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In current design practice, analysis of plate and grid

structures in civil engineering, such as waffle slabs,

ribbed plates and slab-girder bridges, is based largely on

code-specified approximate methods, and deflections of

these systems are rarely evaluated owing to the

complexity of calculations. A semi-analytical method is

presented for bending and deflection analyses of plate

and grid structures subjected to vertical loads. The

proposed approach is derived based on the finite-

element method and can be used to solve conveniently

and effectively the problem of the stiffened plates with

irregular shape and openings, in which far fewer

unknown variables will be involved in comparison with

the finite-element method and less computation time

will be required by employing the analytical

transformations instead of the traditional matrix inverse.

It was shown from the numerical investigations that the

proposed method provided an efficient, yet accurate,

means of analysing the stiffened plates. The results of the

proposed approach for the example structures show

good agreement with those from the finite-element

method and experiments.

NOTATION

f
e

element generalised force vector

Ke element generalised stiffness matrix

K
e
p plate stiffness matrix

K
e
b beam stiffness matrix

l length of the nodal line

N number of nodes

N shape function

Tc transformation matrix

V nodal line displacement

Vs strip displacement vector

W displacement

Xm(�) displacement base functions of the nodal line

�e element displacement vector for plates

� local coordinate of the ith node on the nodal line

�n(�) displacement base functions of the nodal line

1. INTRODUCTION

Plate and grid structures, such as waffle slabs, ribbed plates

and bridge slab-girders are widely used in civil engineering

practice, as they can span relatively long distances in

comparison with the normal one-way and two-way beam and

slab systems. In design practice, the analysis of plate and grid

structures has mainly relied on code-specified approximate

methods, and the deflections of a plate and grid structure are

rarely evaluated owing to the complexity of the calculations. In

general, procedures for the analysis and design for plate-and-

grid structures are based largely on simplifications, in which

the plate and grid are separated and the slab is simply

supported by the grid. In addition, these approximate methods

of analysis are most appropriate for uniform or quasi-uniform

structures. For an irregular plate and grid system, it is

necessary to use a more sophisticated model to conduct a

precise analysis.

Yettram and Husain1 proposed an interesting method to

represent a plate by a grillage system in which the beams are

only arranged orthogonally. An equivalent orthotropic plate

model has been developed by Troitsky2 and Harik and

Salamoun,3 and has been widely used to analyse a stiffened

isotropic slab with uniform thickness, while the contribution of

the stiffeners is considered by modifying the plate rigidity in

the stiffener directions. However, this model is not able to

predict the actual behaviour of the stiffened plates with

stiffeners that are relatively light or closely spaced. Further to

the equivalent orthotropic plate model, a semi-discrete plate-

beam finite-element formulation has been proposed for the

analysis of stiffened plates by Guo et al.,4 with practical

applications to the analysis of slab-girder bridges. In this

method, the extensional displacements in the plate and beam

elements caused by interaction between the plate and stiffener

are presented in terms of the rotations and constant

eccentricities, which are evaluated by assuming the plate as a

multi T-section in each stiffener direction. This semi-discrete

finite-element model has the potential for analysing complex

plate structures to eliminate the need for the plate degrees of

freedom. This simplified method is not suitable, however, for

stress computations since the assumptions made do not hold in

the neighbourhood of the attachment of the stiffeners to slabs.

In the present study, a semi-analytical method was devised for

the analysis of plate and grid structures in buildings and

bridges, in which the plate and grid structure was modelled as

an analogous stiffened plate. The proposed approach was

derived from the finite-element method and can be used to

solve conveniently and effectively the problem of stiffened

plates with irregular shape and openings, but involving far

fewer unknown variables in comparison with the finite-element

method. In addition, less computation time was required using
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the proposed analytical transformations instead of the

traditional matrix inverse. It can be seen from the numerical

investigations that the proposed method provided an efficient,

yet accurate, means for analysing the stiffened plates. The

results of the proposed analyses for the example structures

showed very good agreement with those from the finite-

element method and experiments.

