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ABSTRACT 
 
With the resource constrained nature of mobile devices and the resource-abundant offerings of the cloud, 
several promising optimisation techniques have been proposed by the green computing research 
community. Prominent techniques and unique methods have been developed to offload resource intensive 
tasks from mobile devices to the cloud. Although these schemes address similar questions within the same 
domain of mobile cloud application (MCA) optimisation, evaluation is tailored to the scheme and also 
solely mobile focused, thus making it difficult to clearly compare with other existing counterparts. In this 
work we first analyse the existing/commonly adopted evaluation technique, then with the aim to fill the 
above gap we propose the BEFTIGRE approach which adopts the behaviour-driven concept for evaluating 
MCA performance and energy usage – i.e. green metrics. In order to automate the evaluation process, we 
also present and evaluate the effectiveness of a resultant API and tool driven by the Beftigre approach. The 
API is based on Android and has been validated with EC2 instance. Experiments show that Beftigre is 
capable of providing a more distinctive, comparable and reliable green test results for MCAs. 
 
KEYWORDS: Green Mobile Cloud, Green Metrics Evaluation, Mobile Cloud Evaluation, Mobile 
Offloading Comparison, Behaviour-driven Evaluation, BDD for MCA. 
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 INTRODUCTION 

The research on green computing investigates ways to optimise software to improve its resource or 
particularly energy usage, thus the concept of software energy efficiency. The novelty concept behind 
mobile cloud computing (in terms of green software) is to offer the use of resource abundant cloud as a 
surrogate to alleviate resource-intensive tasks from mobile devices, thus achieving greener (more energy 
efficient) software processes on mobile. As the most mobile battery consuming applications are those with 
computation-intensive features [1], [2], the energy or resource gain (or improvement) for mobile devices is 
often realised in the computation offloading techniques of mobile cloud applications (MCA). These 
techniques extend a local mobile architecture to a distributed (mobile-cloud) architecture as shown in Figure 
1. 

The MCA architecture generally comprises three sets of components [3]–[6]: mobile offloadable 
components (MCs) are first identified1. These components are subsequently replicated on the server (as 
server components, SCs) to improve mobile resource usage. The third is the offloading scheme components 
– which handle decision making based on monitoring data of current environmental state to predict when 
offload process is beneficial. The scheme can be launched in both tiers (Figure 1). To evaluate the efficiency 
of such systems (MCA with offloading schemes) two abstract phases are taken into account, they are mobile 
device test and server test; however, most research focus is on the mobile end [3]–[6]. For example, various 
works [3]–[5] achieve rigorous test by randomization of environment conditions such as network 
(bandwidth and latency) and server/cloud resource (CPU and memory), using throttling and load generation 
respectively, in order to evaluate mobile power usage and performance. Consequently, the results of the 
evaluation do not highlight the scheme’s implications on cloud tier. Although the implementation of the 
MCA offloading schemes takes into full account the architectural change, the evaluation of the schemes 
does not clearly account for the impact of the scheme on the full system tiers. 

Furthermore, customary with the justification of the relevance of an approach is a comparison against 
existing counterparts. Comparison (and evaluation) of current MCA architectures is achieved using 
architecture scenario based approach – that is, comparing the offloading scheme with an architecture 
scenario (such as local, server or optimal as shown in Figure 1). Although conclusions can be reached with 
this approach, the evaluation is constrained to the scope of the literature as different sources define varying 
architecture scenarios; thus, presenting difficulty in evaluating offloading schemes for adoption in software 
development process. These and more challenges are later explained. Furthermore, Johann et al [7] 
demonstrated that the granularity of test either reveals or hides the actual behaviour (energy-efficiency) of 
software; and therefore can impact any conclusions made. Similarly, due to varying architecture scenarios 
adopted by different existing offloading techniques it is challenging to compare between techniques, as any 
conclusions made would be difficult to verify. 

To address the identified gap of coarseness and inconsistencies in the evaluation of MCAs we proposed 
a behaviour-driven full-tier approach for green evaluation of MCA (Beftigre). Beftigre is focused on green 
metrics, such as software energy usage, resource usage and performance evaluation [7], [8]. 

Behaviour-driven: Behaviour-driven development (BDD) is a design approach to aid collaboration 
between non-technical contributors (such as business analysts, or users) and software engineers. 
Consequently, BDD gears towards more verifiable and collaborative test process by being able to compare 
expected behaviours with actual results, following standard simplified scenarios – constructed by simple 
language clauses: GIVEN, WHEN and THEN [9]. Beftigre adopts BDD concept and simple clause 
approach to simplify the comparison and evaluation of offloading schemes; and thus, simplifying software 
design decisions. Full-tier: the approach adopts the concept of fine-grained software testing to present the 
implications of an offloading scheme on the mobile tier as well as on the cloud tier. By evaluating the 
system as a whole, the approach can detect whether an offloading scheme is aware of both mobile and cloud 
resource consumption. The full-tier objective of the approach is also assisted by the BDD concept. To 
facilitate the approach, an API and analysis tool have been implemented for Android platform. The API 
and tool have been evaluated using existing offloading schemes on a computation-intensive application.  

The rest of this paper is organised as follows: Section 2 motivates the research and outlines the 
challenges to the existing technique adopted in MCA evaluation. Section 3 presents the proposed solution 

                                                           
1 The analysis for offload-able classes is necessary due to the inadequacy of cloud to perform some mobile specific 

functions such as those tied to sensors, cameras, GPS etc.; and also to identify the application features that are resource-
intensive. 
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(called Beftigre). Section 3 presents the design of an API and tool which implements the Beftigre approach 
for Android mobile and cloud evaluation of MCA. The design is presented for individual components of 
Beftigre. This is followed by experimental evaluations in Section 5. The paper concludes with a review of 
related work in section 6 and opportunities for future research; in section 7. 

 MOTIVATION AND CHALLENGES 

In this section, we use examples from the research to highlight the challenges/difficulties of architecture 
scenario approach in the evaluation and comparison of offloading schemes. Thus, deriving the goals and 
novelty of the proposed solution. 

2.1 Motivating Example 

Let us consider a situation in the development of mobile cloud application. The choice of the offloading 
scheme would be a critical decision, as it is the core functionality which transforms mobile application to 
MCA [3]–[6]. Assuming a development team chooses to use an existing scheme, they will need to evaluate 
and compare between existing offloading schemes. Two offloading schemes have been selected, one based 
on single thresholding [4] – ST for brevity, and another based on multi-layer perceptron (MLP) [3] – known 
as POMAC. Further details on how the schemes work, including their decision making/learning process, is 
presented later in the evaluation section. Also selected is an optical character recognition (OCR) Android 
application called Mezzofanti, used in the literature [3], [4], to validate the schemes. From the literature 
[3], [4], the computation-intensive offloadable component is the OCR functionality. The Data presented in 
Table I is obtained from the literature using WebPlotDigitizer2. 

To achieve the evaluation of individual schemes and comparison between the schemes (ST vs. 
POMAC), mobile-centric architecture scenarios provided by the literature are used. Mobile-centric means 
that the approach provides green metrics results for the mobile tier only (i.e. performance and energy usage). 
Although mobile-centric architecture scenario approach is prevalent in the research [3]–[6], it possesses 
challenges which make it difficult to come to a satisfactory conclusion for evaluation and comparison of 
schemes. 

