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Abbreviations 

AMPA: DL-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 

BBB: blood-brain barrier 

BDNF: brain derived neurotrophic factor 

CA1: cornu Ammonis 1 

CCC: cation-chloride co-transporter 

CIP1: CCC interacting protein 

CREB: cyclic AMP response element binding protein 

CT: computer tomography 

EAAT: excitatory amino acid transporter 

eIF2: eukaryotic initiation factor 2 

ERK: extracellular signal-regulated kinase 

FOXO: forkhead box O 

GABA: γ-aminobutyric acid 

GABAA: GABA type A receptor 

HIF: hypoxia inducible factor 

HSP70: heat shock protein 70 

HSP72: heat shock protein 72 

KCC: K+-Cl- co-transporter 

LTP: long-term potentiation 

MRI: magnetic resonance imaging 

NF-κβ: nuclear factor kappa-light-chain-enhancer of activated B cells 

NKCC: Na+-K+-2Cl- co-transporter 

NO: nitric oxide 

OSR1: oxidative stress response kinase 

PID: peri-infarct depolarisation 

PSD-95: postsynaptic density-95 

Shc: Src homology 2 domain containing transforming protein 

SPAK: Ste20 related proline-alanine-rich kinase 
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TM: transmembrane 

TNFα: tumour necrosis factor α 

t-PA: tissue type-plasminogen activator 

TrkB: tropomyosin-related kinase B/tyrosine receptor kinase B 

UPR: unfolded protein response 

WNK3: with-no-lysine kinase 3 
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Abstract 

 

Stroke is one of the major causes of death and disability worldwide.  The major type 

of stroke is an ischaemic one, which is caused by a blockage that interrupts blood 

flow to the brain.  There are currently very few pharmacological strategies to reduce 

the damage and social burden triggered by this pathology.  The harm caused by the 

interruption of blood flow to the brain evolves during the following hours and days, so 

it is critical to identify new therapeutic targets that could reduce the neuronal death 

associated with the spread of the damage.  Here we review some of the key 

molecular mechanisms involved in the progression of neuronal death, focusing on 

some new and promising studies.  In particular, we focus on the potential of the 

chloride co-transporter (CCC) family of proteins, mediators of the GABAergic 

response, both during the early and later stages of stroke, to promote 

neuroprotection and recovery.  Different studies on CCCs, during the chronic and 

recovery phases post-stroke, reveal the importance of timing when considering 

CCCs as potential neuroprotective and/or neuromodulator targets.  The molecular 

regulatory mechanisms of the two main neuronal CCCs, NKCC1 and KCC2, are 

further discussed as an indirect approach to promote neuroprotection and 

neurorehabilitation following an ischaemic insult.  Finally, we mention the likely 

importance of combining different strategies in order to achieve more effective 

therapies. 
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Introduction 

 

The interruption of blood flow (ischaemia) to the brain, caused by either thrombosis 

or embolism, is the most common cause of stroke.  The consequences have 

devastating effects, due to irreversible neuronal death, ranging from impaired speech 

and loss of vision, to movement deficits.  Stroke is the second leading cause of 

death, and the leading cause of disability, worldwide (World Health Organisation, 

2014; http://www.who.int/mediacentre/factsheets/fs310/en/).  For approximately one 

third of patients, a stroke will be fatal, for another third it will cause severe to very 

severe motor impairments, while the remainder will recover but have an increased 

risk of having another event (Roger et al., 2012).  In the United States, some 

795,000 individuals will suffer a stroke each year, which carries a huge personal and 

economic burden to society.  The estimated annual cost of stroke, in the United 

States, which includes health care services, treatment, and loss of productivity, is 

$33.6 billion (Heidenreich et al., 2011).  Despite this, while approximately $4,700 is 

spent each year on medical research for each cancer sufferer, less than $400 is 

spent per stroke patient (Luengo-Fernandez et al., 2012). 

 

The most common type of stroke is an ischaemic stroke, which accounts for 85% of 

all cases.  This results from either atherosclerosis in large arteries, a blood clot 

forming in the heart and travelling to the brain, or lacunar strokes (these affect small 

arteries that provide blood to deeper areas of the brain).  In contrast, haemorrhagic 

strokes are caused by either a primary intracerebral haemorrhage or a subarachnoid 

haemorrhage (bleeding in the area between the arachnoid membrane and the pia 

matter, normally caused by trauma), and this results in a mortality of 30% (González-

Pérez et al., 2013). The main mechanism by which haemorrhagic strokes take place 

is the weakening of arteries and high blood pressure.  Since the two types of stroke 

have very different causes and prognoses, it is important to distinguish between 

them in order to provide the most appropriate treatment.  Interestingly, there is a sex-
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specific difference in the occurrence of stroke, it being more common in males than 

in females.  However, women are more severely affected (a one-month case fatality 

of 24.7% compared with 19.7% for men; Appelros et al., 2009). 

 

Distinguishing between the different types of stroke can only be performed once the 

patient is admitted to hospital, and this is achieved by either magnetic resonance 

imaging (MRI) or computer tomography (CT).  Due to the need for highly-specialised 

equipment, and the cost, a diagnosis is not usually made directly after admission.  

However, since cell death begins soon after the onset of ischaemia, rapid diagnosis 

and treatment are essential to limit long-term damage (Goyal et al., 2015).  

Furthermore, the type of treatment is dependent upon the nature of the stroke.  For 

example, prescribing anti-coagulants for a haemorrhagic event would have the 

opposite of the desired effect. 