2. ANALYSIS

A general plate and grid structure consisting of slabs and

beams is shown in Fig. 1. The structure can conveniently be

considered as a stiffened plate with the combination of plate

panels (slabs) and grids (stiffeners/beams). Since the skeleton of

grids is basically a naturally strip-like system, the analogous

stiffened plate is always divided into a number of strips by

nodal lines, such as lines L and L9 shown in Fig. 1; while the

openings, material discontinuities and arbitrary orientated

stiffeners may be placed anywhere within the strips. The strips

will later be discretised into triangular or quadratic plate

elements according to the given geometry information.

2.1. Nodal line displacement

In the finite-element analysis, each individual vertex of

elements can generally be treated as an independent node.

Degrees of freedom of the nodes are considered as unknown

variables accordingly when assembling the global simultaneous

equations. The storage and computation cost for solving this

problem will thus become enormous, when the joint number of

the structure is very large. However, this can be overcome to

utilise the intrinsic affiliation for reducing the number of the

unknown variables, since the nodes on the same nodal line are

related to each other.

Consider line L in Fig. 1. The displacement along the line can

be expressed by

wi ¼
Xr

m¼1

amXm �ið Þ

@w

@�

� �
i

¼
Xr

m¼1

amX 9m �ið Þ

@w

@�

� �
i

¼
Xp

n¼1

bn�n �ið Þ þ Ł0 1� �i
l

� �
þ Ł1

�i
l

� �

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
for i ¼ 1, 2, . . ., N

1

where �i is the local coordinate of the ith node on the nodal

line; N is the number of nodes; l is the length of the nodal line;

and Xm(�) and �n(�) are the displacement base functions of the

nodal line. They must satisfy the requirements of boundary

constraint at the ends of the line. Parameters am and bn are

used to describe directly the nodal line displacements; rotations

Ł0 and Ł1 are defined as

Ł0 ¼

0

(when starting point free or clamped)

m0

l0

Xr

m¼1

amX 9m 0ð Þ

(when starting point simply supported)

8>>>>>>>>><
>>>>>>>>>:

Ł1 ¼

0

(when end point free or clamped)

m1

l1

Xr

m¼1

amX 9m lð Þ

(when end point simply supported)

8>>>>>>>>><
>>>>>>>>>:

2

in which

l0 ¼
�nn0 3 ���
�� ��
�nn0j j3 ���

�� �� , m0 ¼
�nn0 3 ���j j
�nn0j j3 ���j j ,

l1 ¼
�nn1 3 ���
�� ��
�nn1j j3 ���

�� �� and m1 ¼
�nn1 3 ���j j
�nn1j j3 ���j j

3

From equations (2) and (3) it can be seen that when a nodal

line is perpendicular to the boundary, m0 ¼ m1 ¼ 0, and thus

Ł0 ¼ Ł1 ¼ 0. It is also seen that if the nodal line forms a skew

angle with a simply supported boundary, tangentially

rotational angles of the line at the boundary are equal to zero.

Plate

Skew edgeBeam

(a)

Strip 3
Line L�

Strip 2

Line L

Strip 3

(b)

η
�n0

y

x

n1

(c)

Fig. 1. An analogous stiffened plate for general plate and grid
structures: (a) isometric view; (b) plane layout; (c) discretised
mesh
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2.2. Boundary restraints

The displacement base functions, Xm(�) and �n(�), are
significantly influenced by the boundary restraints. At the

starting point of a nodal line (� ¼ 0), the restraints for different

boundary conditions are as follows.

(a) When the point is clamped, w ¼ 0, @w=@� ¼ 0 and

@w=@� ¼ 0. The displacement boundary conditions are

given by

Xm 0ð Þ ¼ X 9m 0ð Þ ¼ 0 (m ¼ 1, 2, . . ., r)
�n 0ð Þ ¼ 0 (n ¼ 1, 2, . . ., p)

4

(b) When the point is simply supported, w ¼ 0 and

�(@w=@�)m0 þ (@w=@�)l0 ¼ 0. The displacement boundary

conditions are given by

Xm 0ð Þ ¼ 0 (m ¼ 1, 2, . . ., r)
�n 0ð Þ ¼ 0 (n ¼ 1, 2, . . ., p)

5

(c) When the point is free, functions of w, @w=@� and @w=@�
are related to free edge boundary conditions; thus there is

no boundary restraint in the base functions, Xm(0), X 9m(0)

and �n(0).

