DE GRUYTER

Neil Urquhart*, Emma Hart, and William Hutcheson

Using MAP-Elites to support policy
making around Workforce Scheduling
and Routing

Abstract: Algorithms such as MAP-Elites provide a means of allowing users to
explore a solution space by returning an archive of high-performing solutions. Such
an archive, can allow the user an overview of the solution space which may be
useful when formulating policy around the problem itself. The number of solutions
that can potentially be returned by MAP-Elites is controlled by a parameter d
that discretises the user-defined features into ‘bins’. For a fixed evaluation budget,
increasing the number of bins increases user-choice, but at the same time, may
lead to a reduction in overall quality of solutions. We undertake a study of the
application of Map-Elites to a Workforce Scheduling and Routing problem, using a
set of realistic instances based in London.

1 Introduction and Motivation

Optimisation has traditionally focused upon providing specific solutions to a given
problem. Typically the user supplies a problem instance (often an NP-Hard problem)
and the optimisation algorithm presents them with a solution. Where the problem
has a very clear single-objective, such as the Travelling Salesman Problem, the
user may be satisfied with this. However, as we consider more complex real-world
scheduling problems, optimisation methods that present a single-solution to the
user become less attractive. Such real-world problems typically encompass multiple
solution objectives and characteristics, it is no longer a case of searching for the
one optimal solution and presenting that to the user. The adoption of many-
objective optimisation methods for such problems [4] allowed the generation of a
non-dominated front. By generating such a front, the user (typically a planner) is
presented with a set of solutions that show the best possible trade-offs between
objectives. In this paper we discuss the scenario of an an expert user being
presented with a wider range of high-quality solutions using a quality-diversity
(QD) algorithm [10]. This allows the user a greater understanding of the solution
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space and the effects of constraining or relaxing characteristics. We propose, that
this allows the user a greater degree of choice from a policy making perspective.
The Workforce Scheduling and Routing Problem (WSRP) is a commonly
encountered real-world problem in which there is a requirement to allocate tasks
to individuals within a workforce, and to provide a routing-plan between allocated
tasks. As with many real-world problems, the ability to provide an end-user with a
set of potential solutions is of great importance, enabling them to select between

alternatives with respect to specific company priorities or objectives.

2 Background and Previous Work

The Workforce Routing and Scheduling Problem (WSRP) [3] is formulated around
a set of mobile workers, who must travel between a set of locations as part of their
work tasks. WSRP instances may cover a range of industrial areas including health
and social home-care scheduling [6, 12], and technician scheduling [5]. An attempt
to model the WSRP as a bi/multi-objective problem can be found in [2], the
authors use cost and patient convenience as the twin objectives. In [6], a healthcare
WSRP is formulated as a single objective problem that penalises violations of hard
and soft constraints while trying to minimise working and travel-time. Within
formulation a binary choice of transport mode (car or public transport) is allowed.
In [2], the authors examine the trade off between the cost of solutions and client
inconvenience within another home-care scheduling problem.

Approaches to finding solutions to the WSRP include meta-heuristics [1], and
hyper-heuristics [5], the reader is directed to [3] for a detailed survey of methods
used. Quality-Diversity (QD) algorithms [10] produce a set of high-quality solutions
with respect to a set of user-defined features. The Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites) was first introduced by Mouret et al [9] and
provides a mechanism for illuminating search spaces by creating an archive of
high-performing solutions mapped onto solution characteristics defined by the
user. The majority of applications of illumination algorithms have been to design
problems [9, 14]. There are very few applications of QD algorithms apparent in the
combinatorial optimisation domain; to the best of our knowledge, the authors were
the first to show that MAP-Elites could be successfully applied to combinatorial
optimisation [12]. The algorithm was applied to produce multiple solutions to
WSRP instances modelled using real data based upon the City of London, with
four dimensions of user interest. The discretisation parameter d was arbitrarily
chosen to give 160,000 cells in this work however, motivating the need for further

exploration.
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In summary we note that variants of the WSRP, including health-care applica-
tions, have been extensively investigated. A range of techniques has been used to
produce solutions. Work to date has concentrated on the production of optimised
solutions to provide solutions to specific problems. We consider the problem from
a policy making perspective where the planner wishes to have a range of solutions
that they can utilise to investigate the full range of possibilities when considering
possible solutions to the problem. The ability to produce a range of solutions makes

QD algorithms especially suited to policy type problems.

