
The Investigation and Analysis of Factors 

that Limit Penetration of Tubulars in 

Horizontal Oil Wells.
\

\

Ivor McCourt

A thesis submitted in partial fulfilment of the 

Requirements of Napier University 

for the degree of Doctor of Philosophy 

June, 2003

i



Abstract

To carry out remedial work in the oil producing wells through the production tubing string, a 

method using a continuous length of steel tubing or coiled tubing is used, that allows quick access 
to the well. Coiled tubing can also be used for drilling and extending existing wells and shows 
significant cost savings over traditional joined drill pipe methods. As the coiled tubing is being 
pushed into a horizontal well it lies initially straight on the bottom part of the casing of the well. 

As penetration increases, the friction force arising from the contact of the tubing with the inner 

casing wall increases and the tubing buckles with low amplitude and long pitch length. As 

penetration increases further, the frictional force increases and buckling amplitude increases and 
the pitch length decreases. The tubing thus moves further up and round the inside of the casing. 

This process continues until the tubing reaches the top part of the casing and it moves from 

sinusoidal buckling into helical buckling. At this point the force required to push the tubing 

further rises dramatically, with subsequent locking of the tubing in the casing with no further 
penetration possible.

The work to date on this important industrial problem can be divided into two areas: (i) the 

theoretical approach backed by laboratory experiments in which the end of the containing tube is 

obstructed, so as to allow buckling to develop and (ii) full scale tests that meet with the practical 

problems but do not provide as much information and difficulties of scale can also extend the time 
required to complete satisfactory tests. The laboratory tests have demonstrated the buckling 
phenomenon but have not re-created the conditions existing in a well.

In this work a novel experimental apparatus is developed using tubular members of very low 
flexural rigidity and high value of friction between the tubular and a transparent containing 

cylinder. This allows limits on penetration of the tubulars to be observed in under 5 m of 

insertion. The experimental apparatus enables the simultaneous measurement of the insertion 
forces and the inserted length. A suitable control and data acquisition system has also been 
designed. Experimental results indicate clearly all important parameters which limit the 
penetration of the tubulars in horizontal containing cylinders.

A theoretical model of penetration has been developed, which is in excellent agreement with the 
experimental data. The model can be used to determine the importance of various design 

parameters on the maximum penetration of tubulars in horizontal wells. Finally, the model 
suggests how to maximise the penetration of coiled tubing in horizontal oil wells.
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Nomenclature

Only major symbols are defined in this section; minor symbols are defined in the text as 

appropriate.

A Dimensionless constant

B Dimensionless constant

Cj, c2, c3 Constants of integration

D Casing diameter

d Tubing diameter

E Modulus of elasticity

FCRN Insertion force for Nth buckled shape

V- Friction coefficient

g Gravitational constant

I Second moment of area

K Dimensionless constant

k2 Buckling factor

ki Constant end fixing factor

L Length of tubing

Lbn Length of Nth buckled shape

Lcr Transition length to helical buckling

Ln Length of Nth buckled shape

Ltot Total length of buckled shapes

L i, L2 Length of buckled elements of tubing

ALh Change in length of tubular (helical buckling)

M Bending moment

m Mass

mL Mass per unit length

MrL
El

PL2
El

m

m

N/m2
N

Dimensionless

m/s2

YYl

mLg E
El

P_
~EI

Dimensionless

m

m

m

m

m

m

m

Nm

kg

k g /m

XV



N Number of buckled shape Dimensionless

P Axial force N

Pcrh Critical helical buckling force N

P1 crs Critical sinusoidal buckling force N

P hel Force along helix N

P l a t Force at right angles to applied force N

P n Total force (N buckled shapes) with reaction N

PNORMAL Force normal to inner surface of tube N

P n sin Total force (N buckled shapes) with friction only N

Ps Force during sinusoidal buckling N

Py Force at y N

P Pitch m

R Reaction force N

r Tubing to casing radial clearance m
t Tube wall thickness m
a Angle of helix Radians

w Weight of tubular per unit length N /m

P Density k g /m 3
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1. Introduction

1.1 Overview of Oil Deposits, Oil Well Drilling and Oil Production

Accumulations of oil and gas are found deep underground, typical depths for producing oil 

wells range from one thousand to four thousand metres. Locating oil and gas deposits 

involves the use of various seismic and geophysical methods followed by sophisticated 

computer analysis of the data to produce an accurate three-dimensional map detailing the 

extent and position of the reservoir. It is important to understand that the oil or gas in any oil 

field is in general not located in one large underground void. Oil and gas deposits are found 

distributed through porous rock formations and can vary dramatically in size, shape and 

vertical extent. The deposits in a particular field may come from a number of individual 

geological formations of different age and thickness and be separated from each other by 

considerable vertical distance, or from smaller pockets separated by large horizontal distances 

from the larger accumulations. A variety of geological formations in which oil deposits can 

be found are shown in figure 1.1.1.

_L _L
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Geological Formations 

and Oil Traps
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Figure 1.1.1 Geological formations showing oil traps.
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To access these deposits involves drilling through the overlying strata using a tubular drill 

pipe with a drill bit or drill motor mounted on the lower end of the pipe. Most current wells 

are drilled using a non-rotating drill pipe, with the drill motor and drill bit mounted on the 

bottom end of the drill pipe. In the past rotating drill pipes were used with the drill bit 

attached to the bottom end of the drill pipe. However, non-rotating drill pipes with bottom 

mounted drill motors and bits make for easier steering of the drill, to ensure that the oil well 

reaches the target area in the particular reservoir, and to best drain the reserves that have been 

located by use of the methods described above.

The well is drilled in stages, using a number of different diameters, stepping down in diameter 

as the depth of the well increases. The diameter of the first casing from the surface to 

approximately one hundred metres depth is approximately seven hundred and fifty millimeters 

and the diameter of the casing that extends from the surface to the maximum depth of the well 

is approximately two hundred millimeters. At each stage of drilling the hole that is produced 

is lined with a steel well casing, that is fixed permanently in place by pumping cement into the 

annular space between the casing and the borehole. Oil well showing well casing and drill 

string is shown in figure 1.1.2.
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Figure 1.1.2 Vertical oil well showing different casing diameters.
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After the casing has been installed in the well to its maximum depth/reach, packers are set 

which isolate the particular section or producing horizon where the oil or gas is located. The 

casing is perforated between these packers and production tubing is installed from the surface 

to pass through the top packer. This arrangement allows the well products to be conveyed 

from the producing formation through the perforations in the well casing to the surface via the 

production tubing string. It is possible to have several different production formations 

connected via separate production strings within the same well, figure 1.1.3 shows a typical 

arrangement.

| P..H.|

Dual Production String 
in Dual Packer

_i_______

Producing 
Horizon 1

Producing 
Horizon 2

|P««« Is.qna'lurej Cti

Casing
Pcrforaiions
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Perforations

lltmrel | Ou«ntily 1 lilit/Njmt. des.gr'dlian. maliriil. dim«nsiar\ «re Arl.il« No/Rel«ren.'
0«ugn«dby I {iieifcei by | Appre»*d by - dale 1 F<|« 
0£SiûnC0_8t |(HE(M0_6y | APPfi0Vt0_BY_04i( | flUNAME

I>4>' I Stale 
DATE 1 «AU

N A PIER UNIV ERSITY
r

W ELL PROD U CTIO N  STRING
, FIGURE 1.1.3 | \“£ Z  | mT.

i i i i i n 1 1 1 1 1 t

Figure 1.1.3 Well production strings from two different producing zones.

In addition to conveying the well products to the surface the production string can allow 

access to the producing well formation, if required, to carry out any work needed throughout 

the life of the well. All of the above tubulars including drill pipe, well casing, and production 

tubing are made up from sections of pipe ten to twenty metres in length that are screwed 

together as they are lowered into the well. This is a time consuming and costly operation.

To carry out remedial work in the well through the production tubing string, a method using a
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continuous length of steel tubing or coiled tubing is used, that allows quick access to the well. 

Coiled tubing can also be used for drilling and extending existing wells and shows significant 

cost savings over traditional joined drill pipe methods. A typical diameter for the well at the 

producing depth is 200 mm, and a typical diameter for the production tubular is 100 mm. 

Taking account of the depth range for oil wells given above, length to diameter (L/d) ratios for 

drill pipe, well casing, production tubing and coiled tubing are very high and can be described 

as slender columns. Using the sizes given above the length/diameter ratios range from 

10,000:1 to 40,000:1. In all of the above applications the tubulars are continuously, 

concentrically constrained along their length by being inside another tube or bore, this 

configuration ensures that tubulars buckle in a unique way.

As the tubulars have very high length/diameter ratios, first mode buckling cycle takes place at 

very low axial load. In a normal structural context, first mode buckling would be considered a 

failure and in virtually all cases where buckling of a column which is part of a structure 

occurs, the failure would be catastrophic. However because of the continuous concentric 

constraint, the tubulars buckle into a progressively higher number of cycles dependant on the 

axial load applied. The deflection of the tubular is initially a sinusoidal shape and eventually 

changes into a helical shape with increasing load. This phenomenon of continued controlled 

buckling after initial buckling has occurred is referred to as post-buckling behaviour (PBB). 

The loads seen in normal service must be controlled to ensure that the tubulars do not buckle 

to such an extent as to over-stress them. Understanding post-buckling behavior of tubulars is 

crucial to the oil exploration and production industry. This knowledge allows safe procedures 

to be developed for installation and use of tubulars in the field. As a consequence, this ensures 

that no potentially dangerous installations could be made, or damage to the tubulars will occur 

throughout the full range of loadings a well may see during its complete lifetime.

1.2 Vertical Oil Wells

In the case of vertical wells, installation of the casing or production tubing is relatively simple 

as gravity ensures that the tubular being lowered into the well hangs vertically down the well 

with little or no contact with the casing. This minimal contact ensures that very little friction 

force is generated that could oppose the motion of the tubular down the well. As a result the
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tubular will easily reach the bottom of the well, and can locate in the packer as shown in 

figure 1.2.1.
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Figure 1.2.1 Well packers with various end restraints.

After installation, changes in temperature and/or pressure can, depending on the physical end 

restraint of the tubing string, lead to change in length and/or induce forces that could cause 

buckling and yielding of the tube. Any phenomenon which can cause severe loading of any 

tubulars in a producing oil well, with potential for failure of the same has to be understood to 

enable field operators to install tubulars safely, using procedures and rules developed from the 

understanding of this phenomenon.

1.3 Highly Inclined/Horizontal Oil Wells

Most wells drilled currently fall into this category, particularly those from fixed offshore 

platforms where the position for the platform is chosen to ensure that the largest possible 

amount of oil and gas can be drained from the different accumulations of oil and gas that
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make up the oil field around the platform. Highly inclined/horizontal wells can reach out in a 

radius of several kilometres around an offshore platform. Horizontal sections in wells are also 

used to increase the area of the producing formation to the production tubing to increase flow 

rate, and are also used where the formation that contains the oil has high resistance to the flow 

of oil into the production tubing, again the area available for production is increased. A typical 

horizontal well is shown in figure 1.3.1.

Figure 1.3.1 Horizontal oil well cross section.

In the case of highly inclined and more so in horizontal wells, gravity ensures that significant 

contact with the casing takes place and, as a result, substantial friction forces are generated 

which resist the motion of the tubular as is moves into the well.

The case that is being investigated in this work is that of horizontal wells. What actually 

happens in horizontal wells as the tubing is being pushed in, is that the tubular initially, is 

straight and lies in the bottom part of the casing. As penetration increases, the friction force 

arising from the contact of the tubing with the inner casing wall increases and the tubing 

buckles with low amplitude and long pitch length. As the L/d ratio is very high the force to
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initiate the first buckling mode is very low. As penetration increases further, the frictional 

force increases, the buckling amplitude increases and pitch length decreases. That is, the 

tubing moves further up and round the inside of the casing. This process continues until the 

tubing reaches the top part of the casing and it moves from sinusoidal buckling into helical 

buckling. At this point the force required to push the tubing further rises dramatically, with 

subsequent locking of the tubing in the casing and no further penetration is possible. At the 

free end of the tubing the pitch is at a maximum and reduces progressively towards the 

insertion end as shown in figure 1.3.2.
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Figure 1.3.2 Buckling of constrained rod showing varying pitch.

Previous work has not simulated what happens in real wells, that is with the tube moving 

along the well inducing the forces to cause buckling. All of the studies with the exception of 

one full size system, but not full length, have used rods locked in tubes to simulate buckling.

In this study by careful choice of materials a test rig was built which modeled accurately over 

a range of casing and tubing diameter ratios (D/d), what happened in a real well, with helical 

buckling occurring within five metres.
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2. Review of Published Literature

2.1 Overview of Relevant Factors

2.1.1 Introduction

The research work in this field has been driven by practical problems that the industry has 

encountered as the search and exploration for oil and gas has evolved. In the early stages of 

oilfield practice and until fairly recently, the simple procedure was to position the drill rig 

over the oil deposit and drill the well vertically into the reservoir (Rabia, 1985). As a 

consequence of this practice the problem of buckling in vertical tubing strings was the first to 

be addressed.

However with offshore platforms this simple approach is no longer possible and it became 

necessary to access oil and gas deposits which were not directly beneath the platform to 

enable the development of these resources to be economic (Rabia, 1985). This resulted in 

highly inclined and horizontal wells becoming normal practice in virtually all oil fields today. 

The unique problems that were encountered were addressed and are still being addressed as 

they occur through the papers of the Society of Petroleum Engineers. The published work 

reflects the development of the industry from vertical to horizontal wells.

The published work is primarily analytic in nature. Most of this work neglects the weight of 

the tubular and also neglects friction effects between the tubular and the constraining casing 

(Lubinski et al, 1962) and (Cheatham & Pattillo, 1984). A smaller body of work is based on 

experimental data, in all cases the effects of friction are minimised by lubricating the inner 

surface of the constraining cylinder.

Full scale modelling of oil wells would be prohibitively expensive and only one study which 

involved an horizontal section of casing on the surface, six hundred metres long with coiled 

tubing inside has been reported (Tailby et al, 1993).

To date the scale model experimental studies relating to inclined and horizontal wells have 

not reproduced the actual conditions occurring in the wells. This has been due in large part by
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the use of metallic materials and locking the inner tubular against the ends of the transparent 

constraining casing (Hishada et al, 1996). In these scale studies the constraining casing was 

lubricated to minimise/eliminate friction effects. Loading of the inner rod causes it to buckle 

sinusoidally, which is followed by helical buckling as the load is increased (He & Killingstad, 

1993). This reflects to some extent what happens in real wells but it is not completely 

accurate, particularly in horizontal wells (Chen et al 1990).

In horizontal wells inner tubular weight and friction are parameters, which have a major 

influence on the way in which the tubular buckles (Chen et al 1990).

2.1.2 Overview of buckling

The focus of this work is to investigate and analyse the behaviour of coiled tubing in 

horizontal well sections, however it is important to give a broad overview of the use of 

tubulars used in vertical, inclined and horizontal wells.

All the investigation work carried out in the preparation of this document has been with rods 

and tubes with round cross sections. The behaviour of columns or struts when loaded axially 

depends on the length to diameter (L/d) ratio. Columns with low L/d ratios fail when the stress 

in the column generated by the axial load reaches the yield point for the material. Long 

slender columns or those with high L/d ratios fail/buckle with an axial load, that is only a 

small fraction of that necessary to cause failure by yielding of a low L/d ratio column of equal 

cross-section. If a long slender column could be constructed which was perfectly symmetrical, 

the material properties identical across its section and the axial load applied through the centre 

of the cross section, this theoretical column should be able to support the same load as a short 

column of equal cross section (Den Hartog, 1977). This however is a hypothetical case as 

such a system would be highly unstable such that even an infinitesimally small disturbance 

would lead to buckling. However in practice sections are not symmetrical, material properties 

vary and the load is invariably not applied through the centre of the cross section. All of these 

imperfections have the combined effect that when a real column is loaded axially it 

bends/buckles laterally at a fairly low load. If a column with both ends fixed or with pinned 

connections buckles with an applied axial load (Gere & Timoshenko, 1961), the load at which
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buckling occurs is referred to as the critical buckling load, Pcr and is defined by the 

equation 2.1.1.

_  k,7T2E I
°r -  L 2 (2 .1.1)

where

is a constant which defines the end fixing conditions for the column.

E is the elastic modulus Nf m2

is the second moment of area m 
L is the length of the column m

In the design of structures, columns are always sized to ensure that the service loads are much 

smaller than the critical buckling load as buckling is normally considered as a failure mode.

2.1.3 Sinusoidal and helical buckling

In the case of oil wells the tubulars have very high length/diameter ratios and first buckling 

mode takes place at a very low axial load. In a normal structural context, this buckling would 

be considered a failure, however the tubing is continuously, concentrically constrained along 

its length by being inside the well casing or bore (Mitchell, 1986c). After the critical buckling 

load is reached and first mode buckling occurs, the deflection is limited by the radial 

clearance between the tubing and the casing (Cheatham & Pattillo, 1984). This continuous 

concentric constraint allows loads much greater than the critical buckling load to be applied 

and results in the tubing buckling into a progressively higher number of cycles as the axial 

load increases (Kwon, 1986).

The deflection of the tubing is initially into a sinusoidal shape and eventually changes into a 

helical shape with increasing load (Chen et al, 1990). The loads seen in normal service must 

be controlled to ensure that the tubulars do not buckle to such an extent as to overstress them, 

but this progressive buckling is not considered failure as in a structural sense (Mitchell, 1980). 