It is assumed that the approximate deformed profiles of nodal

lines are known. Hence the base functions Xm(�) and �n(�) will
govern the profiles of deformation and should fulfil the

boundary conditions at both ends. The parameters am and bn
will be used to determine the exact deflected shapes, thus

becoming unknown variables instead of the node

displacements. Consequently, the number of unknown variables

can be reduced significantly.

3. TRANSFORMATION

In the proposed analysis, the shape functions of the beam in

bending are selected as the base functions of the nodal line. In

order to obtain the displacement of each node in nodal lines,

the unknown variables am and bn are determined by solving

the simultaneous equations about am and bn, which are

developed through a new transformation technique. In the

proposed technique, two transformation steps are needed in the

analysis. The transformation at the nodal line level should be

conducted first; the transformation at the element level is then

carried out with an assembly of the nodal transformations.

3.1. Transformation from node displacement to nodal

line displacement

Consider a typical strip of a stiffened plate shown in Fig. 2. For

the sake of brevity, the two nodal lines are assumed to be

parallel to x-axis. The origin of the local coordinate system is

set at one of the ends of the nodal line L and the x-axis passes

through this nodal line, as shown in Fig. 2.

The base function expressed by equation (1) can be written as

wi ¼
Xr

m¼1

amXm xið Þ

@w

@x

� �
i
¼

Xr

m¼1

amX 9m xið Þ

@w

@ y

� �
i

¼
Xp

n¼1

bn�n xið Þ þ Ł0 1� xi
l

� �
þ Ł1

xi
l

� �

8>>>>>>>>>>><
>>>>>>>>>>>:

6

The ith node displacement on the l th nodal line is

�i½ � ¼ wi,
@w

@x

� �
i
,

@w

@ y

� �
i

( )
7

The nodal line displacement vector is then given by

� l½ � ¼ �1½ �, �2½ �, . . ., �N½ �
� �

8

When the generalised nodal line displacement vector is

expressed as

V l ¼ a1, a2, . . ., ar , b1, b2, . . ., b pf g9

equation (6) can be written in a matrix form as

�i½ � ¼ TiV
l10

where the transformation matrix is given by

Ti ¼

X1(xi) X2(xi) � � � X r (xi) 0
0 � � � 0

X 91(xi) X 92(xi) � � � X 9r (xi) 0
0 � � � 0

C1(xi) C2(xi) � � � Cr (xi) �1(xi)
�2(xi) � � � � p(xi)

2
6666664

3
7777775

11

in which the function Ck(xi) (k ¼ 1, 2, . . ., r) is determined by

the boundary constraint conditions of the nodal line, given by

Ck xið Þ ¼

0

(both ends not simply supported)

m0

l0
X 9k 0ð Þ 1� x

l

� �

(starting point simply supported)

m1

l1
X 9k lð Þ x

l

(end point simply supported)

m0

l0
X 9k 0ð Þ 1� x

l

� �
þ m1

l1
X 9k lð Þ x

l

(both ends simply supported)

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

12y

Line L�

Line L

Beam

x

j 2�j 1�j

i i 1� i 2� i 3�

Fig. 2. A typical strip
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Equation (10) presents the relationship between the node

displacement [�i] and the nodal line displacement vectorVl.

Hence, the transformation at the element level, namely the

transformation of node displacement to nodal line displacement,

can be conducted using equation (10), which is in fact a process

of the assembly of the transformations at the nodal line level.

