parameters is to calculate a comprehensive set 

of pairwise correlations and where the correlation coefficient exceeds a certain 

threshold to eliminate one of the pair. This has the advantage of being a procedure 
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amenable to automation, but is does not allow for the application of domain 

knowledge.  

 

Table 20: Initial parameter set grouped by meteorological phenomenon 

Phenomenon Parameter 
Horizontal wind speed Mean measured hub-height wind speed, U 

Normalised hub-height wind speed 
REWS 

Turbulence Standard deviation of hub-height wind speed 
Coefficient of variation of U (turbulence intensity) 
2nd order coefficient of variation of U 
Transience of U 
Intermittency of U 
Turbulence dissipation rate 
Turbulence length scale 
Turbulence kinetic energy (TKE) 

Shear Wind shear exponent (whole rotor) 
Wind shear exponent (lower half of rotor) 
Wind shear exponent (upper half of rotor) 
Wind speed ratio 
Horizontal wind speed at rotor top and bottom 

Stability Bulk Richardson number 
Obukhov stability parameter 
Lapse rate of measured temperature 
Lapse rate of potential virtual temperature 
Vertical flux of horizontal momentum 
Vertical flux of sensible heat 

 Inflow angle 

 ABL height 

 Solar elevation 

 Hour angle 

Wind veer Veer in degree per 100 m 
Cross-isobar angle 

Mass flux Air density 
Site-specific air density 
Pressure + temperature + relative humidity (means) 

Seasonality Solar declination 

 

Most of the parameters in the initial set are intended as proxies for recognised 

meteorological phenomena such as turbulence or shear. Others such as the stationarity 

of relative humidity are more speculative and do not necessarily have a predetermined 
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interpretation. An alternative approach would be to group the parameters according to 

their relationship with real phenomena and to define a minimal parameter set as one 

which contains one proxy measure from each group except the speculative inclusions. 

The approach is complicated for derived parameters such as REWS which is primarily a 

measure of horizontal wind speed, but which also incorporates shear and veer. The 

main issue, however, is the number of possible combinations of parameters that would 

need to be evaluated. Despite the fact that one parameter might be related to more than 

one phenomenon, Table 20 shows a rough grouping which would lead to 7,200 possible 

parameter subsets. A more pragmatic strategy is therefore needed. 

6.3 Reducing the number of parameters 

Examining Figs. 41 and 42, it is clear that there is a proportion of the parameter set that 

contribute relatively little to the variance in the output in terms of both main and total 

effects. With reference to the plots in Fig. 41 for example there are 21 parameters 

whose partial variance for their main effect is less than or equal to 0.001. At the other 

end of the scale, there are also 21 parameters with a partial variance of 0.005 or greater.  

The lower plot shows that the total effects for the top 21 parameters falls off relatively 

steeply while the total effects values for the bottom 21 parameters are all of a similar 

value. Simply dividing the parameter set in half according to their total effects retains 

those displaying a proportionally larger effect than the rest while allowing a wide 

tolerance to allow for slight variations in ordering between the main and total effects 

calculations. An interesting result of this approach is that all three variations of the wind 

shear exponent (whole-rotor, lower-half-rotor and upper-half-rotor) are excluded while 

the wind speed ratio is retained. Although more direct comparisons would be required 

for confirmation, this suggests that the wind speed ratio is more representative of the 

turbine inflow conditions than the simplified measure of the overall state of the ABL 

provided by the wind shear exponent. A maximal set of pairwise correlations is then 

generated for the remaining parameters which can be found in Appendix H. Highly 

correlated parameters (|x}| ≥ 0.7) are examined to decide which can be eliminated. 
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As a result of these steps, the 17 pairs of highly correlated parameters shown in Table 

21 were identified. It is clear that several of the correlations arise because the 

parameters are alternative indicators of the same meteorological phenomenon. The 

parameters in rows 3 – 7 and 14 for example are all related to atmospheric stability, 

while rows 8 – 13 and 15 are related to turbulence. The parameters in rows 1, 2 and 17 

are highly correlated because the potential virtual temperature and density are calculated 

from the measured temperature. REWS is similarly a modification of the measured 

wind speed which accounts for row 16; however, REWS is a special case since it also 

includes information about shear and veer. In all cases, there is clearly significant 

multicollinearity and the several of the parameters can be eliminated.  

 

Table 21: Highly-correlated parameters in the reduced set 

 Parameter 1 Parameter 2 r2 

1 Potential virtual temperature Density -1.00 

2 Measured temperature Density -0.99 

3 Turbulence kinetic energy Momentum flux -0.92 

4 Wind speed standard deviation Momentum flux -0.87 

5 Transience of vertical wind speed Momentum flux -0.78 

6 Lapse rate of potential virtual temperature Bulk Richardson number -0.75 

7 Lapse rate of measured temperature Bulk Richardson number -0.71 

8 Transience of horizontal wind speed Transience of vertical wind speed 0.70 

9 Wind speed standard deviation Turbulence length scale 0.71 

10 Wind speed standard deviation Transience of vertical wind speed 0.80 

11 Transience of vertical wind speed Turbulence kinetic energy 0.86 

12 Transience of horizontal wind speed Turbulence dissipation rate 0.92 

13 Wind speed standard deviation Turbulence kinetic energy 0.94 

14 Lapse rate of potential virtual temperature Lapse rate of measured temperature 0.96 

15 Coeff. of variation of vertical wind speed Vertical turbulence dissipation rate 0.98 

16 Measured wind speed REWS 0.99 

17 Measured temperature Potential virtual temperature 1.00 
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In general, the simpler parameter is retained. For example, measured parameters are 

preferred over derived ones and parameters based on one-dimensional measurements 

are preferred to those that require three-dimensional measurements. Table 22 lists the 

parameters retained in this exercise as well as those excluded. An interesting case 

concerns the air density which is excluded from the set of parameters. This is not to 

suggest that density is not significant in terms of the physical operation of the turbine; 

rather, it reflects the fact that temperature is the most significant element in the 

calculation of density (Pandit et al., 2019) and that therefore variations in temperature 

cause parallel fluctuations in density. Only one of these parameters is therefore required 

from a mathematical point of view to explain the corresponding variation in the power 

output.  

 

Table 22: Parameters retained and excluded after correlation analysis 

Retained Excluded 
Measured temperature Potential virtual temperature 

Lapse rate of measured temperature Lapse rate of potential virtual temperature 

Measured wind speed Turbulence dissipation rate 

Wind speed standard deviation Turbulence length scale 

Transience of horizontal wind speed Transience of vertical wind speed 

Coeff. of variation of vertical wind speed Vertical turbulence dissipation rate 

 Turbulence kinetic energy 

 Momentum flux 

 Bulk Richardson number 

 Density 

 

The correlation analysis did not show a high correlation between the coefficient of 

variation of vertical wind speed and the corresponding second-order coefficient of 

variation even though this might have been expected. The poor correlation stems from 

the behaviour of the coefficient of variation at low values. Since it becomes undefined 

when vertical wind speed is zero, there are extremely large spikes in value when the 

vertical wind speed is between -1 and 1. The behaviour of the second-order coefficient 

of variation on the other hand is much more stable as shown in Fig. 44 although it 

saturates at its maximum value of 1. While not relevant in most other cases, this 
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nevertheless demonstrates the value of using the second-order coefficient, and the 

coefficient of variation of vertical wind speed is therefore excluded. 

 

Figure 44: First- (blue) and second-order (orange) coefficients of variation of vertical wind speed 

 

Although some other parameters are known to be correlated (Belu & Koracin, 2012; 

Eecen et al., 2011), the correlation analysis performed here shows that their correlation 

coefficients are less than 0.7 and they are therefore retained in the parameter set. Thus, 

not all multicollinearity is eliminated and it is expected that the total effects will still be 

considerably larger than the main effects with the reduced set of parameters. However, 

the lower values of the correlation coefficients show that the remaining parameters all 

contribute to the variance in the output power in their own right. The remaining 

parameters, listed in Table 23, are examined again using the eFAST method to reveal 

those having the most significant effect on the variance of the output power. The 

exercise is carried out first using the measured wind speed and a second time using 

REWS.  
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Table 23: Remaining 27 parameters after correlation analysis 

Base parameter Parameter 
Horizontal hub-height wind speed Mean  

Standard deviation  
Intermittency  
Transience 

 Stationarity (ADF) 

 Normality 

Vertical hub-height wind speed Mean  
2nd order coeff. of variation  
Intermittency  
Stationarity (ADF)  
Normality 

Temperature Mean  
Transience 

 Stationarity (KPSS) 

 Normality 

 Lapse rate 

Pressure Transience  
Normality 

Relative humidity Mean  
Transience 

Solar declination  

Vertical flux of sensible heat  

Wind speed ratio  

Wind veer at hub height  

ABL height  

Obukhov stability parameter  

REWS  

 

6.4 Second-stage application of eFAST 

The eFAST algorithm was applied to the reduced parameters set excluding REWS, and 

then again including REWS but excluding the measured wind speed. The results in Fig. 

45 are consistent across the two cases with the same parameters showing prominent 

peaks. Those whose amplitude exceeds 0.01 are labelled in the figure. The only major 
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difference between the two plots concerns the standard deviation of measured wind 

speed which drops below 0.01 in the REWS plot. Although standard deviation of wind 

speed is usually considered an indicator of turbulence, and is integral to the calculation 

of turbulence intensity, the much larger peak related to the transience of wind speed 

suggests that it may be a better measure. However, when total effects are considered, 

the standard deviation of wind speed remains significant due to its interactions. 

 

Figure 45: Main effects of reduced set of parameters using the measured wind speed (top) and REWS (bottom) 
Labelled frequencies are 6: stationarity of wind speed, 31: intermittency of wind speed, 48: wind speed, 70: 
normality of wind speed, 87: standard deviation of wind speed, 104: transience of wind speed, 133: stationarity 
of vertical wind speed, 201: normality of vertical wind speed, 238: temperature, 357: sensible heat flux, 374: 
Obukhov stability parameter, 425: environmental lapse rate, 459: ABL height 
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Taking 0.01 as the threshold yields a set of 11 parameters other than wind speed which 

appear to have a significant impact on the variance of the power output. These are 

shown in bold and in descending order of main effect in Table 24. 

 

Table 24: Reduced set of parameters in descending order of main effect. 

Frequency Parameter Main effect Total effect 
48 Mean horizontal wind speed/REWS 0.0669 0.4434 

104 Transience of horizontal wind speed 0.0437 0.3456 
201 Normality of vertical wind speed 0.0227 0.2836 
133 Stationarity of vertical wind speed (ADF) 0.0211 0.2721 
374 Obukhov stability parameter 0.0194 0.2519 
70 Normality of horizontal wind speed 0.0188 0.2463 
31 Intermittency of horizontal wind speed 0.0169 0.2394 
6 Stationarity of horizontal wind speed (ADF) 0.0140 0.2343 

357 Sensible heat flux 0.0133 0.2184 
459 ABL height 0.0128 0.2170 
425 Environmental lapse rate 0.0124 0.1981 
238 Mean temperature 0.0106 0.1906 
87 Standard deviation of horizontal wind speed 0.0097 0.1983 

184 Mean vertical wind speed 0.0063 0.1804 

150 Coefficient of variation of vertical wind speed 0.0059 0.1754 

289 Normality of pressure 0.0059 0.1803 

323 Mean relative humidity 0.0052 0.1812 

272 Transience of temperature 0.0051 0.1828 

442 Solar declination 0.0046 0.1713 

218 Stationarity of temperature (KPSS) 0.0030 0.1719 

306 Transience of pressure 0.0030 0.1775 

391 Wind speed ratio 0.0019 0.1679 

408 Wind veer 0.0008 0.1624 

167 Intermittency of vertical wind speed 0.0007 0.1609 

255 Normality of temperature 0.0007 0.1707 

340 Transience of relative humidity 0.0006 0.1636 

 

Direct measures of wind shear are conspicuously absent from the final set of 

parameters that result from the second sensitivity analysis. However, the list does 

include a major indicator of atmospheric stability. Since shear is greatly affected by 

stability, it is possible that the information normally present in the wind shear exponent 
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is carried here by the Obukhov stability parameter. The list also contains various 

characteristics of the vertical wind speed which could also account for some of the 

information content of the wind shear exponent. Establishing the validity of these 

conjectures would require additional investigation. 

 

Figure 46: Third-order polynomial regression on a progressively larger set of parameters 
The plots are cumulative so that moving from left to right and downwards, the title indicates the next 
parameter to be added. E.g. The top-right plot includes both wind speed and transience of wind speed 
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The adequacy of the set of selected parameters was tested by performing a multivariate 

third-order polynomial regression on a progressively larger subset starting with just the 

mean horizontal wind speed. The results in Fig. 46 show the coefficient of variation 

increasing from 0.923 to 0.955 as each additional parameter is included. The regression 

exercise is a verification exercise only. With 12 parameter including wind speed, a third 

order polynomial requires 1,820 coefficients which would make such a model 

impractical to use. 

6.5 Comparator power curves 

Two comparator power curves are created as described in §3.5.6. The baseline power curve 

has only quality filters applied while the contractual power curve is also filtered for TI and 

shear. The curves are created according to the methodology defined in IEC2017 using 

values normalised to site-specific density which is found to be 1.188 kg m-3. Data for 

sea-level normalisation and additional detail as might be produced in a PPT report are 

provided in Appendix A.  

6.5.1 Data selection 

To replicate the contractual filters in a commercial PPT process, the following limits 

were adopted for turbulence intensity, ÉΩ, and wind shear, ë: 

0.06 < ÉΩ < 0.2 

0 < ë < 0.3 

Table 25 summarises the quality and contractual filters applied and the resulting number 

of records lost. It is common practice to rely solely on the anemometer fault code to 

identify and remove spikes from measured data. Here, the more stringent approach of 

applying a median filter is employed, along with the requirement that no more than 1% 

of the expected data may be removed. On the other hand, a TMA value is accepted as 

valid if it is based on 90% or more of the expected raw data points. This is less strict 

than the usual practice in PPT which requires 100%. However, it is used here to 
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preserve a greater number of TMA records for analysis. The invalid power values are 

primarily the result of curtailment. The counts shown are cumulative and are dependent 

on the order in which the filters were applied. 

 

Table 25: Data lost through application of quality and contractual filters 

Filter type Filter Excluded Remaining 
Quality Valid power values 39932 12628 

Quality Power count > 90% 1461 11167 

Quality Power spikes < 1% 1106 10061 

Quality Valid temperature values 1 10060 

Quality Temperature count > 90% 138 9922 

Quality Temperature spikes < 1% 35 9887 

Quality Valid pressure values 1 9886 

Quality Pressure count > 90% 25 9861 

Quality Pressure spikes < 1% 19 9842 

Quality Excluded sector  1889 7953 

Quality Icing 605 7348 

Contractual Turbulence intensity 2569 4779 

Contractual Shear exponent 2034 2745 

 

After application of the quality filters, 7,348 records remain out of a possible 52,560 

which equates to 14%. The majority of this data loss is due to curtailment of the 

turbine. Of the remaining valid data, only 2,745 records remain after application of the 

contractual filters which equates to 37% or in other words, a loss of 63%. 

6.5.2 Quantity of data 

Due to the moderate winds at the site, rated wind speed of 15 ms-1 is exceeded by only 

four TMA records. The maximum power output of 2361 kW achieved in 2017 is 

considerably lower than the rated value of 2,500 kW. According to the standard, the 

database should consist of 180 hours of data in total (1080 TMA records), and each 

wind speed bin must contain at least 30 minutes (three TMA values). The collected data 

should cover the whole wind speed range either up to 1.5 times the wind speed value at 
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85% of rated power, or until the measured AEP is greater than or equal to 95% of the 

AEP extrapolated from the highest measured wind speed bin up to cut-out. The 

procedure allows for one incomplete bin to be interpolated from the values on either 

side. For the Eolos turbine, this means that all bins should be complete from 3 ms-1 (0.5 

ms-1 below cut-in) up to 16.5 ms-1. In fact, the data only covers bins up to 14.5 ms-1. 

Calculated AEP values are therefore likely to be lower than might be expected for a 2.5 

MW turbine.  

The PPT results reviewed in Chapter 3 include several examples of databases that are 

incomplete according to the standard. This can happen, for example, when the warranty 

period expires before sufficient data has been collected. In such cases, the parties 

involved negotiate a way forward. For example, a more relaxed set of filters can be 

agreed which allow data to be included which would normally be rejected. An 

incomplete database therefore does not in practice prevent a test from being completed. 

6.5.3 Uncertainty analysis 

Uncertainties are calculated for each wind speed bin based on the recommendations in 

IEC2017. Table 26 summarises the category B uncertainties that need to be considered 

with respect to the Eolos turbine. Where insufficient data is available to identify a 

precise value, one has been estimated with reference to similar installations in real PPT 

projects. 

 

 

 

 

 

 



 

  

 
159 

Table 26: Uncertainty calculations 

Source of uncertainty Value Sensitivity 
Electrical power output   

 Current/voltage transformers 0.004 ∗	o. √3⁄  1 

 Power transducer 0.005 ∗ o0,&1z √3⁄  

 DAQ 0.001 ∗	o0,&1z √3⁄  

Wind speed (sonic)   

 Calibration 0.005 √3⁄  
 

For power curve: 
1
2‚

(o.⁄© − o.)
(Ö.⁄©−Ö.)

+
(o. − o.®©)
(Ö.−Ö.®©)

„ 

 
For AEP: 

(o. − o.®©)
(Ö.−Ö.®©)

 

 Mounting effects (side mounted) 0.015 ∗	Ö. √3⁄  

 DAQ 0.001 ∗	Ö0,/œ1 √3⁄  

Urange = 131 ms-1 

REWS   

 Wind shear measurement  As for wind speed 

 Wind veer measurement  

Air temperature   

 Sensor 0.15°B √3⁄  −
>'.Ö.
3õ.

´
õ.
É.

+
ù.
É.

´
1
y%

−
1
yt

≠!. exp	(!É.)≠ 

 
! = 0.0000205 
! = 0.0631846 

cUi = wind speed sensitivity 
ùi = relative humidity 

 Radiation shielding 2°B √3⁄  

 Mounting effects 0.3°B √3⁄  

 DAQ 0.001 ∗	É0,/œ1 √3⁄  

Trange = 80ºC 

Air pressure   

 Sensor 3	ℎo! √3⁄  >'.Ö.

3õ.É.y%
 

 DAQ 0.1	ℎo! √3⁄  

Relative humidity   

 Sensor 0.02 ∗ 	yW √3⁄  −
>'.Ö.
3õ.É.

´
1
y%

−
1
yt

≠!. exp	(!É.) 

 
! = 0.0000205 
! = 0.0631846 

 Mounting effects 0.0015 ∗ 	yW √3⁄  

 DAQ 0.001 ∗	yW0,/œ1 √3⁄  

Flow distortion (no site calibration) 
 

0.02 ∗ 	Ö. √3⁄  As for wind speed 

Method   

 Air density correction !!~(õ − õ∞P00) 2⁄  As for wind speed 

 Inflow angle 0.001 ∗	Ö. √3⁄  

 Missing turbulence normalisation 2ú. √3⁄  

 Seasonal effects 0.007 ∗	Ö. √3⁄  
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6.5.4 Measured power curves 

The baseline power curve and power coefficient presented in the top panel of Fig. 47 

are based on the data in Table 27. The contractual power curve and power coefficient 

presented in the bottom panel of Fig. 47 are based on the data in Table 28. In the 

filtered data, the 13 ms-1 wind speed bin has only two TMA records and is therefore 

interpolated.  

