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ABSTRACT  

This paper seeks to assess the effectiveness of high-visibility enforcement (HVE) programs 

in terms of reducing aggressive driving behavior.  Using Strategic Highway Research Program 2 

(SHRP2) Naturalistic driving study (NDS) data, behavioral reactions of drivers before, during, and 

after the conduct of high-visibility enforcement programs are analyzed, in order to identify the 

potential effect of high-visibility enforcement in driving behavior.  In this context, two 

fundamental aspects of aggressive driving behavior (speeding and tailgating) are employed and 

analyzed.  To simultaneously explore the intensity and the duration of these behavioral patterns, 

novel metrics are defined and used in the analysis.  To investigate the effect of high-visibility 

enforcement programs, and at the same time, to control for the effect of driver-, trip-, vehicle-, and 

weather-specific characteristics on the extent of speeding and tailgating, univariate grouped 

random parameters linear regression models are estimated.  In addition, likelihoods of speeding 

and tailgating occurrences are analyzed simultaneously, within a grouped random parameters 

bivariate probit modeling framework.  The results of this preliminary analysis show that even 

though the implementation of the high-visibility enforcement has mixed effects on the extent and 

the likelihood of the driving behavior metrics, it demonstrates a promising potential in modifying 

driving behavior.   

 

Keywords: High-visibility enforcement; Speeding; Tailgating; Aggressive driving behavior; 

Grouped random parameters. 
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INTRODUCTION  

Recent traffic safety research has identified aggressive driving behavior as a vital risk 

factor for traffic crashes and related injuries and deaths (Neuman et al., 2003; Paleti et al., 2010; 

Tarko et al., 2011).  In fact, various aggressive behavioral patterns (for example, speeding, abrupt 

brake application, rushed overpass, and failure to comply with traffic signals and signs, to name a 

few) have been found to be directly associated with crash occurrence, and especially with the 

occurrence of fatal crashes.  Over the last decade, the effect of aggressive driving behavior on 

crash occurrence is steadily increasing (Zhu et al., 2017). 

In this context, a wide range of strategies, countermeasures, and approaches have been 

recently developed to improve roadway safety, in terms of modifying driving behavior: promoting 

beneficial voluntary actions; establishment of laws, regulations, and policies; and concentrated 

enforcement (Preusser et al., 2008; St-Aubin et al., 2013).  High-visibility enforcement (HVE) 

programs are a representative example of the latter category of strategies.  These programs 

typically include vigorous targeted law enforcement coupled with media campaigns to educate 

drivers and alert them to the enforcement activities, and have been shown to be effective in 

increasing seat belt use, reducing cellphone usage while driving, drunk driving and driving under 

the influence of drugs (Cosgrove et al., 2011; Van Houten et al., 2013; Chaudhary et al., 2012; 

Chaudhary et al., 2015; Zwicker et al., 2007; Johnson, 2016).  Many HVE programs targeting 

aggressive driving behavior have been reviewed, with most of them resulting in improvements in 

driving behavior (Nerup et al., 2006; Thomas et al., 2008; Tarko et al., 2011; Dye, 2016).  

However, their long term effectiveness in reducing speeding and aggressive driving is not clearly 

understood (McCartt et al., 2001; Stuster, 2004; Davis et al., 2006).  Typically, the evaluation of 

these programs has relied upon one or more of the following: the identification of the number of 
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crashes before and after the conduct of the program, the comparison of observed crash rates at sites 

at which the program was and was not conducted (control sites); roadside observational studies of 

driver compliance; number of citations issued before, during, and after the program; and surveys 

to identify any self-reported changes in driver behavior (Montella et al., 2015).  These studies used 

a variety of statistical tools to identify factors affecting aggressive driving behavior, such as chi-

square tests, t-tests, binary probit models, linear or logistic regression (Tarko et al.,2011; Kyasi 

and Abbany, 2007; Lambert-Bélanger et al., 2012).  These strategies provide a parsimonious 

measure of the effectiveness of the high-visibility enforcement program to change aggregate driver 

behavior, but fall short in evaluating the long term effectiveness of the program or its effects on 

the disaggregate driving characteristics on different groups of drivers.  

This paper seeks to provide a preliminary evaluation of the effectiveness of high-visibility 

enforcement programs in terms of improving significant aspects of driving behavior.  To that end, 

the use of expanded Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study 

(NDS) data enables a detailed examination of driver behavior before, during, and after the 

implementation of high-visibility enforcement programs.  Specifically, two fundamental 

dimensions of aggressive driving behavior are investigated: speeding and tailgating (following too 

closely the lead vehicle).  Combining the intensity and the duration of these behavioral patterns, 

as observed from the Naturalistic Driving Study data, two newly developed aggressive driving 

behavior metrics are presented and used for the evaluation of the high-visibility enforcement 

programs.  In addition, through the use of advanced statistical and econometric methods, the 

(enforcement- and non-enforcement-related) factors affecting the extent and the likelihood of these 

behavioral patterns are also identified. 
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EMPIRICAL SETTING 

Due to their highly dimensional nature, the Strategic Highway Research Program 2 

(SHRP2) Naturalistic Driving Study (NDS) data can provide a broad range of disaggregate driving 

behavior-specific characteristics, in combination with an extensive set of trip-, vehicle-, and 

environment-specific information (Jovanis et al., 2011; Wu and Jovanis, 2012; Mannering and 

Bhat, 2014).  The evaluation of the effectiveness of high-visibility enforcement programs is based 

on sample data from two high-visibility enforcement programs that were conducted in Erie 

County, NY, during the collection time period of the naturalistic driving study data (i.e., from 

October 2010 to November 2013).  It should be noted that one of the six nationwide naturalistic 

driving study sites was located in Erie County, NY, and consisted of 441 participants (Sarwar et 

al., 2017b).  The first high-visibility enforcement program was conducted on a two-way (and two 

lanes per direction) state roadway – Millersport Highway in Amherst, NY – with speed limit of 55 

miles/hour, from May through September 2012.  The second high-visibility enforcement program 

was conducted on a short section of a two-way inter-county corridor – Transit Road in Depew, NY 

– with two lanes per direction, during May 2012.  Due to the presence of a school zone in the 

segment of interest, the speed limit varied by time of the day along its length.  Specifically, the 

speed limit changed from 30 miles/hour to 20 miles/hour when the school zone speed limit was in 

effect.  

