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Major Aspects of a Theoretical Foundation 
Taxonomies and Ontologies 
In scientific and scholarly disciplines, a collection of concepts 
are commonly organized into a taxonomy or ontology. In the 
former, concepts are known as taxa, and are typically arranged 
hierarchically using a tree structure. In the latter, concepts, 
often in conjunction with their instances, attributes, and other 
entities, are organized into a schematic network, where edges 
represent various relations and rules. 

Principles and Guidelines 
A principle is a law or rule that has to be followed, and is 
usually expressed in a qualitative description. A guideline 
describes a process or a set of actions that may lead to a 
desired outcome, or actions to be avoided in order to prevent 
an undesired outcome. The former usually implies a 
confidence in the high degree of generality and certainty of the 
causality concerned, while the latter suggests that a causal 
relation may be subject to specific conditions. 

 Conceptual Models and Theoretic Frameworks  
The terms frameworks and models have broad interpretations. 
Here we consider that a conceptual model is an abstract 
representation of a real-world phenomenon, process, or 
system, featuring different functional components and their 
interactions. A theoretic framework provides a collection of 
measurements and basic operators and functions for working 
with these measurements. The former provides a description 
of complex causal relations in real world in a tentative 
manner, while the latter provides a basis for evaluating 
different models quantitatively. 

Quantitative Laws and Theoretic Systems 
A quantitative law describes a causal relation of concepts 
using a set of measurements and a computable function 
confirmed under a theoretic framework. Under a theoretic 
framework, a conceptual model can be transformed to a 
theoretic system through axioms (postulated quantitative 
principles) and theorems (confirmed quantitative laws). 
Unconfirmed guidelines are thus conjectures and contradictory 
guidelines are paradoxes. 

 

More than a decade ago, Chris Johnson proposed the “Theory of 
Visualization” as one of the top research problems in 
visualization [1]. Since then there have been several theory-
focused events, including three panels at IEEE VIS Conferences 
and three workshops. Together, these events have produced a 
set of convincing arguments: 

• As in all scientific and scholarly subjects, theoretical 
development in visualization is a necessary and integral 
part of the progression of the subject itself. 

• Theoretical developments in visualization can draw on 
theoretical advances in many disciplines, including for 
example mathematics, computer science, engineering 
science, psychology, neuroscience, social sciences, and 
so on. 

• The subject of visualization holds a distinctive position 
connecting human-centric processes (e.g., human 
perception, cognition, interaction, communication, etc.) 
with machine-centric processes (e.g., statistics, 
algorithms, machine learning, etc.). It therefore provides 
a unique platform to conduct theoretical studies that 
may impact on other disciplines. 

• In comparison with many mature disciplines such as 
mathematics, physics, biology, psychology, and 
philosophy, theoretical research activities in 
visualization are sparse. The subject can therefore 
benefit from a significantly increased effort to make 
new theoretical advances. 

 It is not uncommon to perceive that the “Theory of 
Visualization” is a topic only for a few individual researchers 
and its outcomes, perhaps in the forms of some theorems or 
laws, and may be too distant from practice to be useful. Perhaps 
inspired by well-known theoretical breakthroughs in the history 
of science, researchers in the field may unconsciously have high 
expectations for the originality, rigor, and significance of the 
theoretical advancements that may be made in a research project 
or presented in a research paper. 
 On the contrary, although textbooks tend to attribute a 

major breakthrough to a pioneer at a particular time and a 
specific place, in most cases, such breakthroughs took years or 
decades, and were usually supported by numerous incremental 
developments, including a substantial number of erroneous 
solutions carried out by the pioneers themselves as well as many 
less well-known individuals. Many complex discoveries in the 
past did not appear to have elegant proofs at that time, and it has 
taken some very challenging and often questionable steps to 
obtain the well-formulated solutions in modern textbooks. For 
example, almost every reader of this article would associate the 
theory of general relativity with Albert Einstein’s discovery in 
November 1915 in Berlin. According to Petro Ferreira [2], 
Einstein first speculated about the generalization in 1907, 
published two papers with Marcel Grossmann (Zurich) in 1913 
that sketched out the theory, and worked with David Hilbert 
(Göttingen) on the problem in June 1915. Some of the most 
important discoveries related to the theory of general relativity 
are Mercury’s perihelion shift (Le Verrier, 1859), the 1919 
eclipse expedition (Edington, Cottingham, Crommelin, and 
Davidson), the evolving universe (Fredmann, 1922; Lemaître, 
1927), the expanding universe (Slipper, 1915; Lundmark, 1924; 
Hubble and Humason, 1929), the big bang (Lemaître, 1931), 
and the black hole (Schwarzschild 1916, Chandrasekhar, 1935; 
Landau, 1938; Oppenheimer and his students, 1939). Some ill-
fated solutions also followed Einstein’s 1915 discovery. The 
most notable of which were perhaps the static universe (Einstein 
and de Sitter) and suspended universe (Eddington). 
 During an Alan Turing Institute event in London in April 
2016 on the Theoretical Foundation of Visual Analytics, the 
discussions on the need for building such a theoretical 
foundation attracted a wide range of opinions, ranging from 
“Visualization should not be physics-envy” to “It is 
irresponsible for academics not to try.” After two days of 
presentations, discussions, and debates, the attendees gradually 
converged to a common understanding that a theoretical 
foundation consisted of several aspects (as described in the first 
boxed panel of this article), and every visualization researcher 
should be able to make direct contributions to some aspect of 
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Methodological Development for Taxonomy [1] 
The term taxonomy comes from the Greek word taxis 
(meaning “order” or “arrangement”) and suffix -nomos 
(meaning “law” or “science”).  