 

After years of intensive research, the only current effective and approved treatments 

for ischaemic stroke rely on the pharmacological and/or mechanical 

revascularisation of the affected artery.  Mechanical revascularisation can only be 

performed when a large artery is affected.  In such cases, when large thrombi are 

resistant to pharmacological dissolution, a mechanical thrombectomy can produce a 

favourable clinical outcome (Jeromel et al., 2013; Akbik et al., 2016).  Tissue type-

plasminogen activator (t-PA), commercially known as alteplase, remains the only 

Federal Drug Administration-approved drug in use.  Its mode of action is to dissolve 

the clot; however, many patients do not benefit because of various exclusion criteria, 

the most important being its short therapeutic window of 3 to 4.5 hours (Fugate and 

Rabinstein, 2015; Holmes et al., 2015).  In addition, according to European 

guidelines (The European Agency for the Evaluation of Medicinal Products, 2002), it 

cannot be used on patients more than 80 years of age, as this demographic have an 

increased risk of haemorrhage and mortality (Longstreth et al., 2010; Wardlaw et al., 

2012).  Major side effects of t-PA include an increased risk of haemorrhage in 
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ischemic tissue, activation of matrix metalloproteinases that can disrupt the blood-

brain barrier (BBB), and induction of excitotoxicity due to glutamate release.  t-PA 

induces an increase in the influx of calcium via a plasmin-independent cleavage of 

the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor, potentiating receptor 

signalling (reviewed in Yepes et al., 2009).  Thus, current research is aimed at 

developing a more fibrin-specific agent with a shorter half-life and less neurotoxic 

side effects than t-PA (Frendl and Csiba 2011).  Interestingly, a recent study has 

shown an increase in the therapeutic window of t-PA by combining it with 2-(4-

methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside (SalA-4g; Yu et al., 

2016).  This effect is due to an increase in glucose uptake via elevated glucose 

transporter 3 expression (Yu et al., 2014). 

 

Risk factors for stroke include hypertension, obesity, diabetes, smoking, and high 

cholesterol levels (Hankey 2006), many of which are on the increase.  However, the 

mortality from stroke has decreased over time due to better management of risk 

factors, and the general improvements to health systems. Taken together with the 

aging population, it seems reasonable to conclude that the occurrence of stroke will 

not significantly decrease in the near future, and that the number of post-stroke 

disabled patients will likely grow.  It is, therefore, of the utmost importance to find and 

develop novel and effective approaches to either prevent the neuronal death that 

occurs in both ischaemic and haemorrhagic strokes or promote functional recovery.  

After a stroke, neurons within the core of the infarct are unlikely to be salvageable 

(Muir et al., 2006).  However, it may be possible to rescue those within the 

surrounding area, the penumbra, which would limit motor and other deficits.  We 

believe that to do this, it is first necessary to understand the early molecular events 

that occur after an ischaemic insult; these include changes in gene expression, 

biochemical pathways and neuronal ion regulation.  The aim of this review is to 

summarise the current literature and high-light new potential therapeutic targets.  For 
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this, we will concentrate on ischaemic stroke, which affects the largest number of 

individuals, and which has the greatest burden on society. 

 

Core vs. Penumbra 

 

The ischaemic core, which is the brain area immediately impacted by a dramatic 

reduction in blood supply after a stroke, becomes rapidly and irreversibly damaged 

affecting neuronal, glial and vascular cells.  The tissue suffers from oxygen and 

glucose deprivation leading to neuronal death as a consequence of bioenergetic 

failure (reduced ATP levels) and impairment of ionic homeostasis across the cell 

membrane (Astrup et al., 1981).  Lack of oxygen inhibits mitochondrial activity, and 

inefficient anaerobic glucose metabolism produces acidosis resulting in the loss of 

cell membrane function, which is due to calcium overload, the accumulation of 

oxygen free radicals, and the stimulation of intracellular lysosomal enzymes.  

Neurons also begin to undergo apoptosis, but due to the lack of ATP they shift from 

an apoptotic route to a necrotic one, leading to unregulated cell death (Yuan 2009; 

Chelluboina et al., 2014).  This appears to be mediated by the caspase cleavage of 

calcium pumps, altering cellular calcium homeostasis, which ultimately triggers 

necrosis (Schwab et al., 2002).  All of this occurs within minutes of the onset of 

stroke, making protection of the ischemic core essentially impossible, resulting in it 

being considered as non-salvageable tissue; the penumbra that surrounds the core 

is only partially metabolically compromised.  This area is of great therapeutic 

relevance because it is the location of the continuing damage that takes place during 

the following hours and days after an insult (Hartings et al., 2003).  

 

The penumbra has been classically defined as the area that surrounds the core 

having sufficient blood flow to be salvaged.  Areas within the brain with a cerebral 

blood flow below 20 ml/100 g/min define this area; this is compared with a normal 

blood flow of ~50 ml/100g/min.  When blood flow is less than 10 ml/100 g/min, the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075305/#B18
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tissue loses ionic homeostasis and forms the infarct core (Hakim 1998).  

Neuroimaging techniques have provided a method to anatomically distinguish 

between the core and penumbra (Wey et al., 2013).  The method of choice to 

discriminate between these two regions is positron emission tomography/single 

photon emission CT, which measures cerebral blood flow and glucose metabolism. 

 

However, there are also a number of molecular events that help to understand the 

development of the penumbra, and its progression towards a damaged core-like 

state.  A decrease in protein synthesis is observed, which is mediated by the 

unfolded protein response (UPR) in the endoplasmic reticulum, and translational 

arrest mainly through the phosphorylation of eukaryotic initiation factor 2 (eIF2; Hata 

et al., 2000; De Gracia and Hu 2007).  Expression of the UPR response genes 

appears to be decreased in aged animals (Llorente et al., 2013), which could be a 

factor contributing to the higher mortality observed in the aged population.  Activation 

of the UPR increases the ability of the endoplasmic reticulum to deal with the 

accumulation of misfolded proteins, which arises due to stress, and this is beneficial 

in the short-term.  However, prolonged induction leads to apoptosis due to 

translational arrest and is, therefore, detrimental (Han et al., 2009). 

