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Abstract

Condition monitoring of engineering processes or equipment has become 

of paramount importance as there is a growing need for improved 

performance, reliability, safety and more efficient maintenance. Condition 

monitoring in railway industry as a whole covers a very wide field. To 

restrict the field we have confined ourselves to the non-intrusive 

monitoring of hydraulic systems. This thesis is mainly concerned with the 

investigation of the non-intrusive method based on ultrasonic concepts 

and neural networks for rapid condition monitoring and/or fault diagnosis 

of the hydraulic systems.

A comparison between diagnosing hydraulic systems and electric systems 

is made. The location of faults in hydraulic systems is more difficult. The 

key to fault finding in hydraulic systems is the location of pressure. The 

development of pressure measurement instruments is reviewed. In case of 

trouble-shooting hydraulic systems, pressure readings are often required 

to be taken at several temporary locations. Since the hydraulic system is 

fully sealed, the direct measurement instruments can not be practically 

utilised for this purpose unless they are built-in during the production 

stage of the system. Instead, the indirect pressure measurement systems 

can be very helpful for rapid diagnosis of hydraulic systems. The new 

approach is a combination of the acoustic effect of the fully sealed oil 

inside the pipe and the penetrating capability of the ultrasonic waves. The 

ultrasonic wave energy enters the interior of the hydraulic piping and
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passes through the contained fluid, of which the pressure is being 

measured.

Two modelling approaches for this non-intrusive pressure monitoring 

system have been presented based on FLNN and MLP respectively. They 

offer the ability to establish the direct and inverse models. For both 

methods the maximum relative error (%FS) achieved for either the direct 

model or the inverse model is well within 2 %FS in our case studies. 

However, compared to the MLP, the FLNN provides a reduced cost of 

computational complexity.

The novel non-intrusive measurement of hydraulic pressure based on 

ultrasonic concepts offers the capability of making pressure measurements 

for trouble-shooting without intruding into the pipe. It is specifically 

designed for rapid diagnosis of hydraulic equipment, where the 

conventional measurement instruments fail to make the necessary 

pressure readings within the sealed pipes. This has the advantage of not 

having an effect on the condition of the sealed hydraulic system and also 

of assisting rapid trouble-shooting to save time and cost. Testing the pipes 

with such a non-intrusive technique is of great interest to all metal pipe 

related industries for the provision of no disruption to pipe operations.
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1 Introduction

1.1 The need for condition monitoring

Condition monitoring (CM) has developed into an exact science and is 

still advancing rapidly. This is largely due to the introduction of modem 

low cost electronics, intelligent (microprocessor-based) sensing devices 

and data capture equipment, and its successful application to many 

industries, including processing, services and manufacture [l]-[4].

Condition monitoring of engineering processes or equipment has become 

of paramount importance as there is a growing need for improved 

performance, reliability, safety and more efficient maintenance [5] [90]. 

Condition monitoring is becoming an essential element of any pro-active 

maintenance management strategy.

Three main types of condition monitoring are listed here: CM while assets 

operate; CM during non-intrusive shutdown inspections; CM during 

intrusive shutdown inspections.
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The corresponding predictive maintenance is commonly called: on 

condition maintenance (OCM) or condition based maintenance (CBM), 

and strategies to predict functional failure based on condition deterioration. 

CM, OCM and CBM are usually considered as the same type of strategy. 

In contrast, preventive maintenance covers strategies where components 

are changed irrespective of their conditions, and decisions are made based 

purely on the age of the components, not on their conditions. The 

distinction between predictive maintenance and preventive maintenance 

often leads to confusion, when considering planned intrusive shutdowns. 

During such shutdowns, the tasks are usually a combination of predictive 

tasks (condition monitoring) and the change of components for 

overhauled or new components (preventive maintenance) irrespective of 

their conditions. The intention of an intrusive shutdown is normally the 

predominance of condition based tasks [6].

We will briefly examine some of the advantages to be gained from 

condition monitoring. Three different types of action are considered: (1) 

breakdown maintenance; (2) fixed time maintenance; (3) maintenance on 

the basis of condition.
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Plan (1) demands no more than a ‘run it until it breaks then replace it’ 

strategy, while method (2) may or may not involve a limited degree of 

monitoring. The final plan requires a definite commitment to monitoring. 

It is apparent that careful thought must be given to the most appropriate 

form of maintenance planning. For example, breakdown maintenance can 

only be effective when there is a substantial amount of redundant capacity, 

and a single breakdown does not cause the failure of a complete system. 

Many sectors of industry, such as electricity supply, have adopted 

maintenance planning based on replacement and overhaul at fixed time 

intervals. Such scheduling is usually planned on a basis of a limited 

amount of condition monitoring, and the monitoring is typically not done 

on a continuous basis. Such a maintenance policy makes heavy demands 

on scarce, skilled manpower. Also, it is estimated that only 10% of the 

components replaced during fixed interval maintenance outages actually 

needs to be replaced at that time. The obvious implication is that 90% of 

what is replaced need not be.

In the longer term, condition monitoring also allows the operator to build 

up a data base which can be used for trend analysis, so that further 

improvements can be made in the scheduling of maintenance. The
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measurements can be made using the diagnostic technologies of vibration 

analysis (VA), acoustic emission (AE) analysis, infrared thermography 

(IRT) analysis or lubrication management analysis, etc.

1.2 Monitoring techniques

Techniques collectively referred to as CM have a common objective of 

indicating the early signs of deterioration or malfunction, and wear 

trending in plant and machinery. There are several different types of 

measurements commonly used to determine condition, and the technical 

requirements for each of these are very different. The background of the 

designers for these diverse condition monitoring tools is also very 

different, each with a specialisation in one particular area. The result of 

this is that although various technologies can be used as part of condition 

monitoring systems, they have been seen historically as competing with 

one another. What is actually required was an integrated approach, where 

more techniques rather than one are used together. It is recognised that 

there is a need to integrate the different technologies together, so that they 

complement each other, rather than competing.
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The major measurement technologies that are used within condition 

monitoring are briefly described here. The most established technology is 

vibration analysis, and it is the most tangible. Almost all machines vibrate, 

and the link between these vibrations and the machine condition is both 

easily measured, and the results easily interpreted. Transducers can be 

easily attached on a temporary basis to a machine, most often with a 

strong magnet or quick fit connector, so that collection of the data is quick 

and efficient. A major benefit of vibration, however, is that different 

mechanical processes within the machine all produce energy at different 

frequencies. If these different frequencies are separated from one another 

through spectrum analysis, then a whole new level of detail may be seen, 

with more advanced warning of the development of faults, as well as 

diagnostic capabilities.

The second most common technique is the testing of lubricant samples. 

This can have major benefits as it can detect the root cause of a problem, 

rather than the onset of a problem itself. For example, if the presence of 

particles such as sand and grit often in the form of very small dusts 

particles are detected in a lubricant, then they can be removed even before 

they cause any wear or damage to seals, through their abrasive effect. 

Viscosity checks, moisture content as well as detection of contaminants
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all fall into this category of test. The technique can also look for the 

effects of wear through detection of particles such as ferrous material 

which are carried away from a wear site with the lubricant. Again the 

examination of this material often allows diagnosis to be performed, but 

this technique relies on samples being taken away from a machine to a 

laboratory for a full analysis to be performed.

Electrical departments were the first to benefit from the use of thermal 

imaging cameras to obtain temperature distribution maps across electrical 

panels, looking for hot spots from loose connections. The technique is 

now being used more widely to look at pipe work, vessels, as well as 

bearings and couplings. The cameras are getting smaller, lighter and the 

pictures of better quality all the time, and the interpretation of the data 

requires little training, relative to other techniques.

Various techniques, using simpler approaches to vibration analysis, are 

used to detect friction and the presence of bursts of energy resulting from 

defects in rolling element bearings, where a rolling element may be 

impacting a defect in a race creating shocks and spikes of energy. Whilst 

having merits of their own, the use of these techniques often uses similar 

transducers, mounted in the same locations as vibration analysis. The
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combination of vibration with these techniques can therefore create 

economies in the time and manpower needed to collect the data.

In summary, various condition monitoring techniques have been 

developed over many decades in different industries. There are no golden 

rules as to which techniques are best and the user must tailor them to suit 

the particular process he needs to monitor. The importance of condition 

monitoring is becoming more and more apparent from a number of 

emerging conferences dedicated to this subject. In the Condition 

Monitoring 2003 Conference held at Oxford 2003 [1], it was shown that 

the thermography and AE are growing, vibration, wear debris and oil 

analysis are still commonly used methods. Ordinary acoustics is also there 

as well as the low-cost steady-state monitors for pressure, level, leakage 

and flow. Perhaps the greatest advances are where sensors could be fitted 

to the existing operational equipment and simply tested non-intrusively, or 

on-line, with the minimum of modifications. These include sensing 

position, noise, ultrasonics (for pressure), speed (for motor condition), etc.

7



1.3 Condition monitoring of railway equipment

1.3.1 Overview of maintenance in railways

Maintenance techniques have evolved as new generations of equipment 

were introduced. Up to the 1950’s a ‘fix it when it breaks’ philosophy was 

mostly implemented due to lack of engineering knowledge in certain areas. 

Regular inspection regime or time-based maintenance was later 

introduced. In the time-based scheme, effective maintenance management 

requires a trade-off between the frequencies, and hence the cost, of 

maintenance and the resulting benefit mainly of improved reliability [7].

Most safety-critical equipment is subject to hard time maintenance, via 

either an overhaul programme or finite life replacement. In such cases, it 

is imperative to analyse defect histories and adjust their maintenance 

programmes accordingly. The time-based approach, however, can not 

eliminate unexpected failures due to different stresses being experienced 

by individual pieces of equipment. Also increased reliability can only be 

brought through increased maintenance frequency/cost.
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Modem maintenance strategy integrates knowledge-based fault diagnosis 

with fault prediction facilities to form a powerful maintenance 

management tool [8]. This forms part of a management information 

system, which helps to focus maintenance activity on the required 

standards of service.

1.3.2 Motivation for condition-based maintenance

The motivation for modem condition monitoring stems from the 

requirements for improved reliability and the fact that maintenance 

operations are a large cost centre and drain on profits. Therefore, there has 

been a gradual shift from time-based to condition-based maintenance. The 

increased performance and cost-effectiveness are found in many 

industries by switching from routine (time-based) to condition-based 

maintenance. It is required to take best advantage of readily available and 

cheap electronics and computer technology to reduce possibilities of 

failure, limit its effects and predict developing faults and degradation in 

advance. The extra cost of sensory equipment and condition monitoring 

system may be weighed against passenger disbenefits associated with 

delays.
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1.3.3 Condition monitoring of railway equipment

A number of techniques have been developed for condition monitoring of 

railway equipment. Such a condition monitoring scheme forms an integral 

part of condition-based maintenance management system [9]-[12]. The 

electro-pneumatically operated point machines and train stops are among 

the case studies. Then other case studies of railway power system 

equipment include DC circuit breakers and substations and so on.

Some rapid transit railway systems, such as London Underground Ltd., 

have tended to fit trip cock arms underneath trains, which allow the 

emergency brake system to be applied externally by a tripping mechanism 

called a train-stop. Its operation is electro-pneumatic. A PC-based data 

acquisition system was developed to activate the electro-magnetic valve 

and register data from sensors. Three AE sensors were attached to the 

train-stop. A standard potentiometer type rotary sensor was fitted to the 

shaft on the axis of rotation. The results showed a high degree of 

reputability of both AE signatures and angular displacement profiles for 

the same equipment. Performance monitoring of train-stop operation led 

to a deeper understanding and accurate characterisation of the normal 

operation.
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The type MM74 high-speed DC circuit breaker (800v, 4kA rating) is 

electrically operated with a mechanical latch-in feature. The most 

common failures experienced by circuit breakers are those due to 

mechanical wear, high temperature variations, dust and damp conditions. 

Circuit breaker failures are mostly connected to mechanical problems of 

some kind as a result of overheating. Whenever an increase in temperature 

occurs without any limit, it leads to failure. The heating of the contacts 

will destroy the equipment by moving the relative position of parts and by 

changing the contact shape. The fault situation develops further until the 

system suddenly disintegrates and complete failure occurs. Signatures of 

the following parameters are considered to be monitored during 

normal/healthy and induced fault conditions.

•  Electrical characteristics: involves the measurement of variations 

of voltage and current from each operation;

•  Timing trends for consecutive operations;

•  Acoustic emission during closing and tripping of the DC circuit 

breaker;

•  Angular displacement profile during closing and tripping.

It should be noted that in applications of single shot machines like power 

circuit breakers, it is advisable to carry out condition monitoring in time 

domain rather than in frequency domain. Because all information is used
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in time domain, the phase information is discarded in condition 

monitoring based on frequency domain analysis.

1.4 Fault finding of hydraulic systems

1.4.1 Applications of hydraulic systems

Hydraulic systems are being used in all types of machinery and can be 

seen in all industries. Putting and squeezing on rolling mills in steel works; 

roof supports in coal mines; the muscle power of excavating; brakes in 

motor cars; pushing plastic into shape in moulding machines; controlling 

cutting rates and feeds in machine tools; winches and steering gear in 

ships; nozzle control in missiles; remote handing in atom plant. These are 

but a few hydraulics applications. Following is the introduction to two 

examples in railway [12].

Electro-hydraulic point machines are very popular on the British Railway 

network. They are also called clamp locks, although this is a description 

of their locking mechanism which can also be adapted to operate with 

electric or electro-pneumatic point machines. The reason for the name is 

that when the clamp lock device was first introduced, it was associated
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with a hydraulic drive mechanism. Clamp locks operate by clamping the 

switch rail to the stock rail on the closed side ensuring that if the track 

spreads, as it usually does in new installations, the switch rails remain 

locked in place. The machines are powered by ^-power pack which 

consists of a reservoir, a motor-driven pump and normal and reverse 

control valves.

The diesel locomotive is by far the most common source of power on 

railways all over the world. The modem diesel locomotive is a self 

contained version of the electric locomotive. It differs from electric 

locomotive principally in that it carries its own generating station around 

with it, instead of being connected to a remote generating station through 

overhead wires or a third rail. The generating station consists of a large 

diesel engine coupled to an alternator producing the necessary electricity. 

There are two types of diesel engines, the two-stroke engine and the four- 

stroke engine. In the UK, both types of diesel engines were used but the 

four-stroke became the standard. In the US, the General Electric (GE) 

built locomotives have four-stroke engines whereas General Motors (GM) 

always used two-stroke engines until the introduction of their SD90MAC 

6000 hp four-stroke engine.
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1.4.2 Advantages of using hydraulic systems

The advantages of using hydraulic methods are summarised as follows:

•  High gain both in force amplifying or power amplifying systems;

•  The facility to divide and distribute power in any or all directions 

and the limiting and balancing of forces;

•  Hydraulic systems are mechanically safe, compact and 

controllable and are well suited to the industrial environment 

while able to transmit large powers;

•  Reciprocating or rotating outputs can be obtained and the use of 

flexible connections permits compound motions;

•  The absence of external moving parts leads to safety and silence 

and inherent long life.

1.4.3 Fault finding in hydraulic systems

Unless some external mechanical failure has occurred, or unless there is 

some fairly obvious noise or temperature, the location of faults in 

hydraulic systems can be difficult. With electrics one can check the volts 

by using test probes — sometimes current checks are necessary too but 

these again are comparatively easily done with inductive devices. With 

hydraulics the system is sealed and silent without visual indication of 

what is occurring inside. The key to fault finding in hydraulic systems is 

the location of pressure and flow. Since, generally, a flow may occur even
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when the system is not capable of generating pressure, but a pressure can 

usually only be given when a flow is available, flow sensing is not quite 

so valuable an aid as pressure sensing. Unfortunately, pressure is not so 

easy to sense.

It is true that some services can be dealt with on a trial-and error basis— 

replace this unit and see what happens. But this may be time-consuming 

and could be very expensive on components and even dangerous, if a 

hydraulic system were tampered with in this way. Every system will have 

to be treated individually when fault finding. Assuming that the system 

has been correctly designed, installed and maintained, and so is capable of 

functioning properly, fault finding will be concerned mainly with the 

malfunction of components.

1.5 Proposed research project

As the condition monitoring of railway transportation systems develops, 

there will be an increasing emphasis on the presentation of information 

from monitoring devices and aiding decision-making based on that 

information. Condition monitoring in railway industry as a whole covers a
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very wide field. To restrict the field we have confined ourselves to the 

non-intrusive monitoring of hydraulic systems.

In case of trouble-shooting hydraulic systems, pressure readings are often 

required to be taken at several temporary locations. Since the hydraulic 

system is fully sealed, the conventional instruments cannot be practically 

utilised for this purpose unless they are built-in during the production 

stage of the system. Instead, the indirect pressure measurement systems 

can be very helpful for rapid diagnosis of hydraulic systems because of 

their non-intrusiveness, easy installation, cost effectiveness and time­

saving. Taking the acoustic characteristics of oil into consideration, a 

novel method for the non-intrusive measurement of pressure has been 

investigated. However, without an appropriate measuring scheme 

involved, the new method can not be applied to make accurate 

measurements for condition monitoring.

For a given fluid, its acoustic speed usually can not be measured directly. 