Categorization (since 300s BC) 
Plato was among the first to formulate methods for 
grouping objects based on their similar properties. Aristotle 
wrote the work of Categories, providing an in-depth study 
of classes and objects. 

Taxonomy in Biology (since 3000s BC) 
Naming and classifying plants and animals dates back to the 
origin of human languages. The development of modern 
botanical and zoological taxonomy often attributed to Carl 
Linnaeus (1707–1778), a Swedish botanist, who defined 
many of the rules that taxonomists use today. The 
development of taxonomy in biology facilitated the 
paradigm shift in the 19th century when the theory of 
evolution was proposed. 

Computational Taxonomy (since 1960s) 
Automatic construction of a hierarchical categorization 
scheme began with applications such as decision-tree based 
classification, computational phylogenetics, and topic 
analysis in text mining. 

Methodological Development for Ontology [2] 
The term ontology comes from the Greek prefix onto-, 
(meaning “being” or “that which is”) and suffix 
-logia (meaning “logical discourse”, “study” or “theory”). 

Ontology in Philosophy 
The term ontologia first appeared in the works by German 
philosophers Jacob Lorhard (1606) and Rudolf Göckel 
(1613). It refers to the philosophical study of the concept of 
“being” and its variants (e.g., “becoming”, “existence”, and 
“reality” as well as the categorization of the concept and the 
relationships between different categories. Taxonomy is 
often viewed as a subset of ontology, which considers 
primarily the grouping relationships. Ontology can be seen 
as a generalization of taxonomy by allowing for different 
types of relationships among different entities.  

Ontology in Computer Science 
An ontology is form of knowledge representation [3], where 
entities are defined with names, types, properties, and 
different relationships with other entities. Its applications in 
computer science include artificial intelligence, the 
semantic web, biomedical informatics, library science, 
systems engineering, software engineering, and many more. 
The methodology has also been used in visualization (e.g., 
[4]). 
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Figure 1: A theoretical foundation typically evolves through iterative 
developments. The development of each aspect influences as well as benefits from 
that of others. A successful transformation between different aspects indicates a 
theoretical enhancement of understanding. Note that the third aspect, “Conceptual 
Models and Theoretic Frameworks,” is represented by two boxes in the figure. 
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the theoretical foundation of visualization. 
 During the IEEE VIS Conference in Baltimore, Maryland in 
October 2016, a discussion panel took this viewpoint further by 
outlining avenues for pursuing theoretical research in each 
aspect. This article, which adopts the title of the panel, is a 
structured reflection by the panelists about the discussions 
during that IEEE VIS 2016 panel. In the remainder of this 
article, we will first discuss four major aspects of a theoretical 
foundation and then discuss the interactions and transformations 
between these aspects. We will follow with a summary of our 
viewpoints and provide our recommendations. Figure 1 
provides an overview of the discourse in this article. 