The high-visibility enforcement programs had both enforcement and media campaign 

components, which aimed at enhancing public and driver awareness for reducing speeding and 

aggressive driving behavior.  For the enforcement, roving and fixed patrol police car locations 

were used throughout the implementation period.  The media campaign involved public service 

announcements in local newspapers (Depew Bee and Amherst Bee) and radio stations broadcasted 
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throughout the same period.  Key objectives of the high-visibility enforcement programs involved 

the reduction of speeding and other violations (including aggressive driving behavior), and the 

overall improvement of traffic safety.   

To investigate and compare the driving behavior of participants – who traveled through the 

high-visibility enforcement locations – at non-enforcement sites, appropriate control sites were 

selected in the vicinity of the test sites.  Basic criterion for the selection of the control sites was 

their similarity with the test site roadways, in terms of number of lanes, speed limits and roadway 

features.  The locations of high-visibility enforcement and control sites selected for the analysis 

are illustrated in Figure 1.  Upon review of the video data obtained from the control area 

corresponding to the Amherst test area, significant differences were observed between the roadway 

characteristics of the test and control area.  Specifically, a traffic signal was present in the corridor 

of the control area.  Hence, trips from this area were not used in the statistical analysis.  To account 

for the speed limit change in the Depew enforcement area, the corresponding control area was 

selected to have similar characteristics, with the speed limit varying from 45 miles/hour to 35 

miles/hour.  It should be noted that in both enforcement and control areas the change in speed limit 

was 10 miles/hour and both sites were similar in terms of their geometric characteristics.  The 

selected control site was located closely to the test site in order to increase the likelihood of 

identifying trips made by same drivers on both directions of the roadway segment. 
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Figure 1.  Locations of high-visibility enforcement (HVE) and control sites included in the 

analysis.  

 

The analysis is based on an extensive dataset consisting of a highly disaggregate set of trip-

specific and behavioral data, during the traversal of the high-visibility enforcement sites, and a 

comprehensive set of driver- and vehicle-specific characteristics (for example, age, gender, 

frequency of traversals from the test or the control areas, and vehicle type, make, model and age, 

to name a few).  The trip-specific and behavioral data were jointly obtained from forward videos 

and time series for each traversal.  The review of each forward video provided information in terms 

of: environmental characteristics of the trip (time-of-the-day, lighting conditions, weather 

conditions); time-variant vehicle-specific characteristics (windshield condition, wipers’ usage); 

traffic control conditions and violations (traffic control device presence and phase, location of 

speed limits signs, violations of traffic control devices); and vehicle interactions within the traffic 
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stream (lead vehicle presence, vehicle lane change).  The time series data include information 

about the vehicle kinematics (vehicle position, speed, angular velocity, acceleration, distance from 

center of the lane, headway between lead and participant vehicles) and driving behavioral 

characteristics (use of seatbelt, brake application, steering wheel position, accelerator pedal 

position).  Note that a significant portion of the time series data was also confirmed by the forward 

video review, whereas information from both sources was cross-validated and integrated on the 

basis of the video timestamps. 

Upon the video processing and the linkage of the distinct data sources, the final dataset 

contains information about 437 trips (traversals through the high-visibility enforcement test and 

control sites) in total, performed by a random sample of 54 naturalistic driving study participants. 

Of the 437 traversals, 337 were conducted at the Amherst (test) site, whereas the remaining 100 

traversals were conducted at the Depew (test and control) site.  The selection of the traversals 

included in the analysis, was based upon a number of criteria such as: the time that the traversal 

occurred (e.g., before, during, or after the conduct of the high-visibility enforcement); number of 

traversals by the participant through the high-visibility enforcement sites; type of vehicle; and 

participant demographics (in terms of gender and age).  The primary focus of the selection 

procedure was to proportionally represent all the different trip and driver characteristics arising 

from the various selection criteria.  Table 1 presents descriptive statistics of key variables (those 

that were found to be statistically significant in the statistical analysis).
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Table 1.  Descriptive statistics of key variables 

Variable Mean Std. Dev. Minimum Maximum 

Tailgating metric1 -14.959 26.440 -141.417 0 

Speed metric 0.112 0.092 0 0.545 
Speeding indicator (1 if speeding was observed 

throughout the traversal, 0 otherwise) 

0.953 -- 0 1 

Tailgating indicator (1 if tailgating was 

observed throughout the traversal, 0 
otherwise) 

0.651 -- 0 1 

High-visibility enforcement site indicator (1 if 
the traversal occurred in the test – high-

visibility enforcement  – site, 0 otherwise) 

0.887 -- 0 1 

High-visibility enforcement / Day of the week 

interaction indicator (1 if the traversal 
occurred on a Wednesday at the test – high-

visibility enforcement – site and during the 
high-visibility enforcement implementation 

period, 0 otherwise) 