3.2. Transformation from node displacement to strip

displacement

After deriving the relationship between the node displacement

and the nodal line displacement vector, the stiffness matrix and

force vector need to be transformed accordingly. In order to

transform the stiffness matrix and force vector, the relationship

between the displacements of nodes and strips is derived and

expressed by

�e ¼ TeV
s13

where �e is the element displacement vector for plates or

beams, Te is the transformation matrix and the strip

displacement vector Vs is given by

Vs ¼ fV l, V lþ1g14

In the finite-element analysis, the most commonly used elements

in the plate discretisation are triangular and quadrilateral ones. In

the triangular and quadrilateral elements shown in Fig. 3,

vertexes i and j are located at the nodal line l, while vertexes j9

and k9 are located at the nodal line l9. The displacement vectors of

the triangular and quadrilateral elements and the corresponding

transformation matrices are given, respectively, by

�e ¼ �i, � j , �k

� �
and Te ¼

Ti 0
0 Tj9
0 Tk9

2
4

3
515

Beam elements can be located in different ways in a strip, as

shown in Fig. 4, either along the nodal line or across two nodal

lines. For these two cases, the displacement vectors and the

corresponding transformationmatrices are given, respectively, by

�e ¼ �i, � j

� �
and Te ¼

Ti 0

Tj 0

2
4

3
5

�e ¼ �i, � j

� �
and Te ¼

Ti 0

0 Tj

2
4

3
5

16

In the proposed analysis, equation (13) is conveniently used for

the transformation of node displacement to strip displacement.

By following the standard procedure of the displacement

discretisation in the finite-element method, the original

simultaneous equations for nodes can be transformed to the

simultaneous equations for the generalised strip displacements.

4. GENERALISED STIFFNESS MATRIX AND FORCE

VECTOR

Once the relationship between the node displacement and the

generalised strip displacement is developed, the discretisation

for determining the stiffness matrixes and force vectors can be

conducted. In the finite-element method, the internal virtual

work for a stiffened plate with stiffening beams of three

degrees of freedom is given by

�II ¼ �II p þ �IIb

¼
ð
�
�w L=ð ÞTD L=ð Þwd�

þ 1

2

X
i

ð l

0
EI

@2w

@s2
þ GJ

@2w

@s@n

� �
dx

17

The discretisation is expressed as

w ¼ N�e

or from equation (13)

w ¼ NTeV
s18

where N is the shape function.

Substituting equation (18) into equation (17) yields

KeVs ¼ f
e

19

where Ke and f
e
are the element generalised stiffness matrix

and force vector, respectively, with parameters am and bn. The

element generalised stiffness matrix is

Ke ¼ K
e
p � K

e
b20

in which K
e
p and K

e
b are the plate and beam stiffness matrices,

respectively, and � denotes the element assembly. The plate

stiffness matrix is generally given by

i l

l�
k� j� m� k�

l�

j li

Fig. 3. Commonly used elements in a plate discretisation

i j l i l

Beam

B
eam

l�

j�m� k�

l�

Fig. 4. Arrangement of beam element in a strip
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K
e
p ¼ TTeK

e
pTe21

where Ke
p ¼

Ð
� BTDBd� with B ¼ (L=)N. The beam stiffness

matrix is generally given by

K
e
b ¼ TTeK

e
bTe22

where Ke
b ¼ CT

bK
e
b9Cb with

Ke
b9 ¼

EI

l3

12
0 rl2 sym

�6l 0 4l2

�12 0 6l 12
0 �rl2 0 0 rl2

�6l 0 2l2 6l 0 4l2

2
6666664

3
7777775

22a

in which r ¼ J=2(1þ �), J is the torsion constant and � is

Poisson’s ratio; Cb ¼
¸ 0
0 ¸

� �
, where

¸ ¼
1 0 0
0 cos (s, x) cos (s, y)
0 cos (s, y) �cos (s, x)

2
4

3
5

The element generalised force vector is given by

f
e ¼ TTef

e23

where

f e ¼
ð
�
NTqd�þ

ð
ˆ
NT

nM n þ NT
sMns þ NTSn

� 	
dˆ

5. NUMERICAL INVESTIGATIONS

Based on the proposed semi-analytical approach, the procedure

of computation for the analysis of a slab and grid system,

which is modelled as a stiffened plate, is as follows.

(a) Divide the plate into several strips by nodal lines.

(b) Mesh each strip with triangular or quadrilateral elements

and develop the element stiffness matrix and force vector.

(c) Execute the transformations.

(d) Assemble simultaneous equations of the nodal line

displacement, and then solve the equations.

