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ABSTRACT
Preparing datasets for use in the training of real-time face tracking
algorithms for HMDs is costly. Manually annotated facial land-
marks are accessible for regular photography datasets, but intro-
spectively mounted cameras for VR face tracking have incompatible
requirements with these existing datasets. Such requirements in-
clude operating ergonomically at close rangewithwide angle lenses,
low-latency short exposures, and near infrared sensors. In order
to train a suitable face solver without the costs of producing new
training data, we automatically repurpose an existing landmark
dataset to these specialist HMD camera intrinsics with a radial
warp reprojection. Our method separates training into local regions
of the source photos, i.e., mouth and eyes for more accurate local
correspondence to the mounted camera locations underneath and
inside the fully functioning HMD. We combine per-camera solved
landmarks to yield a live animated avatar driven from the user’s
face expressions. Critical robustness is achieved with measures for
mouth region segmentation, blink detection and pupil tracking.
We quantify results against the unprocessed training dataset and
provide empirical comparisons with commercial face trackers.
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1 INTRODUCTION
Head mounted displays (HMDs) are used broadly in many applica-
tions [IDC 2017], such as animation [Olszewski et al. 2016], content
creation [Vogel et al. 2018], medical applications [Egger et al. 2017],
serious games [Gamito et al. 2017], object interaction [Figueiredo
et al. 2018], and education [Dinis et al. 2017]. Despite the high
popularity, for collaborative applications like games and video con-
ferencing, which is necessary to visualize the face expressions of the
user, it can be difficult to map the user’s expression to the digitally
animated avatar. Recent works including Suzuki et al. [2017] and
Olszewski et al. [2016], tackle this issue by mounting sensors inside
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Figure 1: A virtual reality head mounted display (HMD) cus-
tomised with specialized integrated cameras for real-time
face tracking to drive an animated avatar (middle). Thewide
field of view color camera is mounted in close proximity un-
derneath (RGB captured frame is shown in bottom right). In
the top right, another view shows the binocular eye displays
with integrated infrared cameras and illuminators. Eye cam-
era captured images are shown beside the resulting avatar.

the HMD to capture motions from parts of the user’s face. These
works typically use machine learning approaches to estimate the
face pose from sensor data, and require many captures of different
users wearing the HMD to train the algorithm, demanding great
manual effort to acquire each dataset.

There exists several datasets of landmark labeled casual pho-
tography available online, such as the MTFL dataset [Zhang et al.
2014], the i-bug dataset [Sagonas et al. 2016, 2013a,b], and the Helen
dataset [Le et al. 2012] that provide a large number of images with
large varition of head poses and facial expressions, but they are not
designed to be used in the HMD application because the images
don’t match the characteristics of the HMDmounted cameras. With
each hand labeled dataset one can train a method to predict the
landmark locations from a camera image of a face in real-time, such
as Dlib’s real-time face predictor [King 2009] [Kazemi and Sullivan
2014]. Our novel training dataset preparations are validated upon
this facial landmark regression method for use in an HMD. We be-
lieve our method is the first to use such landmark based HMD face
tracking. It is extendable to other face tracking algorithms such as
Olszewski et al. [2016], as we apply warping on source face images
prior to training, and apply further refinements in post, without
altering the function of the core tracking solver.

https://doi.org/10.1145/3359997.3365690
https://doi.org/10.1145/3359997.3365690
https://doi.org/10.1145/3359997.3365690
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With a Pauschian spirit [Pausch 1991], the main contribution of
this paper lies in low cost recycling of an existing and accessible
manually labeled image dataset built with regular photography to
perform reasonably good landmark tracking in HMDs for avatar
animation. In recycling an existing dataset we partition and adapt
the data to a new target usage, essentially as a re-purposing of the
valuable data to enable a new application. With an RGB camera
viewing the lower face only and IR cameras viewing each eye,
our contributions for recovering a live facial motion driven avatar
within a fully functional virtual reality HMD are as follows,
• An automatedwarp reprojection to distort source training photos’
camera characteristics to match the introspective HMD cameras’
properties for each local facial region.

Whilst critical and key, our localized spherical trainingwarp scheme
was insufficient alone and we found the further contributions nec-
essary to improve the overall system performance.
• Segmentation method based on histogram, HSV image and chro-
matism to calculate tight mouth bounding box reducing periph-
eral non mouth background/motion and in an area of reduced
distortion more central to the near placement mouth camera lens.