The common method is to measure the travelling time for a fixed length 

path in the fluid through which the ultrasound travels, then to calculate the 

speed. Either the pulse echo method or the pulse transmission method can 

be used for this purpose. The contact of ultrasonic probe with the fluid
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may be required to ensure the high accuracy of the speed measurement, 

otherwise the error resulting from the thickness influence of the pipe or 

vessel must be corrected. For hydraulic systems, different pipes often have 

different thicknesses so that the determination of acoustic speed outside 

the pipe becomes even more complicated. To get rid of the thickness 

influence of the pipes, a special measuring scheme has been studied, that 

is, the combination of pulse echo and transmission.

The experiment has been done at the Research Centre for Instrumentation 

and Measurement, Shandong University of Science and Technology, 

China. The calibration process is designed for a measuring range of 0-20 

MPa with a hydraulic oil of viscosity grade 10 inside the pipe. At the 

initial calibration point, two readings from the non-intrusive measurement 

system and the standard pressure meter respectively are gathered as 

references for calculating the changes in velocity and pressure 

correspondingly. Therefore, after the completion of each of the rest 

calibration points, a pair of calibration data is obtained.

The primary studies have shown that the relationship between the change 

in pressure and the variation in acoustic velocity is non-linear in nature. 

Evaluating the performance of such a new system is the objective of the
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PhD project carried at Napier University. It includes the direct modelling 

process dealing with the estimation of the system non-linearity and 

inverse modelling process for direct digital reading of the measurand. This 

research work would provide a better understanding of the input-output 

static characteristic of the novel non-intrusive pressure measurement 

system and lay a firm foundation for its practical application to quick 

diagnosis with sufficient accuracy.

To reveal the input-output characteristics of a measuring system or sensor 

behind the calibration data, several structures of neural networks, such as 

the multilayer perceptron (MLP), the functional link neural network 

(FLNN), could be considered depending on certain circumstances. The 

neurons of one layer in a MLP are connected to all the neurons of the 

following layer via unidirectional links by connection weights. The 

determination of the activation functions, the thresholds of neurons and 

the weights are required in utilising the MLP. The FLNN has only one 

single neuron with an increased input space provided by the functional 

expansion of its initial inputs. Both the MLP and the FLNN are chosen for 

the direct modelling and the inverse modelling of the non-intrusive 

pressure monitoring system with the help of MATLAB. A comparison 

needs to be made between these two modelling approaches.
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2 Existing Pressure Measuring 

Methods for Hydraulic Systems

2.1 Introduction

With the development of hydraulic techniques, the hydraulically operated 

systems are becoming more and more precise and complicated. The 

economic loss due to the failure is increasing rapidly. Therefore, it is very 

important to properly diagnose the defective components as soon as 

possible. When problems arise with the hydraulic systems, trouble 

shooting often requires pressure readings to be taken at a number of 

locations [13] [14]. Conventional technology needs the insertion of 

pressure gauges or transducers into the piping system to make these 

measurements. This is a costly and time-consuming procedure. It is even 

worse that at some locations the insertion of a pressure gauge is 

impossible or impractical. Because of the difficulty of making the 

necessary pressure measurements, it is hard to carry out the diagnosis 

rapidly and economically. However, non-conventional methods can offer
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the advantage of measuring the pressure outside the oil pipes, that is, the 

non-intrusive pressure measurement methods.

2.2 Existing pressure measurement techniques for 

hydraulic systems

2.2.1 The conventional measuring techniques

Although there have existed many conventional methods to measure 

hydraulic pressure [15] [16], their measuring diagrams can be shown in a 

common figure (Fig.2.1). The instrument consists of three main 

components [17], that is, a pressure sensing element, a conversion element 

and a display element. In Fig.2.1, mechanical elements are generally used 

to first convert the applied pressure into a displacement and then 

transduce the displacement into an electrical signal, which is finally 

indicated either in an analogue form or in a digital form. To meet the need 

o f practical measurement, various kinds of pressure transducers have been 

developed, such as capacitance-type pressure transducers, inductance-type 

pressure transducers, piezoelectric pressure transducers, potentiometer- 

type pressure transducers, strain-gauge types of pressure transducers, 

semiconductor strain-gauge pressure transducers, vibrating-wire pressure 

transducers, optical-fibre pressure transducers and so on [18]-[22].
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Fig.2.1 Schematic diagram of conventional methods for 

measurement of fluid pressure

1. Pressure sensing element, 2. Conversion element, 3. Display element,

4. Fitting, 5. Steel tube, 6. Hydraulic media.

These methods have been widely used in many fields, but face difficulties 

for the diagnosis of hydraulic systems. The reason is that, to make the 

measurement of fluid pressure, all the pressure-sensing elements must get 

in touch with the hydraulic media. Installing pressure gauges or 

transducers may require the manufacture of special fittings, which is 

costly and time consuming. It is even worse that at some locations the 

insertion of a pressure gauge is impossible or impractical. Because of the 

difficulty of making necessary measurement, trouble shooting often 

deteriorates into a process of replacing components until the problem 

disappears.
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It is clear that substantial benefits would result if there were a method of 

determining pressure quickly, without the need for installation of a 

pressure gauge. This leads to the investigation of non-intrusive pressure 

measurement for effective condition monitoring and rapid fault diagnosis 

o f hydraulic systems.

2.2.2 External pressure measurement techniques

The measuring gauges or devices of hydraulic pressure could be classified 

into two main categories, intrusive and non-intrusive based on whether the 

sensing element has to make contact with the measured liquid. It is 

evident that non-intrusive measuring techniques are not as developed as 

the intrusive techniques of measurement, although there are urgent needs 

in many applications. The non-intrusive measurement devices of 

hydraulic pressure fall chiefly into the following subcategories. In the first 

subcategory, the change in outer diameter of the pipe in response to the 

internal pressure is measured by means of micro-deformation as an 

indication of the pressure. The techniques for the implementation of such 

micro-deformation measurements can be a LVDT (Linear Variable 

Differential Transformer) or a capacitive sensor. This existing technique is 

actually an extension of the traditional measuring instruments from the
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pressure sensing element point of view, that is, the expansion of tubing 

served as the role of converting pressure into a micro-displacement. 

However, the hydraulic tube is not a good sensing element; this could 

limit the performance of such an instrument in one way or another.

In the second subcategory, a piezoelectric transmitting transducer 

mounted on the outside of a fluid-filled pipe is used to excite vibration in 

the pipe. A receiving transducer, also attached to the exterior surface of 

the pipe, is used to measure the resonance frequency of the selected 

vibration mode. The pressure of the fluid is computed by the use of the 

correlation between the fluid pressure and the resonance frequency.

In our investigation of measuring pressure non-intrusively, the third 

subcategory, the ultrasonic wave energy enters the interior of the pipe and 

passes through the contained medium, of which the pressure is being 

measured. Broadly speaking, effects as a result of the waves passing 

through the hydraulic medium are dependant on the pressure of the 

medium and these effects could be measured as an indication of the 

pressure. In our design, the change in acoustic velocity of the hydraulic 

medium is used as a measure for the internal pressure. Acoustic velocity 

in oil increases with pressure and the relative change in acoustic velocity
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over change in pressure is approximately 0.3% per MPa. The novel non- 

intrusive technique for the measurement of hydraulic pressure based on 

ultrasonics offers the capability of making pressure measurements for 

trouble-shooting without intruding into the pipeline. This has the 

advantage of not having an effect on the condition of the sealed hydraulic 

system and also of assisting rapid trouble-shooting to save time and cost.

Let us take the external pressure measurement system (EPMS) as an 

example of the existing unconventional measuring methods. EPMS is 

based on the fact that the expansion of tubing with pressure follows thick- 

wall pressure vessel theory. For the case of loading by internal pressure 

only, the approximated expansion equation is as follows:

where

AD = 4 a2b
----------- Ap,
E(b2- a 2)

AD: Change in diameter, 

Ap: Change in pressure, 

a: Inner radius, 

b: Outer radius,

(2.1)
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E: Modulus of elasticity of tube material.

Eq.(2.1) shows that the change in diameter is directly proportional to the 

change in pressure. The expansion is dependent on the inner and outer 

radii of the tube, and the modulus of elasticity of the tube material. The 

expansion is quite small. For a nominal 1-inch steel tube with the 

following characteristics: 6=0.501 inches, a=0.449 inches, £=28.5x106 

PSI, then the theoretical calculation of AD/Ap is 287x10-9 inches/PSI.

According to the above theory, Jon K. Chandler and Don P. Foler 

designed an external pressure measurement system (EPMS) [23]. The 

tubing expansion is measured using a LVDT (Linear Variable Differential 

Transformer). EPMS was used in field for aircraft on several occasions. 

As an example, let us take the case where the nose gear of an aircraft was 

raising too slowly. Two readings by EPMS showed that the ground-cart 

hydraulic supply was not putting out the proper 3000 PSI supply pressure. 

After the ground-cart pressure was adjusted to the correct value, the nose 

gear retracted properly. Thus external pressure readings can be taken 

using EPMS, resulting in avoiding unnecessary component removal and 

time delay. The system was designed for use on aircraft hydraulic 

systems, but has wide-ranging applications.
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In fact, the expansion of the tube with pressure can be measured by any 

approaches appropriate to the measurement of micro-displacement and the 

above LVDT used in EPMS is just one of them. For example, the 

capacitive displacement transducer can also be chosen for this purpose.

However, generally speaking, the above external pressure measurement is 

actually an extension of the traditional measuring instruments from the 

pressure sensing element point of view, that is, the expansion of tubing 

served as the role of converting pressure into a displacement. Its inherent 

disadvantage lies in the fact that the hydraulic pipeline is not a good 

pressure sensing element.

2.3 Summary

When problems arise with the hydraulic systems, trouble shooting often 

requires pressure readings to be taken at a number of locations. 

Conventional technology needs the insertion of pressure gauges or 

transducers into the piping system to make these measurements. This is a 

costly and time-consuming procedure, and there are locations where the 

conventional instruments fail to make the required measurements.
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The external measurement of pressure can bring the following benefits: (1) 

the ability of making pressure measurements for trouble-shooting without 

intruding into the pipeline; (2) no effect on the sealed hydraulic system; (3) 

offering rapid trouble-shooting to save time and cost.

In the existing external pressure measurement system (EPMS), the tubing 

expansion with pressure is directly proportional to the change in pressure. 

EPMS is actually an extension of the traditional measuring instruments 

from the pressure sensing element point of view, that is, the expansion of 

tubing served as the role of converting pressure into a displacement. Its 

inherent disadvantage lie in the fact that the hydraulic pipeline is not 

designed for the purpose of being a sensing element.
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3 Novel Non-Intrusive Pressure 

Measuring Method for Monitoring 

Hydraulic Systems

3.1 Introduction

Various ultrasonic testing techniques have been steadily developed since 

the beginning of an era using ultrasound for non-destructive testing in 

1935. Here we would like to mention some of the great pioneers in this 

field [24]. The testing defect of metal objects with ultrasonic waves was 

first proposed by Sokolov in 1929. Sokolov published his results on the 

actual testing of objects with through-transmission method in 1935. Then 

an instrument developed on the basis of the Sokolov’s experimental 

system was found for practical use after World War I I . At almost the 

same time Firestone in America and Spoule in Britain first introduced a 

pulse-echo flaw-detector [25] [26]. Based on Erwin’s patent [27], the first 

resonance instrument was built in 1947. Together with the efforts by other 

researchers the ultrasonic testing began to gain popularity. Industry started
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to demand more and more testing, which became the driving force for the 

development of ultrasonic instruments. It has been shown that ultrasonic 

waves can be used for the measurement of following quantities: position, 

distance, thickness, level, flow, temperature, density, composition and so 

on [28]-[32].

The present trend in standard ultrasonic testing is to refine existing 

methods and to further develop the various automatic testing techniques. 

For unusual testing problems, where conventional methods fail, special 

techniques are developed to meet the market needs.

Now let us consider the problem of our interest. For a fully sealed 

hydraulic system, the action of the internal pressure can produce several 

phenomena. One of these is obviously the expansion of the tubing. There 

are also other promising effects that may be utilised to determine the 

pressure in non-intrusive ways with the aid of advanced sensing 

techniques, signal processing techniques and computer techniques. 

Considering the acoustic characteristics of the oil and the features of 

ultrasonic waves, the new idea of non-intrusive pressure measurement can 

be formed. The pressure readings can be taken by the determination of the 

ultrasonic velocity travelling through the hydraulic oil.
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For a given fluid, its acoustic speed usually can not be measured directly. 

The common method is to measure the travelling time for a fixed length 

path in the fluid through which the ultrasound travels, then to calculate the 

speed [33] [34]. Either the pulse echo method or the pulse transmission 

method can be used for this purpose [35] [36]. The contact of ultrasonic 

probe with the fluid may be required to ensure the high accuracy of the 

speed measurement, otherwise the error resulting from the thickness 

influence of the pipe or vessel must be corrected. For hydraulic systems, 

different pipes often have different thicknesses so that the determination 

of acoustic speed outside the pipe becomes even more complicated. To 

get rid of the thickness influence of the pipes, a special measuring scheme 

is needed, that is, the combination of pulse echo and transmission, which 

will be described below.

3.2 Measurement principle of the proposed approach

The proposed measurement strategy is basically a combination of acoustic 

effect of the fully sealed oil under pressure and the penetrating capability 

of the ultrasonic waves. With the aid of precision measurement technique 

and signal processing, the pressure readings can be taken non-intrusively
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by the determination of the acoustic velocity travelling through the oil. 

The schematic diagram of measuring the acoustic velocity in oil is shown 

in Fig.3.1. Two ultrasonic probes working at 2.5 MHz are mounted 

outside the oil pipe in an arrangement used in the pulse transmission 

mode. However, the working mode of the two probes here is different 

from the conventional transmission mode in that probe 1 serves first as a 

transmitter, then as a receiver. The purpose of such a design is to 

eliminate the influence of pipe wall thicknesses and effectively remove 

the unexpected time delays.

Suppose that the inner radius of the oil pipe is a, the outer radius is b. The 

following equation can be obtained from Fig.3.1.

t , =21 + 2 ts + x , (3.1)

t2 =t + 2ts + r , (3.2)

where

tj\ time taken from emission to reception of echo received by probe 1.
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t2\ time taken from emission to reception of penetration wave received by 

probe 2.

t\ time taken travelling through a length of 2a in oil.

ts: time taken travelling through the wall thickness of the pipe (b-a).

r. overall acoustic and electric delays, including the unexpected delays of

probes, coupling material, connection cables, receiving circuitry and so

on.

Fig.3.1 Schematic diagram of the non-intrusive measuring 

method

a=radius of the inner wall, b= radius of the outer wall.

From Eq.(3.1) and Eq.(3.2), we obtain:

(3.3)
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The ultrasonic wave speed in oil c can be expressed as:

c = 2a!{tx- t 2). (3.4)

Therefore, c can be accurately calculated after measuring t/ and t2. This 

measuring scheme has two advantages. One is that the thickness influence 

of the pipe is eliminated; the other is that the overall time delay can be 

effectively removed.

3.3 Design of the monitoring system

The block diagram of the computer-controlled system designed for this 

researech is shown in Fig.3.2. The single-chip microcomputer unit is 

composed of an 80C196, an EPROM, an E2PROM, a SRAM, a keyboard 

and a display module. This unit has five functions: pre-setting parameters, 

generating main control pulse, detecting signal, filtering data, calculating 

pressure and displaying pressure. The transmitting unit consists of an 

amplifier to amplify the main control pulse, a circuit for the generation of 

narrow pulse and a driving circuit for the ultrasonic probe 1. The receiving 

unit is made up of an attenuation circuit, a frequency selective
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amplification circuit, a noise élimination circuit, a video amplification 

circuit and a time expansion circuit.

Fig.3.2 Block diagram of the monitoring system

1. Single-chip microcomputer unit, 2. Transmitting unit, 3. Both 

transmitting and receiving probe, 4. Receiving probe, 5. Switch, 6. 

Receiving unit, 7. Scanning unit, 8. Oscilloscope tube unit.

The whole system is controlled by a 16-bit single chip microcomputer. 

Besides having the function of digital display for the measured parameter 

directly, the system also provides a real-time analogue display function 

for the measuring waveforms concerned, which has been proved to be 

very useful for the effective adjustment of the system. After tl and t2 are 

measured separately, the ultrasonic wave speed in the oil can be calculated 

by Eq. (3.4).
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The software of the system consists of a main program and a lot of 

subroutines. The flow chart of the main program is shown in Fig.3.3.

Main program.

Set the stack pointer.

Display the model of the system.

>t

Call keyboard scanning subroutine.

1
Call keyboard processing subroutine.

1r
Call display subroutine.

Fig.3.3 Flow chart of the main program

3.4 Summary

This research project is focused on the investigation of determining the 

hydraulic pressure using the ultrasonic techniques without the need for the 

insertion of pressure gauges or sensors into the oil pipes. The pressure
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readings can be taken by the determination of the ultrasonic velocity 

travelling through the oil. The measuring scheme for the velocity which is 

a combination of the pulse echo and the pulse transmission methods could 

eliminate the thickness influence of the pipe on the measurement of 

velocity and effectively remove the unexpected acoustic and electric time 

delay.
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4 FLNN-Based Modelling of Non- 

Intrusive Monitoring System

4.1 Statement of problem

In chapter 3, a novel method for the non-intrusive measurement of 

pressure has been proposed using ultrasonic techniques. For the given 

hydraulic oil, the change in pressure is not only a function of the variation 

in acoustic velocity, but also influenced by the temperature, as shown in 

Fig.4.1. Evaluating the performance of such a new non-intrusive 

monitoring system is one of our main objectives. It includes the direct 

modelling process dealing with the estimation of the system non-linearity 

and inverse modelling process for direct digital reading of the measurand. 