2.2 Research Challenges 

The research challenges identified for mobile-centric architecture scenario are presented below;  

i. Inconsistency in evaluation results of scenarios for an offloading scheme 

To evaluate POMAC, Hassan et al. [3] defines four3 scenarios (illustrated by Figure 1). The efficiency of 
POMAC is evaluated by comparing the POMAC scheme against other defined architecture scenarios using 
percentage difference. Deducing from Table I, we can conclude POMAC energy usage as approximately 
5% inefficient compared to both local and optimal scenarios and 118% efficient compared to server 
scenario. Although the local and optimal percentage differences seem to arrive at the same conclusions, 
there is no clear relationship between these scenarios. This is shown by ST which has approximately 71%, 
43% and 8% energy improvement based on comparison to local, server and optimal scenarios respectively. 
This challenge makes it difficult to arrive at easily verifiable conclusions for schemes. 

ii. Variability of architecture scenarios (making it difficult to compare between offloading schemes) 

Different sources use varying scenarios to evaluate proposed schemes, e.g. four3 scenarios  are used to 
evaluate POMAC [3], while five4 scenarios are used to evaluate ST [4]. Consequently, scenarios will have 
to be matched (as shown in Table II) in order to establish a basis for comparison. This process introduces 
complexity in comparing schemes especially since scenarios which may be congruent (by inference) may 
have slightly different definitions from each other (based on the actual literature implementation). For 
example, although five scenarios are defined in [4], only four from [4] can be used to match with [3] as 
shown in Table II. Furthermore, as well as being a challenge to the comparison, the viability of scenarios 
introduces difficulty in communicating evaluation results between the development teams. 

                                                           
2 WebPlotDigitizer: data extraction tool; http://arohatgi.info/WebPlotDigitizer [01-Jul-2016]. 
3 Four scenarios are defined by [3] for evaluating POMAC, they are OnDevice,  OnServer, Optimal and POMAC. 
4 Five scenarios are defined by [4] for evaluating ST, they are Smartphone only, Offloading w/All objects, 

Offloading w/Necessary objects, Offloading w/Necessary objects (delta), and Offloading w/Threshold check. 

http://arohatgi.info/WebPlotDigitizer
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The summary column of Table II is used to match the scenarios from the literature ([4] and [3]). Local 
is the execution of the application without any offloading. Server is a scenario where all offloadable objects 
are always executed on the server. Optimal is a scenario where only offloadable objects assessed as having 
better remote execution time compared to that of local are offloaded. These tasks are mainly computation 
or data-intensive [3], [4]. Also, the optimal scenario is only optimal from the perspective of mobile tier 
efficiency (i.e. mobile performance or energy savings). The Scheme is based on extending the previous 
optimal scenario with the decision-making5 mechanisms for offload. It refers to the proposed offloading 
schemes in the literature. While the optimal scenario is focused on mobile-tier efficiency, the Scheme 
(which extends the optimal scenario with a decision maker) ought to achieve some level of overall 
efficiency (by a decision maker which is also cloud-aware). An objective of this study is to present an 
approach which can assess the overall efficiency of schemes without requiring multiple scenarios, for 
evaluation efficiency and accuracy. 

iii. Coarse-granularity of evaluation 

Different sources use different levels of experimental rigour. For example; [3] performed a more rigorous 
experiment for POMAC evaluation (as the scheme is based on MLP), compared to [4]’s experiment for ST 
which is not as rigorous. Comparing ST energy with POMAC (using optimal scenario as reference) gives 
approximately 8% gain/savings in ST and 5% loss in POMAC. The case may be that in adverse 
environmental conditions ST scheme fails to save mobile energy (which is true from later experiment – 
section 5). Also since the analysis is mobile-centric, it fails to provide the overall implications of a scheme’s 
decision to or not to offload. This challenge poses difficulty when deciding schemes with an overall 
efficiency (i.e. mobile as well as cloud resource awareness). We later show that with full-tier evaluation 
one can better understand if a scheme just keeps offloading to the server, or if it checks server availability 
(i.e. robustness). 

 BEFTIGRE APPROACH 

The challenges and difficulties of the mobile-centric architecture scenario approach fall into the category 
of (green6) software testing/evaluation [7], [10]. In response to the identified challenges, we propose an 
evaluation approach called Beftigre, which adopts the use of the behaviour-driven technique to address 
challenge 1 and 2. Furthermore, we treat challenge 3 as a software testing granularity problem, consequently 
resolved by fine-grained testing of the mobile tier and cloud tier (i.e. full-tier). In particular, this paper 
makes the following novel contributions: 

3.1 Behaviour-driven Comparison – as single scenario 

Beftigre adopts BDD concept. BDD simplifies software testing by using clauses which can easily be 
communicated across development team to construct a scenario for testing [11]. Similarly, Beftigre’s 
Comparator (Figure 2) uses these clauses in form of annotations to specify the expected (THEN) MCA 
system behaviour, given a set of conditions (GIVEN and WHEN). The annotations can be applied to a test 
function (TFn; which is a method to test the mobile component – as shown in Figure 2), and the information 
supplied through the annotations is then used (by Full-tier Analyser) to evaluate or compare against the 
actual test results. Thus, the behaviour-driven comparison process acts as a single scenario replacing 
varying architecture scenarios, and alleviating inconsistency of architecture scenarios; therefore a solution 
to challenge 1 and 2. Furthermore, the annotations are used to implement full-tier comparison (to address 
challenge 3) by using @Given and @When annotations to specify mobile and server expected preconditions 
respectively, for comparison on Then clauses. 

Markers are objects for counter-based instrumentation which has attributes that can be written to file 
for processing. The purpose of Markers is to integrate instrumentation counters with annotation information 
(of comparator component) for efficient single scenario comparison. The start and finish counters in 
Markers component are vital to calculating actual values of THEN clause (mobile energy and time, server 
CPU and memory used) which are used to compare against expected values of @Then annotation. Thus, 

                                                           
5 Decision making is the check on the environment conditions of the communications which influence the 

offloading. Decision making mechanisms can be based on single (static) thresholds [4] or predictive learning [3]. 
6 Green is the term used for software optimisation and testing based on the energy- and/or resource- efficiency and 

performance metrics [8], [35]. Since offloading schemes target energy-efficiency of mobile devices, similarly scenario 
based comparison is within the green software testing category. 
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Marker interface contributes to the behaviour-driven solution to challenge 2 and contributes a foundation 
for full-tier analysis (i.e. based on THEN clauses). 

3.2 Full-tier Analysis – results from mobile and cloud perspective 

Beftigre evaluates a MCA from mobile (power usage and performance) and cloud (resource usage) 
perspective to produce full-tier actual test results. The analysis is accomplished by Full-tier Analyser 
(details presented later in Algorithm 1 and 2). The aim is that by full-tier analysis (as opposed to mobile-
centric testing) an offloading technique can be finely evaluated in terms of its impact on the system as a 
whole. [7], shows that a fine-grained approach to energy measurement (using counters) aid reveal specific 
energy usage points. Similarly, to identify specific energy points, Beftigre adopts fine-grained measuring 
distributed across the mobile tier (using Markers) and cloud tier (using Metrics Collector). Consequently, 
by revealing the mobile to cloud resource consumption implications of a MCA application, the full-tier 
analysis objective addresses challenge 3. 

3.3 Unified Monitoring – which facilitates full-tier results 

The required data for full-tier analysis is collected by Power Monitor and Markers for mobile energy and 
performance respectively; by Metrics Collector for cloud resource usage; and by Resource Simulator for 
determining cloud resource availability and network. By unified monitoring of mobile and cloud tier, the 
aforementioned components contribute to the full-tier evaluation. Specifically, these components (Figure 
2) contributes to the research objectives as follows;  

Power Monitor is achieved by PowerTutor model via an API for seamless integration with the BDD 
objective of Beftigre. The power monitor generates PowerLog, which (in conjunction with counters from 
Marker component) is used to compute actual mobile energy usage which is used to compare against the 
expected used energy attribute of @Then annotation. This is a step which contributes to the mobile tier of 
the full-tier evaluation, using behaviour-driven concept. 