(e) Calculate node displacements, then determine the element

displacements for plates and stiffeners.

(f) Determine internal forces of the structure.

To demonstrate the effectiveness and accuracy of the proposed

method for analysing stiffened plates, four examples were

investigated; they included a rectangular one-way ribbed

plate,5 two square plates, one stiffened by two orthogonal

beams6 and the other by four orthogonal beams,7 respectively,

and an orthogonally stiffened rectangular slab with openings.

5.1. Rectangular one-way ribbed plate

A rectangular one-way ribbed plate with four fixed edges is

shown in Fig. 5, where the stiffening ribs are evenly distributed

along the x-direction. The plate was subjected to a uniformly

distributed load of 58.8 kN/m2. The plate and ribs were made of

aluminium, with Young’s modulus of 69.58 kN/mm2 and

Poisson’s ratio of 0.315. The thickness of the plate was 2 mm;

the moment of inertia and torsion constant of the ribs were

37.46 and 52.36 mm4, respectively.

Figure 6 shows the mid-span (y ¼ 400 mm) vertical

displacements of the ribbed plate. A comparison of the results

of vertical displacements from the different methods was made

and is given in Table 1. It can be seen from Fig. 6 and Table 1

that the results of the proposed method show very good

agreement with the predictions from the finite-element analysis

using the comprehensive finite-element package SAP 20008

and the finite-difference method.5

5.2. Fixed-edge stiffened plates

Two fixed-edge square plates stiffened by two and four

orthogonal beams, respectively, are shown in Fig. 7. Both

plates were subjected to a uniformly distributed load of

48 kN/m2. The side length and thickness of the plates were

a ¼ 201.8 mm and t ¼ 2.82 mm, respectively. The moment of

inertia and torsion constant of the beams for plate 1 (Fig. 7(a))

were 59.6 and 99.6 mm4, respectively, and for plate 2 (Fig.

7(b)) they were 45.1 and 86.1 mm4. The plates and beams were

made of the same material with Young’s modulus of

207.37 kN/mm2 and Poisson’s ratio of 0.3.

x

10@150

y

80
0

Fig. 5. Rectangular ribbed plate with fixed edges (unit: mm)

0

0·2

0·4

0·6

0·8

1·0
0 0·3 0·6 0·9 1·2 1·5: m

Present method
SAP 2000
Difference method

Fig. 6. Vertical displacement at mid-span (y ¼ 400 mm) of
plate
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The vertical displacements and bending moments of plates 1

and 2 along the symmetrical axis (y ¼ a/2) are shown in Figs

8 and 9, respectively. Comparisons of the results, which

include the vertical displacements and bending moments of

the plates and beams, derived by the different methods of

analysis were made and the results presented in Tables 2 to 4.

It can be seen that the results of the proposed method agreed

very well with those from the finite-element analysis and

experiment.

Coordinate Proposed SAP 20008 Finite difference5

(150, 400) 0.3639 0.3639 0.3891
(300, 400) 0.3851 0.3857 0.3891
(450, 400) 0.3860 0.3861 0.3827
(600, 400) 0.3863 0.3860 0.3818
(750, 400) 0.3863 0.3860 0.3803

Table 1. Comparison of vertical displacements at mid-span
(unit: mm)

Beam

x
a/

2
a/

2

a/2a/2

y

(a)

Beam
x

a/
2

a/
2

a/2a/2

y

(b)

Beam

Beam

Beam

Fig. 7. Square stiffened plates with fixed edges
(a ¼ 201.8 mm): (a) plate 1; (b) plate 2
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SAP 2000

0 a/8 a/4 3  /8a a/2
(b)

Fig. 8. Displacement and bending moment along symmetrical
axis (y ¼ a/2) of plate 1: (a) vertical displacement in
x-direction; (b) bending moment in x-direction
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0 a/8 a/4 3  /8a a/2
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Fig. 9. Displacement and bending moment along symmetrical
axis (y ¼ a/2) of plate 2: (a) vertical displacement in
x-direction; (b) bending moment in x-direction
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5.3. Slab and grid structure with openings

A simply supported concrete slab and grid structure with two

openings is shown in Fig. 10. The system can be considered as

a stiffened plate, reinforced by two orthogonal beams. The slab

carried a uniformly distributed load of 5 kN/m2 and a

concentrated load of 100 kN at the intersection (point E) of two

beams. The thickness of the slab was 150 mm and the cross-

section of the beams was 350 mm 3 500 mm.