0.135 -- 0 1 

High-visibility enforcement implementation 

indicator (1 if the traversal occurred during 
the high-visibility enforcement 

implementation period, 0 otherwise) 

0.070 -- 0 1 

Vehicle type indicator (1 if the vehicle was a 

sedan or SUV, 0 otherwise) 

0.809 -- 0 1 

Vehicle age indicator (1 if the vehicle was less 

than 8 years old, 0 otherwise) 

0.641 -- 0 1 

Vehicle age indicator (1 if vehicle was less than 

3 years old, 0 otherwise) 

0.442 -- 0 1 

Vehicle make indicator (1 if the vehicle’s make 

was US-based – Chevrolet, Ford, Mercury, 
Pontiac, Saturn, or Dodge, 0 otherwise) 

0.404 -- 0 1 

Driver’s age indicator (1 if the driver was 60 
years old or older, 0 otherwise) 

0.208 -- 0 1 

Driver’s gender and age interaction indicator (1 
if the driver was male and younger than 30 

years old, 0 otherwise) 

0.087 -- 0 1 

Driver’s gender and age indicator (1 if the 

driver was female and over 40 years old, 0 
otherwise) 

0.191 -- 0 1 

Average speed on the traversal (km/hr) 78.843 23.888 22.105 100 
Speeding indicator (1 if the average traversal 

speed exceeds the speed limit, 0 otherwise) 

0.633 -- 0 1 

Square root of the average traversal speed 8.751 1.510 4.702 10 

                                                             
1 Tailgating and speeding metrics have been defined in the subsequent Methodology section.  
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Variable Mean Std. Dev. Minimum Maximum 

Traversal frequency indicator (1 if the driver 
traversed the same site more than 5 times, 0 

otherwise) 

0.721 -- 0 1 

Time of day indicator (1 if the traversal 

occurred during the day, 0 otherwise) 
[speeding metrics model] 

0.608 -- 0 1 

Time of day indicator (1 if the traversal 
occurred during the day, 0 otherwise) 

[tailgating occurrence model] 

0.642 -- 0 1 

Time of day indicator (1 if traversal occurred 

during the dawn, dusk, or night, 0 otherwise) 

0.358 -- 0 1 

Weather indicator (1 if the weather was clear 

during the traversal, 0 otherwise) 

0.702 -- 0 1 

 

METHODOLOGICAL APPROACH 

To evaluate the effectiveness of high-visibility enforcement programs in terms of 

modifying the driving behavior, two primary dimensions of aggressive driving behavior are 

investigated: speeding and tailgating.  In order to analyze such behavioral aspects in terms of 

intensity and duration, novel metrics – which are independent of trip- or roadway-specific 

conditions – are defined and used for the driving behavior analysis.  

 Speeding can be typically defined as exceeding the posted speed limit (Bagdade et al., 

2012); however, this – by itself – cannot capture the magnitude of speeding.  To that end, a 

quantitative measure that jointly accounts for the intensity of speeding during the traversal (i.e., 

number of miles per hour above the speed limit during the traversal) and the duration of speeding 

(i.e., length of time during the traversal that speeding was observed) is developed.  Specifically, 

the proposed speeding metric is calculated as: 

1
,

n

k

k
m j

j

A

Speeding Metric
L



 
 
 




         (1) 
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where, Ak is the area between the vehicle network speed and the speed limit whenever the vehicle 

speed is greater than the posted speed limit, n is the number of instances during the traversal, j, 

when the vehicle speed is greater than the posted speed limit, and Lj is the length of traversal, j.  

This formulation of the speeding metric allows for comparison of the speeding behavior over time, 

as well as over different roadway segments of varying speed limits and lengths.  An illustration of 

the calculation of the speeding metric is provided in Figure 2, which shows an 85 second long 

traversal through a section of one of the high-visibility enforcement test sites of interest. The black 

circles indicate the vehicle network speed reported at 10 Hz in the naturalistic driving study time 

series data. As noted in the figure, the roadway traversed during the trip had three changes in the 

posted speed limits (i.e., 30 mi/h, 20 mi/h, and 30 mi/h).  Four areas are shown where the observed 

vehicle speed exceeded the posted speed limit.  For the traversal illustrated in Figure 2, the 

previously defined speeding metric is calculated using Equation 1, which for simplicity is equal 

to: 

1 2 3 4( ) /Speeding Metric A A A A L    ,        (2) 

where, A1, A2, A3, and A4 are the areas of speeding given the speed limit (illustrated with the red 

dashed line), and L is the total length of the traversal. 

 With respect to the second measure of driving behavior, tailgating generally occurs when 

a vehicle follows too closely the lead vehicle.  Herein, tailgating is defined to occur when a vehicle 

follows a lead vehicle with a headway less than two seconds, which is a commonly acceptable 

distance for safe driving (Wang and Song, 2011).  The initial step in the calculation of tailgating 

was to determine the presence of a lead vehicle, which was accomplished through the review of 

the forward view videos.  Once the presence of a lead vehicle was identified through the video 

review, the time series data were reviewed to confirm the presence or absence of a lead vehicle.  
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Apart from the presence of a lead vehicle, the calculation of the tailgating metric was based on the 

driver’s vehicle speed and the lead vehicle headway.  These sets of information were obtained 

through two different methods: the vehicle network, or the Global Positioning System (GPS) 

within the Next Generation Acquisition System (NextGen).  The selection of the appropriate 

source of information was highly associated with the make, model year, and model of the vehicle 

and the type of the on-board equipment.  Using the processed data from the on-vehicle radar (an 

association algorithm was applied to the raw radar data to allow tracking of individual targets), the 

lead vehicle headway was calculated by dividing the radar reported distance from the driver’s 

vehicle to the lead vehicle by the driver’s vehicle velocity.  The comparison of the latter with the 

pre-specified threshold of two seconds was used to determine whether the driver was tailgating.   