 

The penumbra is thought to develop due to anoxic depolarisation-like events known 

as peri-infarct depolarisations (PIDs) that spread out from the ischaemic core 

(Nedergaard and Hansen 1993).  These are triggered by increases in extracellular 

levels of potassium, and the massive release of excitatory neurotransmitters.  The 

resultant spontaneous and continuous depolarisations deplete the glucose pool in 

the penumbra (Feuerstein et al., 2010) and, consequently, depolarised neurons lack 

the energy to repolarize.  This progressive process causes the observed spreading 

effect, resulting in increased infarct volume (Back et al., 1996; Hartings et al., 2003), 

but also provides the opportunity for neuroprotective intervention (Ramos-Cabrer et 

al., 2011).  Constant depolarisations have also been shown to induce BBB disruption 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075305/#B18
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(Gursoy-Ozdemir et al., 2004), providing a drug delivery route to limit the growth of 

infarct tissue.  However, the wave of depolarisation can also be beneficial, in the 

long term, by triggering axonal sprouting and, thus, the formation of new connections 

in the brain (Hinman et al., 2013). 

 

The energy demand of the brain is achieved by an increase in blood flow to satisfy 

the requirements for glucose and oxygen.  However, during the spread of PIDs, a 

loss of vasoreactivity (diminished vasodilation) and, occasionally, even 

vasoconstriction is observed (Chang et al., 2010).  This leads to a glucose and 

oxygen supply that is insufficient for the high demands of the ischemic tissue 

necessary to restore the ionic balance and membrane repolarisation.  The observed 

vasoconstrictor response is due to an increase in the extracellular potassium 

concentration, as a result of reduced sodium-potassium ATPase activity, and a 

decrease in nitric oxide production by the inhibition of nitric oxide synthase (Shin et 

al., 2006).  This overrides the vasodilatory effect of low pH, due to anaerobic 

metabolism (Dreier 2011).  The inhibition of PIDs with either channel blockers or 

antagonists, and targeting the vasoconstrictor response, are obvious candidates for 

neuroprotective strategies in stroke.  However, a large number of clinical trials with 

channel blockers, specifically NMDA receptor antagonists, have failed to translate 

bench findings into patient therapies (O’Collins et al., 2006; Tymianski 2010; Grupke 

et al., 2015). 

 

Heat shock protein 70 (HSP70) is an inducible molecular chaperone, the expression 

of which is induced under different stress conditions.  This molecule binds to nascent 

polypeptides preventing their aggregation, supporting protein folding and trafficking 

across intracellular compartments.  It is particularly relevant in ischaemia as it is 

considered to have neuroprotective potential (Rajdev et al., 2000; Doeppner et al., 

2013), and it is not expressed in the adult brain under normal physiological 

conditions.  HSP70 is strongly induced in neurons of the penumbra, at both the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075305/#B17
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mRNA and protein level, but not in the core where little or no mRNA is found, apart 

from in blood vessels where significant HSP70 protein levels have been detected 

(Zhan et al., 2008; de la Rosa et al., 2013). 

 

Glial scar 

 

Following stroke there is an increase in the number of glial cells (i.e. microglia, 

oligodendrocytes and astrocytes) in the area bordering the infarct, which is called the 

glial scar.  This seal surrounds the area of damage, and confers both beneficial and 

detrimental effects.  During the acute phase of ischaemia, the glial scar prevents 

spreading of the lesion, stimulates revascularisation of blood capillaries, and limits 

the responses to inflammation, growth factors and free radicals (Rolls et al., 2009), 

and promotes axonal regeneration (Anderson et al., 2016).  However, it can interfere 

with the innate process of axonal sprouting, by producing growth-inhibitory 

molecules such as chondroitin sulphate proteoglycans, and creating a physical 

barrier to regenerating axons (Carmichael et al., 2016). Thus, the beneficial or 

detrimental role of the glial scar may be dependent on timing, as it appears to be 

beneficial in the acute phase, but detrimental to the promotion of recovery.  Aged 

animals, that are more likely to suffer from a stroke, present an increased astrocytic 

and microglial reactivity, which may account for their reduced functional recovery 

compared to younger animals (Badan et al., 2003; Anuncibay-Soto et al., 2014). 

 

Ion regulation 

 

Although the weight of the human brain is only about 2% of total body weight, it has 

a high metabolic activity and uses 20% of the oxygen and 25% of the glucose 

consumed by the entire body (Zauner et al., 2002).  This is required to generate 

sufficient ATP to maintain the high demand for energy needed for action and 

synaptic potentials (Magistretti and Allaman, 2015).  Following global ischaemia, the 
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available ATP is consumed within 2 minutes due to the inhibition of mitochondrial 

ATP synthesis (Caplan 2000).  The neuronal membrane-bound sodium-potassium 

ATPase consumes 70% of the brain-derived ATP, and this pump plays a key role in 

ion homeostasis by extruding sodium from the cell.  This results in a relatively low 

intracellular sodium concentration, and a comparatively low external potassium 

concentration (Figure 1).  Due to the ATP depletion that follows an ischaemic 

episode, this tightly regulated sodium-potassium ATPase-dependent homeostasis is 

lost.  However, there are additional ionic transporters, both ATP-dependent and 

independent ones, involved in the maintenance of ionic gradients.  Many of these 

transporters are dysregulated during ischaemic brain injury, contributing to cytotoxic 

cell swelling, depolarisation and ultimately cell death (Kahle et al., 2009; Sun and 

Kahle 2014). 

 

Glial cells, and their interplay with neurons, are also very important players in the 

maintenance of the tightly-controlled ion regulation (Fields et al., 2015).  This is due 

to i.) their contribution to the regulation of extracellular ion concentrations necessary 

for neuronal excitability (Pannasch et al., 2011); and ii.) the acknowledgement that 

the modification of intra-glial ionic homeostasis, in response to ischaemic injury, has 

a crucial role in inducing and maintaining glial responses in the ischemic brain 

(Annunziato et al., 2013). 

 

Excitotoxicity and NMDA receptors 

 

Most studied neuroprotectants for the treatment of stroke have targeted the DL-α-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor and the 

NMDA receptor, which are glutamate-activated ion channels (Besancon et al., 2008; 

Krzyżanowska et al., 2014).  NMDA receptors, which play an important role in 

synaptic development, and learning and memory, are found throughout the brain 

(Monyer et al., 1994; Sanz-Clemente et al., 2013).  During an ischaemic event, 
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energetic failure and the loss of ionic gradients leads to an increase in presynaptic 

glutamate release, and failure of re-uptake mechanisms (Rossi et al., 2000).  This 

causes an increase in extracellular glutamate levels.  Astrocytes are the principal 

mediators of glutamate recycling from the extracellular space (Uwechue et al., 2012).  