 

Figure 47: Measured baseline (top) and contractual (bottom) power curves and power coefficients 
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Table 27: Baseline power curve data 

Wind 
speed 
(ms-1) 

Active 
power 
(kW) 

Power 
coefficient 

Records 
per bin 

Category A 
uncertainty 

(kW) 

Category B 
uncertainty 

(kW) 

Combined 
uncertainty 

(kW) 

3.58 62.77 0.39 162 2.89 12.15 12.49 

4.02 98.57 0.43 377 2.42 21.97 22.10 

4.51 154.01 0.47 616 1.99 28.65 28.72 

5.01 223.81 0.50 715 2.45 33.56 33.65 

5.51 298.85 0.50 811 2.27 39.72 39.78 

5.99 396.63 0.52 871 2.85 47.28 47.36 

6.50 504.25 0.51 924 3.09 55.30 55.38 

7.00 635.98 0.52 758 4.28 65.46 65.60 

7.49 781.82 0.52 641 5.75 70.84 71.07 

7.98 930.24 0.51 464 7.88 83.26 83.63 

8.48 1122.91 0.51 344 10.50 96.46 97.03 

8.98 1321.74 0.51 219 16.42 96.76 98.14 

9.49 1510.84 0.49 145 21.09 85.88 88.43 

9.98 1658.20 0.46 91 23.24 68.31 72.15 

10.49 1777.32 0.43 73 36.83 81.30 89.25 

10.95 1947.05 0.41 37 48.29 66.39 82.09 

11.54 2022.46 0.36 28 62.50 64.64 89.91 

12.04 2196.15 0.35 13 20.01 52.96 56.62 

12.54 2208.60 0.31 14 20.80 19.17 28.29 

12.80 2173.10 0.29 6 43.38 10.74 44.69 

13.61 2244.78 0.25 7 11.64 24.57 27.19 

13.92 2270.82 0.23 5 17.00 20.91 26.95 

14.48 2286.65 0.21 5 1.04 12.19 12.23 
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Table 28: Contractual power curve data 

Wind 
speed 
(ms-1) 

Active 
power 
(kW) 

Power 
coefficient 

Records 
per bin 

Category A 
uncertainty 

(kW) 

Category B 
uncertainty 

(kW) 

Combined 
uncertainty 

(kW) 
3.56 72.31 0.45 18 6.48 11.93 13.57 

4.02 104.57 0.44 97 3.66 19.34 19.68 

4.54 156.29 0.46 206 3.14 25.18 25.37 

5 215.09 0.47 253 3.95 32.4 32.64 

5.51 294.17 0.49 282 3.87 40.46 40.64 

5.99 390.47 0.5 296 5.31 47.16 47.46 

6.5 499.6 0.5 299 5.86 55.28 55.59 

6.99 629.92 0.51 238 8.22 62.72 63.26 

7.49 770.08 0.51 244 9.97 68.18 68.9 

7.98 910.52 0.49 194 11.79 75.54 76.45 

8.48 1074.52 0.49 143 15.62 80.3 81.81 

9 1251.78 0.47 133 20.1 101.51 103.48 

9.53 1496.96 0.47 90 25.22 88.56 92.08 

9.99 1604.85 0.44 79 25.01 76.75 80.72 

10.49 1776.45 0.42 55 30.2 98.49 103.02 

10.94 1950.1 0.41 42 33.96 85.95 92.42 

11.54 2102.91 0.37 22 30.48 33.91 45.59 

11.96 2088.99 0.33 16 49.05 25.68 55.37 

12.49 2195.21 0.31 12 22.28 36.76 42.98 

12.86 2212.93 0.28 10 26.83 15.25 30.86 

13.39 2238.91 0.25 2 23 16.57 28.35 

13.92 2264.9 0.23 5 15.37 15.1 21.55 

14.55 2285.46 0.2 5 1.39 13.13 13.2 

 

6.5.5 Annual Energy Production 

Estimates of AEP are presented in Table 29 for the baseline power curve and in Table 

30 for the contractual power curve. The final row in each table shows the site-specific 

AEP calculated using the Weibull shape and scale parameters found in §6.1.5 and this is 

the value that is used later for comparison with experimental filters. The value for the 

site-specific measured AEP for the filtered data represents 95.49% of the theoretical 

figure of 4677 MWh/year obtained using the reference power curve and the Weibull 

parameters from §6.1.5. The turbine would therefore pass the IEC performance test. 
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Table 29: Calculated AEP for the baseline power curve 

Wind speed 
(Rayleigh) 

(ms-1) 

AEP measured 
(MWh/year) 

Standard uncertainty in AEP AEP 
extrapolated 
(MWh/year) 

Status 
(MWh/year) % 

4 1753 17 0.97 1753 Complete 

5 3287 24 0.73 3313 Complete 

6 4914 29 0.59 5112 Complete 

7 6247 34 0.54 6921 Incomplete 

8 7105 36 0.51 8588 Incomplete 

9 7504 37 0.49 10031 Incomplete 

10 7554 37 0.49 11207 Incomplete 

11 7371 35 0.47 12095 Incomplete 

Weibull 4425 30 0.41 4448 Complete 

 

Table 30: Calculated AEP for the filtered power curve 

Wind speed 
(Rayleigh) 

(ms-1) 

AEP measured 
(MWh/year) 

Standard uncertainty in AEP AEP 
extrapolated 
(MWh/year) 

Status 
(MWh/year) (%) 

4 1787 18 1.01 1787 
 

5 3324 25 0.75 3350 
 

6 4955 29 0.59 5153 
 

7 6291 32 0.51 6964 Incomplete 

8 7150 34 0.48 8633 Incomplete 

9 7550 33 0.44 10077 Incomplete 

10 7599 32 0.42 11252 Incomplete 

11 7414 31 0.42 12138 Incomplete 

Weibull 4466 31 0.42 4488 
 

 

6.5.6 Dispersion 

The root mean square error (RMSE) is calculated to reflect the dispersion in the power 

curve point cloud as described in §3.4.2. This provides the final characteristic on which 

the power curves are to be compared along with the AEP estimate, data loss and 

consequent minimum duration. The results summarised in Table 31 show that although 
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the uncertainty calculated using the IEC2017 methodology is practically the same in the 

baseline and filtered cases, the data dispersion represented by the RMSE actually 

increases when the filters are applied. In addition, over half of the data is excluded by 

the filters which nearly triples the minimum duration calculated using Eq. 49.  

 

Table 31: Results for baseline and contractual power curves 

Case Data loss Duration (days) AEP estimate Uncertainty RMSE 
Baseline 0% 7.5 4425 30 119.8 

Filtered 63% 20.3 4466 31 130.3 

TI only 32% 11.0 4454 30 116.4 

Shear only 50% 15.0 4553 30 132.3 

 

The table also includes the results of applying the TI and shear filters in isolation. Both 

remove significant data and increase the minimum duration of the test. Both also 

increase the estimate of AEP compared to the baseline and in combination the increase 

is slightly larger again. Although without a reliable benchmark it is not possible to say 

with certainty whether a higher or lower AEP estimate is the more accurate, the value 

related to the contractual power curve will be used in the following sections for 

comparison with alternative filtering strategies. This is based on the premise that the 

filters currently used in PPT projects have been shown through experience to yield 

more accurate results than unfiltered data. 

On its own, the TI filter reduces the dispersion in the power curve by a small amount, 

but the shear filter increases it by over 10%. There are clearly compensatory effects at 

work when the two are used in combination. The two filters target TMA records with 

opposing characteristics as demonstrated in Fig. 48 which colour-codes the points by 

atmospheric stability and wind speed. The points in the shaded area in each plot are 

excluded by the combination of both filters leaving only those within the rectangular 

area at the bottom left. Thus, unstable conditions and higher wind speeds are over-

represented in the filtered data. Because higher wind speeds tend to suppress other 

meteorological phenomena (Bunse & Mellinghoff, 2008; Deola, 2010; Ernst & Seume, 
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2012; K. Y. Lee et al., 2017), the shear filter suppresses considerable variation in other 

parameters; however, in this respect it is a blunt tool. A more discerning approach that 

defined filters based on other parameters might be able to target specific variations 

more precisely which could lead to less data being excluded. 

 

Figure 48: Data excluded by the combined effect of TI and shear filters coloured by atmospheric stability (top 

and wind speed (bottom) 

 

The tendency of the TI filter to reduce the dispersion can be partly explained with 

reference to the disposition of the rejected points in the power curve scatter plot. As 

shown in Fig. 49, the TI filter rejects points towards the periphery of the point cloud 
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while the shear filter rejects points closer to the centre. The ideal filter would operate 

only on the periphery, leaving the points closest to the measured power curve line in 

place.  

 

Figure 49: Disposition in the power curve of the points rejected by the TI (top) and shear (bottom) filters 

 

ë	
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6.5.7 Comment on IEC2017 

The updated standard for power performance testing inherits methods from the earlier 

edition to compensate for differences in air density and for flow distortion caused by 

complex local topography. The new rotor equivalent wind speed method compensates 

for wind shear and veer, and the turbulence normalisation procedure corrects 

distortions introduced into the measured power curve by bin averaging. The exercise in 

this chapter has illustrated some of the limitations of the standard and its component 

methods. Turbulence normalisation for example was not possible since rated wind 

speed was not achieved in the measured dataset. This could be dismissed as a mismatch 

between the turbine and the location: a turbine with a taller tower would have 

benefitted from higher mean wind speeds and would therefore have reached rated 

power output more often. Similarly, a turbine with a lower rated power and wind speed 

could have been placed at the same height and reached maximum output even in the 

modest wind regime prevalent in Minnesota. Such arguments do not, however, detract 

from the observation that there are circumstances in which the turbulence 

normalisation technique cannot be used.  

REWS promises a more reliable accommodation of shear and veer. Essentially a finite-

element approach, the more vertical measurements there are available, the more 

accurate the approximation of the total energy flux becomes. A disadvantage of the 

technique is the increase in complexity with respect to the estimation of uncertainty in 

the measured power curve and AEP. The set of uncertainties applicable to the Eolos 

case shown in Table 26 illustrates some of that complexity. In IEC2017, Annex E 

which defines the approach to the estimation of uncertainty runs to 40 pages out of 

262, up from 10 out of 90 in the previous version. That constitutes an absolute increase 

of 300% and a relative increase of 4% (15% of the total number of pages compared to 

11% in the earlier edition). Of the additional pages, more than 18 are related to the 

category B uncertainties around the application of REWS as listed below. Although the 

number of pages is a crude measure at best, the increase in complexity is clear.  
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• §E.7: Remote sensing devices (RSD): ~4 pages 
• §E.8: REWS: ~2 pages 
• §E.11.2.2.3: Evaluation of shear across the whole rotor: ~0.5 pages 
• §E11.2.3.4: Evaluation of veer across the whole rotor: ~0.5 pages 
• §E.12.3: Wind direction measured by RSD: ~1 page 
• §E.13.5: Wind speed measurement by RSD: ~0.5 pages 
• §E.13.6: Wind speed measurement by REWS: ~ 10 pages 

 

Because of the complexity of the calculations involved in the standard, a common 

interpretation cannot be taken for granted. For example, MEASNET pointed out an 

ambiguity with respect to the calculation of measured AEP in 2014 and the same 

wording persists in the new edition (MEASNET, 2014). Recent round robin trials 

conducted by the Power Curve Working Group (PCWG) have also revealed 

discrepancies in the results obtained by different organisations when applying the new 

edition of the standard to the same test datasets (Parkhe, 2016; Simmons, 2016; Stuart, 

2013). In addition, while the standard mandates that incomplete bins are reported in the 

AEP results, there is no guidance on how this should be interpreted. 

6.6 Evaluation of novel filtering strategies 

IEC2017 provides detailed guidelines for calculating the uncertainty in the power curve 

and AEP. However, the method does not account for the full range of dispersion 

evident in the cloud of data points that make up the power curve. Fig. 50 makes this 

clear by comparing the calculated uncertainty in the filtered power curve described in 

§6.5 with the actual spread of data represented by the interquartile range.  

Despite having been filtered for TI and shear, there are clearly other influences affecting 

the variance of the power output. Some of the apparent variance will be due to 

stochastic variations in the meteorological input to the turbine, the mechanical 

operation of the turbine components and turbine electronics. However, it is also 

possible that there exist systematic dependencies other than those already captured by 

IEC2017 that affect the dispersion of the power output values. The sensitivity analysis 
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conducted in §6.4 provides a set of 11 parameters that are candidates for filter criteria. 

This section reports on the application of the methods described in §3.5.6 and §3.5.7. 

 

Figure 50: Comparison between the calculated uncertainty in the power curve and the actual spread of the data 

 

6.6.1 Filter definition 

Following the methods described in §3.5.7, the first step in creating experimental filters 

from the parameters identified in §6.4 is to fit a Pearson type III distribution to the data 

to identify appropriate lower and upper bounds. The results of this exercise are shown 

in Fig. 51 with the data presented in Table 32 in descending order of total effect. 
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Figure 51: Pearson type III fits for the 11 parameters 

The upper and lower limits of the related filters calculated from the 5th and 95th percentiles of the distribution 

are shown as vertical dashed orange lines labelled with their numerical values. 
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Table 32: Initial filter specifications 

Name Symbol Total effect Lower bound Upper bound 
Transience of wind speed (m2s-2) "'}  0.3456 0.000 0.343 

Normality of vertical wind speed j( 0.2836 0.000 0.008 

Stationarity of vertical wind speed !( 0.2721 0.000 0.010 

Obukhov stability parameter ó 0.2519 -4.401 5.452 

Normality of wind speed j' 0.2463 0.000 0.016 

Intermittency of wind speed l'  0.2394 -4.821 7.726 

Stationarity of wind speed !'  0.2343 0.000 0.045 

Sensible heat flux (W m-2) u 0.2184 -0.063 0.075 

ABL height (m) ℎ 0.2170 0.000 631.498 

Environmental lapse rate (K m-1) Γ1 0.1981 -0.017 0.026 

Temperature (°C) É 0.1906 2.571 33.909 

 

6.6.2 Comparison with the baseline and contractual power curves 

Each filter can be compared to the baseline and to the contractual filters by applying it 

to the data in isolation. The desired effect is to increase the AEP estimate towards that 

produced by the contractual filters (4466 MWh) while reducing data loss and RMSE. 

The results shown in Table 33 reveal a range of behaviours. Four of the filters reduce 

the RMSE by a small fraction compared to the baseline for a very small loss of data, but 

they do not come close to the difference of 3.39 kW between the contractual TI filter 

and the baseline. Of these four filters, two increase the AEP estimate by a small amount 

with the largest difference exhibited by the stationarity of the vertical wind speed, !(, 

represented by the p-value of the Augmented Dickey-Fuller test. The AEP estimate for 

the other two filters either remains the same or falls. The remaining filters all increase 

the AEP estimate, with the increase associated with the stationarity of the horizontal 

wind speed, !', coming very close to that achieved with the contractual filters. 

However, they also increase the RMSE value, some such as !' by a small amount but 

others by more than 2 kW.  
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Table 33: Results from initial filters applied in isolation compared to baseline and contractual filters 

Case Data loss 
(%) 

Min. duration 
(days) 

AEP estimate 
(MWh) 

Uncertainty 
(kW) 

RMSE 
(kW) 

Baseline 0.0 7.5 4425 30 119.81 

Contractual 62.64 20.1 4466 31 130.29 

TI 35.0 11.5 4454 30 116.42 

Shear 49.9 16.29 4553 30 132.25 

#a
$  1.4 7.6 4447 29 119.94 

mn 2.5 7.7 4425 30 119.69 

%n 3.3 7.8 4443 30 119.73 

& 1.4 7.6 4432 30 119.86 

ma 1.9 7.6 4421 30 119.69 

`a 1.3 7.6 4429 30 119.67 

%a 8.3 8.2 4460 30 119.95 

' 6.5 8.0 4435 29 119.93 

( 11.7 8.5 4337 35 121.92 

)* 15.5 8.9 4444 30 120.14 

+ 15.5 8.9 4379 37 121.60 

 

Because the ideal filter should remove around 10% of the data at the periphery of the 

point cloud, the filters which remove very small proportions of the data have the 

potential to be refined by reducing their range. However, it was found that even in cases 

where a smaller range moved the AEP estimate closer to the target figure, the RMSE 

increased. The original filter bounds are therefore retained. 

A further option is to examine the effects of applying several filters in succession and 

Table 34 provides the results of one particular combination. The values shown are 

cumulative and the leftmost column shows the parameter most recently added to the 

set. Thus, for example, the second row implies that the data is filtered on both the 

transience of horizontal wind speed and normality of vertical wind speed in that order. 

Although the final RMSE value is marginally larger than for the baseline (119.81 kW) it 

is significantly smaller than the figure for the contractual filters (130.29 kW). The AEP 

estimate is comparable with that produced by the contractual filters (4466 MWh) while 

the data loss is considerably smaller (11.1% compared to 62.6%).  
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Table 34: Cumulative effects of experimental filters 

Case Data loss 
(%) 

Min. duration 
(days) 

AEP estimate 
(MWh) 

Uncertainty 
(kW) 

RMSE 
(kW) 

#a
$  1.4 7.6 4447 29 119.94 

mn 4.0 7.8 4445 29 119.88 

%n 7.2 8.1 4459 29 119.92 

& 8.2 8.2 4463 29 119.94 

ma 10.1 8.3 4458 29 119.89 

`a 11.1 8.4 4458 29 119.86 

 

The difference between the cumulative effect of the experimental filters in Table 34 and 

the contractual filters can be appreciated qualitatively by comparing the power curve 

scatter plots in Fig. 52 which superimpose the points rejected by the filters onto the 

retained point cloud. A clear feature of the experimental filter plot is that the rejected 

points rejected are asymmetrically distributed about the line of the measured power 

curve. In contrast, the points rejected by the contractual filters appear to be more 

evenly distributed. Both cases eliminate a certain number of outlying points that the 

other does not. The apparent massing of rejected points at low wind speeds in both 

cases probably has two main causes. The first is the tendency of high wind speeds to 

mitigate other meteorological effects (Bunse & Mellinghoff, 2008; Deola, 2010; Ernst & 

Seume, 2012; K. Y. Lee et al., 2017), and the second is the moderate mean wind speed 

at the Eolos site which means that there are simply more points in the lower part of the 

curve. 
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Figure 52: Data points rejected by combined experimental filters (top) and contractual filters (bottom) 

6.6.3 Discussion 

Normal practice in PPT is to filter the data primarily for turbulence represented by TI 

and for wind shear represented by the wind shear exponent. It was shown in the 

literature review, however, that there is significant interaction between parameters, and 

that turbulence and shear in particular are closely related to atmospheric stability (Bleeg 

et al., 2015; Dörenkämper et al., 2014; Hayes et al., 2012). Wind speed is also known to 

reduce the variation in other meteorological phenomena (Bunse & Mellinghoff, 2008; 

Deola, 2010; Ernst & Seume, 2012; K. Y. Lee et al., 2017). Filtering the data by these 
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two parameters therefore, while convenient, runs the risk of obscuring more fine-

grained variation due to other parameters. The success of the TI and shear filters could 

be the result of excluding the finer-grained variation along with a large proportion of 

valid data. Certainly, the comparisons performed here show that applying typical limits 

for TI eliminates a third of the data. In the case of a standard shear filter, half of the 

data is lost, and in combination more than 60% of the measured data is deemed invalid. 

A novel contribution of the current work is the addition of information about the 

dispersion of the data in the power curve point cloud. On this measure, the TI filter 

performs well reducing the RMSE value by 3.39 kW (2.8%) compared to the baseline. 

This is the best performance overall, and suggests that TI may be preferable to other 

measures of turbulence although the large data loss remains a concern. The shear filter, 

on the other hand, performs worst overall on the dispersion measure, increasing the 

RMSE value by 12.44 kW (10.4%) compared to the baseline. This is attributed to the 

exclusion of a large proportion of points close to the centre of the point cloud whereas 

the ideal filter would remove points from the periphery. When these two filters are used 

in combination, the RMSE value is almost as high as using the shear filter on its own 

suggesting that although there are some compensatory effects, the shear filter 

dominates in terms of the disposition of points in the scatter plot. 

The novel parameters tested here are selected as a result of patterns in the research 

dataset and thus reflect real observed variation rather than theoretical deduction. Tested 

in isolation, several of them show desirable behaviour as filtering criteria. In particular, 

the normality of the vertical wind speed appears to reduce dispersion by a small amount 

while not affecting the AEP estimate. The stationarity of the vertical wind speed and 

the intermittency of the horizontal wind speed appear to reduce dispersion and produce 

a small increase in the AEP estimate. In all three cases, the quantity of data lost is very 

small in comparison to the TI and shear filters and much less than the target data loss 

of around 10%. The possibility therefore exists that small number of points excluded by 

these filters are also excluded by the TI and shear filters along with other data which 

does not make much difference to the outcome of the AEP calculation.  