Taxonomies and Ontologies 
For millennia, humans have been classifying things in the world 
around them into concepts that are described and named to 
facilitate communications. The most significant and enduring 
effort is the classification of life on Earth, which commenced in 
Aristotle’s time, became mainstream through the work of 
Linnaeus, and continues to this day with new species being 
identified and alternative classifications of existing species 
being proposed. Alternative classifications (taxonomies) arise 
over time due to differing opinions about the importance of 
differentiating characteristics used in creating the concepts 
(taxa). These differing opinions are usually the result of new 
information becoming available, often through technological 
advances, which can result in the same organism being 
classified according to different taxonomic opinions and 
subsequently having several alternative names, which may in 
turn lead to miscommunication. Newer classifications are 
usually improvements on previous ones, but sometimes the 
existence of alternative classifications reflects a disagreement as 
to how to interpret the data on which the classification is based. 
 Ontologies are representations of different relationships 
among various concepts. Naturally, they are built on the 
taxonomic classification of concepts of entities and concepts of 
relationships. Taxonomies and ontologies are means of 
conceptualizing, understanding, organizing, and reasoning about 
these entities and relationships. They are central to 
communicating about the world around us. They play an 
increasing role in understanding in the field of visualization 
allowing us to organize and formalize our knowledge. 
 A brief review of the literature over the last three decades 
reveals at least 70 publications containing some form of 
visualization taxonomy [3]. Three questions are relevant when 
considering visualization taxonomies: (i) What is being 
classified (domain)? (ii) Why is the taxonomy being developed 
(purpose)? (iii) How is the taxonomy constructed (process)? 



Examples of Guidelines for Visualization 
It is estimated that there are currently several hundreds of 
different guidelines recommended by various books, 
research papers, and online media. For example, these 
include: 

Maximize the Data-Ink Ratio. 
1. E. R.Tufte, The Visual Display of Quantitative 

Information, Graphics Press, Cheshire CT, 1983, p.93. 

Overview first, zoom and filter, then details-on-demand. 
2. B. Shneiderman, “The eyes have it: a task by data type 

taxonomy for information visualizations,” Proc. IEEE 
Symposium on Visual Languages, Washington, 1996, 
pp. 336-343. 

Rainbow Color Map is Harmful. 
3. B. E. Rogowitz and L.A. Treinish, “Data visualization: 

The end of the rainbow,” IEEE Spectrum, vol. 35, no. 
12, 1998, pp. 52-59. 

4. D. Borland and R. M. Taylor II, “Rainbow color map 
(still) considered harmful,” IEEE Computer Graphics & 
Applications, vol. 27, no. 2, 2007, pp. 14-17. 

10 Guidelines for Data Visualization 
5. C. Kelleher and T. Wagener, “Ten guidelines for 

effective data visualization in scientific publications,” 
Environmental Modelling & Software, vol. 26, no. 6, 
2011, pp. 822-827. 

Some 14 Guidelines for Data Visualization 
6. https://schoolofdata.org/2013/04/26/data-visualization-

guidelines-by-gregor-aisch-international-journalism-festival/, 
Accessed in Feb. 2017. 

6 Guidelines for Creative Visualization 
7. http://www.tut.com/article/details/12-6-guidelines-for-creative-

visualization/?articleId=12, Accessed in Feb. 2017. 

Taxonomies have been proposed to classify many aspects of 
visualization, including systems, tools, techniques, interaction 
approaches, data types, user tasks, visual encodings, input 
methods, and evaluation strategies. These aspects can be 
classified according to different criteria. For example, 
visualization techniques may be classified by the analytical 
tasks they support, the visual encoding or algorithm used, the 
data type, or the domain in which they are employed. 
 The community has found taxonomies useful in their 
research. Taxonomies offer a shared vocabulary with which we 
can communicate effectively and reduce misunderstanding [4]. 
They orientate us among the vast number of techniques and 
tools that have already been developed, often across disparate 
domains. Taxonomies are therefore frequently adopted in 
literature surveys to categorize existing work. Further, using 
taxonomies as design spaces may reveal novel research 
opportunities, for example, by conducting gap analysis. 
 In comparison, the term “ontology” has appeared much less 
frequently in the visualization literature. This is partly because 
some studies on ontological relationships are presented as 
qualitative models. As ontologies are typically described in 
ontology languages, such as OWL (Web Ontology Language) 
and RDF (Resource Description Framework), they can be used 
by algorithms in visualization systems. For example, ontologies 
can be used to generate annotations and filter or highlight visual 
objects automatically in visualization, to enable automated 
creation of visualization, and to integrate keyword search and 
visual exploration in a user interface [5]. 
 For designers, taxonomies and ontologies play a role in 
systemizing the design process, and can be employed at 
multiple stages, such as domain characterization and 
abstraction, selection of appropriate visual encodings and 
interaction techniques, and formulation of data and information 
flows. In addition, taxonomies and ontologies provide the basis 
for studying causal relationships, thereby facilitating the 
development of guidelines and qualitative models. 
 Building taxonomies and ontologies is an investigative 
science as they often feature partial and evolving hypotheses. A 
number of considerations therefore arise during the process, 
including determining the subpopulation to study; identifying 
the characteristics used to define a class, a relation, or the level 
of specificity; comparing the importance of different 
characteristics; differentiating among various terms used for 
specifying characteristics; selecting the effective visualization 
techniques for visualizing large taxonomies and ontologies; 
automatically generating a taxonomy or ontology from text 
analysis of visualization literature; and automatically evolving a 
taxonomy or ontology automatically using machine learning. 
 Taxonomies and ontologies are fundamental tools assisting 
in understanding, communication and development in the field 
of visualization. Yet a number of challenges and open questions 
remain: Can we define a methodology for creating, comparing, 
and integrating taxonomies and ontologies? At what levels and 
granularity should taxonomies or ontologies be specified? How 
do we select one or more taxonomies (one or more ontologies) 
for our work? The field of visualization continues to change. 
Taxonomies and ontologies must continue to evolve. We must 
continue to improve their construction and use. 

