
Napier University

Edinburgh

Department of Mechanical, Manufacturing and Software Engineering

Robot Calibration Using Artificial Neural Networks

by

Xiaolin Zhong

© 1995 Xiaolin Zhong

A Thesis Submitted in Partial Fulfilment of the Requirements of Napier University,
Falculty of Engineering for the Degree of

Doctor of Philosophy

November 1995

Declaration

I hereby declare that the work presented in this thesis was carried out by myself at
Napier University, Edinburgh except where due acnowledgement is made, and has not
been submmited for any other degree.

Xiaolin Zhong

(Candidate)

Date

u

Contents

Declaration.. ii

Contents... iii

List of Figures and Tables...viii

Glossary of Abbreviations..xi

Acknowledgements...xiii

Abstract... xiv

Nomenclature...xv

CHAPTER 1. INTRODUCTION.. 1

1.1 Research Background and Motivation..1

1.2 Robot Positioning and Calibration Problem...................................2

1.3 Applications of Robot Calibration..6

1.4 Overview of Thesis...7

CHAPTER 2. REVIEW OF PREVIOUS WORK..................... 10

2.1 Methods of Robot Calibration.. 10

2.2 Kinematic Model-based Calibration Methods...............................11

2.3 Non-parametric Calibration Methods... 17

iii

2.4 Artificial Neural Network Techniques...18

2.5 Artificial Neural Network Applications in Robotics......................20

2.6 Conclusions......................................*.........22

CHAPTER 3. ROBOT KINEMATICS AND KINEMATIC
ERROR MODELLING... 24

3.1 Introduction............................. 24

3.2 Kinematic Modelling Using Denavit-Hartenberg Model..............25

3.3 Kinematic Error Model and Special Jacobian Matrix....................29

3.4 Chapter Summary...37

CHAPTER 4. KINEMATIC IDENTIFICATION USING
RECURRENT NEURAL NETWORK PROCESSING............ 38

4.1 Introduction.. 38

4.2 Hopfield Recurrent Neural Network...40

4.3 RNN-based Kinematic Identification Algorithm............................43

4.4 Pose Measurement Using a CMM...47

4.5 Kinematic Identification Results for a PUMA 560 Robot............. 52

4.6 Chapter Summary... 64

CHAPTER 5. AUTONOMOUS CALIBRATION USING A
TRIGGER PROBE...65

5.1 Introduction... 65

IV

5.2 Formulation of the Kinematic Identification Model......................67

5.3 RNN-based Identification Algorithm...71

5.4 Data Collection...72

5.5 Results for a Puma 560 Robot..74

5.5.1 Simulation Results...75

5.5.2 Experimental Results..81

5.5.3 Cross-Evaluation Using CMM...88

5.6 Chapter Summary & Discussions..89

CHAPTER 6. GENERIC ACCURACY MODELLING USING
FEEDFORWARD NEURAL NETWORKS................................91

6.1 Introdction...91

6.2 A Generic Accuracy Function....................................93

6.3 Neural Network Architecture and Learning Algorithm..................96

6.3.1 Neural Network Architecture...96

6.3.2 Network Learning Algorithm...99

6.4 Simulation Example for a One DoF Manipulator.......................... 100

6.5 Network Training Using Experimental Data.................................. 103

6.6 Chapter Summary... 110

CHAPTER 7. ROBOT ACCURACY COMPENSATION
USING ARTIFICIAL NEURAL NETWORKS................. . 111

7.1 Introduction. I l l

7.2 Non-parametric Accuracy Compensation....................................... 113

7.2.1 Accuracy Compensation Using Polynomial Functions... 113

7.2.2 Accuracy Compensation Using Feedforward NN.......... 116

7.3 Model-based Accuracy Compensation... 124

7.3.1 Problem Formulation and Numerical Solutions............. 124

7.3.2 RNN-based Algorithm for Accuracy Compensation...... 127

7.3.3 Path Compensation.. 130

7.3.4 Compensation Near Robot Singularity............................ 133

7.4 Chapter Summary... 140

CHAPTER 8. CONCLUSIONS AND FUTURE WORK......... 141

REFERENCES...146

APPENDIX... 158

Appendix 1 Forward Kinematic of Puma Robot & Orientation Represent.....158

Appendix 2 Closed-form Inverse Kinematic Solution of Pinna Robot........... 159

Appendix 3 Ordinary Jacobian Matrix for Puma 560 Robot........................... 161

Appendix 4 Special Jacobian Matrix of Puma 560 Robot................................ 162

Appendix 5 Program for Data Collection Using a Trigger Probe................... 164

Appendix 6 Published Papers and a Provisional Patent.................................. 169

vi

List of Figures and Tables

Figure 1.1. Positioning Control of a Robot Manipulator..................................03

Figure 2.1. Biologically-inspired Neurocomputing Model...............................19

Figure 3.1. Denavit-Hartenburg Parameters for a Revolute Joint.................... 27

Figure 3.2. Relationship between Moving Frames and Base Frame................ 31

Figure 3.3. Relationship between the Differential Changes of the End-effector
Frame and the Differential Changes in the i-th Link Parameters..................... 32

Figure 4.1. Hopfield Neuron Circuit...41

Figure 4.2. Hopfield Analogue Neural Circuit Model......................................42

Figure 4.3. Experimental Set-up for Data Collection..47

Figure 4.4. Measurement Grid for Data Acquisition.. 48

Figure 4.5. Schematic of Measurement Set-up... 49

Figure 4.6. The End-effector (Measuring Cube) Coordinate System............... 50

Figure 4.7. Puma Coordinate Frame Assignment..53

Table 4.1. Nominal Parameters of a Puma 560 Robot Using D-H Model........ 55

Table 4.2. Identified Kinematic Parameter Errors of the Puma 560................. 57

Table 4.3. Residual Error Comparisions Using the D-H Model....................... 57

Figure 4.8. Time Evolution of Kinematic Error Identification......................... 58

Table 4.4. Nominal Parameters of a Puma Robot Using a Modified D-H Model
...61

Table 4.5. Identified Kinematic Errors of the Puma Robot.............................. 61

vii

Table 4.6. Residual Error Comparision Using the Modified D-H Model......... 62

Table 4.7. Residual Error Comparision Using the Modified D-H Model........62

Figure 4.9. The Residual Position Errors Distribution for 100 Test Points...... 63

Figure 4.10. The Relationship between the Observations and the Final RMS
Errors...63

Figure 5.1. Constraint Conditions for Co-planar Points................................... 67

Figure 5.2. The Trigger Probe...73

Table 5.1. Nominal Parameters of a Puma 560 Robot..................................... 75

Figure 5.3. Simulation Program Flowchart... 77

Table 5.2. Induced & Identified Kinematic Errors... 78

Table 5.3. Accuracy Comparisons for Calibration Points............................... 78

Table 5.4. Induced & Identified Kinematic Errors..80

Table 5.5. Accuracy Comparisons for Calibration Points............................... 80

Figure 5.4. Simulation Result with Induced Errors.. 81

Figure 5.5. Experimental Set-up for Data Collection...83

Figure 5.6. Time Evolution of Kinematic Errors during Identification........... 84

Table 5.6. Identified Errors of a Puma 560 Robot... 85

Table 5.7. Accuracy Comparisons Based on Test Points.......................85

Figure 5.7. Test Result with Experimental Data.. 86

Figure 5.8. Z-axis Constraint Plane Perceived by the Robot Controller.......... 87

Table 5.8. Cross-Evaluation Results Using a CMM.. 89

v ii i

Figure 6.1. Transmission of Individual Link Transformation Errors to End-
effector Error...94

Figure 6.2. A Pi-sigma Network with One Output... 98

Figure 6.3. One Degree of Freedom Manipulator.. 100

Figure 6.4. NN Representation of Generic Accuracy Model for a One DoF
Robot... 101

Figure 6.5. Training and Implementation of NN Accuracy Model..................103

Figure 6.6. Neural Network Architecture for Accuracy Modelling................. 104

Figure 6.7. Learning Curves for Positional Accuracy Modelling................... 106

Figure 6.8. NN Generalisation Test for Position Compensation..................... 109

Table 6.1. Accuracy Evaluation for Pi-sigma Network based-on Test Points 109

Table 6.2. Accuracy Evaluation for Backprop. Net based-on Test Points...... 110

Figure 7.1. Nonparametric Accuracy Compensation.......................................113

Figure 7.2. Training and Implementation of NN Accuracy Model.................118

Figure 7.3. Neural Network Architecture for Accuracy Compensation..........118

Figure 7.4. Learning Curves for Inverse Compensation.................................. 120

Table 7.1. Inverse Accuracy Compensation Results of Puma Robot............ 121

Table 7.2. Experimental Evaluation of Inverse Compensation Results......... 121

Figure 7.5. Accuracy Improvement of Inverse Compensation...................... 123

Figure 7.6. Accuracy Compensation Along the Path.................132

Figure 7.7. Robot End-effector and Wrist Singularity................................... 133

Figure 7.8. Position Compensation Near Robot Singularity.......................... 134

IX

Figure 7.9. Orientation Compensation Near Robot Singularity. 135

Figure 7.10. Joint Compensation Amount Near Singularity........................... 135

Table 7.3. Simulation Results for ¡j. = 101 in a Singular Configuration...........137

Table 7.4. Simulation Results for // = 106 in a Singular Configuration...........137

Table 7.5 Simulation Results for // = 108 in a Singular Configuration............ 138

x

Glossary of Abbreviations

ANN (or ANNs, or NN) Artificial Neural Netwoks

BP Back-Propagation

CCD Charge-Coupled Device

CIM Computer-Integrated Manufacturing

CNC Computerized Numerical Control

CMAC Cerebellar Model Articulation Controller

CMM Coordinate Measuring Machine

CPC Complete and Parametrically Continuous

D-H Denavit-Hartenburg

DoF Degree of Freedom

FMS Flexible Manufacturing System

GA Genetic Algorithm

LMS Least Mean Square

LVDT Linear-Variable Differential Transformer

MLP Multi-Layered Perceptron

N-R Newton-Raphson

ODE Ordinary Differential Equations

PUMA Programmable Universal Machine for
Assembly

RMS Root Mean Square

xi

RNN Recurrent Neural Networks

SVD Singular Value Decomposition

TCP Tool Centre Point

VLSI Very Large Scale Integrated-circuit

VSC Variable Structure Control

xii

L

Acknowledgements

It was a meeting with a Napier delegation in Shenzhen (a booming city in the corridor
between Hong Kong and Canton, Southern China), especially a conversation with Prof.
James Murray, Vice-Principal of Napier University, that made me seriously consider
the idea to pursue a PhD abroad. However, without the financial support from Napier
University Scholarship, and CVCP (Committee of Vice-Chancellor and Principals of
Universities of the United Kingdom) ORS (Overseas Research Student) award, the
sparkled idea would have never come to fruition.

I would have not survived my first day in Edinburgh without help from Simon
Liang, a PhD student from Taiwan, who was kind enough to drive to the airport to meet
me in the early morning through the heaviest snow I had ever seen. Many thanks,
Simon, for your friendliness and hospitality, as well as for many delightful discussions
about Chinese culture and politics — the past and the future.

I am grateful to Dr John Hallam of Dept, of Artificial Intelligence, The University
of Edinburgh for his instruction during the early stage of my research, which was
invaluable in saving me from struggling in numerous murky ideas.

I would also like to acknowledge gratefully many other people for help and
assistance during the course of my study. Among them are, Bill Campbell, for his
assistance in robot programming; Heather Rea, for allowing me to use some of her data,
and useful discussions; Ronnie Cohen, for his help with the use of Coordinate
Measuring Machine; Dr Bob Stafford, for his tips on grammar and presentations; Bill
Young, for being there when utilities were needed; and to all of my officemates, for
tea-drinking time and entertainment.