3 Methodology

3.1 WSRP Problem Description

The WSRP considered here is defined as follows; an organisation has to service
a set of clients, who each require a single visit. Each visit v must be allocated to
an employee, such that all client visits are made by an employee. Each visit v is
located at gv, where g represents an actual UK post-code, and has a visit length
dy and a time-window in which it must commence {ey,ly}. Visits are grouped into
journeys, where each journey is allocated to an employee and contains a subset
V; of the V visits, starting and ending at a central office. In this formulation an
unlimited number of employees are available.

Two modes of travel are available to employees, private transport (car) or
public-transport. The overall goal of our WSRP is to minimise the total distance
travelled across all journeys completed. Discussions with end-users [13] highlights
four characteristics of solutions that are of interest:

— Emissions incurred by all employees on their journeys

— Employee Cost the cost (based on £/hour) of paying the workforce for the
duration of the journeys and visits

— Travel Cost the cost of all of the travel activities undertaken by the workforce

—  The % of Employees using car travel for their journeys

It should be noted that no preference is made by users’ on the relative importance of
these characteristics. For example, if a policy of low emissions is to be investigated,
the planner can examine solutions with a range of emissions levels in order to
ascertain the effects of requiring low emissions solutions.

We use a set of problem instances (introduced in [13]) based upon the city of
London, divided into two problem sets, termed Lon (60 visits) and BLon (110 visits).

For each of the problem sets, 5 instances are produced in which the visit duration is
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fixed to 30 minutes. Visits are randomly allocated to one of ¢ time-windows, where
t € {1,2,4,8}. For t = 1, the time-window has a duration of 8 hours, for ¢t = 2,
the time-windows are “9am-1pm” and “1pm-5pm” etc. These instances are labelled
using the scheme <set>- numTimeWindows. The ‘rnd’ instance (e.g. BLon-rnd)
represents a randomly chosen mixture of time windows based on 1,2,4 and 8 hours.

Car journey distances and times are calculated based on Open StreetMap
datal, using the GraphHopper library2. Car emissions are calculated as 140 g/km
based upon values presented in [8]. For public-transport, data is read from the
Transport for London (TfL) API?, emissions factors are based upon those published
in [8].

3.2 The MAP-Elites Algorithm and Operators

We use a problem representation first described in [13], the genotype being a
permutation of all v required visits. For each visit, the genotype also includes the
preferred mode of transport. The tour contained within the genotype is decoded
into individual employee shifts. Each shift represents one days work for an employee,
starting from the central office, visiting a number of clients. The genome is decoded
by examining each visit in order. The first visit in the genotype is allocated to the
first shift, the travel mode associated with this visit in the genome is then allocated
to the entire shift. The next visit in the permutation is added to the current shift,
if feasible. Feasibility requires that the employee arrives from the previous visit
(using the mode of transport allocated) within the time window associated with
the visit. Subsequent visits are added to the shift until a hard constraint is violated,
at which point the current shift is completed and a new shift is initiated.

The implementation of MAP-Elites used in this paper was used previously
by [12] and was based on that given in [9]. The algorithm commences with an
empty, N-dimensional map in which solutions X and their performances P are
subsequently placed.

The total number of iterations to be executed by the algorithm is specified by I,
the algorithm evaluates one solution per iteration. A new solution is generated either
by random initialisation or through reproduction operators. While the number of
solutions evaluated is less than G each solution is created randomly and added to
the map in order to create an initial population within the map. Once G solutions

have been evaluated, solutions are randomly selected from within map, a value

1 https://openstreetmap.org/
2 https://graphhopper.com/
3 https://api.tfl.gov.uk/
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d Cells d Cells d Cells d Cells

5 625 20 | 160000 35 | 1500625 50 | 5250000
10 | 10000 25 | 390625 40 | 2560000

15 | 50625 30 | 810000 45 | 4100625

Tab. 1: Numbers of cells in each map, based on the number of bins (d). The number of
cells is calculated as cells = d™, where n = 4.

of 500 is used for G within our experiments. The reproduction operators create
a child solution by applying either crossover or cloning followed by a mutation.
The mutation operator moves a randomly selected gene in the chromosome to a
randomly selected point, or by changing the travel mode of a randomly selected
gene. For each child solution, a feature-descriptor b is obtained by discretising the
four features of interest associated with the solution. The upper and lower bounds
required for discretisation are taken as the maximum and minimum values observed
within these data sets in [13]. A new solution is placed in the cell in the archive
corresponding to b if its fitness p (calculated as total distance travelled) is better

than the current solution stored, or the cell is currently empty.