Principles and Guidelines 
A guideline embodies a wisdom advising a sound practice. This 
may be a course of action to take or to avoid in achieving an 
aim. Guidelines are commonly outlined based on accumulated 
experience and knowledge about some causal relations in a 
process. On the one hand, it takes some courage and conviction 
to propose a new guideline. On the other hand, it takes a lot 
more courage and fair-mindedness to accept critiques about 
one’s guideline, and then retract or refine it. Some guidelines 

stand the test of time and become principles. Many others may 
be effective in only specific circumstances. Because of the 
qualitative nature of framing guidelines and the typically self-
directed mechanism for creating and evolving guidelines, now 
and then some may be defined without rigorous care, 
generalized beyond their intended application, out of date, or in 
conflict with other guidelines. Many documents about 
guidelines often contain a disclaimer [6]: “By definition, 
following a guideline is never mandatory. Guidelines are not 
binding and are not enforced.”  
 In many disciplines, such as biology and medicine, 
guidelines have played an indispensable role and are rigorously 
evaluated, critiqued, and maintained. In other disciplines, such 
as physics, chemistry, and engineering, old wisdoms have 
gradually been transformed into qualitative laws and qualitative 
process management. In the field of visualization, guidelines 
have no doubt played a positive role in designing and 
developing visualization systems as well as in education. Meyer 
et al. considered that guidelines are an integral part of an agile 
process for developing visual designs and visualization systems; 
they help designers make choices in such a process [7]. Zuk et 
al. proposed that guidelines can be used as heuristics for 
evaluating visual designs and visualization systems [8]. These 
recommendations inevitably place a huge burden upon the 
correctness and effectiveness of guidelines. If visualization 
guidelines are going to play a pivotal role as suggested by [7, 8], 
we will need to: 

• develop mechanisms for curating, evaluating, critiquing, 
and refining guidelines in an open and transparent 
manner; 



Examples of Models in Other Disciplines 
 

 
Figure 2: Richard Feynman’s 1975 Dodge van with the behavior 
model of subatomic particles painted on the sides. Image source: 
courtesy of ArtCenter College of Design, Pasadena, CA, USA. 

 

 
Figure 3: James Watson (left) and Francis Crick (center) demon-
strating the 3D physical model of DNA in 1953. The experimental 
results by Rosalind Franklin (right) were crucial to the discovery. 
Image source: http://www.bbc.co.uk/education/guides/zsnssbk/revision/2 
and http://mentalfloss.com/article/53199/rosalind-franklin-and-search-dna 

 

• establish a culture of open, democratic, evidence-based 
discourse on the guidelines, and enable much broader 
participation in the discourse beyond the current scale of 
a few papers and blogs; 

• inspire researchers to study guidelines, including their 
evolution and applicability in different conditions using 
scientific methods, and when appropriate opportunities 
arise, to transform  guidelines into qualitative laws and 
process management. 

 Social scientists have established research methods for 
collecting and analyzing qualitative data in order to infer 
concrete theoretical insights, which include taxonomies, 
ontologies, guidelines, and conceptual models. One such 
method is grounded theory [9]. It involves observing practical 
phenomena in the wild (to “ground” the theory in real-world 
data), identifying categories of the instances (events, processes, 
occurrences, participants, etc.), making links between 
categories, and establishing relationships between them. The 
method utilizes descriptive labeling (referred to as coding) to 
conceptualize discrete instances of phenomena systematically. It 
advocates continuous comparative analysis and negative case 
analysis to ensure the coding is comprehensive, meticulous, and 
up to date. It encourages researchers to interact with data by 
asking questions, broadening the sampling space by exploring 
related phenomena, and writing memos. 
 By enabling categorization and relationship discovery, the 
grounded theory method can facilitate the development of 
visualization taxonomies and ontologies. By enabling the 
analysis of causal relationships, it facilitates the formulation of 
guidelines. By pursuing both positive and negative case studies 
and undertaking continuous comparative analysis, we facilitate 
the evaluation, critique, revision, and improvement of 
guidelines. By enabling the curation of a relatively complete 
and coherent set of causal relationships functioning in a system, 
we facilitate the establishment of a conceptual model. 