Server Monitor provides the logic for monitoring and serving the cloud tier metrics useful for the 
behaviour driven full-tier evaluation. It uses PerfMon Server Agent to compute metrics for actual cloud-
tier values of Then clause (i.e. percentage CPU and memory usage), and socket server programs to compute 
metrics for actual values of Where clause (i.e. available percentage CPU and memory). 

Resource Simulator makes it possible to evaluate the MCA scheme based on different set environmental 
conditions. Furthermore, it provides the capability for introducing controlled rigour (i.e. experimental 
replication) to the evaluation process (as shown later in section 5). In the implementation section, the 
simulator is provisioned with the server monitor. 

Metrics Collector provides the logic (client programs) for saving the cloud tier metrics received from 
the server monitor component. The metrics collector persists the actual values for When clause and cloud-
tier values of Then clause. By generating evaluation data for cloud-tier, the metrics collector contributes to 
the full-tier solution to challenge 3. 

The aforementioned components focus on monitoring: power and performance for the mobile tier, and 
resource usage for cloud tier, because they are the popularly investigated green metrics for MCA domain 
[1]–[4], [12]. Mobile energy is increasingly gaining research interest due to the resource-constrained nature 
of mobile devices and the increasing demand for rich mobile applications. Resource usage (specifically 
CPU and memory) is a commonly investigated metrics when monitoring workload impact on the cloud 
[12], [13]. In the current Beftigre approach, the scope of the energy measurement is at the application level, 
i.e. the overall energy consumption of the mobile execution. The overall mobile energy is measured using 
power tutor model and applies to all network types (including WLAN and 3G). 

 DESIGN DETAILS 

To automate the proposed approach we have implemented an API (consisting of power monitor, marker 
and comparator interface) and a desktop tool (consisting of server monitor, metrics collector, and full-tier 
analyser interface). 

Beftigre API has been built for the Android platform and can be applied to the test module (Figure 3a) 
or application module (Figure 3b) of an android project for measuring power and performance of the 
application. Beftigre desktop tool (called the orchestrator for brevity) is used to launch server monitoring 
and testing, and also provides data analysis feature for the logs collected from mobile and cloud domain. 
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Server monitoring and testing in the orchestrator has been tested for Linux based servers (specifically on 
Amazon EC2 VMs). 

4.1 The Power Monitor Interface 

Power monitoring in Beftigre is achieved using PowerTutor [14] model. Although PowerTutor monitor is 
widely adopted in the research for mobile power monitoring, it is worth noting that PowerTutor seems to 
produce accurate energy measurement for specific brands and models of mobile devices and rough 
estimates for others [14]. However, as exact measurements may not be necessary for relative comparisons, 
we adopt the widely used PowerTutor model, leveraging the core logic of the monitor for Beftigre API. 
Furthermore, two methods are exposed to start and stop the monitor. In Beftigre API, the PowerTutor7 
based monitor is not a UI-based application but a service which runs in the background to monitor the 
application power usage. startPowerMonitoring() launches PowerTutor, while stopPowerMonitoring() 
stops and saves power data to PowerLog. 

The purpose of adapting the monitor as an API is for seamless integration with mobile test package; 
consequently, allowing for ease of control of the monitoring process from the code. Furthermore, as a 
background process, the monitor does not interfere with the application being tested. As shown in lines 14 
and 28 of Figure 3a, the monitor is started and stopped right before and after the call to register and save 
marker objects within setup and teardown methods of android test framework, respectively. This is to 
ensure that the monitor captures all test execution process. 

4.2 The Marker Interface 

Markers are objects for counter-based instrumentation (line 6) which has attributes that can be written to 
file for processing. A marker object takes a label attribute as a parameter which is used to associate counters 
with test functions. After markers have been created, registerMarkers() is used to validate and assign unique 
identifier to all marker objects to be used in the test, while saveMarkers() is used to save and write the 
attributes of registered Marker objects to MarkerLog. A marker object (Mn, n is an integer typed unique 
identifier) consists of the following attributes: Mn_start, Mn_finish, Mn_label, and Mn_anno. Mn_start and 
Mn_finish are references to the timestamps in ms used to identify the execution block for the test section. 
Mn_label is the reference to the label assigned during marker creation. And Mn_anno is a reference to the 
annotations assigned to the test function (i.e. lines 17 to 19). 

Beftigre carries out four types of exception handling associated with Marker objects: 
DuplicateLabelException is thrown if two or more markers were registered with the same label. Labels are 
used to create a unique identifier for markers, no two markers can have the same label. 
DuplicateStartMarkerException and DuplicateFinishMarkerException are thrown from the Marker class. 
The former is thrown when the API identifies that start() was called more than once on a registered marker 
while the latter is thrown when finish() is called more than once on a registered marker. 
UnevenMarkerException is caused if a marker set was incomplete. For example when a marker is started 
by calling start() method, and not finished. All registered markers must have a complete set. A marker is 
said to have a complete set if it calls a start() and a finish() method. 

With the Beftigre API, one test method can be created within a test project to test the overall application 
– this includes only a marker object and annotations (see Figure 3a). Multiple markers can be applied within 
the application project; however, annotations are not applicable in this scope (see Figure 3b) because the 
annotations of the main test method (in Figure 3a) covers any markers used within application project (in 
Figure 3b). Furthermore, service-based API features (such as start and stop power monitoring, and base 
status service) are only declared once from the test projects, as the call from test project captures the 
application module execution. 

4.3 The Comparator Interface 

 The comparator is implemented as a method named getBaseStatus() which calculates actual mobile CPU 
and memory availability, consequently; contributing to the single scenario and behaviour-driven objective, 
by providing actual values for Given clause. It is made as the last API call (line 29), to ensure the process 
does not add any overhead to the power and performance readings; furthermore, it is designed as an android 

                                                           
7 PowerTutor; https://github.com/msg555/PowerTutor [01-Jul-2016]. 

https://github.com/msg555/PowerTutor
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alarm monitor service, to ensure the process completes even after the test is terminated (i.e. tearDown() 
method on line 30). 

The annotations: @Given, @When, and @Then are the basis on which offloading schemes are 
evaluated or compared. @Given annotation specifies the expected percentage CPU and memory availability 
of the mobile device, both of which are integer typed. Recall, the actual value for Given clause is obtained 
from getBaseStatus(). @When annotation specifies the expected bandwidth (bps), latency (ms), and server 
percentage CPU and memory availability, all of which are integer typed. The actual value for When clause 
is obtained from the server monitors. @Then annotation specifies the expected mobile elapsed time (ms) 
and used energy (mJ), and cloud percentage used CPU and memory, during the period of the test. All 
parameters are integer typed except used energy which is double typed. 

 @Given is a precondition for the mobile end, while @When is the precondition for the server end. 
@Then annotation is the postcondition with elements specifying values to be asserted or compared against. 
Both the pre and post conditions are based on the full-tier concept (i.e. mobile and cloud involved). 

4.4 The Server Monitor Interface (with Simulator) 

The server monitor interface is used to orchestrate three monitoring processes and two resource simulation 
processes on the server. For server monitoring: PerfMon Server Agent monitors the percentage CPU and 
memory usage. CPUMemoryAvail computes percentage CPU and memory availability using SIGAR API8. 
And BandwidthLatency is used for obtaining bandwidth and latency. The last two monitors are java socket 
server programs. For resource simulation: Traffic Control Utility is used to simulate different network 
conditions (using the parameters: bandwidth and latency)9, Stress Utility is used to simulate CPU and 
memory load (using the parameters: CPU load and memory load). TC and Stress are both Linux utilities. 
To start the monitoring the aforementioned simulation parameters are passed to the Server Monitor 
Interface (as shown in Figure 4). 