A further possibility is that the experimental filters are complementary and that taken in 

combination might have a cumulative effect that performs even better on the chosen 
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metrics. Six of the experimental filters removed 3.3% of the data or less in isolation, and 

when tested in combination the dispersion increased only slightly in comparison to the 

baseline, data loss was just over the target at 11.1% and the AEP estimate approached 

that produced by the contractual power curve (4458 MWh compared to 4466 MWh up 

from 4425 MWh for the unfiltered data). An examination of the disposition of the 

rejected points in the point cloud showed that the cumulative experimental filters 

targeted points in the same region as the TI filter. 

The isolated and cumulative results suggest that the approach followed here has merit 

based on the evaluation criteria used. The main limitation on any conclusions, though, 

is the lack of a definitive benchmark for the AEP estimate. The benchmark used here is 

the value produced from the contractual power curve on the assumption that the TI 

and shear filters will produce a good estimate because of their fundamental place in 

current PPT practice. An appropriate way to follow up on the work carried out her 

would be to conduct a similar exercise in controlled conditions where the AEP could be 

estimated in a more rigorous fashion. Alternatively, some of the variation with regard to 

the AEP estimate could be eliminated by conditioning the data on wind speed bin. Any 

interactions with wind speed would thus be eliminated. Again, performing this test 

under controlled conditions would increase the reliability further. A third possibility 

could be to abandon the AEP metric altogether and to use a different criterion for 

calculating the expected power output. This would probably be a statistical measure 

based on the distribution of power values within the ten-minute averaging period. As 

previously, partitioning the data on wind speed and conducting the study under 

controlled conditions could yield more reliable results. 

It is noticeable from the results presented here that none of the experimental filters 

produce the ideal behaviour of removing points exclusively from the periphery of the 

point cloud. While some asymmetry is observed in the disposition of points, they still 

tend to cluster close to the line of the measured power curve. This could suggest that 

there exist still other parameters that account for more of the variance in the power 

output values. On the other hand, the more mundane possibility is that some of the 

outlying points really are the result of stochastic variation. This could also be 

investigated further using the methods suggested in the previous paragraph. 
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Regarding the cost implications of applying alternative filtering strategies, the reduction 

in data collection time would be considerable if the data loss rate could be reduced from 

around 60% to around 10%. Such a small data loss was not achieved by any of the 

projects reviewed in Chapter 4, and would almost guarantee that a measurement 

campaign could be completed within the standard period of three months. However, 

this would depend entirely on the ability to show that the AEP estimate produced using 

the filters was as accurate as current practice which remains to be shown. 

6.7 Conclusions from the investigation of novel filters 

The investigations and results reported in this chapter have successfully revealed a set of 

parameters that appear to account for the majority of the variance in the instantaneous 

power output of the Eolos turbine. During parameter selection, strict conditions were 

applied to the research dataset to allow the calculation of parameters such as REWS 

that require data across the vertical extent of the rotor. The working sample used for 

this purpose thus consists of a maximally-populated set of 2,818 TMA records. During 

the later stages, the data set does not need to be maximally-populated and looser 

conditions based only on the defined quality filters need to be applied. This leads to a 

working data sample of 7,348 records. 

It is demonstrated that filtering the data on certain of those parameters can reduce the 

observed scatter in the power curve point cloud with little data loss while yielding good 

AEP estimates. Within limitations, then, the exercise has been successful. In particular 

the following conclusions can be drawn: 

• Traditional measures of turbulence and shear are not necessarily the best way to 
capture impacts on instantaneous power output 

Neither the coefficient of variation of horizontal wind speed (TI) or the wind 

shear exponent survived the elimination of parameters through correlation 

analysis. The standard deviation of horizontal wind speed which is a major 

component of the TI calculation was retained at this stage. In contrast, though, 

the second order structure function of horizontal wind speed (transience) was 

found to be the most influential parameter after mean wind speed. In the case 



 

  

 
178 

of wind shear, the wind speed ratio was retained by the correlation analysis 

although it too was eliminated later on. Both of these cases bring into question 

the continued reliance on TI and the wind shear exponent. Given their ubiquity 

however, a significant quantity of confirmatory evidence would be required to 

make a definitive claim in either regard. The provision of such evidence is 

beyond the scope of the current work which has simply broached the question. 

• As a two-point statistic, transience appears to be a good way to represent 
turbulence 

Structure functions are a fundamental method for describing turbulent flows in 

many areas of science (Davidson, 2004, p. 90; Kolmogorov, 1941). Because they 

are based on differences in flow conditions at two points in the flow, they can 

capture dynamic variation that is missed by single-point statistics such as the 

standard deviation. Transience has already been proposed as a way of estimating 

turbine loads and can be captured by a standard data logger (Clive, 2012). The 

large comparative significance of the second-order structure function of wind 

speed (transience) seen here suggests that these dynamics are important for 

explaining a proportion of the variance in the instantaneous power output.  

• Direct measures of wind shear may not be necessary 

Surprisingly, direct measures of wind shear were not prominent in the results of 

either sensitivity analysis. Instead, indicators of atmospheric stability and vertical 

motions were present. This suggests that wind shear may best be treated as a 

consequence of other phenomena rather than a fundamental phenomenon in its 

own right. As another controversial observation on the basis of the results 

presented here, significant confirmatory evidence beyond the scope of the 

current work would be required for this notion to be accepted. 

• The characteristics of the wind behaviour within the ten-minute averaging 
period appear to be significant 

The instantaneous power output appears to be sensitive to the degree to which 

the distribution of horizontal and vertical wind speed within the ten-minute 

averaging period deviates from Gaussian. Likewise, the stationarity of the 
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vertical wind speed and the intermittency of the horizontal wind speed appear 

significant. The usual practice of relying on one-point statistics obscures such 

details. 

• Some procedures in IEC2017 cannot be used in certain circumstances 

REWS has the obvious limitation that wind speed measurements are required 

from the top of the rotor. This requirement had a minor impact on the analyses 

carried out here in that it reduced the number of data points available during the 

parameter selection. However, it also became clear that the turbulence 

normalisation procedure could not be used when rated speed was not achieved.  

• Characteristics of the vertical wind speed appear to be significant  

Standard practice is to measure only the horizontal component of the wind 

velocity using cup anemometers. The recognition that characteristics of the 

vertical component are also significant raises the question of whether this is 

adequate. Although sonic instruments will continue to be an expensive and 

therefore undesirable option for PPT, the use of scanning lidar is now permitted 

by IEC2017 for measuring horizontal wind speed under certain circumstances. 

If further evidence confirms the importance of vertical motions, lidar could 

provide a relatively inexpensive method for measuring them. 

• Filters can be designed which improve the form of the data for very little data 
loss 

Several of the experimental filters evaluated here showed the desirable 

properties of producing an AEP estimate similar to that delivered by more 

conventional filters while reducing data dispersion and loss. The greatest 

strength of the filters explored here was the reduction in lost data. On the other 

hand, dispersion was not reduced below that associated with the unfiltered data 

in contrast to the standard TI filter. Further experimentation would be 

necessary to further optimise the filter definitions to improve performance in 

this aspect.  
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• The cumulative effect of data filters needs to be considered 

It was shown that the conventional shear filter used in isolation removed 50% 

of the data and increased the dispersion of the data by over 10% in comparison 

the baseline. The dispersion was slightly mitigated when used in combination 

with the TI filter, while the data loss increased to over 60%. The use of several 

of the experimental filters in combination showed similar compounding and 

compensatory effects as the RMSE values increased or decreased with the 

addiction of successive parameters. The ideal combination of filters would have 

a monotonic effect on the quality measures, and further work in this area would 

be needed to develop complementary filter definitions. 

• A major barrier to definitive conclusions in this area is the lack of a reliable 
AEP benchmark 

For various reasons, none of the AEP estimates used here can be considered 

definitive, and this is true for any similar exercise including PPT. Ostensibly, the 

contract warranty conditions are adapted to reflect the wind regime at the site, 

and may therefore be considered an objective benchmark. However, these 

conditions may be subject to deliberate or accidental bias (Albers, 2012). The 

solution in the context of the current work was to use an internally consistent 

model by synthesising a benchmark estimate using artificial contractual filters 

inspired by real PPT projects. More concrete conclusions would depend on a 

more reliable AEP benchmark. Some potential ways forward are discussed in 

§6.6.3. 
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7 Conclusions 

Power performance testing (PPT) is a necessary part of a commercial wind energy 

project but the warranty conditions applied from one project to another exhibit 

considerable variation. As a consequence, the process duration is difficult to predict and 

control, and there is a significant risk of project delays and additional costs. This risk 

can be traced to the loss of data through the application of filters whose purpose is to 

exclude operating conditions that might adversely affect the operation of the wind 

turbine. Conventional filters centre on a small set of parameters such as turbulence 

intensity (TI) and wind shear. Using conventional filters, losses of up to 90% have been 

reported in the literature (Bunse & Mellinghoff, 2008; Rareshide et al., 2009). The 

question therefore arises as to whether data loss can be reduced by using alternative 

filtering strategies based either on different meteorological parameters entirely, or on 

alternative measures of the same meteorological phenomena. 

The aim of the current work is to investigate the potential of alternative data filtering 

strategies with respect to data loss, AEP estimates and the dispersion of points in the 

power curve scatter plot with particular interest in relationships not accounted for in the 

current power performance testing standard. An appropriate range of candidate 

parameters was identified during the literature review, and these were the starting point 

for the methodology described in Chapter 3. The investigation was carried out in three 

main stages which are the subjects of Chapters 4 – 6 and which also have a direct 

relationship to the three objectives defined in Chapter 1. These objectives are recapped 

below along with a summary of the findings and main contributions. 

7.1 Review of PPT contracts 

The relevant project objective was to  

explore and quantify the loss of data through filtering in real PPT 

contracts with an emphasis on the requirements of the standard, the 

associated costs and the potential for savings. 
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A sample of measurement campaigns related to 42 turbines from 15 different PPT 

projects was examined in Chapter 4. It was shown that contractual filter criteria vary 

considerably between projects and can be very restrictive leading to the conclusion that 

large data losses through contractual filters are not exceptional. In the small sample of 

projects examined, an even spread of data losses from 10% to 95% was observed. In 

the most extreme case, the measurement campaign took over nine months to complete 

which is more than three times the duration usually planned and costed. 

As expected, projects in complex terrain have a higher rate of data loss; however, the 

relationship between terrain type and elapsed duration is not deterministic, and the 

project with the longest elapsed duration in this sample was in flat terrain. The concept 

of effective duration was introduced to allow comparison across projects. The effective 

duration is calculated from the quantity of valid data that is collected before filters are 

applied based on the simple fact that there are six ten-minute sampling periods in each 

hour. It can be used to provide an indication of the priority attached to the termination 

of a measurement campaign through a comparison with the minimum theoretical 

duration. Using this relationship, it was observed that as the elapsed duration of a 

campaign increases, the effective duration tends to be minimised. Thus, the pressure to 

terminate data collection increases with the rate of data loss.  

A mathematical relationship provided by Wood Clean Energy calculates that a delay of 

one day on a three-month project incurs direct costs of around 1% of the original 

budget. Using this formula, it was shown that direct campaign costs can reach more 

than three times the planned amount when the majority of data is lost through 

restrictive filtering. In addition, the indirect costs related to such delays can add tens of 

millions of pounds to the overall construction project. Major indirect factors include the 

need to carry out major construction works during fair weather windows which typically 

occur during the summer months in temperate regions, and the need to retain expensive 

construction equipment longer than planned. 

Although it is difficult to be specific for reasons of commercial sensitivity, campaign 

costs have been examined in proportional terms. The estimates presented here show 
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that both direct and indirect costs resulting from long campaign durations can be 

significant. The main limitations on these results are 

1. The data comes only from one consulting organisation.  

A future project might undertake a wider review including data from several 

consultants to eliminate any organisational bias. 

2. The sample of projects used here is small. 

From a statistical point of view, the results presented here must be considered 

indicative rather than generally applicable. On the other hand, the results are 

supported by industry experts, and confirm previously reported observations 

about the extent of data losses. A future project could explore a more extensive 

set of cases to confirm the results of the current work. 

3. Information concerning the reasons for the low rate of accumulation of data 
during each campaign was limited. 

Greater knowledge of such factors could provide additional insights into how 

campaign duration could be better controlled. A future project could focus 

specifically on these prior factors to explore ways of controlling campaign 

duration and cost that are not related to filtering the data. 

The impact of data filtering strategies on campaign durations and costs has not 

previously been reported in the literature to the level of detail show here. Previous 

works have provided headline figures for data loss in extreme cases, but have not 

offered insight into the range of impacts, or the likely occurrence of large losses. The 

results presented here fill this gap and are therefore considered a major contribution of 

the current work. In addition, the novel concept of effective campaign duration is 

introduced to allow comparison across projects, and the minimum theoretical campaign 

duration given a particular rate of data loss is characterised. 
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7.2 The research dataset 

The relevant project objective is 

to compile a new, high-fidelity dataset corresponding to the wind regime 

impacting on turbine performance which incorporates a wide range of 

parameters that is not constrained by the assumptions embodied in the 

current PPT standard. 

No extant datasets were found that satisfy the needs of this project which required a 

demanding range of features. Existing datasets provided some of these features but 

were deficient in others, and a new dataset was therefore required. Data from a well-

instrumented research turbine operated by the University of Minnesota was 

synchronised with data from other sources to create a composite dataset spanning the 

whole of 2017. The main element of the final output is a file of 52,560 records, one for 

each ten-minute period during the year. Each record consists of 727 values (including 

the timestamp) made up of statistical descriptions of measured parameters, as well as 

additional parameters derived on the basis of recognised formulae covered in the 

literature review. Recommended quality controls were applied during the creation of the 

dataset to ensure that the eventual content was as robust as possible. 

As it is based on real measured data, the final version of the dataset has some 

limitations: 

1. No recent instrument calibrations have been performed 

This constraint increases the uncertainty in the individual measurements; 

however, the instruments are in constant use by researchers and may therefore 

be assumed to be well-maintained. 

2. High wind speeds are poorly represented 

The mean wind speed at the turbine location is low, and wind speed above the 

turbine rated speed of 15 ms-1 are rarely achieved. This limits the range of future 

analyses that the dataset can support. 
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3. There is a large number of missing values 

The dataset nominally covers an entire calendar year; however, there are many 

missing values related to instrument failure. A particular issue was found with 

the topmost sonic anemometer which meant that certain derived parameters 

such as the rotor equivalent wind speed could only be calculated for a small 

proportion of the overall data. Appropriate quality filters therefore need to be 

applied in advance of any future analysis. 

4. The number of SCADA parameters is limited 

Any future analysis that requires knowledge of turbine characteristics such as 

nacelle direction or yaw error would need to source such data independently. 

5. A small number of TMA records are affected by curtailment 

A pragmatic decision was taken to retain records with a curtailment level of 

2,300 kW to avoid eliminating a large number of records. Checks indicated that 

a very small number of records would be affected by the curtailment because of 

the low mean wind speed. However, it is expected that a small number of points 

will appear as a horizontal anomaly in the power curve scatter plot at 2,300 kW. 

The effect of this small set of data points is thought to be negligible with respect 

to data analyses performed here. 

6. Visual inspection of all samples was not possible due to the quantity of data 

Future analyses should be prepared to investigate unexpected behaviour with 

reference to the raw data samples. 

7. Wind speed and direction are based solely on sonic measurements 

Any future analysis that requires wind speed measurements from the cup 

anemometers and wind vanes would need to source such data independently. 

8. Flux calculations use a ten-minute averaging period rather than the standard 30 
minutes 

This constraint introduces some additional uncertainty into the flux values 

especially for momentum flux during unstable conditions. 
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The dataset was compiled with the intention of supporting a wider range of analyses 

than needed for the current work. It is thus a general resource available to future wind 

energy projects and is a major contribution of the current work in its own right. The 

dataset is available from the University of Minnesota Digital Conservancy (Davison, 

2019) and the python code used to prepare it is available at 

https://bitbucket.org/coillarach/phd.  

7.3 Evaluation of novel filtering criteria 

The relevant project objective is 

to evaluate traditional and novel filtering strategies in terms of data loss, 

dispersion in the power curve and estimated AEP. 

The results in Chapter 6 demonstrate that filtering the data on certain novel parameters 

can reduce the observed scatter in the power curve point cloud with little data loss 

while yielding good AEP estimates. They also show that the current reliance on filters 

on turbulence intensity (TI) and wind shear may not be optimal. For example, 

sensitivity analysis showed that power output was more sensitive to the second-order 

structure function (transience) of horizontal wind speed than to TI. A second 

controversial result was that direct measures of wind shear were not required to account 

for the majority of variance in the power output. Instead, indicators of atmospheric 

stability and vertical motion were prominent. Both of these observations represent 

major departures from current practice, and would require considerable confirmatory 

evidence before they could be completely accepted.  

Several characteristics of the wind flow within the standard ten-minute averaging period 

were found to be related to the instantaneous power output. In particular, measures of 

stationarity in both the horizontal and vertical dimensions had an effect, as did 

departures from a Gaussian distribution of wind speed values. Intermittency was also 

observed to account for a proportion of the variance in the power output. These 

observations suggest that the conventional model based on one-point statistics may not 

be adequate, and the vertical wind speeds also need to be taken into account. 
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In carrying out the analysis, it was observed that some of the procedures in the current 

version of the PPT standard have limited applicability. As well as the rotor equivalent 

wind speed (REWS) method relying on wind speed measurements spanning the vertical 

extent of the rotor, the turbulence normalisation method cannot be used when the 

turbine rated wind speed is not achieved. 

It was shown that using artificial filters for TI and shear based on values used in real 

PPT projects led to data losses of over 60%. While the effect of the TI filter reduced 

the dispersion in the point cloud by around 3%, the effect of the shear filter was to 

increase it by over 10%. The experimental filters examined here did not manage to 

reduce the dispersion of points in the power curve scatter plot significantly below that 

seen in the unfiltered data; however, they were successful in producing AEP estimates 

similar to those based on conventional filters for much smaller data losses of around 

11%. Although further experimentation would be necessary to further optimise the 

filter definitions, these results suggest that the approach has merit and the topic of 

alternative filters could be productively pursued. The cumulative effect of filters was 

also shown to be significant with respect to both the conventional and experimental 

filters examined. 

The major limitation identified for the results presented here and for any other study 

based on AEP is the lack of a reliable AEP benchmark. The usual approach in the 

literature is to examine the sensitivity of AEP to a particular parameter. However, that 

approach cannot draw any conclusions about the accuracy of the AEP estimates, such 

as whether a higher or lower estimate is the more correct. The approach taken here was 

to define a self-referential benchmark based on the IEC2017 using a set of artificial 

filters, and that was successful within the stated limitations. Several approaches were 

discussed for enhancing the reliability of AEP estimates were discussed which could be 

taken up by future projects to extend the work carried out here including: 

• Conducting similar analyses to those presented here in controlled conditions 

• Conditioning the data on wind speed bin to reduce interaction effects  

• Abandon the AEP metric altogether and to use a different criterion for 

calculating the expected power output 
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7.4 General conclusion and suggestions for future work 

The results presented here demonstrate that alternative data filtering strategies have the 

potential to reduce data loss by a significant amount. In the example of the Eolos 

turbine, over 60% of data was lost using conventional filters, while a combination of 

experimental filters produced a comparable AEP estimate with only an 11% data loss. 

On the proviso that the AEP estimate could be shown to be reliable, this reduction in 

data loss would make it much more likely that a measurement campaign could be 

completed within the standard three-month period. This would reduce the risk for wind 

energy projects by eliminating the uncertainty around campaign durations and thereby 

avoiding additional direct and indirect costs amounting potentially to tens of millions of 

pounds. 

In addition to the points made with respect to the three main objectives of the current 

work, a number of other questions might be addressed by future research: 

• Why do conventional filters for TI and shear remove more points from 
the centre of the power curve scatter plot than from the periphery? 

Reducing the dispersion of the power curve point cloud has been identified as a 

desirable (Bandi & Apt, 2016; Eecen et al., 2011; Wagner et al., 2014). It is 

therefore odd that the two major filters currently used either reduce the 

dispersion by a very small amount, or actually increase it. The results presented 

here suggest that a large proportion of the rejected data may have no distorting 

effect on the power curve, and may therefore be retained without problems. A 

future project could investigate the physical phenomena at play.  