I am indebted to my supervisors, Dr John Lewis, Dr Mike Mannion, Prof. Francis
N-Nagy, Dr Barry Keepence, and Dr Duncan Marsh, for their inspiration,
enlightenment and encouragement.

Last but not the least, I would like to thank my wife Du Ling, and my parents, for
their love and consistent support.

XUl

Abstract

Robot calibration is an integrated procedure of measurement and data processing to
improve and maintain robot positioning accuracy. Existing robot calibration techniques
require extensive human intervention and off-line processing, which preclude the
techniques from being used to perform on-site calibration in an industrial environment
at regular intervals. This thesis investigates and develops intelligent calibration
processing algorithms and a novel measurement method toward rapid autonomous
robot calibration in a shop-floor environment.

Artificial Neural Network (ANN) techniques have been vigorously investigated for
calibration data processing (modelling, identification and compensation). A new
identification algorithm has been developed for estimating robot kinematic parameter
errors using Hopfield continuous-valued type Recurrent Neural Network (RNN). The
RNN-based algorithm is computationally more efficient and robust compared with
conventional optimisation approaches.

A generic accuracy model which accounts for various error sources was introduced.
A higher-order neural network was used for implementation of the generic accuracy
model. Due to the ANN learning capability, computational power and adaptability, the
ANN-based accuracy representation offers an appealing solution to the complex
modelling problem.

Efficient and robust accuracy compensation algorithms have been developed under
the framework of artificial neural networks. The ANN-based algorithms provide
constant-time inverse compensation therefore are suitable for on-line implementation.
Both path compensation and compensation near robot singularity were tackled using
the new algorithm.

A novel autonomous calibration tool was developed using a trigger probe and a
constraint plane. The new method eliminates any use of external measuring devices to
determine robot end-effector location measurements, enabling the robot to perform
self-calibration on a production line. Robot accuracy was improved to the level of its
repeatability within the local calibration volume using the new calibration scheme,
which is consistent with the results from using a precision external measuring device,
in this case a Coordinate Measuring Machine (CMM).

xiv

NOMENCLATURE

Ax = [dx, dy, dz, Sx, 5y, &]r

P, = [Xi, yb z jr
A, S
T„
A,
[n, s, o]
[x„ yf, zü
S — [flj, ûj ü„]
d = [dl,d x ...,d„\
a = [al , 02,..., a„]
0 = [0i, 02, •••> fiU
p = [a, d, a, 0]
Ap

df_ df_ d(_ df_
J ~ l <9a’ dû' da <90

dp, dw
E

Tir h
\L = UÛ
Q
e
a

q = fà]
Ôqi

f(k, qD
Awh Abi
T\
A = diag(Ai)

H
AX
L

End-effector inaccuracy vector.
The zth end-effector position vector.
Position, and oriencation inaccuracy.
End-effector homogenous transformation.
The i-th link homogenous transformation.
End-effector orientation vectors.
The j'-th coordinate system
Link offset vector,« is the number of DoF.
Link length vector.
Link twist angle vector.
Joint angle vector.
Kinematic (geometric) parameter vector.
Kinematic error vector.

Special Jacobian matrix.

Ordinary Jacobian matrix.

Position, and orientation error vector.
Network energy function.
Network connection weight, and input,
learning rate.
Scaling weight matrix.
Residual error vector.
Regulation coefficient constant.
Generalised joint variables.
The z-th joint correction.
Forward kinematic function.
The l-th weight, and bias correction.
Network learning parameter.
Diagonal regulation weight matrix.
Coefficient matrix of linear system.
Aggregated inaccuracy vector.
Side length of the measuring cube.

XV

Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

1.1 Research Background and Motivation

The role played by industrial robots in modem factories is not as widespread as was
predicted a decade ago. There are many reasons why robot systems have not met early
expectations. One of the reasons is that most robot systems fail to deliver the promised
flexible manufacturing environment. Industrial robots, as they currently exist, must be.
taught even the most basic tasks required of them for operation in a complex and highly
diverse human world. Programming or teaching a robot to perform a desired task is
exceedingly labour intensive. Any minor change in the task or uncertainties which exist
in the robot or the environmental set-up will invalidate, partially or completely, the
developed programs. Off-line programming which supports the development of a robot
program in a simulated environment has resulted from research seeking better robot
programming methods. Robot positioning accuracy, however, is critical for off-line
generated programs to be implemented successfully on a shop floor.

One major goal of robotics research is to instil some human-like intelligence in
robots, enabling them to function autonomously in an unstructured environment. An
intelligent robot must have the ability to adapt its behaviour quickly and effectively to
unpredictable environmental changes without human intervention. To position its end-
effector as precisely as desired in a changing environment is one of the fundamental
capabilities for a robot to achieve high level intelligence or autonomy. To address robot
motion control accuracy in particular and robot programming flexibility in general, a

1

Chapter 1 - Introduction

great deal of research endeavour has been made in various areas ranging from
automated task planning, fine-motion planning, error detection and recovery, to
learning control and adaptive control, focusing on robot controller's performance
enhancement. While many encouraging results in laboratory environments have been
reported in these areas, it is generally believed that it will still be years before there is a
major impact on the robot systems currently used in most manufacturing applications.
Robot calibration is an approach that can improve robot positioning accuracy
significantly without increasing the robot controller's complexity, and can be easily
integrated with existing systems. As robot positioning accuracy is a highly complex
problem dealing with various error sources which exist in changing environments, an
intelligent calibration scheme is needed to make error sources robust with minimum
human intervention.

An artificial neural network (ANN) is a new technique in the field of artificial
intelligence which imitates the functional processes of the human brain. By taking
advantage of the structure of the human brain, which features massive parallelism and
high interconnectivity, it is hoped that extremely complex problems can be solved by
neural networks. Due to their computational power, learning methodology, adaptability
and fault tolerance, neural networks offer appealing solutions to intelligent robotic
problems. In this thesis, artificial neural network techniques are applied to the robot
calibration processes, aiming at autonomous robot calibration in a shop floor
environment.

1.2 Robot Positioning and Calibration Problem

One of the basic capabilities of industrial robots is to position their end-effectors
precisely so that they can perform manipulation tasks successfully. Precise positioning
control is difficult for multi-joint articulated manipulators since they are open-chain
mechanisms with coupling between motions of each individual link. The desired
locations (or pose: position and orientation) of a robot end-effector are normally
specified in Cartesian space (workspace), while these locations are achieved by
controlling joint values (angles for revolute-joint robots) in robot joint space (Figure
1.1). The transformation from Cartesian space to joint space is called the inverse
kinematics in robotics. The inverse kinematics problem is typically a computationally
intensive procedure for general-form multi-link manipulators, the accurate solution of

2

Chapter 1 - Introduction

which depends upon the algorithms used and upon precise knowledge of robot
parameters.

In practice, most industrial robots are designed to have simple-form kinematics
(Hayati and Roston, 1986) so that the inverse kinematics problems have analytic close-
form solutions. For instance, the widely-used PUMA robot is designed so that the
second and third joint axes are parallel and the last three joint axes intersected
orthogonal in a point. The inverse kinematics of the PUMA robot is analytically
solvable due to its special kinematic structure (Fu, Gonzalez and Lee, 1987; Craig,
1986); However, for a number of reasons (including manufacturing tolerance, repair
and set-up errors, wear and tear, transmission errors, and compliance), the internal
design model used in the robot controller will not accurately describe the actual
relationship between robot workspace and joint space. Therefore, the actual locations
achieved by controlling joint values, obtained from the controller's internal model, will
deviate from the desired locations. Robot calibration is defined as a process of
improving robot positioning accuracy through modifying robot control software
without changing the robot's hardware configuration (Mooring, Roth and Driels, 1991).
The modification of control software can be performed either in robot workspace
(forward calibration), or in joint space by finding the corrected joint values to drive the
robot so that the end-effector deviations can be minimised (inverse calibration)
(Shamma and Whitney, 1987).

Figure 1.1 Positioning Control of a Robot Manipulator

3

Chapter 1 - Introduction

Several performance specifications are used to describe positioning characteristics of
robot manipulators, which include accuracy, repeatability, and resolution
(Kozakiewicz, Ogiso and Miyake, 1990). The resolution is the smallest motion (linear
and angular) the robot's end-effector can reliably execute. The repeatability is a
measure of the robot's ability to return its end-effector to exactly the same point in
workspace many times in succession. The (absolute) accuracy is a quantitative
parameter describing the robot's ability to position its end-effector exactly in the World
coordinate system. When a six degree of freedom (DoF) robot is issued a command to
move its end-effector to a location P in workspace:

P[x, y, z, 6» By, 0J (1-1)

it will actually move to a location:

P '[x+dx, y+dy, z+dz, 9X+Sx, 6y+Sy, 6Z+Sz] (1.2)

By commanding the robot to move to the location P consecutively, each time the
achieved location P ' will be slightly different from P due to the joint servo and actuator
repeatability errors. The average values of the deviations [dx, dy, dz, Sx, 5y, &] from
their mean are a measure of the robot's repeatability in a given direction in a given
configuration.

If there were no other sources of errors in the robot except from the joint servo
system, the average (mean) values of deviations [dx, dy, dz, Sx, dy, Sz\ would be zero.
However, because of other error sources, such as geometric errors in the robot
components, assembly errors, transmission errors, etc., the average positioning errors
are always non-zero. Therefore, when a robot is sent to many different locations in its
workspace, the variation in [dx, dy, dz, Sx, 5y, &] will be much larger than variations
due to repeatability alone. The average values of the deviation in different
configurations are a measure of the robot's accuracy in a given direction. For a six DoF
robot, the position and orientation accuracy are defined as:

Aav = — t ^ d x f + d y f + dzf nn=i

<5av = — l^ S x f + dy.+5z^
m ¡=i

(1.3)

(1.4)

4

Chapter 1 - Introduction

where dxb dyb dzb Sxh 5yb 5zt are linear and angular errors measured at randomly
chosen locations (i = 1, 2 , m) in the specific region of the robot workspace. Root
Mean Square Error (RMS) can also be used as another measure of accuracy. Robot
position and orientation accuracy according to the RMS are defined as :

> a ii l — I (d x . + d y - + d z -)
1 m ¡=1

Hj

f— ¿ (« x f + S y f + a z f)
m /=i

(1.5)

(1.6)

Robot accuracy will always be positive according to the definitions above.

Another useful accuracy specification is standard deviation. Robot position and
orientation standard deviations are specified as:

+ dyf+dz‘ - A J 1
V m -1 ¡=1

- o ’v m —i ¡=1

(1.7)

(1 .8)

With the definitions of average and standard deviation errors, there is 99.7%
probability that the positioning error of the end-effector will be within the limits of the
linear and angular error ranges as specified by Aa+3crA; and 8a+3 cr6 (Kozakiewicz,
Ogiso and Miyake, 1990). The average and standard deviation errors as defined above,
together with the absolute error measured by the maximum deviation, are used in this
work to describe robot positioning (both linear and angular) accuracy.