Tubulars in oil wells are a special case of buckling due to the continuous, concentric 

constraint.. Understanding the behaviour of tubulars which are continuously, concentrically,
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constrained in vertical, inclined and horizontal sections of wells is crucial to the oil 

exploration and production industry to enable good safe practices to be developed for any 

well configuration encountered.

2.1.4 Buckling in vertical wells

In the case of vertical wells the tubing hangs vertically down the well with little or no contact 

with the casing (Lubinski et al, 1962), installation changes in temperature and/or pressure can, 

depending on the physical end restraint of the tubing string lead to change in length and/or 

induce forces that could cause buckling and yielding of the tube (Lubinski et al, 1962).

2.1.5 Buckling in inclined & horizontal wells

In the case of highly inclined and more so in horizontal wells, as installation of tubulars 

proceeds, gravity ensures that significant contact with the casing takes place (Hishada et al, 

1996). As a result, substantial frictions forces are generated which resist the motion of the 

tubular as is moves into the well. In the horizontal section as the tubing is being pushed, the 

tubular is initially straight and lies in the bottom part of the casing. As penetration increases, 

the friction force arising from the contact of the tubing with the inner casing wall increases 

and the tubing buckles with low amplitude and long pitch length (Chen et al, 1990). As 

penetration increases further, the frictional force increases, buckling amplitude increases and 

pitch length decreases, i.e. the tubing moves further up and round the inside of the casing (He 

& Killingstad, 1993). This process continues until the tubing reaches the top part of the 

casing and it moves from sinusoidal buckling into helical buckling. At this point the force 

required to push the tubing further rises dramatically, with subsequent lock up and no further 

penetration is possible (Bhalla, 1996). At the free end of the tubing the pitch is at a maximum 

and reduces progressively towards the insertion end.
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2.1.6 Limitations on penetration

With the onset of helical buckling the force required to push the tubing further into the well 

increases dramatically. In practical terms helical buckling limits the penetration into any oil 

well (Chen, et al, 1990).

2.2 Theoretical Review

The early papers on the subject concentrated on determining a value for the critical load for 

helical buckling. The earliest report on this problem appears in Love, (1927), where the value 

for the load is, when transposed to later terminology, equivalent to:

crh

At̂ E I

P
(2.2.1)

Lubinski et al, (1962) carried out notable work; it appears as a standard text, which is 

referenced by many subsequent authors who have looked at the buckling phenomenon in oil 

wells. Lubinski et al, (1962) examined the problems associated with production tubing in a 

vertical well, with the tubing sealed in a packer at the producing horizon. Changes in 

temperature and pressure inside and outside the tubular combined with the type of restraint 

applied by the packer could cause significant changes in the length of the tubular and/or 

generate loads that could overstress and yield the tubular. The main reason for undertaking 

this study was at the request of field personnel looking for guidance when installing 

production tubing as changes in length produced by buckling were critical as incorrect 

allowances in initial length or tension in the tubing could result in the tubing coming out of 

the packer or overstressing the tubing. This work resulted in the following formulae for the 

critical buckling force for helical buckling Pcrh.

crh
%7T2E I

(2 .2 .2)

which gives the relationship between critical axial force and pitch distance, where p  is the 

pitch between cycles.
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The value for the critical load in helical buckling is examined in more detail by Cheatham & 

Pattillo, (1984), where the discrepancy between the two values is explored. They derive both 

values of the numerical constant using an energy balance approach and then a virtual work

unconstrained, but when the coiled tube is constrained to a fixed radius, the value obtained 

is 8. They also conclude that the 8 value would apply to insertion, but the 4 value would 

apply to extraction. In all these analyses, the tube is considered to be vertical, a slender rod 

and reacted by a stop at the foot of the casing to produce only helical buckling.

Mitchell, (1980) examined the buckling behaviour of a weightless rod in the vertical position 

using an equilibrium analysis. The analysis first considered plane buckling before moving to 

helical buckling. Because of the complexity of the equations, only a numerical solution was 

attempted. The packer was considered to be significant to the end moments and to the 

analysis. Mitchell, (1986b,c) extended his analysis to the case of an actual string where the 

weight of the string is included and also to the study of a tapered string. Conditions for the 

neutral point were developed.

Kwon, (1986) used the beam column equations to examine the problem of a vertical pipe with 

weight. Using a semi-analytical approach, such as a series solution approximation rather than 

a numerical solution, the variation in pitch with length of the string was deduced.

Mitchell, (1986a), introduced friction effects for two specific cases in a vertical column. The 

analysis started with the fourth order differential equation for the rod, but included contact 

forces. After making some approximations, solutions were obtained.

Dawson & Paslay, (1984) investigated the forces necessary to initiate buckling in an inclined 

casing and their results are summarized by the following equation.

Chen et al, (1990), for the first time, addressed buckling of tubing and casing in frictionless, 

horizontal wells. They looked at the phenomenon of buckling initially being sinusoidal and

approach. Their conclusion is that the value 4 applies to the case when the helical buckling is

(2.2.3)
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transitioning to helical buckling with increasing load. The value for the force to initiate 

sinusoidal buckling, was taken from Dawson & Pasley, (1984), as:

which is related to the classical Lubinski equation. This paper presents experimental results, 

using an aluminium rod in a clear plastic tube lubricated by silicone oil, that confirm these

buckling to produce helical buckling.

He & Killingstad, (1993) specifically looked at problems associated with coiled tubing 

buckling in curved wells. They showed that well curvature substantially affects the force for 

helical buckling and as a consequence the maximum distance achieved in the well.

Hishida, et al (1996) used equations from earlier papers for sinusoidal and helical buckling. 

The rig used was able to view the buckling modes in a straight rod constrained inside an 

acrylic tube, one end of the rod pinned the other fixed, sliding. The forces required to produce 

the buckling were measured by a load cell system. Their analysis focused on the mode/force 

relationships, rather than force/pitch relationships. Although use of FEA is quoted to analyse 

the buckling, little detail is presented of the background theory and the procedure adopted. 

Friction forces were not considered in the analysis and the inside of the tube was fully 

lubricated to eliminate friction during the tests.

Qui, et al. (1998) examined buckling in a hole of constant curvature and the influence of prior 

deformations to the onset of helical buckling. Using the conservation of energy and virtual 

work approaches, they derive new equations for maximum axial forces to maintain stable 

sinusoidal configuration, taking into account the curvature of the hole and any prior curvature 

of the coiled tube.

(2.2.4)

while the helical initiation was expressed as :

(2.2.5)

figures, but does not extend the analysis to explain the increase of the force causing sinusoidal
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2.3 Field Testing

A Joint Industry Research project to investigate Coiled Tubing Buckling in a horizontal well, 

Tallby et al, (1993), was carried out in Norway using full size components as used by oil 

industry contactors. The length of the casing, which was laid out on the surface, was six 

hundred metres. This work looked at the differences in applied force and transmitted force at 

the tool tip for a variety of cases. Residual bend of the tubing affects the force transmission 

and should be minimized. Tip loads are amplified by the tubing and will cause premature lock 

up, all causes should be minimised, in particular well profiles should have slow changes in 

orientation.

As always with full scale models of this size and complexity, it is very expensive to mount the 

investigation and the resulting data is restricted to the test set-up with no ability to explore 

alternative parameters such as casing and rod sizes.

2.4 Summary

The majority of the papers written have been concerned with the onset of helical buckling in 

vertical columns. From the classic equations, the work has developed to add more of the 

factors that would have to be considered in an oil well with the consequent increase in the 

complexity of the analysis. Only a few of the published papers deal with behaviour of 

tubulars in horizontal wells.

It can be concluded from the review of published literature, that no work has examined the 

development of self-induced sinusoidal buckling of a rod in a horizontal well with friction, 

such that the axial force will increase to initiate helical buckling. As the theoretical analysis 

of this is very complex, it may be beneficial to explore simplified models to be able to extract 

the maximum information from the analyses.
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3 Aims of the Research

It is the aim of this study to investigate those factors which affect the penetration of tubulars 

into horizontal oil wells. Previous investigations have concentrated on the analysis of 

buckling, such as the nature of buckling, the buckled shape, the forces required and the 

parameters which affect buckling. As discussed above, the investigations have been generally 

carried out with the free end of the tubular member resting against an obstruction. Such an 

approach is unavoidable when modelling with standard materials, since the penetration 

lengths required to achieve locking with the free end unobstructed are considerable, and it is 

impractical to model them.

It is the primary purpose of this work to investigate this important problem when the free end 

of the tubular is unobstructed. Such an approach describes the actual conditions obtained in 

the field, and thus allows further insight to be gained. It is shown below that in order to 

decrease the lengths required to achieve full locking of the tubular the flexural rigidity of the 

tubular should be as low as possible and the friction between the tubular, and the well should 

be as high as possible. Several materials and shapes of the tubular have been investigated, 

and rubber formed into small diameter rods was finally chosen. In order to allow for visual 

observation of the behaviour of the rods, acrylic and glass cylinders were chosen to model the 

well. The locking can then be obtained with penetrations of under 5 m.

3.1



4. Experimental Apparatus

4.1 Overview

In this study the test apparatus was designed to reflect as accurately as possible what happens 

in a real well, with the test rig being not more than five metres in length. Hence, the main 

points addressed for the design of the test apparatus were: -

• Use of a rod material with a low elastic modulus required equipment for measuring the 

modulus.

• Use of a rod material with a high friction coefficient required equipment for measuring 

the friction coefficient in combination with the constraining cylinder.

• Transparent constraining cylinders used to allow viewing of buckling in real time.

• A feed mechanism to allow continuous accurate insertion and retraction of the rod at 

different feed rates.

• Handling arrangements for the rod to allow storage during and between tests.

• Continuous monitoring and recording of inserted length and force during insertion and 

retraction.

• Software to facilitate the storage of data in real time and permit display of raw data on 

Excel spread sheets for visualisation and analysis.

4.2 Apparatus and Instrumentation

4.2.1 Elastic modulus measurement

A simple load/extension test rig was built and is shown in figure 4.2.1. The test length for 

diameters of 3 mm, 4 mm and 5 mm was selected at one metre. This length was chosen as it 

was easy to measure the extensions generated by small masses, which were added 

incrementally until a suitable extension was obtained.
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Figure 4.2.1 Extension test rig 

4.2.2 Friction coefficient measurement

The friction coefficient between the elastomer material and the transparent glass constraining 

cylinder was obtained by use of an inclined plane test rig. The friction coefficient was also 

measured from the gradient of the graph of force versus distance for insertion and retraction.

4.2.3 Transparent constraining cylinder

To allow the buckling process to be observed as it takes place a transparent constraining 

cylinder must be used. The material used was glass as the initial use of acrylic tube cased 

problems due to the fact that a static electrical charge was developed during insertion of the 

test rod into the constraining cylinder. This caused in effect the friction to increase and 

buckling to occur in a shorter distance and also be non-repeatable; the use of glass eliminated 

these effects. A series of clamps was used to fix the range of cylinder diameters used in the 

tests to a base plate.
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4.2.4 Rod feed mechanism

An electric stepper motor was chosen to drive the test rod via a grooved wheel running 

against a smooth idler pulley spring loaded against it to provide a friction drive. The 

electrical inputs to the stepper motor and the diameter of the feed rollers were used via 

software manipulation to give linear speed and position of the test rod. The stepper motor 

was capable of generating a holding torque at stall up to the maximum rating of the motor. 

This arrangement allowed the rod to be driven into the constraining cylinder at different 

speeds, until a pre-selected distance or force level was reached. A series of feed rollers 

machined to take the various sizes of rods used during the tests were made as shown in figure 

4.2.2.
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Figure 4.2.2 Rod feed mechanism

4.2.5 Linear force measurement mechanism

The insertion force was monitored by measuring the reaction applied to the rod feed 

mechanism via a load cell attached to the assembly. As this force was quite low, in the order 

of 2 N, it was imperative that the support/bearing arrangement had very low or zero friction,
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to ensure that the forces measured and recorded, accurately reflected the forces being 

generated during insertion of the rod into the constraining cylinder.

To meet this requirement a decision was taken to use a pneumatic linear bearing arrangement 

to support the complete rod feed mechanism. This decision meant that a separate design and 

build exercise had to be undertaken to build this assembly from scratch as it was not possible 

to source this assembly from any manufacturer.

The basic construction is shown on figure 4.2.3 and also in photograph figure 4.2.4. It consists 

of a housing fitted with four horizontal pneumatic pads/bearings on which the aluminium 

plate mounting the rod feed mechanism floats and another four vertical pneumatic 

pads/bearings to locate the rod feed mechanism laterally. The aluminium plate and the rod 

feed mechanism float on the horizontal pads and also float between the vertical pads and is 

held from moving in the axial direction by the load cell.

Figure 4.2.3 Linear pneumatic bearing construction
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It is essential that the linear bearing assembly is level otherwise errors in the measured force 

level could be generated. The whole assembly is fixed to the end of the aluminium channel 

on which the transparent constraining cylinder is fixed, which is made absolutely level by 

means of jacking screws. After assembly the linear bearing arrangement was tested and it was 

found that the inherent friction in the system was less than 0.01 N.

Figure 4.2.4 Linear pneumatic bearing

The design, manufacture and testing of the pneumatic bearing assembly took considerable 

time and effort as high precision was required in all of these areas. However without a very 

low friction bearing assembly it would have been very difficult to proceed with the 

investigation, as the results obtained would not have been reliable.
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Photograph figure 4.2.5 shows the linear bearing complete with feed mechanism and load cell 

assembled on the test stand.
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Figure 4.2.5 Linear bearing, feed mechanism and load cell assembled.

A schematic showing the pneumatic circuit and components which make up the system 

supplying air to this bearing assembly is shown on figure 4.2.6.
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Figure 4.2.6 Linear bearing pneumatic circuit

4.2.6 Load cell

The unit chosen for the investigation was an electrical strain gauge type with a rating of 10 N. 

In the light of preliminary experimental work this rating was decreased to 2 N The load cell 

was a tension compression type, which allowed forces to be recorded during insertion of the 

rod into the constraining cylinder and withdrawal of the rod out of the constraining cylinder.

4.2.7 Rod storage device (rod under test)

The maximum length of rod to be inserted into the constraining cylinder is approximately 5 

metres. It is essential that the rod material is stored in such a way as to be easily supplied into 

and out of the feed mechanism as required. A storage reel 350 mm in diameter, as shown in 

figure 4.2.7, was manufactured to meet this requirement.
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Figure 4.2.7 Storage reel and drive arrangement

To ensure that the rod feeds on to the reel consistently a spiral groove was machined to locate 

the rod. Also to ensure that the rod remained located in the groove a small back tension was 

applied by means of a dead weight acting on a smaller diameter attached to the central 

spindle. The diameter of this tensioning pulley was made 50 mm to ensure the deadweight 

only moved a fraction of the distance moved by the elastomer rod into the restraining 

cylinder. This ensured that the storage reel did not have to be mounted 5 metres off the floor.
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Photograph figure 4.2.8 below also shows the storage reel and drive arrangements.

Figure 4.2.8 Storage reel arrangement 

4.2.8 Rod storage device (rod stored between tests)

Only one length of rod could be stored on the storage device for the rod under test. To ensure 

that the other diameter rods were not damaged or marked in any way during the time between
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tests they were stored on simple drums 500 mm in diameter. The rod was initially wound on 

to the drum and then tensioned with a dead weight.

4.2.9 Traction feed mechanism

As the back tension associated with the storage reel would have overloaded the load 

transducer, it was therefore necessary to provide a device between the storage reel and the 

feed mechanism to supply the rod with no tension into the feed mechanism. To this end 

another stepper motor, identical to the insertion stepper motor, with a grooved wheel running 

against a smooth idler pulley spring loaded against it to provide a friction drive was used, but 

in this case mounted directly to the base plate. This allowed the loads from the storage reel to 

be reacted by the additional feed mechanism and a loop of rod at zero tension to be formed 

and maintained between the feed mechanisms. Both stepper motors were driven at identical 

speeds to ensure that the zero tension loop was maintained throughout the duration of the test. 

This arrangement is also shown in figure 4.2.7.

The traction and feed drive arrangement are shown in a photograph, figure 4.2.9 below.

Figure 4.2.9 Traction and feed drive arrangement.
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4.2.10 Electronic control cabinet

The functions to be controlled and recorded are as follows: -

• Insertion velocity of rod

• Inserted distance of rod

• Reaction force generated by insertion of rod

• Ambient temperature

• Force level at which insertion is stopped

Control of all the electrical and data logging functions was via a control panel assembly 

which was designed and manufactured for this project. The stepper motors were driven by 

special purpose electronic cards designed for the stepper motors chosen; one master and one 

slave to ensure speed matching.

To ensure consistent results the stepper motors are under the control of software via a 

programmable logic controller (PLC) mounted in the panel. A user machine interface LCD 

screen allows the input of insertion velocity; and the total inserted length or force level to stop 

the stepper motor. The reaction force generated, position and speed are monitored 

continuously. All of these parameters are downloaded in real time via additional software to a 

laptop computer via a serial link to the PLC as shown in figure 4.2.10. This stored data can be 

displayed on an Excel spreadsheet and various tools within Excel were used for analysis. The 

data acquisition and control software was designed and developed specifically for this project, 

and integrated by use of a SCADA software package.
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Figure 4.2.10 Drive system & control schematic.

