
Multiform Views of Multiple Trees

Martin Graham & Jessie Kennedy
Napier University, Edinburgh, UK

{m.graham@napier.ac.uk, j.kennedy@napier.ac.uk}

Abstract

We describe a case study of TaxVis, a multiple view
system for examining relationships between sets of
multiple classification trees. The system displays
multiform views of the dataset, which in turn can either
be a singular view of the larger forest object formed
from the set of trees, or multiple views in themselves,
using linking to show relationships between the
separate trees. We describe the circumstances that led
to the development of the multiple view aspects of the
application and how it emerged that different views
were indeed suited to different tasks.

Keywords--- Multiform Visualization, Multiple

Trees, Linking, Brushing

1. Introduction

The TaxVis project has the aim of developing a
visual application that allows users to explore the
relationships between multiple taxonomies.
Development of consequent visualizations has lead to a
realization that there is no one singular form of
visualization that can best support all the proposed
tasks that users want to perform. In this paper we
describe how different types of visualization best
answer different questions and thus why it is necessary
to use multiform and multiple views.

We describe related work in the area, followed by a
description of our application, including the various
view types that are used along with details of their
interaction and organization. We then discuss the
issues that led to the development of the application as
a multiple view system

2. Related Work

Multiple view representations as described by
Roberts [1; 2] denote multiple simultaneous renderings
of a data set, often using the same display technique.
For example some of our view types, specifically the
TreeMap and multiple tree displays, both render more

than one tree using multiple instances of the same basic
representation style.

Multiform visualization involves displaying the
same data but through different visual representations –
e.g. a tree could be shown simultaneously in different
views as a TreeMap, a cone tree or as a collapsible
windows explorer style tree widget.

There are numerous examples of both multiform
and multiple view visualizations. Taking just the
limited domain of multiple trees or hierarchies,
TreeJuxtaposer [3] displays linked multiple views of a
set of trees, though being all rendered in the same style
do not qualify as multiform. Similarly, Sifer [4]
displays a set of hierarchically facets each of which
providing a different ordering on a set of shared
objects. They all use the same adjacency-style display,
where child nodes are placed below and abutting their
parent nodes. Selections made for objects in one of the
dimensions are reflected where they appear in the other
dimensions and thus qualifies as an example of a
linked multiple view system but again not as
multiform. The Zoomology [5] browser displays two
trees side by side as enclosure type visualizations along
with a separate view showing them combined as a
merged structure, with differences between the two
trees represented as ‘missing’ areas, and therefore acts
as both a multiple view and multiform visualization.

Analyzing structures that are composed of multiple
smaller components can work at two levels in a
multiple view environment. The first is that the
separate sub-components can be visualized
individually, something we have covered in previous
work by viewing a collection of trees as inter-linked
representations of multiple trees [6]. The second is to
have multiple views of the overall structure itself,
which in turn can include instances of views as
described in the first approach.

It is this second approach which we describe in this
paper, as we extend the idea of multiform
representations for comparing trees beyond the dual
tree visualization used in the Zoomology interface to
several trees at once. Some of the multiform views are
themselves examples of multiple views, as previously

seen in [7] where a matrix of multiple scatter-plots is
included as one of the view types, but here we have
trees rather than table or spreadsheet data as the
fundamental structures underpinning the views.

3. Problem Domain

Taxonomists are scientists who classify organisms,
and over time different taxonomists and new
discoveries can lead to many different classifications
arising over the same basic group of organisms.
Taxonomists wishing to undertake new revisions and
compare their work to old classifications must
somehow deal with the complex overlaps produced
between multiple classifications. Our approach is to
allow taxonomists to perform dynamic queries on
visualizations of the multiple classification trees

3.1. Data

The data we visualize are thus collections of
overlapping taxonomic trees, where the classifications
can range in size from an individual genus such as
buttercups (Ranunculus) with roughly 300 taxa
(singular: taxon; a node in a taxonomic tree), to annual
revisions of the ITIS reference classification that aims
to cover most biological species with 250,000+ taxa.
The data as a whole forms a DAG (Directed Acyclic
Graph) structure and being a collection of trees can
also be termed a Forest.

3.2 Tasks

Taxonomists working with multiple classification
trees have a number of questions they wish to answer.
Some of the most common are:
T1.Which taxonomies does a taxon occur in?
T2.What are the subtaxa of a taxon in a classification?
T3.How is a taxa group dispersed in other taxonomies?
T4.What other taxa is a taxon grouped with across
trees?

Any visualization that aims to help taxonomists
should reveal such information clearly. In the event a
single visualization cannot achieve this then perhaps
multiple coordinated views can.