In order to identify possible tailgating incidents in free-flowing traffic conditions, 

conditional statements were used to find those cases where the driver was traveling at 90 percent 

of the posted speed limit or above, and a lead vehicle was present.  To that end, the tailgating 

behavior was evaluated only for time intervals where both conditions were satisfied.  For this 

purpose, radar data provided in the form of time-series were utilized to determine the speed of the 

traversals, and to confirm presence of lead vehicles, which was also observed during the review of 

the traversal videos.  The time series data were recorded at a 10 Hz frequency, however, in very 

few occasions, speed measurements were not available for each data point millisecond.  In these 

cases, linear interpolation was employed to obtain the speed values.  To better illustrate the 

calculation procedure of the tailgating metric, Figure 2 shows a graphical representation of the 

headway profile as a function of the traversal duration.  In the Figure, the X-axis represents the 

duration of the traversal (in microseconds), and the Y-axis the difference between the headway 

from the leading vehicle and the 2-second headway threshold (in seconds).  Based on the previous 
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definition, the tailgating metric is calculated as the total curve area below the X-axis (note that the 

point zero on the Y-axis represents the 2-second headway threshold).  This area captures the extent 

of tailgating, simultaneously in terms of intensity (how close the participant is following the 

leading vehicle) and duration (how long tailgating occurred). 
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Figure 2. Graphical representation of speeding (top) and tailgating (bottom) metric 

definitions. 
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To identify the effect of high-visibility enforcement on critical aspects of driving behavior, 

and at the same time, to control for driver- and vehicle-specific factors as well as for roadway, 

weather, and other environmental characteristics, statistical models of speeding and tailgating are 

developed.  To statistically model the extent of speeding and tailgating metrics (as defined above) 

over time (prior to, during, and after the conduct of the high-visibility enforcement), a linear 

regression framework is employed (note that non-linear models were also estimated, but the 

presented models were statistically superior, in terms of statistical fit).  The linear regression model 

is defined as (Washington et al., 2011; Pierowicz et al., 2016; Nahidi et al., 2017):  

𝑦𝑖 = 𝛼 + 𝛃𝑖𝑿𝑖 + 𝜀𝑖          (3) 

where, y is the dependent variable (i.e., the speeding or tailgating metric), which is a function of a 

constant term α and a coefficient β times the value of independent variables X (e.g., high-visibility 

enforcement implementation, roadway/roadside and weather conditions, and driver/vehicle/trip 

characteristics) for driver i (i = 1, 2, …, n), plus an error term ε. 

To account for the effect of unobserved heterogeneity (i.e., unobserved factors varying 

systematically across the observations), a random parameters modeling approach is employed 

(Anastasopoulos and Mannering, 2009; Anastasopoulos and Mannering, 2011; Venkataraman et 

al., 2014; Mannering et al., 2016; Anastasopoulos and Mannering, 2016; Fountas and 

Anastasopoulos, 2017; Bogue et al., 2017; Alarifi et al., 2017; Seraneeprakarn et al., 2017; 

Behnood and Mannering, 2017; Xin et al., 2017; Bhat et al., 2017; Sarwar et al., 2018; Guo et al., 

2018).  Because there were traversals performed by the same driver, it is very likely that similar 

unobserved characteristics are commonly encountered among the driver-specific traversals (Wu et 

al., 2014).  Thus, to account for unobserved heterogeneity varying across driver-specific sub-

samples of the traversal population (i.e., panel effects), grouped random parameters are estimated.  
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Under this modeling structure, one separate parameter estimate (β) is estimated for each driver; 

thus, all the driver-specific traversals are represented by the same parameter estimates.  In this 

context, the effect of the parameters are allowed to vary across the drivers, as (Wu et al., 2013; 

Sarwar et al., 2017a; Fountas et al., 2018a): 

𝛃𝑖 = 𝛃 + 𝑢𝑖           (4) 

where, 𝛃𝑖  is the driver-specific vector of random parameter, 𝛃 denotes the vector with the mean 

values of the random parameters, and 𝑢𝑖  is a randomly distributed error term for each driver i (with 

mean equal to 0 and variance equal to 𝜎2).  Note that the driver-specific grouped random 

parameters are pre-assumed to follow a continuous distribution.  For the density function of this 

distribution, a wide variety of the most popular parametric density functions can be used (such as, 

normal, log-normal, triangular, uniform and Weibull).  In line with previous studies 

(Venkataraman et al., 2013; Russo et al., 2014; Anastasopoulos et al., 2016; Behnood and 

Mannering, 2016; Anastasopoulos et al., 2017; Fountas et al., 2018a; Fountas et al., 2018c), herein, 

the normal distribution was found to provide the best statistical fit and was thus used in the model 

specifications. 