Robot resolution and repeatability are determined by the joint servo and actuator
system of the robot, therefore they can only be changed by modifying hardware design.
Robot accuracy, however, is determined by the software of the robot (robot geometric
model, forward and inverse kinematic control software), and can be improved by the
robot calibration process. Robot repeatability is the limit of any robot calibration
efforts. Hardware based robot teaching methods, such as manual teaching robot joints
by using a teaching pendant, require only good repeatability so that the robot can return
to the memorised location exactly time after time. Software based robot teaching
(programming), such as off-line programs, require good absolute accuracy in addition
to a good repeatability because the robot is controlled indirectly through a computer

5

Chapter 1 - Introduction

model of the manipulator, so that an exact robot model is needed to ensure that the
robot will move exactly where it is commanded. Most industrial robots have reasonably
good repeatability but rather poor absolute accuracy. For example, the repeatability of
the commonly used PUMA robot is 0.1-1 (mm), but its- accuracy is normally up to 10-
20 (mm). The aim of robot calibration is to improve robot position accuracy to the
order of its repeatability.

1.3 Application of Robot Calibration

Robot calibration plays an increasingly important role in all areas of robot
production, integration and operation within Flexible Manufacturing Systems (FMS).
The utilities of robot calibration can be explained as follows (Bernhardt and Albright,
1993):

1) Implementing off-line planned and simulated robot tasks: Whilst off-line
programming can reduce significantly robot programming time and avoid costly
mistakes compared with on-line teaching methods, the discrepancies between the
simulated environment and the actual physical workcell must be minimised through
calibration before the off-line generated programs can be implemented on a shop floor.

2) Evaluating robot production: Robot accuracy can be achieved by manufacturing
the robot closely to its design specifications at a minimum tolerance. However, high
precision is a costly manufacturing demand. In addition, many specifications can not be
explicitly evaluated after a robot is completely manufactured and assembled. Robot
calibration, on the other hand, provides a practical and effective means of accuracy
improvement by implicitly determining its physical parameters.

3) Improving control of robot motion: Robot control accuracy can be improved by
incorporating the identified parameters into the robot controller. Advanced control
strategies can also take advantage of the precise knowledge of model parameters for
accurate motion control, e.g. in adaptive control, robot kinematic parameters are
assumed to be known (Bennett, Geiger and Hollerbach, 1991). 4

4) Monitoring robot component wear: Once a robot is operating in a flexible
manufacturing system, component wear-and-tear or repairs can detrimentally affect
positioning accuracy. A periodic re-calibration can be performed to determine if repairs

6

Chapter 1 - Introduction

are necessary and/or if programs need adjusting (re-programming). If a robot is
replaced, robot re-calibration also enables replacement robots to share programs of the
old robot with necessary adjustments.

A robot calibration system consists of two major subsystems: measurement and data
processing. Requirements for the measurement and data-processing of calibration
systems are different depending on the purpose of robot calibration and the
circumstances under which it is performed. When a robot is to be calibrated on the shop
floor, its environment can place severe limitations on measurement and identification
capabilities. While an accurate and sophisticated global measurement device is
desirable for accurate identification of all model parameters in a laboratory before robot
installation, it may not be practical for robot re-calibration in a production line. There
are a number of robot calibration systems commercially available which are mainly for
robot calibration in a controlled laboratory environment (Silma Inc., 1992). A
calibration system, which is suitable for rapid re-calibration at regular intervals over the
lifetime of the robot in a shop floor environment, is still not available in practice. The
aim of this research is to develop measurement and data processing techniques suitable
for rapid and automatic calibration in the shop-floor environment at periodic time
intervals.

1.4 Overview of Thesis

This thesis focuses on the application of artificial neural network (ANN) techniques
in robot positioning accuracy modelling, identification and compensation processes.
The aim of this research is to develop measurement and data processing techniques
suitable for robot autonomous calibration in an industrial application environment. For
the purpose of this thesis, autonomous calibration is defined as a fully automated
process for the robot to improve its positioning accuracy using its internal sensor
measurements on-site whenever and wherever necessary (after a certain period of robot
operation and in the volume where high accuracy is required). The remainder of this
thesis is organised as follows:

Chapter 2 reviews the previous work in the area of robot calibration and related
techniques.

7

Chapter 1 - Introduction

Chapter 3 introduces robot kinematics based on the Denavit-Hartenberg (D-H)
parameter description. The linear error model and the special Jacobian matrix are
derived using a geometric approach, which are the basis for kinematic identification. A
modified D-H parameter notation using an extra rotation parameter for consecutive
parallel joints is discussed.

Chapter 4 develops a new kinematic identification algorithm using Hopfield
continuous-valued recurrent neural networks (RNN). The network energy function is
constructed such that its minimum corresponds to the minimum least square error
between the actual and desired end-effector locations. The network connection weights
are determined directly from the nominal kinematcs and the network neuron states
represent the kinematic parameter errors to be identified. A full-pose (position and
orientation) measurement scheme using a coordinate measuring machine (CMM) is
described. Kinematic identification results for a six DoF Puma 560 robot are obtained
using the RNN-based algorithm and conventional optimisation approaches. The
identification network finds optimal solutions within a few characteristic time constants
of the neural circuit, even for the singular model and the measurements are constrained
to a local volume. Issues about the optimal number of measurement points and the
modelling of the robot base and tool are also discussed.

Chapter 5 presents a novel robot autonomous calibration method using a trigger
probe. The new method eliminates the use of any other external measuring devices to
determine the robot end-effector location measurements, thus it is suitable for a
periodic robot re-calibration on a production line. The kinematic constraint conditions
are obtained from the known shape of the constraint surfaces, rather than from known
reference locations as used by other researchers. The fully automated data collection
scheme is described in detail. Kinematic identification is performed using the
developed RNN-based algorithm. Both simulation and experimental results for a
PUMA robot are presented, which show that robot positioning accuracy can be
improved to the level of repeatability using the proposed method.

Chapter 6 discusses the development of a robot generic accuracy model which
accounts for various error sources using feedforward neural networks. The generic
accuracy function is introduced based on an expansion of the Fourier series, which
serves as the basis for the design of a neural network architecture. The Pi-sigma
network architecture is used as a generic model for robot accuracy problem because of
its capability to generate higher-order trigonometric polynomial approximations

8

Chapter 1 - Introduction

efficiently and dynamically, which is suited to the structure and the order of the generic
accuracy function. Results for a six DoF Puma robot within a local volume of
workspace are presented, and compared with the results of accuracy modelling using a
Back-propagation network.

Chapter 7 focuses on robot accuracy compensation using ANNs, this being a subset
of the inverse kinematics problem of the calibrated robot. A Pi-sigma feedforward
network is used to approximate the relationship between robot nominal joint
configurations and joint compensation. The trained network is used to perform a
constant-time inverse compensation. While the feedforward network is effective for
robot inverse compensation in a small portion of robot workspace, its training
efficiency and accuracy is compromised if a large calibration volume is considered. For
robot accuracy compensation which involves a large number of work points, the
inverse compensation problem is reformulated and the Hopfield type recurrent neural
network (RNN) is applied to the design of a robust and efficient accuracy compensator.
The derivation of the RNN-based compensation algorithm is similar to that of
kinematic identification, with the difference being the structure of the Jacobian matrix
and the interpretation of neuron states. The RNN-based inverse compensation
algorithm takes advantage of the a priori knowledge of kinematic structure therefore
requires no training, and finds an accurate solution efficiently. Both path compensation
and compensation near robot singular configurations are solved successfully using the
RNN-based algorithm, and are compared with the widely-used Newton-Raphson
approach.

Chapter 8 concludes the thesis and gives the directions for future research.

9

Chapter 2 - Review o f Previous Work

CHAPTER 2

REVIEW OF PREVIOUS WORK

2.1 Methods of Robot Calibration

There has been extensive robot calibration research over the past decades and good
reviews of the subject can be found in (Roth, Mooring and Ravani 1987), (Hollerbach
1989) and (Mooring, Roth and Driels 1991). Calibration methods can be classified as
model-based parametric calibration and model-free non-parametric calibration. Most
work on model-based parametric calibration has concentrated on kinematic model-
based calibration or simply kinematic calibration (Hayati 1983; Wu 1983 1984; Stone
1986; Hollerbach 1989; Zhuang 1989; Mooring, Roth and Driels 1991), while a few
papers have also taken non-geometric factors such as backlash, gear eccentricity, and
joint compliance into account (Whitney, Lozinski and Rourke 1986; Judd and
Knasinski 1991). In the category of model-based calibration methods, geometric and/or
non-geometric factors are modelled and identification techniques are applied to identify
the model parameters. The identified parameters are then used in algorithms for on-line
compensation. In the category of non-parametric calibration, instead of modelling and
identifying specific error sources, numerical fitting methods are adopted to approximate
robot inaccuracy data which has been collected from local workspace (Shamma and
Whitney 1987; Kozakiewicz, Ogiso and Miyake, 1990; Rea 1992). It is difficult to
judge which method is better since the relative contributions of geometric and non-
geometric errors to robot inaccuracy vary from one particular robot to another. While
Whitney et al (1986) reported that non-geometric errors are as significant as geometric
errors in affecting robot accuracy for a geared robot (PUMA 560), Judd and Knasinski

10

Chapter 2 - Review o f Previous Work

(1991) showed that as much as 95% of robot inaccuracy arises from geometric errors.
Veitschegger and Wu (1987,1988) found that non-geometric errors only accounted for
less than 0.3 (mm) of PUMA robot inaccuracy, which is in agreement with the result by
Stone, Sanderson and Neuman (1986).

Generally kinematic model-based calibration is considered as a global calibration
method which improves robot accuracy across the whole volume of robot space, while
non-parametric calibration is a local calibration method which only works within a
portion of the robot workspace. However, no clear boundary line can be drawn between
these two categories of calibration. Kinematic calibration can be regarded as non-linear
regression which uses kinematic functions as its basis functions. Kinematic parameters
identified with data collected from the local workspace may perform better in the
specific workspace than in the total work volume. This implies that these parameters do
not necessarily represent the real parameters of the robot over the entire workspace but
are the best fitting for the collected data in a least square sense. Therefore, some non-
geometric factors can also be compensated in kinematic calibration by collecting
enough data and choosing an adequate model. For most robot tasks, only accuracy over
a subset of robot workspace is critical, in which most fine motions such as assembly
operations are executed. As we concentrate on robot on-site calibration over a local area
of robot workspace, both kinematic model-based calibration and non-parametric
calibration are studied and evaluated in this work.

2.2 Kinematic Model-based Calibration Methods

Generally kinematic calibration consists of four sequential procedures: 1) modelling,
2) measurement, 3) identification, and 4) compensation, enabling precise kinematic
parameters to be identified thus leading to improved accuracy. These procedures are
described below. Related work has been reviewed and categorised on the basis of their
primary emphasis.

1) Modelling:

A kinematic model is a mathematical description of the geometry and motion of a
robot. Choosing a kinematic model to describe the relationship between robot joint
space and its workspace co-ordinates is the basis for the kinematic model-based robot

11

Chapter 2 - Review of Previous Work

calibration. Denavit-Hartenburg (D-H) homogenous transformation is a mathematical
tool adopting four parameter pairs to describe the spatial relationship between
manipulator workspace and joint space co-ordinates (Denavit and Hartenberg, 1955).
Early work on robot calibration concentrated on robot accuracy model development
based on D-H representation (Wu, 1983, 1984; Ibarra and Perrier, 1986; Zhen, 1985).
Mooring (1983) and Hayati (1983) pointed out the model singularity problem inherent
in the D-H formalism. Parameter jumps occur in the identification process when the D-
H modelling convention is used to describe two consecutive nominally parallel axes. A
modification to D-H modelling was proposed by Hayati (1983) by incorporating an
extra rotation parameter for parallel revolute axes. Similar modifications were reported
subsequently by Veitschegger and Wu (1986), and Judd and Knasinski (1987).