Conceptual Models and Theoretic Frameworks 
A conceptual model can be a representation of an idea, a 
process, or a system. It is typically used to describe and explain 
the causal relationships exhibited in phenomena in a physical, 
biological, economic, social, or any other type of system that 
may be intuitively observable, cannot be experienced directly, 
or may be totally hypothesized. 
 The descriptions of many models are accompanied by visual 
representations, providing a visual way of linking 

conceptualization with observation. The physicist Richard 
Feynman created new visual abstractions of the physics and 
mathematics of quantum electrodynamics so that he could more 
easily reason about the complex mathematics [10]. Feynman 
famously had his van painted with his illustration of the 
interactions of sub-atomic particles. 
 In most disciplines, model development has been a driving 
force for progression. It fuels and guides the advancement of a 
subject by enabling abstraction, proposition, prediction, and 
validation (using experiment, mathematics, and computation). 
Models are central to what researchers do, both in their research 
and when communicating their explanations.  The development 
of the standard model in particle physics was a collective effort 
of scientists around the world throughout the latter half of the 
20th century. The discovery of the double helix model of DNA 
was a research endeavor in the early 1950s. Many intermediate 
steps, ranging from the partial model alpha helix and the 
incorrect triple helix model by Pauling to X-ray diffraction 
experiments by Franklin and others, paved the way for Watson 
and Crick to formulate the landmark model in biology. 
 In the fields of visualization, more than 10 conceptual 
models [3] have been proposed for describing the relationships 
among data, visualization systems, analytical techniques, 
interaction methods, human perception and cognition, user 
tasks, and application contexts. The goal of such models is to 
help us describe, understand, reason about, and predict what 
people may do in a visualization process and environment, what 
actions may lead to what results in given circumstances, and 
which workflow is more efficient or effective than others. 
 For example, a model of personal visualization of fitness 
tracker data [11] helped explain why the on-calendar 
visualization approach was more effective than a traditional 
fitness feedback tool, and more importantly, it provided a 
theoretical basis from which general design guidelines for 
behavior feedback tools can be derived. Another example is a 
human cognition model for visualization [12]. Based on human 
ergonomics and cognitive psychology, the model defines human 
leverage points, where cognitive experiments can be conducted 
for quantitative and qualitative evaluation of visualizations. 
Similarly, sense-making models (e.g., [13]) have played an 
important role in supporting the design of interactive analysis 
tools. Hence, building correct and effective conceptual models 
for visualization must be an endeavor on the part of the 
visualization community. Learning from other disciplines, we 



An Example Theoretic System: Probability Theory 
Measure Space 
(Ω, E, P) is a measure space, where Ω is the sample space, E is the 
event space, and P(e) is the probability measure of an event e∈E. 

Axioms 
1. The probability of an event is a non-negative real number: 
 P(e) ∈ R, P(e) ≥ 0 ∀e∈E. 
2. The probability that at least one of the elementary events in the 

entire sample space will occur is 1: 
 P(Ω) = 1. 
3. Any countable sequence of mutually exclusive events, e1, e2, … 

satisfies: 
 𝑃𝑃(⋃ 𝑒𝑒𝑖𝑖∞

𝑖𝑖=1 ) = ∑ 𝑃𝑃(𝑒𝑒𝑖𝑖)∞
𝑖𝑖=1 . 

An Example of Law: Monotonicity 
If EA is a subset of, or equal to EB, then the probability of EA is less 
than, or equal to the probability of EB: 
 If EA ⊆ EB then P(EA) ≤ P(EB). 

 
A Skeleton of a Theoretic System for Visualization 
Measure Space 
(Ω, Θ, Ξ) is a measure space, where Ω is the sample space, Θ is a state 
space defined by a subset of all possible alphabets in visualization 
(e.g., Data (D), Task (T), Medium (M), Visual Representation (V), 
Human Capability (H), Interaction (I), ...), and Ξ is a subset of all 
possible measures in visualization (e.g., probability, mutual 
information, accuracy, time, cognitive load, error, uncertainty, ...). 