• HSV channel segmentation for pupil position and blink detection.
• Dominant luminance channel optimization through direct (green)
component use, rather than indirect color space conversion.

• Averaging and Kalman filtering, smoothing blendshape weights
and decreasing temporal jitter present in landmark based solvers.

• Landmark based motion mapping to retarget calibrated neutral
pose configurations to explicit expression pose activations.
The next section discusses the related work of image re-targeting

and avatar face animation within HMDs, section 3 describes our
camera setup used to capture the HMD user’s eyes and lower face,
and the method developed to warp the source dataset images and
the mouth bounding box calculation. Section 4.2 describes the appli-
cation used to validate the training data recycling method. Results
and comparisons with non-warped dataset are detailed in section
5, and, finally, section 6 contains discussion and future work.

2 RELATEDWORK
Our goal is to repurpose an image dataset of landmark labeled
casual photography tomatch the distortion of distinct camera lenses
attached to a HMD, and in turn to animate a 3D character using
these landmarks tracked on the HMD user’s face. The landmarks
are predicted from live camera frames using the warped images as
a recycled training dataset for the estimator. In the following, we
review related works on this topic.

2.1 Image Retargeting
Image retargeting is the technique of resizing an image for a spe-
cific display or a different application without losing the content
and structure of the region of interest (ROI). It is mainly used for
adjusting video content to small displays and stereo video [Kiess
et al. 2018]. Several works retarget images to use in customized
applications. For instance, the work of Liu and Gleicher [2005] pro-
posed an image retargeting method based on fisheye-view warping
to adapt large images into small displays. The method automatically
identifies a single region of interest (ROI) to emphasize, and it uses a

non-linear image warping function to de-emphasize less important
aspects of the image. To achieve better visibility on the foreground
of omnidirectional images with a 360°field of view, Yu et al. [2018]
proposed a to retarget the omnidirectional image into a 3D spherical
image and assign the spherical nodes, which contains pixel values,
using point correspondence between spherical polygons. Different
from our approach which applies a radial based deformation, this
method uses a point correspondence based spherical warp and does
not aim to adapt changes in the device used. Further, the related
works aim to minimize the distortion after retargeting the image,
our work intentionally distorts the source cameras’ images to match
the deformation of the camera lenses attached to the HMD.

2.2 Avatar Face Animation within HMDs
Recently, Zollhöfer et al. [2018] presented an extensive state-of-art
report on monocular 3D face reconstruction, tracking and appli-
cations. The report covers topics like facial capture with different
input methods, optimizations, blendshape models, face reconstruc-
tion, and several applications. Our work doesn’t intend to improve
any individual state-of-art work on face tracking, but to demon-
strate how generic datasets can be repurposed into different appli-
cations using any current or new tracking methods.

In this section, we focus on works that control a 3D character
using the tracked expression of a person wearing a HMD. The first
work on that research theme was proposed by Li et al. [2015] which
combines strain signals a head-mounted RGBD camera image to
track the mouth image. The system has a real time performance
but requires a training calibration for each user, is not able to get
the pupil location of the user and it struggles with blink detection.
Furthermore, the results can present instability due to the pres-
sure variation of the user’s head and users suffer relatively poor
ergonomics of the strain gauge assemblies.

Olszewski et al. [2016] presented a convolutional neural network
(CNN) which regresses the lower face image of a person wearing
a HMD and an IR image of the eyes to blendshapes weights that
control the 3D character. The training dataset was created with
a set of HMD users videos aligned with the face animation poses
using audio-based alignment. The system can be used for real-time
application, and it has a high fidelity result compared to other works,
but it may not be robust to users that have a significant appearance
difference compared to the training set. The training dataset used
in the work is not available for the purpose of scientific comparison
without reproduction of an equivalent dataset, which leads us to
adopt the landmark regression approach [Suzuki et al. 2017] for
validation of our dataset repurposing method.

Instead of using a mouth facing camera attached to the HMD,
Song et al. [2018] presented a CNN based solution for real-time
3D face-eye performance with the camera looking at the whole
face in non-head mounted configuration. A specific dataset was
generated with labeled HMD face images and infrared eye images
from multiple subjects. The results of this work are robust, but
the method does not consider the eyelid movement, nor detects
blinks. It relies on an externally aligned mouth facing cameras and
fiducial marker detection to register the position limiting the range
of motion of users. Finally, the systemmay not be robust to different
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lighting and different appearances from the statically captured
HMD and specific manually created source training dataset.