Calibration for all of the parameters listed above was carried out using equipment which had 

been calibrated by a certified test house against National Standards, and covered stop watch, 

distance scales, test loads and thermometer.
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5. Experimental Work

5.1 Preliminary Work

This section discusses the work carried out to determine the elastic modulus for the rod 

material and friction coefficient for the rod/glass tube materials chosen for the investigation.

5.1.1 Elastic modulus

In real oil wells the material used is alloy steel, which has a modulus of elasticity of 

approximately 210 GN/m2. This material, combined with the friction coefficient for lubricated 

steel on steel of approximately 0.1, results in an inserted length in the order of 2000 m before 

helical buckling and lock up occur.

A test rig of this length would be completely impractical. To investigate this phenomena 

under controlled conditions in a laboratory, the length for helical buckling and lock up to 

occur must be less than approximately ten metres.

Since the modulus of elasticity and the frictional coefficient between the rod and the 

restraining tube play a dominant role in the buckling phenomena being investigated, a rod 

with a low modulus and high friction coefficient had to be used to model the system as 

realistically as possible.

A number of materials were selected for test, which, in addition to suitable material properties 

were also commercially available in a range of diameters and at relatively low cost. The 

materials with low elastic moduli were tested in a simple manner using a transparent cylinder, 

introducing the test rod material by a simple feed mechanism and observing the distance 

achieved before helical buckling occurred. This approach enabled a relatively high number of 

materials to be tested in a relatively short space of time. It also showed very clearly in a 

qualitative way the material with the best elastic modulus/friction coefficient combination for 

the proposed tests.



Materials tested included several types of elastomers, various grades of nylon and spirally 

wound steel plastic coated curtain rod.

The material finally selected for use on the scale rig was an elastomer, which was 

commercially available as solid rod in a range of diameters from 2 mm to 8mm and at low 

cost. The elastic modulus of elastomers is, however, not linear over a wide range and also 

shows a variation from tension to compression. However, over a range where the extension is 

less that about three percent, the stress/strain curve is linear, and the modulus has the same 

value in tension and compression (M.R.P.A., 1974).

Initial simple quantitative tests revealed that helical buckling occurred with compressive loads 

well below the three percent figure given above, which allowed the confident use of an 

elastomer type material in this study.

The manufacturers of this material were not able or unwilling to give catalogue data for the 

elastic modulus or friction coefficient. As a consequence of this it was necessary to build test 

equipment to measure these parameters.

A simple load/extension test rig was built as previously shown in figure 4.2.1. The test length 

for diameters of 3 mm, 4 mm, 5 mm and 6mm was selected at one metre. This length was 

chosen as it was easy to measure the extensions generated by 10 gram masses, which, were 

added incrementally until a maximum extension of three percent was obtained. This test was 

repeated over a temperature range of 10 to 23 degrees centigrade. Equipment used for 

measurements during the tests had been calibrated by a certified test house against National 

Standards, and covered dial gauge, test loads and thermometer. Data from the extension 

versus load tests were recorded on an Excel spread sheet. These values were plotted on a 

graph and linear regression techniques, which are included in the Excel spreadsheet package, 

were used to determine the modulus of elasticity.
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5.1.2 Friction coefficient

The friction coefficient between the elastomer material and the transparent glass constraining 

cylinder was obtained by use of an inclined plane test rig.

The friction coefficient was measured by raising the glass tube containing a sample length of 

rubber until sliding was achieved. The coefficient was calculated from the tangent of the angle 

obtained during this test.

The friction coefficient resulting from the combination of the chosen elastomer and the glass 

tube ranged from approximately 0.5 to 1.0, which is approximately five times that of steel on 

steel.

This combination of low elastic modulus and high friction coefficient was considered 

sufficiently good to allow the design and construction of a test rig to be undertaken which 

would reflect accurately what happens in a real well but in a distance of less than five metres.

5.2. Experimental Technique

5.2.1 Method for obtaining penetration results

The object of this experimental work was to obtain data giving the relationship between the 

inserted distance and the insertion force as the rod was driven into the constraining cylinder 

until helical buckling had taken place and the rod locked up in the cylinder. The test 

equipment which handles the storage and feeding the rod into the tube has been described in 

the previous section.

During insertion of the rod into the tube distance and force were recorded continuously at 50 

millisecond intervals, giving approximately 300 points for each test. The rod was inserted 

until the buckling of the rod was in a fully developed helical state and lock up had occurred. 

Determination of the level of force necessary to cause lock up to occur had been carried out



previously and this value was used via the control system to stop the insertion stepper motor 

and recording of data when this level of force was reached. This was to ensure that the test 

ran continuously from start at zero force until maximum force when lock up had occurred and 

the recorded data reflected accurately what was happening throughout the insertion test.

Tests were also carried out at a range of velocities from 50 mm/s to 120 mm/s but this had an 

insignificant effect on total distance achieved before lock up occurred with the 

elastomer/glass combination.

The tests were carried out using rods with diameters of 2, 3, 4, 5 and 6 mm in constraining 

glass tubes with internal diameters of 8.6, 13, 15, 19, 22.8, 28.6 and 33.4 mm. This enabled a 

full examination of the impact of rod stiffness and L/d ratio. These results are shown in 

Section 6.

Referring to the graphs of inserted distance against force it is clear that they consist of three 

basic parts; a linear section with a slightly positive gradient, a curved transitional section and 

a final exponential section. These parts of the graph reflect respectively sinusoidal, transition 

to helical and fully developed helical buckling.

The first part reflected the increase in frictional force as an increasing length, and hence mass 

of rod, was inserted into the glass tube. In this section the rod is lying on the bottom of the 

tube. As the inserted distance increases the rod starts to buckle sinusoidally with low 

amplitude and large pitch distances. With increasing amplitude the rod moves round and up 

the inner surface of the transparent cylinder.

The second curved section is where the rod is transitioning from sinusoidal to helical buckling 

and the force increases at a higher and non-linear rate compared with the first section.

The third and final section is where the rod has gone completely into helical buckling and 

lock-up has occurred with the force level rising exponentially.
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5.2.2 Friction coefficient cross check

The data recording procedures were modified to record the position and force as the rod was 

driven into the glass tube and also to record the same as the rod was pulled out of the tube. 

Pulling or retracting the rod out would ensure that the rod was straight and lying in the bottom 

of the tube and as a consequence the friction coefficient would be measured accurately. This 

confirmed that the friction coefficient for insertion in the sinusoidal zone and for retraction 

was the same in both cases.

5.2.3 Insertion-retraction data display

A large amount of data is recorded on each rod-tube combination and 10 sets of data are 

recorded for each combination. To enable the data to be clearly viewed the insertion and 

retraction graphs were plotted on separate sheets.



6. Experimental Results

6.1 Elastic Modulus

The data obtained from the extension tests are plotted as a graph of elastic modulus against 

temperature as shown below in figure 6.1.1. The modulus of elasticity is about four orders of 

magnitude lower that that of steel.

E  Value/Temperature

Temperature degrees C  
Figure 6.1.1

♦ -----5mm

— — 4 mm

-----A---- 3 mm

Figure 6.1.1 Elastic modulus versus temperature

From the graph, it can be seen that over the working temperature range of 13 to 18 °C, an 

average value for the elastic modulus of 23 MN/m2 can be assumed.

6.2 Friction Coefficient

The friction coefficient between the elastomer material and the transparent glass constraining 

cylinder was obtained by use of inclined plane test rig. The friction coefficient resulting from 

the combination of the chosen elastomer and the glass tube was determined.



It should be noted that the method employed determined the value of the static friction 

coefficient, whereas during the insertion experiments the dynamic values of the friction 

coefficient should be used. Because of this it was decided that the values of the dynamic 

friction coefficient would be determined during the insertion tests (section 6.6.1).

6.3 Qualitative Observations

The combination of low elastic modulus and high friction coefficient chosen was considered 

sufficiently good to allow the design and construction of a test rig to be undertaken with a 

high degree of confidence that the data produced would reflect accurately what happens in a 

real well but in a distance of less than five metres.

All experimental results for the insertion of the rod into the tube demonstrate similar 

qualitative trends, shown in Figure 6.3.1, which was obtained during the preliminary tests, 

using d = 3 mm and an acrylic tube with D = 14 mm.

1
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I I 
500 mm 600mm

-

■ ■ ....
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I
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I
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I
2100 mm

I
2200 mm

I
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Figure 6.3.1 Deformation trends in plan view.
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The rod initially enters the tube in a straight line. After a certain rod length is inserted, the 

rod following the initial straight section starts deforming. The initial deformations appear 

sinusoidal with the amplitude considerably smaller than the radius of the tube. With further 

insertion the length of the sinusoidal cycles decreases and the amplitude increases. As the 

amplitude increases the deformed rod starts to move progressively up the walls of the tube. 

This continues until a situation obtains when helical deformations (result of helical buckling) 

suddenly appear. Hence the shape of the rod being inserted into the tube consists of three 

regions: the initial, apparently straight section, the subsequent section with sinusoidal 

deformation and the final section with helical deformation. The region with the fully 

developed helical deformations is relatively small, and is confined to about the last 10% to 

20% of the inserted rod. It should be pointed out that the force required to insert the rod 

increases considerably when helical deformations are present. The insertion is terminated 

(and lock up occurs) when the force required for further insertion is greater than the force 

developed by the insertion mechanism.

Figure 6.3.1 shows clearly the development of sinusoidal buckling within the tube and the 

relevant inserted distances. Since the measurement of the buckled shapes was not a primary 

objective of this work, only a small number of these experiments were performed and 

estimates made on the number of deformations. These are summarised in the table given in 

figure 6.3.2.

rod diameter 
d [mm]

tube diameter 
D [mm]

maximum 
inserted 

length [mm]

number of 
sinusoidal cycles

number of 
helical cycles

3 15 1600 ~10 ~2
3 22.8 1000 ~7 ~2
3 33.4 950 ~5 ~1

Figure 6.3.2 Table giving description of rod deformation.



6.4 Insertion Tests

The objective of an insertion test was to establish the load/insertion relationship for a 

particular diameter of rod and tube. With the range of rod diameters (4) and tube diameters (7) 

available, this allowed a comprehensive picture to be determined.

The experimental results for the insertion tests are presented as graphs of the required 

insertion force against the inserted length. Each graph shows a large number of experimental 

runs, and, typically, about 10 runs were taken for each D/d configuration.

The results for D = 8.6 mm are presented for d = 3 mm in figure 6.4.1. The ambient 

temperature during these series of experiments was 13 °C. Results are not presented for any 

other rod diameters in this case. The reason is that the total insertion lengths were too high 

for the experimental apparatus used in the present experiments. The results for D = 13 mm 

are presented for d = 3 mm and d = 6 mm in figures 6.4.2 and 6.4.3 respectively. The results 

for D = 15 mm are presented for d = 3 mm, d = 4 mm, d = 5 mm and d = 6 mm in 

figures 6.4.4, 6.4.5, 6.4.6 and 6.4.7 respectively. The results for D = 19 mm are presented for 

d= 3 mm, d = 4 mm, d = 5 mm and d = 6 mm in figures 6.4.8, 6.4.9, 6.4.10 and 6.4.11 

respectively. The results for D = 22.8 mm are presented for d = 3 mm, <7 = 5 mm and <7 = 6 

mm in figures 6.4.12, 6.4.13 and 6.4.14 respectively. The results forD = 28.6 mm are 

presented for d = 3 mm and d = 6 mm in figures 6.4.15 and 6.4.16 respectively. The results 

for D  = 33.4 mm are presented for d = 3 mm, d = 5 mm and <7 = 6 mm in figures 6.4.17,

6.4.18 and 6.4.19 respectively.

Typical experimental data are extracted from figures 6.4.1 to 6.4.19 and presented in two 

different ways: (i) for constant diameter of the containing cylinder D and (ii) for constant 

diameter of the rod d.

Figure 6.4.20 shows the variation of the insertion force with the inserted length for D = 13 

mm and two different diameters of the rod: d = 3 mm and <7 = 6 mm. figure 6.4.21 shows the 

variation of the insertion force with the inserted length for D = 19 mm and four different 

diameters of the rod: <7 = 3 mm, <7 = 4 mm, <7=5 mm and <7=6 mm. figure 6.4.22 shows the 

variation of the insertion force with the inserted length for D = 28.6 mm and two different
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diameters of the rod: d = 3 mm and d = 6 mm. Finally, figure 6.4.23 shows the variation of 

the insertion force with the inserted length for D = 33.4 mm and two different diameters of the 

rod: d = 5 mm and d = 6 mm.

Figure 6.4.24 shows the variation of the insertion force with the inserted length for d = 3 mm 

and five different diameters of the containing cylinder: D = 33.4 mm, D = 28.6 mm, D = 19 

mm, D  = 13 mm and D = 8.6 mm. figure 6.4.25 shows the variation of the insertion force 

with the inserted length for d -  6 mm and four different diameters of the containing cylinder: 

D = 33.4 mm, D -  28.6 mm, D = 19 mm and D -  13 mm.

All but two figures show consistent trends, as discussed later. Two sets of data in Figure 

6.4.16 diverge from the remaining eight sets. The reason is most probably surface 

contamination which increases significantly the friction coefficient. This is probably also the 

reason why Figure 6.4.24 shows that the maximum penetration is smaller for the bigger 

diameter rod.
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igure 6.4.1 Plot of the insertion force versus the inserted length for 
d = 3 mm, D = 8.6 mm (T = 13 °C).
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Figure 6.4.2 A plot of the insertion force versus the inserted length for
d  = 3 mm, D  =  13 mm (T  = 13 C).
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igure 6.4.3 Plot of the insertion force versus the inserted length for 
d = 6 mm, D -  13 mm (T = 18 C).
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Figure 6.4.4 Plot of the insertion force versus the inserted length for
d  = 3 mm, D  =  15 mm (7=18 C).
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Figure 6.4.5 Plot of the insertion force versus the inserted length for 
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Figure 6.4.6 Plot of the insertion force versus the inserted length for
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Figure 6.4.7 Plot of the insertion force versus the inserted length for 
d = 6 mm, D -  15 mm (T = 17 C).
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Figure 6.4.11 Plot of the insertion force versus the inserted length for 
d = 6 mm, D = 19 mm (T = 18 C).
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Figure 6.4.14 Plot of the insertion force versus the inserted length for
d  = 6 mm, D  =  22.8 mm (T  = 19 C).
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Figure 6.4.15 Plot of the insertion force versus the inserted length for 
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Figure 6.4.16 Plot of the insertion force versus the inserted length for
d  = 6 mm, D  =  28.6 mm (T  = 20 C).
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Figure 6.4.17 Plot of the insertion force versus the inserted length for 
d = 3 mm, D = 33.4 mm (T = 14 C).
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Figure 6.4.20 Plot of the insertion force versus the inserted length for
I>=13 mm and d  = 3 mm (□) and d  = 6 mm (O).
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Figure 6.4.22 Plot of the insertion force versus the inserted length for
D  = 28.6 mm and d  =  3 mm (a) and d  = 6 mm (O).
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Figure 6.4.23 Plot of the insertion force versus the inserted length for 
D = 33.4 mm and d = 5 mm (O) and d = 6 mm (A).

Figure 6.4.24 Plot of the insertion force versus the inserted length for d  = 3 mm and
D  = 33.4 mm (□),£> = 28.6 mm (A), D  = 19 mm (O), D  = 13 mm (o) andZ> = 8.6 mm (+).

6. 17



Figure 6.4.25 Plot of the insertion force versus the inserted length for d = 6 mm and 
D = 33.4 mm (□), D = 28.6 mm (A), D = 19 mm (O) and£> = 13 mm (o).

6.5 Summary of Experimental Work

All experimental results for the insertion of the rod into the constraining tubing demonstrate 

similar qualitative behaviour. The shape of the rod being inserted into the tube consists of 

three regions: the initial, apparently straight section, the subsequent section with sinusoidal 

deformations and the final section with helical deformations. The region with the fully 

developed helical deformations is relatively small, and is confined to about the last 10% to 

20% of the inserted rod.

All the graphs for the variation of the insertion force with the inserted length indicate a clear 

trend. The insertion force initially increases linearly with the inserted length. This continues 

until a critical length is reached, at which the insertion force increases very rapidly. Even 

though all figures demonstrate some scatter and uncertainty, the critical length is reasonably 

well defined for all combinations of the rod and the containing cylinder diameter investigated 

in this work.
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The graphs also indicate that for a constant diameter of the containing cylinder the critical 

insertion length increases with the diameter of the rod, and that for a constant diameter of the 

rod the critical insertion length decreases with the diameter of the containing cylinder.

6.6 Experimental Errors and Error Analysis

6.6.1 Experimental errors

The sources of errors in the experimental set-up can be identified as mechanical or electrical 

and errors arising from use of polymers. The mechanical and electrical errors arise from: (i) 

rod diameter, (ii) tube inside diameter, (iii) measurement of inserted length and (iv) force 

measurement. The errors associated with the use of the polymer are found from: (i) reaction 

between rod and tube, (ii) determination of modulus of elasticity, (iii) measurement of friction 

and (iv) ambient conditions.

The rod diameter was supplied from the manufacturer with a stated tolerance of ±0.1 mm, and 

the tolerances quoted were deemed to be satisfactory. Similarly, the tolerances of the tube 

inside diameter, as specified by the manufacturer, were also deemed satisfactory. Initially 

polymer tubes were used, but these were replaced because of the interaction between the 

polymer rod and tube.