4.5 The Metrics Collector Interface 

 Following the start of server monitors and simulators, is the launch of metrics collectors. The Metrics 
Collector Interface is composed of three metrics collector processes within the orchestrator. 
CPUMemoryAvailClient records the percentage CPU and memory availability obtained from 
CPUMemoryAvail monitor. BandwidthLatencyClient records bandwidth and latency, which is measured 
by sending packets to and from the BandwidthLatency monitor. CPUMemoryAvailClient and 
BandwidthLatencyClient collectors execute only once (i.e. when metrics collectors are launched) and then 
terminates. PerfMon Metrics Collector runs continually for a scheduled time, recording server CPU and 
memory usage at intervals using Apache JMeter binaries. Furthermore, PerfMon Metrics Collector is 
launched as a listener, based on HTTP request sampling, within JMeter test plan. The test plan implements 
a loop controller to ensure that metrics recording process is continuous until a scheduled duration is elapsed. 
The duration is any speculated time, in seconds, which covers the evaluation process. 

Network and resource availability metrics from Socket clients are first logged into MetricsLog, followed 
by the Resource usage metrics from PerfMon Metrics Collector. The purpose of using PerfMon Metrics 
Collector for continuous recording of resource usage at intervals is so that the average percentage resource 
usage (of the MCA scheme being evaluated) can be computed after the test is done. See Algorithm 1 for 
further details. 

4.6 The Full-tier Analyser Interface 

Completing the test on the mobile and server tier generates three logs: MarkerLog and PowerLog from the 
mobile; and MetricsLog from the server. The full-tier analyser interface (analyser for short) analyses data 
stored in the logs both from mobile and cloud tier to produce full-tier results. The analyser also references 
the behaviour-driven annotation from the test for comparison. The analyser contributes the final solution to 
the challenges in section 2 by consolidating the contributions of all the Beftigre components. 

Algorithm 1 and 2 presents the Evaluate and Assert functions of full-tier analyser respectively, used to 
compute the results of MCA test. Evaluate presents the algorithm useful for evaluating an offloading 
scheme (self-evaluation) which gives a full-tier result (mobile performance and energy, with cloud CPU 

                                                           
8 SIGAR API; https://support.hyperic.com/display/SIGAR [01-Jul-2016]. 
9 Slow: simulates low bandwidth, high-latency; https://gist.github.com/obscurerichard/3740206 [01-Jul-2016]. 

https://support.hyperic.com/display/SIGAR
https://gist.github.com/obscurerichard/3740206
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and memory used) that is, the actual values of Then clause. Assert presents the algorithm useful for 
comparing between offloading schemes. Assert extends the Evaluate function in order to determine the 
relationship between the schemes using the behaviour driven annotations, by asserting which scheme is 
more efficient based on the given and where conditions or whether the expected and actual values are from 
the same/similar system/offloading scheme. The functions which make up the analyser are presented below 
in the order of execution; 

• ExtractExpected extracts the expected value of all attributes of annotations from MarkerLog. 
• ExtractActual extracts the actual (or measured) values of Given and When clause, i.e. mobile CPU 

and memory availability from PowerLog; and cloud CPU and memory availability, bandwidth and 
latency from MetricsLog (used in line 2 of Algorithm 2). 

• Map obtains the start timestamp (TS) and finish timestamp (TF) from MarkerLog, and matches 
them to that of the PowerLog and MetricsLog in order to obtain the exact mobile power (PS to 
PF), cloud CPU (CS to CF) and cloud memory (MS to MF) used by the MCA during the 
evaluation. 

• Evaluate (Algorithm 1) firstly computes the elapsed time (ms), used energy (mJ), average CPU 
usage (%) and average memory usage (%) using the data from Map function. 

• Assert (Algorithm 2) compares Then clause actual values from Evaluate function with the @Then 
annotation expected values from ExtractExpected function to assert a result following some 
condition. Assert is achieved in two stages below; 
Stage 1 Assertion: 
Result – The assertion result (lines 4-8, Algorithm 2) gives the percentage increase or decrease10 
between expected scheme and actual scheme at a full-tier scale (i.e. mobile elapsed time, mobile 
used energy, cloud CPU usage, and cloud memory usage). 
Condition – The assertion is performed if the Given and When values (from Evaluate and 
annotation) are within ± 5% range11 (meaning schemes are comparable). 
 

Final Assertion: 
Result – asserts that the expected and actual schemes are the same or similar system (lines 9-11, 
Algorithm 2). 
Condition – the assertion is true if any three values of Then clauses of Stage 1 Assertion are 
within ± 1%. In other words if after comparing actual and expected of Then clause, and any 
three of its attributes (say; mobile time, energy and cloud CPU) has percentage increase or 
decrease within the range of ± 1%, then the actual and expected schemes are similar or the same. 

After the above analysis process is completed, a CSV file containing the computed values/summary of 
analysis is generated for reporting purpose. The following section presents an evaluation of the Beftigre 
approach using real-life application. 

 EXPERIMENTS AND EVALUATION 

5.1 Experimental Setup 

i. Experimental Settings 

We have evaluated the performance of Beftigre and its effectiveness in MCA evaluation and comparison 
by applying it to three real-world open-source Android mobile applications used in existing research [3], 
[5]. The purpose of using case study applications from the literature is because of their identified taxonomy 
(for offloadable tasks). Table III presents details of the mobile applications used. Table III shows that 
computation- and data- intensive taxonomy applications were used for a more rigorous evaluation. The 
mobile device configuration used for the experiment is a Samsung Galaxy S3 running Android 4.3 on Quad-
core 1.4 GHz, with 1.5GB memory. While the cloud configuration is an Amazon EC2 m3 instance running 
Linux Ubuntu 14.04 64 bit, with Intel Ivy Bridge 2.5GHz CPU and 3.75GB memory. We implemented 
offloader and launcher (Figure 1) using Java socket API which sends requests and receives responses for 
offloaded components. 

                                                           
10 Percentage increase (in actual value compared to expected value) means increased or more resource demand, 

while percentage decrease means decreased or less resource demand. 
11 Existing experimental research e.g. [18], uses 5% range as acceptable range of comparison between expected 

and actual power readings (for power meters vs power models, respectively). We therefore apply ±5% range to our 
green metrics. 
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Furthermore, the research questions investigated by the experiment are: 
• How does Beftigre compare to non-BDD in terms of effectiveness in MCA evaluation? This 

question is addressed in point 1 to 3 of section 5.2. 
• To what extent can replication be achieved in Beftigre? This point is addressed by point 4 of 

section 5.2. 
The dependent variables in the experiment are, i) the evaluated mobile cloud metrics, which is the result 

of evaluating a scheme, and they are: mobile performance, mobile energy, cloud CPU and memory usage; 
and ii) assertions, which is the result of comparing between two schemes. 

The independent variable in the experiment is the type of evaluation approach used for the MCA: 
• Beftigre: the behaviour-driven full-tier approach. This is the proposed approach in this paper – 

which is focused on constructing scenarios from behaviour-driven parameters of clauses (such as 
Given, When and Then). Thus, this does not require multiple architecture scenarios and also 
integrates well with the development process. 

• Non-BDD: the mobile-centric architecture scenario approach presented in motivation section. This 
is the current type of evaluation used in current research – which is focused on capturing accuracy 
in test result by using as many architecture scenarios as possible (such as  Local, Server and 
Scheme scenarios). 