To analyze the likelihood of occurrence of speeding and tailgating, a binary discrete 

outcome framework is employed.  Specifically, using the definition criteria of these metrics, the 

binary dependent variables were 1 if speeding or tailgating occurred during the traversal, 

respectively, and 0 otherwise.  Since speeding and tailgating constitute two distinct, but 

interrelated aspects of the aggressive driving behavior of the same driver (Sarwar et al., 2017a), 

they may share the same or similar unobserved characteristics.  Therefore, it is likely for the error 

terms – associated with the two dependent variables – to be correlated (Chiou et al., 2014; Fountas 

and Anastasopoulos, 2018).  To account for the cross-equation (contemporaneous) error term 
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correlation, speeding and tailgating are modeled simultaneously, by employing a bivariate probit 

formulation.  The bivariate binary probit model can be defined as (Anastasopoulos et al., 2012; 

Greene, 2016; Sarwar et al., 2017a): 

𝑍𝑖,1 = 𝑿𝑖,1𝛃𝑖,1 + 𝜀𝑖,1                  𝑦𝑖,1 = 1 𝑖𝑓 𝑍𝑖,1 > 0, = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 𝑍𝑖,2 = 𝐗𝑖,2𝛃𝑖,2 + 𝜀𝑖,1                  𝑦𝑖,2 = 1 𝑖𝑓 𝑍𝑖,2 > 0, = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  ,     (5) 

with the cross-equation correlated error terms: 

(
𝜀𝑖,1

𝜀𝑖,2
) ~𝑁 [(

0
0

) , (
1 𝜌
𝜌 1

)]          (6) 

where, 𝑦𝑖,1 and 𝑦𝑖,2 are binary outcomes for speeding and tailgating, respectively, for traversal i, 

Xs denote vectors of explanatory variables affecting speeding and tailgating, β is the vector of 

coefficients corresponding to X, ε is a random error term, and ρ is the cross-equation error 

correlation coefficient.  In this probit model formulation, the error terms are assumed to be 

normally distributed with mean equal to zero and variance equal to one.  Equations 7 and 8 present 

the bivariate probit model and its corresponding log-likelihood function, respectively (Greene, 

2012): 

   2 2 2
1 21 2

1 2
2

exp 0.5 2 1
( , , )

2 1

Z Z Z Z
Z Z

    
  

 
 

 


 
  and           (7) 

 
   

   

N
i,1 i,2 i,1 i,1 i,2 i,2 i,1 i,2 i,1 i,1 i,2 i,2

i 1 i,1 i,2 i,1 i,1 i,2 i,2 i,1 i,2 i,1 i,1 i,2 i,2

y y lnΦ , , (1 y )y lnΦ , ,

y (1 y ) lnΦ , , (1 y )(1 y ) lnΦ , ,

      
 
          


β X β X β X β X

β X β X β X β X
        (8) 

where, Φ(.) is the cumulative distribution function corresponding to the bivariate probit model, 

and all other terms as previously defined. 

To simultaneously account for unobserved heterogeneity and panel effects, grouped 

random parameters are also introduced in the estimation of the bivariate probit model.  Similar to 
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the grouped random parameters linear regression models, a separate parameter estimate (β) is 

estimated for each driver.  Note that the bivariate model is estimated only for those pairs of  𝑦𝑖,1 

and 𝑦𝑖,2 with available information. 

For the estimation of the random parameter models, simulated maximum likelihood 

estimation techniques are adopted.  To increase the efficiency of the complex numerical 

integrations required within the simulation procedure, Halton draws are used (Halton, 1960; Train, 

2003).  The relevant econometric literature (Train, 2003; Bhat, 2003) recommends a minimum of 

200 Halton draws for obtaining stable random parameters; however, in this study, 1000 Halton 

draws were found to provide parameter stability, and were thus used in model estimation.   

To assess the magnitude of the effect of the explanatory variables on the probability of 

speeding and tailgating, pseudo-elasticities are computed (Ulfarsson et al., 2010).  The pseudo-

elasticities measure the effect of a change from “0” to “1” for an indicator variable, on the 

probability of the dependent variables.  

 

MODEL ESTIMATION RESULTS 

Table 2 presents the estimation results of the grouped random parameters linear regression 

models for speeding and tailgating metrics along with the distributional effect of the random 

parameters – in terms of positive or negative effect – on speeding and tailgating metrics.  Table 3 

presents the estimation results of the grouped random parameter bivariate probit model of speeding 

and tailgating occurrence along with the distributional effect of the random parameters – in terms 

of positive or negative effect – on speeding and tailgating occurrence probabilities.  For the 

grouped random parameter bivariate probit model, the average (across the drivers) pseudo-

elasticities of the explanatory variables are also provided.  For the bivariate model, positive 
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coefficients indicate higher likelihood of speeding or tailgating during the specific traversal, 

whereas for the linear regression models positive coefficients are associated with greater values of 

the speeding and tailgating metrics.  All explanatory variables included in the models result in 

statistically significant parameters at 0.90 level of confidence.  

Table 2 shows that a number of driver-, vehicle-, and trip-specific characteristics affect the 

extent and the duration of speeding (speeding metric).  Specifically, the variable representing 

traversals that occurred on an area where the high-visibility enforcement program was 

implemented (test area) results in a statistically significant random parameter; for the majority of 

the drivers (66.48%, as shown in Table 2), traversals conducted on a high-visibility enforcement 

site are associated with an increase in the extent and the duration of the speeding, whereas for the 

remaining 33.52% of the drivers, these traversals are associated with a reduction in the extent and 

the duration of speeding.  This finding is an indication that high-visibility enforcement programs 

are likely to reduce speeding on some occasions.  The mixed effect of this variable warrants further 

investigation, and can be attributed to unobserved heterogeneity related to the presence of low 

speed limits (especially, for the majority of segments in Depew area, the speed limit was 35mi/h) 

or to the frequent presence of near free-flow traffic conditions (especially, for the majority of 

traversals in Amherst area).   