Several aspects of the measurement of the inserted length are considered, since there are two 

approaches to the measurement of the inserted length. The first approach is to measure the 

axial inserted length of the rod directly by measuring the length of the inserted rod from the 

insertion point to the end of the rod at lock-up. This measurement is a purely mechanical 

measurement with an accuracy of ±1 mm. The second approach is to compare the digital 

output from the stepper motor with the actual inserted length achieved and incorporating the 

appropriate calibration factor in the software.

The end force is measured ultimately by a force transducer mounted at the insertion point.

The accuracy of the force reading for the 10 N transducer is quoted by the manufacturer as 

±0.1% of full scale. Inaccuracies will also arise from the efficacy with which the rod reacts
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onto the transducer. Careful design of the air bearing system ensures that reaction friction 

forces are minimised, but it has been estimated that a friction force of considerably less than 

0.01 N will exist. This leaves the force measurement accuracy of about ±0.1% of full scale, 

which is considered acceptable.

Early experiments showed that the axial insertion lengths were very variable and changed 

dependent on the insertion velocity. Further analysis identified that the cause of this was that 

both the rod and tube were polymers and the action of insertion at some velocity resulted in 

static electrical forces that effectively increased the friction factor. Changing the tubes 

material to glass solved this problem.

The determination of the modulus of elasticity was carefully considered. The first concern 

was that while normal methods of determining the Modulus relied on a tensile set-up, the 

coiled tube buckling problem was basically with the coiled tube in compression. While this 

would not present a problem for a steel coiled tube, it did need consideration when working 

with a polymer that might not have a linear load/extension relationship. A major factor in the 

determination of the E value was the amount of extension and compression. For tension 

strain of up to 3%, the stress/strain curve is linear and the modulus can be assumed to have 

the same value in tension and compression (M.R.P.A., 1974). Since it is estimated that the 

strain at the critical load for helical buckling (Lubinski, 1962) is about 1%, the linear 

behaviour can be assumed and the modulus of elasticity in tension can also be used in 

compression. The measurement of the modulus of elasticity was done by measuring the 

extension of a 1 m length of rod under masses. The masses were checked against a calibrated 

weighing device and the measurements made using instrumentation accurate to ±0.1 g. Tests 

were done at a measured temperature that corresponded to subsequent load tests.

Three methods were adopted for the measurement of friction: (i) inclined plane, (ii) 

measurement of the slope of the load/insertion line and (iii) measurement of the slope on the 

load/extraction line. The inclined plane was unwieldy to use and did not produce consistent 

results. The insertion line enabled spurious readings to be absorbed leaving a definite trend 

with good conformance, as did the extraction results. The errors on the insertion line arose 

from the extra friction effects brought about by the reactions between the rod and tube during 

insertion. Using the extraction line removed these problem so was thought to produce a more
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representative value. The accuracy of the results obtained reflected the accuracy of the load 

cell and the length measurement.

Throughout the experimental phase, it was very clear that temperature played a very 

important role in the values obtained, specifically the values of E and the coefficient of 

friction. For this reason, the tests were done in a close temperature window so that the tests 

were comparable and able to be extrapolated. A second, perhaps a more important problem 

arose from the presence of dust and other contaminants in the tube. Again, experimental 

cleaning procedures ensured these were minimised.

6.6.2 Error analysis

Section 6.6.1 has outlined the errors that could arise during the experimental phase of the 

work. When the errors being considered were the result of measurements or the physical 

sizes of the components, then the errors would be small, being in the range 3-5%. However, 

the largest sources of errors were the operating temperature during testing and surface 

contamination, as wide swings produced significant variations in the values obtained. The 

values of the physical parameters varied between nominally identical tests, but remained 

within the prescribed tolerance.
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7. Analytical Work

7.1 Scoping Model

The scoping model was developed during the early stages of the experimental work with the 

major purpose of identifying those parameters which needed to be studied experimentally.

The scoping model is highly simplified, neglecting helical buckling and introducing a 

simulated wall reaction force. Several assumptions used in the development of the scoping 

model are now known not to hold, nevertheless, the dimensionless groups derived from the 

model have been subsequently confirmed as significant by the full analysis developed later.

The scoping model, which has been already published (see Appendix A), is given for 

completeness, and briefly described below.

The major assumption in the development of the model is that only plane sinusoidal buckling 

is considered, with the helical buckling neglected. The major reasons for these 

simplifications are that: (i) the sinusoidal buckling always precedes the helical buckling (ii) 

the sinusoidal plane buckling is much better understood and can be incorporated more readily 

into the analytical model, and (iii) the purpose of the scoping analysis is to determine those 

factors which influence the penetration and to provide broad estimates of the penetration 

lengths.

The critical buckling force for sinusoidal buckling is given generally as

F  J J L
CR (7.1.1)

where the buckling parameter kj is discussed later. The plan view of the first buckling form is 

indicated in figure 7.1.1.



Figure 7.1.1 Diagram of the first buckling form.

It should be noted that even though the figure indicates that the first deformation of the rod is 

comparable to the diameter of the tube, the first few deformations are generally much smaller 

than the diameter. It is assumed in the model that the total friction force F Cri between the rod 

and the wall of the tube over the length Leo provides the critical force required to buckle the 

length of the rod Lbi. The friction force required to push a column Lbo long is given as

Fa n = mLL BogM (7-1-2)

Equation (7.1.1) with F cri and Lbi and equation (7.1.2) can be combined and re-arranged in 

dimensionless forms as

F C R \  _  L B O

kEI D kEI
D2

^
___

iI

5 kEI D
D LbJ

(7.1.3)

(7.1.4)

The buckling parameter depends on the boundary conditions. Because of the subsequent 

buckling shape, the back boundary condition of the first buckling shape can be considered as 

built-in. However, the front boundary condition is more difficult to specify. It is not free, 

since the initial straight section provides some restraining influence. Additionally, it is also 

not built in, since the front can move relatively freely. It seems that the most appropriate
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front boundary condition for the first buckling shape is pinned. This implies that for the first 

buckling shape the buckling parameter is kI = 2n2. It should be further noted that for the 

subsequent buckling shapes the boundary conditions at both ends can be considered as built- 

in. Since, as discussed later and as shown in figure 7.1.4, the analysis progresses in half-cycle 

intervals, the buckling parameter for all subsequent buckling shapes is kj= n2.

As the amplitude of the sinusoidal buckling shape increases additional forces normal to the 

wall will be generated. These will occur after a certain transitional period, which is not 

necessarily known. For simplicity, such a situation is shown in figure 7.1.2 for the first 

buckling shape.

It is assumed that a reaction force will develop between the rod and the wall of the containing 

cylinder. This reaction force is given by

where

r a = r b = r , (7.1.5)

n ^  A
R = b[V1 1 CR\ j

^B\
(7.1.6)

A d
D ~  D

(7.1.7)
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It should be noted that this cannot obtain for the first buckling shape because it cannot support 

the moment Mb on element Lbi. However, the subsequent elements Lb2 , Lb3 , ... Lbn can 

support these moments. These reaction forces can only be considered when there is strong 

contact between the penetrating rod and the walls of the tube. However, since the normal 

forces are very small for the initial buckling shapes when the cycles are relatively long, the 

error introduced by considering these forces for all buckling shapes can be neglected.

Furthermore, additional frictional forces due to the mass of the tubular of length Lbi, as well 

as the reactions, must be added as the column continues to move.

Figure 7.1.3 shows that the resultant force Fcr2 as

Fcri ~  ^ cr\ +  MWLBl (7.1.8)

where the second term is the friction due to the two normal forces and the third term is the 

friction due to the weight of the column length Lbi. This can be further re-arranged as

F,C R  2

F,
— 1 + 2 ¡j.

f d \  D ju mLgd
C R \

1 ------
D )L

+
LB1

B1 k El \ d  ) \ D  )
(7.1.9)
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Figure 7.1.4 shows the next buckled shape, whose length can be expressed as

L b2 _  L B\
f

D D
FC R 2

V y

and where F CrFFCri is given by equation (7.1.9).

(7.1.10)

Figure 7.1.4 Diagram of the first two buckling forms. 

The axial force Fcr3 and the length LB3 can then be similarly calculated as

F,C R  3

F,
=  1 +  2 ju

f

C R 2

1 -
V  D

d \  D n mLgd 3 ( D^\(L
+

LB2 k El \ d )
B2

D
(7.1.11)

^82
D

F \  2̂
C R  3

\F cR2 J
(7.1.12)

The above approach can be continued and all subsequent forces and lengths calculated. The 

total force acting on the tubular can then be obtained as

F = FC R N

F,
•  •  •

C R ( N - 1)

FqR3 FCR2 jp , 

F  F
r C R 2  r C R \

C R \ (7.1.13)
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and the total length of the deformed tubular as

(7.1.14)

The total length L when the tubular becomes fully locked will obtain when the total force F 

reaches F max, the maximum force available.

The above analysis indicates that the penetration depends on the initial value of LBo , Fmax and 

the following dimensionless parameters:

properties of the tubular. The second dimensionless parameter, fj, , is the friction factor

between the tubular and the walls of the containing pipe. The last dimensionless group 

depends on the geometry of the system.

In order to calculate the penetration of the tubular, the three dimensionless groups, and Lbo/D  

and Fmax must be specified. The three dimensionless groups are discussed above. The 

maximum force is determined primarily by the capacity of the pushing system, but also 

depends on the initial vertical drop of the oil well. The maximum penetration will then 

depend on the assumed initial value of Lbq/D.

m Lg d 3 

El 
M 

d_ 

D

(7.1.15)

(7.1.16)

(7.1.17)

The first dimensionless group, m ^d 3 /El, depends only on the geometry and the material

The above results, including the reaction forces, are used to calculate recurrently F qrn/F cr(n-i) 

andLBN/D. Equations (7.1.13) and (7.1.14) are then used to determine the total force and the 

total penetration.



It can be shown that the length of penetration exhibits a minimum for a certain value of LBo 

(and hence LBq/D). It is possible to minimise the length of the whole penetration with respect 

to Lbo/D, but this is closely related to the minimum length of the first two half-cycles Loi ■

This is given from equations (7.1.4) and (7.1.14) as

+
( kEI
[m^juD3 Lbo)

(7.1.18)

which, differentiated with respect to LBq/D, gives the minimum value for LBq/D as

L B0 _ r n

2/73 '  j u m , g d 3^

D U J [ k  El J

d_
D

(7.1.19)

A comparison with experimental results suggests that it is the minimisation of the total 

penetration which gives the appropriate value of LBo/D. It also shows that the appropriate 

value of L bo/ D  is also a function of the three dimensionless groups discussed above.

The scoping model shows that the dimensionless penetration L/D depends on three 

dimensionless parameters migcf/EI, f l  and d/D, as well as the initial value L Bo/ D  and the

maximum axial force available F Max- Furthermore, the analysis shows that the penetration 

exhibits a broad minimum, which is not particularly sensitive to the choice of LBo/D in the 

vicinity o f Lbo/D given by equation (7.1.19). The minimum penetrations obtained from the 

scoping model are in reasonable agreement with the experimental data. This indicates that 

only the minimum penetration is probably achievable in practice. The most likely reason is 

that the rod is not straight when being inserted and that the initial rod deformations do not 

allow penetrations beyond the minimum, but further work is required.

Since the initial value of LBo/D for the minimum deformation depends only on migd3/EI, fj,

and d/D, it can be concluded that the actual penetrations obtained depend only on these three 

dimensionless parameters, and the maximum axial force available FMax, which can be 

expressed in a dimensionless form as FMAx/(kEI/D2). The parameter migd3/El is related to the 

flexural rigidity of the tubular, and the penetration will increase as the flexural rigidity



increases. Similarly, as the friction decreases the penetration will increase. The effect of the 

ratio d/D is complex. Further systematic work on the influence of all three dimensionless 

parameters is required.

The major limitation of the theoretical analysis is that, as discussed above, it does not 

consider the transition to helical buckling and that simple buckling analysis is used for large 

deformations. However, there are at least two reasons why this may not significantly affect 

the validity of the model. First, as pointed out above, the region of the deformed rod which 

exhibits helical buckling is relatively small. Second, the incorporation of the normal wall 

reaction forces in the development of the model does provide a mechanism which, similarly 

to the development of the helical buckling, increases considerably the force required for 

further insertion of the rod into the tube just before lock up is established.

7.2 New Model

7.2.1 Qualitative considerations

By simple visual observation of the phenomena being investigated it was possible to arrive at 

a qualitative description of what was occurring which is given below.

As the rod is inserted into the tube, there is initially a straight section, with increasing inserted 

length the rod starts to deflect into sine shaped wave forms, initially with low amplitude and 

long pitch lengths. With further insertion the amplitude of the waves increases and the pitch 

length decreases towards the insertion end.

The observed asymmetric buckling phenomenon occurs because the force which causes 

buckling arises from the friction between the rod and the tube and therefore increases as the 

inserted length increases. The larger force at the insertion end of the tube is able to cause the 

larger lateral amplitude and shorter pitch length which had been observed. This friction force 

in the sinusoidal buckling zone is the product of mass per unit length, inserted length, friction 

coefficient and gravity.



As the inserted length continues to increase the sine wave amplitude increases and pitch 

length decreases until the rod moves up the inner surface of the tube above half way and flips 

over into a partially formed helix. Further insertion increases the force developed and results 

in the rod being forced upwards to contact the top surface of the tube and form a fully 

developed helix. This transformation to fully developed helical buckling occurs over several 

cycles. When full helical buckling has been developed the insertion force rises dramatically 

and further insertion is not possible.

From observation of the buckling phenomena it was clear that the analysis of the problem 

would be made easier by breaking down buckling behaviour into the following parts.

i) Define the three distinct types of buckling

a) Sinusoidal

b) Transition to helical

c) Fully developed helical buckling

ii) Consider three steps for sinusoidal buckling to calculate lengths.

d) The first buckled shape where buckling is initiated by friction forces alone, no 

end force on this first section: Lj

e) Next sinusoidal buckled shape where buckling is initiated by friction forces, 

and an end force coming from the previous buckled shape: L2

f) All further buckled shapes where buckling is initiated by friction forces and an 

end force, coming from the previous buckled shape: L3, L4, L3, etc.

iii) Determine criteria for start of transition to helical buckling.

iv) Determine transition length to for fully developed helical buckling.

v) Determine force to produce lock up.

vi) Determine length of helical buckling.



7.2.2 Initial deformation fixed-free is ‘equivalent’ to a vertical column 
subject to deformation under its own weight

If one considers the end fixings of the rod in the tube at the first mode of buckling it is clear 

that for analytical purposes, the inserted end of the rod is free, and the position at the end of 

first mode buckling which is attached to the rest of the rod can be considered as fixed.

To begin the analysis process a method was needed to calculate the initial length of the first 

buckled shape.

An existing theoretical model (Timoshenko & Gere, 1961) which consisted of a free standing 

vertical column fixed at its lower end and free at its other end as shown in figure 7.2.1., was 

considered. A full analysis of this theoretical model is given in Appendix D. The deflection 

analysis and resulting moments were considered to be caused solely by the self mass of the 

rod. By considering the moments at a point X from the fixed end the differential equation 

below was obtained.

Free E~J s x

Fixed End

Figure 7.2.1 Vertical column fixed-free with own weight

(7.2.1)
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To eliminate dimensions let

V y_
L
x

L
z

v = l

II (7.2.2)

II (7.2.3)

N II -s r-< (7.2.4)

By substituting these terms into equation (7.2.1) the following equation was obtained

d£2 El El }
The above equation contains the non dimensional group

™lEL 3
El

(7.2.5)

(7.2.6)

This group contains the mass per unit length mL, the length of the buckled section L , the 

elastic modulus E , the second moment of area /  and the gravitational constant g .

Putting K  _  m LgL2 
El

into equation (7.2.5) the following equation is obtained

d 2v
d ?

+ K v ( l - t ) -K ¡v d < p  = 0

(7.2.7)

(7.2.8)

Equation (7.2.8) is solved numerically to obtain the eigenvalues using a finite difference 

forward second order approximation within an Excel spreadsheet. For a twenty one step 

approximation K = 7.83, which was close to the theoretical case of K = 7.836 (Timoshenko & 

Gere, 1961).

Using the relationship in (7.2.7) the first mode buckled length L, can be solved as follows,

Lx -  K' El
mLg

-, i/

= 1.99 El
_mLg_

(7.2.9)
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Similarly for second mode buckling

Hence

m Lg (L 1+_ L 2y  = 5 5 S

2 El

Lx+L2= K /3 El
-.1/

_m iS _

4 = 1 - 8 4
El

m Lg

Complete solutions for Zy, L2, are shown in Appendix E.

(7.2.10)

(7.2.11)

(7.2.12)

7.2.3 Investigation of fixed-free using axial force and own weight

The analysis below (figure 7.2.2) was used to give confidence in the analysis method used in 

the previous section. It confirms that when the end force is zero K = 7.836 and that when no

PI) 2
self weight is considered the value for B  = ------= 7T2 14  which is the same as that arrived

El
at by other analysis methods (Madhukar, 2002).

Figure 7.2.2 Vertical column fixed-free, own weight and axial force.
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In the previous section the first mode buckling length was obtained. For the second mode 

buckling an axial force as well as self weight must be included in the analysis. The model 

used in the first mode was used again but in this case an axial force was applied at the free 

end. A full analysis of this theoretical model is given in Appendix F.