Many other alternative kinematic models have also been proposed for robot
calibration. Examples of these include: the 'zero-reference model' by Mooring and Tang
(1984) which avoids model singularity by not using a common normal as a link
parameter; the S-model by Stone, Sanderson and Neumann (1986) which uses six
parameters for each link to allow an arbitrary placement of link coordinate frames; the
shape matrix model by Broderic and Cipra (1988) and Ziegert and Datseris (1990)
which separates the joint variables from other link parameters based on screw theory as
described by Suh and Radcliffe (1978); the CPC model by Zhuang (1989) and Zhuang,
Wang and Roth (1993a,b) which is complete and parametrically continuous as it is
defined for manipulator calibration. However, the kinematic models used in most
existing robot controllers are still based on D-H notations. The alternative models
designed for calibration need to be converted back to D-H equivalent parameters after
calibration for model consistency consideration.

2) Measurement

Experimental measurements of robot end-effector locations are collected using
external co-ordinate measuring devices in this phase. The actual measured locations of
the robot end-effector are then compared with the locations predicted by the theoretic
model to obtain the workspace inaccuracy data.

Measurement is the most difficult and time-consuming phase of robot calibration. A
variety of measurement methods have been used and a survey of major techniques

12

Chapter 2 - Review of Previous Work

designed for robot test and calibration can be found in (Lau, Dagalakis and Myers,
1988). Such techniques include the use of co-ordinate measuring machines (Driels,
Swayze and Potter, 1993; Zhuang, Wang and Roth, 1993b), visual and automatic
theodolites (Chen and Chao, 1986; Whitney, Lozinski and Rourke 1986; Judd and
Knasinski, 1991), servo-controlled laser interferometers (Lau, Hocken and Haynes,
1985; Prenninger, Vincze and Gander, 1993; Mayer and Parker, 1994), acoustic sensors
(Stone, Sanderson and Neuman 1986, and Stone 1992) and visual sensors (Tsai and
Lenz, 1989; Zhuang, Wang and Roth, 1993a). The measurement devices vary
considerably in their cost, ease of use and accuracy, but they all have certain drawbacks
which include:

• The measuring techniques are mainly designed for robot calibration in a well-
controlled laboratory environment. The robot has to be removed from its normal
operating environment in order to perform the calibration.

• Trained personnel are required to operate the measuring devices properly.

• Data collection is time-consuming and difficult to automate.

• Set-up and measurement processes require a lot of human intervention. Therefore,,
these techniques are not suitable for robot on-site calibration in an industrial application
environment.

It is known that partial pose information of robot end-effector is sufficient for
complete kinematic parameter identification. Tang and Mooring (1992) utilised a
mechanical fixture to obtain partial information of a robot end-effector location. The
fixture consists of a flat plate with some accurately located points on it. An end-effector
is designed with a flat surface at a known angle to the last axis of the robot. In the 'free'
mode of the robot, the robot end-effector was manually moved to the known points of
the plate and against the flat plate such that components of the end-effector position and
orientation were 'measured'. Veitschegger and Wu (1988) calibrated a PUMA robot
based on the use of the similar plate fixture with a set of precisely positioned holes. The
end-effector with a pointing device was moved passively to the holes to make point
measurements. The partial pose measurement scheme eases the requirements for
measuring devices. The low cost and elimination of large-sized external measuring
device make it appealing for on-site applications. However, the measuring process is
not automatic and requires intensive human intervention. The success of such a scheme

13

Chapter 2 - Review of Previous Work

also relies on the predetermined locations of reference points on the fixture. In addition,
as pointed out by Driels and Swayze (1994), not every robot provides a 'free* mode in
which the manipulator can be moved manually while the joint encoders are powered up
and the joint servos are disabled.

The approach to use physical constraints in the workspace was further developed by
Bennett and Hollerbach (1990, 1991), who proposed that a passive mechanism be used
to transform the open-loop manipulator into a closed kinematic chain. The concept of
autonomous robot calibration was introduced which was defined as the automated
process of determining a robot's model by using only its internal sensors (Bennett,
Geiger and Hollerbach, 1991). It has been observed that autonomous calibrations are
possible for robot manipulators with either some a priori knowledge of the task
constraint or redundancy of the sensing systems (e.g., adding additional links or joints
to connect robot end-effector and ground, or two robots gripping together to form
kinematic chain closure). Based-on these observations, the automated data collection
schemes were proposed for robot calibration using LVDT (linear-variable differential
transformer) ball bar system (Goswami, Quaid and Peshkin, 1993) or wired
potentiometer (which can be considered as a flexible ball bar system) (Driels and
Swayze, 1994) connecting the robot end-effector to the known reference point in the
ground. Closed-loop constraints were formed for kinematic identification by obtaining
accurate radial measurements of the ball bar or the wired potentiometer. But special
fixtures are needed for such a system, which may require painstaking efforts to set up;
and the added fixtures are rather difficult to model.

Autonomous calibration of hand-eye systems has also been performed by using
robot joint readings and camera co-ordinate measurements to form the closed-loop
constraints (Tsai and Lenz, 1989; Bennett, Geiger and Hollerbach, 1991; Zhuang,
Wang and Roth, 1993a). The drawbacks for autonomous calibration of hand-eye
systems are that not all robotic applications incorporate a visual camera as part of the
system; and the camera measurements are known to be insufficiently accurate for
manipulator calibration covering a large workspace volume. Another kind of task
constraint has been proposed for robot kinematic parameter identification which utilised
laser line tracking in the robot workspace (Newman and Osborn, 1993). While the
motion of the robot tip-point was constrained to a line motion in the workspace, the
robot joint values were recorded for kinematic identification. But only simulation
results for a planar two-link manipulator were presented. An active and fully

14

Chapter 2 - Review o f Previous Work

autonomous calibration scheme was proposed by Zhong and Lewis (1995) which uses a
trigger probe to touch a constraint surface in a workspace. The constraint conditions are
obtained from the known shape of the constraint surface rather than the known
locations of reference points. This autonomous calibration scheme will be discussed in
depth in Chapter 5.

3) Identification

Kinematic parameter errors are identified in this phase by minimising the collected
workspace inaccuracy in the least mean square sense. Kinematic identification is
basically a standard non-linear or linear least square optimisation procedure. Non-linear
algorithms do not require the identification Jacobian and are computationally more
robust but more computation time is required for convergence. Linear least square
algorithms require less computation time to converge but suffer from numerical
problems of ill-conditioning of the identification Jacobian. Robust minimisation
techniques such as the Levenberg-Marquardt algorithm have been applied to cope with
the problem at the expense of computation time (Bennett and Hollerbach, 1991;
Mooring and Padavala, 1989). More advanced parameter estimation techniques are also
applied in kinematic identification. A maximum likelihood estimator was used by
Renders et al (1991). Mooring, Roth and Driels (1991) applied Kalman Filtering
techniques to investigate the relationship between calibration accuracy and
measurement noise.

To improve kinematic identification robustness and efficiency, some theoretic issues
have been addressed by a number of researchers. Kinematic identifiability was defined
by Bennett and Hollerbach (1991). Meng and Borm (1988) introduced an observability
index to find the optimal measurement configurations for robot calibration, while
Khalil, Gautier and Enguehard (1991) used the condition number of the identification
Jacobian to determine optimum calibration configurations. Experimental and simulation
studies were performed by Borm and Menq (1989, 1991) and Pathre and Driels (1990)
to demonstrate the importance of observability to kinematic identification. Determining
the optimal configurations for robot calibration according to the observability criteria is
a high dimensional non-linear optimisation problem. An advanced optimisation
technique, simulated annealing, was used by Zhuang, Wang and Roth (1994) for off­
line selection of measurement configurations. Generally the optimal measurement

15

Chapter 2 - Review of Previous Work

configurations determined by using the observability index are that the measurement
points should spread across the whole workspace as widely as possible. This
observation is useful for robot calibration performed in the laboratory environment
where the robot can be controlled to move to arbitrary configurations. For robot on-site
calibration in a crowded industrial environment, the calibration movement of robots is
normally constrained. Given the limitation of constrained movement for data collection,
numerically more robust and efficient algorithms are needed for robot on-site
calibration processing. A Hopfield-type recurrent neural network(RNN)-based
algorithm was proposed by Zhong and Lewis (1994) for efficient and robust kinematic
identification, which is the focus of Chapter 4.

4) Compensation

Implementation of the identified kinematic model is the final and crucial stage of
kinematic calibration. Due to the difficulty in modifying kinematic parameters in the
robot controller directly, joint compensations are made to the encoder readings of the
robot obtained by solving the inverse kinematics of the calibrated robot. The
assumption of simplified kinematic structure which applies to the nominal robot is no
longer valid for the calibrated robot due to kinematic parameter changes. Therefore the
inverse kinematics of the calibrated robot is generally not analytically solvable.
Numerical algorithms such as the Newton-Raphson approach are normally adopted to
find the joint corrections needed to compensate for Cartesian errors (Kirchner,
Gurumoorthy and Printz, 1987; Mirman and Gupta, 1992). However, the Newton-
Raphson method is based on iterative inversion of the compensation Jacobian, therefore
on-line compensation is problematic due to the computation expense, and the algorithm
breaks down in the vicinity of robot singular configurations. The differential
transformation compensation algorithm was presented by Veitschegger and Wu (1988),
in which two nominal inverse problems are solved for one task point compensation. A
comparison of various compensation algorithms was made by Vuscovic (1989).
Zhuang, Hamano and Roth (1989) who formulated the accuracy compensation as a
linear optimal control problem such that the linear quadratic regular method was
applied to the design of a robust accuracy compensator. Existence and uniqueness are
ensured in robot configurations near singularities by adding a regulation term to the
performance index. The computation of the linear quadratic regulator algorithm is
rather expensive, though simplification can be made in special cases. Zhong and Lewis

16

Chapter 2 - Review o f Previous Work

(1994), and Zhong, Lewis and N-Nagy (1995) presented neural network-based
algorithms for inverse compensation. The neural network-based inverse compensation
algorithms will be discussed in detail in Chapter 7.

2.3 Non-parametric Calibration Methods

Model-based parametric calibration is limited by the inability to model and identify
all error sources which contribute to robot inaccuracy. Non-parametric calibration, on
the other hand, employs non-parametric methods to establish an approximation function
based on a sufficient number of measurement data collected from the local volume.
Shamma and Whitney (1987) distinguished between forward calibration, which
determines the end-effector location from joint angles, and inverse calibration, which
determines the joint angles from the end-effector location. The inverse calibration was
considered by Shamma and Whitney, in which the third-order trivariate polynomials
were applied as approximation functions to relate the end-effector location to joint
angles. The single calibration of a six DoF PUMA robot was separated into two
calibrations, which comprised the first three major DoF calibration and then the
remaining three minor DoF calibration. The training data points were generated by
Tchebychev spacing in one quadrant of the robot workspace. Simulation showed that
accuracy was reduced to below 0.3 (mm). Direct extension of the three DoF robot to a
general robot would be difficult due to the limitation of polynomial approximations. In
the case that a higher DoF are considered, the polynomial functions required will be too
complex to be determined by the least square solutions, and would require a large
number of data points which are practically difficult to obtain.

Mooring , Roth and Driels (1991) discussed a table lookup scheme for a simple two-
link planar robot based on CMAC (Cerebellar Model Articulation Controller), which
was originally developed by Albus (1975a,b) to model the function of the cerebellar
cortex of the brain, but it can also be used as a general purpose function approximator.
Even for a simple two-link planar robot, CMAC implementation of inverse kinematics
exhibited unacceptable low accuracy and poor interpolation ability, and required a large
number of training points. It concluded that CMAC scheme is still not ready to use for
multiple joint robots. Another table lookup scheme was proposed by Everestt and
McCarroll (1986) which was based on a finite element method.