With a similar setup to their own previous work, Zhao et al.
[2019] proposed a framework to synthesize face images without
the occlusions of the HMD. The framework is composed of four
modules: 3D head reconstruction, face alignment and tracking, face
synthesis, and eye synthesis, which can reconstruct the user’s face
in, approximately, 500 milliseconds. The system requires to have a
dataset with various prior poses of the user’s head to reconstruct
the face, but as the camera setup is not integrated with fully func-
tioning a head mounted display, it does not deal with head pose
changes or user freedom of motion. Thies et al. [2018] introduced
FaceVR, an image-based method which allows teleconferencing in
VR based on self-reenactment. The camera setup has two IR cam-
eras inside the HMD to capture the eye movements and an external
RBG-D camera capturing the user‘s face. The system achieves real
time performance, and it can reenact blinking and eye gaze but it is
a person-specific system which (albeit quickly) requires to gather
every users’ images. Related is the work of Rekimoto et al. [2018],
but also requires person-specific scans. Suzuki et al. [2017] pro-
posed a mapping using retro-reflective photoelectric sensor being
able to estimate the character expression using five basic facial
expressions (Neutral, Happy, Angry, Surprised, and Sad) that was
used to train the neural network and had an overall accuracy of 88%
in recognizing the facial expressions, but it requires a calibration
for each user and has limited quality mouth animation due to the
low number of sensors.

Finally, Lombardi et al. [2018] developed a data-driven rendering
pipeline using a deep appearance model for rendering human faces
of users wearing an HMD. The results are high quality, and the
system runs in real time, but it necessitates a large number of per
user’s face images, which are captured by a 40 camera setup capable
of synchronous image ingest at 30 frames per second with 5120
x 3840 resolution, leading to an expensive solution. Despite the
high-quality results, the system is only able to track and render
users who are in the dataset, and it fails for other people. Wei
et al. [2019] most recently develop this line of work with both
training and tracking HMD camera configurations, resulting in
similar high quality with lower costs, but still per user only. The
training dataset used in the work is not available for the purpose
of scientific comparison without reproduction of an equivalent
dataset. We show our repurposing method employs a regression
solver trained on an existing and freely available large dataset of
general face photography, which performs reasonably for everyone
immediately.

3 METHOD
To achieve facial feature tracking with ergonomically mounted
introspective cameras within a full functional VR HMD (detailed in
section 4.1, we developed the following process: 1) source dataset
warping to target camera intrinsics, 2) training of the shape detector
using the new dataset for sub-regions, 3) additional mouth and eye
detection refinements.

Figure 2: Samples from 15k hand labeled i-bug dataset1.

3.1 Dataset Warping
3.1.1 Facial Landmark Dataset. Our method recycles an existing
dataset of 15k landmark labeled casual photography images of
people’s faces with arbitrary poses from the variety of camera
lenses to the target camera lenses of the HMD VR device. The
source dataset is a set of 15k labeled casual photography of people
faces from the i-bug dataset 1 [Sagonas et al. 2016, 2013a,b] with a
large variation of head poses, skin color, mouth shapes, eye shapes
and facial proportions which do not exactly match the distortion of
the cameras mounted on and within the HMD. The images are in
jpg format with various resolution, and the labeled landmarks are
stored in a json file, which contains the 68 landmarks (17 for the
jaw, 6 for each eye, 5 for each eyebrow, 9 for the nose, and 20 for
the mouth). Samples of the source dataset can be seen in Figure 2.

3.1.2 Spherical Warping. To obtain a dataset with a closer target
camera distortion, the mouth and eyes regions were cropped using
the bounding box created by the position of a selective subset of
local landmarks and scaled by an additional factor (10%) to match
the corresponding proportions of the HMD camera images’ facial
coverage area. The regions were cropped to get similar images as
the ones captures by the HMD cameras: two eye images and the
mouth image. Then, spherical warping is performed to create a
final image with a similar target camera lens distortion.

We modeled lens distortion in radial terms per Equation 1 with-
out accounting for tangential terms [MathWorks 2019].

P
′

x = Px (1 + k1 ∗ r2 + k2r4 + k3 ∗ r6)

P
′

y = Py (1 + k1 ∗ r2 + k2r4 + k3 ∗ r6)
(1)

where P is the normalized pixel coordinates, P
′

is the radial distorted
pixel coordinate, k1, k2, and k3 are the radial distortion coefficients
of the target camera lens intrinsics, and r is equal to

√
x2 + y2. The

lens intrinsics are found through a regular chessboard reference
pattern camera calibration process [Zhang 2000]. The radial distor-
tion calculation is applied to the result of the spherical warp. Our
spherical warp maps the source camera lens low distortion to the
HMD cameras’ wide angle high distortion [Szeliski 2007].