By considering the moments as in previous section for the vertical rod the differential 

equation below was obtained.

d 2y  £
E l — y  + Py + mLg{L -  x )y  -  P S X - m Lg \ y d x  -  0 (7.2.13)

dx x

This equation was non dimensionalised as in the previous section and the following obtained

d 2v  PL2 V m Lg
v  + ----- ^ v ( l - £ ) -  —  5 -

v ’ E ld f  E l  E l

The above equation contains two non dimensional groups

L2m Lg

E l
\vd% = 0 (7-2.14)

Putting K  _  mLZP 
E l

(7.2.15)

and b  = p i }
E l

(7.2.16)

gives

d Vl + B v  + K v (  1 £ )  B S  K ) v d £  = 0
d ^  x

(7.2.17)

Equation (7.2.17) is solved numerically to obtain the eigenvalues using a finite difference

forward second order approximation within an Excel spreadsheet.

The dimensionless constant

K  _
E l

(7.2.18)
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is a measure of self weight

and B =
PL2
E l

(7.2.19)

is a measure of axial end force

With the constant B set to zero (zero axial force) it is then possible within the Excel spread 

sheet to use a goal seeking tool to set the determinant of the array to zero by selecting the 

appropriate value of K. This gave a result of K  = 7.832 using a twenty one step 

approximation, which corresponds with a value of K  = 7.836 derived by analytical means 

(Timoshenko and Gere, 1961).

By setting K  to zero (effectively zero self weight) and using the goal seeking tool to set the 

determinant of the array to zero by selecting the appropriate value of B, gave a result of

B = 2.465, which corresponds to the value of 7T2/ 4  or 2.467 derived by analytical means 

(Madhukar, 2002).

7.2.4 Reaction forces during plane sinusoidal buckling

Consider figure 7.2.3, which shows the arrangements.
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Figure 7.2.3 Vertical column with axial force and reaction force.

A full analysis of this section is given in Appendix G.

The governing equation is

= M
(7.2.20)

The bending moment is given by

M  =  —Py  + PÔ* — R(L — x ) — M t (7.2.21)

Hence after substituting equation (7.2.21) into equation (7.2.20) and further simplification 

results in

d 2y  j ?  s* R  ( T \— ~  + k7y  = — S ------- \ L - x ) -------L
dx2 2 E l  E I y } E l

12 P

(7.2.22)

where k = ----
E l

The general solution of equation (7.2.22) is

(7.2.23)

y  = y H + y P (7.2.24)

Where y  is the sum of the homogeneous solution y H and the particular solution y p 

Substitute equation (7.2.24) into equation (7.2.22) as shown in Appendix G
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(7.2.25)y  „ = C, sin kx + C2 cos kx

and y P = ô  -  U  x) T (7.2.26)
p  p

Hence

y  = C, sin(Ax) + C2 cos(Ax) + ô* -  ^  (L -  x) - (7.2.27)

and

—  = C kcos(kx)-C.ksin(kx)-\-  — 
dx 1 V } 2 K J P

(7.2.28)

Equation (7.2.27) contains four unknowns, C], C1,R and M  T , and hence we need four 

boundary conditions. These are:

x  =  0 y =  o (7.2.29)

x  =  0

oII (7.2.30)

x - L II (7.2.31)

x - L

oII (7.2.32)

The four unknowns are calculated as shown in Appendix G as

^  _  R 1 - c o s (kL)
2 kP sin (kL)

Mr  = s . + ± ( l z œ 4kL)_k!\
P  kPy  sin (kL) j

R _  k L s i n (k L )  S'

P  2[cos(&Z,)-l] + &Lsin(&L) L

(7.2.33)

(7.2.34)

(7.2.35)

(7.2.36)
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which can be re-written as

R  L k L s i n ( k L )

P  S '  2[cos(£Z) -1  \ +  kL  sin (k L )
(7.2.37)

and the variation of RL/PS*  as the function of kL can be obtained

Furthermore, it can be shown that the buckling occurs for

kL = 7T (7.2.38)

and since

sin;r = 0 (7.2.39)

equation (7.2.37) shows that when buckling occurs

R = 0 (7.2.40)

Hence when buckling occurs, reaction R equals zero.

7.2.5 Use of the vertical buckling model in the horizontal penetration 

model

The vertical models described above for first and second mode buckling accurately define 

buckling for both of these modes. Simple modification of these models will allow their use in 

describing the behaviour of the rod in a horizontal position.

In the case of the vertical model the force causing buckling is gravitational acceleration and 

the mass of the rod: (mass per unit length * length) m LL g .
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In the horizontal case the force which causes buckling is the friction force arising from 

movement of the rod in the tube. This is the product of the mass per unit length of the rod, 

friction coefficient between the rod and tube and the length of the buckled shape: WIl L  jU g.

Substituting the force arising from gravity g  which causes the buckling in the vertical model 

with JUg in the horizontal model will reflect the rod behaviour in the horizontal tube.

By using the extrapolation of the model defined in section 7.2.4 the number of cycles in the 

sinusoidal zone can be calculated as follows.

i) For the first cycle L{, equation 7.2.9 from section 7.2.2.can be used.

ii) The same equation can be used for calculating the second cycle L2.

7.2.6 Plane sinusoidal buckling development

Although the rod is being constrained in a cylinder the analysis is considering only plane 

sinusoidal buckling, i.e. buckling in two dimensions not three dimensions.

As there are no reaction forces which was proved in section 7.2.4, a model which describes 

third and higher modes of buckling is given by using a vertical column which has fixed -  

sliding, fixed ends with self weight and an axial force. This model describes accurately what 

is happening at the points between successive buckled cycles.
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p

Figure 7.2.4 Vertical column fixed-fixed, sliding with own weight and axial force.

A full analysis of this theoretical model (figure 7.2.4) is given in Appendix H. By considering 

the moment at a distance X from the fixed end of the vertical rod the differential equation 

below was obtained.

d 2y 1
E l — y  + Py + mLg(L -  x )y  -  P S X -  mLg \ y d z  + M T = 0  (7.2.41) 

dx :

. . L
Convert M  T to dimensionless group by multiplying b y ---- , which gives

El

, m tlA = — —
E l

(7.2.42)

d 2v

d% 2
+

PL
------v  +
E l

n

EI MLg V( 1 - f )
p p  
—  8  
EI

n

EI
mLg  \vd^  + A = 0

i

(7.2.43)

Non dimensionalise the other two groups as in section 7.2.3 gives

7 2  L

— T + B v  + K v ( \ - Z ) - B d - K  J vdE, +^1 = 0 (7.2.44)
d ^  x
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+ B V - B S  + K v (  1 -  K ) v d g  +  A =  0 (7.2.45)
di^ x

This equation was solved numerically.

The dimensionless constants above represent the following

is a measure the self weight

is a measure of the axial end force

K  _  m L g ^ 3 
E l

E l

A =
M rL

E l
is a measure of the moment at the fixed-sliding end

(7.2.46)

(7.2.47)

(7.2.48)

By setting B to zero (effectively zero axial force) and using the goal seek tool to set the 

determinant of the array to zero by selecting the appropriate value of K  gave a result of 

K  = 18.95 . This is corresponds to the value derived by analytical means. By setting K to 

zero (effectively zero self weight) and using goal seek tool setting the determinant of the array 

to zero by selecting the appropriate value of B gave a result of B = 9 .85 . This corresponds

to the value of 7T or 9.87 derived by analytical means for a column with the same defined 

end conditions (Madhukar, 2002).

The above numerical solution confirmed the validity of the analysis.

Algebraic manipulation of the dimensionless groups representing K  and B , resulted in the 

following two relationships.

B =
PL1 
E l

(7.2.49)
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(7.2.50)
B 3 _  P 3

K 2 {^ l s )2e i

3 /  2If a graph of 5  versus B / K  is plotted, Z  can be obtained as shown in figure 7.2.5.

PL1 P 3
Figure 7.2.5: ------versus-----r— r— for all values.

E l  EI\mL g  )

Hence for a given P 3
---- 7------ tt , L  can be calculated.
El(mLg 2)

If one considers that the first buckled form is due to its own weight only, this results in

™LgEi
E l

7.83 (7.2.51)

as shown previously, hence the equivalent axial force on the first fixed-sliding member can be 

shown by further algebraic manipulation to be.

P  = mLgLx P 3 = m, 3 3 ts  A
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(7.2.52)
p 3 3

— r r  = m^ A 3m L g

P 3

EI
7.83

The axial force on the subsequent members will be greater

But

p 1
>7.83 (7.2.53)

f f 3 _  P 3 
K 2 ~  E l { m [ g 2)

T>3
y >7.83  

K 2

(7.2.54)

(7.2.55)

p 3
The relationship between_________ and 5  is shown on the graph in figure 7.2.6.
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For
El{m Lg 2)

with an error less than 2% as

> 7 . 8 3  this can be approximated by using a standard curve fit technique

PL2
=  7r2 - 6

El{mLg f
P 3

(7.2.56)

This is demonstrated by the solid line in figure 7.2.6.

/
Hence L = 7T

Similarly for the second form

( E ^
i//2

" i - A
El(mLg f Yi

l  P  J n l P 3
(7.2.57)

m * L ' =55.83  
E l

(7.2.58)

P  - m L g  Lx (7.2.59)

p3 p3
/  « „ . = >  2 2 p  55.83 (mLg )  E l  m. g  E l

(7.2.60)

P  = mLgL, _ 5 5  83 B > 55.83 
m / g 2P /  E l  K 2

(7.2.61)

P 3
Similarly for the third form ----^ \ ---- — 1 4 7 .3 9  (7 2 62)

mL g  E l

Hence the lengths of successive buckling cycles can be calculated along with the forces to that 

point.

As proven previously in section 7.2.4 there are no reaction forces present during sinusoidal 

buckling, therefore the force required to cause sinusoidal buckling is given by:
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P s =  m i M g ^ (7.2.63)

7.2.7 Critical force for the inception of helical buckling

The investigation being carried out looked at what happens throughout the complete cycle of 

events from initial insertion of the rod through sinusoidal buckling to helical buckling and 

lock up. For the analysis to proceed, a criterion was necessary to establish when buckling 

changed from sinusoidal to helical buckling. Work carried out by (Chen et al, 1990) had 

looked at buckling of tubulars in horizontal oil wells and had by analytical methods, derived 

the equation below which gives the critical force for the onset of helical buckling.

This equation was in agreement with published work of (Lubinski, 1962). (Chen et al, 1990) 

also confirmed this analytical work experimentally by means of a 3 mm diameter aluminium 

rod locked in a transparent cylinder 2.4 metres long.

The forces which cause the onset of helical buckling are the summation of forces arising from 

all the sinusoidal buckled shapes. These forces are caused by friction only, no reaction forces 

are present.

7.2.8 Helical deformation

The axial force seen by the rod as it is inserted into the tube force is generated predominately 

by the normal reaction forces between the rod and the tube.

p  = 2 U  E IS m L i  2
cr (7.2.64)
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From analysis of the forces shown in figure 7.2.7 it can be shown that the total radial force on 

the inside surface of the tube is

R NORMAL

A full analysis is given in Appendix I.

(7.2.65)

However perfect helical buckled shapes will not happen instantaneously. It must be assumed 

that several cycles will be required for the rod being deformed from start of transition to a 

fully formed helical shape as defined below, although other assumptions could be made.

1st transition cycle
NORMAL

P
P

(7.2.66)
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2nd transition cycle

3rd transition cycle

P ...... = 5  —  P
NORMAL

P .  = 1 0 — P
NORMAL

P

(7.2.67)

(7.2.68)

Subsequent helical cycles
P

(7.2.69)

7.2.9 Incorporation of sinusoidal and helical buckling into the model

The total inserted length is made up from the sum of the sinusoidally buckled section, the 

transition section where buckling is changing from sinusoidal to helical and the section where 

fully developed helical buckling occurs. Sinusoidal buckling section is broken into first mode

buckling L x, second mode buckling L 2 and subsequent buckling modes L 3, Z4 e tc . The 

lengths and forces in this sinusoidal zone are calculated by methods shown in section 7.2.1 for 

L x and L 2, and section 7.2.6 for L 3,L 4 etc. Transition from sinusoidal to fully developed

helical buckling is observed in the model to take place over approximately four cycles. This 

change is reflected by the almost parabolic section of the force/distance graph between the 

linear sinusoidal part and the almost exponential helical part.

In fully developed helical buckling, the rod is forced against the inner surface of the tube and 

large reaction forces are developed. These reaction forces, combined with friction, generate 

large axial forces which quickly cause lock up of the rod in the tube.

The lengths and forces in the transition to helical and fully developed helical buckling zones 

are calculated by methods shown in section 7.2.8.
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7.2.10 Development of the Excel model

The object of this investigation is to calculate the inserted length of the rod into the tube and 

the forces generated whilst this taking place. The process is described briefly below.

begins to change to helical buckling. The transition to fully developed helical buckling takes 

place over several cycles. After helical buckling occurs the force rises rapidly and the rod 

locks up in the tube with no further insertion possible.

section 7.2.1. All further sinusoidal buckled lengths are calculated as defined in section 7.2.6. 

In sinusoidal buckling there are no reaction forces present, therefore the insertion forces are 

calculated based on inserted length and friction.

The process of calculating lengths and forces, and summing them continues until the total 

force equals that as defined by (Chen et al, 1990) as the minimum to cause the onset of helical 

buckling. The lengths and forces for the transition segment and fully developed helical 

segment are calculated as defined in section 7.2.8.

In fully developed helical buckling the force rises very steeply and an arbitrary high value is 

set to ensure that the rod has fully locked up.

Overview of calculation of length of buckled shapes and forces 

Sinusoidally buckled zone

Length of buckled shapes in this zone are given by

As the rod is inserted buckling starts as sinusoidal and when a minimum force is reached it

Taking account of this, the model calculates the first and second buckled lengths as defined in

(7.2.9)

(7.2.12)
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(7.2.57)LN >  2

( E I >
i /
72

1 - A
E l ( m Lg ) 2

1

{ P J 7T2 i

U)

1__
__

As there are no reaction forces in the sinusoidal buckling zone the forces for each buckled 

shape in this zone are given by

F s =  m L/u g L (7.2.63)

Transition zone

If the force given by equation 7.2.63 exceeds that given by

P  = 2
1.5 EIgmL

(7.2.64)
0.5 ( D - d )

the rod has started to transition from sinusoidal to helical buckling. Transition to fully 

developed helical buckling is estimated to take place over four cycles. The length of the 

buckled shapes in this zone are given in Appendix J

^ E I 4
4 = 2 " *

V ^ A M  J
(J.9)

The forces for each of the four buckled shapes in this zone are given by
f

P  = PJ  N  1  N - 1 1 + 2 n 7
1

*4-min(/7iig',4) M
D - d \

v LN J
(J.12)

Fully developed helical buckled zone

The length of the buckled shapes in this zone are again given by

L ,  = I n
VPN-lJ

The forces for each buckled shape in this zone are given by

2 D - d " '  1 +  27T Hp  = p
1 N  4 - 1

I N J

(J.9)

(A.J.12)
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7.2.11 Demonstration of the Excel model

The model is demonstrated for a typical configuration (d = 3 mm, D = 13 mm and fi = 0.8) in 

Figure 7.2.8.

Figure 7.2.8 Theoretical results for the insertion force versus the inserted length for
d = 3 mm, D = 13 mm and JU -  0.8

The figure demonstrates the following features:

• transition to helical starts at about 1600 mm

• insertion force a linear function of inserted length before transition

• rapid increase of insertion force after transition

• maximum insertion about 1850 mm

• circles denote the length of individual buckled shapes

• the length of the first buckled shape (at the leading edge) about 220 mm

• the length of the second buckled shape about 200 mm

• the length of the third buckled shape about 160 mm
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8. Comparison of Theoretical Results with Experimental Data

8.1 Comparison of theoretical result with experimental data for the rod 
deformation

The theoretical results obtained from the model developed in this work are compared with a 

sample of the experimental results presented in Table 6.3.1. The theoretical results were 

obtained using the model with the friction factor chosen in such a way so that the theoretically 

calculated maximum inserted length equal to the experimentally obtained maximum inserted 

length. The comparison is shown in Table 8.1.1.

rod
diameter 
d [mm]

tube
diameter 
D [mm]

maximum 
inserted 

length [mm]

number of 
sinusoidal cycles

number of 
helical cycles

experimental theoretical experimental theoretical
3 15 1600 ~10 10 to 11 ~2 2 to 3
3 22.8 1000 ~7 5 to 6 ~2 2 to 3
3 33.4 950 ~5 4 to 5 ~1 2 to 3

Figure 8.1.1 Table giving description of rod deformation.

8.2 Comparison of Theoretical Result with Experimental Data for 
Insertion Tests

The theoretical results obtained from the model developed in this work are compared with the 

experimental data presented in Section 6.4. The experimental results are shown in grey and 

the theoretical results in black. Each figure contains at least two sets of theoretical results, 

which are obtained for different values of the friction factor.

The comparison for D = 8.6 mm and d = 3 mm is shown in Figure 8.2.1. The comparisons for 

D = 13 mm, and d = 3 mm and d = 6 mm are shown in Figures 8.2.2 and 8.2.3 respectively. 

The comparisons for D = 15 mm, and d = 3 mm, d = 4 mm, d = 5 mm and d = 6 mm are 

shown in Figures 8.2.4, 8.2.5, 8.2.6 and 8.2.7 respectively. The comparisons for D = 19 mm, 

and d = 3 mm, d = 4 mm, d = 5 mm and d = 6 mm are shown in Figures 8.2.8, 8.2.9, 8.2.10



and 8.2.11 respectively. The comparisons for D = 22.8 mm, and d -  3 mm, d = 5 mm and 

d=  6 mm are shown in Figures 8.2.12, 8.2.13 and 8.2.14 respectively. The comparisons for D 

= 28.6 mm, and d = 3 mm and d = 6 mm are shown in Figures 8.2.15 and 8.2.16 respectively. 