• How should the results of the sensitivity analysis be further interpreted? 

The eFAST method reveals relationships between the variance in the input 

parameters and the variance in the instantaneous power output. While it can 

quantify a parameter’s main and total effects, its mathematical limitations mean 

that it cannot specify precisely which parameters interact together. A future 

project could investigate such parameter interactions to discover which are 

significant and which are not. An examination of parameter interactions would 
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require the testing of different combinations of parameters which would 

provide further insights into their individual and combined importance. 

• Can a trained neural network be used as a multivariate reference for 
turbine power performance? 

As a non-parametric model, the artificial neural network (ANN) used here 

captures the behaviour of the Eolos turbine well. This ability has also been used 

to provide a self-referential benchmark for performance monitoring (Janssens et 

al., 2016; Mckay et al., 2013; Morshedizadeh et al., 2017). An ANN trained on a 

set of reference data predicts expected performance based on a much wider 

range of inputs than just wind speed. It therefore offers a multivariate 

alternative to the power curve. A future project could investigate the feasibility 

of this approach including such issues as the availability of appropriate reference 

data and the expected range of variability in output under boundary conditions. 
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Appendix A: Baseline power curve 

details 

A.1 Reference power curve 

Table 35 provides the details of both the reference power curve and the nominal wind 

distribution which is required to perform the AEP calculation.  

 

Table 35: Reference power curve and nominal wind distribution at 1.225 kg m-3 

Wind 
speed 

Interval Wind dist. Power   Wind 
speed 

Interval Wind dist. Power  
Min Max Min Max 

ms-1 ms-1 ms-1 Hours/year kW  ms-1 ms-1 ms-1 Hours/year kW 

0.5 0 0.75 90 0  13 12.75 13.25 47 2468 

1 0.75 1.25 234 0  13.5 13.25 13.75 30 2477 

1.5 1.25 1.75 403 0  14 13.75 14.25 19 2486 

2 1.75 2.25 583 0  14.5 14.25 14.75 12 2495 

2.5 2.25 2.75 763 0  15 14.75 15.25 7 2500 

3 2.75 3.25 931 0  15.5 15.25 15.75 4 2500 

3.5 3.25 3.75 1076 49  16 15.75 16.25 2 2500 

4 3.75 4.25 1190 99  16.5 16.25 16.75 1 2500 

4.5 4.25 4.75 1267 152  17 16.75 17.25 1 2500 

5 4.75 5.25 1304 205  17.5 17.25 17.75 0 2500 

5.5 5.25 5.75 1301 290  18 17.75 18.25 0 2500 

6 5.75 6.25 1259 374  18.5 18.25 18.75 0 2500 

6.5 6.25 6.75 1185 484  19 18.75 19.25 0 2500 

7 6.75 7.25 1084 593  19.5 19.25 19.75 0 2500 

7.5 7.25 7.75 966 756  20 19.75 20.25 0 2500 

8 7.75 8.25 838 918  20.5 20.25 20.75 0 2500 

8.5 8.25 8.75 707 1162  21 20.75 21.25 0 2500 

9 8.75 9.25 582 1405  21.5 21.25 21.75 0 2500 

9.5 9.25 9.75 466 1621  22 21.75 22.25 0 2500 

10 9.75 10.25 364 1836  22.5 22.25 22.75 0 2500 

10.5 10.25 10.75 276 2016  23 22.75 23.25 0 2500 

11 10.75 11.25 204 2196  23.5 23.25 23.75 0 2500 

11.5 11.25 11.75 147 2300  24 23.75 24.25 0 2500 

12 11.75 12.25 103 2370  24.5 24.25 24.75 0 2500 

12.5 12.25 12.75 70 2425  25 24.75 25.25 0 2500 
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Under normal circumstances, the wind distribution would be extrapolated from 

independent measurements; in this case, it is based on the Weibull parameters derived 

in §6.5 (shape = 2.39, scale = 6.53). The power values correspond to standard sea-level 

pressure of 1.225 kgm-3. 

 

A.2 Test equipment 

Table 36 lists the relevant instruments with their respective uncertainty limits. In the 

case of the power transducer, the uncertainty limit was not available from the 

documentation and has therefore been estimated based on similar configurations. 

Table 36: Test equipment 

Sensor Model Height (m) Uncertainty limit 
Sonic anemometer Campbell Scientific CSAT3 3D 127.9 0.04 ms-1 / 0.002°C 

Sonic anemometer Campbell Scientific CSAT3 3D 79.1 0.04 ms-1 / 0.002°C 

Sonic anemometer Campbell Scientific CSAT3 3D 29.6 0.04 ms-1 / 0.002°C 

Sonic anemometer Campbell Scientific CSAT3 3D 9.9 0.04 ms-1 / 0.002°C 

Relative Humidity Sensor Met One 038E/593A  80 2% 

Pressure Sensor Met One 092 80 0.75 hPa 

Power sensor Turbine SCADA  0.5 kW 

Data logger Campbell Scientific CR3000   

 

IEC2017 requires anemometers to be calibrated in MEASNET approved testing 

facilities, and the definition of a procedure to ensure the calibration of the instruments 

throughout the measurement campaign. (IEC, 2017 §10). The results of the calibration 

tests are used to apply corrections to the measured data values, and in the calculation of 

uncertainty. However, no information was available on the calibration of the 

instruments used in this study. This is somewhat mitigated by the use of Campbell 

Scientific CSAT3 sonic anemometers which are designed not to require field calibration 

(Campbell Scientific, 1998). There was also no opportunity to perform an in-situ 

comparison as described in Annex K of IEC2017 since none of the instruments are 

sited at the same elevation. 
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A.3 Turbine generating status 

As discussed earlier, the output of the turbine was frequently constrained through 

supervisory curtailment. It is common in PPT to exclude TMA values which are derived 

from less than 100% of the expected data points. Where a turbine has been curtailed for 

part of a ten-minute period, for example, that record is discarded regardless of the size 

of the deficit. In order to maximise the number of TMA records available for analysis, a 

looser requirement of 90% is applied here. Records were also excluded where the 

SCADA fault code indicated a state other than Run or Feather check. 

 

A.4 Quantity of data 

Table 37 contains record counts by wind speed bin and by reference density. The 

counts in the baseline column refer to the baseline power curve and are the result of 

applying the quality filters but not the contractual filters. The counts in the filtered 

column have had both types of filter applied. Bins with fewer than 3 records have been 

omitted except for the 13.5 ms-1 bin in the case of the filtered data. The value for this 

bin is interpolated as mandated by IEC2017. 

A.5 Data normalisation 

The booms on the Eolos met mast are mounted at 210º, and the anemometers are in 

the wake of the mast when the wind direction is around 30º. Since this direction falls 

within the sector already excluded because of the turbine wake, mast flow distortion 

correction is not required. Likewise, flow distortion corrections due to topology are not 

necessary since no site calibration is required and no significant obstacles were 

identified. 

REWS is calculated and recorded during the dataset preparation. Given the loss of data 

at 127.9 m through quality filtering, however, the measured hub height wind speed is 

used in the measured power curve.  
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It is not possible to apply specific calibration correction to the data from the various 

instruments because that information is not available.  

The wind speed data from the sonic anemometers is normalised to sea-level density of 

1.225 kgm-3 and also to a mean site density of 1.188 kgm-3.  

 

Table 37: Power curve database for site-mean air density 

Wind speed bin (ms-1) Baseline Filtered 
Centre Min Max TMA records at 

1.225 kg m-3 
TMA records at 
1.188 kg m-3 

TMA records at 
1.225 kg m-3 

TMA records at 
1.188 kg m-3 

3.5 3.25 3.75 172 146 24 18 

4 3.75 4.25 410 399 101 97 

4.5 4.25 4.75 679 653 218 206 

5 4.75 5.25 811 781 259 253 

5.5 5.25 5.75 890 880 291 282 

6 5.75 6.25 962 953 300 296 

6.5 6.25 6.75 979 967 288 299 

7 6.75 7.25 811 827 251 238 

7.5 7.25 7.75 698 713 240 244 

8 7.75 8.25 482 513 182 194 

8.5 8.25 8.75 355 370 140 143 

9 8.75 9.25 227 247 119 133 

9.5 9.25 9.75 157 162 99 90 

10 9.75 10.25 102 117 73 79 

10.5 10.25 10.75 75 72 57 55 

11 10.75 11.25 41 52 32 42 

11.5 11.25 11.75 28 26 24 22 

12 11.75 12.25 15 18 13 16 

12.5 12.25 12.75 14 12 14 12 

13 12.75 13.25 6 12 4 10 

13.5 13.25 13.75 7 3 4 2 

14 13.75 14.25 5 8 4 5 

14.5 14.25 14.75 5 5 4 5 

Total   7931 7936 2741 2741 
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A.6 Measured power curve at standard air density (1.225 kg m-3) 

The standard plot of minimum, maximum, mean and standard deviation of the TMA 

values is shown in Fig. 66 The four series have the expected distribution except that the 

highest mean values fall somewhat short of the rated value of 2.5 MW which should be 

achieved at 15 ms-1. As noted previously, however, the number of data points available 

above about 14 ms-1 is very limited. In addition, data with a curtailment level of 2,300 

kW was retained in the dataset in order to maximise the overall quantity of data 

available. This would account for the behaviour of the mean values which level out at 

2,300 kW above 14 ms-1. This is more clearly shown in Fig. 67 where only the plot of 

mean power output is shown as a function of hub height wind speed. 

 

 

 

Figure 53: Summary statistics plot 
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The measured power curve and the plot of power coefficient as a function of wind 

speed are presented in Fig. 68 with the calculated uncertainty shown as vertical error 

bars. The source data for the power curve plot is presented in Table 38.  

 

Figure 54: Sea-level density scatterplot 

Figure 55: Measured power curve and power coefficient for sea-level air density 
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Table 38: Sea-level uncertainty results 

Wind 
speed 
(ms-1) 

Active 
power 
(kW) 

Power 
coefficient 

Records 
per bin 

Category A 
uncertainty 
(kW) 

Category B 
uncertainty 
(kW) 

Combined 
uncertainty 
(kW) 

3.57 73.09 0.45 24 5.01 13.48 14.38 

4.02 109.36 0.47 101 3.68 20.32 20.65 

4.53 158.74 0.48 218 3.18 25.66 25.86 

5.00 222.15 0.49 259 3.81 34.30 34.51 

5.51 304.73 0.51 291 3.91 41.69 41.87 

6.00 402.72 0.52 300 5.23 50.55 50.82 

6.49 518.18 0.53 288 6.09 57.38 57.70 

7.00 652.56 0.53 251 8.49 65.55 66.10 

7.49 791.18 0.53 240 10.35 69.56 70.32 

7.99 935.29 0.51 182 12.70 79.25 80.26 

8.48 1108.17 0.50 140 15.82 85.98 87.42 

8.98 1274.40 0.49 119 21.95 95.54 98.03 

9.50 1506.56 0.49 99 23.48 95.62 98.46 

10.00 1653.45 0.46 73 25.11 85.64 89.24 

10.51 1838.87 0.44 57 31.30 89.71 95.02 

10.96 1969.99 0.41 32 35.85 62.32 71.90 

11.55 2068.35 0.37 24 37.93 58.30 69.56 

12.04 2196.15 0.35 13 20.01 41.22 45.82 

12.54 2208.60 0.31 14 20.80 20.94 29.52 

12.81 2168.40 0.28 4 58.70 11.61 59.84 

13.59 2240.33 0.25 4 12.21 32.44 34.66 

13.94 2287.74 0.23 4 2.07 25.49 25.57 

14.44 2286.41 0.21 4 1.31 9.07 9.16 

 

A.7 Annual Energy Production at standard air density (1.225 kg m-3) 

Estimates of AEP are presented in Table 39 for standard air density. The final row in 

the table shows the site-specific AEP calculated using the Weibull shape and scale 

parameters found in §6.5. The value for the site-specific measured AEP represents 

95.49% of the theoretical figure of 4677 MWh/year obtained using the reference power 

curve and the Weibull parameters from §6.5. The turbine would therefore pass the IEC 

performance test allowing for the deviations from the standard procedure described 

above. 
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Table 39: Sea-level AEP results 

Wind speed 
(Rayleigh) 

(ms-1) 

AEP measured 
(MWh/year) 

Standard uncertainty in AEP AEP 
extrapolated 
(MWh/year) 

Status 

(MWh/year) (%) 

4 1836 19 1.03 1837 
 

5 3404 25 0.73 3433 
 

6 5048 30 0.59 5259 
 

7 6376 33 0.52 7083 Incomplete 

8 7214 34 0.47 8754 Incomplete 

9 7590 34 0.45 10195 Incomplete 

10 7617 32 0.42 11363 Incomplete 

11 7414 30 0.4 12242 Incomplete 

Weibull 4572 32 0.43 4598 
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Appendix B: Eolos dataset 

The core of the Eolos dataset was kindly provided by Eolos Wind Energy Research, a 

Minnesota-based wind energy group of university researchers and industry partners. 

The dataset includes SCADA data from the turbine itself and measurements from 

instruments mounted on the associated met mast. The Eolos data was supplemented 

with surface pressure data from Iowa Environmental Mesonet weather stations and data 

on local sunrise and sunset times from a reliable Internet source. In all, seven individual 

subsets of data were synchronised in order to create the final dataset.  

 

 

Figure 56: Schematic of data acquisition systems on the Eolos test site (Howard & Guala, 2014) 

 

The turbine and met mast are located at Umore Park, a dedicated 80-acre site belonging 

to the University of Minnesota. The arrangement of instruments is illustrated in Figure 

69, and the power curve is shown in Figure A2. The layout of the site does not comply 

fully with the requirements of IEC2017 since the horizontal distance between the 

turbine and the met mast is less than two rotor diameters. 
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Figure 57: Clipper Liberty C96 power curve21 

 

Basic details of the site are provided in Table 40. 

Table 40: Location details 

Terrain Low rolling farmland 

Location 44.728422°N, -93.048144°E (turbine) 

44.726774°N, -93.048131°E (mast) 

Elevation: 279.8m 

Coriolis parameter 0.0001024 

Roughness length 0.03 (from Table 2) 

Mast height 130 m 

Excluded sector 350 - 100°  

Reference (Howard & Guala, 2016) 

 

There are three parameters contributing to disturbed airflow at the met mast in the 

sector 320° to 40°, the first of which is the wake of the turbine since the met mast is 

situated due south. The second parameter is the tower shadow from the met mast itself 

since the instrument booms are oriented at 210°. The boom orientation also gives rise 

                                                

21 https://www.thewindpower.net/turbine_en_296_clipper_liberty-c96.php  
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to the third parameter which is that at this angle, the arms and supporting structure of 

the sonic anemometers contaminate the flow of air through the sensors (Campbell 

Scientific, 1998). The sector 320° to 40° is therefore excluded from analyses leaving the 

free-stream sector as 50° to 310° after binning and averaging using the standard IEC 

bin size of 10° (IEC, 2017). Theoretically, there could be a small hysteresis effect at the 

edges of the free-stream sector if the standard deviation of the wind direction is large. 

 

Table 41: File contents: MetA 

Data subset identifier MetA 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency Sonic anemometer data at 20 Hz 
Data items Meridional wind speed (+ve: North ð South) 

Zonal wind speed (+ve: West ð East 
Vertical wind speed (+ve: upwards) 
Sonic temperature 
Diagnostic 

Instruments CSAT1 (Campbell Scientific CSAT3) 
CSAT3 (Campbell Scientific CSAT3) 

127.9m 
79.1m 

 

Table 42: File details: MetB 

Data subset identifier MetB 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency Sonic anemometer data at 20 Hz 
Data items Meridional wind speed (+ve: North ð South) 

Zonal wind speed (+ve: West ð East 
Vertical wind speed (+ve: upwards) 
Sonic temperature 
Diagnostic 

Instruments CSAT5 (Campbell Scientific CSAT3) 
CSAT6 (Campbell Scientific CSAT3) 

29.6m 
9.9m 
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Table 43: File details: RH 

Data subset identifier RH 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency Met mast data at 1 Hz 
Data items Relative humidity 

Pressure 
Instruments RH (Met One 083E-1-35) 

Bar (Met One 092) 
79.1 m 
79.1m 

 

Table 44: File details: SCADA 

Data subset identifier SCADA 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency SCADA data at 1 Hz 
Data items  Real power (kW) 

Reactive power (kVAR) 
Rotor position (deg) 
Nacelle direction (deg) 
Wind direction (deg) 
Wind speed (m/s) 
Hub speed (rpm) 
Barometric pressure (hPa) 
Air density (kg/m^3) 
 

Curtailment level (kW) 
Turbine state 
Fault level 
Fault code 
Yaw error (deg) 
Yaw mode 
Yaw state 
 

Instruments No details 80m (hub height – where 
applicable) 

 

Valid SCADA records were identified by a turbine state value of Run (corresponding to 

internal code 8), and a fault code of either 0 (no fault) or 920 (feather check warning) (Stone, 

2015). Invalid records were suppressed before combination with the other datasets. 

The curtailment level column contains values (e.g. 1,400 kW, 2,350 kW) which indicate 

an upper limit on the amount of power produced. Periods of curtailment introduce 

distortions into the power curve. Most of the affected records were rejected; however, 

those with a curtailment level of 2,300 kW were retained. This was to retain a 

reasonable number of records in the dataset. Checking against the published power 

curve, the wind speed corresponding to an output of 2,300 kW was exceeded on only 

four occasions. The risk was deemed acceptable. 
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Table 45: File details: Temp 

Data subset identifier Temp 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency Met mast data at 1 Hz 
Data items Temperature 
Instruments Temp (Met One 083E-1-35) 

 
125.9m, 101.5m, 76.7m, 
51.5m, 27.1m, 7.3m 

 

Table 46: File details: ASOS 

Data subset identifier ASOS 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency Weather station data at 0.000278 Hz (hourly) 

Upsampled to 0.001667 Hz (every ten minutes) and padded 
Location Network of 13 weather stations in Minnesota at various locations and 

elevations 
Data items Mean surface pressure (adjusted for elevation) 
Instruments No details 
Source Iowa Environmental Mesonet 

http://mesonet.agron.iastate.edu/sites/networks.php?network=MN_ASOS  

 

Table 47: File details: Solar 

Data subset identifier Solar 
Time period (UTC) 2017-01-01 00:00:00 – 2017-12-31 23:59:59 

Local time = UTC -6 (UTC -5 with DST)  
Type and frequency Solar geometry at 0.001667 Hz (every ten minutes) 
Data items Daylight saving time flag (0 = no DST, 1 = DST) 

UTC offset – difference in hours from UTC 
Sunrise azimuth 
Sunset azimuth 
Solar noon azimuth 
Local sunrise time 
Local sunset time 
Local solar noon 
UTC sunrise time 
UTC sunset time 
UTC solar noon 
Hour angle – solar direction as an angular offset from 0 at solar noon 
Day number – offset from 2017-01-01 00:00 including day fraction 
Declination – angle between the sun and the plane of the equator 
Solar elevation – angle between the sun and the local horizon 

Source timeanddate.com 
https://www.timeanddate.com/sun/usa/minneapolis  
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Uncertainty values for the raw meteorological data columns were either extracted from 

the instrument manuals (Ellis, 2013), or derived using the formulae for linear 

propagation of uncertainty if the values were calculated during pre-processing.  No data 

on the accuracy of the SCADA variables was available, and estimates are based on 

similar data from other turbines and instruments. The full list is shown in Table 48. 

 

Table 48 Uncertainty values used for raw data. * indicates a parameter calculated during pre-processing and 

therefore a calculated uncertainty; † indicates an estimated value. 