The proposed research work based on artificial neural network (ANN) 

method would provide a better understanding of the input-output static 

characteristics of the novel non-intrusive pressure measurement system 

and lay a firm foundation for its practical application to quick diagnosis.

37



Change in pressure
> Hydraulic oil 

under test

Ultrasonic 

Sensing Element

Temperature

Measuring Element
'

T
Inverse Direct

model model

Measured change 

in pressure

(
Estimated change 

in velocity

Fig.4.1 Pressure monitoring system under influence of 

temperature

4.2 Applications of ANN in measurement and 

instrumentation

To begin with, we briefly present the development of ANN and the review 

of their applications in measurement [59]. Artificial Neural Networks
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(ANNs) are input information processing structures which imitate human 

brain behaviour. Formal realisation that the brain in some way performs 

information processing tasks was first spelt out by McCulloch and Pitts in 

1943. This pioneering work is said to be the start of the modem era of 

neural networks. They represented the activity of individual neurons using 

simple threshold logic elements, and showed how networks made out of 

many of these units interconnected could perform arbitrary logical 

operations.

Some 15 years after the publication of McCulloch and Pitt’s classic paper, 

a new approach to the pattern-recognition problem was introduced by 

Rosenblatt (1958) in his work on the perceptron. There followed a period 

of research into the behaviour of randomly connected systems and the 

network started to acquire a practical role. At the same time, as 

understanding about mechanisms of learning in biological systems grew, 

the study of neuro-dynamics intensified. The learning capabilities of one 

scheme in particular, Rosenblatt’s perceptron, were reported: Minsky and 

Papert showed that there were classes of simple tasks which the 

perceptron could not perform.
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The development of new learning algorithms continued, resulting in 

training algorithms capable of overcoming the limitations of the early 

perception. Hopfield network, a historical algorithm, is typical of 

recursive algorithms, in which all of the nodes are connected to one 

another. It has been applied successfully to a number of optimisation 

problems.

The multi-layered perception is arguably the most popular neural network 

architecture, and certainly the trigger of the widespread explosion of 

activity in this area. It is also known by the name of the algorithm used to 

train it, back error propagation. The training method can trap the network 

configuration in local minima of the error function, which halts the 

training process. However, this turns out not to be as much of a problem 

in practice as it might appear. The most important aspect of the 

application of these networks is to ensure that once trained, the 

classification ability extends, or generalises, to fresh data. Unlike the 

previous examples, the connectivities in Kohonen network are neither set 

by a predetermined set of states to recall, nor by attempting to produce 

correct classifications externally supplied by a tutor. The Kohonen 

network simply inspects the data for regularities, and organises itself in 

such a way to form an ordered description of the data. One of a few neural
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network algorithms which are especially suited to modelling time- 

dependent processes is the temporal differences.

ANN is an expanding subject area in terms of financial investment, 

research and development [37]-[43]. The main selling points of this 

technology are its ability to adapt to the characteristics of example data, 

and classify them correctly among noise, distortions and non-linearity; the 

provision of simple tools for automatic feature selection; ease of 

integration with existing domain knowledge; and flexibility of use, with 

the ability to handle data from multiple sources and decision systems.

The benefits of the ANN are advantageously utilised in many different 

applications in the field of measurement and instrumentation. These are 

concerned with the calibration of instrument and sensor, the development 

of new measurement methodologies, the identification of complex 

systems, the processing of signals and the recognition of patterns. The 

effectiveness of ANN in this field may be attributed to the fact that they 

are a powerful tool for non-linear approximations and may be used when 

all other methods have failed [44]-[50].
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ANN has been used for monitoring of transformer heating; on-line phasor 

detection and identification of the power system; historical data analysis 

for short time forecasting of electrical load; instrument fault detection; 

real-time monitoring of distribution systems. They have also been utilised 

for ADC (analogue to digital converter) dynamic error compensation. In 

this case, the generalisation capability of the neural networks permits 

reduction of the huge number of experiments which would otherwise be 

required. The capacity of ANN to model complex non-linear systems has 

been utilised in the modelling of measurement devices. In particular, two 

categories of components have been considered: analogue measurement 

devices, such as sensors, transducers, filters and amplifiers; and the mixed 

analogue/digital measurement devices, such as ADC and DAC (digital to 

analogue converter). By using a suitable ANN structure, and a proper 

organisation of the training set, it is possible, after a proper set-up phase, 

to obtain a neural model furnishing an output which corresponds to that 

which can be obtained from the real device to be modelled. The model's 

accuracy depends on the choice of both the ANN structure and the 

training set. In this way, the difficulties arising from the traditional 

method for modelling devices characterised by transfer functions, which 

can be complex and/or hardly non-linear or piece-wise linear, are 

overcome. ANN has recently gained more attention with regard to
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instrument and sensor calibration. By incorporating the ANN in the 

calibration process, accuracy has been increased and interference from 

other variations has easily been compensated. ANN has been used for the 

improvement of both ultrasonic distance sensors and optical fibre sensors 

for displacement and surface reflectivity measurements; the sensor 

compensation of full bridge strain gauges; the calibration of sensor arrays, 

robot arms, artificial noses and industrial microwave six-port instruments

[51]-[63].

The results achieved in theories and applications to date indicate that 

ANN will remain firmly rooted as useful new signal processing tools.

4.3 Proposed approach for modelling of non-intrusive 

monitoring system

4.3.1 Theoretical background

A major task for a neural network is to learn a model of the environment 

[59]. Our interest is focused on an important class of neural networks that 

perform modelling through a process of learning and generalisation.
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A neural network has the ability to learn from its environment, and to 

improve its performance through learning [59] [64]. The network learns 

about its environment through an iterative process of adjusting its weights 

and thresholds. To be specific about the learning process, consider a pair 

of node signals Xj and vk connected by a weight wkJ. Let wig{ri) denote the 

value of the weight wkj at time n. At time n an adjustment Aw/g(n) is 

applied to the weight wig(n), yielding the updated value w*7(«+1). Then, we 

may write:

Wkj(n+1) = wkj(n) + Awig(n), (4.1)

where wkj(n) and wkj(n+\) may be viewed as the old and new values of the 

weight wig, respectively. The adjustment Awkj(n) is computed as a result of 

stimulation by the environment, and the updated value wkj(n+\) defines 

the change made in the network as a result of this stimulation. The neural 

network responds in a new way to the environment with the updated set of 

parameters {w^(«+l)}.

A learning algorithm is the rule for the solution of a learning problem. 

Basically, learning algorithms differ from each other in the way in which 

the adjustment Awkj to the weight wkj is formulated. Another factor to be
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considered is the manner in which a neural network relates to its

environment, a learning paradigm.

Error-Correction Learning:

Let dk{n) denote some desired response or target response for neuron k at 

time n. Let the corresponding value of the actual response of this neuron 

be denoted by yk(n). The response yd)z) is produced by a stimulus (vector) 

x(ri) applied to the input of the network in which neuron k  is embedded. 

The input vector x(n) and desired response dk(n) for neuron k  constitute a 

particular example presented to the network at time n.

Typically, the actual response yk(n) of neuron k  is different from the 

desired response dk(n). Hence, an error signal is defined as the difference 

between the target response dk(n) and the actual response y k(n), as shown 

by

ek(n) = dk(ri) - yk(ri). (4.2)

The ultimate purpose of error-correction learning is to minimise a cost 

function based on the error signal ek(n), such that the actual response of 

each output neuron approaches the target response for that neuron in some
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statistical sense. A criterion commonly used for the cost function is the 

mean-square-error criterion, defined as the mean-square value of the sum 

of squared errors [59]:

where E  is the statistical expectation operator, and the summation is over 

all the neurons in the output layer of the network. The factor Vi is used in 

Eq.(4.3) so as to simplify subsequent derivations resulting from the 

minimisation of J  with respect to free parameters of the network. 

Minimisation of the cost function J  with respect to the network parameters 

leads to the so-called method of gradient descent [65]. However, the 

difficulty with this optimisation procedure is that it requires knowledge of 

the statistical characteristics of the underlying processes. To overcome 

this practical difficulty, an approximate solution to the optimisation 

problem is considered. Specifically, the instantaneous value of the sum of 

squared errors is used as the criterion of interest [59]:

k
(4.3)

£ (« )  = - Z e*2(" ) -^ kk
(4.4)
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The network is then optimised by minimising E(n) with respect to the 

weights of the network. Thus, according to the error-correction learning 

rule or delta rule, the adjustment Awkj(n) made to the weight wkj at time n 

is given by [6 6 ]:

Awkj(n) = 77 ek(n) Xj(n), (4.5)

where 77 is a positive constant that determines the rate of learning.

Error-correction learning relies on the error signal ek(n) to compute the 

correction AwkJ(n) applied to the weight wkj(n) of neuron k in accordance 

with Eq.(4.5). The error signal ek(n) is itself computed from Eq.(4.2). 

Finally, Eq.(4.1) is used to compute the updated (new) value wkj(n+l) of 

the weight.

The learning-rate parameter 77 has a profound impact on the performance 

of error-correction learning in that it affects not only the rate of 

convergence, but also the convergence itself. If 77 is small, the learning 

process proceeds smoothly, but it may take a long time for the system to 

converge to a stable solution. If, on the other hand, 77 is large, the rate of
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learning is accelerated, but now there is a danger that the learning process 

may diverge and the system therefore becomes unstable.

Supervised Learning:

An essential ingredient of supervised or active learning is the availability 

of an external teacher, as indicated in the arrangement of Fig.4.2 [59]. The 

teacher may be considered as having the knowledge of the environment 

that is represented by a set of input-output examples. The environment is, 

however, unknown to the neural network of interest. Suppose that the 

teacher and the neural network are both exposed to a training vector 

drawn from the environment. Then the teacher is able to provide the 

neural network with a desired or target response for that training vector. 

The desired response represents the optimum action to be performed by 

the neural network. The network parameters are adjusted under the 

combined influence of the training vector and the error signal; the error 

signal is defined as the difference between the actual response of the 

network and the desired response. This adjustment is carried out 

iteratively in a step-by-step fashion with the aim of eventually making the 

neural network emulate the teacher; the emulation is presumed to be 

optimum in some statistical sense. In other words, knowledge of the 

environment available to the teacher is transferred to the neural network
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as fully as possible. When this condition is reached, we may then dispense 

with the teacher and let the neural network deal with the environment 

completely by itself (i.e., in an unsupervised fashion).

Actual 
-  response

— © r — -
Error Desired
signal response

Fig.4.2 Block diagram of supervised learning

The form of supervised learning above is indeed the error-correction 

learning discussed previously. Given an algorithm designed to minimise 

the cost function of interest, and given an adequate set of input-output 

examples and enough time permitted to do the training, a supervised 

learning system is usually able to perform such tasks as pattern 

classification and function approximation satisfactorily.
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Examples of supervised learning algorithms include the least-mean-square 

(LMS) algorithm [6 6 ] and its generalisation known as the back- 

propagation (BP) algorithm [67]. The LMS algorithm involves a single 

neuron, whereas the BP algorithm involves a multilayered interconnection 

of neurons. The back-propagation algorithm derives its name from the fact 

that error terms in the algorithm are back-propagated through the network, 

on a layer-by-layer basis. The BP algorithm includes the LMS algorithm 

as a special case.

Supervised learning can be performed in an off-line or on-line manner. In 

the off-line case, a separate computational facility is used to design the 

supervised learning system. Once the desired performance is 

accomplished, the design is “frozen,” which means that the neural 

network operates in a static manner. On the other hand, in on-line 

learning, the learning procedure is implemented solely within the system 

itself, not requiring a separate computational facility. In other words, 

learning is accomplished in real time, with the result that the neural 

network is dynamic. Naturally, the requirement of on-line learning places 

a more severe requirement on a supervised learning procedure than off­

line learning.
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In this section, we have discussed important issues relating to the learning 

process in the context of neural networks. The learning rule, namely, 

error-correction learning, is indeed basic to the design of supervised 

neural networks for the problem of interest. In the study of supervised 

learning, a key provision is a “teacher” capable of applying exact 

corrections to the network outputs when an error occurs in error- 

correction learning. Supervised learning has established itself as a 

powerful paradigm for the design of artificial neural networks.

4.3.2 Proposed approach for neural modelling of monitoring

system

The model of supervised learning consists of three interrelated 

components [6 8 ], which are described as follows for multi-input one- 

output monitoring system:

•  An environment, which supplies a vector describing the state of 

the environment.

•  A teacher, which provides a desired response (target output) for 

every input vector.

•  A neural network (Learning machine), which is capable of 

implementing a set of input-output mapping functions.
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We note that a neural network is one form in which empirical knowledge 

about a physical phenomenon (environment) of interest may be encoded. 

By “empirical” knowledge we mean a set of measurements that 

characterises the phenomenon. To be more specific, consider the example 

of a phenomenon described by a vector x representing a set of 

independent variables, and a scalar representing a dependent variable. 

Suppose also that we have N  measurements or observations of x, denoted 

by Xj, x2, ..., Xjv, and a corresponding set of observations of d, denoted by 

d\, d2, . . . ,  dfj.

Ordinarily, the vector x and d are related by an unknown function, as 

follows:

J  = g(x), (4.6)

where g(x) is some function of the argument vector x. The purpose of this 

model is to use x in order to explain or predict d. Now consider using a 

neural network to implement this objective. It does so by encoding the 

empirical knowledge represented by the training data set { x , , dt I i=  1 , 2 , 

N }  into a set of weights. In this context, x, represents the input vector
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and di represents the corresponding value of the desired response (target 

output). Let w denote the weight vector of the neural network. Let the 

actual response of the network be defined by

y  = F(x,w), (4.7)

where y  is the actual output produced by the network in response to the 

input vector x, and w is a set of free parameters (weights).

The weight vector w of the network is adjusted in an iterative fashion in 

response to the error signal e, defined as the difference between the 

desired response d and the actual response y  of the network; that is,

Fig.4.3 shows the idea behind the adaptive procedure used to optimise the 

selection of the weight vector w. The criterion for optimisation is the 

minimisation of the mean-square value of the error signal, as shown by

e = d - y . (4.8)

J{w) = V2 E[e2] = Vi E[(d-y)2] = V2 F[(J-(F(x, w))2]. (4.9)
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The cost function defined here is based on ensemble averaging. The 

network is optimised by minimising the cost function J(w) with respect to 

w.

In a neural network that learns under the supervision of a teacher, 

information contained in the training set:

{ (x, , dx), (x2 , d2),..., (xar,d N)}, (4.10)

is transferred to a set o f weights represented by the weight vector w , as 

indicated by:

{(xj ,d\), ( \ 2 ,d 2), .. . ,(xN,d N)} — w. (4.11)

Error
Signal

Desired
response

Fig. 4.3 Neural network model
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4.3.3 Selection of ANNs

Eq.(4.6) is the learning task which a neural network is required to 

perform, where the vector x is the input and the scalar d  is the output. The 

function g(*) is assumed to be unknown. The requirement is to design a 

neural network that approximates the function g(*), given a set of 

examples denoted by the input-output pairs (xhdi), (x2,d2), ..., (xN,dN). 

The approximation problem described here is a perfect candidate for 

supervised learning with x, serving as the input vector and dt serving as the 

role of desired response, where i = 1 , 2 ,

The supervised learning involves the modification of the weights of a 

neural network by applying a set of training samples or task examples. 

Each example consists of an input-output pair: an input signal and the 

corresponding desired response for the neural network. Observations 

(measurements) of the environment, obtained by means of sensors 

designed to probe the environment, provide the examples used to train the 

neural network. Typically, the set of examples used to train the network 

are reprehensive of a real-world situation.

55



Given such a set of examples, the first step for the design of a neural 

network is to select an appropriate architecture for the neural network. To 

reveal the input-output characteristics of a measuring system or sensor 

behind the calibration data, several structures of neural networks, such as 

the multilayer perceptron (MLP), the functional link neural network 

(FLNN), could be considered. The neurons of one layer in a MLP are 

connected to all the neurons of the following layer via unidirectional links 

by connection weights. The determination of the activation functions, the 

thresholds of neurons and the weights are required in utilising the MLP. 

The FLNN has only one single neuron with an increased input space 

provided by the functional expansion of its initial inputs [69]-[71].

To implement the proposed ANN-based modelling of non-intrusive 

pressure measurement, two ANN-based methods are to be investigated. In 

the rest of this chapter, the FLNN-based modelling process is presented 

[89]. In chapters 5 and 6 , MLP-based modelling process is described.

4.4 Principle of system modelling based on FLNN

4.4.1 General structure of FLNN
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The general structure of the FLNN is shown in Fig.4.4. The FLNN is 

basically a flat single layer network, in which the need of hidden layers 

has been removed by incorporating functional expansion of the input 

pattern. The functional expansion effectively increases the dimensionality 

of the input vector, and hence the hyperplanes generated by the FLNN 

provide greater discrimination capability in the input pattern space.

The functional-link neural network (FLNN) offers an NN architecture 

which is quick and easy to train. The FLNN uses extra functional

dimensions adjoined to the input space. The training method is greatly

simplified and is much faster than conventional multilayer NNs [72].