The comparisons for D = 33.4 mm, and d -  3 mm, d = 5 mm and d = 6 mm are shown in 

Figures 8.2.17, 8.2.18 and 8.2.19 respectively.
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Figure 8.2.1 A comparison of the theoretical results for // = 0.6 (•) and /j. = 0.55 (A) 
with the experimental data (grey symbols) for d = 3 mm and D = 8.6 mm.
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Figure 8.2.3 A comparison of the theoretical results for /j = 0.95 (•) and // = 0.90 (A)
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Figure 8.2.6 A comparison of the theoretical results for ¡u = 0.75 (•) and ¡j. = 0.70 (A) 
with the experimental data (grey symbols) for d = 5 mm and D = 15 mm.

Figure 8.2.7 A comparison of the theoretical results for /u = 0.80 (•) and fi =  0.75 (A)
with the experimental data (grey symbols) for d  = 6 mm and D  = 15 mm.
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Figure 8.2.11 A comparison of the theoretical results for ju=  1.15 (•) and //=  1.00 (A)
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9. Discussion

9.1 Comparison of Theoretical Results with Experimental Work

9.1.1 Rod deformations

Section 8.1, which compares the theoretical results of the present model with the experimental 

data, shows that there is a reasonable agreement between the theoretical results and the 

experimental data for the number of total rod deformations. However, the results are less 

satisfactory when the total number of deformations is split between sinusoidal deformations 

and helical deformations. The most likely reason is that it was found difficult to differentiate 

between sinusoidal and helical deformations in the transitional region. Nevertheless the 

results confirm the validity of the theoretical model developed in this work.

9.1.2 Insertion tests

Section 8.2, which compares the theoretical results of the present model with the experimental 

data, shows that the model provides an excellent description of the relationship between the 

insertion force and the inserted length. The theoretical model also gives the initial linear 

relationship between the insertion force and the inserted length and then, once a critical 

penetration length is reached, a rapid increase in the insertion force.

The scatter in the experimental data is accommodated by the appropriate choice of the 

coefficient of friction between the rod and the wall of the containing cylinder, with the choice 

of the appropriate friction coefficient determined by the initial slope of the linear graph of the 

variation of the friction force with the inserted length. It can be seen from the graphs of the 

experimental results presented in Sections 6.4 and 8.2 that the initial slopes of nominally 

identical tests can differ appreciably. It can be also seen from the results in Section 8.2 that a 

spread in the coefficient of friction of about 10% to 20% is required to describe all nominally 

identical results.



Furthermore, the values of the coefficient of friction appear to vary from test to test, from 

about 0.5 for the smallest diameter rod to about 1.0 for the largest rod. This seems to suggest 

that in the case of dynamic conditions the coefficient of friction depends not only on the 

material properties of the two surfaces, but is also sensitive to contaminants and localised 

imperfections.

Nevertheless, provided the initial slope of the variation of the insertion force with the inserted 

length is known, the appropriate coefficient of friction can be determined for each condition 

with acceptable accuracy.

9.2 Sinusoidal and Helical Buckling

9.2.1 Sinusoidal buckling

As shown in section 7.2.7, the transition to helical buckling commences for the following 

conditions

f
P = 2 1.5 EIgml

0.5

0.5 ( D - d )
(9.2.1)

It should be further noted that before the transition to helical buckling the only forces acting 

on the rod are the frictional forces between the rod and the inner walls of the containing 

cylinder. If we then denote the inserted length at transition as Lcr, the critical force is also 

given as

Per = V tn LgL c

Equating equation (9.2.1) and equation (9.2.2) we then obtain

L  =
4d (  Z7r 1 ^

M

El  
m Lg d J

1

D / d - l
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(9.2.2)

(9.2.3)



which can be re-written as

i f  El )
4 --------------7

M \ m L§d )

'2  f

D/d - 1

(9.2.4)

Hence the dimensionless length of the transition to helical buckling is a function of three 

dimensionless groups: (i) the coefficient of friction ¡1 , (ii) the parameter EJ/m^gd3, which 

combines the relevant material properties of the rod, and (iii) the geometry parameter D/d. 

The dimensionless length of the transition to helical buckling decreases with the first 

parameter and the third parameter, and increases with the second parameter.

9.2.2 Helical buckling

Experimental work indicates that there is a transitional region between sinusoidal buckling 

and fully established helical buckling. A particular transition regime is assumed in this work, 

but the effect of any reasonable choice of the transition regime is relatively small.

As demonstrated by experimental work and the theoretical model developed in this work, the 

required insertion force increases rapidly after the transition to helical buckling. This, as 

discussed above, ensures that the length of the individual buckled elements decreases rapidly 

after the transition to helical buckling. The decrease is so rapid that there is an asymptotic 

limit on the maximum insertion. This is discussed further in the next section.



9.3 Maximum Insertion

Theoretical results for the insertion force as a function of the inserted length for a rubber rod 

in glass (d= 5 mm, D = 15 mm and f l  = 0.7) are presented in Figure 9.3.1.
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Figure 9.3.1 Theoretical results for the insertion force as a function of the inserted length 
for a rubber rod in glass (d= 5 mm, D = 15 mm and JU = 0.7).

The theoretical results also show that the region of sinusoidal deformation extends to Lcr = 

3077 mm, and that the total theoretical insertion is Ltot = 3450 mm. This implies that the 

maximum theoretical extent of helical deformations is 373 mm, or about 11% of the total 

theoretical insertion.

This result is typical for all cases investigated in this work, with the typical maximum 

theoretical extent of helical deformation of about 12% of the total theoretical insertion, and 

the maximum theoretical extent of helical deformation up to about 22% of the total theoretical 

insertion.

It should be pointed out that the maximum theoretical insertion is only achievable if the 

available insertion force is infinitely high and if the rod feed conditions are such that the

9.4



insertion system can accommodate very small deformation without tripping. For example, the 

insertion force typically used in the present series of experiment was of the order of 2 N, 

which would limit the maximum insertion to about 3350 mm. Hence the extent of helical 

deformations would be about 273 mm or about 9% of the maximum deformation.

The maximum deformation would thus depend on the available insertion force. The 

theoretical model developed here can then be used to determine the maximum insertion. 

However, because of the rapid increase of the required insertion force after transition to 

helical buckling, the maximum penetration would be, typically, about 10% above the critical 

length Lcr given by equation 9.2.3.

9.4 Influence of Design Parameters

The influence of the design parameters will be discussed with reference to equation (9.2.3). 

The influence of the coefficient of friction fj, is straightforward. The maximum insertion

increases indirectly with the coefficient of friction. This is also demonstrated in figure 9.4.1.

Inserted length [lO^m]

Figure 9.4.1 Influence of the coefficient of friction on the theoretical results for the 
insertion force as a function of the inserted length for a rubber rod in glass 
(d = 5 mm, D = 15 mm, and f l  = 0.7 (□), / /  = 0.5 (o) and /J, = 0.3 (O)).



Equation 9.2.3 also demonstrates that the maximum insertion increases with the square root of 

the elastic modulus {E? '5), and, since mass per unit length mi is proportional to the material 

density p, the maximum insertion decreases with the square root of the material density {p'0'5).

The influence of the rod diameter in the present case can be also determined from equation 

(9.2.3). Since the second moment of area /  increases with ct, the mass per unit length with d2 

and the last term of equation (9.2.3) is approximately proportional to cf'5, the maximum 

insertion increases approximately with the rod diameter d. This is also demonstrated in 

Figure 9.4.2. This is confirmed by the experimental results shown in figures 6.4.20, 6.4.21, 

6.4.22 and 6.4.23.

Figure 9.4.2 Influence of the rod diameter on the theoretical results for the 
insertion force as a function of the inserted length for a rubber rod in glass 

(£>=15 mm, fj, =0.7, and d= 3 mm (□), d = 4 mm (o), d = 5 mm (O) and d = 6 mm(A)).

The influence of the diameter of the containing cylinder D can also be determined from 

equation (9.2.3). This shows that, for a given rod diameter d, and constant material properties 

and the coefficient of friction, the maximum insertion increases with decreasing diameter D. 

This is also demonstrated in figure 9.4.3. This, perhaps surprising results is also confirmed by 

the experimental results in figures 6.4.24 and 6.4.25.
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Figure 9.4.3 Influence of the diameter of the containing cylinder on the theoretical results for 
the insertion force as a function of the inserted length for a rubber rod in glass (d = 3 mm, 

fd = 0.7, and D = 30 mm (□), D = 20 mm (o), D = 10 mm (O) and D = 5 mm(A)).

9.5 Extrapolation to Coiled Tubing

The model developed in the present work is extrapolated to typical field situations using coil 

tubing. The base scenario assumes coiled steel tubing of outside diameter d = 38 mm and 

wall thickness t = 3 mm, and the following material properties: E = 2.1xl01] Nm'2 andp = 

7900 kgm'3, being inserted into horizontal casing with D = 100 mm. The variation of the 

insertion force with the inserted length for three different values of the coefficient of friction 

(JU = 0.1, 0.2 and 0.3) is shown in figure 9.5.1.
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Figure 9.5.1 Influence of the coefficient of friction on the theoretical results for the insertion 
force as a function of the inserted length for steel coiled tubing (d = 38 mm, D = 100 mm, and

jU = 0.3 (O), / /  = 0.2 (□) and JU = 0.1 (o)) .

The critical lengths for the transition to helical buckling are 1180 m, 1780 and 3560 m for fU

= 0.3, 0.2 and 0.1 respectively, with the maximum insertion about 3% above the critical 

lengths for the transition to helical buckling.

The figure clearly demonstrates the importance of the lowest possible coefficient of friction in 

order to maximise the maximum insertion.

The effect of increasing the diameter of the coiled tubing is demonstrated for D = 100 mm, t = 

3 mm, JU = 0.2 and three different values of the diameter (d -  48 mm, d= 38 mm and d = 28 

mm) in figure 9.5.2.
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Figure 9.5.2: Influence of the external diameter of coiled tubing on the theoretical results for 
the insertion force as a function of the inserted length for steel coiled tubing (D = 100 mm, 

H =  0.2, and d = 28 mm (o), d = 38 mm (□) and d = 48 mm (O )) .

The figure demonstrates, once again, that increasing the diameter d increases the maximum 

insertion length.

As discussed above the maximum insertion length can be increased by increasing the elastic 

modulus of the coiled tubing material and by decreasing the density of the coiled tubing 

material. It should be noted, however, that increasing the wall thickness of the coiled tubing 

has no effect. The reason is that both the second moment of area and the mass per unit length 

are approximately proportional to the wall thickness, and hence, as shown by equation 9.2.3, 

the effect on the maximum insertion length is negligible.

Finally, the effect of the diameter of the horizontal casing D is demonstrated for d = 38 mm, 

d -  3 mm, f i  = 0.2 and three different values of the diameter (D = 125 mm, D = 100 mm and

D  = 75 mm) in figure 9.5.3. The figure shows, once again, that the maximum insertion length

increases with the decreasing diameter of the horizontal casing.
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10. Conclusions

The research programme investigated the limits on the maximum penetration of coiled tubing 

in horizontal oil wells. These limits are due to buckling, in particular helical buckling, during 

which the required insertion forces increase exponentially.

Previous investigations have been reviewed; these investigations can be divided into two 

areas:

(i) The theoretical approach backed by laboratory experiments in which the end of the 

containing tube is obstructed, so as to allow buckling to develop.

(ii) Full scale tests that meet with the practical problems but do not provide as much 

information, and difficulties of scale can also extend the time required to complete 

satisfactory tests.

The laboratory tests have demonstrated the buckling phenomenon but have not re-created the 

conditions existing in a well.

During the course of this research a completely new approach to the investigation of this 

important problem has been developed. A novel experimental apparatus was developed, 

which uses tubular members of very low flexural rigidity and high value of friction between 

the tubular and a transparent containing cylinder. This apparatus allows limits on penetration 

of the tubulars to be observed in under 5 m of insertion.

The experimental apparatus enables the simultaneous measurement of the insertion forces and 

the inserted length, using a suitable designed control and data acquisition system.

All of the experimental results demonstrate similar qualitative behavior in that the shape of 

the rod being inserted into the tube consists of three regions:

(i) The initial, apparently straight section.

(ii) The subsequent section with sinusoidal deformations.
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(iii) The final section with helical deformations.

The region with the fully developed helical deformations is relatively small, and is confined to 

about the last 10% to 20% of the inserted rod.

All the graphs for the variation of the insertion force with the inserted length indicate a clear 

trend:

(i) The insertion force initially increases linearly with the inserted length.

(ii) A critical length is reached, at which the insertion force increases very rapidly. 

Even though all figures demonstrate some scatter and uncertainty, the critical 

length is reasonably well defined for all combinations of the rod and the containing 

cylinder diameter investigated in this work.

(iii) The graphs also indicate that for a constant diameter of the containing cylinder the 

critical insertion length increases with the diameter of the rod, and that for a 

constant diameter of the rod, the critical insertion length decreases with the 

diameter of the containing cylinder.

A theoretical model of penetration has been developed, which is in excellent agreement with 

the experimental data. This model can be used to determine the importance of various design 

parameters on the maximum penetration of tubulars in horizontal wells.

The model shows that the dimensionless length of the transition to helical buckling is a 

function of three dimensionless groups:

(i) the coefficient of friction

(ii) the parameter EI/migd3, which combines the relevant material properties of the 

rod.

(iii) the geometry parameter D/d.

The dimensionless length of the transition to helical buckling decreases with the first 

parameter and the third parameter, and increases with the second parameter.
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The theoretical model also shows that for a constant diameter of the containing cylinder the 

critical insertion length increases with the diameter of the rod and that for a constant diameter 

of the rod the critical insertion length decreases with the diameter of the containing cylinder.

Finally, the model suggests that in order to maximise the penetration of coiled tubing in 

horizontal oil wells the friction factor should be as small as possible, the modulus of elasticity 

should be as large as possible, the diameter of the tubing should be as large as possible and the 

diameter of the well should be as small as possible. It is also shown that the wall thickness has 

a negligible influence on the maximum penetration.
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11. Further Work

Future research work could look at the critical areas which were identified during the course 

of this study and include the following :

(i) Examination of the influence of the friction coefficient and how to manage its 

behaviour.

(ii) Investigation of non-straight, non-horizontal tubes.

(iii) Application of the mathematical model to full operational conditions and 

development of an algorithm to optimise the penetration of coiled tubing in field 

conditions.
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Appendix A

This appendix contains the paper “ Penetration of tubulars in horizontal oil wells” published
by the Institution of Mechanical Engineers.
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Appendix B

Czech Technical University, Prague, 3rd International Conference on Advanced Engineering 
Design 2003.

This appendix contains the paper “ Design of a flexible small scale drive” published by the
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Appendix C

This appendix contains the procedure used to determine the elastic modulus.
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Appendix C

a. Test set up as that shown in Figure 4.2.1.

b. Samples must be kept clean and not come into contact with solvents, oils or any fluids or 

materials which could alter their material properties in any way.

c. The test area with all samples to be tested must be kept at a constant temperature for at 

least two hours prior to the test commencing.

d. All samples under test must be the same one metre length.

e. Install a test sample e.g. 3 mm diameter specimen to the rig with no weight except that of 

the weight carrier.

f. Zero the dial gauge on datum surface at top of clamp attached to test sample to give 

minimum length before extension commences.

g. Add a 10-gram weight to carrier and bring down pointer to contact datum surface and 

record extension. Time taken from applying load to recording extension is kept to 30 

seconds for all loads applied up to the maximum.

h. After the maximum load has been applied, all loads must be removed and test sample 

length measured to ensure sample returns to its original length.

i. Carry out a minimum of 5 tests per sample.

k. Repeat above for rod sizes 2 mm to 6 mm diameter

This appendix contains the procedure used to determine the elastic modulus.
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Appendix D

This appendix contains the buckling analysis, fixed-free with own weight
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Appendix D 
Buckling Analysis 

Fixed-Free
Buckling with own Weight

The basic bending equation is E I ~ y  = M 
dx

(Dl)

Consider the bending moment at a point x from the fixed end. Initially the bending moment 

dM will be calculated for a small element dx situated at a distance (z+x) from the fixed end. 

The total moment M, at x, will be obtained by integrating dM between x and L

Mass of element dm =  mLdz (D2)

Force is dF = dmg =  mLgdz (D3)

Elemental bending moment dM = d F ( y - y x) (D4)

i.e. dM = mLg.dz[y -  yx] (D5)

Total moment
L

M  =  \mLg[y -  yx]dz (D6)
X

Appendix D. 1



At this time y x can be considered as constant hence
L L

M  -  mLg \ y d z  -  mLg  \ y xdz
x  x

(D7)

L

M  = mLg \ y d z - m Lg y x[z\Lx
X

(D8)

L

M  = mLg \ y d z  -  mLg y x{L -  x) (D9)

Equation (D9) gives the moment acting on the beam at a distance x from the fixed end. To 
consider the general equation for bending, the deflection y x should now be considered as a 
general deflection^ at any point x.

i.e. yx = y

Therefore the general bending moment is:
L

M  -  mLg  \y d z  -  mLg y (L  -  x)
x

Substituting equation (D ll) into equation (Dl)

E l  = mLg  \y d z  -  mLg y (L  -  x) 
dx x

d 2y  LE l  + mLg y ( L  - x ) -  mLg  \ydz  = 0
LlA, ^

To eliminate dimensions let

yV  =
L

<p =

Substitute into (D13)
L

y  = vL  

x  = ^ L  

z  = cpL

El + mLg v L { L - ^ L ) - m Lg\vLLd(p = 0 (D17)
d 2vL

d { y F )
L

FIT d 2v 1
~TT~cu? + mLgvLL(l m t-gL2 \ vd(p = 0

(DIO)

(D ll)

(D12)

(D13)

(D14)

(D15)

(D16)

(D18)
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(D19)
E l  d 2v 
L d ?