Parameter Instrument Uncertainty 
Wind speed Met One Model 011 E-Class One cup anemometer 0.1 ms-1 

Wind speed component Campbell Scientific CSAT3 3D sonic anemometer 0.04 ms-1 

Wind speed† SCADA 0.24 ms-1 

Scalar wind speed 1 Hz* Campbell Scientific CSAT3 3D sonic anemometer 0.03 

Wind direction Met One Model 024A Wind Direction Sensor 5° 

Wind direction* Campbell Scientific CSAT3 3D sonic anemometer 0.5° 
Wind direction† SCADA 3° 
Temperature Met One Model 038E/593A Relative 

Humidity/Temperature Sensor 
0.1°C 

Temperature Campbell Scientific CSAT3 3D sonic anemometer 0.04°C 

Relative humidity Met One Model 038E/593A Relative 
Humidity/Temperature Sensor 

2% 

Pressure Met One Barometric Pressure Sensor 0.75 hPa 

Pressure† SCADA 0.75 hPa 

Real power† SCADA 0.5 kW 

Rotor position† SCADA 0.5° 
Nacelle direction† SCADA 0.5° 
Yaw error† SCADA 3° 
Hub speed† SCADA 0.2 rpm 

Air density* SCADA 0.25 kg m-3 

Kinematic heat flux* Campbell Scientific CSAT3 3D sonic anemometer 0.00001 K m s-1 

Kinematic momentum flux* Campbell Scientific CSAT3 3D sonic anemometer 0.00001 m2 s-2 
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Appendix C: Python code to 

generate incommensurate numbers 

def sumcheck(a, A): 
    “”” Returns True the parameter a is equal to the sum of a subset of A. 
        Returns False otherwise 
    “”” 
    if len(A) == 0:   # Return False when the list is empty 
        return False 
    if a == sum(A):   # If a == sum of the members of A, return True 
        return True 
    if a – A[0] < A[-1]:  # If a – max(A) is less than min(A), ignore max(A) 
        return sumcheck(a, A[1:]) # Call sumcheck recursively on the remainder of A 
    for b in A:   # Check each member of A 
        B = A.copy()   # Copy array to preserve the original 
        B.remove(b) 
        if sumcheck(a-b, B):  # Recursively check for the difference between the  
            return True  # selected value in the remainder of the list 
    return False 
 
 
def parametercheck(a, A, M=4): 
    “”” Returns True if parameter a has a multiple that is within +/-5 of another 
        number in the list A. Multiples up to M are checked. 
        Returns False otherwise 
    “”” 
    for m in range(2, M+1): 
        for i in range(-5, 6): 
            if m * a + i in A: 
                return True 
    return False 
 
 
def incommensurate(seed, n, diff=7): 
    “”” Generate a list of n incommensurate values starting with seed, and reducing 
        the value by diff each time. Each candidate value is checked for compatibility 
        and if a clash is discovered, the value is reduced by 1 repeatedly until the 
        next compatible value is found. If zero is reached before the required number 
        of values has been generated, and error is raised. 
    “”” 
    freqs = [seed,] 
    while len(freqs) < n: 
        step=0 
        num = freqs[-1] – diff 
        if num <= 0: 
            print(freqs, num, step) 
            raise ValueError(‘Reached zero’) 
        while sumcheck(num-step, freqs) or parametercheck(num-step, freqs): 
            step += 1 
            if num-step <= 0: 
                print(freqs, num, step) 
                raise ValueError(‘’Reached  zero’) 
        freqs += [num-step] 
    return freqs 
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Appendix D: Characteristics of 

datasets from winddata.com 

The table below was compiled when assessing available datasets for the characteristics 

required for the current work. None of those at winddata.com were found to have the 

ideal combination of features. 

Site Wind 
speed 

Wind 
direction 

Temperature Pressure Relative 
humidity 

Power 3D Frequency 
(Hz) 

abisko Y Y Y       Y 20 

ainswort Y Y         Y 5 

alsvik Y Y Y         1 

andros Y Y Y         1 

aspruzza Y Y           1 

bockstig Y Y Y Y   Y   17 

cabauw Y Y           2 

calwind Y Y         Y 5 

ciba Y Y           5 

clape Y Y         Y 8 

ecn Y Y           4 

emden Y Y           20 

equinox Y Y           5 

flowind Y Y           5 

gedsrev Y Y           5 

gorgonio Y Y           5 

hanford Y Y         Y 5 

holland Y Y Y         5 

hornsrev Y Y           12 

hurghada Y Y           8 

jericho Y Y Y         5 

jwe Y Y           20 

kwkoog Y Y           2.5 

lamme Y Y         Y 16 

lavrio Y Y Y       Y 8 

lyse Y Y Y         1 

maglarp Y Y Y       Y 20 

marsta Y Y Y       Y 21 

mttsukub Y Y         Y 4 
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Site Wind 

speed 

Wind 

direction 

Temperature Pressure Relative 

humidity 

Power 3D Frequency 

(Hz) 

midgrund Y Y           5 
nasudden Y Y           1 

nm92 Y Y Y     Y Y 25 

nordtank Y Y Y       Y 20 

ntk1500 Y Y           40 

nwtc Y Y Y       Y 40 

oakcreek Y Y Y       Y 16 

orkney Y Y Y         1 

roedsand Y Y Y       Y 20 

rosiere Y Y Y       Y 5 

sjorge Y Y           40 

ski Y Y           0.85 

skyv27 Y Y         Y 8 

skyv39 Y Y       Y   32 

sle Y Y           0.85 

sprogoe Y Y         Y 10 

tarifa Y Y Y       Y 4 

tarifa_2 Y Y         Y 20 

tejona Y Y Y       Y 4 

tjare Y Y       Y   25 

toboel_1 Y Y           8 

toboel_2 Y Y           32 

toplou Y Y Y       Y 8 

tsukuba Y Y           1 

tughill Y Y         Y 5 

utlangan Y Y Y       Y 20 

vindeby Y Y Y       Y 20 

vls Y Y           0.85 

windland Y Y         Y 5 

windy Y Y         Y 10 

zeeb Y Y           2 
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Appendix E: Python methods 

The code below defines a python class Calc and a set of associated class methods for 

performing standard calculations. These are an extract from the full set available from 

the code repository which can be accessed at https://bitbucket.org/coillarach/phd. The 

methods are arranged in alphabetical order. 

 

From datetime import datetime 
 
import numpy as np 
import pandas as pd 
import scipy.signal as sg 
import statsmodels.tsa.stattools as tst 
from math import pi, atan, cos, sin, isnan, sqrt, log, exp, acos, asin, atan2 
 
T_c = 647.096     # Critical temperature (K) Wagner & Pruss (2001) p. 398 
R = 8.3144598     # Universal gas constant (J mol^-1 K^-1) Jacobson (2001) p. 29 
m_d = 28.966      # Molecular weight of dry air (g /mol) Jacobson (2001) p. 30 
m_v = 18.02       # Molecular weight of water vapour (g /mol) Jacobson (2001) p. 712 
c_pd = 1004.67    # Specific heat of dry air at constant pressure (J /kg/K) Jacobson (2001) p. 20 
g = 9.81          # Acceleration due to gravity (ms^-2) Atkins, T. and Escudier, M. (2014)  
P_c = 220640.0    # Critical pressure (hPa) Wagner & Pruss (2001) p. 398 
R_v = 4.61526     # Gas constant of water vapour (m^3 hPa /kg /K) IAPWS97 
R_d = 2.8704      # Gas constant of dry air (m^3 hPa /kg /K) Jacobson (2001) p. 712 
P_0 = 1013.0      # Standard sea-level pressure (hPa) Jacobson (2001) p. 14 
k = 0.4           # von Karman constant () Stull, 1988 
gamma_d = 9.8     # Dry adiabatic lapse rate (K/km) Stull, 1988 
Pr = 0.95         # Turbulent Prandtl number () Jacobson, 2005, p.242 
L_v = 2500000     # Latent heat of condensation for water (J/kg) (Schotanus et al, 1983) 
C_p = 1012        # Specific heat of air at constant pressure (J/kg/K) (Schotanus et al, 1983) 
 
 
class Calc: 
 
    @staticmethod 
    def adf(df): 
        “”” Calculate a stationarity indicator using the Augmented Dickey-Fuller (adf) test. 
            The data is stationary if the test statistic is less that the critical value of -2.88404 
            for a 95% confidence. Between the critical value and zero, the statistic indicates non- 
            stationarity, and above zero the series is explosive (unlikely). In the explosive case, 
            this function returns 1. Otherwise the return value is the probability given by the test. 
            Stationarity is therefore suggested when the return value is less than 0.95 and the closer 
            to zero, the more stationary the data is. 
 
        “”” 
        adf, pvalue, usedlag, nobs, critical_values, icbest = tst.adfuller(df.dropna()) 
        if adf > 0: 
            return 1.0 
        return pvalue 
 
    @staticmethod 
    def airDensity(pressureInMillibars, temperatureInCelsius, relativeHumidityInPercent): 
        “”” Air density from temperature, pressure and relative humidity 
            IEC (2005) 
        “”” 
        absoluteTemperature = Calc.celsiusToKelvin(temperatureInCelsius) 
        relativeHumidity = relativeHumidityInPercent / 100 
        vapourPressureInHectopascals = Calc.saturationVapourPressure(temperatureInCelsius) 
 
        return ((pressureInMillibars / R_d) - 
                relativeHumidity * vapourPressureInHectopascals *  
     (1 / R_d – 1 / R_v)) / absoluteTemperature 
 
    @staticmethod 
    def airDensityFromSonic(pressureInMillibars, sonicTemperatureInCelsius): 
        “”” Air density from pressure and sonic temperature, which is almost identical to virtual temp 
            Jacobson (2001) p. 33 
        “”” 
        absoluteTemperature = Calc.celsiusToKelvin(sonicTemperatureInCelsius) 
 
        return pressureInMillibars / R_d / absoluteTemperature 
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    @staticmethod 
    def angularDifference(upperAngle, lowerAngle): 
        “”” Calculates the difference between two angles in degrees giving a negative answer where 
            the lower angle is larger than the upper angle 
 
        “”” 
        newAngle = (upperAngle – lowerAngle) % 360 
        if newAngle > 180: 
            return newAngle – 360 
        else: 
            return newAngle 
 
    @staticmethod 
    def autocorrelation(data, stop=’min’, normalise=True): 
        “”” Calculates the autocorrelation for the supplied array, data, at all possible lags (0 – N-1). 
            The stop parameter controls when the process is actually terminated. ‘min’ indicates the 
            first minimum, ‘zero’ indicates the first zero-crossing, and ‘1/e’ indicates 1/e 
             (Tropea et al, 2007; Flay & Stevenson, 1988). 
            Returns ndarray 
        “”” 
        if len(data) == 0: 
            return None 
 
        if stop not in [‘min’, ‘zero’, ‘1/e’, ‘none’]: 
            raise ValueError( 
                ‘\’stop\’ parameter should be one of \’min\’, \’zero\’, \’1/e\’, \’none\’, not \’’ + \ 
                stop + ‘\’’) 
 
        df = pd.Series(sg.detrend(data, type=’linear’)) 
        ac = np.array([]) 
        previous_value = 999 
        for lag in range(0, len(data)): 
            ac_at_lag = df.autocorr(lag) 
 
            if stop == ‘zero’ and ac_at_lag <= 0.0: 
                break 
            elif stop == ‘1/e’ and (ac_at_lag <= 1 / np.e or ac_at_lag <= 0.0): 
                break 
            elif stop == ‘min’ and (ac_at_lag > previous_value or ac_at_lag <= 0.0): 
                break 
 
            previous_value = ac_at_lag 
 
            ac = np.append(ac, [ac_at_lag, ]) 
 
        if normalise: 
            return ac / ac[0] 
        else: 
            return ac 
 
    @staticmethod 
    def boundaryLayerHeightRM(frictionVelocity, rossbyMontgomeryCoefficient, coriolis): 
        “”” Estimates the surface layer height based on the Rossby-Montgomery equation. This version 
            uses a dynamic value of the Rossby-Montgomery coefficient. 
            Rossby & Montgomery, 1935; Arya, 2001, p. 273 
        “”” 
        return rossbyMontgomeryCoefficient * frictionVelocity / coriolis 
 
    @staticmethod 
    def coriolis(latitudeInDegrees): 
        “”” Returns the Coriolis parameter value for a given latitude 
        “”” 
        latitude = np.radians(latitudeInDegrees) 
        return 0.000145 * sin(latitude) 
 
    @staticmethod 
    def crossIsobarAngle(row, frictionVelocity, surfaceLayerHeight,  
                         obukhovLength, roughnessLength, coriolis): 
        “”” Estimate of the rotation of the wind vector at the top of the surface layer compared to the 
            direction of the geostrophic wind 
            Emeis, 2013, p.46 
        “”” 
        gammaScale = sqrt(coriolis / (2 * k * row[frictionVelocity] * row[surfaceLayerHeight])) 
        phi = Calc.universalStabilityFunction(row, obukhovLength, row[surfaceLayerHeight], ‘M’) 
        psi = Calc.universalStabilityFunctionIntegrated(row, obukhovLength,  
                                                        row[surfaceLayerHeight], ‘M’) 
        radians = atan(1/(1 + 2 * gammaScale * row[surfaceLayerHeight] / phi * \ 
                  (log(row[surfaceLayerHeight] / roughnessLength) – psi))) 
        return Calc.radiansToDegrees(radians) 
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    @staticmethod 
    def declination(day_number): 
        “”” Calculates the solar declination based on the day number. 
        “”” 
        return (-np.arctan(0.39779 * np.cos(0.98565 * (day_number + 10) * np.pi / 180) + 
                           1.914 * np.sin(0.98565 * (day_number – 2) * np.pi / 180))) * 180 / np.pi 
    @staticmethod 
    def dissipation(structure2, mean_wind_speed, sampling_frequency): 
        “”” Calculate energy dissipation rate (m^2/s^3)  
            (Stull, 2001, p. 300; Muñoz-Esparza et al , 2017). 
            structure2 = second-order structure function at lag = 1 (this is equivalent to transience) 
 
        “”” 
        return (structure2 / 2) ** (3 / 2) / mean_wind_speed * sampling_frequency 
    @staticmethod 
    def extrapolate(value, gradient, height, targetHeight=0): 
        “”” Value of quantity at the target height assuming a linear lapse rate 
 
        “”” 
        return value + (gradient * (targetHeight – height)) 
 
    @staticmethod 
    def frictionVelocity(kinematicMomentumFluxU, kinematicMomentumFluxV): 
        “”” Scaling parameter for wind speed in the surface layer – used in Monin-Obukhov theory 
            Foken (2008) p. 31 
        “”” 
        return (kinematicMomentumFluxU**2 + kinematicMomentumFluxV**2)**0.25 
    @staticmethod 
    def geostrophicWindSpeed(frictionVelocity, coriolis, roughnessLength): 
        “”” Estimate of the wind speed in the free troposphere 
            Hogstrom, 1998 
        “”” 
        return coriolis * roughnessLength * (frictionVelocity / \ 
               (sqrt(0.0123) * coriolis * roughnessLength)) ** (1/0.93) 
    @staticmethod 
    def haversineDistance(latitude1, longitude1, latitude2, longitude2): 
        “”” Returns the distance in kilometres between two points defined by their latitude and 
            longitude. 
            Implements the haversine formula: https://en.wikipedia.org/wiki/Haversine_formula 
            Also returns the bearing of point2 from point1 calculated as the forward azimuth: 
            https://www.movable-type.co.uk/scripts/latlong.html 
        “”” 
        earth_radius = 6373.0 
 
        lat1 = np.radians(latitude1) 
        lon1 = np.radians(longitude1) 
        lat2 = np.radians(latitude2) 
        lon2 = np.radians(longitude2) 
 
        dlon = lon2 – lon1 
        dlat = lat2 – lat1 
 
        a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2) ** 2 
        c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 – a)) 
 
        forward_azimuth = np.degrees(np.arctan2(np.sin(dlon) * np.cos(lat2), np.cos(lat1) * \ 
                          np.sin(lat2) – np.sin(lat1) * np.cos(lat2) * np.cos(dlon))) 
        try: 
            forward_azimuth = [360 + fa if fa < 0 else fa for fa in forward_azimuth] 
        except TypeError: 
            if forward_azimuth < 0: 
                forward_azimuth = 360 + forward_azimuth 
 
        return earth_radius * c, forward_azimuth 
 
    @staticmethod 
    def hour_angle(solar_noon, time): 
        “”” Calculates the solar hour angle given solar noon and the time to be evaluated as datetime 
            objects 
        “”” 
        if time < solar_noon: 
            seconds = -(solar_noon – time).total_seconds() 
        else: 
            seconds = (time – solar_noon).total_seconds() 
 
        return seconds * 0.004167 
 
    @staticmethod 
    def inflowAngle(horizontalWindSpeed, verticalWindSpeed): 
        “”” Calculates inflow angle in degrees as the inverse tangent of vertical over horizontal wind 
            speed 
        “”” 
        angles = np.degrees(np.arctan(verticalWindSpeed / horizontalWindSpeed)) 
        return Calc.signedAngle(angles) 
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    @staticmethod 
    def kinematicHeatFlux(flux, density, invert=False): 
        “”” Kinematic expression of heat flux density – measured in same units as the base quantity 
           (mKs^-1) 
            Jacobson (2001) p. 230 
        “”” 
        if invert: 
            return -flux / density / c_pd 
        return flux / density / c_pd 
 
    @staticmethod 
    def kinematicMomentumFlux(flux, density): 
        “”” Kinematic expression of momentum flux density – measured in same units as the base quantity 
            (m^2s^-2) 
            Jacobson (2001) p. 106 
        “”” 
        return flux / density 
 
    @staticmethod 
    def kinematicMomentumFluxResultant(zonalFlux, meridionalFlux, density): 
        “”” Kinematic expression of momentum flux density from flux components – measured in same units 
            as the base quantity (m^2s^-2) 
 
        “”” 
        return sqrt(zonalFlux ** 2 + meridionalFlux ** 2) / density 
 
    @staticmethod 
    def kinematicViscosity(kelvin, density): 
        “”” Returns the kinematic viscosity of air based om the absolute temperature and density. 
            Andreas (2005) ADDED MANUALLY 16 Sep 2018 
        “”” 
        return (1.458 * 10**-6 * kelvin**(3/2)) / (kelvin + 110.4) 
 
    @staticmethod 
    def kpss(df): 
        “”” Calculate a stationarity indicator using the KPSS test. This function returns the 
            probability value 
        “”” 
        value, pvalue, lags, criticaleValues = tst.kpss(df.dropna()) 
        return pvalue 
 
    @staticmethod 
    def lapseRate(lowerValue, upperValue, lowerMeasurementHeight, upperMeasurementHeight, factor=1000): 
        “”” Returns lapse rate in units per metre. Typically used for temperatures. 
            The default value for factor returns the result in units per kilometre. For units per metre 
            run with factor=1 
            Stull (2015) p. 59, 140 
        “”” 
        return –(upperValue – lowerValue) / (upperMeasurementHeight – lowerMeasurementHeight) 
 
    @staticmethod 
    def length_scale(time_scale, mean_speed): 
        “”” Calculates the integral length scale from a time scale by multiplying by the mean speed. 
        “”” 
        return time_scale * mean_speed 
 
    def normalisedPower(power, airDensity, referenceAirDensity=1.225): 
        “”” Calculates the power normalised to a reference air density 
 
        “”” 
        return power * (referenceAirDensity / airDensity) 
 
    @staticmethod 
    def normalisedWindSpeed(windSpeed, airDensity, referenceAirDensity=1.225): 
        “”” Calculates wind speed normalised to a reference air density 
 
        “”” 
        return windSpeed * (airDensity / referenceAirDensity)**(1/3) 
 
     
@staticmethod 
    def obukhovLength(frictionVelocity, virtualPotentialTemperature, kinematicHeatFlux): 
        “”” Length scale (m) proportional to the height above the surface at which buoyant production of 
            turbulence first dominates mechanical (shear) production of turbulence 
            Stull (1989) p. 181 
        “”” 
        return –(frictionVelocity**3) * virtualPotentialTemperature / k / g / kinematicHeatFlux 
 
    @staticmethod 
    def obukhovStabilityParameter(obukhovLength, height): 
        “”” Measure of stability using Monin-Obukhov similarity theory 
 