17

Chapter 2 - Review o f Previous Work

Kozakiewicz, Ogiso and Miyake (1990) applied a multi-layered neural network
approximation of the joint corrections for a four DoF Scara robot. Simulations were
performed which included non-geometric model such as joint compliance. Comparisons
with the polynomial approximations showed that the neural network gave poor
accuracy. More recently, Miyazaki, Maekawa and Bamba (1992) proposed a hybrid
compensation method to improve positioning accuracy of industrial robots by
introducing a feedforward layered neural network in addition to the conventional
kinematic model. The maximum position error for test points was improved from 17.67
(mm) before compensation to 1.73 (mm) after kinematic calibration, to 4.30 (mm) after
neural network compensation, and to 1.01 (mm) after both kinematic calibration and
neural network compensation were used. Only forward calibration was discussed and
inverse compensation was not addressed. Zhong, Lewis and Rea (1994) proposed a
generic accuracy compensator for industrial robots based on the Pi-sigma neural
network. The ANN-based accuracy compensation eliminates the need for model-based
calibration, with the various error sources being represented in the distributed network
weight connections. The ANN-based forward compensation will be discussed in
Chapter 6 and the inverse compensation discussed in detail in Chapter 7.

2.4 Artificial Neural Network Techniques

Artificial Neural Networks (ANNs) have emerged from studies of how human and
animal brains perform operations. The human brain is made up of many millions of
individual processing elements, called neurons, that are highly interconnected. Artificial
neural networks are made up of individual models of the biological neuron (artificial
neurons or nodes) that are connected together to form a network. The neuron models
that are used are typically much simplified versions of the actions of a real neuron.
Information is stored in the network often in the form of different connection strengths,
or weights, associated with the synapses in the artificial neuron models. A neuron
model processes information by summing the weighted inputs to the neuron and
passing the result through some non-linear activation functions such as a sigmoid
function to an output.

There are many types of neural network available, depending on the specific
arrangements of artificial neurons and their interconnections. The most widely used
neural network architecture is the Multi-Layered Perceptron (MLP) because of its

18

Chapter 2 - Review of Previous Work

simplicity. The network consists of an input layer, a number of hidden layers (typically
only one or two hidden layers are used) and an output layer as shown in Figure 2.1.
Data flows through the network in one direction only, from input to output; hence, this
type of network is called a feedforward network. The most common training algorithm
for the network is back-propagation algorithm originally proposed by Werbos (1974)
and Rumelhart, Hinton and Williams (1986). An important feature of the MLP is that
this network can accurately represent any continuous non-linear function relating inputs
and outputs (Homik, 1991; Homik, Stinchcombe and White, 1990). Hence, the MLP
network exhibits potential for many applications which can be formulated as a non­
linear mapping problem. Other famous neural network architecture include Hopfield
networks (Hopfield and Tank, 1986); Counter-Propagation networks (Hecht-Nielsen,
1990); and self-organising Kohonen networks (Kohonen, 1984), etc.

Sigm oid Function

Figure 2.1 Biologically-Inspired Neurocomputing Model — Multiple-Layered

Perceptron with One Hidden Layer

19

Chapter 2 - Review of Previous Work

2.5 Artificial Neural Network Applications in Robotics

A variety of uses for ANNs related to robotics and control have recently been
reported. The use of ANN control is particularly suited to problems related to the
control capabilities of animal nervous systems, and robot inverse kinematics
transformation application naturally fall into this domain of applications. One of the
earliest ANN approaches to robot control is due to Albus (1975b). The basic idea of his
CM AC scheme for robot control is to compute control commands by look-up tables
rather than by solving control equations analytically. While the CMAC has a
computational advantage over conventional approaches due to its distributed fashion, it
requires a large size of computer memories for multiple DoF robot, and is not able to
perform interpolations. Kuperstein (1988) concerned himself with models of visual
motor coordination in robots. While he did not explicitly address the inverse kinematics
problem, his work did in fact use neural networks to obtain the transformation needed
to convert desired hand coordinates in Cartesian space into appropriate joint
coordinates. A neural controller called INFANT, which learns sensory-motor
coordination from its own experience, has been reported which achieved an average
positioning accuracy of 3% of the arm's length in position and 6 degrees in orientation
(Kuperstin and Rubinstein, 1989). Other attractive features of the INFANT include real­
time operation, learning and maintaining its own calibration, and fault tolerance.

Inverse kinematic control has also been studied by a number of researchers, e.g.,
Guez and Ahmad (1988), Josin (1988) and Josin, Chamey and White (1988), using
back-propagation learning algorithms for feedforward networks. However, the back-
propagation network-based inverse kinematics solutions are typically not accurate
enough for practical applications even for 2 or 3 DoF robots. Attempts to apply back-
propagation directly to systems with more DoF have not been very successful
(Kozakiewicz, Ogiso and Miyake, 1991; Daunicht, 1991), since these systems typically
exhibit high-order nonlinearities and hence very slow learning rate and unacceptable
learning accuracy. To exploit both ANN efficiency and numerical accuracy, Ahamad
and Guez (1990) proposed a hybrid approach that used the ANN outputs as a initial
solution for iterative numerical Newton-Raphson method, which resulted in a reduced
number of iterations of the numerical method.

20

Chapter 2 - Review of Previous Work

All the papers cited above concentrate on position-based inverse kinematic control
where only position (location) information needs to be converted. In velocity-based
inverse kinematic control or Jacobian control (Fu, Gonzalez and Lee, 1987), both
position and velocity information needs to be transformed from Cartesian space to joint
space. Velocity-based inverse kinematics is much more complex than position-based
inverse kinematics since the number of input variables is doubled. The network training
problem may become intractable with the increase in the dimensionality of the input
space since the input space will experience an exponential growth in size (Yeung,
1989). Following the divide-and-conquer principal, Yeung (1989), and Yeung and
Bekey (1989) proposed context-sensitive networks which partitioned the set of input
variables into two groups. One set is used as the input to the network which
approximates the basic mathematic operations being represented (the function
network), while the second set determines the setting or context within which the
function is determined (context network). They have shown that context-sensitive
networks improved learning accuracy and reduced convergence time drastically
compared with the standard back-propagation networks. Similar network architecture
has been used by Bassi and Bekey (1989) to extend the work to inverse dynamics
learning. A complete solution to the inverse dynamics problem has been presented by
Miyamoto, Kawato, et al (1988). With a priori detailed knowledge of the dynamics
equation for a three DoF robot, they decomposed the network into 26 sub-networks
according to the primitive non-linear function terms in the analytic dynamic equations.
The performance of the system is excellent due to the simplification of the learning task
for sub-networks, which is equivalent to the determination of the coefficients in the
dynamics equations.

The Hopfield type recurrent neural network (RNN) architecture (Hopfield and Tank,
1986) has been applied to the velocity-based inverse kinematics problems for robots
with redundant DoF. Guo and Cherkassky (1989) implemented the Jacobian control
scheme using the Hopfield analogue (continuous-valued) computation model. The
states of neurons represent joint velocities of a manipulator, and the connection weights
are determined from the current value of the Jacobian matrix. The network energy
function is constructed so that its minimum corresponds to the minimum least square
error between the actual and desired joint velocities. Simulation shows that the method
is capable of solving the inverse kinematics problem for a planar redundant manipulator
in real time. In contrast to the feedforward neural network-based inverse kinematics
solutions, the RNN-based algorithm, by taking advantage of the kinematic structure of

21

Chapter 2 - Review o f Previous Work

the specific robot, requires no training and can find quality solutions within a few
characteristic time constants of neural circuits. Li and Jiang (1993) extended Guo and
Cherkassky's work by integrating the optimising properties of the RNN-based inverse
kinematic control and the technique of the Variable Structure Control (VSC). The
pseudoinverse Jacobian control scheme was implemented using an RNN algorithm for
a planar redundant robot (Wu and Wang, 1994).

Other neural network architecture have also been vigorously investigated for robotic
applications. Martinez, et al (1990) have shown that an extension of Kohonen's
algorithm (Kohonen, 1984) for the formation of topological correct feature maps,
together with an error-correction rule of the Widrow-Hoff type, can learn to control the
robot arm and gripper movement by using only the input signals of two cameras. Wu,
Jiang and Shiau (1993) used the modified two-layered counter-propagation network
(Hecht-Nielsen, 1990) to control a robot's gross motion (first layer) and fine motion
(second layer). The counter-propagation network, which combines the Kohonen self-
organising feature map with the Grossberg outstar map (Grossberg, 1982), can be a
statistically optimal self-programming lookup table for the adaptive control of robots.
However, these neural network learning algorithms belong to unsupervised learning
therefore they are not associative (Yeung, 1989). This implies that the training of such
networks normally requires a large number of training data and the interpolation ability
of the trained networks are typically poor. A more comprehensive review on the various
ANN architecture and their applications in robot task planning, path planning, and
sensor/motor control can be found in Kung and Hwang (1989).

2.6 Conclusions

Previous work on robot calibration and related techniques have been reviewed in this
chapter. Although a great deal of research has been done on robot calibration over the
past decade, most of the calibration techniques developed are only suitable for robot
calibration within well-controlled laboratory environments. Rapid autonomous robot
calibrations within a shop floor environment, although highly desirable, are still not
available in practice. Efficient and robust data processing techniques and fully
automated data collection methods are required to perform on-site calibration on a
regular basis and within local workspace. Artificial neural networks are appealing for
robot calibration processing including modelling, identification and compensation, due
to their computational power, learning abilities, and fault tolerance. Selection of neural

22

Chapter 2 - Review o f Previous Work

network architecture are critical for their successful applications in robotics and a priori
model knowledge are useful for designing NN architecture. A measurement method
capable of collecting data from a local workspace automatically using portable physical
constraints needs to be developed for on-site calibration,

23

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

CHAPTER 3

ROBOT KINEMATICS AND KINEMATIC ERROR MODELLING

3.1 Introduction

Robot tasks are normally described in terms of the relative locations (positions and
orientations) of the workpieces and equipment which exist in the working environment.
The study of kinematics reveals that the relative locations of objects can be defined
clearly by attaching co-ordinate frames to each object so that when the object moves, so
does the frame. The spatial transformation between robot end-effector location and its
individual link geometry and joint movement is established in terms of the assigned
Cartesian co-ordinate frames fixed relative to each of the links. The (4 x 4)
Homogenous transformation matrix introduced by Denavit and Hartenberg (1955) and
later adopted by Paul (1982) has become the most common approach to describing
spatial transformations in robotics. In this chapter, we will review the Denavit-
Hartenberg (D-H) method for robot kinematic modelling, and later develop a kinematic
error model which describes the relationship between robot kinematic parameter
variations and the predicted end-effector location error, which is the basis for kinematic
calibration.

The kinematic error model for a single link is normally derived using the analysis
approach of the homogenous transformation matrix and then applying it to the entire
robot. The analytic expression of the coefficient matrix which gives a linear
relationship between the kinematic parameter errors and the end-effector error was
derived by Wu (1984) and Veitschegger and Wu (1986). The coefficient matrix has

24

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

been termed by Mirman and Gupta (1992) as a special Jacobian matrix which has been
derived using a similar approach. A disadvantage of using the analysis approach is that
the derivation requires a lot of mathematical operations and geometric interpretation is
not obvious. Vuscovic (1989) presented a geometric expression for the special Jacobian
matrix and termed it differently as kinematic sensitivities, but no derivation process
was given. In section 3.3, a geometric approach to deriving the kinematic model is
developed based on the theory of rigid body kinematics with moving (translating and
rotating) co-ordinate frames. The geometric approach to formulating the special
Jacobian matrix is straightforward and the geometric interpretation of the Special
Jacobian is useful for identifying model singularities. The D-H model singularity for
consecutive parallel revolute joints is then discussed. Finally, a modified D-H notation
which overcomes the model singularity is introduced for use in following chapters.