Axioms 
1. It may be defined based on a principle (that must have stood the 

test of time), and it cannot be deduced from other axioms. 
... 

An Example of Law: Optimal Visual Representation 
Let v∈V be a particular visual representation, and v is optimal under a 
particular goodness measure M∈Ξ. Let S be the state space based on 
all variables Θ−{V}, i.e., the subset of Θ without visual representation 
V. With an appropriate definitions of M and S, we have: 
 M(v, s) ≥ M(w, s) ∀w∈V, ∀s∈S. 

 
 

 
 must significantly increase our efforts in experimentation, 

theorization, and computational simulation and validation. 
 Experimentation and Qualitative Theorization. The 
visualization literature includes more than 40 empirical studies 
for studying human perception and cognition in visualization, 
and more than 40 others for comparing different visualization 
techniques. In addition, through numerous application case 
studies, visualization researchers have had first-hand experience 
of observing a variety of data, visualization systems, analytical 
techniques, interaction methods, human perception and 
cognition, user tasks, and application contexts in the wild. These 
empirical studies and application case studies provide 
opportunities for formulating new models, performing 
continuous comparative analysis, probing negative experience, 
critiquing and improving existing models, broadening 
theoretical sampling, and exploring the model unification and 
theoretical saturation, all of which are advocated by the 
grounded theory methodology mentioned earlier. Building and 
analyzing qualitative models rigorously will inevitably motivate 
further theorization through the development of quantitative 
models. 
 Quantitative Theorization. In many applications, 
especially in the physical sciences, models are often formulated 
using a particular mathematical framework. For example, in 
physics, Newton invented calculus (also credited to Leibniz) to 
underpin classic mechanics. Einstein used Riemannian 
geometry to underpin his general theory of relativity. Today, we 
commonly see publications entitled mathematical framework X 
for model Y. In some situations, a model Y may itself have 
evolved into an elegant mathematical framework that can be 
used to underpin other models. For example, information 
theory, which is underpinned by probability theory, has become 
a fundamental framework for tele- and data communication, 
data compression, and data encryption. 
 Several mathematical frameworks have been proposed for 
underpinning quantitative theorization in visualization, 
including information theory [14] and algebra [15]. Naturally, 
we hope that some qualitative models in the visualization 
literature can be described using such a framework with 
quantitative measurements, which may not be quite accurate 
initially. Lack of accuracy does not always mean wrong. We 
must remember that Newton’s first law of motion could not be 
fully validated for a long time because the technology for 
creating the conditions for a vacuum was not available. Having 
errors is not always unhelpful. We must remember that the 

discrepancy between the prediction of Newtonian gravity and 
the observed orbit of Mercury inspired the discovery of the 
theory of general relativity.  
 Computational Simulation and Validation. In most 
disciplines where visualization techniques are routinely 
deployed, together with experimentation and theorization, 
computational science now constitutes the “third pillar” of 
scientific inquiry, enabling researchers to build and test models 
of complex phenomena. Advances in computing and 
connectivity make it possible to capture, analyze, and develop 
computational models for unprecedented amounts of 
experimental, observational, and simulation data to address 
problems previously deemed intractable or beyond imagination 
[16]. Once we have quantitative models of visualization 
phenomena and processes, we can simulate such models 
computationally, validating them against experimental results 
and making predictions about causal relations in a visualization 
process. For example, we can model the relationships among 
volume datasets, volume rendering algorithms, and resultant 
imagery data. The model can be used to predict the 
discretization errors, order-of-accuracy, and convergence 
performance, and verify if they meet the requirements of the 
application concerned [17]. Since the cognition literature shows 
that the human observers’ perception errors may not linearly 
correlate with discretization errors, it would be exciting to 
extend such a model to include more elements of human 
perception and cognition. 

Quantitative Laws and Theoretic Systems 
In all branches of the sciences, many quantitative laws are 
regarded as disruptive discoveries, as they represent great leaps 
in our understanding about causal relationships from numerical 
uncertainty to numerical certainty [18]. As discussed earlier, 
any guideline in visualization that has stood the test of time 
should be regarded as a principle. Furthermore, any principle in 
visualization can be formulated and proved under a theoretical 
framework. For example, part of Shneiderman’s guideline 
“overview first, zoom, then details-on-demand” was proved 
using information theory (including an investigation of an 
anomaly) [14]. The filtering part of the guideline likely requires 
a more complex proof because defining what filtering would 
result in desired details may require additional variables. 
 In many disciplines, some laws have parameters that may be 
constants. The discovery of such fundamental constants (e.g., 
speed of light, absolute zero temperature, and so on) transforms 