3.3 Methodology

We vary the number of bins (d) from 5 to 50 in steps of 5 (see table 1). The number
of cells in the maps is cells = d" where n is the number of dimensions within the
solution. MAP-Elites was executed on each problem instance 10 times for each bin
configuration. The function evaluation budget is fixed at 5,000,000 evaluations all
experiments. The fixed budget attempts to ensure that the computational effort
applied remains constant as d is varied. As well as the MAP-Elites algorithm, we
also compare results obtained with the Evolutionary Algorithm used in [12] - which
contains a description of the algorithm. The EA uses the same representation and

operators as our MAP-Elites algorithm and has the same evaluation budget.

4 Results

4.1 Effects of Bin Quantity on Solution Characteristics

If we consider the choice presented to the user, table 5 shows the average number

of solutions returned in each map over 10 runs. We note two trends from table
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Problem d Staff Cost Travel Cost CO2 Emissions Car Use
EA 974.67 85.79 163.75 0.25
5 819.33 68.20 119.23 0.10
10 780.33 69.75 137.04 0.08
15 804.67 75.64 137.91 0
20 800.00 78.03 136.99 0.00
lon-1 25 853.67 79.90 126.08 0.00
30 878.00 81.32 113.48 0.00
35 874.00 71.91 116.27 0.09
40 900.00 70.37 117.42 0.09
45 863.67 70.23 108.46 0.09
50 904.67 73.53 102.95 0.00
EA 1014.67 103.04 192.85 0.33
5 864.67 74.91 132.60 0.14
10 801.67 76.63 142.60 0.06
15 846.00 86.15 146.23 0.00
20 863.00 90.80 149.35 0.06
lon-2 25 872.67 91.89 137.46 0.05
30 905.67 85.88 137.04 0.06
35 931.00 86.47 129.63 0.06
40 924.33 84.15 129.93 0.07
45 927.00 80.30 131.53 0.07
50 879.33 78.61 118.28 0.08
EA 1276.00 116.74 194.59 0.33
5 955.00 87.58 171.83 0.17
10 879.67 88.14 148.25 0.05
15 913.67 94.87 158.09 0.04
20 899.67 94.82 160.57 0.04
lon-4 25 887.67 98.11 147.13 0.05
30 922.33 92.54 150.66 0.05
35 936.33 90.57 146.65 0.05
40 916.33 80.82 147.72 0.06
45 912.00 85.29 125.73 0.06
50 881.00 79.01 125.38 0.06
EA 1376.67 140.10 240.54 0.35
5 1114.00 92.40 174.22 0.13
10 946.67 97.88 166.72 0.05
15 924.00 101.87 170.76 0.03
20 967.67 103.09 165.29 0.04
lon-8 25 948.00 100.57 154.74 0.04
30 985.33 95.20 153.65 0.05
35 943.00 95.56 155.53 0.05
40 926.00 83.73 137.80 0.05
45 926.00 93.27 122.60 0.05
50 1119.00 100.16 126.61 0.05

Tab. 2: The lowest values found for each problem characteristic. For the EA [12] this is the
single solution with the lowest fitness returned. For the MAP-Elites results the lowest values
found for each characteristic are collated and presented.

5, firstly that with the exception of the smallest map (d = 5) MAP-Elites offers
more choice that the equivalent non-dominated front, secondly the choice available
increases as d increases. In both cases we would expect to see these trends. The
increase of choice compared to the non-dominated front is due to MAP Elites
sampling the entire solution space (as divided up by d) as opposed to only returning
non-dominated solutions.

Tables 2 and 3 show the best results obtained across problem characteristics.
The EA despite having the same evaluation budget under performs in every objec-
tive, MAP-Elites not only provides greater choice, but also far greater optimisation
that the EA.

A visual indication of the solutions found is shown in figure 9 which examines
results achieved from the BLon data set. These figures chart the results obtained