1Licensed from Facesoft ltd, Annotated Facial Images, 2018.
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(xdist ,ydist ) = (sθ , sϕ) + (xc ,yc )

θ = tan−1(
x

f
) (2)

ϕ = tan−1(
y√

x2 + f 2
)

where (x ,y) are the spherical coordinates of an image pixel, (xdist ,ydist )
are the warped pixel coordinate, (xc ,yc ) are the warping center, s is
the final image size, and f is the focal length. Given insignificantly
low distortion of the cropped source photos in the eye and mouth
regions, the distorted pixel can simply be calculated as in Equation
3.1.2 without a prior undistortion step. However, as the eye cam-
eras are mounted at an angle for best field of view coverage, the
source image is rotated to match this 45°camera orientation, prior
to warping (as shown in the eye reference image Figure 3).

Figure 3: Eye spherical warp reprojection scheme.

Our warp is performed with center equal to the landmarks aver-
age position and with an Euler angle rotation of 0.8 radians (approx.
45°) on the x-axis only for the eye images to match the rounded
pupil’s shape (see Figure 3 top right warped image). Finally, an
image inpainting process by Telea [2004] is performed to fill empty
regions left due to the warp.

3.2 Shape Predictor Training
The target warped dataset was used to train Dlib’s shape predic-
tor [King 2009] which is an implementation of the ensemble of
regression trees (ERT) method [Kazemi and Sullivan 2014]. For
the purpose of comparability, training is per baseline parameters
from Dlib: with the learning rate of 0.1 to avoid overfitting and
suitable for our dataset size, tree depth of 4 for accuracy of the
model, cascade depth of 10 and the number of trees per cascade
equal to 500 yielding lower error through employing the cascade
of regressors per [Kazemi and Sullivan 2014]. This approach has
excellent real time performance and good quality predictions, but
instead of using a single model for the whole face, two models with
our focused warped images were trained, one for the mouth and
one for each eye (with mirroring).

The dataset has 15k landmark labeled casual photography images
of people’s faces with arbitrary from different camera lenses varying
the head pose, eyes opening, mouth shape, skin color. The mouth
predictor was trained with 20 landmarks (12 for the outer lips
and 8 for the inner lips), and the eye predictor was trained with
6 landmarks. Only a single model was trained for both eyes since
we have a large number of eye samples with different shapes and

photography styles. Each subject’s right eye was used in training,
and our run-time flipped the left eye camera image.

Also, the training was not done using the whole image, instead,
the landmarks were used to calculate the bounding region of inter-
est. The bounding box area is scaled by a 10% factor to match the
real image proportion and it is used to crop the images to a new set
with only the mouth and eye images. The bounding box is also used
as a requirement for the landmarks prediction, the whole image
is used as a bounding box for the eye predictor, and the mouth
bounding box calculation follows in the next section.

Figure 4: Mouth bounds estimation. a) input, b) color nor-
malization, c) histogram segmentation, d) our HSV segmen-
tation, e) chromatism segmentation, f) our contour, g) result.

3.3 Mouth Region Estimation
We localise landmark prediction processing using a mouth bound-
ing box estimation method combining an adaptive threshold algo-
rithm by Panning et al. [2009] (which was also recently applied to
mobile VR by Teng and Yang [2016]) with a chromatism based lips
segmentation [Ji et al. 2018].

The lower face image is first color normalized (Figure 4b) and
used as input for three types of segmentation. Given an image with
pixels p and a histogram with bin value h(i), a pixel is classified
as a skin pixel if is follows adaptive threshold range conditions to
avoid false positives [Panning et al. 2009] (Figure 4c). Then, to find
the mouth pixels, the image is converted to HSV color space, and it
is filtered by the hue channel between 0 and 120 (for the range of
our test subjects wearing no unusual lipstick), and it is subtracted
from the histogram based segmented image, as visualized in Figure
4d. Then, the contours are extracted from the segmented image to
calculate the mouth area using a convex hull approximation.