postulated laws to truly quantitative laws. Often discovering 
values that would fit such parameters requires extensive 
experimentation. For example, in psychology, Fitts’s law has 
two parameters that vary according to the choice of input 
device, and Stevens’s law also has two parameters that vary 
according to the choice of physical stimulus. These parameters 
suggest that a more general quantitative law may be hidden 
underneath. One can imagine that if Newton’s second law of 
motion had used volume instead of mass, it would have required 
an object-dependent parameter that we know now as density. 
Worse, if it were surface area instead of mass, one would need 
more object-dependent parameters. 
 The discipline of visualization provides great opportunities 
for postulating parameterized laws, and for discovering values 
for such parameters in different scenarios. From such 
discoveries, we could potentially make more fundamental leaps 
in our understanding as long as we continue to investigate the 
causes of the unattractive parameterization. 
 When a number of quantitative laws share a common 
measure space that includes all variables to be measured and all 
measurement functions, they indicate the existence of a 
theoretical system, where new quantitative laws can be inferred 
from existing ones. In mathematics, axiomatization has been 
one of the driving forces in discovering rich axiomatic systems, 
each of which is underpinned by a set of primitive axioms. 
Historically, the early efforts that aimed to derive a self-
complete axiomatic system motivated many innovations (e.g., in 
geometry) but often failed to achieve the aim itself. Such 
failures led to Gödel's incompleteness theorems, which 
confirmed that such a self-complete axiomatic system is 
unattainable for any slightly complex theoretical system. 
Nevertheless, discovering axioms in the theoretical system is a 
noteworthy achievement in itself as long as one is aware of the 
limitations of the axioms. Such a discovery is analogous to the 
pursuit for curating, evaluating, critiquing, and revising 
guidelines in order to discover principles. 
 One challenge in formulating a theoretical system for 
visualization is that there appear to be many variables in a 
visualization process, such as the source data sets, visualization 
tasks, display media, interaction devices, human viewers’ 
knowledge and experience, interaction actions, application 
contexts, and many more. Some measurements are more 
attainable, such as data size, accuracy, and time. Other 
measurements may be problematic in terms of their theoretical 
conceptualization or practical implementation, such as 
information, knowledge, cognitive load, and task performance. 
Nevertheless, a theoretical system can be built bit by bit. One 
may start with a subset of these variables, while fixing other 
variables to a set of constants related to a scenario. One may 
identify principles applicable to such a scenario, and use them 
to formulate axioms and laws. One can then derive new laws 
based on existing axioms and laws in the system, and test these 
new laws using experimentation and simulation. Any negative 
testing results will motivate further investigations into the 
theoretical system itself as well as the experimentation and 
simulation methods, yielding new improvements and 
advancements. New laws derived and confirmed in this way can 
be disseminated as new guidelines in practice. 
 The development of small theoretical systems will naturally 
lead to new advancements through integration and unification. 
For example, one theoretical system may focus on cognitive 
load in its measure space, and another may focus on the cost of 
training. Their unification would result in a more elegant and 
applicable theoretical system. We can expand our horizons in 
the endeavor to build theoretical systems for visualization, for 
example, addressing the relationships between visualization and 
emotions, aesthetics, language, social objects, or ethics. 

Building a Theoretical Foundation  
The field of visualization has already seen more than 100 
research papers on different aspects of a theoretical foundation 
for visualization. Our recent search using the keyword 
“visualization theory,” for example, returned a very wide 
variety of topics. Intriguingly, all returned items contained the 
term “measure” or variants of the word. All included some 
ordered or numerical measurements, such as reliability, 
accuracy, correctness, limits, optimality, and so on. Some 
papers discussed these measurements in the context of a 
framework, a model, or some form of a theory, and most 
included the term “quantify” or its variants. In addition to 
traditional quantities such as accuracy, precision, and time, the 
search revealed some ambitious attempts to measure particular 
forms of human insight, understanding, performance, creativity, 
knowledge, cognitive load, learning, confidence, and many 
other attributes. A similar search of the visualization community 
returned well over 200 individual authors within the 
community. 
  Building a theoretical foundation should not be equated 
with creating a theory. Theoretical research is about creating 
new fundamental knowledge in each aspect as discussed above, 
and about making transformations as shown in Figure 1. 
Taxonomies are essential for identifying all concepts (i.e., 
variables) and their states (i.e., values) in visualization. 
Ontologies are essential for identifying the interactions among 
these concepts (i.e., functions and relational variables). Under 
the contextual framework of taxonomies and ontologies, 
guidelines and principles postulate causal relationships. By 
organizing a collection of causal relationships coherently in an 
ontology that may also define other relationships, one can 
establish a qualitative model. In return, the development of a 
model informs us of any need for a new concept in a taxonomy 
or a new relationship in an ontology, while motivating us to 
discover new guidelines or study the conflicts of guidelines. The 
grounded theory method and other research methods in social 
sciences can help us achieve such transformations 
methodologically and systematically. 
 Using a quantitative theoretic framework, we can transform 
a qualitative model into a quantitative model, providing 
opportunities for model validation using experiments and 
computational simulation. Similarly, guidelines and principles 
can be quantitatively defined, leading to a more formal 
approach to defining causal relationships in visualization. When 
a quantitative model is structured as a theoretical system, we 
can infer new laws, and prove or disprove a postulated law (e.g., 
formulated based on a guideline) using existing axioms and 
laws in the system. A quantitative model, law, or theoretical 
system is predictive, and therefore falsifiable. In turn, 
developing theoretical systems and investigating their extension 
and unification will stimulate new taxonomies, ontologies, 
guidelines, and models, thereby enriching the theoretical 
foundation of visualization. 