The levels of the transcription factors, tumour necrosis factor α (TNFα) and nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κβ), are increased during 

hypoxia and these down-regulate the activity of excitatory amino acid transporters 1 

and 2 (EAAT1 and EAAT2) in astrocytes (Boycott et al., 2008).  This contributes to 

the over-activation of AMPA and NMDA receptors, and an increased intracellular 

calcium concentration that triggers caspase activation, free radical formation and, 

eventually, cell death (Szydlowska and Tymianski 2010).  This phenomenon, elicited 

by the onset of stroke, is known as excitotoxicity (Olney and Sharpe 1969).  

However, despite promising results of NMDA receptor antagonists in vitro and in in 

vivo animal models, all compounds have failed in clinical trials (Xu and Pan 2013). 

 

Partial success was originally achieved with two non-competitive NMDA receptor 

drugs, MK-801 (Margaill et al., 1996) and Dextrorphan (Steinberg et al., 1995), in 

animals, both of which exhibit a neuroprotective effect within therapeutic windows of 

30 minutes and 2 hours, respectively.  These data indicate that the therapeutic 

window is too short, after the ischaemic injury, for these compounds to be of benefit. 

Other NMDA receptor antagonists have subsequently been tested, such as 

Memantine, Cerestat (CNS 1102) and Selfotel (CGS19755).  Although all of these 

drugs were effective in animal models (in both histological and behavioural studies; 

reviewed in Lau and Tyminanski 2010), all of the corresponding clinical trials were 

abandoned due to a lack of effect, increased rates of mortality and/or unacceptable 

side effects such as hallucinations and psychotropic episodes (Morris et al., 1999; 

Davis et al., 2000; Albers et al., 2001). 
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While an appropriate level of activity of NMDA receptors is required to produce 

balanced cognitive, behavioural and physiological functioning, complete blockade of 

the receptor would intuitively lead to broad and unpredictable effects.  A more 

downstream-specific approach has been developed in animals in which the 

compound NA-1 blocks the interaction between NMDA receptors and the scaffold 

protein PSD-95 (postsynaptic density-95) to inhibit nitric oxide (NO) signalling 

(Instrum and Sun 2013).  NA-1 disrupts the link between NMDA receptors and the 

neurotoxic NO cell death signalling pathway, without disturbing normal NMDA 

receptor function.  Treatment with NA-1 has produced both neuroprotection, and 

preservation of neurological function in a primate model of stroke (Cook et al., 2012), 

and in a promising phase 2 clinical trial in man (Hill et al., 2012).  It is currently 

undergoing a phase 3 clinical trial (the FRONTIER trial see: 

https://clinicaltrials.gov/ct2/show/NCT02315443). 

 

A dual role for NMDA receptors in the development of stroke has been suggested in 

recent studies.  Whereas the more abundant, extrasynaptic NMDA receptors 

promote cell death, synaptic NMDA receptors might be neuroprotective through the 

calcium-dependent activation of survival genes, suppression of death genes, and 

protection against oxidative stress (Hardingham and Bading 2010; Baxter et al., 

2015; Brassai et al., 2015).  Activation of extrasynaptic NMDA receptors has 

opposing actions: i.) shutting down the cyclic AMP response element binding protein 

(CREB) pathway and inactivation of the protein kinases ERK (extracellular signal-

regulated kinase) 1/2; and ii.) activation of the forkhead box O (FOXO) and calpain 

cell death pathways (Wahl et al., 2009).  Thus, more effort could be expended to 

elucidate the differentially-located NMDA receptors, and their down-stream signalling 

pathways, as a prelude to seeking neuroprotective strategies. 

 

AMPA receptors are also candidates for neurorehabilitation in stroke.  Like NMDA 

receptor agonists, early administration of positive allosteric modulators of AMPA 
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receptors are detrimental to stroke recovery, because they contribute to excitotoxicity 

(Mehta et al., 2013).  Ampakines are drugs that potentiate the excitatory signalling of 

AMPA receptors, whereas type II ampakines (a new generation of drugs) increase 

the levels of brain derived neurotrophic factor (BDNF), which is essential together 

with NMDA receptors for long-term potentiation (LTP) and rehabilitation post-stroke 

(Ploughman et al., 2009).  LTP is a form of plasticity that involves a long-lasting 

strengthening of synaptic transmission, and which is triggered by brief periods of 

high-frequency stimulation (Bliss and Lomo 1973).  An elegant study by Clarkson et 

al. (2011) showed improved motor recovery in a focal stroke model in young mice, 

where type II ampakines were administered 5 days after ischaemia, through 

potentiation of the AMPA-BDNF signalling system.  However, early administration of 

the drug (given at the time of induction of cerebral ischaemia) increased stroke 

damage.  By combining the ampakine CX1837, with BDNF, the level of which is 

reduced in aged populations, a significantly improved recovery two weeks after insult 

was observed in aged mice (Clarkson et al., 2015).  From the above, it may be 

concluded that blockade of NMDA/AMPA receptor channels could be either 

beneficial or harmful to neurons depending on their spatial location and the time of 

administration of a pharmacological agent.   

 

Chloride co-transporters 

 

γ-Aminobutyric acid (GABA) type A (GABAA) receptors are ligand-gated ion channels 

that are the principal mediators of synaptic inhibition in the adult human brain.  The 

chloride ion gradient across the neuronal membrane is crucial for the nature of 

GABAergic signalling.  The direction of chloride movement is dependent upon the 

chloride gradient; chloride entry through GABAA receptors leads to hyperpolarisation 

while chloride extrusion results in cellular depolarisation (Rivera et al., 1999; Delpire 

2000; Kaila et al., 2014).  Cation-chloride co-transporters (CCCs) mediate coupled 
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transport of sodium, potassium and chloride ions across neuronal membranes, 

thereby regulating the chloride electrochemical gradient (Kaila et al., 2014).   