4. System Description

Our visualization uses a standard Model-View-
Controller (MVC) approach, so each view is de-
coupled from the other views, with synchronization of
views taking place through the effect actions have on
shared model objects and an individual view’s reaction
to those changes.

The basis for our Model is a Forest object,
represented in Figure 1, in which each tree is a
hierarchical collection of labeled nodes, with each
node representing a taxon. Forest Nodes are inter-tree
objects formed from collections of nodes with the same
label that occur across several trees, and provide a
convenient mechanism for communicating shared
attributes of nodes, such as selection, name, taxonomic
rank (genus, family etc) across trees.

4.1. Visualization Components

There are currently four views that allow
exploration of all the nodes in the forest model in its
entirety:
• A multiple TreeMap [8] view (Figure 2).
• A multiple adjacency tree view (Figure 3).
• A DAG view showing the forest structure (Figure 4).
• An alphabetically-ordered node list (Figure 5).

A fifth view, the detail panel, displays details about
one node and its direct relationships, which is usually
the node that was the focus of the last action. A sixth
type, the history view, also queries and reacts to
selections in other views but does this via another
model that stores a chronological record of selections.

Of the four ‘full forest’ views, the TreeMap and
adjacency tree views are most obviously related by

A A A

TREES

NODE

 FOREST NODE

Figure 1. A Forest is composed of multiple
trees. Forest Nodes span multiple trees to
include a set of nodes with the same name.

Figure 2. The TreeMap-styled view, itself a
multiple view component

their method of displaying each tree as a separate
entity, with brushing and selection on one tree reflected
in the other tree representations in that view. These
selections are of course also picked up by the other
type of view – hence the description of the whole
interface as being multiform views of multiple trees.
Two range-slider widgets, adapted from the Prefuse [9]
codebase, are positioned along the x and y axes to
provide a simple zooming mechanism in both views.

The multiple TreeMap view sub-divides its area

according to the number of currently visible trees. The
individual TreeMaps are then drawn in their allocated
areas with parent nodes having a label along the top
edge of their display space, and the remainder of their
area given over to recursively displaying child nodes.
Figure 2 displays a multiple TreeMap view where a
sub-tree in one hierarchy has been selected and
coloured, with the resulting selection communicated to
the other TreeMaps in the display.

Similarly, Figure 3 displays the result of the same
selection propagated to a multiple adjacency tree view,
showing the selection not only transmitting between
trees in the same view but across to a different form of
view as well. Each individual tree here is drawn top-
down with child nodes placed below their parent
nodes, hence the term ‘adjacency’ view.

The main difference between these two views is
that the adjacency view displays nodes at set depths
along the vertical axis according to their depth in a
tree, making each representation more identifiable as a
traditional hierarchy. The TreeMap view forsakes this
for node density, though the difference is minimal,
with the most apparent visible difference between
Figures 2 and 3 being the space taken up by the depth
text labels in the adjacency tree view.

The DAG and list views, shown in Figure 4 and
Figure 5 respectively, appear at first glance to be

completely different. However, both use the
convention of amalgamating the set of trees into one
visual structure rather than displaying them as
distinctly individual objects as the previous views did.
The trees in each view are aggregated through
ForestNode objects, which span shared names common
across a tree set. In the list view’s case the ForestNode
representations are then alphabetically organized to
allow searching for a particular taxon name, while in
the DAG view’s case the names are organized
according to the Forest’s DAG structure for structural
comparisons of different trees in the one view. In each
case, presence and selection information is conveyed
within the individual ForestNode representations

4.2 User Interface

The user interface that can hold these visualization
components initially displays with three tabbed panels,
one panel on the right-hand side that is best suited for
holding the list view and a pair arranged vertically on
the left-hand side. The bottom one of these initially
holds the history/undo view, and the top panel is

Figure 5. The list view uses shading to indicate
presence of named nodes in trees.

Figure 3. The adjacency tree view. Each tree
has a top-down alignment compared to a
TreeMap’s enclosure-based layout.

Figure 4. The DAG based view - this is a
unified view of the forest structure.

Figure 6. The TaxVis interface displaying a MANIS data set of multiple museum collections.

designed to reserve the most space for one of the
structural view types. The relative space allocations
between these panels can be adjusted with split-pane
controls and the tabs rearranged within or between
panels so the set-up is not fixed. This is demonstrated
in Figure 6 where a DAG view has been dropped into
the tab panel nominally reserved for a history view.

Above these tabbed panels is an action bar that
controls functions that act on more than one view style,
such as brushing, navigation synchronization within
multiple tree views, and the semantics of selection
operations. There are also sort order controls, which
decide how nodes in the multiple tree views should be
ordered (sub-tree size, name, etc) and how the trees
should be sorted between themselves - chronologically
or alphabetically. There are also global filters for
individual tree visibility, and for the biological data
which forms the bulk of our data sets, controls for
filtering the display of ranks and relationship types.
Finally there is a traditional menu bar for loading and
saving data, and for instantiating new view instances.