These filter steps are able to segment the mouth region, but some
noise might occur in the image which may lead to an incorrect
mouth region segmentation with multiples contours found (Figure
4d). To improve the result and choose the correct contour, the RGB
color space chromatism lips segmentation is performed (Figure 4e).
The chromatism value s is calculated by Equation 3 and has a value
greater than 0 for pixels in the lips region [Ji et al. 2018].

s = 2 tan−1(
R −G

R
)/π (3)

The chromatism segmentation is achieved after performing dila-
tion and erosion operations to remove small noise artifacts caused
by the low latency short exposure camera, but this method alone
is only able to segment a small portion of the mouth. Therefore,
the segmentations are combined by testing which contour cen-
ter is inside the chromatism lips segmentation (Figure 4f). Finally,
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Figure 5: Incorrect landmark prediction for a closed eye.

the mouth bounding box is calculated using the maximum and
minimum contours points (Figure 4g).

3.4 Blink Detection and Pupil Position
Estimation

The eye shape predictor is able to estimate the eyes landmarks,
but it has two main issues: it is not reliable to estimate the eyes
landmarks for closed eyes due to the majority of training photos
having eyes open (Figure 5), and it is not able to stably estimate the
pupil position.

To detect an eye blink, the reflection of the IR illuminators at-
tached to the HMD lens into the eyes is measured. This is accom-
plished by converting the eye image to HSV color space and per-
forming a thresholding operation, where more than 10 pixels must
fall within the range of [220-255] of the V channel.

To address the pupil estimation issue, another thresholding oper-
ation is performed to segment the HSV eye image and find the pupil
region that filters the V channel in a range between 0 and 10. Then,
to calculate the center of the pupil, the moment is calculated based
on the work of Williams [1990] for pixels inside the eye landmark
bounding box, and the optimization proposed by Spieldenner et al.
[2014], which minimizes inner loop detection comparisons, was
used to achieve high computational performance (see Figure 6).

Figure 6: Input image (left), IR illuminators reflection seg-
mentation (middle), and the pupil segmentation (right).

4 IMPLEMENTATION
4.1 Ergonomically Integrated Cameras in a

Fully Functioning HMD
The experimental camera setup is composed of three cameras at-
tached to the headset display (see Figure 1). The first camera is a
RGB camera OmniVision OV9712 attached on the base with a 3D
printed adjustable assembly, which can visualize the lower face. It
has a 320 x 240 image resolution connected via USB, a 120◦ wide
angle lens. The wide lens permits the camera to position directly
under the display very close to the mouth, which provides a greater
freedom of movement than sensors mounted further away pro-
truding from the display [BinaryVR 2015] [Strassburger 2018]. The
pair of 120Hz eye tracking infrared cameras provided by Pupil Labs

[Kassner et al. 2014] include two rings with IR illuminators attached
around the display lenses. These cameras also have 320 x 240 im-
age resolution connected via USB. The processing hardware used
to run the application had an Intel Xeon CPU E5-2630 v4, 16 GB
memory, and a NVIDIA 4G Quadro K2200. Two different 3D face
sample characters were used to test our application which is able
to perform the artist designed expressions (Figure 7).

4.2 Application
For a demonstrative application of the repurposing technique, the
mouth and eyes landmarks were used as input to animate the face
of a 3D character which is composed of a set of blendshapes. The
prototype application can generate six expressions on the charac-
ter: open and close the mouth, move the mouth in the horizontal
direction, create a smile and funnel shape, open and close the eyes,
and look to the left and right.

The application was developed on top of the Faceware Tech Live
sample [Tech 2018] on Unity 3D version 2018.2.4. However, instead
of using the Faceware Live server to calculate the blendshapes
weights which does not work for our application’s cameras (see
Figure 16), it uses our proposed method to predict the landmarks
and calculate the blendshapes weight.

In applying the tracked landmarks to corresponding avatar mo-
tion we perform a rig calibrated motion mapping. First, the cali-
bration distances between neutral pose face landmarks are stored
to demarcate their configuration and correspondingly we set the
blendshapes weight to form the matching neutral expression (this
is typically a set of zero blendshape activations for a regular face
rig). Then for each captured frame, new face landmark positions
are estimated using our recycled feature prediction method, and
the new landmark distances are calculated. Finally, the new blend-
shapes weights are activated by according to a linear interpolation
between the calibration distances and the new landmarks distances.

Figure 7: Expressions that our simple driven character
demonstration can perform. Top: neutral (left), smile (mid-
dle) and eyes closed (right). Bottom: looking right (left), fun-
nel shape (middle) and mouth open (right).