In the evaluation of Schemes, statistical analysis methods have been applied to ascertain the 
effectiveness of Beftigre in achieving rigour. The methods: mean and standard deviation were used for the 
evaluation of Beftigre approach as shown in Table VI. The non-BDD approach maintains the use of 
averaging on varying architecture scenarios (a method used in existing literature [3], [4]), and thus evaluated 
in this research, as presented later in Table IV. The software packages and technical documentation for the 
experiment have been made publicly available at http://beftigre-mca.appspot.com. 

ii. Simulation Parameters 

We use stress and TC utility (also utilised by Beftigre’s Resource Simulator) to provide parameters which 
simulate different environmental conditions to test the schemes. The above parameters are used to maintain 
the same level of rigour for both Beftigre and Non-BDD approaches. The simulation parameters12 (also 
used in Tables IV and V) are as follows: 

• WLAN: consists of 30mbps bandwidth, 20ms latency, 2 CPU worker loads and 2 memory worker 
loads. With these parameters, local execution time is greater than remote execution time, which is 
appropriate for offload. 

• Outlier: consists of 20mbps bandwidth, 200ms latency, 2 CPU worker loads and 2 memory worker 
loads. These parameters are used to verify the offloading schemes. 

• 3G: consists of 500kbps bandwidth, 200ms latency, 5 CPU worker loads and 5 memory worker 
loads. With these parameters, local execution time is less than remote execution time. 

iii. Sample Evaluated Offloading Schemes 

For each approach (Beftigre and Non-BDD) we compare two offloading schemes:  
• Scheme1 is based on threshold-based policy, similar to [4]. 

In threshold-based offloading scheme [4], a method is offloaded only when its parameter data size is greater 
than a predefined threshold value. The scheme in [4] is implemented based on runtime checkpointing which 
incurs transmission overhead due to varying offload data size, hence the use of data size for thresholding. 
In the experiment we omit runtime checkpointing, thus making the offload data size fixed for all the 
applications used in the experiment. Consequently, we use a predefined threshold based on the network 
rather than data size. Therefore, the criteria for offloading in Scheme1 is when bandwidth is greater than 
500bps, and latency is greater than 150ms. The bandwidth and latency values are obtained by sending 
packets to and from the server. The premise behind the effectiveness of static thresholds – such as Scheme1 
– is that the local execution time of the application for the threshold used is always greater than the remote 
execution time; therefore, using the threshold would amount for time or energy savings [4]. Within the 
Simulation Parameters section, the WLAN offload favourable condition simulates environment favourable 
for the static threshold of Scheme1.  

• Scheme2 is based on perceptron algorithm, similar to [3]. 

                                                           
12 The settings use in WLAN, Outlier and 3G are found to be commonly used in experiments [3], [15]. 

http://beftigre-mca.appspot.com/
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Scheme2 uses multiple criteria for offloading – based on learned data (as opposed to predefined static 
threshold). Offload criteria are bandwidth, latency, server and mobile CPU and memory availabilities. The 
adapted perceptron algorithm used in the experiment is open sourced13. To extract learning data for 
Scheme2, we implement a special version of the application having the offloadable component execute 
remotely (LearnRemote) and locally (LearnLocal). LearnRemote and LearnLocal are instrumented with 
random simulation parameters (including WLAN, Outlier, and 3G) to generate the following metric; mobile 
CPU and memory available, server CPU and memory available, bandwidth, latency, and elapsed time. The 
generated data is then used to build the training dataset classified for remote or local execution. A data 
subset is classified as a remote data if the remote execution time is greater than local execution time, 
otherwise, it is classified as local data. 

5.2 Results and Discussion 

The results of the experiment have been presented in Tables IV and V, and Figures 5-8. Following the full-
tier and behaviour-driven objective of Beftigre, the approach has been evaluated against the earlier 
described mobile-centric architecture scenario approach (Non-BDD). 

1) Inconsistency Challenge to Non-BDD 

The Non-BDD approach (Table IV) presents the elapsed time and used energy of the mobile device during 
the period of the experiment. Since the same level of rigour was applied on all experiment, sample 
population of 9 (3 samples from each simulation parameters – 3G, WLAN, and Outlier) was used. Table 
IV further specifies three architecture scenarios: Local, Server and the scheme being evaluated. The results 
of the Local and Server scenarios are the same for both schemes and are consequently used as a basis for 
evaluating the schemes (using percentage difference), and subsequently used for comparison in the Non-
BDD approach. 

The samples for non-BDD evaluation (Table IV) was broken down, using Linpack as an example, into 
respective resource metrics as shown in Figures 5-7. These results show inconsistencies and complex 
correlation between scenarios. For example, the Local scenario (which is affected by less environmental 
inconsistencies – only mobile CPU and memory availability – Figure 7), begins with its first sample as 90% 
and 14%, whereas Scheme1 and Scheme2 are 98% and 18%, 85% and 17% for  CPU and memory 
availability respectively. This inconsistency follows through the samples, and also occurring in the Server 
scenario. Even more, the Server scenario inconsistencies are more profound as it also involves network and 
server resources – Figures 5 and 6. 

Conclusively, Non-BDD is not very effective for the comparison of schemes as each sample that make 
up the mean of the experiments are affected by different conditions which are unrelated to the scheme. With 
Non-BDD, we can, however, make a generalised conclusions, such as scheme1 is more energy efficient 
compared to scheme2 on the basis of local and server scenarios – this would be based on the assumption 
that a more rigorous experiment would span different environmental conditions, as 35.8mJ to 2.1J ratio is 
a significant saving on Scheme1. The significant saving is due to the simulation parameters used which 
seemed to favour Scheme1, as the robustness of Scheme2 in adverse conditions seemed to be compromised 
by its energy intensive decision making – especially if the adverse conditions are not extreme – further 
explained in next point. Having extracted a conclusive result using Non-BDD approach, it is difficult to tell 
the behaviour of the scheme, for instance, given a specific (kind of) environmental condition.  

Also notice that for MatCalc application which is data-intensive, Non-BDD (Table IV) shows Scheme1 
to be 31.61% more energy-efficient compared to Server whereas Scheme2 is only 19.79% more efficient. 
Beftigre approach (Table V) shows the reverse to be the case. This is understandable because Scheme2 is 
based on trained data and is aware that the application is data-intensive, and therefore stops subsequent 
offload. The misconception of results associated with the Non-BDD approach is due to the randomisation 
of samples – in which case there is more presence of favourable conditions (such as WLAN) than 
unfavourable (such as 3G). Also with NQueen application, the same inconsistency issue reoccurs in Non-
BDD (Table IV) where Scheme1 and Scheme2 are presented with very close results for elapsed time, i.e. 
8.63% and 8.74% respectively, which is however clarified by Beftigre approach (Table V). Also, there is 
no consistency across applications with the Non-BDD approach (Table IV), for example; Scheme 1 is more 

                                                           
13 Perceptron Algorithm in Java; https://github.com/nsadawi/perceptron [01-Jul-2016]. 

https://github.com/nsadawi/perceptron
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energy-efficient in Linpack application (using Local scenario) compared to Scheme 2, but in NQueen the 
reverse is the case. Beftigre, however, maintains consistency across applications. 

 
 
 
 
 
 
 

2) Beftigre Full-tier Effectiveness 

Table V presents the results of sample evaluation and comparison using the Beftigre approach. First, the 
schemes are self-evaluated14 using the outlier simulation parameter (20mbps bandwidth, 200ms latency, 2 
CPU loads and 2 memory loads), these are provided through the Orchestrator’s Server Monitor Interface. 
For Linpack: the evaluation of Scheme1 gives 22208ms and 3008mJ, and Scheme2; 21887ms and 3181mJ 
for mobile-tier green metrics (elapsed time and used energy). Furthermore, the cloud CPU and memory 
usage during the process are obtained – as 58% and 28% for Scheme1, 60% and 32% for Scheme2. From 
Table V evaluation, we can predict; from the CPU and memory usage of both schemes; that Scheme1 was 
executed locally and did not offload whereas Scheme2 did. 