 

The CCC proteins are classified in terms of their physiological function into three 

categories: two members are Na+-K+-2Cl- co-transporters (NKCCs; two isoforms, 

called NKCC1 and NKCC2), one is a Na+-Cl- co-transporter (NCC), and four are K+-

Cl- co-transporters (KCCs; isoforms KCC1 to KCC4).  All CCCs are expressed in the 

mammalian nervous system at different developmental stages with the exception of 

NCC and NKCC2, which are found predominantly in the kidney where they play a 

key role in the salt transport pathway (Haas 1994; Liu et al., 2011).  However, a 

novel study has shown that the expression of NKCC2 in brain plays a role in 

osmoregulation following hydration insult (Konopacka et al., 2015).  The remaining 

two members of the CCC family, CCC interacting protein (CIP1) and CCC9, have no 

known physiological role, other than one study showing that CIP1 is an activator of 

KCC2 (Wenz et al., 2009).  Homo- and hetero-oligomers have been described for 

almost all CCCs (for example, associations of KCC1 and KCC3, KCC2 and KCC4, 

and NKCC1 and KCC4, have been found); however, there is, to date, no conclusive 

data on how the different oligomerisation patterns affect protein function (Simard et 

al., 2007; Hartmann and Nothwang, 2014). 

 

In early neuronal development (Rivera et al., 1999), and in certain pathological 

states, for example, cerebral oedema, traumatic and ischemic brain injury, temporal 

lobe epilepsy, schizophrenia, Andermann syndrome, Bartter syndrome and cancer, 

the normal gene expression patterns of CCCs appear altered (Uyanik et al., 2006; 

Benarroch 2013; Kaila et al., 2014; Kahle et al., 2015).  In many cases, the changes 

in the levels of the CCCs lead to a reversal of the chloride gradient in neurons, 

resulting in subsequent GABAergic excitation (Huberfeld et al., 2007).  The genes 

SLC12A1-9 encode nine members of the CCC family, all of which are glycoproteins, 

having molecular weights of between 120 and 200 kDa.  The predicted secondary 
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structure of CCCs (only confirmed for NKCC1, by Gerelsaikhan and Turner 2000) 

comprises 12 transmembrane (TM) segments with a relatively small amino-terminus 

and a large carboxy-terminus, both of which are intracellular.  All KCC isoforms 

exhibit a long extracellular loop between the fifth and sixth TM domains, whereas the 

two NKCC isoforms present a large extracellular sequence between the seventh and 

eighth TM segments; these regions contain extracellular sites for N-linked 

glycosylation (Hebert et al., 2004). 

 

NKCC1 

 

Under physiological conditions, the activity of NKCC1 modulates the intracellular 

chloride concentration in neurons, glia, BBB endothelial cells, and choroid plexus 

epithelial cells (Gerelsaikhan and Turner 2000).  This helps to maintain cellular 

volume against changes in extracellular osmolality and intracellular solute content to 

prevent either excessive cell swelling or shrinkage (Kahle et al., 2009).  In rodents, 

during embryonic and early postnatal life, NKCC1 shows robust expression, 

promoting an influx of chloride ions into the neuron that ultimately triggers GABA-

mediated excitation and, hence, depolarisation (Pfeffer et al., 2009).  This chloride 

influx is achieved through an electroneutral Na+-K+-2Cl- co-transport mechanism, 

coupled with the activity of the sodium-potassium ATPase, that leads to a GABAA 

receptor-mediated chloride efflux.  The depolarising GABA-mediated effect is 

necessary for correct brain development (Ben-Ari 2002; Wang and Kriegstein 2008). 

  

There are two different splice variants of NKCC1 termed NKCC1a and NKCC1b.  

Both are functional and ubiquitously expressed, but a considerably higher level of the 

NKCC1b mRNA is seen in the adult brain (Vibat et al., 2001).  NKCC1b seems to 

undergo a more robust up-regulation during development compared to NKCC1a 

(Morita et al., 2014).  The difference between these two isoforms is a 16 amino-acid 

insert (encoded by exon 21), that contains a protein kinase A phosphorylation site, in 
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the carboxy-terminus of NKCC1a (Blaesse et al., 2009).  Four novel splice variants, 

and changes in their expression, have recently been identified in brain, associated 

with schizophrenia and early brain development (Morita et al., 2014). 

 

In a rat model of focal cerebral ischemia/reperfusion injury (2-hour middle cerebral 

artery occlusion and 24-hour reperfusion), NKCC1 transcript and protein levels were 

found to be significantly up-regulated in cortical neurons, as well as in lysates from 

rat cerebral cortex and striatum (Yan et al., 2003; Wang et al., 2014).  Elevated 

extracellular levels of potassium, glutamate and interleukin-6, which occur in cerebral 

ischaemia, are known to stimulate NKCC1 activity in both neurons and astrocytes 

(Chen and Sun 2005).  The effect of potassium seems to be calcium-dependent, as 

the activity of NKCC1 in astrocytes is completely abolished by either blocking L-type 

voltage-dependent calcium channels with nifedipine or by the removal of 

extracellular calcium (Su et al., 2002). 

 

The activation of NKCC1 is dependent on its phosphorylation state.  Increased 

NKCC1 phosphorylation, on threonine184 and threonine189, by either STE20 

(sterile20)/SPS-1 related proline-alanine-rich kinase (SPAK) or oxidative stress 

response kinase (OSR1), which are both serine-threonine kinases, has been 

demonstrated to induce the activation of NKCC1 (Piechotta et al., 2002).  Oestradiol 

increases SPAK and OSR1 in a transcription-dependent manner, which 

subsequently leads to increased phosphorylation of NKCC1 (Nugent et al., 2012).  