Given that the image sensor data ingest with Unity is in RGB
color space, instead of performing a conversion to either HSV or
YCbCr spaces to segment the pupil image, the thresholding opera-
tion is performed using the green channel of the image for more
direct sensor data whilst yielding the same consistent result.

To improve the temporal behavior and decrease the presence
of jitter on the mouth prediction results, a Kalman filter operation
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was done to smooth the bounding box estimation over time. The
filter was used in the top left point and the bottom right point of
the bounding box with process a noise covariance matrix equals
to a diagonal matrix with value of 0.0001, a measurement noise
covariance diagonal matrix with value of of 0.1, and posteriori
error estimate covariance diagonal matrix with with value of of 0.1.
Finally, an average of two consecutive values were used to smooth
the blendshapes weight calculation.

5 RESULTS AND ANALYSIS
The repurposing method generates new mouth images with similar
distortion to the HMD lower face image which shows prominent
lips on the center of the image (Figure 8). The source dataset has
different lips size and shapes that allow a target dataset with high
variability that is used to train the Dlib’s shape predictor.

Figure 8: Samples of the extracted and warped mouth and
eye images from the source training dataset.

The method is also able to reproduce the camera distortion of
the infrared eye camera which captures the eyes with the angle
close to 45◦ on the bounding box and with the curved shape for
the top eyelid. The recycled eye images can be seen in Figure 8.

Using these recycled images as training images, the method
predicts 20 mouth landmarks and 6 landmarks for each eye. The
technique predicts the landmarks for different lips sizes and shapes
but may generate symmetrical mouth shape results (Figure 9). Also,
the eye landmarks predict the eye shape with the correct eyelid
curvature, but it does not present a high accuracy which may be
because of the fixed bounding box (Figure 13).

A time profile in ms was measured to identify which steps of
the mouth landmarks prediction were most time consuming, the
results can be seen in Table 1. The chromatism segmentation and
the histogram were the most time consuming steps of the mouth
prediction due the manipulation of two images in these stages. The

Figure 9: Result of the mouth region and lip landmark pre-
dictions for various different lips poses.

Table 1: Time profile for the mouth bounding box calcula-
tion and landmarks prediction.

Step Time (ms)
RGB Normalization 4.29

Histogram Segmentation 8.91
HSV Segmentation 2.31

Chromatism Segmentation 15.51
Landmarks Prediction 1.98

histogram segmentation result is used to filter the HSV segmen-
tation, and the HSV segmentation result is used as filter for the
chromatism segmentation to avoid miscalculation of bounding box.

5.1 Prototype Application Evaluation
The application was tested with four different people with distinct
skin color and lips size. In the test, the user spoke several phrases
including some pangrams to reach the whole spectrum of the alpha-
bet, for instance, “The five boxing wizards jump quickly”, and the
face blendshapes weight is calculated using the difference between
the current landmarks and the neutral expression landmarks.

The method animates avatar frames at a steady 30fps in our
experimental setup and the results can be seen in Figure 10. We
observed stable pupil prediction and blink detection, able to handle
different eyelid openings Figure 11 (left) and different illuminations
Figure 11 (middle), but it does not precisely provide the central pupil
position Figure 11 (right). Also, the Kalman filter is not able to fully
prevent the presence of jitter over the frames without introducing
noticeable lag, which is also a common aspect of the employed
landmark regression solver’s behaviour on regular cameras, and
our reprojection preparation performs no worse than this.

In comparison to previous solutions, our work does not rely
on acquiring a new training dataset custom to HMD cameras or
any dataset for calibration and it can be replicated using any other
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Figure 10: Victor and Emoji face characters driven by the
face landmarks of the HMD user in real-time live.

Figure 11: Pupil detection results (blue circle).

labeled casual photography dataset or training set for any face track-
ing algorithm. Our use of the regression solver does not present
a high fidelity of output with jitter on the detection results and
simple poses driven directly from the tracked landmarks. However,
repurposing training data for use with alternative solvers [Zollhöfer
et al. 2018] would follow our method, e.g. drawing from the coarse
and refinement approaches of Ma and Deng [2019]. The approach
taken to drive blendshapes weights is much cheaper than solving a
landmark driven animation retargeting custom to each avatar rig,
but this is beyond the scope of this article’s focused contributions.