Traversals that occurred during the day are found to have variable effect across the drivers, 

with the majority of these traversals (55.68%, as shown in Table 2) being associated with lower 

extent and duration of speeding (while the remaining 44.32% are associated with an increase in 

speeding, as shown in Table 2).  It should be noted that police presence during high-visibility 

enforcement was significant, particularly during the daytime, leading, thus, to increased driver’s 
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alertness and compliance with the traffic regulations – this finding is in line with past research 

(Tarko et al., 2011).  
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Table 2. Estimation results for the grouped random parameters linear regression models 

Dependent Variable: Speeding Coeff. t-stat 

Constant 0.117 8.290 

High-visibility enforcement site indicator (1 if the traversal occurred in the test – 

high-visibility enforcement – site, 0 otherwise) 
0.020 2.340 

   Standard deviation of parameter density function 0.047 55.200 

Vehicle type indicator (1 if the vehicle was a sedan or SUV, 0 otherwise) 0.027 3.340 

Vehicle age indicator (1 if the vehicle was less than 8 years old, 0 otherwise) -0.067 -7.900 

Vehicle make indicator (1 if the vehicle’s make was US-based – Chevrolet, Ford, 

Mercury, Pontiac, Saturn, or Dodge, 0 otherwise) 
0.016 2.080 

Driver’s age indicator (1 if the driver was 60 years old or older, 0 otherwise) -0.047 -4.950 

Time of day indicator (1 if the traversal occurred during the day, 0 otherwise)  -0.001 -0.090 

   Standard deviation of parameter density function 0.007 4.780 

Variance parameter, σ 0.063 90.630 

Number of drivers / Number of observations 54 / 423 

LL(β) -2396.140 

LL(0) -2514.202 

R2 / Adjusted R2 0.455 / 0.443 

Dependent Variable: Tailgating Coeff. t-stat 

Constant 229.718 1.760 

High-visibility enforcement and day of the week interaction indicator (1 if the 

traversal occurred on a Wednesday at the test – high-visibility enforcement – site 

and during the high-visibility enforcement implementation period, 0 otherwise) 

10.708 2.010 

   Standard deviation of parameter density function 16.404 3.160 

Driver’s gender and age interaction indicator (1 if the driver was male and younger 

than 30 years old, 0 otherwise) 
15.246 2.090 

Average speed on the traversal 4.155 1.870 

Square root of the average traversal speed -62.323 -1.790 

Variance parameter, σ 23.418 41.350 

Number of drivers / Number of observations 39 / 226 

LL(β) -1037.809 

LL(0) -1060.637 

R2 / Adjusted R2 0.224 / 0.203 

Aggregate distributional effect of the random parameters across the observations 

   Above zero Below zero 

Dependent Variable: Speeding   

High-visibility enforcement site indicator (1 if the traversal 

occurred in the test – high-visibility enforcement – site, 0 

otherwise) 

66.48% 33.52% 

Time of day indicator (1 if the traversal occurred during 

the day, 0 otherwise) 

44.32% 

 

55.68% 

Dependent Variable: Tailgating   

High-visibility enforcement / Day of the week interaction 

indicator (1 if the traversal occurred on a Wednesday at 

the test – high-visibility enforcement  – site and during 

the high-visibility enforcement implementation period, 0 

otherwise) 

74.30% 

 

25.70% 
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Turning to the fixed parameters, driving SUVs or sedans increases the extent and duration 

of speeding; vehicles manufactured by US-based companies (Chevrolet, Ford, Mercury, Pontiac, 

Saturn, and Dodge) are found to increase speeding; old drivers (older than 60 years old) are 

intuitively associated with lower extent and duration of speeding; and traversals made with 

relatively new vehicles (less than 8 years old) are found to reduce speeding.  These findings are 

accounting for driver- and vehicle-specific characteristics, and may be capturing heterogeneity 

stemming from the demographic characteristics of the drivers and their driving habits. 

Turning to the estimation results of the tailgating metrics model, the interaction between 

the high-visibility enforcement and the weekday driving conditions has mixed effect across the 

driving population.  Table 2 shows that the variable representing traversals that occurred in a high-

visibility enforcement area during a typical weekday (Wednesday) results in a statistically 

significant random parameter.  This variable increases the extent and duration of tailgating for the 

majority of the drivers (74.30%, as shown in Table 2), while it reduces it for the remaining 25.70%.  

This finding may be capturing the predominant role of traffic conditions and unobserved trip-

specific characteristics (e.g., trip origin-destination, purpose, frequency of the specific trip), 

especially during a typical mid-week day.  In addition, the tailgating metric is found to increase 

amongst young (less than 30 years old) male drivers, which is in line with previous findings 

relating to the propensity of young male drivers in aggressive driving behavior (Lambert- 

Bélanger, 2012; Hassan and Abdel-Aty, 2013).  Furthermore, the average traversal speed is found 

to have a non-linear effect on the tailgating metric.  The non-linear effect is captured by the 

combination of the average traversal speed and the square root of the average traversal speed, 

where the first increases tailgating and the second reduces it.2     

                                                             
2 Note that to account for possible endogeneity between the speed-related variables and the tailgating metric, an 

instrumental variable approach was employed: the speed-related variables were regressed against all exogenous 
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Moving to the results of the bivariate probit model, Table 3 shows that the cross-equation 

error correlation (ρ) is statistically significant.  This implies the presence of significant correlation 

among the unobserved factors captured in the error terms of the speeding and tailgating occurrence 

variables, and supports the use of the bivariate modeling framework (Sarwar and Anastasopoulos, 