Oestradiol is, thus, believed to up-regulate the activity of NKCC1 and promote 

GABA-mediated depolarisation (Mccarthy 2009).  In a focal ischaemia model, in rats, 

oestradiol treatment has also been shown to promote neurogenesis in the 

subventricular zone of the brain, improving neurological outcome (Zheng et al., 

2013). 
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Co-expression of WNK3 (with-no-lysine kinase 3) and NKCC1, in neurons, results in 

robust phosphorylation of threonine212 and threonine217, two other known 

regulatory sites in NKCC1, and a consequent increase in NKCC1 activity (Kahle et 

al., 2005; Begum et al., 2015).  The amino-terminus of NKCC1 contains a highly 

conserved RVNFVD sequence (single-letter amino-acid code), which is the target of 

protein phosphatase 1 (which recognises the consensus motif: RVXFXD); when this 

sequence is mutated, NKCC1 activity is increased (Gagnon and Delpire 2010).  Also, 

calyculin A, a protein phosphatase 1 inhibitor, restores the activity of NKCC1 (Dowd 

and Forbush 2003). 

 

Several studies have implicated NKCC1 in the development of oedema and cell 

death after stroke onset, providing a potential neuroprotective target (Kahle et al., 

2009; Szydlowska and Tymianski 2010; Begum et al., 2015).  In a pharmacological 

study using the antagonist bumetanide, a significantly attenuated neuronal sodium 

overload and decreased cell death, with a concurrent decrease in infarct volume and 

brain oedema, was observed (Chen et al., 2005).  A further study has shown that 

bumetanide administration, after focal cerebral ischaemia in rats (given 1 week after 

ischemia, and continued for 3 weeks), increased behavioral recovery and promoted 

neurogenesis 28 days post-insult (Xu et al., 2016).  Low concentrations of 

bumetanide (2 to 10 μM) can be used to inhibit NKCCs in vitro without significantly 

affecting KCCs; however, a high concentration has been shown to block both 

NKCC1 and KCC2 (Payne et al., 2003; Hamidi and Avoli 2015).  Similar effects were 

seen in mice deficient for the NKCC1 gene compared to wild-type controls (Chen et 

al., 2005).  NKCC1 is expressed at the luminal side of endothelial cells of the BBB, 

where it can come into contact with intravenously-administered bumetanide, which 

decreases oedema (O’Donnell et al., 2004). 

 

Bumetanide has poor pharmacokinetic properties that limit its access to BBB-

protected brain areas (Cleary et al., 2013). Therefore, bumetanide pro-drugs that 
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mask the hydrophilic carboxyl group with esters are currently being tested as anti-

stroke therapies and in other neurological  disorders, such as epilepsy (Töllner et al., 

2014; Erker et al., 2016).  This masking facilitates transport into the brain, where the 

active molecule is released (Löscher et al., 2013).  The use of bumetanide in chronic 

conditions, such as hypertension, broncho-pulmonary dysplasia, nephritic 

syndromes and heart congestion, has been widely prescribed since 1975 with few 

side effects.  And, in the treatment of neurological conditions such as autism, the 

only side-effect observed (30% of children in a randomised trial) was hypokalaemia, 

which could be easily overcome with a potassium-containing syrup (Lemonnier et al., 

2012).  This study showed a significant reduction, in children, in the severity of 

autism and Asperger syndrome.  However, severe problems such as diuresis, 

hypokalemic alkalosis, and hearing loss have been related to the use of bumetanide 

in vivo (Puskarjov et al., 2014; Pressler et al., 2015); these effects should be critically 

taken into account when evaluating clinical work that utilises bumetanide.  

 

In low oxygen conditions, such as in brain ischaemia after stroke, a series of 

molecular cascades are activated.  The most important is driven by HIF-1α, which 

triggers the transcription of a number of genes involved in cell proliferation and 

survival, glucose and iron metabolism, and angiogenesis (Ke and Costa 2006).  A 

recent study has highlighted the involvement of NKCC1 in mediating neurogenesis 

after traumatic brain injury through the activation of CREB and the HIF-1α pathway, 

and proposed the HIF-1α-mediated up-regulation of NKCC1 (Lu et al., 2015).  All of 

the above information indicates that either blocking the activity of NKCC1 or down-

regulating its expression may offer a useful neuroprotective strategy. 

 

KCC2 

 

There are two splice variants of KCC2, KCC2a and KCC2b, both functional; the 

KCC2b isoform is up-regulated after birth in rodents (Rivera et al., 1999), and is 



21 
 

considered to be the isoform responsible for the developmental shift in the 

GABAergic response; this developmental shift in humans takes place at the 

beginning of the last trimester of gestation (Sedmak et al., 2015).  KCC2b differs in 

its 5’-untranslated region and 5'-coding region compared to KCC2a.  Thus, the 

resulting protein isoform has a distinct amino-terminus and is 23 residues shorter 

than KCC2a (Uvarov et al., 2007).  The two isoforms are generated by the use of 

alternate promoters, and alternate first exons that provide the complexity needed for 

the observed temporal-specific gene expression patterns (Uvarov et al., 2007). 

 

KCC2 exhibits a unique feature in that it is expressed only in central nervous system 

neurons, where it plays a crucial role in the regulation of neuronal excitability and 

development of the postnatal brain (Payne et al., 1996; Rivera et al., 1999). 

Furthermore, independent of its ion transport role, it has been linked to glutamatergic 

dendritic spine formation (Li et al., 2007; Fiumelli et al., 2013; Llano et al., 2015).  It 

is responsible for maintaining a low intracellular chloride concentration by extruding 

chloride ions and, thus, producing a hyperpolarising effect when GABA and glycine 

bind to their cognate receptors, resulting in inhibition (Rivera et al., 1999; Blaesse et 

al., 2009).  This restricted expression pattern is guaranteed by the presence, in its 

gene sequence, of a neuronal transcription factor Egr4 binding site, which enhances 

KCC2 expression, and neuron restrictive silencing elements (Uvarov et al., 2005, 

2006).  Oxytocin, a neuropeptide, has recently been shown to participate in the 

developmental up-regulation of KCC2, that ultimately induces the switch in GABA-

mediated function, by promoting KCC2 phosphorylation and insertion of the co-

transporter into the neuronal membrane (Leonzino et al., 2016).  However, 

projections from oxytocinergic nuclei have only a relatively small number of targets 