        “”” 
        return height / obukhovLength 
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    @staticmethod 
    def planar_fit(df): 
        “”” Calculates the coefficients, b0, b1, b2, of the equation of a plane  
            Z(x, y) = b0 + b1 x + b2 y which best fits a set of points in 3-dimensional space.  
            (Wilczak et al, 2001; Lee et al, 2005). 
            The return value is an array x = (b0, b1, b2). Parameters u, v and w are pandas Series 
            objects. For use in rotating the coordinates of flux measurements, see unit_vector_k(), 
            unit_vector_ij() and rotate() 
        “”” 
        df1 = df.dropna().copy() 
        u = df1.iloc[:,0] 
        v = df1.iloc[:,1] 
        w = df1.iloc[:,2] 
 
        flen = len(u) 
        su = u.sum() 
        sv = v.sum() 
        sw = w.sum() 
        suv = np.matmul(u, np.transpose(v)).sum() 
        suw = np.matmul(u, np.transpose(w)).sum() 
        svw = np.matmul(v, np.transpose(w)).sum() 
        su2 = np.matmul(u, np.transpose(u)).sum() 
        sv2 = np.matmul(v, np.transpose(v)).sum() 
 
        H = [[flen, su, sv], [su, su2, suv], [sv, suv, sv2]] 
        g = np.transpose([sw, suw, svw]) 
        x = np.matmul(np.linalg.inv(H), g) 
 
        return x 
 
    @staticmethod 
    def planar_fit_three_points(p, q, r): 
        “”” Returns the fitted coefficients of the equation of a plane given three points in that plane. 
            p, q, and r are assumed to be 2D numpy arrays of the form [[x0, y0, z0], [x1, y1, z1], ...] 
            On return, the arrays a0, a1 and a2 can be assigned directly to columns in a dataframe. 
        “”” 
        v1 = np.subtract(p, q) 
        v2 = np.subtract(p, r) 
        n = np.cross(v1, v2) 
        a0 = [(k[0]*c[0] + k[1]*c[1] + k[2]*c[2]) / k[2] for (k, c) in zip(n, p)] 
        a1 = [-k[0] / k[2] for k in n] 
        a2 = [-k[1] / k[2] for k in n] 
 
        return a0, a1, a2 
 
 
    @staticmethod 
    def potentialTemperature(temperatureInCelsius, PressureInMillibars): 
        “”” Potential temperature from temperature and pressure 
            Jacobson (2001) p 51 
        “”” 
        kelvin = Calc.celsiusToKelvin(temperatureInCelsius) 
        return kelvin * (1000 / PressureInMillibars)**0.286 
 
    @staticmethod 
    def potentialTemperatureFromLapseRate(temperatureInCelsius, height): 
        “”” Calculates potential temperature using the dry adiabatic lapse rate. This avoids the need 
            for a reference pressure. 
            Stull, 2015 p. 61 
        “”” 
        return temperatureInCelsius + gamma_d / 1000 * height 
 
    @staticmethod 
    def potentialTemperatureScale(kinematicHeatFlux, frictionVelocity): 
        “”” Scaling parameter for temperature used in Monin-Obukhov theory 
            Jacobson (2001) p. 241 
        “”” 
        return -kinematicHeatFlux / frictionVelocity 
 
    @staticmethod 
    def potentialVirtualTemperature(sonicTemperatureInCelsius, PressureInMillibars): 
        “”” Temperature adjusted for altitude and moisture content – calculated from sonic temperature 
            which is almost identical to virtual temperature 
            Foken (2008) p. 114; 
        “”” 
        kelvin = Calc.celsiusToKelvin(sonicTemperatureInCelsius) 
        return kelvin * (1000 / PressureInMillibars)**0.286 
    @staticmethod 
    def powerDeviation(row, powerColumn, windSpeedColumn, powerCurve=None): 
        “”” Calculates the deviation in power output for a particular wind speed with respect to a power 
            curve 
 
        “”” 
        expectedValue = powerCurve.getPower(row[windSpeedColumn]) 
        return Calc.percentageError(expectedValue, row[powerColumn]) 
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    @staticmethod 
    def pressureDifferenceUnitLength(pressure1, pressure2, distance): 
        “”” Calculates the absolute pressure difference per unit length. Length units depend on the 
            parameter supplied 
        “”” 
        return abs(pressure1 – pressure2) / distance 
 
    @staticmethod 
    def pressureNormalised(pressure1, height1, height2, temperatureInCelsius): 
        “”” Returns the pressure value adjusted for height by the hypsometric equation 
            (Stull, 2015 p. 17) 
        “”” 
        return pressure1 * np.exp(g * (height1 – height2) / (R_d * 100) / \ 
               (temperatureInCelsius + 273.15)) 
    @staticmethod 
    def rayleigh (x, mean): 
        “”” Calculates the Rayleigh statistic for a given value compared to the mean 
 
        “”” 
        return 1 – exp(-pi / 4 * (x / mean)**2) 
    @staticmethod 
    def reynolds(data): 
        “”” Decompose a sequence into a mean value and deviations. 
        “”” 
        data_mean = data.mean() 
        return data_mean, data – data_mean 
 
    @staticmethod 
    def richardsonBulk(virtualPotentialTemperature, 
                       virtualPotentialTemperatureAtSurface, 
                       meanWindSpeed, 
                       measurementHeight 
                      ): 
        “”” Quantifies the ratio of buoyancy to mechanical shear – used as a measure of static 
            stability. This version requires one measurement of temperature at height z and the 
            temperature at the surface. 
            Grachev & Fairall, 1997 
        “”” 
 
        return g * (virtualPotentialTemperature – virtualPotentialTemperatureAtSurface) * \ 
            measurementHeight / virtualPotentialTemperatureAtSurface / meanWindSpeed**2 
    @staticmethod 
    def richardsonFlux(virtualPotentialTemperature, kinematicHeatFlux, 
                       kinematicMomentumFluxU, windSpeedGradientU, 
                       kinematicMomentumFluxV, windSpeedGradientV): 
        “”” Quantifies the ratio of buoyancy to mechanical shear – used as a measure of static 
            stability. This version requires wind speed components in the u and v dimensions. 
 
        “”” 
        return g * kinematicHeatFlux / virtualPotentialTemperature / \ 
               (kinematicMomentumFluxU * windSpeedGradientU + kinematicMomentumFluxV * \ 
               windSpeedGradientV) 
    @staticmethod 
    def richardsonGradient(virtualPotentialTemperature,  
                           virtualPotentialTemperatureGradient,  
                           windSpeedGradient): 
        “”” Quantifies the ratio of buoyancy to mechanical shear – used as a measure of static 
            stability. 
 
        “”” 
        return g * virtualPotentialTemperatureGradient / \ 
                   virtualPotentialTemperature / \ 
                   windSpeedGradient**2 
    @staticmethod 
    def rossbyMontgomeryCoefficientStable(obukhovLength): 
        “”” Estimate a stability-dependent value of the Rossby-Montgomery coefficient based on the  
            Obukhov length under stable conditions (L >= 0) 
            Holtslag et al. 2017 
        “”” 
        return 0.04 + 0.05 / (1 + 200 / obukhovLength) 
 
    @staticmethod 
    def rossbyMontgomeryCoefficientUnstable(obukhovLength): 
        “”” Estimate a stability-dependent value of the Rossby-Montgomery coefficient based on the  
            Obukhov length under stable conditions (L < 0) 
            Holtslag et al. 2017 
        “”” 
        return 0.17 – 0.08 / (1 – 50 / obukhovLength)**3 
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    @staticmethod 
    def rotateScalar(df, i, j, k): 
        “”” Takes a set of values in instrument coordinates and the unit vectors in a target coordinate  
            frame and returns a set of values rotated into the new coordinates. Uses the approach of  
            Lee et al (2005, p. 63). 
            df is a pandas dataframe with three columns corresponding to the three components of the 
            vector to be rotated. Eg. For sensible heat flux, columns are u’t’, v’t’, w’t’ 
            i and j are arrays of vectors of the form [[x1, y1, z1], [x2, y2, z2], ...] 
            k is a single vector in the form [x, y, z] 
            For determining the unit vectors, see planar_fit(), unit_vector_k() and unit_vector_ij() 
        “”” 
        # return sum(i * df), sum(j * df), sum(k * df) 
        return ([sum(i[c] * df.iloc[c]) for c in range(0, df.index.size)], 
                [sum(j[c] * df.iloc[c]) for c in range(0, df.index.size)], 
                [sum(k * df.iloc[c]) for c in range(0, df.index.size)] 
                ) 
 
    @staticmethod 
    def rotateTensor(df, i, j, k): 
        “”” Takes a set of values in instrument coordinates and the unit vectors in a target coordinate  
            frame and returns a set of values rotated into the new coordinates. Uses the approach of Lee  
            et al (2005, p. 63). 
            df is a pandas dataframe with six columns corresponding to the six unique elements of the  
            3x3 Reynolds stress tensor – ie. u’u’, u’v’, u’w’, v’v’, v’w’, w’w’. The calculation uses  
            the tensor coordinate transformation rule B = Q.A.Qt where A is the original tensor and B is  
            the transformed tensor. Q is 
            the transformation matrix [[iu, iv, iw], [ju, jv, jw], [ku, kv, kw]] and Qt is its  
            transpose. 
            See http://www.continuummechanics.org/coordxforms.html 
            i and j are arrays of vectors of the form [[x1, y1, z1], [x2, y2, z2], ...] 
            k is a single vector in the form [x, y, z] 
            For determining the unit vectors, see planar_fit(), unit_vector_k() and unit_vector_ij() 
        “”” 
        # Recover omitted tensor elements 
        c = df.columns 
        df1 = df[[c[0], c[1], c[2], c[1], c[3], c[4], c[2], c[4], c[5]]].copy() 
        transformed = [] 
 
        for row in range(0, df.index.size): 
            Q = [i[row], j[row], k] 
            A = df1.iloc[row].values.reshape(3,3) 
            B = np.matmul(np.matmul(Q, A), np.transpose(Q)) 
            transformed.append(B.reshape(9)) 
 
        transformed = np.array(transformed) 
        return transformed[:,0], transformed[:,1], transformed[:,2], transformed[:,4], transformed[:,5], 
transformed[:,8] 
 
    @staticmethod 
    def rotorEquivalentWindSpeedWeightings(rewsColumns, hubHeight, diameter): 
        “”” Calculates the rotor equivalent wind speed weightings given a set of wind speed columns at  
            different heights. 
            rewsColumns is an array of dicts made up of column names and associated measurement heights. 
            (IEC, 2017) 
        “”” 
        radius = diameter / 2 
        upperTipHeight = hubHeight + radius 
        lowerTipHeight = hubHeight – radius 
        sweptArea = Calc.circleArea(diameter/2) 
        rewsColumns = sorted(rewsColumns, key=lambda c: c[‘height’]) 
 
        heights = [column[‘height’] for column in rewsColumns] 
        lowerEdges = [lowerTipHeight] + [(bottom + top) / 2 for bottom, top in zip(heights, heights[1:])] 
        upperEdges = [(bottom + top) / 2 for bottom , top in zip(heights, heights[1:])] + [upperTipHeight] 
        weightings = [Calc.stripeArea(radius, low-hubHeight, up-hubHeight)/sweptArea \ 
                     for (mh, low, up) in zip(heights, lowerEdges, upperEdges)] 
        return weightings 
 
    @staticmethod 
    def rotorEquivalentWindSpeed(row, rewsColumns, weightings, hubHeightDirectionColumn=None): 
        “”” Calculates the rotor equivalent wind speed given a set of wind speed columns at different  
            heights and the set of weightings to apply to each horizontal segment of the rotor disk. 
            rewsColumns is an array of dicts made up of column names for wind speed and direction and 
            associated measurement heights. 
            (IEC, 2017) 
        “”” 
        windSpeedCubed = 0. 
 
        for column, weighting in zip(rewsColumns, weightings): 
            phi = 0 
            if hubHeightDirectionColumn is not None: 
                phi = np.radians(Calc.angularDifference(row[column[‘direction’]],  
                                                        row[hubHeightDirectionColumn])) 
            windSpeedCubed += (row[column[‘wind_speed’]] * np.cos(phi))**3 * weighting 
        return windSpeedCubed**(1/3) 
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    @staticmethod 
    def saturationVapourPressure(temperatureInCelsius): 
        “”” Empirical approximation of saturation vapour pressure 
            Jacobson (2005) p. 41 
        “”” 
        return 6.112 * np.exp(17.67 * temperatureInCelsius / (temperatureInCelsius + 243.5)) 
 
    @staticmethod 
    def saturationVapourPressureIEC(absoluteTemperature): 
        “”” Vapour pressure from absolute temperature according to the approximation in IEC 61499-12  
            (hPa) 
 
        “”” 
        return 0.0000205 * np.exp(0.0631846 * absoluteTemperature) / 100 
 
    @staticmethod 
    def scalarMomentumFlux(zonalFlux, meridionalFlux): 
        “”” Returns the magnitude of the horizontal flux vector based on the zonal and meridional  
            components. 
            (Nordbro et al 2012) 
        “”” 
        return np.sqrt(zonalFlux**2 + meridionalFlux**2) 
 
     
 
    @staticmethod 
    def schotanusFluxCorrection(sonicHeatFlux, verticalMomentumFlux, meanWindSpeed, 
                                temperatureInCelsius, specificHumidity): 
        “”” Corrects the sensible heat flux calculated from sonic temperature for humidity 
            (Schotanus et al, 1983) 
        “”” 
        gamma = 1.404   # Ratio of specific heat of dry air at constant pressure to that at constant 
                        # volume (Campbell Scientific, 1996; Schotanus et al , 1983) 
        beta = 0.4      # Bowen ratio approximation (Schotanus et al , 1983) 
        kelvin = temperatureInCelsius + 273.15 
        speed_of_sound_squared = gamma * R_d * 100 * kelvin * (1 – 0.51 * specificHumidity) 
        offset = 2 * kelvin * meanWindSpeed * verticalMomentumFlux / speed_of_sound_squared 
        denominator = 1 + 0.51 * kelvin * C_p / L_v / beta 
 
        return (sonicHeatFlux + offset) / denominator 
 
    @staticmethod 
    def segmentArea(radius, chordHeight): 
        “”” Calculates the area of a segment of a circle based on the radius and chord height (distance  
            from the circumference) 
 
        “”” 
        return radius**2 * acos(chordHeight / radius) – chordHeight * ( 
                (radius**2 – chordHeight**2))**0.5 
 
    @staticmethod 
    def solar_elevation(latitude, declination, hour_angle): 
        “”” Calculates the solar elevation based on latitude, declination and hour angle. 
        “”” 
        lat = latitude / 180 * np.pi 
        dec = declination / 180 * np.pi 
        ha = hour_angle / 180 * np.pi 
        return (np.sin(lat) * np.sin(dec) + np.cos(lat) * np.cos(dec) * np.cos(ha)) * 180 / np.pi 
 
    @staticmethod 
    def specificEnergyProduction(row, windSpeedColumn, powerCurve, interpolate=True, decimalPlaces=3): 
        “”” Calculates specific energy production given a wind speed and a power curve 
 
        “”” 
        return powerCurve.getPower(row[windSpeedColumn], interpolate, decimalPlaces) 
    @staticmethod 
    def specificHumidity(temperatureInCelsius, pressureInMillibars, relativeHumidityInPercent): 
        “”” Specific humidity (qv) from measured temperature, pressure and relative humidity 
            Jacobson (2001) p. 33 
        “”” 
        Pw = Calc.waterVapourPartialPressure(temperatureInCelsius, relativeHumidityInPercent) 
        Pd = pressureInMillibars – Pw 
        return (R_d / R_v) * Pw / (Pd + (R_d / R_v) * Pw) 
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    @staticmethod 
    def stabilityClassObukhov(obukhovLength, meanWindSpeed, thresholdWindSpeed=5): 
        “”” Returns the stability class for a specified set of conditions. Classes are 
            strongly stable, weakly stable, neutral, unstable (Vogelezang & Holtslag, 1996). 
            The Obukhov length is used as the main criterion for classifying conditions 
            (Wharton & Lundquist, 2010): 
            Stable: 0 < L < 200 
            Neutral: -300 > L or L > 200 
            Unstable: 0 > L > -300 
            Mean horizontal wind speed U at an appropriate height (~40m) is used to differentiate 
            between stable regimes (van Hooijdonk et al., 2015): 
            Strongly stable: U < thresholdWindSpeed 
            Weakly stable: U >= thresholdWindSpeed 
        “”” 
        a = pd.cut(obukhovLength, [-1000000, -500, 0, 500, 1000000],  
                   labels=[‘neutral’, ‘unstable’, ‘stable’, ‘neutral2’]) 
        a[a==’neutral2’] = ‘neutral’ 
        b = pd.cut(meanWindSpeed, [0, thresholdWindSpeed, 100], labels=[‘strongly ‘, ‘weakly ‘]) 
        return [adverb + name if name == ‘stable’ else name for adverb, name in zip(b,a)] 
    @staticmethod 
    def stripeArea(radius, lowerChordHeight, upperChordHeight): 
        “”” Calculates the area of a horizontal stripe through a circle given the upper and lower chord  
            heights 
 
        “”” 
        if (lowerChordHeight < 0) != (upperChordHeight < 0): 
            return pi * radius**2 – Calc.segmentArea(radius, abs(lowerChordHeight)) - \ 
                   Calc.segmentArea(radius, abs(upperChordHeight)) 
        else: 
            return abs(Calc.segmentArea(radius, abs(upperChordHeight)) - \ 
                       Calc.segmentArea(radius, abs(lowerChordHeight))) 
 
    @staticmethod 
    def structure(data, order, lag): 
        “”” Structure function (Pope, 2000, p. 191; Stull, 1988, p. 300). The second-order structure  
            function at lag 1 is equivalent to transience (Clive, 2012) 
        “”” 
        return (data – data.shift(-lag)).pow(order).mean() 
 
    @staticmethod 
    def supplementaryAngle(angle1): 
        “”” Returns the supplementary angle in degrees for the parameter (ie sums to 180) 
        “”” 
        return 180 – angle1 
 
    @staticmethod 
    def surfaceGeostrophicU(pressure_gradient_v, density, coriolis): 
        “”” Returns the zonal component of the geostrophic wind given the meridional component of the  
            mean horizontal pressure gradient in pascals per metre. (Stull, 2015, p. 302) 
        “”” 
        return -pressure_gradient_v / density / coriolis 
 
    @staticmethod 
    def surfaceGeostrophicV(pressure_gradient_u, density, coriolis): 
        “”” Returns the meridional component of the geostrophic wind given the zonal component of the  
            mean horizontal pressure gradient in pascals per metre. (Stull, 2015, p. 302) 
        “”” 
        return pressure_gradient_u / density / coriolis 
    @staticmethod 
    def temperatureFromSonic(sonicTemperatureInCelsius, PressureInMillibars,  
                             relativeHumidityInPercent, absolute=True): 
        “”” Calculates absolute temperature from sonic temperature 
            Kaimal & Gaynor, 1991 
        “”” 
        kelvin = Calc.celsiusToKelvin(sonicTemperatureInCelsius) 
        q_v = Calc.specificHumidity(sonicTemperatureInCelsius, PressureInMillibars,  
                                    relativeHumidityInPercent) 
        T = kelvin / (1 + 0.51 * q_v) 
        if absolute: 
            return T 
        return Calc.kelvinToCelsius(T) 
 
    @staticmethod 
    def thermalU(temperature_gradient_v, virtual_temperature, boundary_layer_height, coriolis): 
        “”” Returns the zonal component of the thermal wind given the meridional component of the mean 
            horizontal gradient of virtual temperature and the height of the boundary layer.  
            (Stull, 2015, p. 345) 
            temperature gradient is in degrees per kilometre 
        “”” 
        rate_of_change = -g * temperature_gradient_v / (virtual_temperature + 273.15) / coriolis / 1000 
        return rate_of_change * boundary_layer_height 
 
 
 



 

  

 
240 

 
    @staticmethod 
    def thermalV(temperature_gradient_u, virtual_temperature, boundary_layer_height, coriolis): 
        “”” Returns the meridional component of the thermal wind given the zonal component of the mean 
            horizontal gradient of virtual temperature and the height of the boundary layer.  
            (Stull, 2015, p. 345) 
            temperature gradient is in degrees per kilometre 
        “”” 
        rate_of_change = g * temperature_gradient_u / (virtual_temperature + 273.15) / coriolis / 1000 
        return rate_of_change * boundary_layer_height 
    @staticmethod 
    def thermodynamicRoughnessLength(temperatureInCelsius, pressureInMillibars,  
                                     relativeHumidityInPercent, density, frictionVelocity): 
        “”” Height at which sensible heat transfer falls to zero 
            Jacobson (2001) p. 233 
        “”” 
        Dh = Calc.molecularThermalDiffusivity(temperatureInCelsius, pressureInMillibars,  
                                              relativeHumidityInPercent, density) 
        return Dh / k / frictionVelocity 
 