with differing numbers of bins (d) (note that each row represents the final archive
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Problem d Staff Cost Travel Cost CO2 Emissions Car Use
EA 2182.33 207.17 506.02 0.20
5 1901.00 210.55 522.38 0.14
10 1899.00 216.07 522.21 0.09
15 1917.67 223.42 567.54 0.08
20 1962.67 228.67 534.16 0.04
blon-1 25 2036.67 220.92 509.82 0.09
30 2028.33 212.94 477.98 0.09
35 2025.00 204.73 474.68 0.09
40 2089.67 208.21 479.26 0.09
45 2052.00 200.61 455.32 0.08
50 2136.33 199.48 441.52 0.04
EA 2385.67 243.55 581.16 0.32
5 2163.67 228.47 529.49 0.17
10 2089.67 227.08 556.65 0.15
15 2064.33 252.47 548.47 0.11
20 2076.00 249.59 575.19 0.06
blon-2 25 2122.00 236.21 547.34 0.07
30 2115.67 226.39 509.25 0.12
35 2101.67 226.71 475.37 0.11
40 2066.00 219.49 499.98 0.09
45 2086.67 213.41 474.89 0.07
50 2148.67 196.31 447.46 0.11
EA 2545.67 272.34 637.26 0.33
5 2295.67 250.02 644.65 0.22
10 2120.67 269.40 593.73 0.15
15 2196.33 270.69 574.03 0.11
20 2131.33 265.86 598.51 0.12
blon-4 25 2106.67 256.85 571.83 0.07
30 2110.67 242.61 546.63 0.09
35 2116.33 230.05 554.83 0.11
40 2071.33 231.87 528.15 0.12
45 2150.33 226.90 478.24 0.10
50 2027.67 232.77 473.68 0.11
EA 2772.00 311.52 637.50 0.38
5 2424.33 254.95 584.78 0.17
10 2323.00 283.87 594.38 0.15
15 2204.33 276.81 610.69 0.11
20 2180.00 275.85 609.11 0.09
blon-8 25 2176.33 261.57 568.33 0.10
30 2086.67 245.02 536.85 0.11
35 2134.67 245.19 516.28 0.13
40 2201.33 233.73 492.97 0.09
45 2390.33 236.58 459.60 0.13
50 2259.67 242.10 476.96 0.09

Tab. 3: The lowest values found for each problem characteristic. For the EA [12] this is the
single solution with the lowest fitness returned. For the MAP-Elites results the lowest values
found for each characteristic are collated and presented.

Avg Best
5 50 % increase 5 50 % Increase
Lon-1 343.17 450.32 23.79% 169.72 264.4 35.81%
Lon-2 316.14 450.24 29.78% 189.68 292.77 35.21%
Lon-4 289.52 433.86 33.27% 201.27 307.19 34.48%
Lon-8 267.03 409.79 34.84% 209.85 307.17 31.68%
Lon-rnd 302.87 456.55 33.66% 202.48 313.57 35.43%
Blon-1 908.88 1179.35 22.93% 576.88 874.86 34.06%
Blon-2 843.4 1168.4 27.82% 595.33 919.96 35.29%
Blon-4 812.18 1132.02 28.25% 593.46 903.2 34.29%
Blon-8 739.43 1069.19 30.84% 575.02 893.62 35.65%
Blon-rnd 772.14 1141.09 32.33% 560.96 906.73 38.13%

Tab. 4: The increase (i.e. loss) in average and best fitness between the lowest and highest
number of bins (d) used. Recall this is a minimisation problem so lower objective values are
preferred
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Fig. 1: The best/worst average coverage Fig. 2: The best/worst average coverage
obtained for the BLon datasets. obtained for the Lon datasets.

of a specific run). We note that although the number of cells increases, the shape
of the filled in area, largely remains the same. The resolution of the heat map
increases, but the image remains largely unaltered. Those areas which are not filled
in on the 5 bin heat maps are largely the same as those not filled in on the 50
bin heat maps. The lightest cells (green) represent those solutions with the least
distance cost and we see largely the same distribution of colours. A similar pattern
of results is noted for other solutions.
In terms of the best values (tables 2 and 3) we note the following trends:
—  The lowest staff and travel costs are generally found with lower values of d
—  The lowest emissions values are mostly found at small values of d, the exceptions
being the more constrained Lon problems (4 and 8).
—  Car use does not follow such a defined pattern, the lowest values being found

at a range of d values depending on the problem being examined.

4.2 Case: Study - Exploring policy decisions

Let us assume that a planner is attempting to make some policy decisions regarding
the WSRP instance and car use, policies which will be applied when solving future
WSRP instances. It is beneficial to demonstrate the effect of changes in d, from
the planners’ perspective. If we assume that the planner is investigating the Blon-2
problem (the problem instance being picked at random) figures 3 and 6 show the
Parallel Coordinates (PC) plots [7] relating to the solutions within each archive.
The first thing that we note is the very obvious difference in the number of solutions
produced (32 and 3095 respectively). The initial reaction may be that the plot for
d = 5 is simpler to comprehend then that for d = 50. At this stage the planner

wishes to examine possible policies to reduce the CO2 produced. By having the
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Fig. 3: The solutions returned for Blon2 Fig. 6: The solutions returned for Blon2
where d = 5 where d = 50

Fig. 4: As for figure 3 but with the low- Fig. 7: As for figure 6 but with the low-
est CO2 solutions highlighted. est CO2 solutions highlighted.