Input

pattern

vector

Desired response Actual response

Fig. 4.4 The general structure of the FLNN

57



4.4.2 Mathematical algorithm for FLNN

Let there be K  input patterns to train FLNN, each with n elements. For

A<*>
pattern k, its components are xjk), the output of FLNN is y,. , i =1, 2, ..., 

n , k =  1,2, The dimension of each input pattern is increased to N  (N 

>a) after the action of functional expansion. If the kth input pattern vector 

is represented by X k = ••,*<*>] , the expanded vector is

Fk where / y represents a set of basic

functions, j  =1, 2, ..., N. Let the weight vector of the FLNN be 

W = Wj,---, hv]̂  then we have:

A<*>
y = F(kW T (4.12)

For all K  input patterns, Eq.(4.12) can be expressed as:

FWT = r , (4.13)
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where F  is a K X N  matrix given by F = [F(X),---,F^,---,F(K)]T , and

A  a O >

Y = [y
a ( ' )  a W

y  >•••,y F, i=l ,  2,

If  F  = TV and the determinant of F  is not zero, that is, DetF * 0 , then:

WT = F~l Y . (4.14)

If  AT < TV, then we can partition F  to obtain a matrix of dimension K X K .  

Set Wm=0 for m >K ,  then W is modified to WF, and if  DetF^. * 0 , then:

(4.15)

If K  > TV, using conventional pseudo-inversion approach, we obtain:

WT =(FTF)-1F T Y . (4.16)

The above analysis indicates that the functional expansion approach 

always yields a flat solution [73]. The solution for W in FLNN is achieved 

iteratively using supervised learning algorithm [74].
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4.4.3 Principle of system modelling based on FLNN

For the non-intrusive measuring system of hydraulic pressure, the input 

signal is the change in applied pressure, and the change of acoustic 

velocity in oil is the output signal. The direct modelling is concerned with 

building up the input-output static characteristics of the system, which is 

generally expressed as:

Ac=f{Ap),
(4.17)

where Ap stands for the change in measurand, Ac is the change in 

velocity.

Eq.(4.17) could be given by three terms of the power series as:

£  Kj(Ap
j  = 1

(4.18)

A

w h e re  Ac rep re sen ts  th e  es tim ate  o f  Ac, Kj { j =  1, 2, 3 ) a re  the  co effic ien ts

u n d e r  d e te rm ina tion .
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The inverse modelling of the system is related to the establishment of the 

measurand reconstruction model for direct digital reading of the applied 

pressure. Similarly, this inverse model can be represented as

Ap=AAc), (4.19)

and could be written as the following polynomial:

(4.20)

A

where A/? is an estimate of Ap, and L j( j=  1, 2, 3 ) are coefficients to be 

determined.

To complete the system modelling, a functional link neural network is 

utilised. Suppose that the initial input is xh the expanded inputs x f , xf „

corresponding to an output pattern y, i= 1, 2,..., N. Under the condition of 

the FLNN not containing any nonlinearity, the learning algorithm is 

expressed as:
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(4 .21 )y t{ k )  =  2  x / . W j ( k )  ,
j = i

et(k) = y,(k) -  y ,(k)  , (4.22)

Wj(k + 1) = Wj(k) + tj .e,(k).xi, (4.23)

where y(k), y(k),e(k),Wj(k)  stand for the desired output, estimated

output, error, and the j h ( j  = 1, 2, 3 ) connection weight of FLNN at the k,h 

time step, respectively, rj represents the learning constant, which governs 

the stability and the rate of convergence.

The idea of using the above FLNN for modelling the non-intrusive 

pressure measuring system is dependent on the estimation of the unknown 

coefficients K} and L j ( j  = 1, 2, 3 ). If the initial input of the FLNN is Ap, 

its output is Ac, and vice versa. The learning process is carried out based 

on the calibration data.
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4.5 Direct modelling of monitoring system with FLNN and 

results

The schematic diagram of the direct modelling is shown in Fig.4.5. In 

equations (4.21) - (4.23), y, x  are replaced with Ac, Ap, respectively. The 

initial values of weights Wj ( j  = 1, 2, 3 ) are selected. Each of the selected 

pairs of Ap, Ac is applied sequentially to the FLNN, and each time the 

weights are updated by the neural algorithm. Applying all pairs of data 

and adjusting the weights constitute a learning iteration. The learning 

process continues for as many iterations as needed for a minimum of the 

average mean square error (MSE). Then the weights Wj ( j=  1, 2, 3) 

represent the coefficients Kj ( j=  1, 2, 3).

The relative error (%FS) of estimated change in velocity against the 

expected variation of velocity is defined as:

A

Relative error (%FS) = Ac~ Ac x 100%, (4.24)
Acfs

where AcFs represents the full scale (FS) of the change in velocity for the 

measurement system.

63



Fig.4.5 Schematic diagram of the direct modelling.

Fig.4.6 Relative error (%FS) of estimated change in velocity 

against the expected variation of velocity.

Fig.4.6 shows the curve of relative error (%FS) against the expected 

variation of velocity. These results have demonstrated that the estimated
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outputs of the measuring system closely agree with the expected 

responses. The maximum relative error (%FS) of estimated change in 

acoustic velocity against the expected variation of velocity is 1.12 %FS. 

When the term of maximum is related to the error in the thesis, it always 

refers to the maximum of the absolute values of the errors involved. The 

effectiveness of the proposed direct modelling has been proven with a low 

cost o f computational complexity.

4.6 Inverse modelling of monitoring system with FLNN 

and results

The schematic diagram of the inverse modelling is shown in Fig.4.7. In 

Equations (4.21) - (4.23), y, x  are replaced with Ap, Ac respectively. 

Initially the weights of the FLNN are set at some random values. The 

input Api is applied simultaneously to the FLNN and the ultrasonic 

sensing element. The sensing element produces an output Ac,. Inside the 

FLNN, {Ac,-, Ac,?, Ac? } constitutes the expanded input set, and it produces

A

an output ^  Pi. The error e, to be used in updating the weights is obtained

A

from the comparison of A/?, with A A . Each pair of the Ac, and apt is 

applied sequentially to the FLNN, and each time the connection weights 

are updated by the neural algorithm. Application of all the training data
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and adjusting the weights constitute one learning iteration. The learning 

process continues for 215 iterations for the average mean square error 

(MSE) to attain a predefined minimum value. At this stage, the training is 

completed; the weights reach their steady-state values and represent the 

estimated coefficients Lj (y= 1, 2, 3). The validation study is carried out 

using the validation data set to get the response of the established model. 

The relative error (%FS) of estimated change in pressure against the 

expected variation of pressure is defined as:

Relative error (%FS) = Ap A p  x 100%, (4.25)
4Pfs

Where ApFS represents the full scale of the measurable change in pressure 

for the measurement system.

The relative error (%FS) of estimated change in pressure against the 

expected variation in pressure is shown in Fig.4.8 for all the data set. It 

shows that the maximum relative error (%FS) is 0.98 %FS. Therefore, the 

direct digital reading of the measured pressure can be accurately given 

using the proposed inverse model, which is easily implemented in a 

microcontroller.
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After the modelling process for estimation of pressure has been finished 

with a desktop or laptop PC (personal computer), the established model 

can be used in an embedded instrument system for non-intrusive 

monitoring of hydraulic systems.

Fig.4.7 Schematic diagram of the inverse modelling process

The scheme of implementing such a function is shown in Fig.4.9. Either 

an 8  bit microcontroller 80C31 from Intel MCS-51 family or a 16 bit 

80C196 from Intel MCS-96 family could be chosen for on-line signal 

processing. The purpose of using a keyboard and an E2PROM is to input 

the coefficients of the model and store them securely. It is recommended
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that the coefficients are determined and entered after in-situ calibration to

ensure that accurate measurements are taken.

Fig.4.8 Relative error (%FS) of estimated change in pressure 

against the expected variation in pressure.

pressure ultrasonic

sensing

Fig.4.9 Implementation scheme of on-line measurement
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4.7 Summary

The principle of modelling the newly developed non-intrusive pressure 

measuring system is described. Its direct model and the inverse model are 

constructed based on a functional-link neural network. They can be 

utilised to analyse the input-output characteristics of the system and 

provide direct digital readings of the measurand. The results have shown 

the effectiveness of the proposed method with a low cost of computational 

complexity. The maximum error (%FS) of estimated change in acoustic 

velocity against the expected variation of velocity is 1.12 %FS. The 

maximum error (%FS) of estimated change in pressure against the 

expected variation of pressure is 0.98 %FS. The inverse model can be 

easily implemented in a microcontroller to accurately display the 

measurand digitally.
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5 MLP-Based Modelling of the Non- 

Intrusive Monitoring System — 

Part I

The following notation is used: (1) using small italic letters for scalars; (2) 

using bold non-italic letters for vectors; (3) using capital BOLD non-italic 

letters for matrices.

5.1 Neuron model

5.1.1 Single-input neuron

A single-input neuron is shown in Fig.5.1. The scalar input p  is multiplied 

by the scalar weight w, to form the weighted input wp, one of the terms 

that is sent to the summer. The neuron has a scalar bias, b. The other 

input, 1, is multiplied by b and then passed to the summer. The summer 

output, often referred to as the net input, goes into a transfer function f, 

which produces the scalar output a.
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The transfer function net input n, again a scalar, is the sum of the 

weighted input wp and the bias b. This sum is the. argument of the transfer 

function f  Here /  is a transfer function, which takes the argument n and 

produces the output a. The neuron output is calculated as:

a = / ( n p  + b) . (5.1)

Note that w and b are both adjustable scalar parameters of the neuron. The 

central idea of neural networks is that such parameters can be adjusted, so 

that the network exhibits some desired or interesting behaviour. Thus, we 

can train the network to do a particular job by adjusting the weight or bias 

parameters.

Input Neuron with bias

a =f{\\p + b)

Fig.5.1 Single-input neuron
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5.1.2 Transfer functions

Three of the most commonly used functions are shown below.

The hard-limit transfer function:

a
!K+L

0
-1

a =  hardlim(n)

Hard-Limit Transfer Function 

Fig.5.2 Hard-limit transfer function

The hard-limit transfer function, shown in Fig.5.2, limits the output of the 

neuron to 0  if  the net input argument n is less than 0 ; or 1 , if n is greater 

than or equal to 0. This function may be used to create neurons that make 

classification decisions.

The linear transfer function:

As illustrated in Fig.5.3, the output of a linear transfer function is equal to 

its input:
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a - n . (5.2)

Fig.5.3 Linear transfer function

The log-sigmoid transfer function:

The log-sigmoid transfer function is shown in Fig.5.4. It takes the input, 

which may have any value between plus and minus infinity, and squashes 

the output into the range 0  to 1, according to the expression:

1
a = -------------------- .

l + e~n
(5.3)

This transfer function is commonly used in multilayer networks that are 

trained using the back-propagation algorithm, in part because it is 

differentiable [87].
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a

a = logsig(n)

Fig.5.4 Log-sigmoid transfer function

The symbol in the square to the right of each transfer function graph 

represents the associated transfer function. These icons will replace the 

general/in  the boxes of network diagrams to show the particular transfer 

function being used.

5.1.3 Multiple-input neuron

A neuron with R inputs is shown in Fig.5.5. Here the individual inputs 

PVP2,---,PRare each weighted by corresponding elements

of the weight matrix W. The weighted values are fed to the summing 

junction. Their sum is Wp, the dot product of the (single row) matrix W 

and the vector p.

74



Input Neuron w Vector Input

f --------------------- *\

a=AWp+fc)

Fig.5.5 Multiple-input neuron

The neuron has a bias b, which is summed with the weighted inputs to 

form the net input n:

n =  wllPl + wu p 2 + ■ ■ • +  whRp R + b . (5.4)

This expression can be written in matrix form:

n = Wp + b . (5.5)

Now the neuron output can be written as:
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a = fin)
= /(W p + 6) (5-6)

In the indices of the elements of the weight matrix, the first index 

indicates the particular neuron destination for that weight. The second 

index indicates the source of the signal fed to the neuron. Thus, w, 2 means 

that this weight represents the connection to the first (and only) neuron 

from the second source.

The figure of a single neuron shown in Fig.5.5 contains a lot of detail. 

When considering networks with many neurons and perhaps layers of 

many neurons, so much detail would cause the main thoughts to be lost. 

Thus, an abbreviated notation for an individual neuron is illustrated in 

Fig.5.6 [75].

In Fig.5.6, the input vector p is represented by the solid dark vertical bar 

at the left. The dimensions of p are shown below the symbol p as /?xl. p 

is a input vector of R elements. These inputs go to the weight matrix W, 

which has R columns but only one row for this single neuron case. A 

constant 1 enters the neuron as an input and is multiplied by a scalar bias 

b. The net input to the transfer function/is n, the sum of the bias b and the
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p ro d u c t Wp. T his sum  is p assed  to  the  tran sfe r fu n c tio n  /  to  g e t the

n e u ro n 's  o u tp u t a, w h ich  in  th is case  is  a  scalar. N o te  th a t the  n u m b er o f

in p u ts  is se t b y  the  ex te rna l spec ifica tio n s  o f  the  p ro b lem .

Input Neuron

a=fCWp +b)

Fig.5.6 Neuron with R inputs, abbreviated notation

5.2 Network Architectures

5.2.1 A layer of neurons

A single-layer network with R input elements and S  neurons is shown in 

Fig.5.7. The layer includes the weight matrix, the summers, the bias 

vector b, the transfer function boxes and the output vector a. The array of 

inputs, vector p, is not called a layer here.
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In put Laye r of N e uro ns

r -------------------- >

Pi

pi

p*

_______ J
a= f  (Wp+b)

Fig.5.7 Layer of S  neurons

The input vector elements enter the network through the weight matrix

W:

wl,l w l , 2  " ' wl,R
w2,l w2,l ■"  W2,R

W S ,1 WS,2 ‘ "WS,R

(5.7)

Note that the row indices on the elements of matrix W  indicate the 

destination neuron of the weight, and the column indices indicate which 

source is the input for that weight.
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The ith neuron has a summer that gathers its weighted inputs and bias to 

form its own scalar output n(i). The various n(i) taken together form an S- 

element net input vector n. Finally, the neuron layer outputs form a 

column vector a. The expression for a is:

a = f(Wp + b ). (5.8)

This expression is also shown at the bottom of the Fig.5.7.

The S  neuron R input one-layer network can also be drawn in abbreviated 

notation, as shown in Fig.5.8.

Input Layer of Neurons

a= f  (Wp + b )

Fig.5.8 Neuron with R inputs, abbreviated notation
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Here p is an R length input vector, W is an S X R  matrix, a and b are S 

length vectors. The neuron layer includes the weight matrix, the 

multiplication operations, the bias vector, the summer, the transfer 

function boxes and the output vector.

5.2.2 Multiple layers of neurons

Now consider a network with several layers. Each layer has a weight 

matrix, a bias vector, a net input vector and an output vector. To 

distinguish between the weight matrices, output vectors, etc., for each of 

these layers, some additional notation is introduced. We append the 

number of the layer as a superscript to the variable of interest. For 

instance, the weight matrix for the first layer is written as W 1, and the 

weight matrix for the second layer is written as W . This notation is used 

in the three-layer network shown in Fig.5.9.

The network shown in Fig.5.9 has R inputs, Sl neurons in the first layer, S1 

neurons in the second layer, etc. A constant input 1 is fed to the biases for 

each neuron. Layer 1 can be viewed as a one-layer network with R inputs, 

S'1 neurons, and an S l X R  weight matrix W 1. The input to layer 1 is p; the 

output is a1. The outputs of each intermediate layer are the inputs to the
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following layer. Thus layer 2 can be viewed as a one-layer network with 

S ] inputs, S2 neurons, and an S'2 X S1 weight matrix W2. The input to layer 

2 is a1; the output is a2. Now, all the vectors and matrices of layer 2 are 

identified. Layer 3 can be viewed as a one-layer network with S2 inputs, 

S3 neurons, and an S* X S2 weight matrix W3. The input to layer 3 is a2; the

output is a3. Layer 3 is an output layer, which produces the network 

output. Layer 1 and layer 2 are hidden layers in this three-layer network.

I n p u t s  F i r s t  L a y e r  S e c o n d  L a y e r  T h i r d  L a y e r

f --------------- > f ---------------- > r---------------- >
S.I

P:

Pa
*♦
Pa

V__________ )  V__________ J \ __________ j
a> = f i(Wip+bi) a- = f 2(W*a' +b-) a-’ = f n;W-5a:+b-')

a1 = f 5 (W ’ f i (W* f ' (W ' p+ b ■ )+b=)+b5)

Fig. 5.9 Three-layer feed-forward neural network

The same three-layer network discussed previously also can be drawn 

using abbreviated notation, as shown in Fig.5.10.
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First Layer Second Layer Third Layer
/~\ r ---------------------- \  f----------------------- \  t------------------------ \
Input

a> f  n W 'f  : (W :f  i (W 'p  t b 1 > ib=) +bJ)

Fig.5.10 Three-layer feed-forward network, abbreviated 

notation

Here we assume that the output of the third layer, a , is the network output 

of interest, and we have labelled this output as y. We will use this notation 

to specify the output of multilayer networks.