    @staticmethod 
    def time_scale(autocorrelation, sampling_frequency): 
        “””Calculates the integral time scale by integrating an autocorrelation sequence.  
           (Pope, 2000, p. 197) 
        “”” 
        return autocorrelation.sum() / sampling_frequency 
 
    @staticmethod 
    def turbulenceIntensity(windSpeedMean, windSpeedStandardDeviation): 
        “”” Calculates turbulence intensity from wind speed mean and standard deviation 
 
        “”” 
        return windSpeedStandardDeviation / windSpeedMean 
 
    @staticmethod 
    def turbulenceKineticEnergy(varianceX, varianceY, varianceZ): 
        “”” Calculates TKE based on wind speed variance in three dimensions 
 
        “”” 
        return 0.5 * (varianceX + varianceY + varianceZ) 
 
    @staticmethod 
    def unit_vector_ij(df, k): 
        “”” Returns arrays of vector components which are orthogonal to component k for the vector 
            defined by each row of the dataframe df. Df is assumed to have three columns representing 
            coordinates in 3 dimensions in the order u, v, w. (Lee et al, 2005 p.62) 
            see unit_vector_k(), planar_fit() and rotate() 
        “”” 
        j = np.cross(k, df) 
        j = [list(v / np.sqrt(sum(np.multiply(v, v)))) for v in j] 
        i = np.cross(j, k) 
        return i, j 
 
    @staticmethod 
    def unit_vector_k(b1, b2): 
        “”” Returns the components of the vertical unit vector in a rotated coordinate frame defined by  
            the terms b1 and b2. B1 and b2 are two of the three coefficients in the equation of a plane  
            fitted to a set of points in 3-dimensional space (Lee at al, 2005 p.62) – see planar_fit(),  
            unit_vector_ij() and rotate() 
        “”” 
        k3 = 1 / (1 + b1 ** 2 + b2 ** 2) 
        k1 = -b1 * k3 
        k2 = -b2 * k3 
 
        return [k1, k2, k3] 
 
    @staticmethod 
    def universalStabilityFunction(row, obukhovLength, measurementHeight, momentumOrHeat): 
        “”” Monin-Obukhov universal stability function – the third parameter selects momentum or heat 
            Kramm, 2013 
        “”” 
        _z = measurementHeight / row[obukhovLength] 
        if momentumOrHeat.upper() == ‘M’: 
            _a = 15 
            _b = 6.1 
            _g = 2.5 
        else: 
            _a = 35.7 
            _b = 5.3 
            _g = 1.1 
 
        if row[obukhovLength] < 0: 
            return 1 / Calc.cubeRoot(1 - _a * _z) 
        else: 
            return 1 + _b * ((_z + _z**_g * (1 + _z**_g)**((1-_g)/_g)) / (_z + (1 + _z**_g)**(1/_g))) 
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    @staticmethod 
    def universalStabilityFunctionIntegrated(row, obukhovLength, measurementHeight, momentumOrHeat): 
        “”” Integrated form of the Monin-Obukhov stability function – the third parameter selects  
            momentum or heat 
            Kramm, 2013 
        “”” 
        _z = measurementHeight / row[obukhovLength] 
        if momentumOrHeat.upper() == ‘M’: 
            _a = 15 
            _b = 6.1 
            _g = 2.5 
        else: 
            _a = 35.7 
            _b = 5.3 
            _g = 1.1 
 
        y = Calc.cubeRoot(1 - _a * _z) 
        x = (2 * y + 1) / sqrt(3) 
 
        if row[obukhovLength] >= 0: 
            return -_b * log(_z + (1 + _z**_g)**(1/_g)) 
        else: 
            return (3/2) * log((y**2 + y + 1) / 3) – sqrt(3) * atan((x – sqrt(3)) / (1 + sqrt(3) * x)) 
 
    @staticmethod 
    def virtualTemperature(temperatureInCelsius, PressureInMillibars, relativeHumidityInPercent): 
        “”” The temperature of a sample of dry air at the same density and pressure as a sample of moist  
            air. 
            Jacobson (2001) p. 33 
        “”” 
        kelvin = Calc.celsiusToKelvin(temperatureInCelsius) 
        q_v = Calc.specificHumidity(temperatureInCelsius, PressureInMillibars,  
                                    relativeHumidityInPercent) 
        return kelvin * (1 + 0.608 * q_v) 
 
    @staticmethod 
    def waterVapourPartialPressure(temperatureInCelsius, relativeHumidityInPercent): 
        “”” Water vapour partial pressure from measured temperature and relative humidity (0-100) (hPa) 
            Vaisala (2013) p. 7 
        “”” 
        saturationVapourPressure = Calc.saturationVapourPressure(temperatureInCelsius) 
        return relativeHumidityInPercent * saturationVapourPressure / 100 
 
    @staticmethod 
    def wavenumbers(frequencies, mean_speed): 
        “”” Convert a series of frequencies to wavenumbers using the mean speed of the wind flow. 
        (De Kat & Ganapathisubramani, 2015; McNaughton et al., 2007; Tropea et al., 2007, p. 762) 
        “”” 
        return np.array([2 * np.pi * f / mean_speed for f in frequencies]) 
 
    @staticmethod 
    def windDirectionFromComponents(zonal, meridional): 
        “”” Calculates wind direction based on zonal and meridional components. Assumes the positive  
            directions are S->N and W->E. (Stull, 2015, p.3) 
        “”” 
        return np.degrees(np.arctan2(zonal, meridional)) + 180 
 
 
    @staticmethod 
    def windShearExponentTwoHeights(lowerWindSpeed, upperWindSpeed, lowerHeight=10.0, upperHeight=10.0): 
        “”” Calculates the wind shear exponent based on wind speed values at two heights 
 
        “”” 
        return np.log(upperWindSpeed / lowerWindSpeed) / np.log(upperHeight / lowerHeight) 
 
 
    @staticmethod 
    def windSpeedFromComponents(u, v): 
        “”” Calculates the resultant scalar wind speed from vector components by Pythagoras 
        “”” 
        return np.sqrt(u**2 + v**2) 
 
    @staticmethod 
    def windSpeedRatio(lowerWindSpeed, upperWindSpeed): 
        “”” Measure of shear that is independent of hub height. 
            Colls 2014 
        “”” 
        return upperWindSpeed / lowerWindSpeed 
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Appendix F: Dataset details 

F1. Introduction 

This appendix provides a description of the format of the research dataset described in 

Chapter 5. Because of the large number of columns, the structure is presented in an 

abbreviated manner and the information below will be helpful in interpreting the 

information.  

The descriptive information about the columns is shown in a large matrix in §F.2. The 

leftmost column of the matrix contains the root of a column heading and a description. 

The root may contain placeholders indicated with <angle brackets>. These can be 

replaced by a number of different values: 

<h> indicates one of the heights listed in the heights column. 

<s> is an abbreviated statistic name 

<n> is an integer 

For example, the root Umean_<h>+<s> should be interpreted as a series of columns 

such as Umean_9.9+kpss, Umean_79.1+mean, Umean_127.9+skew, etc. 

The substitution values for the statistic names come from the vertically-oriented column 

headings in the matrix and described in Table 51. A statistic may be substituted into the 

root if there is an x in the relevant cell in the matrix. 

The last two vertically-oriented column headings have a slightly different meaning. If 

there is an x under Variance for a particular column, this shows that there is a 

variance column related to the column root whose format follows the pattern 

root_<h>_d-root_<h>_d. The _d is intended to indicate a deviation from the 

mean. If there is an x under the Covariance column, it means that there will be a 

series of columns similar to the autocovariance, but combining the root column with 

other similar columns. These include the 3d components of wind velocity at the 

relevant height and the sonic temperature. For example, if the root column is related to 
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the meridional horizontal wind velocity component at a height of 127.9 m, the series of 

columns generated would be 

n-s_127.9_d-ts_127.9_d 

n-s_127.9_d-uz_127.9_d 

n-s_127.9_d-w-e_127.9_d 

The order of the column roots in the matrix matches the order in which they appear in 

the data file. 

 

Table 49: Abbreviated statistic names 

Statistic Description Range 
adf Augmented Dickie-Fuller test p-value [0, 1] 

count Count of data points in TMA value [0, 600] 

cv Coefficient of variation (TI with wind speeds) [0, ∞] 

cv2 Second-order coefficient of variation [0, 1] 

dissipation Rate of dissipation of turbulence  

intermittency Excess kurtosis of wind speed increments  

kpss Kwiatkowski-Phillips-Schmidt-Shin test p-value [0.01, 0.1] 

kurtosis Kurtosis  

length_sclae Turbulence length scale  

max Maximum value  

mean Mean value  

min Minimum value  

jb Jarque-Bera test p-value [0, 1] 

skew Skew  

spikes Count of spikes removed within averaging period [0, 600] 

std Standard deviation  

transience Second-order structure function  

filter Count of points removed by filter [0, 600] 
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Heights Units 

Timestamp 
Date and time at the start of the averaging period 

                                            

DST 
Daylight saving time flag. 1 when DST is in operation; 0 otherwise 

                                            

Fuu_<h> 
Autocovariance of longitudinal wind speed in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

Fuv_<h> 
Covariance of longitudinal and lateral wind speed in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

Fuw_<h> 
Covariance of longitudinal and vertical wind speed in rotated coordinate frame (kinematic 
vertical flux of horizontal momentum) 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

Fvv_<h> 
Autocovariance of lateral wind speed in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

Fvw_<h> 
Covariance of lateral and vertical wind speed in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

Fww_<h> 
Autocovariance of vertical wind speed in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

H_<h> 
Kinematic vertical flux of sensible heat in rotated coordinate frame including Schotanus 
humidity correction 

                                        9.9, 29.6, 79.1, 127.9 K m s-1 

Hu_<h> 
Covariance of longitudinal wind speed and temperature in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 K m s-1 

Hv_<h> 
Covariance of lateral wind speed and temperature in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 K m s-1 

Hw_<h> 
Covariance of vertical wind speed and temperature in rotated coordinate frame (kinematic 
vertical flux of sensible heat) 

                                        9.9, 29.6, 79.1, 127.9 K m s-1 

L 
Obukhov length 

                                        9.9 Dimensionless 

Local time 
Local clock time 
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Heights Units 
Rib 
Bulk Richardson number 

                                        9.9 - 79.1 Dimensionless 

Solar noon azimuth 
Solar noon azimuth 

                                          Degrees 

Solar_noon_local 
Solar noon (local time) 

                                            

Solar_noon_utc 
Solar noon (UTC) 

                                            

Sunrise azimuth 
Sunrise azimuth 

                                          Degrees 

Sunrise_local 
Sunrise (local time) 

                                            

Sunrise_utc 
Sunrise (UTC) 

                                            

Sunset azimuth 
Sunset azimuth 

                                          Degrees 

Sunset_local 
Sunset (local time) 

                                            

Sunset_utc 
Sunset (UTC) 

                                            

TKE_<h> 
Turbulence kinetic energy 

                                        9.9, 29.6, 79.1, 127.9 m2 s-2 

T_<h>+<s> 
PT100 temperature 

x x       x x x   x x x x x   x x x x   7.3, 27.1, 76.7, 125.9   

T_lapse 
PT100 temperature - Environmental lapse rate 

                                        7.3 - 125.9 K m-1 

UTC offset 
Difference between local time and UTC 

                                          hours 

U_<h> 
Horizontal wind speed from sonic components after reduction to ten-minute averages 

                                        9.9, 29.6, 79.1, 127.9 m s-1 

Umean_<h>+<s> 
Horizontal wind speed from sonic components 

x x x x x x x x x x x x x x   x x x x   9.9, 29.6, 79.1, 127.9   

alpha                                         9.9 - 127.9   
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Column 
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Heights Units 
Wind shear exponent (whole rotor) 
alpha0_<h>                                         9.9, 29.6, 79.1, 127.9 deg 
alpha_lower 
Cross-isobar angle 

                                        9.9 - 79.1   

alpha_upper 
Wind shear exponent (upper half of rotor) 

                                        79.1 - 127.9   

curtailment_Curtailment_lost 
Count of values lost because of curtailment 

                                            

day_number 
Julian day number 

                                            

declination 
Solar declination 

                                          deg 

density 
Air density 

                                        79.1 kg m-3 

diag<n>_Anemometer <n> fault_lost 
Count of values lost via sonic anemometer <n> fault filter 

                                            

dir_<h> 
Wind direction 

                                        9.9, 29.6, 79.1, 127.9 deg 

dpm 
Meridional horizontal pressure gradient 

                                        10 Pa m-1 

dpz 
Zonal horizontal pressure gradient 

                                        10 Pa m-1 

dtm 
Meridional horizontal temperature gradient 

                                        10 K m-1 

dtz 
Zonal horizontal temperature gradient 

                                        10 K m-1 

fault_code_Turbine fault_lost 
Count of values lost via turbine fault filter 

                                            

geostrophic                                         10 m s-1 
geostrophic_dir 
Geostrophic wind speed 

                                        10 deg 

geostrophic_u 
Zonal component of geostrophic wind velocity 

                                        10 m s-1 
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Heights Units 
geostrophic_v 
Meridional component of geostrophic wind velocity 

                                        10 m s-1 

hour_angle 
Solar hour angle 

                                          deg 

hub_speed+<s> 
Hub angular velocity 

x x x x   x x x   x x x x x   x x           

inflow_<h> 
Inflow angle 

                                        9.9, 29.6, 79.1, 127.9 deg 

n-s_<h>+<s> 
Meridional component of wind velocity 

x x x x x x x x x x x x x x x x x x x x 9.9, 29.6, 79.1, 127.9   

power+<s> 
Power (despiked) 

x x x x   x x x   x x x x x x x x           

power_raw+<s> 
Power 

x x x x   x x x   x x x x x   x x           

pressure_80+<s> 
Barometric pressure 

x x x x   x x x   x x x x x x x x       80   

rews 
Rotor equivalent wind speed 

                                        9.9 - 127.9 m s-1 

rh_80+<s> 
Relative humidity 

x x x x   x x x   x x x x x x x x       80   

rm 
Rossby-Montgomery coefficient 

                                            

rotor+<s> 
Rotor angular velocity 

x x x x   x x x   x x x x x   x x           

scada_density+<s> 
Air density from SCADA 

x x x x   x x x   x x x x x   x x       80   

scada_pressure+<s> 
Barometric pressure from SCADA 

x x x x   x x x   x x x x x   x x       80   

scada_u+<s> 
Wind speed from SCADA 

x x x x   x x x   x x x x x   x x x x   80   

sh 
Specific humidity 

                                        80 kg kg-1 
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Name (base parameter) or description (derived parameter) ad
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Heights Units 
sl_pressure 
Sea-level pressure 

                                        80 normalised to sea 
level 

mbar 

solar_elevation 
Solar elevation 

                                          deg 

stability_obukhov 
Stability class from Obukhov length 

                                        9.9   

stability_rib 
Stability class from bulk Richardson number 

                                        0 - 79.1   

surface_geostrophic_u 
Zonal component of surface geostrophic wind speed 

                                        10 m s-1 

surface_geostrophic_v 
Meridional component of surface geostrophic wind speed 

                                        10 m s-1 

thermal_u 
Zonal component of thermal wind speed 

                                        10 m s-1 

thermal_v 
Meridional component of thermal wind speed 

                                        10 m s-1 

theta_<h> 
Potential virtual temperature 

                                        9.9, 29.6, 79.1, 127.9 K 

theta_lapse 
Potential virtual temperature - environmental lapse rate 

                                        9.9 - 127.9 K m-1 

theta_surface 
Potential virtual temperature - extrapolated value at surface 

                                        9.9 - 127.9 
extrapolated to 0 

K 

ts_<h>+<s> 
Sonic temperature 

x x       x x x   x x x x x x x x x x x 127.9   

turbine_Turbine operating_lost 
Count of data points lost due to "Turbine operating" filter 

                                            

ustar 
Friction velocity 

                                        9.9 m s-1 

uxr_<h> 
Longitudinal component of wind velocity in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m s-1 

uyr_<h> 
Lateral component of wind velocity in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m s-1 

uz_<h>+<s> x x x x x x x x x x x x x x x x x x x x 9.9, 29.6, 79.1, 127.9   
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Heights Units 
Vertical component of wind velocity 
uzr_<h> 
Vertical component of wind velocity in rotated coordinate frame 

                                        9.9, 29.6, 79.1, 127.9 m s-1 

veer_<h> 
Wind veer (calculated on difference between label height and 127.9 m) Degrees per 100 m 
(decametre) 

                                        9.9, 29.6, 79.1 deg dm-1 

w-e_<h>+<s> 
Zonal component of wind velocity 

x x x x x x x x x x x x x x x x x x x x 127.9   

ws_ratio 
Wind speed ratio 

                                        9.9 - 127.9 Dimensionless 

zeta 
Obukhov stability parameter 

                                        9.9 Dimensionless 

zi_rm 
Boundary layer height 

                                        9.9 m 

 

 

 

F3. File excerpt 

The file containing the research dataset has 727 columns including the timestamp and 52,560 rows. The excerpt below is therefore a small fraction of 
the whole. The entire file may be accessed at https://doi.org/10.13020/1etn-1q17  
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Timestamp DST Fuu_127.9 Fuu_29.6 Fuu_79.1 Fuu_9.9 Fuv_127.9 Fuv_29.6 … w-e_9.9_d-

uz_9.9_d 
w-e_9.9_d-
w-e_9.9_d ws_ratio zeta zi_rm 

01/01/2017 00:00 0 0.2493 0.2599 0.1753 0.204 -0.0284 -0.0102 … -0.0288 0.1809 2.2296 0.2939 79.7035 
01/01/2017 00:10 0 0.0207 0.2351 0.105 0.2146 -0.0083 -0.0157 … -0.0401 0.2137 2.3319 0.2586 99.2145 
01/01/2017 00:20 0 0.0271 0.2306 0.0759 0.1369 0.0115 -0.0143 … -0.0154 0.1487 2.6126 0.2678 75.5548 
01/01/2017 00:30 0 0.0212 0.3179 0.1247 0.2017 0.0144 -0.021 … -0.008 0.128 2.3743 0.6575 52.095 
01/01/2017 00:40 0 0.1468 0.2112 0.1565 0.1088 0.0046 -0.0188 … -0.0076 0.091 2.6544 0.6429 51.4692 
01/01/2017 00:50 0 0.0226 0.1989 0.1408 0.1723 -0.015 0.0121 … -0.0047 0.0965 2.6783 0.6438 57.7342 
01/01/2017 01:00 0 0.0328 0.3351 0.1867 0.1432 -0.0211 -0.004 … -0.0065 0.1201 2.9634 1.243 40.1725 
01/01/2017 01:10 0 0.028 0.2397 0.1707 0.1503 0.0016 -0.0207 … -0.0119 0.144 2.6889 0.5616 51.6054 
01/01/2017 01:20 0 0.0458 0.3273 0.1681 0.1942 -0.0053 -0.0301 … -0.0164 0.1639 2.6355 0.2939 80.0563 
01/01/2017 01:30 0 0.0492 0.4601 0.1631 0.2575 0.0113 -0.0401 … -0.0093 0.2007 2.5623 0.2148 92.4837 
01/01/2017 01:40 0 0.0525 0.4646 0.3277 0.2814 0.0023 0.0279 … -0.0071 0.1897 2.4713 0.1812 100.2265 
01/01/2017 01:50 0 0.1095 0.6002 0.5161 0.4538 -0.0329 -0.0106 … -0.0461 0.3049 2.2801 0.1536 114.8733 
01/01/2017 02:00 0 0.1694 0.7718 0.4843 0.5643 -0.046 0.0305 … -0.042 0.4181 2.2238 0.0836 157.2446 
01/01/2017 02:10 0 0.3863 0.8516 0.7113 0.4966 -0.0746 0.1001 … -0.0481 0.35 2.2956 0.0469 181.6997 
01/01/2017 02:20 0 0.3951 0.9617 0.8621 0.432 -0.0641 0.115 … 0.0089 0.5154 2.241 0.0773 138.4155 
01/01/2017 02:30 0 0.4261 0.93 0.6416 0.6564 -0.0892 0.0733 … -0.0533 0.7025 1.9675 0.0911 171.7712 
01/01/2017 02:40 0 0.6229 1.2709 0.9267 0.8471 -0.1034 0.0066 … -0.0718 0.5486 2.0461 0.0286 288.7522 
01/01/2017 02:50 0 0.2491 0.895 0.636 0.4694 -0.0227 -0.0149 … -0.0106 0.5213 2.0767 0.0986 146.1978 
01/01/2017 03:00 0 0.2656 0.7744 0.6786 0.4465 -0.0787 -0.0494 … -0.0279 0.4509 2.1269 0.0735 182.8451 
01/01/2017 03:10 0 0.2548 0.7861 0.5672 0.4272 -0.0026 -0.053 … -0.0637 0.3985 2.0535 0.1275 141.8447 