3.2 Kinematic Modelling Using Denavit-Hartenberg Model

For robot manipulators with general kinematic structure of linkages, their complex
spatial orientation and position can be specified by allocating kinematic frames to each
of the robot links and then specifying transformation from one link to another. Denavit'
and Hartenberg (1955) interpret the sequential transformation from one link to another
as a multiplicative operation of (4 x 4) matrix:

T„ = A1*A2*...*Ai*...*A„ (3.1)

where T„ is a (4 x 4) homogenous transformation matrix which has the form:

" x * x Ox P x

n > S7 P y

n z S z o* P z

0 0 0 1

(3.2)

and in terms of its vector components, n = [nx n, n jr, s = [j x sy j J 7, o =[ox oy o J rare
three unit vectors specifying the orientation of the x, y and z axis of the co-ordinate
frame associated with T„ with respect to a reference frame, while p = [px py p j r
specifies the position of the origin of that frame in a reference frame. For robot
manipulators with n-links, the co-ordinate frame associated with T„ is normally
attached to the robot end-effector frame while the reference frame is the robot base

25

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

frame. Therefore T„ determines the robot end-effector orientation and position
completely in the robot base co-ordinate frame.

A, is a (4 x 4) homogenous transformation matrix which represents the spatial
transformation between the (i-1) frame fixed to the (i-1) link and i-th frame fixed to the
z'-th link of the robot. Its contents depend on the specific kinematic structure of the z'-th
link of the robot manipulator and the assignment of the kinematic parameters. The D-H
parameters are defined through allocation of co-ordinate frames to each link using a set
of rules to locate the origin of the frame and the orientation of the axes. The D-H frame
assignment procedures are summarised as follows.

The process is begun by identifying the axis of motion for each link. Next, the
common normal between consecutive joint axes is then identified. The origin of co­
ordinate frame z (attached to the z'-th link) is then located at the intersection of joint axis
(z'+l) and the common normal between axis (z'+l) and z. The z-axis of co-ordinate
system z points along the axis of joint (z'+l) and the x axis is aligned with the common
normal. Once the x, z-axes for frame z are determined, the y-axis can be decided using
right hand rule. After the frame system is assigned to the link, the kinematic parameters
are then defined to describe the geometric relation between consecutive frames. Figure
3.1 shows the D-H parameter assignment for link z with revolute joints. The parameter
assignment for prismatic joint follows the same rule, the only difference with the
revolute joint is that a different interpretation of the joint variable applies.

With reference to Figure 3.1, the transformation between frame (z'-l) and frame z
can be interpreted as the following sequential steps:

• rotate frame (z'-l) about z^ by an angle 6„ the joint angle;

• translate along zM a distance ¿¡, the link offset;

• translate along the rotated xM, a distance a„ the link length;

• rotate about x, the twist angle a{.

26

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

Figure 3.1. Denavit-Hartenberg Parameters for a Revolute Joint

Using Paul's notation of the primitive transformations (Paul, 1982), the above
transformation procedure can be written in the matrix form such that the homogenous
transformation matrix A, is defined as:

A, = Rot(z„i, 0,)Trans(O,0, 4)Trans(a„ 0 ,0)Rot(x„a,) (3.3)

where Rot(.) and Trans(.) are the primitive transformation matrices of rotation and
translation:

Rot(z/.i, 0,) =

Trans(0,0, di) =

'cos 0, -sin 0, 0 O'
sin 0, COS0, 0 0

0 0 1 0
0 0 0 1

'1 0 0 O'
0 1 0 0
0 0 1 4
0 0 0 1

27

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

Transfo, 0,0) =

'1 0
0 1
0 0
0 0

0 ar
0 0
1 0
0 1

Rot(x„a;) =

1 0 0 O'
0 cosa, -s in a , 0
0 sina, cosa, 0
0 0 0 1

Expanding equation 3.3, the general form of the homogenous transformation matrix A,
is:

'cos 0, -sin 0, cos a, sin 0, sin a, a,cos0,'
sin0; cos 0, cos a ; -cos 0, sin a ; a; sin 0,

0 sin a. cos^ 4
0 0 0 1

As shown in Equation 3.4, the homogenous transformation is a function of the link
geometry such as the link length ah the twist angle a„ the offset dh and the joint angle
0,. This equation may be used as a recursive transformation relating the position and
orientation of one frame with respect to the previous one. Using Equation 3.4 in
Equation 3.1, let i = 1, 2,..., n, and frame 0 representing robot base frame and n is the
number of robot links, then T„ represents the position and orientation of robot end-
effector frame with respect to the base frame, which is the function of 4n kinematic
parameters. The position and orientation of robot end-effector frame in the Cartesian
base frame can also be represented in the more compact vector form using a six-
element vector x = [pr, w7]7-, rather than a (4 x 4) matrix using 12 significant elements
as in Equation 3.1, where p = \p„ py, p j r is a position vector which takes the first three
row elements of the last column of the homogenous matrix T„, and w is the orientation
vector which has various forms using three independent angle elements to represent the
orientation of co-ordinate frame. Typical orientation representations include Roll-Pitch-
Yaw and Eulers angles. The conversion between Euler angles and an orientation
transformation matrix [n, s, o] written in MATLAB M-files (Mathworks Inc., 1992a) is
shown in Appendix 1. Robot end-effector position and orientation is written in vector
form:

28

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

x = -£-]=f(a, d, a, 6) (3.5)

where a = [au a2, ..., a„] is the link offset vector, d = [du d2, d„] is the link length
vector, a = [a l5 a2, ..., a j is the twist angle vector, 0 = [0U 02, ..., 8„] is the joint angle
vector, and f(.) is a non-linear function mapping robot kinematic parameters to robot
end-effector position and orientation, which can be obtained using the above
homogenous transformation. Normally (a, d, a) are the robot geometric parameters
which are specified by a robot manufacturer, while Sis the controllable joint variables.

The process to find the end-effector position and orientation, given robot joint
variable, is called forward kinematics in robotics, whilst the process to find joint
variables, given the end-effector position and orientation, is called the inverse
kinematics. For robot calibration problems, both forward and inverse kinematics are
involved. Generally the modelling and identification phase of calibration are considered
as forward kinematics, that is, given robot joint variable and geometric errors, to
estimate the end-effector position and orientation errors. The implementation phase of
calibration is the inverse process which compensates the end-effector error in the robot
joint encoders. The forward kinematics of PUMA 560 Robot written in MATLAB M-
files (MathWorks, 1992a) is appended in Appendix 1. In general, inverse kinematics
involves a numerical procedure since f(.) in Equation 3.5 is a multivariate non-linear
function. Closed-form analytic inverse solutions are available for some industrial robots
with simple-form kinematics. The analytic inverse solution for Puma 560 robot written
in MATLAB M-files is shown in Appendix 2. In the next section, a kinematic error
model will be derived which estimates the end-effector position and orientation, given
geometric parameter and joint variable errors.

3.3 Kinematic Error Model and Special Jacobian Matrix

For reasons described in the previous chapters, the actual kinematic parameters will
deviate from nominal values specified by the robot manufacturer, which in turn causes
robot end-effector positioning inaccuracy since the robot is controlled by a kinematic
control model which is based on nominal parameters. Let p° = [a0, d°, a 0, 0°] be the
nominal kinematic parameters and A p = [Aa, Ad, Aa, A0] be the kinematic parameter
error vector which is a small perturbation from the nominal value. The end-effector

29

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

position and orientation error Ax due to the kinematic error can then be obtained using
Equation 3.5:

Ax = f(a°+Aa, d°+Ad, a°+ A a, 0°+ A0) - f(a°, d°, a 0, 0°) (3.6)

Expanding Equation 3.6 using Taylor series around nominal kinematic parameters, and
ignoring second and higher order terms, Equation 3.6 becomes:

. a t . a t . j a t a t AQ TAAx = — Aa + — Ad + —— Aa + — A0 = JAp
da dd do dQ

(3.7)

where J = and is called a special Jacobian matrix to distinguish the
da dd do dQ

<9fordinary Jacobian matrix J e = — as defined by Paul (1982). Using the position and
<70

orientation vector p and w to replace f(.) as in Equation 3.5, the special Jacobian matrix
can be portioned into its position and orientation component as follows:

dp dp dp dp
^ ’d d ’d à ’dè

(3.8)

dw dw dw dw
'da'~dd,~da,~dQ

(3.9)

As can be seen from Equation 3.7, the special Jacobian matrix plays a vital role in
transforming individual link kinematic error to the end-effector positioning inaccuracy.
The published work (Veitschegger and Wu, 1986; Mirman and Gupta, 1992) on the
derivation of the special Jacobian matrix is based on analytic methods which involve
complex and abstract mathematical operations. A geometric approach to deriving the
detailed structure of the special Jacobain matrix is given below which is straightforward
and has direct physical interpretations.

Firstly the theory of absolute movement with respect to the stationary base frame
and the relative movement with respect to the moving frame should be introduced. The
relationship between the base frame and the moving frame (rotating and translating)
was established in Fu, Gonzalez and Lee (1987) (A more thorough vectorial treatment
of rigid body kinematics is referred to the textbook by Easthope (1964)). With
reference to Figure 3.2, let v0 and O)0 be the translation and rotation speed of the frame
o*x‘y*z* with respect to the base frame ox0y0Zo, and v* and co* be the translation and
rotation speed of the frame OpXpypZp with respect to the moving frame o*x*y*z\ The

30

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

origin points of the frame o*x*y*z* and frame opXpypZp are specified by the vectors p0, p
respectively with respect to the base frame, and let p* be the vector with respect to the
base frame connecting o* and op. Then the translation and rotation speed v and w of the
frame opXpypZp with respect to the base frame is (Fu, Gonzalez and Lee, 1987):

v = v° + v*+£oxp* (3.10)

CD = C0o + GO* (3.11)

Figure 3.2. Relationship between in Moving Co-ordinate Frames and Base
Frame

Multiplying both sides of the Equation (3.10) and (3.11) by the infinitesimal time
change dt, then we obtain the infinitesimal translation and rotation changes
correspondingly:

dp = dpo + d*p* + dw x p* (3.12)

dw = dw0 + d*w (3.13)

where dp0 and dw0 are the differential translation and rotation change of the frame
o*x*y*z* with respect to the base frame respectively, d*p* and d*w are the differential
translation and rotation change of the frame opxpypZp with respect to the frame o*x*y‘z*
respectively, and the dp and dw are the differential translation and rotation change of
the frame OpXpypZp with respect to the base frame ox0y0Zo respectively.

31

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

xi
The i-th Link

End-effector
frame

Figure 3.3. Relationship between the differential change of the end-effector frame
and the differential changes in the i-th link parameters.

Next we apply the relationship of the differential translation and rotation change
between moving frames and base frame to the derivation of the special Jacobain matrix.
With reference to the Figure 3.3, we assign the starred moving frame in Figure 3.2 to
the (i-l)-th frame of the robot, and the frame OpXpypZp in Figure 3.2 to the robot end-
effector frame. To develop the relationship between the i-th link parameter changes and
the end-effector position and orientation change, the end-effector frame is rigidly
attached to the i-th link by fixing all the link movements after the i-th link. Using
Equation 3.12 and 3.13, we have:

dp = dp*1 + cTpi.1 + dw x pH (3.14)

dw = dw*1 + ctw (3.15)

where dp and dw represent the differential translation and rotation changes of the end-
effector frame with respect to the base frame respectively, dp '1 and JwM represent the
differential translation and rotation change of the (i-l)-th frame with respect to the base
frame respectively, and rf*pH and d*w are differential translation and rotation of the
end-effector frame with respect to the (i-l)-th frame respectively.