5.3 Back-propagation algorithm

5.3.1 Steepest descent algorithm

For our purpose, to optimise a performance index F(x) means to find the 

value of x that minimises F(x). The optimisation algorithms discussed 

here are iterative. Starting from some initial guess and then updating our 

guess in stages according to the general minimisation algorithm [75]:
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(5.9)x*+i = x* + akpk ,

or

Ax* =x*+1-x* =a*p*, (5.10)

where the vector p* represents a search direction, and the positive scalar 

otk is the learning rate, which determines the length of the step.

The steepest descent algorithm:

x*+i = x* . (5.11)

where g* is the gradient evaluated at the old guess xk:

g, =V F(x)|x=Xt . (5.12)

5.3.2 Newton’s method

The derivation of the steepest descent algorithm is based on the first-order 

Taylor series expansion of F(x) about the old guess. Newton’s method is 

based on the second-order Taylor series expansion [75]:
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(5.13)F(xk+l) = F(xk+Axk) « F(xt) + gJAxt +^Ax[A,Ax,,

where A* is the Hessian evaluated at the old guess xk :

A »»W (x)|„ ,t . (5.14)

Newton’s method is defined:

x*+i =xt -A i1g*. (5.15)

A brief comparison between some of the properties of Newton’s method 

and those of steepest descent:

Newton’s method usually produces faster convergence than steepest 

descent. However, the behavior of Newton’s method can be quite 

complex. In addition to the problem of convergence to saddle points 

(which is very unlikely with steepest descent), it is possible for the 

algorithm to oscillate or diverge. Steepest descent is guaranteed to 

converge, if  the learning rate is not too large.
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We will discuss a variation of Newton’s method in next chapter, i.e. L-M 

algorithm, which is well suited to the neural network training. It 

eliminates the divergence problem by using steepest descent steps 

whenever divergence begins to occur.

Another problem with Newton’s method is that it requires the 

computation and storage of the Hessian matrix, as well as its inverse.

5.3.3 The back-propagation algorithm

Consider the M  layer, R — Sl — S2 --------- 5^ network in abbreviated

notation shown in Fig. 5.11. It has M -1 hidden layers and an output layer. 

The output of one layer becomes the input to the following layer. This 

operation is described by the following equations [75]:

ara+l _fm+qwm+lam + bm+1) for W = 0, 1, 1 • • , M — 1, (5.16)

where M is the number of layers in the network.

The neurons in the first layer receive the external inputs:
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a0 =p , (5.17)

which provides the starting point for Eq.(5.16).

Fig.5.11 M  layer feed-forward network

The outputs of the neurons in the third layer are the network outputs:

a = aM . (5.18)

Performance Index [75]:

The back-propagation algorithm for the multilayer networks is a 

generalisation of the LMS algorithm, and both algorithms use the same 

performance index: mean square error. The algorithm is provided with a 

set of examples of proper network behavior:

{Pi>t iMP2>t2}>"->|pe>te}, (5.19)
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where p9 is an input to the network, and tq is the corresponding target 

output (<7= 1 , 2 , Q).

As each input is applied to the network, the network output is compared 

with the target. The algorithm should adjust the network parameters in 

order to minimise the mean square error:

F(x) = E(eTe) = £[(t -  a)r (t -  a)} (5.20)

where x is the vector of network weights and biases.

As with the LMS algorithm, we will approximate the mean square error 

by:

F(x) = (t(k) -  a(k))T ( t(k) -  a (*)) = er (k)e(k), (5-21)

where the expectation of the squared error is replaced by the squared error 

at iteration k.
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T h e  s teep es t d ecen t a lg o rith m  fo r th e  ap p rox im ate  m e a n  sq u a re  e rro r is

(5.22)

(5.23)

where a  is the learning rate.

Computation of the partial derivatives [75]:

Because the error is an indirect function of the weights in the hidden 

layers, the chain rule of calculus is used to calculate the derivatives in 

Eq.(5.22) and Eq.(5.23):

dw'"j dn™ dw"j ’
dF dF dnj" ----- = ----- x — — (5.24)

dF dF dn™_____  — _____  v  ___ i_X (5.25)
db"‘ dn!" db"‘
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Note that the net input to layer m is an explicit function of the weights and 

bias in that layer:

S m-\

n? = Y j K jaT ' + 6<m • (5 -26)
>1

Therefore, the second term in each of Eq.(5.24) and Eq.(5.25) can be 

computed:

dw”lj (5.27)

far =1
db/»

(5.28)

If we define:

A

(5.29)

A

(the sensitivity of F to changes in the z'th element of the net input at layer 

m), then Eq.(5.24) and Eq.(5.25) can be simplified to:
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W e can  n o w  exp ress th e  ap p ro x im ate  s te ep es t d ecen t a lg o rith m  as:

(k +1) = wj”j  (k) -  as™ay-', (5.32)

b r ( k + \ ) = b r ( k ) - a s r -  (5.33)

In matrix form it becomes:

W™(k + l) = W™(k)-as™(a™-')T, (5.34)

bm(k + 1) = b™(k)-as™. (5.35)

where



-ir

(5 .36 )dF dF dF  
dn” ’ dn” ’ ’ dn”m

Backpropagating the sensitivities [75]:

It now remains for us to compute the sensitivities s'". The process of back- 

propagation describes a recurrence relationship in which the sensitivity at 

layer m is computed from the sensitivity at layer m+1 .

A

dn”

To derive the recurrence relationship for the sensitivities, we use the 

following Jacobian matrix:

dn”+x dn”+x dn”+l
dn” dn” dn”m

dn”+l dn”+l dn”+x
dn” dn” dnmunSm

a*
 

.

l
i urlsm+l a*

 
.

t
i

dn” dn” dnm

(5.37)

Conside the i , j  element of the matrix:
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(  sm

dn™+l
dn™

] T  wfi+Ia,™ + b;
V <=i ______

dn™

m+1

= w"+l

= w”+1

da™
dn™
df™(n™)

dn™

= f  in"),

(5 .3 8 )

where

/  (*;) =
df™(nj)  

dn™ (5.39)

Therefore the Jacobian matrix can be written as:

flnm+l . m
—— = w m+1 F (nra), (5.40)
dn™

where



/ 0/  ( K )
. m
F (nm) =

0

/  («2m) ••• 0

.«
o ••• /  (»?.)

(5 .41 )

We can now write out the recurrence relation for the sensitivity in matrix 

form:

A

3nm

3nm+lN| dF
dnm J  dnm+1

. m
= F (nm)(Wm+1)r

dF
5nm+1

(5.42)

.  m
= F (nm)(Wm+1)rsm+I .

We can see that the sensitivities are propagated backward through the 

network from the last layer to the first layer:

s' <- s2 <----<— s -̂1 <- sM . (5.43)
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The starting point, s^, is needed for the recurrence relation of Eq.(5.42). 

This is obtained at the final layer:

s“ B 8F
dn"
3(t-a)r (t-a )

M
SM

7=1

8n*

= -2 (*,-«,) dn?

(5.44)

Now, since:

dai _ day 
dny dnf1

dfM {ny )  

dny
. m

= f  « ) ,

(5.45)

we can write

. M
sy  = - 2{ti - a i) f  (nf). (5.46)
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This can be expressed in matrix form as:

.M
sM = - ¥  ( n w ) ( t - a ) . (5 .47 )

5.3.4 Summary of the back-propagation algorithm

Definition of the performance index:

F(x) = E(eTe)
= £ [(t-a )r (t-a )} (5.48)

Definition of the approximate performance index:

F(*) = eT(k)e(k)
= ( t ( k ) - a ( k ) n m - a ( k ) ) .

(5.49)

Definition of the sensitivity:
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8F
dn?

A

8F
8n"m

(5 .50 )

The whole operation process of the back-propagation algorithm can be 

divided into three steps: forward propagation, backward propagation and 

weight update, as summarised below.

1 a °  c — ^ a 1 -
M-1 . 1---------1 /

1 A/ -1 ^ —| |  »5 --------

Fig.5.12 Operation of the back-propagation algorithm

The first step, i.e. forward propagation as shown in Fig.5.12, is to 

propagate the input forward through the network:
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(5 .51 )a0 = p,

am+1 = f'«+'(w'n+1am +bm+1)form = 0, -1, (5.52)

a = aM. (5.53)

The next step, i.e. backward propagation, is to propagate the sensitivities 

backward through the network:

. M
s " = - F  (n")(t-a). (5.54)

.  m

sm=F (nm)(Wm+1)rsm+1, for m = M - \ ,  ■■■, 2, 1. (5.55)

Finally, the weights and biases are updated using the approximate steepest 

descent rule:

Wm (k +1) = W" (k) - a s m (a”-1 )T, (5.56)
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b m (& +  ! )  =  b m (k)  -  a s m. (5 .5 7 )

5.4 Summary

The mathematical model of the neuron is introduced. How these neurons 

can be interconnected to form a variety of network architectures is 

explained.

The back-propagation algorithm can be used to train multilayer networks. 

It is an approximate steepest decent algorithm, in which the performance 

index is mean square error.

The architecture of a multilayer network is not completely constrained by 

the problem to be solved. The number of inputs to the network is 

constrained by the problem, and the number of neurons in the output layer 

is constrained by the number of outputs required by the problem. 

However, the number of layers between network inputs and the output 

layer and the sizes of the layers are up to the designer.
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6 MLP-Based Modelling of the Non- 

Intrusive Monitoring System — 

Part II

6.1 Principle of system modelling based on multilayer 

networks

6.1.1 Three-layer feed-forward network

This section presents the architecture of the network that is used with the 

L-M back-propagation algorithm to build the direct model and inverse 

model for the non-intrusive pressure monitoring system.

This feed-forward network is created with three layers as shown in 

Fig.6.1, that is, an output layer (layer 3) producing the network output and 

two hidden layers (layers 1 and 2). Here the array of inputs is not included 

in or called a layer. Each layer has its own a weight matrix, its own bias
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vector, and an output vector. A constant input 1 is fed to the biases for 

each neuron.

To distinguish between the weight matrices, output vectors, etc., for each 

o f these layers, we append the number of the layer as a superscript to the 

variable of interest. For example, the weight matrix for the first layer is 

written as W  , and the weight matrix for the second layer is written as W  . 

The network has R inputs, S l neurons in the first layer, S2 neurons in the 

second layer, S2 neurons in the third layer.

To identify the structure of a multilayer network, the following shorthand 

notation is used, where the number of inputs is followed by the number of 

neurons in each layer:

R —  S '— S2 —  *S'3. (6.1)

The output of the first layer is the input to the second layer, and the output 

o f the second layer is the input to the third layer. Layer 1 can be viewed as 

a one-layer network with R inputs, S' neurons, and a weight matrix W 1, 

the bias vector b1, S] summers, Sl transfer function boxes and the output 

vector a1. The input to layer 1 is p, the net input vector is n1 and the output

1 0 0



is a1. Here the input vector p is represented by the solid dark vertical bar 

at the left. Here p is an R length input vector, W 1 is an S r X R matrix, a1 

and b1 are S'1 length vectors.

a1 = f ’(n1) = f I(w1p + b1) (6.2)

a1 = \a>\,ax2 ,---,axs'^
(6.3)

f1 (n1) = [ fxi (m'i), f x2 (nx2), ■ ■ ■, f ls' (nxs' ) f (6.4)

w 1 =

w ' l . l  w ' l , 2  • • •  W X\,R

W l 2 ,1 W X 2,1 • • •  W X2,R

W's',1 ••• WXS',R

(6.5)

P = [Pp ^2»"-»P/?]7 (6.6)

b1 = [b'i,bl2 ,---,bxs')T (6.7)

1 0 1



First Layer Second Layer Third Layer
r ^ \  t ------------------ \ t ------------------ \ /------------------ \

input

 ̂ yxi ^ MX I p ■’ x i p
O  v__________ _-M __________ v_____________

a1 f 1 (W ip I b 'I a: " f : (W :a' r bJ) »'■ f 3 (W 'a : +b 'i

a 1 -  f  > (WJ f !( W i  11 W 'p t b ') t b :) I b ')

Fig.6.1 Diagram of a three-layer feed-forward network

Layer 2 can be viewed as a one-layer network with S1 inputs, S2 neurons, 

and an S1 X S { weight matrix W2. The input to layer 2 is a1, the net input 

vector is n1 and the output is a2.

a2 = f 2(n2) = f 2(w2a‘ + b2) (6 8)

a2 =[a2\ a2 2 ■•■a2s2Y (6.9)

f2(n2) = l / 2i(»2i)»/22(n22 ) ,- , /V ( / i2sOr (6. 10)

W2 =

W21,1 W21,2 w2l,s' 
W2 2,1 W2 2,1 ••• W22,S1

w 2s 2,i w 2 s 2 ,2  • • • w 2 s 2 ,s '

(6.11)
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b2 =  [ ò 2 i b22 ■•■b2sì ] r (6. 12)

Layer 3 can be viewed as a one-layer network with S2 inputs, S? neurons, 

and an S3 X S1 weight matrix W 3. The input to layer 3 is a2, the net input

1 * 3vector is n and the output is a .

a3 = f3(n3) = f 3(w3a2 + b3) (6.13)

i3 =[<33i,a32 , •••,a3s’]r (6.14)

fJ(n>) = l/>.(»’>),/M /3= V ''./W M r (6.15)

W 3 =

W31,1 W31,2 •••
VV3 2,1 w 32,l • • •  w h  , S 2

VV3.̂ ,! W3J3,2 ■ • • W3S3,S2

(6.16)

b3 =  [b3\ ,b32 , - " , b 3si J (6.17)
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The transfer functions for all the neurons in the same layer are chosen to 

be the same:

/ ,2(n'2) = / 1(«12),

P  s'in's') = Pin's'),

(6.18)

/ 2>(«2.) = / 2(«2.),
Piinh) = P{nh),
"'j
p si (n2sp = Pin2sp,

(6.19)

/M «30 = / 3("30, 
P*iP2) = PiP2),

Ps>iPs>) = PiPs>).

(6.20)

In summary, the network output vector can be expressed as the following 

compact form:

a3 = f 3(w3f 2 (w2f 1 (w'p + b1) + b2) + b3). (6 .21 )



6.1.2 Levenberg-Marquardt algorithm

The development of the back-propagation learning algorithm was 

regarded as a significant milestone in the area of neural networks. 

However, considerable research on methods to accelerate the convergence 

of the algorithm has been carried out since then. This research falls 

roughly into two categories: heuristic approaches [76]-[79] and numerical 

optimisation techniques. The approaches in the first category include such 

ideas as using momentum [80], varying the learning rate [81] and 

stochastic learning [82]. In the second category there are conjugate 

gradient method and Levenberg-Marquardt (L-M) technique [83]-[85]. 

Among these mentioned methods, L-M algorithm is widely regarded as 

the most efficient in the sense of realisation accuracy [85].

Basic algorithm [75][85]:

The L-M (Levenberg-Marquardt) algorithm is a variation of 

Newton’smethod designed for minimising functions that are sums of 

squares of other non-linear functions.

Newton’s method for optimising a performance index, F(x), i.e. a sum of 

squares, is:
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(6 .22 )*t+, = x* ~ Ai'g* »

where

A, . W ( I ] | „ (6.23)

and

g ,.W (x ) |, (6.24)

First, we want to find V f(x). Assume that F(x), a sum of squares 

function, takes the following form:

^(x) = Xv?(x) = vr (x)v(x),
i=i

(6.25)

then, they'th element of the gradient would be:

8f(x )
dxj

2 £ v,(x)
/= 1

gy,(x)
dxj

(6 .26 )
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T h ere fo re , the  g rad ien t can  b e  w ritten  in  m a trix  form :

VF(x) = 2Jr (x)v(x), (6.27)

where

"av,(x)
dx1

dv,(x)
dx2

dv,(x)
d x n

J(x) =
dv2(x)

cbt,
dv2(x)

dx2
dv2(x)

dxn (6.28)

5vw(x)
dxt

SvN(x)
dx2

dvN(x)
dxn

is the Jacobian matrix.

Next, we want to find V 2F(x), the Hessian matrix. The k ,j  element of the 

Hessian matrix would be:

[V2F(x)b,,. =
d2F(x)
dxkdxj

a  | av,(x) av, W +v,(i)£ v iw |  _
d x k d x j  d x kd x j  j

(6 .29 )
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T h e  H ess ian  m a trix  can  th en  be  ex p ressed  in  m a trix  form :

V2F(x) = 2Jr (x)J(x) + 2S(x), (6.30)

where

S(x) = jrv,.(x)V2v,.(x).
1=1

(6.31)

Assume that S(x) is small; the Hessian matrix can be approximated as:

V2F(x) = 2Jr(x)J(x). (6.32)

Substituting Eq.(5.89) and Eq.(5.84) into Eq.(5.79), we obtain the Gauss- 

Newton method:

X * +I =x* -[J r(x*)J(x*)]-'Jr (xt )v(x*). (6.33)

The advantage of Gauss-Newton method over the standard Newton’s 

method is that it does not require calculation of second derivatives. To
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overcome the problem that the matrix H = JrJ may not be invertible, the 

following modification is used to the approximate Hessian matrix:

G = H + ju l. (6.34)

This leads to the Levenberg-Marquardt algorithm:

x*+1 = x* - [Jr (x*)J(x*) + nk\ y  J r (xt )v(xt ) . (6.35)

or

Ax* = -[Jr (x*)J(x*) + //*!]-'J r (x*)v(x*). (6.36)

The very useful feature of this algorithm is that, as jti* is increased, it 

approaches the steepest descent algorithm with small learning rate:

X*+1 = x * - — J r (x*)v(x*)
Mk

= X* - y - ^ ( x ) |x=Xt, for large //*.
(6.37)

while as ^  is decreased to zero, it becomes Gauss-Newton method [86].
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The algorithm begins with [ik set to some small value (e.g. / 4  = 0.01). If a 

step does not yield a smaller value for F(x), then the step is repeated with 

/ 4  multiplied by some factor v>\ (e.g. v = 10). Eventually F(x) should 

decrease, since we could be taking a small step in the direction of steepest 

descent. If a step does produce a smaller value for F(x), then fik is divided 

by v for the next step, so that the algorithm will approach Gauss-Newton, 

which should provide faster convergence. The algorithm provides a nice 

compromise between the speed of Newton’s method and the guaranteed 

convergence of steepest descent.