(Boccia et al., 2013), yet developmental up-regulation of KCC2 is seen in the vast 

majority of central nervous system neurons (Sedmak et al., 2015). 
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Studies with mice deficient for KCC2 reveal the importance of this co-transporter 

because its absence leads to death after birth due to respiratory failure (Hübner et 

al., 2001).  In another study in which only one isoform was deleted (KCC2b-/-), low 

body weight and generalised seizures were observed (Woo et al., 2002).  Finally, in 

an interesting study by Tornberg and colleagues (Tornberg et al., 2005), a reduction 

in the expression of both isoforms to 17% of their normal values, led to increased 

anxiety, difficulty in spatial learning, and impaired sensitivity to thermal and 

mechanical stimuli.  RNA interference, using short-hairpin RNAs, has also been used 

to “knock down” KCC2 expression in the rat.  Suppression of the function of KCC2 

reduced neuronal resistance to toxic insults such as lipofectamine-mediated 

oxidative stress and NMDA receptor activation.  On the contrary, over-expression of 

KCC2, in the mouse, increased neuronal resistance to these insults (Pellegrino et al., 

2011).  Over-expression of KCC3, after treatment with NMDA, also increased 

neuronal survival, indicating the importance of compensatory mechanisms exerted 

by other KCC members.  KCC3 has also been shown to participate in cell volume 

homeostasis (Adragna et al., 2015), and its deletion leads to locomotor deficits (Ding 

and Delpire 2014).  KCC4-deficient mice are deaf due to a rapid degeneration of hair 

cells within the ear (Boettger et al., 2002).  These data suggest the importance of 

KCCs as potential neuroprotective targets; this is underscored by the neurological 

phenotypes of “knock-out mice”, particularly for KCC2, KCC3 and KCC4 (Gagnon 

and Delpire 2013). 

 

BDNF and its receptor tropomyosin-related kinase B/tyrosine receptor kinase B 

(TrkB) are thought to be involved in the regulation of the mRNA that encodes KCC2b 

(Ludwig et al., 2011).  For the down-regulation of KCC2, two different intracellular 

TrkB signalling cascades are required: src homology 2 domain-containing 

transforming protein (Shc) and phospholipase Cγ (Puskarjov et al., 2012).  

Interestingly, when only the Shc pathway is activated, an up-regulation of KCC2 

takes place.  However, a study with mice deficient for BDNF showed that this 
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molecule is not necessary for the developmental up-regulation of KCC2, but is 

essential for the triggering of neonatal seizures (Puskarjov et al., 2015).  Calcium 

and BDNF are responsible for the activation of calpain, which mediates the cleavage 

of a fragment from KCC2 that is essential for its function (Puskarjov et al., 2012).  

This regulation is important for the changes in neuronal plasticity, mediated by this 

transporter, in different pathological states and during development. 

 

Changes in the expression of KCC2 have been observed in different 

neuropathologies, such as schizophrenia (Hyde et al., 2011), epilepsy (Huberfeld et 

al. 2007), and traumatic and ischaemic brain injury (Kahle et al., 2008).  In post-

mortem samples from schizophrenic patients, down-regulation of KCC2 mRNA was 

observed by Hyde et al. (2011); however, another study (Arion and Lewis 2011) did 

not find any difference, but did observe up-regulation of the transcripts for the 

kinases, WNK3 and OXSR1.  For temporal lobe epilepsy, the data derive from 

biopsies and relate to mRNA levels of KCC2 as detected by in situ hybridisation 

(Huberfeld et al., 2007).  In animal models of traumatic and ischaemic brain injury, 

KCC2 mRNA and protein levels have been reported to be down-regulated 

(Bonislawski et al., 2007; Jaenisch et al., 2010; Wu et al., 2016). 

 

We have previously mentioned the effect of stimulation of the AMPA/BDNF signalling 

pathway, which promotes motor recovery after stroke (Clarkson et al., 2011).  It is 

conceivable that this recovery is aided by the down-regulation of KCC2 via BDNF.  

The effect of this might be to produce a switch in GABAergic signalling, and promote 

neuronal depolarisation.  This possibility is supported by another study (Clarkson et 

al., 2010) that found that reducing extrasynaptic GABAergic tonic inhibition promoted 

post-stroke functional recovery (Figure 2). 

 

In the hippocampus, 6 hours following transient forebrain ischaemia (the 4-vessel 

occlusion model in mice), KCC2 protein levels increase in the dendritic regions of 
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pyramidal cells in the cornu Ammonis 1 (CA1) region, which shows no morphological 

signs of damage.  In the same tissue, 48 hours after stroke induction, the CA1 

pyramidal cells begin to degenerate, and a progressive down-regulation of both 

KCC2 and HSP72 (heat shock protein 72) expression is observed.  HSP72 increase 

or decrease has been found to exacerbate or attenuate hypothalamic neuronal death 

(Lin et al., 2015), and it is considered a biomarker of the peri-infarct region of the 

brain (Agulla et al., 2014).  Interestingly, parvalbumin-containing interneurons, which 

demonstrate strong KCC2 gene expression, and glutamatergic input, readily survive 

even in regions of complete pyramidal cell loss (Papp et al., 2008); parvalbumin is a 

small calcium-binding protein that is expressed in certain subtypes of cortical 

interneuron.  The high levels of KCC2, together with extremely low levels of NMDA 

receptors (Nyíri et al., 2003), and the high number of extrasynaptic GABAA 

receptors, may explain the extraordinary resistance of parvalbumin-containing 

interneurons to ischemia in CA1 pyramidal cells (Papp et al., 2008).  A novel study 

has also shown an up-regulation of KCC2 in the hippocampus of patients with 

temporal lobe epilepsy (Karlócai et al., 2016).  These data suggest that up-regulation 

of KCC2 protects against cell death, at least in the hippocampus. 