2017).  Specifically, the results show that traversals that occurred during the high-visibility 

enforcement period at the test areas (i.e., in areas where the high-visibility enforcement programs 

were implemented) decrease the probability of speeding occurrence (by 7.5%, as indicated by the 

pseudo-elasticity).  This suggests the potential of high-visibility enforcement programs to improve 

driving behavior, in terms of reducing speeding.  In addition, frequent travelers (i.e., drivers that 

traversed the same location more than 5 times during the study period), and older than 40 years 

old female drivers are also less likely to speed (the speeding occurrence probability decreases by 

6.9% and 12.6%, respectively, as indicated by the pseudo-elasticities).  These results are likely 

capturing habitual effects formed by the frequent traversals on the high-visibility enforcement site, 

and are supported by previous research (Anastasopoulos, 2016).  Traversals that occurred during 

dawn, dusk, or at night are also found to decrease the probability of speeding occurrence (by 6.2%, 

as indicated by the pseudo-elasticity).  This is intuitive considering that drivers may need to 

compensate for restrictive lighting conditions, and thus adjust their driving behavior.  Finally, the 

vehicle type (sedan or SUV) is found to have mixed effects on the speeding occurrence probability, 

with the vast majority of drivers (84.52 %, as shown in Table 3) having higher probability to speed 

(the opposite is observed for the remaining 15.48% of drivers, as shown in Table 3).  This finding 

may be capturing vehicle- or driver-specific heterogeneity.

                                                             
variables and their instruments were used as independent variables in the tailgating model (Washington et al., 2011; 

Sarwar and Anastasopoulos, 2016; Sarwar et al., 2017c). 
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Table 3.  Model estimation results and pseudo-elasticities of the grouped random parameters 

bivariate probit model of speeding and tailgating 

 Speeding Tailgating Pseudo- 

Variables Coeff. t-stat Coeff. t-stat elasticities 

Constant 7.774 2.020 -- --  
High-visibility enforcement site indicator (1 

if the traversal occurred in the test – high-
visibility enforcement  – site, 0 otherwise) 

-3.396 -1.890 -- -- -7.50% 

Vehicle type indicator (1 if the vehicle was a 
sedan or SUV, 0 otherwise) 

4.836 2.190 -- -- 13.60% 

   Standard deviation of parameter density 
function 

4.760 2.610 -- --  

Vehicle age indicator (1 if vehicle was less 
than 3 years old, 0 otherwise) 

-- -- -0.636 -2.430 -20.70% 

Driver’s gender and age indicator (1 if the 
driver was female and over 40 years old, 0 

otherwise) 

-4.615 -2.240 -- -- -12.60% 

Driver’s age indicator (1 if the driver was 60 

years old or older, 0 otherwise) 

-- -- -0.630 -2.470 -21.80% 

Speeding indicator (1 if the average traversal 

speed exceeds the speed limit, 0 otherwise) 

-- -- 0.476 1.660 16.10% 

Traversal frequency indicator (1 if the driver 

traversed the same site more than 5 times, 
0 otherwise) 

-3.761 -1.910 -- -- -6.90% 

Time of day indicator (1 if the traversal 
occurred during the day, 0 otherwise) 

-- -- 0.598 2.000 20.10% 

Time of day indicator (1 if traversal occurred 
during the dawn, dusk, or night, 0 

otherwise) 

-3.509 -1.890 -- -- -6.20% 

Weather indicator (1 if the weather was clear 

during the traversal, 0 otherwise) 

-- -- 0.347 1.350 7.20% 

   Standard deviation of parameter density 

function 

-- -- 0.366 3.080 -- 

Cross equation correlation, ρ 0.999 177.150  

Number of drivers / Number of observations 38 / 215  

LL(β) -139.018  
LL(0) -179.490  

R2 / Adjusted R2 0.225 / 0.147  

Aggregate distributional effect of the random parameters across the observations 

   Above zero Below zero 

Vehicle type indicator (1 if the vehicle was a sedan or 
SUV, 0 otherwise) 

84.52% 15.48% 

Weather indicator (1 if the weather was clear during the 
traversal, 0 otherwise) 

82.85% 
 

17.15% 
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Table 3 also shows that a set of driver-, trip- and weather-specific characteristics affect the 

likelihood of tailgating occurrence.  Interestingly, favorable weather conditions during the 

traversal (i.e., clear weather conditions) have variable effects on the tailgating occurrence 

probability.  The variable results in a normally distributed random parameter, with the majority of 

drivers (82.85%, as shown in Table 3) being associated with higher probability of tailgating, and 

the minority (17.15%, as shown in Table 3) with a lower probability of tailgating.  This may be 

attributed to a higher level of driving confidence – due to the more favorable weather conditions 

– that in turn is likely to result in aggressive driving behavior (in terms of tailgating).  The tailgating 

occurrence (1 if tailgating occurs, 0 otherwise) probability is also increasing for traversals that 

occurred during the daytime (by 20.1%, as indicated by the pseudo-elasticity), likely due to the 

favorable lighting conditions that may encourage risk-taking driving behavior.  Similarly, 

tailgating is more likely to occur if the average traversal speed is greater than the posted speed 

limit; for these cases the corresponding probability increases by 16.1% (as indicated by the pseudo-

elasticity).  On the contrary, the variables representing older drivers (60 years old or older) and 

new vehicles (less than 3 years old) are both found to decrease the probability of tailgating 

occurrence (by 21.8% and 20.7%, respectively), which is in line with the earlier findings of the 

speeding metric model. 