Application of L-M algorithm to multilayer network training problem [75]: 

The performance index for multilayer network training is the mean 

squared error. Here we calculate the sum of squared errors over all inputs 

as an approximate mean square error:

^(x)=X d, - a, )r d, ~a,)
q=i

q=\

Q Su

9=1 M

(6 .38 )
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where ejyq is they'th element of the error for the gth input/target pair.

Comparing Eq.(6.38) and Eq.(6.25), it can see that it should be a 

straightforward matter to adapt the algorithm for network training. It is 

true in concept, but it does require some care in working out the details.

The key step in the L-M algorithm is the computation o f the Jacobian 

matrix. To perform this computation, we will use a variation of the back- 

propagation algorithm.

As said earlier in the standard back-propagation procedure, the derivatives 

of the squared errors are computed with respect to the weights and biases 

of the network. To create the Jacobian matrix, there is a need to compute 

the derivatives of the errors, in stead of the derivatives of the squared 

errors.

Now let us modify the back-propagation algorithm to compute the 

elements of the Jacobian matrix. The error vector is:

vr =[v„v2, ..... , vN]

=  [ e i , l >  e 2 , l ’ ................................................... g l , 2 > .............. > e s M , Q ^
(6.39)
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Where

N  = Q x S m .

The parameter vector is:

\ T =[x} x2 ... xn]
=  [ w 1 l , l W 1 l , 2  . . .  W1S1,R b l\ • • •  b lsl W 2 1,1 - - - b Ms u ]

Where

n = S'(R + l) + S2(S' + l) + ~~+SM(SM- '+ l ) .

The Jacobian matrix for multilayer network training is:

tei,i deu * 1 ,1 ^ 1 ,1

dwl\,\ dwli,2 dw1s\R db' i 3 6 V

de2,i de2,i de2,i * 2 . 1 * 2 , 1

dw\i dwli, 2 dwls',R a z A 3 & V

de MS ,1
de uS ,1

de u ,5 ,1 de u ,
■S ,1

dw l\, i dwX\,2 ¿ H v V .j? d Z A 5 & V

del2 del2 ^ 1 , 2 de12 * 1 , 2

dw\i dw\,2 d w V , / ? 8b'i 3 6 V

(6.40)

.(6.41)
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T h e  e lem en ts  o f  the  Jaco b ian  can  n o w  b e  co m p u ted . T h e  M arq u a rd t

sensitivity is defined as:

S'",'.A
dnmi,q

dnmi,q

(6.42)

where

h = ( q - l ) s M + k .

If x, is a weight, then:

[J]« = 7TO X ,

de,,k,q

d\vm-
dek q  ̂ dnmi,q 
dnmi,q dwmij

dnmi,q
=  S  m i,h x ------------------

dwmij
=  S'm i,h x a m ~ l j , q

(6.43)

If x, is a bias, then:
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(6 .44 )
dbmi
dek q  ̂dnmi,q 
dnmi,q dbmi

=  S  mi,h x  •
dnmi,q
dbmi

=  S  m i,h

The Levenberg-Marquardt back-propagation is initialised with:

SMq = - F M(nMq)

where

/ - ( « , " )  0 0

o  f m{n2m) 0

o
 

• 
o

(6.45)

^  M
Each column of the matrix 5 q must be back-propagated through the

network using Eq.(5.36) to produce one row of the Jacobian matrix.



V 9nm+1
(6.46)

dnm j
,  m

= F (nm)(Wm+I)r dF
5nm+1

. «
= F (nm)(Wm+1)rsm+1 .

The columns can also be back-propagated using:

Sm9 = t ’m(n"'</)(W'”+1)7’Sm+19 (6.47)

The total Marquardt sensitivity matrices for each layer are then created by 

augmenting the matrices computed for each input:

S- = [S-t I S"21 * - -1 S-ß]. (6.48)

For each input presented to the network, SM sensitivity vectors are back- 

propagated. This is because the derivatives of each individual error, rather 

than the derivative of the sum of squared errors, are computed. There are 

SM errors (one for each element of the network output) for every input 

supplied to the network. For each error there is one row of the Jacobian



matrix. After the sensitivities have been back-propagated, the Jacobian 

matrix is computed using Eq.(6.43) and Eq.(6.44).

The iterations of the Levenberg-Marquardt back-propagation algorithm 

(L-M BP) can be summarised as follows:

Present all inputs to the network and compute the corresponding network 

outputs (using Eq.(5.51) and Eq.(5.52) ) and the errors e9 = tq - a?M. 

Compute the sum of squared errors over all inputs, F(x), using Eq.(6.38). 

Compute the Jacobian matrix, Eq.(6.41). Calculate the sensitivities with 

the recurrence relations Eq.(6.47), after initialising with Eq.(6.45). 

Augment the individual matrices into the Marquard sensitivities using 

Eq.(6.48). Compute the elements of the Jacobian matrix with Eq.(6.43) 

and Eq.(6.44).

Solve Eq. (6.36) to obtain Ax*.

Recompute the sum of squared errors using x* + Ax* . If this new sum of 

squares is smaller than that computed in step 1, then divide /x by v , let x*+i 

= x* + Ax* and go back to step 1. If the sum of squares is not reduced, then 

multiply /x by u and go back to step 3.

The algorithm is able to reduce the sum of squares at each iteration. It 

requires more computation than any of the other algorithms, since it
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involves a matrix inversion. Even given the large number of 

computations, however, the L-M BP algorithm appears to be the fastest 

neural network training algorithm for moderate numbers of network 

parameters.

6.2 Implementation of direct modelling with MLP for non- 

intrusive pressure monitoring system

6.2.1 Flow chart of direct modelling with MLP

Now we present the use of the above three-layer feed-forward network for 

the direct modelling of the non-intrusive pressure monitoring system. 

There are four steps in the training process: assemble the training data, 

create the network object, train the network, simulate the network 

response to training inputs and test inputs. The flow chart of direct 

modelling with MLP is shown in Fig.6.2.

The input vector covers the entire range of the input variable, and contains 

twenty elements as [1 2 4 5 7 8 9 11 13 14 16 17 19 20 3 6 10 

12 15 18]. The first fourteen elements of the input vector form the

training input vector, and the last six elements of the input vector form the 

test input vector. Correspondingly, the target vector with twenty elements
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is [4.35 9.39 17.53 21.59 30.14 33.79 38.41 46.69 55.24 59.02 66.74 

71.92 80.33 84.68 13.46 25.94 42.48 51.73 63.37 75.43]. The target 

vector is split into two vectors: the training target vector with the first 

fourteen elements of the target vector, and the test target vector with the 

rest of the target vector. Therefore, a training set of inputs and targets and 

a test set of inputs and targets are created.

Creating the network object is the first step in training a feed-forward 

back-propagation network. The function used to create the required feed­

forward network needs four inputs and returns the network object. The 

first input is an R by 2 matrix of minimum and maximum values for each 

of the R elements of the training input vector. The second input is an array 

containing the sizes of each layer. The third input is a cell array containing 

the names of the transfer functions to be used in each layer. The final 

input contains the name of the training function to be used. The function 

minmax is used to determine the range of the inputs to be used in creating 

the network. For our application, the created network has an input ranging 

from 1 to 20, followed by a layer of one logsig neuron, followed by a 

layer of several logsig neurons, followed by a layer with one purelin 

neuron. In back-propagation it is important to be able to calculate the 

derivatives of any transfer functions used. The trainlm network training
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function is used. Like the quasi-Newton methods, the Levenberg- 

Marquardt algorithm has the ability of approaching second-order training 

speed without having to compute the Hessian matrix. The performance 

function has the form of a sum of squares, which is typical in training 

feed-forward networks. The parameter p  is decreased after each 

successful step (reduction in performance function) and is increased only 

when a tentative step would increase the performance function. In this 

way, the performance function will always be reduced at each iteration of 

the algorithm.

Before training a feed-forward network, the weights and biases must be 

initialised. The layer's weights and biases are initialised according to the 

Nguyen-Widrow initialization algorithm. This algorithm chooses values 

in order to distribute the active region of each neuron in the layer 

approximately evenly across the layer's input space. It makes the training 

work faster since each area of the input space has neurons.

The next task is to prepare the training parameters. The training 

parameters for trainlm are epochs, show, goal, time, min_grad, max Ja il, 

mu, mu_dec, m ujnc, m ujnax, mem_reduc. The parameter mu is the 

initial value for the scalar p. p is decreased after each successful step
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(reduction in performance function) and is increased only when a tentative 

step would increase the performance function. In this way, the 

performance function will always be reduced at each iteration of the 

algorithm. This value is multiplied by mu_dec whenever the performance 

function is reduced by a step. It is multiplied by mu_inc whenever a step 

would increase the performance function. If mu becomes larger than 

mujmax, the algorithm is stopped. The parameters mu, mu_dec, and 

m u jn c  are set to 0.2, 0.7,10 respectively. The parameters epochs and goal 

are set to 10000 and 0.01 respectively. Default values for the rest of the 

training parameters: max J a il  is 5, mem_reduc is 1, min_grad is le-10, 

m ujnax  is le+10, show is 25, and time is Inf. The parameter m em reduc  

is used to control the amount of memory used by the algorithm. If there is 

enough memory available, then it is better to set mem_reduc to 1 and no 

memory reduction is achieved. If there is a large training set, and the 

memory is running out, then mem_reduc should be set to 2, and try again. 

If there is still running out of memory, continue to increase mem reduc.

Once the network weights/biases are initialized and the training 

parameters are set, the network is ready for training. The training process 

requires a set of examples of proper network behaviour -  network training 

inputs and training target outputs. During training the weights and biases
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of the network are iteratively adjusted to minimise the network 

performance function net.performFcn. The default performance function 

for feed-forward networks is mean square error mse - the average squared 

error between the network outputs and the target outputs. The training 

status is displayed for every show iteration of the algorithm. The training 

stops if the number of iterations exceeds epochs, or if  the performance 

function drops below goal, or if the training time is longer than time 

seconds.

After training the network can be simulated to see if it has learned to 

respond correctly. The simulation function takes the network input and the 

network object, and returns the network output. First the trained network 

model is simulated to obtain its response to the inputs in the training set. 

Then the inputs in the test set are presented, and the corresponding outputs 

are calculated with the trained network model.

The direct models with 1-5-1 structure, 1-6-1 structure and 1-7-1 structure 

have been developed. The results of these models are presented in 6.2.2,

6.2.3 and 6.2.4 respectively.
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6.2.2 Results of the direct model with 1-5-1 structure

The direct model with 1-5-1 structure has been developed. Fig.6.3 shows 

the progress of training the parameters. The training performance of this 

model shown in Fig.6.4 indicates that the performance goal is met at 346 

epochs. Tab.6.1 includes all the weights and biases of the network after 

training. Tab.6.2 shows the computed results of this direct model for 

training data. Aces represents the estimate of Ac, and the absolute error 

between them is eab. It has been found that maximum of eab in terms of 

absolute value is 0.245 m/s for the training data. Fig.6.5 shows the relative 

error (%FS) of the model for the training data. Relative error (%FS) is the 

percentage representation of eab divided by the full scale of Ac. Here the 

maximum of relative error (%FS) is found to be 0.289 %FS for the 

training data. Tab.6.3 shows the computed results of the model for the test 

data. It can be found that the maximum of eab is 1.002 m/s. Fig.6.6 shows 

the relative error (%FS) of the model for the test data, and the maximum 

is 1.184 %FS.
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Start.

Delete ai

>

1 figures.

r

Remove all variables from the workspace to free up system

Echo commands during execution for debugging.

Clear all input and output from the Command 

Window display to give a clean screen.

Display output in the same starting position on the screen.

Define the input (change in pressure) vector.

1

Split the input (change in pressure) vector into two 

vectors: the training input vector and the test input vector.

' ] ' ' --------------
Define the target (change in velocity) vector.

1
Split the target (change in velocity) vector into two 

vectors: the training target vector and the test target

I
A
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A

Set the output format of the numeric values 

displayed in the Command Window.

Create a three-layer feed-forward network with an input of 

change in pressure and an output of change in velocity.

Train the network with Levenberg-Marquardt algorithm.

Select the mean squared error of the network 

output (mse) as the performance function.

Initialize layer's weights and biases according to 

the Nguyen-Widrow initialization algorithm.

Display the neural network object involving 

architecture, subobject structures etc.

L
Prepare the Levenberg-Marquardt training parameters.

T
B
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B

,__________________ L _________________ l
Display all the training parameters.

I
Train the created neural network.

The training input vector is applied to the network repeatedly, 
updating the network each time, until the performance goal is met.

1
Display the number of epochs to finish the training 

and the final mean-squared error.

r
Display all the input weights, layer weights, input biases and layer biases.

Display training plot, i.e. actual performance against number of epochs.

1
Simulate the network to see if it has learned to respond correctly after 

training for both the training input vector and the test input vector.

1
Calculate the absolute error vectors and relative error vectors 

for both training target vector and test target vector.

Fig.6.2 The Flow chart of direct modelling with MLP
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Epoch 0/10000, MSE 2557.84/0.01, Gradient 2638.41/le-010,

Epoch 25/10000, MSE 0.0372422/0.01, Gradient 88.392/1 e-010,

Epoch 50/10000, MSE 0.0130995/0.01, Gradient 67.3048/le-010,

Epoch 75/10000, MSE 0.0117962/0.01, Gradient 9.55408/1 e-010,

Epoch 100/10000, MSE 0.0115326/0.01, Gradient 0.763015/le-010, 

Epoch 125/10000, MSE 0.011464/0.01, Gradient 4.15869/le-010,

Epoch 150/10000, MSE 0.0114439/0.01, Gradient 5.41684/1 e-010, 

Epoch 175/10000, MSE 0.0114223/0.01, Gradient 0.33925l/le-010, 

Epoch 200/10000, MSE 0.0113981/0.01, Gradient 2.05481/le-010, 

Epoch 225/10000, MSE 0.0113656/0.01, Gradient 0.0233301/le-010, 

Epoch 250/10000, MSE 0.0113211/0.01, Gradient 0.0290305/le-010, 

Epoch 275/10000, MSE 0.0112452/0.01, Gradient 0.0447535/1 e-010, 

Epoch 300/10000, MSE 0.0111002/0.01, Gradient 5.10928/le-010, 

Epoch 325/10000, MSE 0.0105573/0.01, Gradient 33.8699/le-010, 

Epoch 346/10000, MSE 0.00993843/0.01, Gradient 0.856465/1 e-010, 

Performance goal met.

Fig.6.3 Training parameters in progress for the direct model 

with 1-5-1 structure
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Fig.6.4 Training performance of the direct model with 1-5-1 

structure

Tab.6.1 The weights and biases of the direct model with 1-5-1 

structure
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T a b .6 .2  C o m p u te d  re su lts  o f  th e  d ire c t m o d e l w ith  1-5-1

s tru c tu re  fo r tra in in g  d a ta  (U n it: m /s)

Ac 4.35 9.39 17.53 21.59 30.14 33.79 38.41

ACes 4.349 9.393 17.523 21.600 30.062 34.029 38.165

âb 0.001 -0.003 0.007 -0.010 0.078 -0.239 0.245

Ac 46.69 55.24 59.02 66.74 71.92 80.33 84.68

Aces 46.806 55.189 59.032 66.741 71.918 80.331 84.679

âb -0.116 0.051 -0.012 0.001 0.002 -0.001 0.001

F ig .6 .5  R e la tiv e  e rro r  (% F S ) o f  th e  d irec t m o d e l w ith  1-5-1

s tru c tu re  fo r th e  tra in in g  d a ta
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T ab .6 .3  C o m p u ted  re su lts  o f  th e  d ire c t m o d e l w ith  1-5-1

s tru c tu re  fo r the  te s t d a ta  (U n it: m /s)

Ac 13.46 25.94 42.48 51.73 63.37 75.43

A/°*-u'es 13.667 26.013 42.457 51.088 62.680 76.432

âb -0.207 -0.073 0.023 0.642 0.690 -1.002

Change in velocity (m/s)

F ig .6 .6  R e la tiv e  e rro r  (% F S ) o f  th e  d irec t m o d e l w ith  1-5-1

s tru c tu re  fo r the  te s t d a ta
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The direct model with 1-6-1 structure has been built up. Fig.6.7 shows the 

progress of training the parameters. The training performance of this 

model shown in Fig.6.8 indicates that the performance goal is met at 543 

epochs. Tab.6.4 includes all the weights and biases of the network after 

training. Tab.6.5 shows the computed results of this direct model for 

training data. It has been found that maximum of eab is 0.250 m/s for the 

training data. Fig.6.9 shows the relative error (%FS) of the model for the 

training data. Here the maximum of relative error (%FS) is found to be

0.300 %FS for the training data. Tab.6.6 shows the computed results of 

the model for the test data. It can be found that the maximum of eab is 

1.339 m/s. Fig.6.10 shows the relative error (%FS) of the model for the 

test data, and the maximum is 1.580 %FS.