… … … … … … … …  … … … … … 

31/12/2017 20:40 0 0.6188 0.427 0.6598 0.5291 -0.338 -0.1048 … -0.0644 0.5212 1.2858 -0.1024 437.2095 
31/12/2017 20:50 0 0.6589 0.9055 0.8239 0.6183 -0.3023 -0.2251 … -0.0835 0.447 1.2707 -0.0492 514.7325 
31/12/2017 21:00 0 1.2497 0.8068 0.8149 0.6787 -0.5543 -0.0375 … -0.1531 0.7279 1.4616 -0.0074 416.6534 
31/12/2017 21:10 0 1.0203 1.5269 1.4536 1.0987 0.055 0.239 … -0.142 1.0717 1.334 -0.0072 357.6992 
31/12/2017 21:20 0 0.1266 0.7393 0.2944 0.5488 -0.0221 0.0546 … -0.1295 0.5975 1.4127 -0.0267 398.6263 
31/12/2017 21:30 0 0.567 0.6662 0.5725 0.5125 -0.2883 -0.0057 … -0.1045 0.5318 1.3457 -0.0002 290.5791 
31/12/2017 21:40 0 0.3461 0.4326 0.6014 0.3953 -0.1507 -0.0014 … -0.1001 0.3965 1.4002 0.0166 248.8696 
31/12/2017 21:50 0 0.2165 1.0464 0.6611 0.8148 -0.0787 0.0235 … -0.1864 0.8087 1.4038 0.0012 369.4454 
31/12/2017 22:00 0 0.1308 0.5419 0.3108 0.5164 -0.0656 -0.0331 … -0.1401 0.5122 1.475 0.0188 275.092 
31/12/2017 22:10 0 0.2093 0.6199 0.3815 0.5373 -0.0623 -0.0467 … -0.1336 0.5328 1.5078 0.0346 245.2084 
31/12/2017 22:20 0 0.3058 0.5016 0.4339 0.5019 -0.0576 0.0438 … -0.1137 0.4958 1.7351 0.0409 222.3969 
31/12/2017 22:30 0 0.3959 0.5849 0.5831 0.4217 -0.0741 -0.0953 … -0.0792 0.4159 1.5758 0.0905 157.294 
31/12/2017 22:40 0 0.5481 0.7897 0.8603 0.529 -0.0222 0.0857 … -0.107 0.5294 1.5925 0.0683 190.8442 
31/12/2017 22:50 0 0.4023 0.7212 0.7471 0.5741 -0.1079 0.0098 … -0.1399 0.5734 1.6258 0.0715 217.5741 
31/12/2017 23:00 0 0.7555 0.6049 0.6731 0.3268 -0.3645 -0.1058 … -0.0538 0.3273 1.5613 0.2079 113.5456 
31/12/2017 23:10 0 0.3224 0.5268 0.5893 0.4314 -0.1257 -0.0376 … -0.0906 0.4239 1.8252 0.0388 194.8521 
31/12/2017 23:20 0 0.0938 0.7405 0.2508 0.5482 -0.0292 0.0123 … -0.1433 0.5502 1.5902 0.0402 246.4889 
31/12/2017 23:30 0 0.1846 0.6129 0.3747 0.4525 -0.0655 -0.0286 … -0.1135 0.4477 1.6201 0.0648 204.4273 
31/12/2017 23:40 0 0.3206 0.6681 0.6421 0.5589 -0.0406 0.1016 … -0.1316 0.5542 1.6219 0.0457 229.8122 
31/12/2017 23:50 0 0.1044 0.7427 0.2949 0.8832 0.0099 -0.0834 … -0.2014 0.8776 1.6029 0.0369 295.0123 



Appendix G: Parameter dependencies 

Column stats count left right closed string include d1 d2 d3 d4 d5 d6 
Rib 

       
theta_127.9 theta_surface U_127.9 

   

DST 
             

Fuu_<h> 
       

w-e_<h>_d-w-
e_<h>_d 

n-s_<h>_d-w-
e_<h>_d 

w-e_<h>_d-
uz_<h>_d 

n-s_<h>_d-n-
s_<h>_d 

n-s_<h>_d-
uz_<h>_d 

uz_<h>_d-
uz_<h>_d 

Fuv_<h> 
       

w-e_<h>_d-w-
e_<h>_d 

n-s_<h>_d-w-
e_<h>_d 

w-e_<h>_d-
uz_<h>_d 

n-s_<h>_d-n-
s_<h>_d 

n-s_<h>_d-
uz_<h>_d 

uz_<h>_d-
uz_<h>_d 

Fuw_<h> 
  

-9999 0 1 
  

w-e_<h>_d-w-
e_<h>_d 

n-s_<h>_d-w-
e_<h>_d 

w-e_<h>_d-
uz_<h>_d 

n-s_<h>_d-n-
s_<h>_d 

n-s_<h>_d-
uz_<h>_d 

uz_<h>_d-
uz_<h>_d 

Fvv_<h> 
       

w-e_<h>_d-w-
e_<h>_d 

n-s_<h>_d-w-
e_<h>_d 

w-e_<h>_d-
uz_<h>_d 

n-s_<h>_d-n-
s_<h>_d 

n-s_<h>_d-
uz_<h>_d 

uz_<h>_d-
uz_<h>_d 

Fvw_<h> 
       

w-e_<h>_d-w-
e_<h>_d 

n-s_<h>_d-w-
e_<h>_d 

w-e_<h>_d-
uz_<h>_d 

n-s_<h>_d-n-
s_<h>_d 

n-s_<h>_d-
uz_<h>_d 

uz_<h>_d-
uz_<h>_d 

Fww_<h> 
       

w-e_<h>_d-w-
e_<h>_d 

n-s_<h>_d-w-
e_<h>_d 

w-e_<h>_d-
uz_<h>_d 

n-s_<h>_d-n-
s_<h>_d 

n-s_<h>_d-
uz_<h>_d 

uz_<h>_d-
uz_<h>_d 

Hu_<h> 
       

w-e_<h>_d-
ts_<h>_d 

n-s_<h>_d-
ts_<h>_d 

uz_<h>_d-
ts_<h>_d 

   

Hv_<h> 
       

w-e_<h>_d-
ts_<h>_d 

n-s_<h>_d-
ts_<h>_d 

uz_<h>_d-
ts_<h>_d 

   

Hw_<h> 
       

w-e_<h>_d-
ts_<h>_d 

n-s_<h>_d-
ts_<h>_d 

uz_<h>_d-
ts_<h>_d 

   

H_<h> 
       

Hw_<h> Fuw_<h> uxr_<h> sh 
  

L 
       

ustar theta_9.9 H_9.9 
   

Local time 
       

UTC offset 
     

Solar noon azimuth 
             

Solar_noon_local 
             

Solar_noon_utc 
             

Sunrise azimuth 
             

Sunrise_local 
             

Sunrise_utc 
             

Sunset azimuth 
             

Sunset_local 
             

Sunset_utc 
             

TKE_<h> 
       

n-s_<h>_d-n-
s_<h>_d 

w-e_<h>_d-w-
e_<h>_d 

uz_<h>_d-
uz_<h>_d 

   

T_7.3 
  

-40 40 
         

T_27.1 
  

-40 40 
         

T_76.7 
  

-40 40 
         

T_125.9 
  

-40 40 
         

T_lapse 
       

T_7.3 T_125.9 
    

UTC offset 
             

U_<h> 
  

0 30 
   

w-e_<h> n-s_<h> 
    

Umean_<h> 1 
 

0 30 
   

w-e_<h> n-s_<h> 
    

alpha 
       

U_9.9 U_127.9 
    

alpha0_<h> 
       

dir_<h> geostrophic_dir 
    

alpha_lower 
       

U_9.9 U_79.1 
    

alpha_upper 
       

U_79.1 U_127.9 
    

day_number 
             

declination 
             

density 
       

pressure_80 ts_79.1 
    

dir_<h> 
  

40 320 
   

w-e_<h> n-s_<h> 
    

dpm 
             

dpz 
             

fault_code_Turbine fault_lost 
  

0 60 
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Column stats count left right closed string include d1 d2 d3 d4 d5 d6 
geostrophic 

       
geostrophic_u geostrophic_v 

    

geostrophic_dir 
       

geostrophic_u geostrophic_v 
    

geostrophic_u 
       

dpm density 
    

geostrophic_v 
       

dpz density 
    

hour_angle 
             

hub_speed 1 600 
           

inflow_<h> 
       

U_<h> uz_<h> 
    

n-s_<h> 1 12000 -30 30 
         

n-s_<h>_d-n-s_<h>_d 
       

n-s_<h> 
     

n-s_<h>_d-ts_<h>_d 
       

n-s_<h> ts_<h> 
    

n-s_<h>_d-uz_<h>_d 
       

n-s_<h> uz_<h> 
    

n-s_<h>_d-w-e_<h>_d 
       

n-s_<h> w-e_<h> 
    

power 1 600 -500 2800 
         

power_raw 1 600 
           

pressure_80 1 600 900 1100 
         

rews 
  

0 30 
   

U_29.6 U_79.1 U_127.9 dir_29.6 dir_79.1 dir_127.9 
rh_80 1 600 0 99 0 

        

rm 
       

L 
     

rotor 1 600 
           

scada_density 1 600 
           

scada_dir 1 600 
           

scada_pressure 1 600 
           

scada_u 1 600 
           

sh 
       

T_76.7 pressure_80 rh_80 
   

sl_pressure 
       

pressure_80 ts_79.1 
    

solar_elevation 
             

stability_obukhov 
       

L U_29.6 
    

stability_rib 
       

Rib U_29.6 
    

theta_<h> 
       

ts_<h> pressure_80 
    

theta_lapse 
       

theta_9.9 theta_127.9 
    

theta_surface 
       

theta_9.9 theta_lapse 
    

ts_<h> 1 12000 -40 40 
         

ts_<h>_d-ts_<h>_d 
       

ts_<h> 
     

turbine_Turbine operating_lost 
  

0 60 
         

ustar 
       

Fuw_9.9 Fvw_9.9 
    

uxr_<h> 
       

w-e_<h> n-s_<h> uz_<h> 
   

uyr_<h> 
       

w-e_<h> n-s_<h> uz_<h> 
   

uz_<h> 1 12000 -10 10 
         

uz_<h>_d-ts_<h>_d 
       

uz_<h> ts_<h> 
    

uz_<h>_d-uz_<h>_d 
       

uz_<h> 
     

uzr_<h> 
       

w-e_<h> n-s_<h> uz_<h> 
   

veer_9.9 
       

alpha0_127.9 alpha0_9.9 
    

veer_29.6 
       

alpha0_127.9 alpha0_29.6 
    

veer_79.1 
       

alpha0_127.9 alpha0_79.1 
    

w-e_<h> 1 12000 -30 30 
         

w-e_<h>_d-ts_<h>_d 
       

w-e_<h> ts_<h> 
    

w-e_<h>_d-uz_<h>_d 
       

w-e_<h> uz_<h> 
    

w-e_<h>_d-w-e_<h>_d 
       

w-e_<h> 
     

ws_ratio 
       

U_29.6 U_127.9 
    

zeta 
       

L 
     

zi_rm 
       

ustar rm 
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Appendix H: Correlation matrix 
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Umean_79.1+dissipation -0.02                                                                       
Umean_79.1+intermittency -0.02 0.01                                                                     
Umean_79.1+length_scale -0.25 0.00 0.03                                                                   
Umean_79.1+mean -0.15 0.08 0.02 0.33                                                                 
Umean_79.1+normality -0.02 0.00 0.05 0.00 0.01                                                               
Umean_79.1+std -0.28 0.14 0.04 0.71 0.51 -0.01                                                             
Umean_79.1+transience -0.09 0.92 0.03 0.13 0.30 0.00 0.39                                                           
uz_79.1+adf 0.54 -0.01 -0.01 -0.19 -0.14 -0.01 -0.20 -0.06                                                         
uz_79.1+cv 0.01 0.00 0.00 0.01 0.03 0.00 0.02 0.00 0.00                                                       
uz_79.1+cv2 -0.38 0.03 0.05 0.51 0.13 -0.02 0.61 0.16 -0.24 0.03                                                     
uz_79.1+dissipation 0.01 0.00 0.00 0.01 0.03 0.00 0.03 0.00 0.00 0.98 0.03                                                   
uz_79.1+intermittency -0.11 0.01 0.68 0.10 0.00 0.05 0.09 0.04 -0.09 0.01 0.09 0.01                                                 
uz_79.1+mean -0.09 -0.04 0.03 0.19 -0.07 -0.02 0.12 -0.05 -0.04 0.01 0.37 0.01 0.03                                               
uz_79.1+normality 0.01 0.00 -0.01 0.00 -0.04 -0.01 -0.01 -0.01 -0.01 0.00 0.02 0.00 -0.02 0.00                                             
uz_79.1+transience -0.21 0.42 0.03 0.42 0.63 0.00 0.80 0.70 -0.13 0.00 0.39 0.00 0.05 -0.02 -0.01                                           
T_76.7+kpss -0.01 -0.01 -0.01 0.01 0.02 -0.01 0.00 -0.01 0.00 0.00 -0.01 0.00 -0.01 -0.02 0.00 0.00                                         
T_76.7+mean 0.14 -0.01 -0.08 -0.16 -0.05 0.01 -0.20 -0.07 0.09 -0.05 -0.23 -0.05 -0.10 -0.21 0.00 -0.16 0.03                                       
T_76.7+normality 0.06 -0.01 -0.01 -0.02 -0.03 -0.01 -0.03 -0.01 0.05 0.00 -0.01 0.00 -0.02 0.00 0.02 -0.02 0.04 -0.02                                     
T_76.7+transience -0.01 0.00 0.00 0.00 0.00 0.04 -0.02 -0.01 -0.01 -0.02 0.03 -0.02 -0.01 0.01 -0.01 -0.02 0.03 0.04 -0.05                                   
pressure_80+normality 0.01 -0.01 -0.01 -0.04 0.05 -0.01 -0.08 -0.02 -0.03 -0.01 -0.06 0.00 -0.03 -0.02 -0.01 -0.05 -0.01 0.08 -0.02 0.00                                 
pressure_80+transience -0.09 0.04 0.02 0.27 0.10 -0.03 0.35 0.13 -0.06 0.00 0.25 0.00 0.04 0.00 -0.01 0.28 -0.01 -0.16 -0.01 -0.03 -0.06                               
rh_80+mean -0.21 0.04 0.04 -0.10 -0.08 0.03 -0.06 0.05 -0.14 -0.02 -0.02 -0.03 0.05 -0.04 0.01 0.01 0.01 -0.07 -0.04 0.01 0.05 -0.01                             
rh_80+transience -0.11 0.00 -0.01 0.23 0.03 -0.02 0.31 0.05 -0.06 0.00 0.24 -0.01 0.03 0.08 -0.02 0.15 0.00 0.30 -0.03 -0.03 -0.06 0.13 -0.25                           
Fuw_79.1 0.18 -0.14 -0.03 -0.57 -0.48 0.02 -0.87 -0.39 0.11 0.00 -0.48 0.00 -0.06 -0.08 0.03 -0.78 0.00 0.14 0.01 0.02 0.07 -0.33 0.10 -0.28                         
H_79.1 -0.05 0.06 -0.02 0.26 -0.03 -0.03 0.31 0.06 -0.03 0.01 0.30 0.01 0.03 0.09 -0.03 0.11 0.04 0.09 -0.01 -0.03 -0.08 0.26 -0.23 0.37 -0.36                       
TKE_79.1 -0.21 0.16 0.03 0.62 0.55 -0.02 0.94 0.43 -0.13 0.01 0.52 0.01 0.07 0.08 -0.02 0.86 0.01 -0.15 -0.02 -0.03 -0.08 0.36 -0.13 0.32 -0.92 0.38                     
theta_79.1 0.14 0.00 -0.07 -0.16 -0.04 0.01 -0.20 -0.06 0.08 -0.05 -0.24 -0.05 -0.10 -0.21 0.00 -0.15 0.02 1.00 -0.02 0.03 0.08 -0.17 -0.06 0.30 0.14 0.07 -0.15                   
zeta 0.14 -0.01 -0.01 -0.17 -0.06 -0.01 -0.20 -0.05 0.13 0.00 -0.19 0.00 -0.05 -0.03 0.00 -0.12 -0.02 0.06 -0.02 0.01 0.01 -0.07 -0.06 -0.07 0.13 -0.06 -0.15 0.06                 
Rib 0.54 -0.03 -0.03 -0.46 -0.36 -0.01 -0.54 -0.14 0.51 -0.01 -0.52 -0.01 -0.10 -0.07 0.00 -0.35 -0.01 0.24 0.02 0.02 0.02 -0.18 -0.13 -0.15 0.36 -0.19 -0.42 0.24 0.25               
ws_ratio 0.05 -0.03 -0.02 -0.45 -0.04 0.01 -0.45 -0.11 0.00 -0.02 -0.34 -0.02 -0.08 -0.16 0.01 -0.26 0.00 0.20 0.01 0.04 0.10 -0.29 0.13 -0.13 0.36 -0.42 -0.42 0.21 0.14 0.27             
T_lapse -0.45 0.04 0.04 0.55 0.06 0.01 0.63 0.16 -0.32 0.02 0.61 0.02 0.13 0.14 0.01 0.40 0.00 -0.28 -0.01 -0.02 -0.10 0.28 0.10 0.19 -0.45 0.29 0.52 -0.29 -0.23 -0.71 -0.59           
theta_lapse -0.46 0.04 0.03 0.57 0.09 0.01 0.67 0.17 -0.33 0.02 0.62 0.02 0.12 0.17 0.01 0.43 0.01 -0.30 -0.01 -0.02 -0.10 0.29 0.09 0.20 -0.49 0.32 0.56 -0.30 -0.24 -0.75 -0.60 0.96         
declination 0.08 -0.03 -0.08 -0.14 -0.05 0.04 -0.21 -0.07 0.06 -0.03 -0.19 -0.03 -0.08 -0.12 0.01 -0.13 0.04 0.35 -0.02 0.08 0.03 0.02 0.26 -0.07 0.15 0.02 -0.18 0.33 0.09 0.17 0.08 -0.19 -0.19       
rews -0.19 0.08 0.02 0.31 0.99 0.02 0.49 0.30 -0.17 0.02 0.13 0.03 0.00 -0.10 -0.03 0.62 0.02 -0.04 -0.03 0.01 0.06 0.08 -0.03 0.02 -0.46 -0.07 0.52 -0.03 -0.06 -0.37 0.05 0.05 0.08 -0.03     
density -0.13 -0.01 0.07 0.16 0.02 -0.01 0.18 0.04 -0.08 0.05 0.23 0.05 0.09 0.20 0.00 0.12 -0.02 -0.99 0.03 -0.03 -0.09 0.16 0.05 -0.30 -0.12 -0.06 0.12 -1.00 -0.05 -0.24 -0.22 0.28 0.30 -0.30 0.01   
zi_rm -0.26 0.06 0.02 0.63 0.38 -0.02 0.81 0.25 -0.17 0.04 0.60 0.04 0.09 0.08 -0.01 0.59 0.03 -0.14 -0.01 -0.04 -0.11 0.42 -0.16 0.39 -0.72 0.63 0.80 -0.15 -0.20 -0.52 -0.59 0.64 0.68 -0.18 0.35 0.14 



 