Fig. 5: As for figure 4 but highlighting Fig. 8: As for figure 7 but highlighting
possible compromise solutions. possible compromise solutions.

PC plots within an interactive tool 4t is possible to highlight those solutions with
the lowest C'Oq values - figures 4 and 7. In the case of figure 4 sufficient solutions
are highlighted to demonstrate trends associated with low COg solutions such as:
1. Lower C'O3 equates to lower travel costs.
2. Lower CO2 equates to higher staff costs

3. Lower CO> tends towards lower car use

Thus a policy of lowering car use, will lower (CO3) (trend 3) is likely to result in
higher wage costs (trend 2) and lower travel costs (trend 3).

When d =5 (figure 4) it becomes difficult to draw such definite conclusions
across a range of solutions. We can also look for compromise solutions, for in-
stance, what advantages may be gained in other characteristics if a slightly higher
CO3 solution is accepted? Figure 8 shows that accepting a slightly higher COq
characteristic allows solutions that have lower staff and travel costs.

4 https://commute.napier.ac.uk/upload
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This small case study demonstrates that where a higher value of d is used,
the user may then have a larger archive which allows greater exploration of the

solution space and in turn evaluation of polices on solution characteristics.

5 Conclusions

In this paper we set out establish the ability of MAP-Elites to support policy
making, through presenting the end-user (planner) with a choice of solutions. We
vary the range of choice through altering the values of d.

The potential for user-choice is reflected by the size of the map, which is
determined by the number of bins. Table 4 shows a decrease in the performance
of the algorithm (measured as best and average fitness) as the number of bins (d)
increases. For these instances, a user interested in maximising objective performance
can expect an average loss in performance of between 32% and 38% if the value of
d is increased in order to maximise choice. On the other hand, the coverage results
show that choice is maximised by setting d to higher values: an approximate gain
in coverage of between 10 and 20% can be found by judicious choice of d depending
on the problem when compared to setting it to 5 — the value which maximises the
objective function.

Table 5 shows that when d = 5 there are far fewer solutions and far fewer
opportunities for trading off between objectives. When d = 50 (figure ?7) we
note the dramatic increase in solutions and the potential to to find trade-offs, as
described in section 4.2. The increase in the quantity of solutions found (Table 5)
represents an increase in the choice available to users selecting a solution.

It was noted that higher values of d considerably slowed the execution time of
the algorithm, whilst implementation issues may be argued to be out of scope for
this paper, this issue cannot be ignored. As a constant evaluation budget is utilised
in all experiments, this increase is most likely due to the data structures used for
holding the solutions archive. Further development work is required to deal with
this scaling problem.

In summary we have provided evidence which quantifies the implications of
altering the value of d from the perspective of the user. Larger values of d will result
in increased choice (see section 4.2). It is possible that increasing the evaluation
budget in line with increases in d will allow the trade-off between solution quality
and choice to be lessened. Any increase in the evaluation budget must take into

account the potential scaling issue noted above.
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Fig. 9: Heat maps showing the solutions contained within the map. Each row contains a
heat map for each pair of dimensions.

Using MAP-Elites to support policy making.

40

45

. d
Problem Front Size 5 0 5 50 55
Lon-1 229 69 432 1450 3344 6360
Lon-2 315 84 1080 4640 12374 25013
Lon-4 271 122 1501 6926 19325 38961
Lon-8 473 106 1490 6979 19144 39533
30 35 40 45 50
Lon-1 10328 15524 21129 28759 38252
Lon-2 42039 65781 89835 118815 153787
Lon-4 65684 101561 140768 185533 236537
Lon-8 67495 103840 145798 194424 248200
5 10 15 20 25
Blon-1 225 56 362 1271 3263 6258
Blon-2 418 54 565 2549 7180 15470
Blon-4 662 68 752 3305 9376 20473
Blon-8 639 72 859 3821 10993 22940
30 35 40 45 50
Blon-1 11038 17539 24545 33898 44642
Blon-2 28173 44827 64970 88276 112549
Blon-4 35916 56615 81887 109628 141184
Blon-8 41354 63907 92374 123681 157905

Tab. 5: Average number of solutions produced for each problem instance, the front sizes

11

[11] were obtained using a portfolio of multi-objective evolutionary algorithms to construct

a non-dominated front.
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