6.2.3 Results of the direct model with 1-6-1 structure
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Epoch 0/10000, MSE 2521.27/0.01, Gradient 1404.38/le-010,

Epoch 25/10000, MSE 0.0382448/0.01, Gradient 130.505/le-010, 

Epoch 50/10000, MSE 0.0367092/0.01, Gradient 12.8023/1 e-010, 

Epoch 75/10000, MSE 0.0366347/0.01, Gradient 7.26666/le-010, 

Epoch 100/10000, MSE 0.0365235/0.01, Gradient 4.72629/1 e-010, 

Epoch 125/10000, MSE 0.0363383/0.01, Gradient 3.15306/le-010, 

Epoch 150/10000, MSE 0.0360766/0.01, Gradient 1.90856/le-010, 

Epoch 175/10000, MSE 0.0356821/0.01, Gradient 0.90528/le-010, 

Epoch 200/10000, MSE 0.0352344/0.01, Gradient 0.249361/le-010, 

Epoch 225/10000, MSE 0.0348245/0.01, Gradient 3.97921/le-010, 

Epoch 250/10000, MSE 0.0345172/0.01, Gradient 0.473806/le-010, 

Epoch 275/10000, MSE 0.0343094/0.01, Gradient 0.0622357/1 e-010, 

Epoch 300/10000, MSE 0.03417/0.01, Gradient 1.45813/1 e-010, 

Epoch 325/10000, MSE 0.0340743/0.01, Gradient 0.404629/le-010, 

Epoch 350/10000, MSE 0.0340064/0.01, Gradient 2.18055/1 e-010, 

Epoch 375/10000, MSE 0.0339503/0.01, Gradient 1.00906/1 e-010, 

Epoch 400/10000, MSE 0.0338624/0.01, Gradient 1.08881/le-010, 

Epoch 425/10000, MSE 0.0337478/0.01, Gradient 0.88734/1 e-010, 

Epoch 450/10000, MSE 0.0333875/0.01, Gradient 2.65441/le-010, 

Epoch 475/10000, MSE 0.0325292/0.01, Gradient 5.73942/1 e-010, 

Epoch 500/10000, MSE 0.0288684/0.01, Gradient 3.53001/1 e-010, 

Epoch 525/10000, MSE 0.0170407/0.01, Gradient 37.6339/le-010, 

Epoch 543/10000, MSE 0.0098187/0.01, Gradient 34.8195/le-010, 

Performance goal met.

Fig.6.7 Training parameters in progress for the direct model 

with 1-6-1 structure
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Perfwmance is 0.0098187, Goal is 0.01

Fig.6.8 Training performance of the direct model with 1-6-1 

structure

Tab.6.4 The weights and biases of the direct model with 1-6-1 

structure

w e ig h t b ia s

w ' u 0.180738 b\ -2 .390946

W21,1 -74.331928 14.186691

W 22,1 -48.667492 b \ 39.904038

w \ i 36.976936 b \ -24.637058

W24,1 3.766732 b \ -0 .831438

W 2  5 , \ -43.353478 b2 5 3.411045

W 2 6,1 33.914261 b \ 8.731531

wJi,i -0.024650

W 3 \,2 -0.340450

w 31,3 0.080967 b\ -1 .820209

w 31,4 1.187302

W31,5 -0.245191

w \ , 6 0.039369
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T ab .6 .5  C o m p u ted  re su lts  o f  th e  d irec t m o d e l w ith  1-6-1

s tru c tu re  fo r tra in in g  d a ta  (U nit: m /s )

Ac 4.35 9.39 17.53 21.59 30.14 33.79 38.41

Aces 4.361 9.400 17.533 21 .600 30.080 34 .016 38.160

âb -0.011 -0.010 -0.003 -0.009 0.060 -0 .226 0.250

Ac 46.69 55.24 59.02 66.74 71.92 80.33 84.68

46.815 55.185 59.020 66.736 71.895 80.317 84.660

âb -0.125 0.055 0.000 0.004 0.025 0.013 0.020

Change in velocity (m/s)

F ig .6 .9  R e la tiv e  e rro r  (% F S ) o f  th e  d irec t m o d e l w ith  1-6-1

s tru c tu re  fo r th e  tra in in g  d a ta
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Tab.6.6 Computed results of the direct model with 1-6-1 

structure for the test data (Unit: m/s)

Ac 13.46 25.94 42.48 51.73 63.37 75.43

Ĉcs 13.737 26.111 42.463 51.094 62.688 76.769

âb -0.277 -0.171 0.017 0.636 0.682 -1.339

F ig .6 .1 0  R e la tiv e  e rro r (% F S ) o f  the  d irec t m o d e l w ith  1-6-1

s tru c tu re  fo r the  te s t d a ta
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The direct model with 1-7-1 structure has been investigated. Fig.6.11 

shows the progress of training the parameters. The training performance 

of this model shown in Fig.6.12 indicates that the performance goal is met 

at 480 epochs. Tab.6.7 includes all the weights and biases of the network 

after training. Tab.6.8 shows the computed results of this direct model for 

training data. It has been found that maximum of eab is 0.275 m/s for the 

training data. Fig.6.13 shows the relative error (%FS) of the model for the 

training data. Here the maximum of relative error (%FS) is found to be 

0.325 %FS for the training data. Tab.6.9 shows the computed results of 

the model for the test data. It can be found that the maximum of eab is 

3.021 m/s. Fig.6.14 shows the relative error (%FS) of the model for the 

test data, and the maximum is 3.568 %FS.

6.2.4 Results of the direct model with 1-7-1 structure
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Epoch 0/10000, MSE 2614.05/0.01, Gradient 1310.94/le-010,

Epoch 25/10000, MSE 0.0308831/0.01, Gradient 311.241/le-010, 

Epoch 50/10000, MSE 0.0124457/0.01, Gradient 61.6244/1 e-010, 

Epoch 75/10000, MSE 0.0117149/0.01, Gradient 12.505/le-010, 

Epoch 100/10000, MSE 0.0115475/0.01, Gradient 3.90154/le-010, 

Epoch 125/10000, MSE 0.0114818/0.01, Gradient 0.668878/le-010, 

Epoch 150/10000, MSE 0.0114283/0.01, Gradient 34.0716/le-010, 

Epoch 175/10000, MSE 0.0113511/0.01, Gradient 8.52512/le-010, 

Epoch 200/10000, MSE 0.0113123/0.01, Gradient 2.58929/le-010, 

Epoch 225/10000, MSE 0.0112772/0.01, Gradient 0.792305/1 e-010, 

Epoch 250/10000, MSE 0.0112377/0.01, Gradient 0.244979/1 e-010, 

Epoch 275/10000, MSE 0.0111921/0.01, Gradient 11.3883/le-010, 

Epoch 300/10000, MSE 0.0111294/0.01, Gradient 0.226981/le-010, 

Epoch 325/10000, MSE 0.0110484/0.01, Gradient 0.743574/le-010, 

Epoch 350/10000, MSE 0.0109652/0.01, Gradient 1.0357/1 e-010, 

Epoch 375/10000, MSE 0.0108778/0.01, Gradient 0.732485/1 e-010, 

Epoch 400/10000, MSE 0.0107554/0.01, Gradient 0.272747/1 e-010, 

Epoch 425/10000, MSE 0.0105909/0.01, Gradient 0.0721624/le-010, 

Epoch 450/10000, MSE 0.0103638/0.01, Gradient 0.0407599/le-010, 

Epoch 475/10000, MSE 0.0100988/0.01, Gradient 1.12678/1 e-010, 

Epoch 480/10000, MSE 0.00999812/0.01, Gradient 0.352731/le-010, 

Performance goal met.

Fig.6.11 Training parameters in progress for the direct model 

with 1-7-1 structure
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Fig.6.12 Training performance o f the direct model with 1-7-1 

structure

Tab.6.7 The weights and biases of the direct model with 1-7-1 

structure

w eight bias

W*l,l 0.277697 -2.703531

w2i,i 40 .032027 -38.604620

w\ l 37.761369 b \ -36.508715

W2 3,1 -60.705550 b \ 47.648306

W 41 29.318886 b2 4 -23.714106

W25,l -3.576355 b2s 1.988984

W26,l -11.913638 b \ 0.921733

W27,| 57.793011 b2i -2 .177788

wJi,i 4.270336

W31,2 25.670692

w\,3 14.619917 b\ 21.547230

w \,4 25.482557

W31,5 -66.800695

W31,6 -29.358053

W31,7 42.148111
\
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Tab.6.8 Results of the direct model with 1-7-1 structure for

training data (Unit: m/s)

Ac 4.35 9.39 17.53 21.59 30.14 33.79 38.41

4.355 9.400 17.494 21.665 29.962 34.065 38.254

âb -0.005 -0.010 0.036 -0.075 0.178 -0.275 0.156

Ac 46.69 55.24 59.02 66.74 71.92 80.33 84.68

Aces 46.720 55.236 59.020 66.742 71.915 80.333 84.676

âb -0.030 0.004 0.000 -0.002 0.005 -0.003 0.004

F ig .6 .1 3  R e la tiv e  e rro r  (% F S ) o f  th e  d ire c t m o d e l w ith  1-7-1

s tru c tu re  fo r th e  tra in in g  d a ta
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T ab .6 .9  C o m p u te d  re su lts  o f  th e  d irec t m o d e l w ith  1-7-1

stru c tu re  fo r the  te s t d a ta  (U n it: m /s)

Ac 13.46 25.94 42.48 51.73 63.37 75.43

Ĉes 13.474 25.850 42.513 50.818 60.349 76.084

âb -0.014 0.090 -0.033 0.912 3.021 -0 .654

F ig .6 .1 4  R e la tiv e  e rro r (% F S ) o f  the  d irec t m o d e l w ith  1-7-1

stru c tu re  fo r the  te s t d a ta
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6.3 Implementation of Inverse Modelling with MLP for 

Non-Intrusive Pressure Monitoring System

For the process of inverse modelling the input is the change in velocity, 

and the output is the change in pressure. The flow chart of inverse 

modelling with MLP is similar to that of direct modelling shown in 

Fig.6.2. The inverse models with 1-5-1 structure, 1-6-1 structure and 1-7-1 

structure have been developed.

6.3.1 Results of the inverse model with 1-5-1 structure

Fig.6.15 shows the progress of training the parameters for the inverse 

model with 1-5-1 structure. The training performance of this model shown 

in Fig.6.16 indicates that the performance goal is met at 16 epochs. 

Tab.6.10 includes all the weights and biases of the network after training. 

Tab.6.11 shows the computed results of this direct model for training data. 

It has been found that maximum of eab is 0.053 MPa for the training data. 

Fig.6.17 shows the relative error (%FS) of the model for the training data. 

Here the maximum of relative error (%FS) is found to be 0.263 %FS for 

the training data. Tab.6.12 shows the computed results of the model for 

the test data. It can be found that the maximum of eab is 0.210 MPa.
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Fig.6.18 shows the relative error (%FS) of the model for the test data, and 

the maximum is 1.050 %FS.

Epoch 0/15000, MSE 136.531/0.001, Gradient 2502.75/le-010, 

Epoch 1/15000, MSE 4.4104/0.001, Gradient 1262.16/le-010,

Epoch 2/15000, MSE 0.72034/0.001, Gradient 1140.12/le-010, 

Epoch 3/15000, MSE 0.163134/0.001, Gradient 396.041/le-010, 

Epoch 4/15000, MSE 0.0187936/0.001, Gradient 90.3041/1 e-010, 

Epoch 5/15000, MSE 0.0128815/0.001, Gradient 27.657/le-010, 

Epoch 6/15000, MSE 0.0104405/0.001, Gradient 9.74583/le-010, 

Epoch 7/15000, MSE 0.00896942/0.001, Gradient 9.37776/1 e-010, 

Epoch 8/15000, MSE 0.00756937/0.001, Gradient 9.30889/le-010, 

Epoch 9/15000, MSE 0.00619825/0.001, Gradient 15.1661/1 e-010, 

Epoch 10/15000, MSE 0.00489473/0.001, Gradient 36.893l/le-010, 

Epoch 11/15000, MSE 0.0048362/0.001, Gradient 107.725/1 e-010, 

Epoch 12/15000, MSE 0.00216117/0.001, Gradient 33.2207/le-010, 

Epoch 13/15000, MSE 0.00172433/0.001, Gradient 33.8842/le-010, 

Epoch 14/15000, MSE 0.00136201/0.001, Gradient 39.4651/le-010, 

Epoch 15/15000, MSE 0.00104703/0.001, Gradient 20.3513/le-010, 

Epoch 16/15000, MSE 0.00091235/0.001, Gradient 5.49087/1 e-010, 

Performance goal met.

Fig.6.15 Training parameters in progress for the inverse 

model with 1-5-1 structure
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Fig.6.16 Training performance of the inverse model with 1-5- 

1 structure

Tab.6.10 The weights and biases of the inverse model with 1- 

5-1 structure

weight bias

w \ , i 0.046228 b\ -1.629570

w 2 u 27.190229 -25.258665

w 22 , i 23.500228 b \ -17.849879

W 23 ,l -26.208880 b \ 15.829413

W 2 4,1 -24.545468 b \ 10.884921

V ^ s . l 20.893992 b \ -5.331058

W J 1,1 9.535677

w \ , 2 4.939193

W 3 1,3 -2.924478 b\ 6.271448

w \ , 4 -3.528396

w \ , 5 5.540470
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Tab.6.11 Results of the inverse model with 1-5-1 structure for 

training data (Unit: MPa)

Ap 1.00 2.00 4.00 5.00 7.00 8.00 9.00

4Pes 1.021 1.959 4.053 4.960 7.007 7.999 8.997

âb -0.021 0.041 -0.053 0.040 -0.007 0.001 0.003

Ap 11.00 13.00 14.00 16.00 17.00 19.00 20.00

Apes 11.001 12.991 14.015 15.969 17.040 18.948 20.025

âb -0.001 0.009 -0.015 0.031 -0.040 0.052 -0.025

Fig.6.17 Relative error (%FS) of the inverse model with 1-5-1 

structure for the training data

143



R
el

at
iv

e 
er

ro
r 

(%
FS

T a b .6 .1 2  C o m p u ted  re su lts  o f  th e  in v e rse  m o d e l w ith  1-5-1

s tru c tu re  fo r te s t d a ta  (U n it: M P a)

bp 3.00 6.00 10.00 12.00 15.00 18.00

4Pcs 2.991 5.892 9.913 12.159 15.185 17.790

âb 0.009 0.108 0.087 -0.159 -0.185 0.210

Fig.6.18 Relative error (%FS) of the inverse model with 1-5-1 

structure for the test data
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The inverse model with 1-6-1 structure has been built up. Fig.6.19 shows 

the progress of training the parameters for the inverse model with 1-6-1 

structure. The training performance of this model shown in Fig.6.20 

indicates that the performance goal is met at 17 epochs. Tab.6.13 includes 

all the weights and biases of the network after training. Tab.6.14 shows 

the computed results of this direct model for training data. It has been 

found that maximum of eab is 0.080 MPa for the training data. Fig.6.21 

shows the relative error (%FS) of the model for the training data. Here the 

maximum of relative error (%FS) is found to be 0.401 %FS for the 

training data. Tab.6.15 shows the computed results of the model for the 

test data. It can be found that the maximum of eab is 0.476 MPa. Fig.6.22 

shows the relative error (%FS) of the model for the test data, and the 

maximum is 2.377 %FS.

6.3.2 Results of the inverse model with 1-6-1 structure
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Epoch 0/15000, MSE 128.001/0.001, Gradient 741.926/le-010,

Epoch 1/15000, MSE 9.35907/0.001, Gradient 799.382/le-010, 

Epoch 2/15000, MSE 6.68133/0.001, Gradient 547.594/le-010, 

Epoch 3/15000, MSE 4.15664/0.001, Gradient 72.2077/1 e-010, 

Epoch 4/15000, MSE 0.91718/0.001, Gradient 689.245/1 e-010, 

Epoch 5/15000, MSE 0.06843/0.001, Gradient 189.121/le-010, 

Epoch 6/15000, MSE 0.0273029/0.001, Gradient 252.466/1 e-010, 

Epoch 7/15000, MSE 0.00707669/0.001, Gradient 65.2525/1 e-010, 

Epoch 8/15000, MSE 0.00641089/0.001, Gradient 42.5563/le-010, 

Epoch 9/15000, MSE 0.00448833/0.001, Gradient 58.0977/le-010, 

Epoch 10/15000, MSE 0.00323727/0.001, Gradient 19.9735/1 e-010, 

Epoch 11/15000, MSE 0.00272372/0.001, Gradient 9.53795/le-010, 

Epoch 12/15000, MSE 0.0017255/0.001, Gradient 11.3896/1 e-010, 

Epoch 13/15000, MSE 0.00142292/0.001, Gradient 16.0647/1 e-010, 

Epoch 14/15000, MSE 0.00122666/0.001, Gradient 15.9631/le-010, 

Epoch 15/15000, MSE 0.00109284/0.001, Gradient 14.1129/1 e-010, 

Epoch 16/15000, MSE 0.00100949/0.001, Gradient 11.8906/le-010, 

Epoch 17/15000, MSE 0.000964603/0.001, Gradient 9.95356/le-010, 

Performance goal met.