Recall that in Scheme1, the criteria for offload is set to be as bandwidth >= 500bps and the latency <= 
150ms, as a result, using the outlier, Scheme1 was not offloaded – thus consuming more time and energy. 
This means that Scheme1 is not robust enough to be aware of conditions beyond the parameters of its 
criteria constraints. Conversely, Scheme2 which learns from trained data is not only aware of adverse, 
environmental conditions but also incurs training overhead – which in this case is more energy 
consequential than time. The overhead is caused by the decision-making process; communication to and 
from the server to calculate cloud CPU and memory availability, as well as mobile resource availability 
and network states, prior to deciding to offload. Inspecting from the full-tier analysis, we can deduce that, 
based the outlier parameters Scheme2 is both inefficient in mobile and cloud tier. However, since it is aware 
of the environment, its benefits would be more appreciated in adverse conditions (which may include 
mobile devices with very low computing capacities). Furthermore, as Scheme2 was found to be inefficient 
for mobile and cloud tier due to an excessive network transmission, improving Scheme2 would demand an 
insight into overall transmission energy during offloading and decision making. In the current experiment, 
transmission energy was not investigated, but future work on Beftigre would look into the 
investigation/adoption of successful methodologies [16], [17]  for assessing such metrics. 

3) Robustness of Beftigre Assertion 

As well as providing the full-tier capacity to deduce the behaviour of a scheme, by adopting BDD concepts 
Beftigre also makes it easy to communicate the expected goal of schemes within software teams – from 
business analyst to software engineers. For example, Table V shows the comparison of the schemes based 
on the earlier evaluated simulation parameters. By re-executing Scheme1 we see changes in the actual 
experimental values, however, these changes are within ± 1% of the percentage increase or decrease 
between the expected of Scheme1 and actual of Scheme1 (to satisfy line 9 of Algorithm 2). The reverse is 
the case when Scheme1 is compared against Scheme2, the percentage increase/decrease are beyond ± 1%. 

Consequently, by developing a test plan (using simulation parameters) earlier, and a sample application, 
schemes can be better evaluated, compared and communicated between development team – thus adopting 
the wider software engineering objective of BDD. Furthermore, by adopting Beftigre, one can avoid 
inconsistencies and the difficulty of the variability of architecture scenarios through the use of guided 
annotations, while providing a finer granularity of results through full-tier analysis/evaluation. 

4) Reproducibility Effectiveness of Beftigre 

                                                           
14 For self-evaluation of an application (which does not require annotations), @Given values can be set to 0. 

However to compare against results of a previous test or between offloading schemes, all values for all annotations are 
required. 
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Table VI uses the statistical method (of standard deviation) to verify the effectiveness of Beftigre for 
repeatability or reproducibility of its test results. The verification is achieved using: mean (on five samples 
for each Scheme run with Outlier parameters), standard deviation and 5% range criterion. Recall that in 
Beftigre approach, 5% range criterion is the basis on which two schemes are compared. In other words: two 
schemes are comparable if the preconditions (@Given and @When) of the expected scheme are within ± 
5% range of the actual preconditions – as shown by inRange(a, b) method of Algorithm 2. The 5% range 
criterion is popularly explored in research [18] and in a similar context as Beftigre (i.e. for comparison). 
The purpose for which the range criteria was applied in Beftigre approach is in consideration of the 
unpredictable and varying nature of the MCA environment. The difficulty in predicting MCA environments 
is a challenge which in practice contributes to the inconsistencies of existing MCA evaluation approach (as 
discussed in Section 2). To achieve a solution with a better consistency of results, Beftigre applies 
environmental control and scoping. Control is orchestrated by the Resource Simulator while the range 
criteria (of Full tier analyser) provides scope for comparison. Together the aforementioned features achieve 
reproducibility as shown in Table VI. 

For example, from Table VI varying samples have been executed using the Outlier parameter settings, 
and the deviation gives the varying range of the samples – demonstrating natural inconsistencies in MCA. 
However, despite the inconsistencies, there are mostly overlaps in the values of the environmental metrics 
(i.e. CPU, memory, etc.) for the schemes (Scheme1 and Scheme2). Furthermore, the deviations are also 
within the ± 5% range criteria (not more or less), thus validating the scoping effectiveness of the Full-tier 
analyser (achieved by inRange) for comparison of schemes. Therefore the extent to which replication can 
be achieved in our evaluation approach is by using range criteria and applying an element of control to the 
environment. 

5.3 API Performance 

The API performance evaluation was performed on Windows 10 x64 PC, with Intel i7 2.20GHz CPU and 
8GB memory. Furthermore, the mean value of 30 test samples (on local execution) was used to investigate 
the performance (overhead) of Beftigre API on mobile testing by comparing the build, setup and execution 
time of Default test setup against Beftigre setup (Figure 8). The Default setup, is the conventional android 
test setup with Robotium API for UI test, while Beftigre setup adds the Beftigre API to the default setup. 

Build time; measured using Android Studio’s build functionality; is the time to (re)build the modules 
and libraries of the project. Setup and execution time are measured using Java timestamp utility. Setup time 
is the time it takes to initialise all test library objects used (i.e. Lines 11-16 of Figure 3a). Execution time is 
the time from setup to test completion. 

From Figure 8, less than 0.3% increase is observed in the execution time, this is due to the persistence 
of Marker objects as logs. Also, as the power monitor runs as a different android service (and as a different 
process) to the test process, its execution has no effect on the test; this is similar to executing PowerTutor 
application external to the application under test. Consequently, the results of the evaluation show that 
Beftigre API has no significant overhead to the android test process. 

5.4 Dependencies 

As our approach requires monitoring resources, writing logs, and analysing results, some configurations 
are required on the Android manifest (these are mostly dependencies inherited by the use of PowerTutor 
monitor). Permissions include; internet, access fine location, access coarse location, write external storage, 
access Wi-Fi state, read phone state, access network state and receive boot completed. Furthermore, two 
services are required which is the UMLLoggerService for power monitoring and BaseService for the getting 
the base CPU and memory usage of the device – utilised in the @Given clause. 

Furthermore, key dependency for the effectiveness of the Beftigre evaluation is the BaseService, which 
is required after the android test. We have observed that although the test runs as a service, in order to log 
(synchronise) to the same file as the MarkerLog, the device is required to still be connected to the PC. This 
is a precautionary measure (to avoid interrupting the BaseService) as interrupted singleton services in 
android will be terminated automatically. Android services can alternatively be programmed to restart when 
interrupted – however, this is not efficient for the evaluation process, as the evaluation time will be 
increased. We use android shared preferences API to manage synchronisation of logs. 

 RELATED WORK 
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Mobile cloud application testing often involves evaluation of mobile power usage and performance, and 
cloud resource usage. This section splits related work into tool/API components used in MCA evaluation; 

• Mobile power monitors – which focus on evaluating a mobile application’s power usage, 
• Cloud resource monitoring – which focuses on evaluating the resource usage of a set load in a 

given time and  
• Test frameworks – which focus on evaluating an application’s requirements; to assert that a given 

requirement works as expected. 
Furthermore, the section highlights how Beftigre API and Tool unifies the functions provided by the three 
aforementioned components. 