Recalling the definition of the D-H parameters and the fact that the end-effector
frame is rigidly attached to the i-th link, the relationship between the differential change

32

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

of the end-effector frame and the differential changes in the i-th link parameters can be
described in the following manner.

1) Allowing the joint variable 0, a differential change dd, (rotating around z,_i), then
the relative rotation with respect to the (i-l)-th frame' <Tw = ddfru and the relative
translation with respect to the (M)-th frame rf*pM = dd-z^ x p^. From Equation 3.14
and 3.15, we have:

dp = dpi1 + dvrM x p^ + ¿0jZM x pM (3.16)

dvr = dvr-1 + d d ^ x (3.17)

Differentiating Equation 3.16 and 3.17 with respect to 0,, and note that dpi l and dvr'-1
are independent of dd, therefore their derivatives with 0, are equal to zero; and that the
derivative of vector pi4 with respect to 6, is equal to zero due to the end-effector is
rigidly attached to the i-th frame, we have:

i P
de, = Z-l X Pi-1 (3.18)

(3.19)

2) Allowing joint variable a, a differential change da, (along the z^), then the
relative rotation with respect to the (i-l)-th frame dvr = 0, and the relative translation
with respect to the (i-l)-th frame dtp,., = d a ^ ,. From Equation 3.14 and 3.15, we have:

dp = dpi1 + da,zn + dvr^x pM (3.20)

dvr = dvr11 (3.21)

Differentiating Equation 3.20 and 3.21 with respect to a, and noting that dpM and dw '1
are independent of da, therefore their derivatives with a, equals to zero, and that the
derivative of vector p,.i with respect to a, is equal to zero due to that the end-effector is
rigidly attached to the i-th frame, we have:

dp
da, = Zm (3.22)

33

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

“ = 0 (3.23)
ddi

3) Let ddi be the differential change in parameter d, (along the axis x,), similar to the
derivation of the Equation 3.22 and 3.23, we have:

dp
ddi

= Xi (3.24)

(3.25)

4) Let da, be the differential change in parameter a, (rotate about the axis Xj),
recalling that the i-th frame is fixed to the i-th link and the end-effector frame is rigidly
attached to the i-th link, the relative differential rotation of end-effector frame with
respect to the (i-l)-th frame equals the relative rotation of the i-th frame with respect to
the (i-l)-th frame, i.e. d*w = da,xr Note that the rotation is about the axis through the
origin o„ then the relative translation of o, with respect to the (i-l)-th frame equals
-dapti xpj_i', therefore d*pM = -daptix pH. Using the above relations in Equation 3.14
and 3.15, we have:

dp = dp?1 + dvf^x p,_i + dapt, x (p,,r pw0 (3.26)

dvr = d w 1 + dapti (3.27)

Differentiating Equation 3.26 and 3.27 with respect to ab noting that dpM and dwH
are independent on da ,, their derivatives with respect to a, equal zero; (p,., - p,.!*) = p,;
and that the derivative of vectors pM and p, with respect to a, are equal to zeros due to
that the end-effector is rigidly attached to the i-th frame, we have:

— = x, x pi (3.28)
da,

dw
da,

= X; (3.29)

From Equations 3.8 and 3.9, we have the basic structure of the special Jacobian
matrix as shown by the Equations 3.18-19; 3.22-23; 3.24-25; and 3.28-29. Following

34

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

Equation 3.7, the relationship between position and rotation error of end-effector frame
and its individual link parameter errors can be expressed as follows:

Ax “i-i
o

+ A a.
XiXPi

x.
+ Ad: Z,-1 xp,¡-1 (3.30)

-i-i

Comparing Equation 3.30 with Equation 3.7, the special Jacobian matrix J can also
be written in the partitioned form whose i-th columns are:

"x,l fz- ,] fx .xp,] IV-iXp -
(Ja),= 0 ,CU = I Q l, (Ja),= x , (Je),= I (3.31)

dt d i dtwhere Ja = — , Jd = ——, J a = — , J — are the Jacobian matrices with regard to
da dd da dQ

the specific parameters. The vectors xh y z, are x, y z axis of the frame i associated
with the homogenous transformation T, which can be computed recursively using
Equation 3.1. And the p, is the vector connecting the origin of end-effector frame and
the origin of the i-th frame with respect to the base frame, which is determined using
the following recursive procedure:

P„ = 0

Pm = p, +djXi + afri, i = n, n-1, ...1,

(3.32)

(3.33)

The ordinary Jacobian matrix (Je) and special Jacobian matrix (J) for Puma 560
robot were implemented using MATLAB M-files which are listed in Appendix 3 and 4.
From Equation 3.30 and 3.31, we see that robot end-effector inaccuracy vector is a
linear combination of the column vectors of the special Jacobian matrix. It is
straightforward from linear algebra (Landesman and Hestenes, 1992) that the Jacobian
matrix is singular (not full rank) if its column vectors are linearly related. If the
Jacobian matrix is singular then the kinematic parameter errors (coefficients in
Equation 3.30) can't be uniquely determined in Equation 3.30 and those parameters are
defined as unidentifiable. The strict definition and proof of parameter identifiability is
given by Bennet and Hollerbach (1991). From the conditions of matrix singularity and
Equation 3.31, the conditions for parameter identifiability can be described by the
following theorem:

Theorem 3.1 (Identifiability): Kinematic parameters are unidentifiable if and only if
there exists constants c, and not all zero, such that

35

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

'LciZi_l +kixi =0
¿=1 (3.34)

for all configurations (Bennet and Höllerbach, 1991).

From Equation 3.34, the singularity of the D-H model with two consecutive parallel
joint axes can be easily identified. Two consecutive parallel joint axes imply

*i - = 0 (3.35)

Thus Equation 3.34 is true. The geometric interpretation of this singularity is that there
is no unique common normal for parallel joint axes, therefore the link parameter dt and
dM can not be uniquely identified.

The inherent D-H model singularity for two consecutive joint axes can be avoided
using a modified D-H convention originally proposed by Hayati (1983). The modified
model uses an extra rotation parameter around the y joint axis to avoid the use of
common normal for parallel joint axes. Post-multiplying Equation 3.3 a rotation
transformation Rot(x, /?,), the Homogenous transformation A, in Equation 3.4 becomes:

A,=

cos 9i cos/?, - sin 0, sin a, sin ßt -sin 0, cos a, cos 0, sin ßi + sin 6j sin a, cos/?, af cos 0,
sin 6i cos ßi + cos 6i sin a, sin ß. cos 0, cos a, sin 0, sin ß i - cos 9i sin a, cosß, a, sin 6i

0 sin a, cos a, cos/?,
0 0 0 1

(3.36)

It is known that only four parameters are required to specify a co-ordinate frame
from the previous frame. When consecutive axes are not parallel, the value of /?, is
defined to be zero, while for the case when consecutive axes are parallel, d{ is the
variable chosen to be zero. Similar to the derivation of Equation 3.29, the special
Jacobian matrix with regard to the parameter p written in its column vector form is:

(J ß)i =
y .xp ,
. y.- .

(3.37)

If the axes of joints (i-1) and i are parallel, then (J^), is used to replace the (Jd)t to
formulate the special Jacobian matrix.

36

Chapter 3 - Robot Kinematics and Kinematic Error Modelling

3.4 Chapter Summary

The D-H modelling technique was reviewed for robot kinematics modelling. The
special Jacobian matrix was derived using a geometric approach based on the theory of
rigid body movement with rotating frame. The geometric approach is more
straightforward than analytic derivation since it has explicit physical interpretation. The
linear error model based on robot kinematics is then formulated. The inherent model
singularity for the standard D-H convention was discussed, and a modified D-H
notation to overcome the singularity was introduced. All the models derived in this
chapter have been implemented and validated using the experimental data from a six
DoF Puma robot. This chapter serves as the basis for kinematic model-based calibration
presented in the following chapters.

37

Chapter 4 - Kinematic Identification Using RNN Processing

CHAPTER 4

KINEMATIC IDENTIFICATION USING RECURRENT NEURAL
NETWORK PROCESSING

4.1 Introduction

Kinematic identification is the process of estimating the set of model parameters by
minimising the deviations between the poses (positions and orientations) computed by
the theoretic model and the measured poses. Therefore three basic ingredients are
required for the system identification problem; a mathematical model, measured data
and the set of variables that needs to be estimated. A robot kinematic model based on
the D-H model convention has been introduced in Chapter 3. Using the vector
formulation as Equation 3.5, the /-th robot end-effector location vector x, is represented
as a non-linear function of the kinematic parameter vector:

X/= f(p) (4.1)

where p = [a, d, a , 0/]r and a, d ,a represent manipulator link length, link offset, and
twist angle respectively, 0, is the /-th joint variable which is changing from one
configuration to another, / = 1,2,..., M, and M is the number of robot configurations.
The computed vectors of Equation 4.1 are then compared with the actual measured
pose vectors x f to obtain the workspace inaccuracy vector:

Ax^Ap) = x f - f(p° + Ap) (4.2)

38

Chapter 4 - Kinematic Identification Using RNN Processing

Ax, is the non-linear function of the kinematic errors Ap = [Aa, Ad, Aa, A0]r and p° is
the nominal kinematic parameter. The kinematic errors are then identified by a non­
linear optimisation procedure which minimises the workspace inaccuracy vector in the
least mean square sense:

min Z [Ax, (Ap)]r Q[Ax((Ap)] (4.3)
Ap /=1

where Q is a positive diagonal weight matrix used to adjust the balance between the
end-effector position and orientation accuracy. By linearizing the inaccuracy model
(4.2) using the first order Taylor series around the nominal kinematic parameters p°, the
inaccuracy vector is then represented as a linear function of kinematic errors:

Ax, = J/Ap (4.4)
^ ^ ^ ^

where J, = [— , — , — , —] is a special Jacobian matrix relating the differential
<9a <9d da <90

changes in kinematic errors to the changes in workspace, which was derived in Chapter
3. The kinematic errors are then identified iteratively using a linear least square
method:

Ax = JAp (4.5)

Ap = [JrJ]‘1J IAx (4.6)

where Ax = [Ax, Ax2 ... AxM]r is the aggregated workspace inaccuracy vector at
different robot configurations, J = [J, J 2 ...JMF is the aggregated special Jacobian
matrix, M is the number of robot configurations at which measurement data is
collected.

Both linear and non-linear least square optimisation methods as described above
have been commonly used to identify geometric and non-geometric errors. To make the
identification accurate and fast, many issues such as the choice of algorithms, selection
of measurement points and the number of measurements have been addressed by other
researchers (Pathre and Driels, 1990; Driels, Swayze and Potter, 1993). Since kinematic
identification is a highly complex numerical problem which involves a large number of
variables to be estimated, normally the standard optimisation methods require a long
convergence time, and the measurement points must be distributed widely in the
workspace to ensure the numerical stability. These identification algorithms are usable

39

Chapter 4 - Kinematic Identification Using RNN Processing

for robot off-line calibration performed in a laboratory environment where computation
time is not critical and there are no physical constraints on data collection. It is not the
case for robot on-site calibration performed in an industrial environment, which may
impose severe limitations on data collection and identification capabilities. In this
chapter, a Hopfield type recurrent neural network (RNN) based algorithm has been
developed for the robot kinematic identification problem. The RNN-based algorithm is
computationally more efficient and robust compared with the numerical optimisation
algorithms and therefore is suitable for robot on-site calibration processing. Calibration
results for a six DoF Puma 560 robot are presented using the new calibration
processing method.