 

In a study by Jaenisch and colleagues (Jaenisch et al., 2010), a decrease in both the 

mRNA and protein levels of KCC2 were revealed following transient focal cerebral 

ischemia in rats.  This could be argued to be a more representative model of 

ischaemic stroke in humans.  These authors showed that the long-term survival of 

neurons in the core maintained their expression of KCC2; these cells were identified 

as GABAergic parvalbumin-expressing interneurons.  The identification of either 

KCC2 activators or allosteric modulators, that reduce the intracellular chloride 

concentration, could have a critical impact on neurorehabilitation strategies.  

Optimisation of the first-in-class arylmethylidine family of compounds resulted in a 

KCC2-selective analogue (CLP257) that lowers the intracellular chloride 

concentration.  CLP257 restored impaired chloride transport in neurons with 
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diminished KCC2 activity, and alleviated hypersensitivity in a rat model of 

neuropathic pain (Gagnon and Delpire 2013).  This drug has recently been used in 

an in vitro model of ictogenesis, together with the KCC2 non-specific inhibitor 

VU0240551, to demonstrate the role of KCC2 in modulating the epileptic response 

(Hamidi and Avoli 2015).  However, this compound has serious “off target” effects, 

which limit its usefulness for studies on KCC2 (Delpire et al., 2012).  A specific KCC2 

antagonist has been developed (VU0463271; Delpire et al., 2012), and used to 

induce epileptiform discharges (Sivakumaran et al., 2015).  It has also been used to 

demonstrate the critical role of KCC2 in regulating seizure event duration (Kelley et 

al., 2016). 

 

Ischaemia affects the brain in a differential manner.  The most susceptible areas are 

the neocortex, the dorsolateral striatum, and the CA1 region of the hippocampus 

(Baron et al., 2014).  The hippocampus has long been known to present a selective 

vulnerability to ischaemia, and there the CA1 layer seems to be the most sensitive 

region, while the dentate gyrus appears to be the most resistant (Schmidt-Kastner 

2015).  However, in contrast to cortical cell death, which is rapid in onset, neuronal 

loss in CA1 is delayed (occurring 3 to 5 days after insult).  This delayed neuronal 

death, and its molecular basis, are not yet fully understood.  Interestingly, this 

vulnerability appears to be age-dependent, because older animals suffer a greater 

neuronal loss after ischaemia than younger ones (Llorente et al., 2013; Lalonde and 

Mielke 2014).  Finally it is important to acknowledge that the use of KCC2 as a 

therapeutic target in stroke could be challenging due to the differential expression 

timing between the chronic and recovery phase, as increasing KCC2 expression 

could protect against injury, but decreasing KCC2 levels could promote recovery in 

the days following injury. 
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Concluding remarks 

 

Recent studies have highlighted the potential of chloride co-transporters as targets 

for the development of neuroprotective strategies in stroke both in the short term, to 

reduce the excitotoxic effect observed in the development of the penumbra, and in 

the long term, to promote functional recovery.  KCC2 is down-regulated following an 

ischaemic insult, decreasing GABA-mediated inhibition and, thus, contributing to the 

excitotoxic effect described above.  Increasing KCC2 expression/activity seems to be 

an obvious neuroprotective strategy.  However, KCC2 inhibition also seems to 

provide a novel strategy to promote axonal growth and neuronal remodeling.  

Therefore, understanding the timing of these changes, in detail and in different brain 

regions, could play a pivotal role in future therapeutic strategies.  However, targeting 

only one channel/transporter in an anti-ischaemic strategy may result in 

compensatory expression of related proteins, making a single-target therapeutic 

intervention problematic. 
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Legends to Figures 

 

Figure 1. Ionic balance in normoxic vs. ischaemic brain, and the development of 

excitotoxicity.  A) Under normal physiological conditions, the energy produced in the 

form of ATP by the tricarboxylic acid cycle is utilised by the Na+/K+ ATPase pump to 

maintain ionic homeostasis between the extracellular (E) and intracellular (I) spaces.  

Under normoxic conditions, KCC2 is highly expressed when compared to NKCC1, 

thereby maintaining a chloride gradient across the neuronal membrane with a high 

extracellular concentration and a low intracellular concentration.  Upon GABA 

release from a presynaptic neuron, GABAA receptors are activated leading to 

chloride influx and subsequent hyperpolarisation of the post-synaptic neuron.  B) An 

ischaemic brain suffers from a rapid energy and oxygen depletion that leads to an 

intense ion dysregulation.  The Na+/K+ ATPase is unable to maintain sodium and 

potassium homeostasis and NKCC1 is up-regulated, modifying the chloride gradient.  

Now, when GABAA receptors are activated, chloride effluxes from the neuron 

resulting in depolarisation.  In addition, glutamate release is greatly increased in the 

minutes immediately following stroke onset, contributing to the wave of 

depolarisation and an intracellular calcium overload mediated by NMDA and AMPA 

receptors.  This increased calcium concentration generates reactive oxygen species 

(ROS) and causes caspase activation, that ultimately leads to cell death. 

 

Figure 2. Post-stroke neurorehabilitation model in the penumbra.  Two potential 

molecular pathways could promote LTP, and neuronal remodeling, in the peri-infarct 

zone (penumbra) through treatment with type II ampakines and the GABAA receptor 

inverse agonist, L655,708.  Type II ampakines bind to AMPA receptors producing 

slow deactivation and desensitisation, increasing the expression of BDNF and 

inducing its release (Simmons et al., 2009).  Prolonged AMPA receptor activation via 

glutamate, and the action of BDNF, both promote neuronal remodelling and LTP 

(Clarkson et al., 2011).  BDNF binds to the TrkB receptor and, via the CREB 
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pathway, results in a down-regulation of KCC2 gene expression.  This modifies the 

chloride balance across the membrane, decreasing extracellular levels of chloride 

and causing a decrease in GABA-mediated inhibition that further contributes to LTP 

and neuronal remodelling.  Finally, L655,708 specifically targets α5-subunit-

containing GABAA receptors and might, therefore, decrease the elevated tonic 

inhibition in extra-synaptic circuits of cortical neurons in the peri-infarct zone. 
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