6.1 Mobile Power Profilers 

Software power profiling are achieved in two ways [7], [19]: either by hardware approach (i.e. involving 
power meters) [7] or by modelling [14], [20]–[22]. The use of energy models is imperative to power 
measurements, particularly for mobile applications, especially because the hardware approach can be a 
complex and expensive process [23]. PowerTutor [14]; is a power model (and android application) for 
measuring resource and power usage of android mobile applications. Hao et al. also presents a power model 
called eLens [21] (an extension of their previous work, eCalc in [20]) which aims at fine-grained mobile 
energy profiling at the bytecode level. Some other models [24]–[26] have been proposed, however, 
PowerTutor is the most adopted in the research [3], [4]. The monitor, however, is provisioned as a mobile 
application, with Beftigre we transform the monitor into an API suitable for use within a mobile test project. 
Furthermore, monitoring in current models are only single-tiered – i.e. either mobile or cloud (as presented 
in 6.2), however, Beftigre performs a unified monitoring of mobile and cloud tier for full-tier results. 

Intel Energy Checker (IEC) is a software development kit (SDK) designed to measure the performance 
and energy consumption of a system [27]. The IEC power model requires the use of external power 
monitors [7]. This form of setup, however, is neither applicable to mobile nor cloud systems, as cloud 
environment is based on a setup too complex for power meters [23]. Trepn profiler [28], is useful for mobile 
instrumentation. A good work has been done by the Qualcomm team on the profiler; which includes the 
display of markers from the code for fine-grained analysis. Trepn however, is tied to a processor type 
(Snapdragon) for the accuracy of readings. Consequently, MCA evaluation is out of scope for Trepn. In 
response to these gaps, Beftigre API extends the conventional code markers by a behaviour-driven test 
approach which uses annotations to capture mobile-cloud evaluation concerns. Furthermore, the Beftigre 
orchestrator is used to incorporate libraries which also monitors the cloud and integrate logs from both 
domains for a unified analysis. 

6.2 Cloud Resource Monitoring 

System Information Gatherer And Reporter (SIGAR) is an API which provides an interface for gathering 
system information associated with a variety of system resources such as the processor, network, disk and 
memory. There also exist vendor specific monitors such as Amazon CloudWatch [13] which provide APIs 
tied to the vendor’s cloud platform. PerfMon Server Agent15 is an open source server monitoring library 
built on SIGAR API. It is popularly used for gathering resource usage information of cloud VMs [29], [30]. 
However, Server Agent is not self-sufficient for MCA, therefore, we integrate it into our proposed Beftigre 
Orchestrator alongside server network throttling and resource load generation. The integration into the 
orchestrator makes it possible to capture the resource usage for specific environment conditions. 

Furthermore, pertaining to cloud monitoring, current research investigate from a resource metrics 
perspective or power metrics perspective.  Fang et al. [12] proposed an approach known as TARGO which 
is built on Amazon CloudWatch [13]. The objective of TARGO is VM optimisation based on monitor data, 
and the core metrics investigated is CPU utilisation. In Beftigre, we evaluate both CPU and memory, and 
by using open-sourced PerfMon Server Agent, the approach is vendor independent. Current work on power 
metrics assessment for cloud often adopt power models, as hardware meters are complex to implement for 
cloud infrastructures [23], [31]. Network transmission energy is also popularly investigated [16], [17] in 
the context of assessing cloud energy. In Beftigre, we have scoped our investigation for mobile power and 
cloud resource as they are mostly investigated in MCA domain, however, future work would include cloud 
and network energy assessment. 

                                                           
15 PerfMon Server Agent; https://jmeter-plugins.org/wiki/PerfMonAgent [01-Jul-2016]. 

https://jmeter-plugins.org/wiki/PerfMonAgent
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6.3 Test Frameworks 

Several test frameworks have been proposed for mobile application test. These can be generally classified 
into test case design libraries (e.g. JUnit [32]), test automation libraries (e.g. Robotium16 and Espresso [33]) 
and behaviour-driven libraries (e.g. Jbehave17), with JUnit as the de facto standard for Android. These 
frameworks can also be used together for mobile testing as shown in [34]. JUnit is a well-known library for 
implementing test cases, Robotium or Expresso does not entirely replace JUnit, but rather has its strength 
in UI test automation. Jbehave is also a unique supplement, as per behaviour-driven development (BDD). 
It specifies system behaviour from which test cases and (later) reports, are derived. To the best of our 
knowledge, none of these test frameworks has been explored for power measuring, or mobile-cloud based 
assertions/testing. As a response to the gap, we adopt the BDD concept, similar to Jbehave, to specify 
behaviour (based on any evaluation test knowledge), then we derive a test case from the behaviour and 
adequately provide a report based on the behaviour. Furthermore, in Beftigre, we integrate the BDD concept 
into cloud-based mobile systems for full-tier results. 
 

 CONCLUSIONS AND FUTURE WORK 

In this paper, we have demonstrated an approach for MCA evaluation called Beftigre, which is based 
on behaviour-driven evaluation (facilitated by the API) and full-tier analysis (facilitated by the tool). We 
have shown that; by presenting a basis for comparison in a programmable syntax (i.e. using behaviour-
driven annotations), different offload schemes can be compared between each other. Furthermore, an API 
and a tool were developed to realise and scale up the concept. An evaluation of the proposed API shows 
that there is no significant performance overhead to the test process. Furthermore, the API also integrates 
with existing test automation frameworks; for example, Robotium has been employed for testing (line 22 
of Figure 3a) with Beftigre API. 

The Beftigre tool also automates the analysis process using the generated logs (from the API and the 
tool’s server metrics collector). An evaluation of the full-tier analysis proves accuracy and effectiveness in 
the specification of the behaviour of a MCA. By adopting BDD concepts, Beftigre makes it easy to 
communicate expected goal of offload schemes within software teams; from business analyst to software 
engineers using annotation clauses, and to seamlessly test for actual results (comparing evaluated outcomes 
with annotation values). Furthermore, we have demonstrated that Beftigre is capable of achieving 
reproducibility in test evaluation process through the use of a range criterion (5%) and tracked control of 
the environment (Resource Simulator). 

Future work will involve investigation of specific energy consumption of access networks (i.e. 
transmission energy), and studying its impact as a behaviour attribute (annotation) on full-tier results. Also, 
future work can investigate possible options to specify custom annotation attributes – especially for the 
WHERE clause within the API. This could assist to define a test scope for a given scheme, at the same time 
not breaking the comparability objective of Beftigre, since the scope will be specified as annotations. Also, 
the API and tool have been demonstrated for Android and EC2 mobile-cloud platforms, future work could 
look into extending the approach for multi-platform support – Azure cloud, IOS, Blackberry. We are 
currently working on an easy install virtual environment for a simulated mobile cloud experimentation for 
Beftigre. This will be provided on the publicly available documentation site at http://beftigre-
mca.appspot.com. 
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Table I. MCA offloading schemes evaluation and comparison by architecture scenarios (showing the 
mobile time and energy). 

Architecture 
Scenarios 

ST [4] POMAC [3] 
Elapsed Time (ms) Used Energy (J) Elapsed Time (ms) Used Energy (mJ) 

Local 49331.55 86.59 3930.33 4854.24 
Server 27673.79 63.86 34873.15 19839.42 
Optimal 17486.63 44.73 3986.21 4845.10 
The Scheme 10347.59 41.33 4242.32 5085.80 
Local % diff. 130.65 70.76 -7.64 -4.66 
Server % diff. 91.14 42.84 156.62 118.38 
Optimal % diff. 51.30 7.90 -6.23 -4.85 
Note: Local % diff., Server % diff. and Optimal % diff. is the percentage difference of the scheme in comparison to 
Local, Server, and Optimal scenarios respectively. A negative value signifies a loss in energy savings or 
performance. 