+ mLg v l } { \  -% )  — mLgL2 \vd(p = 0

Multiply by

d 2v m,gvL2L
■ + ------- v ( l - £ ) -

EI
mLgL2L 1

d%2 E l

d 2v | mLg vE  
d E l

E l
\vdcp = 0

EI

Let K  =
mLgE_  ' " ’L

EI

(D20)

(D21)

(D22)

Hence
d 2v
d

+ K v ( \ - % )-  K \v d (p  -  0
f

(D23)

Boundary condition (a)
at x - 0 j  = 0 (D24)

x = 0

oll (D25)

Hence

ollAj» v = 0 (D26)

II O

oII (D27

Boundary condition (b)
at x - L V

 II V h- II * (D28)

hence £  = 1

IIII (D29)

Equation D23 cannot be solved analytically and a numerical solution had to be found. The 

method adopted was to subdivide the rod into a number of steps and using the finite 

difference approach and the trapezoidal rule to create equations for each point to form a 

determinant which could be evaluated to give the eigenvalues for K. An Excel spreadsheet 

was used with the determinant evaluation and goal seek tools.
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Formulation of equations to obtain eigenvalues

The general finite difference analysis is demonstrated on a six point, five 

interval system, shown below:

FIXED
END

K 6)

FREE
END

Equations are developed below for points 2, 3, 4 and 5 in terms of the 5 non zero 

displacements using equation (D23). As there will be 5 unknowns, a further equation is 

required. This equation is obtained from consideration of the fixing condition where the first 3 

deflections are assumed to be parabolic in terms of x.

Development of the first equation (Using a forward second order approximation)

As the first 3 points are considered to conform to a parabola, the deflections can be expressed 

in terms of the interval lengths, applying the end conditions

v ( l)  =  0 (D30)

d v = 0 « x = 0
d Z

(D31)

produces 4 v ( 2 )  -  v ( 3 )  -  0 (D32)
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To develop equations for points 2, 3, 4, and 5
d 2V

d ?
has to be expressed in finite difference

form and the integral is approximated using the trapezoidal rule.

i.e.
d 2v  _  v{n - 1) -  2v{n) + v{n + 1)

d ? ~  (A t f
(D33)

POINT 2 can be written as

v ( l ) - M 2 ) + v (3) + g v (2 ) [ i _ ^ ]

-  K&Z [V. v{2) +  v(3) + v(4) + v(5)+Y7 v(6)\= 0

and noting that, as shown above 1/ ( 1) = 0 this simplifies to

~ K (  A<f)

-2v(2) + K3) + X(A<f)V(2)[l-A<f]

3 [)/2 v(2) +  vQ) +  v(4) +  v(5) +  y 2 v{6)\ =  0

which can be further re-arranged as

v { 2 \ k { ^ ) 1 (1 -  A^) -  2 ~ y 2  K ( & t f  J

+ ^3)[l-X(A<f)3]

+ k(4)[-X(A^)3]

+ k(5)[-X(A^)3]

+ K ( 6 ) [ - ) / x ( A # ) 3j = 0

(D34)

(D35)

(D36)
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POINT 3 can be written

h (4) + M 3 H - 2 A r i

-  K A f LX ^(3)+ ^(4)+ k(5)+  ) /r (6 )J =  0

v(2) + v(3)+ [a:(A^)! (1 -  2A#)- 2 -  ) /  ̂ (A#)1 J

+ v(4)[l -  ^(Ai)J]+ k(5)[- ^(A^)3]

+  v ( 6 ) [ - ) / / f ( A r i IJ = 0

POINT 4 can be written

V { 3 ) - 2{^  +  V{5K k , ( 4 )  [ l - 3 A | ]

- ^ 4 X r i 4 )  + v ( 5 ) + ) / v ( 6 ) J = 0

v(3)+ k(4)+ |x(A<ri (1 -  3A ri- 2 -  y 2  K { A Ç j  J

+ v(5)[l-K(A<f)3]
+ v ( 6 i - y 2 K ( A i ) 3\= 0

POINT 5 can be written

V

(4) (A<f);)+>/(6) + “  4A#]

- K { A ^ \ y 2 v { 5 ) + y 2 v { 6 ) \ = n

v(4)+v { 5 \ k { A Î  )2(l -  4(A<f ))- 2 -  ) /  K {  A# ) 1 J 

+ ri6 )[l-^ 7f(A i)3J=0

(D37)

(D38)

(D39)

(D40)

(D41)

(D42)
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Determination of eigenvalues v ( l ) ,  v ( 2 ) ,  v ( 3 ) ,  v ( 4 ) ,  v ( 5 )  and v ( 6 ) the coefficients 
are shown below

The analysis shown generates 5 unknowns and 5 equations

v ( 2 ) v(3) v(4) v ( 5 ) v(6)
4 -1 0 0 0

2 K (A < fM l  -  Acf)

- 2~ y 2K m 3
l - X ( A i ) 3 - K (A £ )3 - K (  A f )3 ~ y 2K (  A 4)3

3 1
K (  A£)2(l-2A<i)

- 2  ~ y 2 K ( t ^ 1 - /C ( A « 3 -X ( A ^ ) 3 ~y2K( â )3

4 0 1 K { A^)2 (l -  3Af) 

-2 -^ X (A f )3
l - X ( A ^ ) 3 - ) / ^ ( A < ) 3

5 0 0 1 X (A ^ )2 (1 -  4A<f) 

-2 -^ X (A i )3
l - j / x ( A i ) 3

Using the eigenvalue approach with increasing number of steps gives the following: 

The solution for six steps i.e. n = 6 is ^{n=6) = 7 .9 8

The solution for six steps i.e. n = 21 is -^(«=21) =  7 . 8 3

K, =- ”h S ^  = 7 . 8 3

E l
From equation (D42) we obtain

I ,  = 1 . 9 9

which is the length of the first buckled shape

E l
-, 1/

_mLg_

(D43)

(D44)

To determine the second mode buckling, the next eigenvalue was determined as K 7 = 55.8

i.e.
m Lg ( L l + L j

2 E l
(D45)
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( Z ,+ 4 ) =  55.8^
EI /3

= 3.82
EI

1™lS_ l mLg\

.L2 = 3 .8 2 -1 .9 9
’ EI  "X

= 1.84
' EI  l '

_w¿g j ™Lg  J

(D46)

(D47)
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Appendix E

This appendix contains solutions for lengths of individual buckled shapes (sinusoidal)
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Appendix E Calculation of lengths of buckled shapes Z,, Z2 & LN>2 (sinusoidal)
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Appendix E

Calculation of length of Buckled shapes LlyL2, & LN>2 . 
Buckling due to Own Weight

Following the analysis in appendix D the lengths of the buckled shapes are calculated below

Figure Appendix E. 1 First buckled shape 

The first eigenvalue from Appendix D gave a value of K x =7.83

l.e-™Lg£ » 
E l

= 7.83 = K,

L\  = 7.83
E l

mLg

L\ — K^>

L  =1.99

E l
mLg_

' E l  ' 

mLg

(El)

(E2)

(E3)

(E4)
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K2 = 55.8

Figure Appendix E.2 First and second buckled shapes

Using the second eigenvalue ofK 2— 5 5 .8

gives
El

=  5 5 .8  =  K ,

(l1+lJ  = k 2

( z ,  + L 2 ) - K 2  3

El
mLg

El
mLg

:.L2= K 2ï
El

mLg
- L

f  i i \
L2= K2i - K }i

v J
El

m Lg
i

Z2 = 1 . 8 4
El

mLg

(E5)

(E6)

(E7)

(E8)

(E9)

(E10)
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figure appendix E.3 First, second and third buckled shapes 

Using the third eigenvalue ofK 2= 147.4

gives m Lg(L l + L 2 + L 3)
El

- 147.4 = K 3

Z/j +  Lj + X3 = K y'
E l  ?

mLg

(E ll)

(E l 2)

1 /  1 l \ 1 E l  3
K 32 -

1 ^
 l

1 ro

- K j
V  J j n Lg  J

f  1 l \ "  E l  "

i

3

¿ 3  = A T 3 3 - A T 2 3

V ) L m L § _

(El 3)

(El 4)
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¿3 = 1.46
E l

_mLg_

Similarly ¿ : 4 = 2 8 i

(El 5) 

(El 6)

hence
f  i i \

L4 = K j - K j  
v )

¿4 = 1-27
E l

mLg

E l
m Lg

3

(El 7)

(El 8)
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Appendix F

This appendix contains the buckling analysis, fixed-free with own weight and axial force
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Appendix F 
Buckling Analysis 

Fixed-Free
Buckling with own Weight & Axial Force

Figure Appendix F.l

The analysis here follows the basic approach as developed in appendix D, in this case the 

axial force P is considered. This will introduce an additional term for the bending moment.

For equilibrium the algebraic sum of forces and moments must be equal to zero.

Define axial forces

1 ^  = 0 £ M  = 0
L

M B -  P 8 X -  \mLg y d x  = 0
X

(Fl)

L

M b -  P 8 X + \mLg y d x
X

(F2)

Py = P  + [mLg ( L - x )] (F3)

M  + Pyy - M B= 0 (F4)

M  = - P yy  + M B (F5)
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(F6)
L

M  -  - P y  -  [mLg{L  -  x)]^ + P 8 X + jmLg y d x
x

d 2v L
E l  — y  + Py + mLg{L -  x )y  -  P S X -  mLg  fydx  = 0 

dx x

Alternatively

^  ~  ^  end. force ^  self . weight

= P(S‘ -  y )
L

M ,.„t ,„¥ „ = mLg  \ y d z  -  m, g y (L  -  x)

M  = P (S ‘ - y ) + M ,elf^ u

E I ^ Y  = P {8 ‘ - y ) + M , „ f , mU

d 2v L
E l  — y  + P y -  P 8 X + mLg y (L  - x ) - m  g  [ydx  = 0

dx L x
d 2v L

E l  — y  + Py + mLg(L -  x)y -  P S X -  mLg  fydx  -  0 
dx x

To eliminate dimensions let

Substitute for M B and P

£ = -
L

IIX

8 XII | ' : . 8 X - L 8

(F7)

(F8)

(F9)

(FIO)

(FI 1)

(FI 2) 

(FI 3) 

(FI 4)

(FI 5) 

(FI 6)

: . y  = L v (FI 7)

Substitution for X , y  , and 8 X gives 

d 2L v
E l —— r  + PL v  + mLg ( l2v -  L 2v % )-  PL8 - m Lg jL 2vd^ = 0 (FI8)

Ld% £

E l - ^ y  + P L v  + mrg(L2v -  L2v% )-P LS  -  mLg'jL2vd<* = 0 (FI9) 
Ld8, f

L
To arrive at first term being simple second order differential term multiply b y ----

E l
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d 2v L
df +n PLv+n mœ(ü v - evt y j ï PLS-JïmLglü*i4 = o (F20)

Simplify

^  + ~ P L v  + —  .m , g l V ( l - f ) - —  PLS- —  m,gü)vdç = 0 (F21)
dÇ E l E l UT ‘ J bE l E l

Putting

d 2v PL1 L  t PL1 Ü \
dâ,2 E l E l 16 V W E l E l  iS J  s

d 2v PL1 ÜmLg
■ + -----v + ■

dÇ1 E l EL
PL2 5 ÜmLg \  
E l E l f

K  _  ™Lg L 3

El 
P Ü

B =
El

(F22)

(F23)

(F24)

(F25)

Gives î/V
+  5 i /  +  A V ( l - £ ) - 5 £ - * : J v e / £  =  0 (F26)

d 2y
dÇ2

+ B v - B Ô  + K v ( [ -Ç ) -K \v d Ç  = 0 (F27)

Boundary conditions OIIA
n v  = 0 (F28)

d vOIIAn - o (F29)
dÇ
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Formulation of equations to obtain eigenvalues
The general finite difference analysis is demonstrated on a six point, five interval system, 

shown below:

FIXED
END

K6)

FREE
END

Development of the first equation (Using a forward second order approximation)

As the first 3 points are considered to conform to a parabola, the deflections can be expressed 

in terms of the interval lengths, applying the end conditions

v(l)  = 0 (F30)

d V = 0  a, f  = 0 (F31)

produces 4v(2) -  v(3) = 0 (F32)

YYl = any point in the above case m = 6
n = number of segments where in the above case (w) = 5

(n + l )  = 6 , which is the end point
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POINT 2 can be written as

+ B v{m) -  B v(n + l)

+ K v(m )[1 -  <%(rn)\

+

v(m - 1 )  -  2v(m) +  v(m + 1 )  +  B(A<̂ )2'v(m) -  B{gf v{n + 1 )

The above equation is the general case for any point except 1 (start point) 
For point ( l)  we use the boundary conditions

^  =  0 at X = 0 
dx

As on page D4, the first equation is
4v(2)-v(3) = 0

POINT 3 can be written as 

m — 2 (remembering that v(l) = 0 )

2v(2) + v (3r i(A #fv(2 )- B (A £ fv (n  + 1)
+ X(A^)2[1-^(2)]v(2) 

I3[1<v(2 )+ v(3) + v(2) + ....v -0  (F35)

Extract coefficients for v (2 ) e t c . . v  (n  + 1)

v(2)|x(Ari2 {1 -  A f} -  2 + B (A 4 f  / 2 K ( A t f

+ v (3 )[ l- ir (A ^ ]  
+ v(4)[-X(A#)J]

+  V ( n \ - K { A ^ }
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v(« + l)[-Ä(Af)2-) /A :(A f)3J=0 (F36)

POINT 4 can be written as 

2  ( m ( n

v (m  -  l)[l]

- ( m -  l)AÇ} + B (A t )2 -  2 -  } / k (A£)3\ 

+  v{m +  l)[l -X (A £ )2]
+ v(m + 2)[-AT(A#)2]

+ v ( n \ - K { A f î ]

v(»+ 1)[-S(A#)2- Y 2 K { A f î \ = 0
POINT 5 can be written as 

m = n
v(n-l)[\]

v { n \K { A t f{ \  - { n -  l)A<f} + B i A ^ f  -  2 -  % K ( A { ) \  

v(n + l)[l - B { A#)2 -  Y 2 K { A ^ \ =  0

(F37)

(F38)
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We have 5 unknowns and 5 equations

v(2) v(3) v(4) v(5) v(6)

4 -1 0 0 0

2
K(A£)2(1 - Ai) 

-2+B(Ai)2-^K(Af)3
l-X(A )̂3 -*( â )3 -*(A<f)3 b(&{Y - y2K ( ^

3 1

K( A£)2(l-2Af)

-2+B(Aj)2-)/x(AS3 1-K(A£)3 -X(A0 3 ~y2K( Ai)3

4 0 1
K(A£)2(1 - 3A<f) 

-2+fi(Af)2-)/x(Ai)3
l-X(Ai)3 -j^X(Ai)3

5 0 0 1
X(Â )2(1 - 4A<f) 

-2+B(Â2-)/x(Â 3
l-̂ X(Ai)3

An array has been set up on Excel spread sheet fixed/free = own weight + axial force 

where n — 2 1 .