5.2 Comparison with non repurposed method
5.2.1 Ablation Test. First, the standard landmark predictor was
tested without the proposed mouth bounding box calculation, and
the whole image was used as the bounding region of interest for
the Dlib’s shape predictor. Without the correct bounding box cal-
culation, the shape predictor calculates a completely wrong result
(Figure 12 left). Our method detailed in subsection 3.3 calculates
the landmark with better positioning covering the mouth aperture
and lips shape (Figure 12 right).

Figure 12: Ablation test comparison between the mouth pre-
diction result using standard predictor with no bounding
box calculation (left) and our method (right).

5.2.2 Quantitative Comparisons. Our method provided a more pre-
cise mouth landmark predictions in comparison to standard predic-
tor being able to fit the landmarks position closer to the lips’ true
contours. Often our method performs better on the lower lip land-
marks, but it reduces precision in a few cases (see Figure 13). Here
the quantitative pixel distance error of our method versus hand
labeled ground truth over the mouth camera resolution 320x240
is 31.34 versus 37.0 for prediction with the unprepared training
dataset, an 18% improvement.

Figure 13: RMSE Comparison of the mouth and eye pre-
diction results using our method and the standard pre-
dictor. Blue points are the landmarks using our method
(mouth pixel distance RMSE is 31.34 and eye RMSE is 87.85),
red points are the landmarks using the standard predictor
(mouth RMSE 37.0 and eye RMSE 195.94), and the green
points are the manually labeled ground truth landmarks.

The standard predictor achieved a wrong eye prediction, and
whilst it is not perfect, our method finds the correct localization
for the eye, being successful in adjusting the landmarks shape to
the eyelids’ curvature. Quantitatively, our method results with root
mean square error of 87.85, while the standard predictor achieves
an RMSE of 195.94 (Figure 13).

No quantitative comparison was performed with the HMD face
tracking systems listed on the related works section because, due
to our knowledge, there is no open source implementation of those
methods and we do not have access to the setup used in the re-
searches. However, a qualitative comparison with the state of the
art works shows that our work does not present highly detailed
results due to our choice of sparse landmark prediction method,
but it is a much faster solution that estimates mouth landmarks,
pupil movement, and blink detection for any face without requiring
user-specific training data. Our solution can be applied to differ-
ent labeled facial datasets, such as the MTFL dataset [Zhang et al.
2014], the i-bug dataset [Sagonas et al. 2016, 2013a,b], and the He-
len dataset [Le et al. 2012] to create recycled training dataset for
different face tracking algorithms.

5.3 Empirical comparisons with commercial
applications

An important class of face tracking related to this work is mo-
bile device tracking with small form factor cameras potentially
suited to our HMD face tracking task. Strassburger [2018] performs
real-time face tracking using an iPhoneX with RGB-D sensor. In
Strassburger’s demonstration, the device is head mounted but some
distance away from the mouth and does not include eye tracking.
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Figure 14: Facebook Messenger Emojii app where tracking
succeeds at reasonably close range (left), but fails for a face
distance lower than 15cm (middle), and it does not work for
lower face images only (right).

Figure 15: Image based Pinscreen app where their algorithm
is able to predict the face landmarks for a near face (left), but
fails for distances closer than 8cm (middle) and when only
the mouth is visible.

Three commercial mobile apps that drive a face character using
facial tracking were tested to analyze their performance and suit-
ability for mouth tracking with a worn HMD.
The first is the Facebook Messenger Emoji app which uses depth
based face tracking camera hardware, being able to predict the face
shape for a minimum distance of 15cm between the user’s face and
the phone, and it is not able to predict the face landmarks of only
the lower face region. The results presented a instability on the face
movements because of the jitter, and can be visualized in Figure 14.

Two versions of the Pinscreen app [Pinscreen 2018b] were tested:
the Pinscreen App [Pinscreen 2018a] performs face tracking using
the depth sensor of the iPhoneX and it has a similar performance to
the Facebook Messenger Emoji app, being able to perform the face
tracking within a 15cm distance and is not able to track the lower
face image. The Pinscreen Face Tracker [Pinscreen 2018a] app is
an image based tracking that has a smaller minimum distance of
8cm but it is still not able to track only the lower face region, as can
be viewed in Figure 15. Both tracking systems presented jitter over
time, making the face movements a little unstable.

The Faceware Live desktop application was also tested using
a Logitech C920 HD webcam and a GoPro Hero 3+ Black Edition
that has a fisheye lens with a similar distortion to the camera on
the bottom of the HMD. The Faceware tracking was able to predict
the landmarks position for both cameras when the user is at a
minimum distance from the camera of 15cm for the webcam and
4cm for the GoPro, and the tracking fails when the image only
shows the lower face part. The test result can be seen in Figure
16 and the movements of the face character were stable over time.