 
 

Table II. Variability of Architecture Scenarios. 
Summary of Architecture 
Scenarios 

ST [4] Specific Architecture Scenarios POMAC [3] Specific 
Architecture Scenarios 

Local Smartphone only OnDevice 
Server Offloading w/All objects OnServer 
Optimal Offloading w/Necessary objects (delta) Optimal 
The Scheme Offloading w/Threshold check POMAC 

 
 

Table III. Characteristics of mobile applications used (also explored in [3], [5], [15]). 
Applications Offloadable task Taxonomy Description 
Linpack18 run() method of Linpack class Computation-

intensive 
Benchmarking 
application 

                                                           
18 Linpack; https://github.com/pedja1/Linpack [01-Jul-2016]. 

https://github.com/pedja1/Linpack
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MatCalc19 times(Matrix B) method of Matrix class Data-intensive Matrix calculator 
application 

NQueen20 findSolution(int board[], int n, int pos) method of 
NQueen class 

Computation-
intensive 

NQueen computation 
application 

 
 

Table IV. Non-BDD Evaluation and Comparison (based on mean values of samples [3], [4]). 
Architecture 
Scenarios 

Scheme1 (3G, WLAN, Outlier) Scheme2 (3G and WLAN, Outlier) 
Elapsed Time (ms) Used Energy (mJ) Elapsed Time 

(ms) 
Used Energy (mJ) 

Linpack 
Local 21952.50 3168.23 21952.50 3168.23 
Server 21948.67 2539.87 21948.67 2539.87 
Schemes: 21953.33 2206.08 21945.33 3102.39 
Local % diff. -0.0038 35.8055 0.0327 2.1 
Server % diff. -0.0212 14.0663 0.0152 -19.9395 
 

MatCalc 
Local 6313.22 492.48 6313.22 492.48 
Server 8340.03 711.17 8340.03 711.17 
Schemes: 6403.33 517.07 7009.98 583.10 
Local % diff. -1.42 -4.87 -10.46 -16.85 
Server % diff. 26.27 31.61 17.33 19.79 
 

NQueen 
Local 17123.02 2702.13 17123.02 2702.13 
Server 16980.88 2009.89 16980.88 2009.89 
Schemes: 15707.00 2609.05 15689.52 1898.99 
Local % diff. 8.63 3.51 8.74 34.91 
Server % diff. 7.79 25.94 7.91 5.67 
Note: Local % diff. and Server % diff. is the percentage difference of the scheme in comparison to Local and 
Server scenarios respectively. A negative value is used to signify a loss in energy savings or performance. 

 
 
Table V. Beftigre Evaluation and Comparison/Assertion (between Scheme1 vs. Scheme2) showing Full-

tier Results (i.e. Then clauses) – Outlier simulation parameters used. 
Label @Given: 

mobile 
@When: cloud/network @Then: mobile @Then: cloud Final 

Assert 
CPU Mem. CPU Mem. Bandw. Lat. Time Energy CPU Mem. 

Linpack Evaluation 
Scheme1 93 18 41 67 560 243 22208 3008 58 28 - 
Scheme2 81 41 41 62 557 247 21887 3181.08 60 32 - 
Linpack Compare: Scheme2 expected on Scheme1 actual 
Expected 81 41 41 62 557 247 21887 3181.08 60 32 - 
Actual 92 17 41 68 559 241 22304 3029.44 58 29 - 
Assert - - - - - - 1.91% 

more 
4.77% 
less 

3.33% 
less 

9.38% 
less 

Different 

Linpack Compare: Scheme1 expected on Scheme1 actual 
Expected 93 18 41 67 560 243 22208 3008 58 28 - 
Actual 92 16 41 68 563 240 22233 3031 58 29 - 
Assert - - - - - - 0.11% 

more 
0.76% 
more 

0% 3.57% 
more 

Similar 
system 

 

MatCalc Evaluation 
Scheme1 90 23 38 56 505 211 7033 613.41 55 26 - 
Scheme2 92 22 38 56 512 224 6442 537.07 55 26 - 
MatCalc Compare: Scheme2 expected on Scheme1 actual 
Expected 92 22 38 56 512 224 6442 537.07 55 26 - 
Actual 94 21 38 58 507 209 7075 625.12 55 26 - 
Assert - - - - - - 9.37% 

more 
15.15% 
more 

0% 0% Different 

MatCalc Compare: Scheme1 expected on Scheme1 actual 
Expected 90 23 38 56 505 211 7033 613.41 55 24 - 
Actual 91 22 38 56 501 217 7085 609.91 55 24 - 

                                                           
19 MatCalc; https://github.com/kc1212/matcalc [01-Jul-2016]. 
20 NQueen; https://github.com/acelan/NQueen [01-Jul-2016]. 

https://github.com/kc1212/matcalc
https://github.com/acelan/NQueen
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Assert - - - - - - 0.75 
more 

0.57% 
less 

0% 0% Similar 
system 

 

NQueen Evaluation 
Scheme1 84 25 43 67 552 246 16344 2810.11 59 29 - 
Scheme2 89 25 42 65 540 244 15702 1908.09 59 30 - 
NQueen Compare: Scheme2 expected on Scheme1 actual 
Expected 89 25 42 65 540 244 15702 1908.09 59 30 - 
Actual 85 25 42 68 553 241 16289 2797.42 59 30 - 
Assert - - - - - - 3.67% 

more 
37.80% 
more 

0% 0% Different 

NQueen Compare: Scheme1 expected on Scheme1 actual 
Expected 84 25 43 67 552 246 16344 2810.11 59 29 - 
Actual 85 25 43 68 553 243 16302 2785.90 59 30 - 
Assert - - - - - - 0.26% 

less 
0.87% 
less 

0% 3.39% 
more 

Similar 
system 

Key: Given: mobile CPU and memory availability (%), When: cloud CPU and memory availability (%), bandwidth (bps) and latency 
(ms), Then: mobile elapsed time (ms), mobile used energy (mJ), cloud used CPU (%) and cloud used memory (%). 
 

 
 

Table VI. Replication capability of Beftigre Evaluation (verified using Outlier parameters). 
 @Given: mobile @When: cloud/network 

CPU Mem. CPU Mem. Bandw. Lat. 
Linpack 
Scheme1 Mean 92.54 18.50 41.30 67.30 560.12 243.03 
Scheme1 Deviation 1.13 0.84 0.65 1.30 11.25 5.43 
Scheme1 5% range 4.63 0.93 2.03 3.37 28.01 12.15 
Scheme2 Mean 84.25 42.01 41.50 63.40 558.31 247.80 
Scheme2 Deviation 1.25 1.03 0.55 1.44 9.96 4.04 
Scheme2 5% range 4.21 2.10 2.08 3.17 27.92 12.39 
 

MatCalc 
Scheme1 Mean 92.91 23.20 38.06 56.85 506.45 217.00 
Scheme1 Deviation 1.21 0.77 0.71 0.82 5.00 2.01 
Scheme1 5% range 4.65 1.16 1.90 2.84 25.32 10.85 
Scheme2 Mean 91.44 22.31 38.42 56.10 517.66 220.60 
Scheme2 Deviation 2.22 0.90 0.74 1.31 4.02 6.03 
Scheme2 5% range 4.57 1.12 1.92 2.81 25.88 11.03 
 

NQueen 
Scheme1 Mean 84.60 24.84 43.44 68.70 550.98 245.31 
Scheme1 Deviation 1.01 1.09 0.58 2.77 9.03 3.93 
Scheme1 5% range 4.23 1.24 2.17 3.44 27.55 12.27 
Scheme2 Mean 86.08 25.06 42.02 65.22 548.40 249.16 
Scheme2 Deviation 2.30 1.02 0.99 2.40 7.72 3.20 
Scheme2 5% range 4.30 1.25 2.10 3.26 27.42 12.91 
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