The dimensionless constants

is a measure self weight 

and

is a measure of axial end force

By setting B to zero (effectively zero end force) and using goal seek tool setting the 

determinant of the array to zero by selecting the appropriate value of K  gave a result of K= 

7.832. This is corresponds to the value derived by analytical means.

K  =
m hg L 3_  "*L

E l

B =
PL2
E l

(F30)

(F31)
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By setting K  to zero (effectively zero self weight) and using goal seek tool setting the 

determinant of the array to zero by selecting the appropriate value of B gave a result of

B = 2.465. This is corresponds to the value of 71

V 4 7
derived by analytical means.
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Appendix G

This appendix contains reaction forces during sinusoidal buckling

Appendix Content

Appendix G Reaction forces during sinusoidal buckling
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Reaction Forces during Sinusoidal Buckling

Reaction force in fixed, sliding-fixed arrangement

Appendix G

Figure Appendix G.l Vertical Column with end force and reaction force

The governing equation is E I ^ ~  = M  
dx

(Gl)

The bending moment

Hence

M  = P{S‘ - y ) - R { L - x ) - M T 

M  = - P y  + P S ' - R { L - x) - M ,

E l  = - P y  + PS* — R i t  — x )~  M t
dx

Which can be simplified by dividing by
1

El

(G2)

(G3)

(G4)
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d 2y  | 
dx2 El El El El

For

i 2 P  e* P  /  7- \ Ad T— -  + k y  = — ô ------ ( L - x ) ------ L
dx2 El  E I k ' El

P
k 2 = —  

El
The general solution of equation (G6) is

(G6)

(G7)

(G5)

y  =  y H +  y? ( ° 8)
where in (G8) the solution of differential equation, y, is equal to the sum of homogeneous 

solution y H and particular solution y  p , with y H being the solution of

where

d x 2
+ k 2y H = 0 (G9)

y H -  C, sin kx + C2 cos kx (G10)

Substitute (G8) into (G6)

d 2 (yH + y P)
dx2

+ k2(yH + y „ ) = y - 5 - - j - ( L - x ) - y L
El El El

(G il)

and using equation (G9) we obtain the equation for the particular solution yP

d 7y p , 72 P  j,. R (r  ̂ m t 
----- p-  + k y p = — S  -  —  ( L - x )
dx2 El El El

(G12)

Since the right hand side of equation (G12) is a polynomial of the first order

P = A  + Bx (G13)

dy ' = s
dx

(G14)

d ^ = o
dx2

(G15)

Therefore from equation (G12) we have
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(G 16)j 2 P  c* P  (i \ M tk y p = — à ------ ( / -  x ) ------ -
E l  E I k 7 E l

2 Pand where y p is the particular solution, which after division by k = ----  is given by
El

R  ( _ \ M T
y ? = s  (G17>

Hence

and

y  = C, sin(Ax)+ C2 cos(Ax) + S* - ^ ( L -  (G18)

—  = C,A:cos(Ax)- C2£sin(Ax) + — (G19)
dx P

Equation (G18) contains four unknowns, CX,C2,R  and M T , and hence we need four 

boundary conditions. These are:

x  = 0 y = o (G20)

x  = 0

oII (G21)

x - L II *

(G22)

x = L

oII (G23)

Boundary conditions in equations (G20-G23) can be re-written respectively as

B + S* ~ - L - ^  = 0 
P  P

Ak + -  = 0 
P

C, sin(ÆL) + C2 cos(kL) - =  0

(G24)

(G25)

(G26)
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(G27)

From equation (G25)

C]kcos(kL)~ C2k sin(&L) +
R

~P
= 0

R_

~kP
Substituting equation (G28) into equation (G27) we get

and hence

— kcos(kL)~ C2ksm(kL) + — -  0kP v y 2 v t p

^  _  R 1 - c o s (kL)
2 kP sin(&L)

Substituting equations (G28) into equation (G24) we get

R 1 -  cos (kL) . R M t
----------- . \  ' + S ----- L ------ - = 0
kP sin (kL) P  P

and hence

m t

p
= s* + R

kP
1 -  cos (kL) 

sin (kL)

\
- k l

Substituting equations (G28), (G30) and (G32) into equation (G26) we get

R
kP

sin(&L) +
R 1 -c o s  (kL) 
kP sin(&L)

and hence

i? i l-cos(fcL ) ^
kP  ̂ sin(A:L) y

R _  kLsin(kL) S*
P  2[cos(&L)- l] + klsm{kL) L

(G28)

(G29)

(G30)

(G31)

(G32)

= 0(G33)

(G34)
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which can be re-written as

R l _ klsin(kL)
~Py~2[cos(kL)-l] + khin(kL)

and the variation of RL/PSx as the function of kL can be obtained. 

Furthermore, it can be shown that the buckling occurs for

kL~ 7T

and since

s i n ; r  -  0

equation (35) shows that when buckling occurs

R = 0

(G35)

(G36)

(G37)

(G38)

Hence when buckling occurs, reaction R equals to zero.
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Appendix H

This appendix contains the buckling analysis, fixed, sliding-fixed with own weight and axial 
force

Appendix Content

Appendix H Buckling analysis, fixed, sliding-fixed with own weight and axial force
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Appendix H 
Buckling Analysis 

Fixed, Sliding-Fixed
Buckling with own Weight & Axial End Force

The analysis here follows the basic approach as developed in appendix F, except in this case 

the boundary conditions at X = L have changed, it is now a sliding-fixed condition.

For equilibrium the algebraic sum of forces and moments must be equal to zero.

Y ,F  = 0 £ M  = 0

Define axial forces

L

M b + M t -  P S X jmLgydx = 0
X

(Hi)

L

M  B = P S X + \mLg y d x  -  M r
X

(H2)

Py = P  + [mLg ( L - x )] (H3)

M  + Pyy - M B= 0 ^ > M  = - P yy  + M B (H4)

Substitute for M  „ and P
a  y
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M  =  —P y  -  [mLg { L  --  x )]t  +  P 8 X +  §mLg y d z  -  M T (H5)

v j d ' y  A/rE l — j -  =  M
dx

(H6)

E I ~ y  +  P y  +  m Lg ( L -  
d x

L

x ) y  -  P 8 X -  m Lg  Jy d z  +  M T -  0
X

(H7)

Y

Ar>IIX (H8)

s - 5-
L

* II Oo (H9)

K II II (H10)

L
To convert M r to be dimensionless multiply b y ----

E I

• , M t L
. A  = — — (HI 1)

Substitution for x  , y  and 8* gives

E l L + PL v + mLg(L -  L%)L v  -  PL8 -  mLg  \LvdL% + A = 0 (H12)
d{L£)

j  2 T  *, ,

E l  + P I k + mLg { p v - L2v^)~ P L 8  -  mLg | L2vdif  + vi = 0 (H13)

t2 ,
E l -----j  + P Lv + mIg { p v -  PL8 - m Lg  ¡E vdg + A -  0 (FI 4)

' i

To arrive at first term being simple second order differential term multiply by
L

Y i
d 2v L,f l + - ^ P ^  + - ^ m Lg(L2y - L ^ ) - ^ - P L S - ^ m lg)L1̂  + u = 0 m 5) 
dg h i  h i  El E l i

Simplify

^ + ~ P L v + j j mLg M i - t ) - h pL s - j I mLg i;'fMiz+ A = o(m6)
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Putting

and

d 2v PL1 Ü  /- ,x PL1 E  \  À n
— — + ---- vh------ m ,g v { \ - c ) ------- S -------m .g  \vd£ + A = 0
dÇ2 E l E l L& V W E l E l L&j S

K  = rth ëÊ _
El 

PL2
B =

El

d 2v
d ?

+ B v  + K v ( \ - Ç ) - B S - K jv d Ç  + A = 0

d 2v
dÇ2

+ B v - B Ô  + K v ({ -Ç ) -K \v d Ç  + A = 0

Boundary conditions
£  =  0 v =  0 

d v
dÇ

= 0

£  = 1
d v
~dÇ

= 0

(HI 8) 

(HI 9)

(H20)

(H21)

(H22)

(F23)

(H24)

(HI 7)
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Formulation of equations to obtain eigenvalues
The general finite difference analysis is demonstrated on a six point, five interval system, 

shown below:

FIXED
END

K  6)

FREE
END

Development of the first equation (Using a forward second order approximation)

As the first 3 points are considered to conform to a parabola, the deflections can be expressed 

in terms of the interval lengths, applying the end conditions

v ( l)  = 0 (H25)

d v
—  = 0 at £  =  0 (H26)
dg

produces for POINT 1 4 l/(2 ) —1/(3) =  0 (H27)
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For any inside point, the finite difference equation can be similarly written as

v { m - \ ) - 2 v { m )  + v(m + \) „ / \
J -̂------l  + B v ( m ) - B v ( n  + 1)

(A ^) W  V '

+ Kv(m)[  1 -  cf(ra)]

-  K { v ( m )  + v{ m + 1) + ..v( n) + j Z v(n + 1)J+ A -  0 (H28)

which can be re-arranged as

v{m - 1) -  2v(m) + v{m + 1) + Z?(A )̂2 v(m) -  B(<%)2 v{n + 1)

- K ( v ( m )  + v (m  + 1) + ..v(n) + v (n  + 1)]+ (A^)^ A = 0

(H29)

2 vy" 1’ ' r y " 1  ' v  ' ■*rv " '  1 / 2  

POINT 2 (m = 2) can be obtained from equation (H29) as

-  2 v ( 2 ) + v(3)+ U(A^)1 v(2)- S(A^ )2 v(6)

+ X(A<f)2[l-#(2)]v(2)

- i ( A ^ ) 3[|/v(2)+v(3)+v(4)+v(5)+^v(6)]+(A#)2 ^  =  0 (H30)

Extract coefficients for v{2)etc

v(2)|x(A£ )2 {l-A £}-2 + 5(Af )2 ) /  X ^ ) 3

v ^ l - X ^ ) 3] 

v(4)[-X(Ai)J] 

v(5)[-X(A#)’]

+  4 ( A i ) 2 ] = °  ( H 3 1 )

+

+

+

+  v
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POINTS 3, 4 and 5 can be similarly described 

We have 6 unknowns and 6 equations

v(2) v(3) v(4) v(5) v(6)
4 -1 0 0 0 0

2
X (A £ )2 (1 -  A£) 

-2 + B (a#)2 - ) / x (A£>3

1-K (A £ )3 -X (A ^ )3 -X (A ^ )3 - b (a ^ - ) 4 x (a í )3 (A i)2

3 1 K (  A Í)2 (1 -2 A Í)  

-2 + í?(a^ 2 - ) / x (AÍ)3

l - X ( A i ) 3 A<f)3 (Af)2

4 0 1
X (A f)2 (l -  3A Í) 

-2+B(Af)2 - ^ X ( ^ ) 3

l - X ( A i ) 3 -  B { A ^ f  -  y 2K ( A ^ (a*?)2

5 0 0 1
^ ) 2 ( 1 - 4 A ^ )

-2+B(Ai)2 - ) / x ( ^ ) 3

i - (a^ 2 - ) / x(a í)3 (A#)2

6 0 0 1 -4 3 0

An array has been set up on Excel spread sheet fixed/free = own weight + axial end force 

where n = 2 1 .

The dimensionless constants

is a measure self weight

is a measure of axial end force

K  _  m Lg L 3 
El

P I 2
B = —  

E l

. M rL 
A -  — —  

E l
is a measure of moment at fixed sliding part

(H32)

(H33)

(H34)
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By setting B to zero (effectively zero end force) and using goal seek tool setting the 

determinant of the array to zero by selecting the appropriate value of K gave a result of 

K= 18.95.

By setting K  to zero (effectively zero self weight) and using goal seek tool setting the 

determinant of the array to zero by selecting the appropriate value of B gave a result of

B = 9.85. This is corresponds to the value of 7t derived by analytical means.

However, both K and B contain the length L, which causes some difficulties when trying to 

determine the length. Hence we need to obtain another parameter, which does not contain the 

length L. Since the parameter B is proportional to L2 and the parameter K is proportional to 

L , the ratio B /L will not contain the length L

Hence the parameter

does not contain the length.

B 3 _  P 3

l ? ~ { m Lg f E I

3 /  2The graph of B versus B /  K  is shown and hence L can be obtained.

(H35)
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Hence for a given P 3 r
---- 7------ tx , L  can be calculated.
El{mLg 2)

Further consideration of the relationship between

Q_ PL2 
~ El(mLg )2

B 3 _  P 3 

K 2 (mLg f E I

(H36)

(H37)

First buckled form is due to its own weight only. Buckling will obtain when the fixed-free 

configuration buckles, which takes place, as shown above, for

m LgL ,2

El
7.83

Hence the equivalent end force on the first fixed-sliding member will be

cube both sides

Divide by WlLg 2

Divide by E l

and hence

P  = mLgLx

P 3 = m L2g % 2

2 2
g

= m Lg L '

_  m ig L ,
m ' g ’EI E l

1 _= 7.83

P 3

E l { m [ g 2)
> 7 .8 3

(H38)

(H39)

(H40)

(H41)

(H42)

(H43)
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The end force on the subsequent members will be greater

B 3

Y
>7.83

The relationship between
El{mLg 2)

and B is shown below

(H44)

For
e i R ? 1

> 7 .8 3  this can be approximated with an error less than 2% as

PL1 
E l

- 7 t  ~
E I{mLg )2

which is shown as the solid line in the above figure. 

Hence, L can be calculated as follows:

L =  7T
f  E l  Y 2 1 - A [

7TZ
e ^ l s )2

i/,-,1/

(H45)

(H46)
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Appendix I

This appendix contains the helical buckling analysis.

Appendix Content

Appendix I Helical buckling analysis
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Appendix I

Helical Buckling Analysis

“3 n~~r

■Kinref 1 Quantity lillf/Narat. detonation. muleriat. Ountntion etc »rime No/Referente

DCSt6H£l>_V
Cherkedtiy I approved By - Half I Filename 
(Kf(kfO_B'i 1 »PPROVfO 8Y 0*11 | FiltiMMt 0»K S tilt

NAPIER UNIVERSITY
HELIX FORCE ANALYSIS

FIGURE 7.2.7 | ¡ S z \ ïS ,

Figure Appendix 1.1

From similar triangles

H

P

2 n
D \

+ L 2

L

' I
2

L
+ 1

J

(Li)

if L = p  .. pitch

H

P

( ttD V

l  P  J + 1 (12)
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p = p
f n  D '

K P  J + 1 (1.3)

p L = n D
P  L

(1.4)

PL = — P  
L L

(1.5)

p ^ p (1.6)

Refer to Figure 1.1.

Take a very small angle CC and calculate the force normal to the inner wall of the tube

Ai>» = T s i n | -  (17)

since there are forces from both directions

AP = 2 P  sin —
w £ 2

(1.8)

a
and as — is very small

2

AP„ = P ,a

all of these forces must be added up over 2 n

P. = 2 *Pt
Hence the total force is

(1.9)

(1.10)

P = 2 71P. = I n . n — P  =  2 x 2— P (l.li)
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Appendix J

This appendix contains the excel model for predicting insertion length.

Appendix Content

Appendix J Excel model -  program listing
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Appendix J

A detailed description of the actual excel model is given below.

1 Input basic data

shape rod 
material rubber

eg

d m 0.003
D m 0.013
t m n/a
E N/m2 2.50E+07
M [-] 1
□ kg/m3 1373
g m/s2 9.81

Calculate input parameters

mL kg/m 0.0097
I m4 3.97E-12
P CR N 0.122991 transition force to helical
Lcr mm 1292 transition length to helical
Ltot mm 1500 total penetration
hel % 14 fraction of helical penetration

where

f
P  = 21  C R  ^

1.5 E I g m l
\ 1/2

0.5 ( D - d ) ,

H g m L
and to be multiplied by 1000 to convert to mm

(J.l)

(J.2)

3 Enter description line

N L n  [m] L Toi [mm] P m,s i n  [N] mode flag PN [N] PN [ 1 O^N]

where

N
Lv [m] 
Ltoi [mm]

number of buckled shape
length of the N-th buckled shape in [m]
total length (up to N-th buckled shape) in [mm]
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P N ,  S IN

[N] 
mode 
flag 
PN [N]
P N [10"4N]

total force (up to N-th buckled shape) with friction only (no reaction) in [N]

description of the deformation of N-th buckled shape
flag to be used to determine the development of the helical shape
total force (up to N-th buckled shape) with reaction, if appropriate, in [N]
total force (up to N-th buckled shape) with reaction, if appropriate, in [10"
4N]

4 Enter all N

Calculate Li

1/3l ,= k ;

A =1.99

E l
mLjug

E l
mLjug

1/3

"11/3

5 Calculate L2

L 2 = K ^ - K X'2

4 = 1 . 8 4
E l

E l
mLjug

1/3

-|V3

m LM g

(J.3)

(J.4)

(J.5)

(J.6)

Calculate LN in sinusoidal buckling for N > 2

6f  E l  V/2
Ln=7Ü T7

\ F n- 1 J 
Note that the field is different.

1 -
7T2F,

[El(mLjug)2]1/3
1/2

(J.7)
N - 1

7 Calculate LTot [mm]

Adding Ln and multiplying by 1000.

8 Calculate P n.sin [N]: only friction, no reaction forces 

(as would appear in sinusoidal buckling)

Appendix J. 2



p N  =  P n - i  +  ™ L M g L N (J.8)

9 Mode: determination of mode of buckling

i f  LTot < Lcr then enter SIN otherwise enter HEL

10 Flag: flag to be used to determine the development of the helical shape 

i f  SIN then add 0 otherwise add 1

The flag determines the number of helical cycles; hence if flag =1 we are in the first cycle, 

if flag = 2we are in the second cycle etc.

11 Calculation of pitch p  in helical buckling (noting that pN = hN when helical buckling is

reached)

L = 2 ]57r
' e i y 12

v ^ V i j

This only applies if the N-l mode is HEL

12 Calculation of L/v

i f  mode = SIN then use sinusoidal otherwise use helical

(J.9)

13 Calculate PN in helical buckling

P = P
1  N  1  N - l 1 +  2  7T2jU

D - d \
Ln y

(J.10)

However, this only applies when we are in the fully developed helical cycle; in the first 

three cycles we assume that instead of 27i2 (or about 20) the multiplying constant is 2.5, 5 

and 10 respectively.

This is achieved by multiplying 2n2 by

1
24-m in(y7ag,4) (111)
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If the flag = 1 then the multiplier is 1/8, if the flag = 2 then the multiplier is lA, if the flag 

= 3 then the multiplier is V i, and if the multiplier is > 4 then the multiplier is 1.

Hence the overall equation for helical buckling is

f
P  = PJ  N  1  W-1 1 + 2 7T2

V

1
» 4 -m in (_ /7 flg ,4 ) M-

D - d \

L'n y
(J.12)

14 General calculation of Pn [N]

i f  mode = SIN then use sinusoidal force otherwise use helical force

15 Avoiding numerical problems with the calculation of Ln

In order to avoid numerical problems

i f  Ln_x < 1 (T10 then LN = 1 (T20 (j. 13)

16 Avoiding numerical problems with the calculation of Pn [N]

In order to avoid numerical problems

i f  PN_X > 1050 then PN = 1050 (j.14)

17 The whole process continues

A copy of the above programme is given in the enclosed CD Rom as a file C.T. Model 10108.

Appendix J. 4