 

MODEL EVALUATION 

To further evaluate the models, a number of forecasting accuracy measures are computed 

and counter-imposed against their fixed parameters modeling counterparts: the mean absolute 

deviation (MAD); the sum squared error (SSE); the mean squared error (MSE); the root mean 

square error (RMSE); and the standard deviation of errors (SDE).  For the linear regression models, 

the prediction error is calculated as the difference between the observed and predicted metric 
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values; whereas, for the bivariate probit model, it is calculated as the difference between the 

observed outcome (speeding/tailgating occurrence or not) and the model-predicted probability of 

the observed outcome (Sarwar and Anastasopoulos, 2016; Fountas and Anastasopoulos, 2017).  

Lower values of the aforementioned accuracy measures indicate better prediction performance 

(Anastasopoulos, 2016; Amoh-Gyimah et al., 2017; Fountas et al., 2018b).   

Table 4 provides the mathematical formulations of the accuracy measures, along with a 

comprehensive overview of the results for the competitive models.  The Table shows that the 

grouped random parameter models consistently outperform their fixed parameters counterparts, 

since they yield significantly lower prediction error.  It should be finally noted that the fixed 

parameters modeling counterparts resulted in statistically inferior model specifications (in terms 

of explanatory power and statistical fit), thus, their detailed estimation results are omitted.  
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Table 4.  Forecasting accuracy measures  

Fixed Vs. Grouped Random Parameters Linear Regression Models 

  Speeding metric Tailgating metric 

 

 Grouped 

random 
parameters 

model 

Fixed 

parameters 
model 

Grouped 

random 
parameters 

model 

Fixed 

parameters 
model 

MAD 1

n

i

i

n



 

 
0.049 0.056 15.798 16.58455 

SSE 2

1

n

ii   1.964 2.387 122386.2 133370.6 

MSE 

2

1

n

ii

n

 
 0.005 0.006 541.532 590.136 

RMSE 
2

1

n

ii

n

 
 0.068 0.075 23.271 24.293 

SDE 
2

1

1

n

ii

n





 
 0.068 0.075 23.322 24.347 

Fixed Vs. Grouped Random Parameters Bivariate Probit Models 

  Speeding metric Tailgating metric 

 

 Grouped 

random 
parameters 

model 

Fixed 
parameters 

model 

Grouped 

random 
parameters 

model 

Fixed 
parameters 

model 

MAD 1

n

i

i

n



 

 
0.022 0.067 0.382 0.404 

SSE 2

1

n

ii   2.108 7.336 40.033 43.437 

MSE 

2

1

n

ii

n

 
 0.010 0.034 0.186 0.202 

RMSE 
2

1

n

ii

n

 
 0.099 0.185 0.432 0.449 

SDE 
2

1

1

n

ii

n





 
 0.099 0.185 0.433 0.451 

Mean absolute deviation: MAD; Sum squared error: SSE; Mean squared error: MSE; Root mean square error: RMSE; 

Standard deviation of errors: SDE.  
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SUMMARY AND CONCLUSIONS 

This paper provides a preliminary analysis of the effectiveness of high-visibility 

enforcement programs (HVEs) in terms of modifying driving behavior.  To accomplish this, 

Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) data were 

used, in an effort to capture highly disaggregate behavioral characteristics of the drivers before, 

during, and after high-visibility enforcement.   To that end, traversals from two locations in Erie 

County, NY – where high-visibility enforcement programs were implemented – were analyzed. 

To analyze the effect of high-visibility enforcement on driving behavioral patterns, 

aggressive driving behavior was investigated in terms of speeding and tailgating.  In order to 

account for the highly dimensional nature of the speeding and tailgating events, two novel – to the 

authors’ knowledge – metrics were developed and used in the analysis.  These metrics 

simultaneously quantify – in measurable and effectively comparable area units – the intensity and 

the duration of the speeding and tailgating incidents. 

In this context, statistical models of speeding and tailgating metrics were estimated, to 

evaluate the driving behavior under the effect of high-visibility enforcement programs.  To 

examine the extent and the duration of speeding and tailgating, grouped random parameters linear 

regression models were estimated; while, to simultaneously examine the likelihood of speeding 

and tailgating occurrence, a grouped random parameters bivariate probit model was estimated.  

The employed modeling frameworks account for significant misspecification issues arising from 

the nature of the dataset, namely, for unobserved heterogeneity, panel effects, and cross-equation 

error correlation (the latter is addressed only within the bivariate modeling scheme).   
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A number of trip-, driver-, weather-, and vehicle-specific characteristics were found to 

significantly affect the dependent variables.  Among those, the high-visibility enforcement was 

found to play a dominant role in all models.  Specifically, the linear regression models showed that 

the high-visibility enforcement has mixed effects on the extent and the duration of speeding and 

tailgating.  Whereas, the bivariate probit model demonstrated that the high-visibility enforcement 

program decreases the likelihood of speeding behavior.   

The use of the proposed aggressive driving behavior metrics may impose some restrictions 

in the assessment of the effectiveness of the high-visibility enforcement programs.  For example, 

trips with significant speeding over a short period of time may yield similar speeding metric values 

with trips observing marginal speeding over a long period of time.  Such aggregate consideration 

may also affect the stability of the parameter estimates over time (Mannering, 2018), especially 

within a before-after analysis.  Simultaneous equation methods can also be used to concurrently 

account for the extent and duration of speeding and tailgating, by addressing any potential 

underlying cross-equation error correlation.  However, the present empirical study should be 

viewed as a preliminary step towards evaluating the potential of high-visibility enforcement 

programs, as a tool to modify driving behavior and habits, and in turn improve traffic safety.  

Despite minor computational challenges (in terms of model convergence and parameter stability), 

the proposed evaluation method can be generalized for the investigation of the effectiveness of 

similar safety countermeasures (e.g., red light enforcement, speed limit enforcement, and 

enforcement with automatic number plate recognition systems, to name a few).  
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