Conclusions 
Building a theoretical foundation for visualization is the 
collective responsibility of the visualization community. In the 
literature, hundreds of authors have already contributed to 
different aspects of the foundation. The visualization 
community has demonstrated its capability in formulating 
taxonomies, proposing guidelines, and creating models. It 
possesses the unparalleled experience of working with a wide 
spectrum of visualization users, and has accumulated much 
insight about the cost-benefit of many visualization and visual 
analytics workflows in different applications. Through 
collaboration, the community has acquired knowledge for 
empirical studies, mathematical modeling, and computational 
simulation, and is continuing to learn new skills. 



Thinking Theoretically 
In the field of visualization, it is rare to find a researcher 
who has never had any theoretical thought. Given any topic 
X is visualization, one can pose an array of theoretical 
questions about X. The real challenge to everyone is to 
make an effort to answer any of these questions. For 
example, those who are specialized in volume visualization 
may have thought about the following questions: 
Q1. Should there be a taxonomy (or an ontology) about 

modalities, rendering techniques, transfer functions, 
colormaps, users, tasks, interactions, and so on? 

Q2. What are the guidelines for using surface rendering, 
amorphous effects, non-photorealistic effects, and 
global illumination in volume visualization? 

Q3. Does a non-physically-based integral (e.g., maximum 
intensity projection) incur extra cognitive load in 
comparison with those based on optical phenomena? 

Q4. What is an appropriate cognitive model for perceiving 
volumetric phenomena? How does the viewers’ soft 
knowledge (about the objects being visualized, the task 
of visualization, and the past experience) affect the 
perception? How do different rendering integrals affect 
the perception? 

Q5. Since we know that there is potentially a huge amount 
of information loss in volume visualization (e.g., loss 
through viewing only isosurfaces, or through the 
information integration along each ray), why is volume 
visualization beneficial? 

Q6. If we had a cognitive model for volume visualization, 
could it be unified with a cognitive model for video 
visualization since their basic forms of input data are 
very similar (i.e., a stack of images)? 

 The community needs to build its confidence in directing a 
new generation of research students and postdoctoral 
researchers to tackle fundamental problems. Perhaps reviewers 
need to adjust their expectation of novelty to reflect the actual 
theoretical research activities of other scientific disciplinarians. 
For example, arvix.org lists 6202 articles in 2016 alone in the 
category of High Energy Physics − Theory. The collective effort 
to build a theoretical foundation in physics is enormous, making 
any significant breakthroughs much less romantic than 
portrayed by the media. 
 Making significant theoretical advances will lead to 
significant advances in practical applications of visualization. 
For example, we all talk about “design” as an action in practice. 
A design space is commonly defined by a taxonomy or 
ontology. Most guidelines are proposed for improving designs. 
Most models suggest that designs or design processes can be 
optimized. When we have mathematically proven the 
correctness of a design guideline, this implies that the guideline 
must be obeyed in practice under the conditions defined by the 
corresponding quantitative law. 
 We hope every visualization researcher can find at least one 
pathway in this article, through which everyone can start to 
explore unanswered questions, known problems, and identified 
deficiencies in the theoretical foundation of visualization. No 
doubt, there are other pathways featuring unasked questions, 
unknown problems, and unidentified deficiencies. Like any 
research, building a theoretical foundation for visualization 
presents many challenges. It may not be all plain sailing. We 
must always respect such challenges “in theory,” but we should 
never be afraid of them “in practice. 
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