4.3. Interaction

Linked interactions between the views consist of
navigational slaving, as described in Baldonado et al

[10], linked brushing and linked selection. The linked
brushing is the simplest effect, being a highlighting of
temporarily selected nodes across trees and views.

Navigational slaving involves synchronizing
associated views when a navigation action is
performed on any one of a set of linked views. For
instance, selecting node A in the list will re-root the

DAG view display at node A. In the multiple tree views
in Figure 2 and Figure 3 re-rooting also applies to the
individual trees displayed in the view. Each tree in the
view will attempt to re-root at A or as closely as
possible e.g. at the node that contains the contents of A
if A itself is missing. The slaving does not go as far as
synchronizing scroll operations. For instance, scrolling
the list to nodes that begin with the letter B will not
reveal only the same nodes in the tree-based views as
the effect would be an unhelpful constant jumping of
viewpoints within the views.

The same reasoning applies to linked selections,
which can be considered a fusion of navigational
slaving and linked brushing. Selecting a node in any of
the views will colour it and its sub-tree permanently
(until a ‘clear’ command) as opposed to the temporary
brush selection, and will refocus each linked view to
the selected node, similar to navigational slaving.

5. Discussion

Each view has strengths and weaknesses in its
ability to display information about the forest structure
and correspondingly will be suited to undertake a
different set of tasks in comparison to the other views.

A case in point concerns the development of the list
view. Over a number of think-aloud protocol tests [11]
performed during this project and in previous research
we have gathered feedback about various ways of
displaying and interacting with multiple hierarchies.
One constant aspect of our visualizations from the
beginning has been the inclusion of an alphabetically-
ordered list of nodes, designed to act principally as an
interface element from which a user could select a
starting node to then browse around the hierarchical
representations we were focusing on testing.

In our tests this list often proved to be the simplest
way of discovering details about the data. For instance
the first task (T1) we mentioned in section 3.2 was
“Which taxonomies does a taxon occur in?” Users
would often answer questions in this form by just
consulting the data displayed in the list; as such queries
didn’t require any specific probing of the tree
structures. Indeed, having to interpret a display
composed mainly of information redundant to a task
would tend to reduce user performance, a point made
in Tufte [12] about understanding data encoded in
graphical designs. In this sense, for tasks that involved
simply finding a named node, or finding information
about a node’s occurrence across the tree set, a list of
node names cross-referenced by tree memberships has
the advantage of showing that information and that
information only.

As we realized the list was being used in this way
we began to elevate the list to being a fully-fledged
part of the overall visualization, allowing navigation
and selection of nodes, with the difference being this
navigation was performed in a linear alphabeticised
space rather than in the relation-oriented space of the
multiple hierarchies we were otherwise displaying.

Similarly testing of our multiple adjacency tree
view and our DAG view revealed that both could
perform some tasks equally well, but for others
performed quite differently. As an example, one
question we used during testing was “What are the
members of Selineae in Berchtold & Presl’s
classification?” – based on task T2 in section 3.2
(“What are the subtaxa of a taxon in a classification?”)
When we asked this using the multiple adjacency view
it was easy for users to find the answer as the
classification was displayed separately and inside
which Selineae would contain only its children in that
classification. In the DAG view the user has to perform
an extra brushing interaction to distinguish which

instance of Selineae they are interested in as the name
occurs across two trees. The difference in the views is
shown in Figure 7. In both cases, users tended to make
the initial selection of Selineae directly via the list view
rather than search through the structure-based views.

Figure 7. Comparing single tree tasks
between the multiple adjacency tree and
DAG views. The DAG view requires an
extra interaction step.

Figure 8. Comparing siblings across many
trees in the adjacency tree and DAG views.

Conversely, Figure 8 demonstrates that a task
derived from T4 in section 3.2 (“What other taxa is a
taxon grouped with across trees?”) such as “find all the
siblings of Kundmannia” is more directly answered in
the DAG view, as all the siblings of that node across
multiple trees are gathered together in one place. The
multiple tree representations require a user to scan the
trees for the presence of Kundmannia and then attempt
the merger of the sibling groups themselves, including
finding any patterns of shared siblings etc.

The emergent pattern was that questions/tasks that
involved finding information about one tree were
straightforward in the multiple adjacency tree view,

whereas questions involving finding inter-tree relations
were easier in the DAG view. Both representations aid
certain types of tasks yet hinder others, finding answers
about a single tree in the DAG view either involves
visually threshing out the details of one tree from the
whole structure, or activating the filter controls.
Similarly, finding cross-tree information in the
multiple tree views involves scanning across several
distinct visual representations.