Fig.6.19 Training parameters in progress for the inverse 

model with 1-6-1 structure
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Fig. 6.20 Training performance o f the inverse model with 1-6- 

1 structure

Tab.6.13 The weights and bias of the inverse model with 1-6- 

1 structure

w eight bias

w ‘i.1 0 .041359 b \ -3 .293526

w2.,i -42.978477 ~ b V ~ 21.439761

W 22 ,l -32.593523 b \ 27.892932

W 23,l 36.887214 b \ -13.326908

> 4̂,1 34.318336 b \ -9 .234716

W25,l -28.923911 b \ 4.535635

W 26 ,l 31.326405 b \ -1.137321

wJi,i -3 .119306

W 3 1,2 -5 .561806

W 3 1,3 2.562443 b \ 6.463833

W 3 1,4 2.888913

w\,5 -4.593667

w\,6 13.932302
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Tab.6.14 Computed results of the inverse model with 1-6-1 

structure for training data (Unit: MPa)

bp 1.00 2.00. 4.00 5.00 7.00 8.00 9.00

APes 0.998 2.036 3.983 5.002 7.065 7 .920 9.032

âb 0.002 -0.036 0.017 -0.002 -0.065 0 .080 -0.032

bp 11.00 13.00 14.00 16.00 17.00 19.00 20 .00

bpe S 10.990 12.999 13.996 15.997 16.999 18.991 19.995

âb 0.010 0.001 0.004 0.003 0.001 0.009 0.005

Fig.6.21 Relative error (%FS) of the inverse model with 1-6-1 

structure for the training data
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Tab.6.15 Results of the inverse model with 1-6-1 structure for 

test data (Unit: MPa)

A p 3.00 6.00 10.00 12.00 15.00 18.00

¿ P c  s 2.979 6.071 10.024 12.111 15.094 17.525

âb 0.021 -0.071 -0.024 -0.111 -0.094 0.476

Fig.6.22 Relative error (%FS) of the inverse model with 1-6-1 

structure for the test data

149



The inverse model with 1-7-1 structure has been studied. Fig.6.23 shows 

the progress of training the parameters for the inverse model with 1-7-1 

structure. The training performance of this model shown in Fig.6.24 

indicates that the performance goal is met at 10 epochs. Tab.6.16 includes 

all the weights and biases of the network after training. Tab.6.17 shows 

the computed results of this direct model for training data. It has been 

found that maximum of eab is 0.032 MPa for the training data. Fig.6.25 

shows the relative error (%FS) of the model for the training data. Here the 

maximum of relative error (%FS) is found to be 0.158 %FS for the 

training data. Tab.6.18 shows the computed results of the model for the 

test data. It can be found that the maximum of eab is 0.683 MPa. Fig.6.26 

shows the relative error (%FS) of the model for the test data, and the 

maximum is 3.413 %FS.

6.3.3 Results of the inverse model with 1-7-1 structure
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Epoch 0/15000, MSE 149.143/0.001, Gradient 815.956/le-010, 

Epoch 1/15000, MSE 4.26445/0.001, Gradient 1156.29/le-010, 

Epoch 2/15000, MSE 1.65658/0.001, Gradient 801.397/le-010, 

Epoch 3/15000, MSE 0.198967/0.001, Gradient 113.6/le-010,

Epoch 4/15000, MSE 0.151013/0.001, Gradient 308.279/le-010, 

Epoch 5/15000, MSE 0.0417167/0.001, Gradient 179.813/le-010, 

Epoch 6/15000, MSE 0.0175274/0.001, Gradient 78.1802/le-010, 

Epoch 7/15000, MSE 0.00979112/0.001, Gradient 32.8029/1 e-010, 

Epoch 8/15000, MSE 0.00295556/0.001, Gradient 19.3935/le-010, 

Epoch 9/15000, MSE 0.00108147/0.001, Gradient 4.8285/le-010, 

Epoch 10/15000, MSE 0.000182009/0.001, Gradient 0.91971/le-010, 

Performance goal met.

Fig.6.23 Training parameters in progress for the inverse 

model with 1-7-1 structure
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P e rfo rm a n c e  is  0 .0 0 0 1 8 2 0 0 9 , G oal is  0 .001

Fig.6.24 Training performance of the inverse model with 1-7- 

1 structure

Tab.6.16 The weights and biases of the inverse model with 1- 

7-1 structure

w eigh t b ias

w 'i.i 0.086232 b\ -4 .283995

w 2 i , i 39.606115 -38.370283

W2 2,1 37.448922 b \ -32 .799357

W2?,] -37.712155 b \ 26.591823

W24,1 39.067484 b24 -19 .167246

W2 5,1 -39.506962 b2 5 11.746101

W 26 ,l -37.721908 b \ 5.745493

W27,l 37.756895 b \ -0 .573708

w \ l 5.747562

^1,2 2.250790

^ 1 ,3 -2 .930996 b31 3.770094

W31,4 2.118515

w \ , 5 -2 .481334

W31,6 -2 .752829

W 3 1,7 9.951923
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T a b .6 .1 7  R e su lts  o f  th e  in v e rse  m o d e l w ith  1-7-1 s tru c tu re  fo r

training data (Unit: MPa)

4P 1.00 2.00. 4.00 5.00 7.00 8 .00 9.00

Apes 1.019 1.968 4.029 4.983 7.002 7.999 8.999

âb -0.019 0.032 -0.029 0.017 -0.002 0.001 0.001

Ap 11.00 13.00 14.00 16.00 17.00 19.00 20.00

APes 11.004 12.999 13.998 16.001 16.999 19.000 19.997

âb -0.004 0.001 0.002 -0.001 0.001 0.000 0.003

Fig.6.25 Relative error (%FS) of the inverse model with 1-7-1 

structure for the training data
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Tab.6.18 Results of the inverse model with 1-7-1 structure for 

test data (Unit: MPa)

bp 3.00 6.00 10.00 12.00 15.00 18.00

¿Pcs 2.958 5.859 10.519 12.683 15.600 17.858

âb 0.042 0.141 -0.519 -0.683 -0 .600 0.142

Fig.6.26 Relative error (%FS) of the inverse model with 1-7-1 

structure for the test data
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6.4 Discussion on Results of Modelling with MLP

In Section 6.2.2, the study of direct model with 1-5-1 structure has shown 

that the maximum relative error (%FS) of this model remains within 

1.2%FS. In Section 6.2.3, the direct model with 1-6-1 structure is able to 

provide a maximum relative error (%FS) of 1.6%FS. The maximum 

relative error (%FS) of the direct model with 1-7-1 structure in Section

6.2.4 is 3.6%FS. It can be concluded that the maximum relative error 

(%FS) of the model with either 1-5-1 structure or 1-6-1 structure remains 

within 2%FS, while the 1-7-1 structure can only provide a maximum of 

4%FS. Therefore, the first two models are acceptable for use to estimate 

the change in velocity from the change in pressure. Priority is given to the 

model with 1-5-1 structure for its less complexity of computation.

The inverse model with 1-5-1 structure in Section 6.3.1 can provide the 

maximum relative error (%FS) of 1.1 %FS, while the models with 1-6-1 

structure (in 6.3.2) and 1-7-1 structure (in 6.3.3) can only obtain those of 

2.4%FS and 3.4%FS respectively. It is clear that the maximum relative 

error (%FS) of either 1-6-1 structure or 1-7-1 structure remains beyond
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2%FS. The inverse model with 1-5-1 structure is preferred to calculate the 

change in pressure from the measurement of change in velocity.

6.5 Comparison between two modelling approaches

In Chapter 4, the principle of modelling the newly developed non- 

intrusive pressure measuring system is described using the functional-link 

neural network. The direct model and the inverse model of the system 

have been constructed. The results have shown that the maximum error 

(%FS) of estimated change in acoustic velocity against the expected 

variation of velocity is 1.12 %FS for the direct model. The maximum 

error (%FS) of estimated change in pressure against the expected variation 

of pressure is 0.98%FS for the inverse model.

In Chapter 6, the MLP is used with the L-M back-propagation algorithm 

to build the direct model and inverse model of the non-intrusive pressure 

monitoring system. The results have shown that the maximum relative 

error (%FS) of the direct model with either 1-5-1 structure or 1-6-1 

structure remains within 2 %FS, while the 1-7-1 structure can only 

provide a maximum of 4 %FS. Therefore, the first two models are 

acceptable for use to estimate the change in velocity from the change in
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pressure. Priority is given to the model with 1-5-1 structure for its less 

complexity of computation. The inverse model with 1-5-1 structure can 

provide the maximum relative error (%FS) of 1.1 %FS, while the inverse 

models with 1-6-1 structure and 1-7-1 structure can only obtain those of

2.4 %FS and 3.4 %FS respectively. The maximum relative error (%FS) of 

either 1-6-1 structure or 1-7-1 structure remains beyond 2 %FS. The 

inverse model with 1-5-1 structure is preferred to calculate the change in 

pressure from the measurement of change in velocity.

It can be concluded that the two modelling approach based on FLNN and 

MLP have the ability to establish the direct and inverse models for the 

non-intrusive pressure monitoring system. For both methods the 

maximum relative error (%FS) achieved for either the direct model or the 

inverse model is well within 2 %FS. However, compared to the MLP, the 

FLNN provides a reduced cost of computational complexity.

6.6 Summary

The architecture of the network is given, which is used with the L-M 

back-propagation algorithm to build the direct model and inverse model 

for the non-intrusive pressure monitoring system.
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The L-M algorithm provides a nice compromise between the speed of 

Newton’s method and the guaranteed convergence of steepest descent.

Implementation of direct modelling with MLP for non-intrusive pressure 

monitoring system is described. The maximum relative error (%FS) of the 

direct model with 1-7-1 structure is 3.6 %FS. The maximum relative error 

(%FS) of the model with either 1-5-1 structure or 1-6-1 structure remains 

within 2 %FS. Priority is given to the model with 1-5-1 structure for its 

less complexity of computation.

Implementation of inverse modelling with MLP for the non-intrusive 

monitoring system is stated. It is found that the maximum relative error 

(%FS) of either 1-6-1 structure or 1-7-1 structure remains beyond 2 %FS. 

The inverse model with 1-5-1 structure can provide the maximum relative 

error (%FS) of 1.1 %FS. The inverse model with 1-5-1 structure is 

preferred to calculate the change in pressure from the measurement of 

change in velocity.

Two modelling approach based on FLNN and MLP have the ability to 

establish the direct and inverse models for the non-intrusive pressure
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monitoring system. For both methods the maximum relative error (%FS) 

achieved for either the direct model or the inverse model is well within 2 

%FS. However, compared to the MLP, the FLNN provides a reduced cost 

of computational complexity.
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7 Conclusions and Future Work

7.1 Conclusions

Condition monitoring of engineering processes or equipment has become 

of paramount importance as there is a growing need for improved 

performance, reliability, safety and more efficient maintenance. Condition 

monitoring in railway industry as a whole covers a very wide field. To 

restrict the field we have confined ourselves to the non-intrusive 

monitoring of hydraulic systems like diesel generators and Electro- 

hydraulic point machines. This thesis is mainly concerned with the 

investigation of the non-intrusive method based on ultrasonic concepts 

and neural networks for rapid condition monitoring and/or fault diagnosis 

of the hydraulic systems.

A comparison between diagnosing hydraulic systems and electric systems 

is made. Hydraulic systems are being used in all types of machinery and 

can be seen in all industries. However, unless some external mechanical 

failure has occurred, or unless there is some fairly obvious noise or

160



temperature, the location of faults in hydraulic systems can be difficult. 

With electrics one can check the volts by using test probes— sometimes 

current checks are necessary too but these again are comparatively easily 

done with inductive devices. With hydraulics the system is sealed and 

silent without visual indication of what is occurring inside. The key to 

fault finding in hydraulic systems is the location of pressure.

The development of pressure measurement instruments is reviewed. 

Conventional hydraulic pressure instruments are basically composed of 

pressure-sensing elements, conversion elements and display elements. The 

common point is that all these instruments are based on the principle of 

intrusive measurement, in which the pressure-sensing elements have to 

come in contact with the hydraulic media. In case of trouble-shooting 

hydraulic systems, pressure readings are often required to be taken at 

several temporary locations. Since the hydraulic system is fully sealed, 

these instruments can not be practically utilised for this purpose unless 

they are built-in during the production stage of the system. Instead, the 

indirect pressure measurement systems can be very helpful for rapid 

diagnosis of hydraulic systems because of their non-intrusiveness, easy 

installation, cost effectiveness and time-saving. The existing external 

pressure measurement is actually an extension of the traditional measuring
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instruments from the pressure sensing element point of view, that is, the 

expansion of tubing served as the role of converting pressure into a 

displacement. Its inherent disadvantage lies in the fact that the hydraulic 

pipeline is not a good pressure sensing element.

A combined measuring scheme for non-intrusive pressure measurement is 

studied. Taking the acoustic characteristics of oil into consideration, a 

novel method for the non-intrusive measurement of pressure has been 

investigated. However, without an appropriate measuring scheme 

involved, the new method can not be applied to make meaningful 

measurements for condition monitoring. To get rid of the thickness 

influence of the pipes, a special measuring scheme, the combination of 

pulse echo and transmission is presented. The other advantage is that the 

overall time delay can be effectively removed.

Evaluating the performance of such a new non-intrusive monitoring 

system is our main objective. It includes the direct modelling process and 

the inverse modelling process.

Its direct model and the inverse model are constructed based on a 

functional-link neural network. The results have shown the effectiveness
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of the proposed method with a low cost of computational complexity. The 

maximum error (%FS) of estimated change in acoustic velocity against 

the expected variation of velocity is 1.12%FS. The maximum error (%FS) 

o f estimated change in pressure against the expected variation of pressure 

is 0.98%FS. The inverse model can be easily implemented in a 

microcontroller to accurately display the measurand digitally.

The architecture of the MLP network is also given, which is used with the 

L-M back-propagation algorithm to build the direct model and inverse 

model for the non-intrusive pressure monitoring system. The L-M 

algorithm provides a nice compromise between the speed of Newton’s 

method and the guaranteed convergence of steepest descent.

Implementation of direct modelling with MLP for non-intrusive pressure 

monitoring system is described. The study has shown that the maximum 

relative error (%FS) of the direct model with 1-5-1 structure model 

remains within 1.2%FS. The direct model with 1-6-1 structure is able to 

provide a maximum relative error (%FS) of 1.6%FS. The maximum 

relative error (%FS) of the direct model with 1-7-1 structure is 3.6%FS. It 

can be concluded that the maximum relative error (%FS) of the model 

with either 1-5-1 structure or 1-6-1 structure remains within 2%FS, while
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the 1-7-1 structure can only provide a maximum of nearly 4%FS. 

Therefore, the first two direct models are acceptable for use to estimate 

the change in velocity from the change in pressure. Priority is given to the 

model with 1-5-1 structure for its less complexity of computation.

Implementation of inverse modelling with MLP for the non-intrusive 

monitoring system is stated.

The inverse model with 1-5-1 structure can provide the maximum relative 

error (%FS) of 1.1 %FS, while the models with 1-6-1 structure and 1-7-1 

structure can only obtain that of 2.4%FS and 3.4%FS respectively. It is 

clear that the maximum relative error (%FS) of either 1-6-1 structure or 1- 

7-1 structure remains beyond 2.0%FS. The inverse model with 1-5-1 

structure is preferred to calculate the change in pressure from the 

measurement of change in velocity.

Two modelling approach based on FLNN and MLP have the ability to 

establish the direct and inverse models for the non-intrusive pressure 

monitoring system. For both methods the maximum relative error (%FS) 

achieved for either the direct model or the inverse model is well within 

2.0%FS. However, compared to the MLP, the FLNN provides a reduced 

cost of computational complexity.
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7.2 Future Work

7.2.1 Further development of non-intrusive pressure monitoring 

system

The next move of this project is to develop the improved non-intrusive 

measurement of pressure in hydraulic systems using ultrasonic waves and 

apply it to engineering environments like the railway transportation for the 

quick diagnosis of the hydraulic devices.

An experimental apparatus will be developed to acquire the data set of 

velocity for various oils over a range of temperature and pressure. The 

ANN-based correction model will be established with the foundation laid 

by this thesis, which is associated with the simultaneous compensation of 

temperature and oil type on the acoustic measurements and the inverse 

modelling of the pressure measurement system.

The state of the art of hydraulic pressure measurement will be advanced 

by the development of such an improved non-intrusive measurement 

instrument.
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7.2.2 Vibrating-wire sensing technique

This thesis has been concerned mainly with the non-intrusive techniques 

for the condition monitoring of hydraulic systems. However, the intention 

of the author is not to claim that the methods if this thesis will be 

appropriate in all systems. In some hydraulic systems, conventional 

methods, such as using vibrating-wire sensors [94]-[l 00], could find an 

ideal application. Unfortunately, detailed investigation into this technique 

is beyond the scope of this thesis. Nevertheless, it could make an 

appropriate research area for further investigation.

The author has considered this technique and done some limited work in 

this area. This has successfully led to the publication of a paper in the 

Measurement Journal of the International Confederation of Measurement, 

published by Elsevier Publications [101].
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