Despite the popular use of code-specified approximate

approaches in the analysis of reinforced concrete slabs, the

complexity of the structural behaviour of slabs with large

openings has precluded the development of a satisfactory and

effective method in practice. Instead, the proposed method

provides an effective solution to such practical problems. Fig.

11 exhibits the mid-span vertical displacements of the slab in

the x-direction. The comparison of results of vertical

displacements from the proposed method and finite-element

analysis is given in Table 5. It can be seen from Table 5 that

the two sets of result agree very well.

6. CONCLUSION

A semi-analytical approach for the bending and deflection

analysis of plate and grid structures in buildings, in which the

plate and grid structure was modelled as an analogous stiffened

plate, was followed in the present study. The proposed

approach was derived from the finite-element method and can

be used to solve the problem of the stiffened plates with

irregular shape and openings, conveniently and effectively, but

far fewer unknown variables were involved in comparison with

the finite-element method, and it was simple to implement. The

results of the proposed analyses for the example structures

x-coordinate:
(a ¼ 201.8 mm)

Proposed SAP 20008 Experimental6

0 0 0 0
a/8 0.041 0.042 0.049
a/4 0.116 0.116 0.117
3a/8 0.173 0.175 0.169
a/2 0.194 0.195 0.190

Table 2. Comparison of vertical displacements along
symmetrical axis (y ¼ a/2) from different methods for plate 1
(unit: mm)

x-coordinate:
(a ¼ 201.8 mm)

Proposed SAP 20008 Experimental6

Plate: Ncm/cm

0 �7.652 �7.370 �7.927
a/8 �1.533 �1.479 �
a/4 2.072 2.273 �
3a/8 3.266 3.133 �
a/2 4.090 4.699 3.379

Beam: Ncm

0 �21.828 �22.345 �21.080
a/8 �5.263 �5.683 �4.919
a/4 4.264 3.704 3.973
3a/8 7.585 7.563 6.950
a/2 8.596 8.537 7.568

Table 3. Comparison of bending moments of plate and beam
along symmetrical axis (y ¼ a/2) from different methods for
plate 1

x-coordinate:
(a ¼ 201.8 mm)

Proposed SAP 20008 Experimental6

Displacement: mm

0 0 0 0
a/8 0.042 0.042 0.044
a/4 0.115 0.115 0.114
3a/8 0.173 0.173 0.166
a/2 0.194 0.194 0

Bending moment: Ncm

0 �8.554 �8.669 �8.230
a/8 �1.559 �1.570 –
a/4 2.053 2.858 –
3a/8 3.773 3.811 –
a/2 4.513 4.564 3.491

Table 4. Comparison of vertical displacements and bending
moments of plate along symmetrical axis (y ¼ a/2) from
different methods for plate 2

x1
2

1
1

2
1

C

GE

D

F

A B

8 1 2 1

y

Fig. 10. A plate-and-grid structure with openings (unit: m)
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SAP 2000

Fig. 11. Mid-span vertical deflection of beam F–G in the
x-direction
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showed good agreement with those from the finite-element

method and the experiments. It was shown from the numerical

examples that the proposed method provides a simple and

efficient, yet accurate, means of analysing plate and grid

structures.
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Coordinate (x, y): m Proposed: mm SAP 20008: mm

(1, 4) 5.52 5.11
(2, 4) 9.98 9.83
(3, 4) 13.71 13.89
(4, 4) 16.96 17.17
(5, 4) 19.41 19.69
(6, 4) 20.16 20.82
(7, 4) 19.04 19.15
(8, 4) 16.65 16.93
(9, 4) 13.72 13.87
(10, 4) 9.97 9.86
(11, 4) 5.51 5.11

Table 5. Comparison of mid-span vertical deflections of beam
F–G in the x-direction
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