These findings further emphasize the utility of
multiple, different views when exploring a complex
data set, as each view will have certain tasks it allows
users to perform more efficiently.

6. Conclusions

The conclusion to be reached is that there is no
single “jack-of-all-trade” visualization for multiple
trees that will adequately perform all the tasks a user
wishes to perform, and probably no single view that
can perform the tasks as efficiently as a comparable set
of multiple views.

A single view of a subset of the overall information
set will necessarily perform specific tasks better
because it omits extraneous information that is not
necessary for that task. For example, one of the
multiple tree views will allow a user to see the
placement of a node in the context of a single tree
better than the DAG view, because the trees are
separated out and shown in isolation. Looking at a
single tree, the user can ignore the presence of the
other trees in the forest.

Mukherjea et al [13] discussed such multiple
hierarchical views were best placed to navigate and
display complex structures, which we’ve found is true
for some tasks, but they did not consider relationships
formed across and between those hierarchies. This is
pertinent in our work as our classifications exist as
concrete objects in themselves rather than as
abstractions of the larger object, thus in some cases a
unified view is more appropriate.

Hence we’ve found that providing and combining
a number of different yet complementary views is the
most practical way of answering the greatest range of
user queries, with the main factor involved in choosing
an appropriate view simply that of understanding what
is being queried. A question interrogating just the
properties of a single node doesn’t require structural
information, and thus a list is best placed. Multiple tree
views are best placed for comparing information
internal to separate trees and cross-tree comparisons
are best served using unified views of the forest model.

Acknowledgements

TaxVis is funded by the UK Engineering and
Physical Sciences Research Council (EPSRC). Thanks
to Mark Watson at RBGE for the Apiaceae data.

References

[1] J.C. Roberts. "Multiple-View and Multiform
Visualization". In Proc. of Visual Data Exploration and
Analysis VII, January 22-28, 2000, pp.176-185, SPIE.
[2] J.C. Roberts. "State of the Art: Coordinated & Multiple
Views in Exploratory Visualization". In Proc. of Coordinated
and Multiple Views in Exploratory Visualisation, July 2,
2007, pp.61-71, IEEE Computer Society Press.
[3] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang and Y.
Zhou. "TreeJuxtaposer: Scalable Tree Comparison using
Focus+Context with Guaranteed Visibility". ACM
Transactions on Graphics, 22(3), pp.453-462.
[4] M. Sifer. "Filter co-ordinations for exploring multi-
dimensional data". Journal of Visual Languages and
Computing, 17(2), pp.107-125.
[5] J.Y. Hong, J. D'Andries, M. Richman and M. Westfall.
"Zoomology: Comparing Two Large Hierarchical Trees". In
Proc. of IEEE InfoVis Poster Compendium, 19-21 October,
2003, pp.120-121, IEEE Computer Society Press.
[6] M. Graham and J. Kennedy. "Combining linking &
focusing techniques for a multiple hierarchy visualisation".
In Proc. of IEEE Conference on Information Visualization,
July 25-27, 2001, pp.425-432, IEEE Computer Society Press.
[7] N. Feldt, H. Pettersson, J. Johansson and M. Jern. "Tailor-
made Exploratory Visualization for Statistics Sweden". In
Proc. of Coordinated and Multiple Views in Exploratory
Visualisation, July 5, 2005, pp.133-142, IEEE Computer
Society Press.
[8] B. Johnson and B. Shneiderman. "Treemaps: A Space-
Filling approach to the visualization of hierarchical
information structures". In Proc. of IEEE Visualization, Oct
22-25, 1991, pp.284-291, IEEE Computer Society Press.
[9] J. Heer, S.K. Card and J.A. Landay. "prefuse: a toolkit for
interactive information visualization". In Proc. of ACM CHI,
April 2-7, 2005, pp.421-430, ACM Press.
[10] M.Q.W. Baldonado, A. Woodruff and A. Kuchinsky.
"Guidelines for Using Multiple Views in Information
Visualizations". In Proc. of ACM AVI, May 24-26, 2000,
pp.110-119, ACM Press.
[11] B. Tognazzini. "User testing on the cheap". TOG on
Interface, pp.79-89, Chapter 14. Addison-Wesley, 1992.
[12] E.R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Connecticut, 1983.
[13] S. Mukherjea, J.D. Foley and S. Hudson. "Visualizing
Complex Hypermedia Networks through Multiple
Hierarchical Views". In Proc. of ACM CHI, May 7-11, 1995,
pp.331-337, ACM Press.