Figure 16: Faceware Live succeeds for full face (left), but fails
when closer than 15cm (middle), or lower face only is visible
(right). Top: C920 webcam. Bottom: GoPro.

Although this is not a direct quantitative comparison with our
proposed method, this empirical comparison shows that lower face
tracking completely fails on existing commercial solutions that
were tested and our work can be used as basis to solve this issue
with a variety of choices for the facial tracking solver algorithm
using our training data recycling method.

6 DISCUSSION AND FUTUREWORK
This paper presents a radial warp based image retargeting to match
casual photography labeled images to the lens distortion of cameras
integrated into a low cost HMD. This data preparation method
avoids the cost for manually creating a large training landmark
dataset by recycling an existing one using our image retargeting.

The warped labeled images were used as the training dataset
for the Dlib’s [King 2009] shape predictor which was able to pre-
dict the face landmarks for different lips size and shapes. The 15k
training images for both eye and mouth tracking provided a good
deal of variation, but further variation could have been introduced
via perturbation of warp parameters, generating left eye training
images and so on. Nonetheless, our method was able to achieve a
better result on the mouth and eyes prediction in comparison to the
same predictor using the unprocessed source dataset. The proposed
method can be used in many face tracking algorithms that rely on a
labeled image training set, such as the work of Ren et al. [2017], and
the work of Yu and Luo [Yu et al. 2016] which are based on CNNs.
The method can be applied to other uses such as robotics [Courbon
et al. 2007] and autonomous vehicles [Bertozzi et al. 2015] where
specialised camera intrinsics are also often employed.

We warp the training dataset to match the live capture cameras’
intrinsics, however, it may be an interesting direction to explore
more sophisticated warps of both live image data in combination
with existing training photography to meet an optimum salient
facial feature space for ideal capture accuracy.

A tight mouth region calculation based on histogram, HSV chan-
nel and chromatism segmentation is proposed to more accurately
localise the landmark prediction region. One limitation of themouth
region calculation exists for cases where the background or the
HMD user skin tone is close to the lips color, the segmentation
may not be able to correctly isolate the mouth region. As with any
landmark regression, tracking may also fail when the mouth is
partially occluded. One possibility to address these limitations is to
use a different color space like YCbCr as in the the work of Shaik et
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al. [2015] and also in the work of Yadav and Nain [2015], another
possibility is using neural network approaches such as in the work
of Zaidan et al. [2014], but it is necessary to have a specific training
set for the method which may lead to a expensive solution.

As the eye training dataset RGB images are in different sensor
space compared to the IR eye cameras inside the HMD, the detector
might have a greater performance if trained with images that match
the noise and spectral characteristics of the captured images. To
decrease the domain gap between training data and application
images, generative adversarial networks (GAN) have been proposed
which learn to map between synthetic and real images with Rad
et al. [Rad et al. 2019], Mueller et al. [2018], and Zakharov et al.
[Zakharov et al. 2018]. This approach could be used in our solution
but it is necessary to have a different dataset to train the GAN
network to learn the mapping between RBG and infrared images.

A facial animation application which used the face landmarks to
animate the 3D face character was constructed to validate the repur-
posing method. The application was able to generate several face
expressions in real time, such as open and close the mouth, move
the mouth in the horizontal direction, create a smile and funnel
shape, open and close the eyes, and look to the left and right, but, as
the blendshapes calculations were done manually, the digital avatar
does not have high quality expressions over time with the pres-
ence of jitter. Commercial apps and software that predict the face
landmarks to animate a digital character were tested with different
cameras. One such configuration in head mounted face tracking
by Strassburger [2018] uses a method similar to commerical apps
with an iPhoneX RGBD camera, but is not able to be mounted
as closely as our method, therefore exhibits poor ergonomics. We
have shown the commerical methods are not able to predict the
face landmarks for the lower face image at close range and it was
noticed the presence of jitter in these applications.

The face animation application can be improved by decreasing
the jitter, which was not fully achieved with our use of a Kalman
filter. The blendshapes weight may be calculated directly, as solved
by a neural network such as in the work of Olszewski et al. [2016]
or indeed Wei et al. [2019], but remains to be seen whether these
methods apply generically with a huge training dataset to provide
HMD face tracking for any user and target rig.
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