4.2 Hopfield Recurrent Neural Network

A Hopfield net is a neural network composed of a layer of fully interconnected
artificial neurons. Each neuron of the network is connected to every other neuron in the
network. The architecture of the Hopfield network differs significantly from the
feedforward network in that it belongs to the class of recurrent (or feedback) neural
networks in which dynamics play an important role. The dynamics of such networks
are described by a system of non-linear ordinary differential equations and by an
associated energy (called the Lyapunov, potential, or simply network energy) function
which is minimised during the computation process. Hence the Hopfield network is
dynamic by nature and is categorised as a searching (or optimisation) type of network.

There are two types of the Hopfield model: binary model and continuous model
(Hopfield and Tank, 1985). The continuous model of the Hopfield network is
analogous to an analogue circuit model of an operational amplifier with resistive
connections and additional capacitors (Figure 4.1). The dynamics of the neuron circuit
is governed by the following non-linear ordinary differential equations:

, " ^ U- dii-
, i + S r ' v' “ * +CiT

(4.7)

V, = g,{uò (4.8)

40

Chapter 4 - Kinematic Identification Using RNN Processing

Figure 4.1. Hopfield Neuron Circuit

where It is input current of the i-th neuron (amplifier), «, is the input voltage and v, is
the output voltage; g{ = g(x) = tanh(jStc) is the output function which is usually taken to
be related to the hyperbolic tangent function1, ¡5 is the amplifier gain constant. 7), =
1/Ry, Ry is the connection resister between amplifier i and j , c, is the input capacitor.
Figure 4.2 depicts the Hopfield network which consists of n fully interconnected
artificial neurons described in Figure 4.1. Hopfield (1985) discovered a Lyapunov
function for a network of n neurons characterised by Equation 4.7 and 4.8 which
measures the total energy represented by the network with respect to the network
outputs:

E = - t i p , + i - k V (v)l*,
2 i= ly = l ¡=1 i= lR i

(4.9)

when the gain of the monatomic increasing activation function is sufficiently high, the
last term of the Energy function can be ignored. It can be shown that the changes in the
network output governed by the network dynamics such as Equation 4.7 and 4.8 will
always cause the network to evolve toward a minimum of the energy function. The
stable states of the network therefore correspond to the local minima of the energy
function.

1 It is known that the shape o f the output function (or activation function) is not important to guarantee
the network convergence as long as it is m onotonically increasing with high positive gain constant. More
often than not, the output function is sim plified as a linear function with high gain constant

41

Chapter 4 - Kinematic Identification Using RNN Processing

Because the network of neurons will seek to minimise the energy function, one may
design a Hopfield type neural network for function minimisation by associating
variables in an optimisation problem with variables in the energy function. Developing
a neural network to seek solutions to an optimisation problem becomes the task of
selecting appropriate values for the connection strengths Ty and the external inputs 7, so
that the desired network behaviour results. Hopfield and Tank (1985, 1986) have
illustrated the use of energy functions by configuring the network to find good
solutions to difficult optimisation problems such as the travelling salesman problem
which is of the np-complete class. The Hopfield type simple "neural" optimisation
networks have been used (Tank and Hopfield, 1986) to find globally optimal solutions
for a class of less complicated optimisation problems such as A/D converter and a
linear programming problem which have no local minima in their solution spaces (in
the vicinity of specific initial conditions). Since kinematic errors are only small
perturbations from the nominal parameter values, we show in the following sections
how the kinematic identification can be solved rapidly by using the Hopfield recurrent
neural network.

Figure 4.2. Hopfield analogue neural circuit model (Hopfield and Tank, 1986).
Black square at intersections represent resistive (weight) connections (with
conductance Ti}).

42

Chapter 4 - Kinematic Identification Using RNN Processing

4.3 RNN-based Kinematic Identification Algorithm

The key to the application of the Hopfield type neural networks is the formulation of
the network energy function. In our application, the quadratic form of robot workspace
inaccuracy is constructed as a network energy function so that a decrease of network
energy corresponds to a decrease of robot positioning inaccuracy in workspace. The
kinematic parameter errors are chosen as the neural circuit variables. From Equation
4.4, the linear residual error model for M measurement points, writing in the compact
matrix form, is:

e(Ap) = Ax° - JAp (4.10)

where e is the residual positioning error vector in workspace which is the linear
function of kinematic error Ap, Ax° is the initial value of the aggregated inaccuracy
vector and J is the aggregated special Jacobian matrix as defined above. Kinematic
identification is equivalent to determining the kinematic error vector by minimising the
residual positioning error vector in the least square sense. Using the Euclidean norm,
the energy function then can be constructed as follows:

E = ^-[Ax°-JAp]r [Ax°-JAp] (4.11)

Expanding Equation 4.11, and rearranging it in the standard form of the network
energy, we have:

E = (4.12)
1=1 7=1 7=1 1=1

where

(4.13)
J=1

I, = (4.14)
i=l

Ty and 7y determine the network connection weights and the input currents respectively
based on the nominal kinematic model and the workspace inaccuracy vector. The Ap; is

43

Chapter 4 - Kinematic Identification Using RNN Processing

the j-th kinematic parameter error to be identified which corresponds to the y-th neuron
state, n is the number of kinematic parameters while m is the dimension of vector Ax°.

The energy function gradient with respect to the i-th neuron state is obtained from
Equation 4.12:

(4.15)

The time evolution of neuron states should follow the opposite direction of the energy
function gradient, so we have the neuron circuit dynamics equation:

d jAp,)
dt

= /*, Œ TyAPj + 7,) (4.16)

where p, is the i-th diagonal element of the positive diagonal coefficient matrix (or
learning rate) |i which is chosen to ensure the stability and convergence speed of the
neural circuit. Given the initial condition of the neuron states (Ap, = 0, i = 1,..., n), the
above ordinary differential equation (ODE) determines the neuron state trajectories,
and hence the kinematic errors to be identified (the stable states of the neurons).
Equation 4.16 is actually a linear differential equation of high gain which can be solved
by any standard ODE methods such as Runge-Kutta method, Euler's method, etc
(MathWorks Inc., 1992b). To improve the robustness against measurement noise and
numerical perturbations, non-linearity can also be incorporated into Equation 4.16
through the introduction of the neuron "sigmoid" to the network as in Equation 4.7 and
4.8. The linear neuron processing units were used here for simplicity.

From Equation 4.15 and 4.16, the time derivative of the energy function is derived
as Equation 4.17 which is always non-positive. Therefore the above algorithm is
guaranteed to converge to a lower energy level.

dE _ " dE d(Apj)
dt i=u?(Ap,) dt

I - / i ,(IT ,A p .
i=l ;=1 + '()2 (4.17)

The convergence speed of the Equation 4.17 depends on the choice of the learning
rate |i which is shown as follows. Using the definition of the Equation 4.13 and 4.14,
the dynamic system Equation 4.16 can be written in compact matrix form:

= p (-JrJAp + J rAx°) = -pJr(Ax - Ax°) (4.18)
dt

44

Chapter 4 • Kinematic Identification Using RNN Processing

where Ax = JAp. Using Equation 4.18 in Equation 4.17, we have:

dE
— = -(Ax - Ax°)rJ|xJr(Ax - Ax°) (4.19)
dt

Theorem 4.1. Let Aj and Ap be the minimum eigenvalue of symmetric matrix J J r and
positive diagonal matrix ft respectively, then the time derivative of the energy function
Equation 4.19 satisfies the following inequality:

^ <-A„Ay ||Ax-Ax0||2 (4.20)

where ||| is a Euclidean norm.

Proof:

We introduce the Rayleigh quotient (Landesman and Hestenes, 1992):

vr Av/?(v) = l f l (4.21)
v v

where v is any vector excluding v = 0, A is a symmetric matrix. The Rayleigh quotient
satisfies that

< tf(v) £ A„, (4.22)

where and A ^ is the minimum and maximum eigenvalues of A.

The following inequality is obtained by setting A = ft, v = JTAx-Ax0) in the
expression of R(y) and using inequality 4.22:

(Ax - Ax°)rJ |iJ r(Ax - Ax°) > A„(Ax - Ax°)rJ J r(Ax - Ax°) (4.23)

In Equation 4.21, let A = J J r, v = (Ax-Ax°) and using 4.22, then we have:

(Ax-Ax°)r J J r (Ax-Ax°)> AJ(Ax-Ax°)r (Ax-Ax°) = Ay|A x-A x°|2 (4.24)

From 4.23 and 4.24, and noting that (i is positive definite thus A„ is positive, we have:

(Ax - Ax°)TJfiJT (Ax - Ax°) > A^A^liAx - Ax°)||2 (4.25)

From 4.19 and 4.25, it is straightforward to have 4.20. The proof is completed.

45

Chapter 4 - Kinematic Identification Using RNN Processing

From Theorem 4.1 we can see that

• the system has a quadratic convergence speed in terms of the residual error vector
in workspace (Ax - Ax°).

• by increasing we can achieve very fast convergence of the energy function to
its minimum. If the learning rate p is set to be a constant k,2 then the energy function
is linearly decreasing in time with the scalar gain of k. This observation agrees that in
Cichocki and Unbehauen (1993).

Comparing the discrete-time steepest-descent algorithm in which the controlling
parameter p should be bounded in a small range to ensure the stability of the
algorithm, in the continuous-time system the learning rate p can be set theoretically
arbitrarily large without affecting the stability of the algorithm (Cichocki and
Unbehauen, 1993). It is an important advantage of using the continuous-time neural
system which will be shown through numerical examples in the following sections.
Another advantage of the RNN-based method is the potential implementation of
parallel computation which leads to on-line identification of kinematic parameters. It
only takes a few characteristic time constants of the neuron circuit and is independent
of the robot DoF and the number of parameters to be identified.

After kinematic errors have been obtained through Equation 4.16, the kinematic
parameters are updated in the forward kinematic model and the neuron inputs and
weight connections are updated correspondingly. The above procedure is repeated until
the algorithm converges to the prescribed accuracy. The Hopfield type recurrent neural
network can converge to the global optimal given the specific initial conditions which
are in the vicinity of its optimal solutions (Tank and Hopfield, 1986). Since the
kinematic errors are only small perturbations from the nominal parameters, the above
procedures are guaranteed to converge to the global optimal provided the kinematic
errors are small. Normally three iterations are sufficient to get the desirable results.

2 A ll diagonal elem ents o f the diagonal matrix JJ. are equal to k, then = k.

46

Chapter 4 - Kinematic Identification Using RNN Processing

4.4 Pose Measurement Using a CMM

The experimental set-up consists of a Ferranti Merlin 750 precision co-ordinate
measuring machine (CMM) and a Puma 560 robot as illustrated in Figure 4.3. A local
calibration volume is chosen in the common working volume of the CMM and the
robot. The calibration volume is a parallelepiped measuring 200 (mm) in width, 400
(mm) in length, and 200 (mm) in height. This is justified by the fact that high
positioning accuracy is only required in the robot local working area in which fine
motion operations (like assembly) are executed. The measurement points are uniformly
distributed in the calibration volume with four points in length, and three points each in
the width and height dimension. The measurement grid (3 x 4 x 3) for data acquisition
is shown in Figure 4.4. Eight different orientations of the end-effector were placed at
each measuring point so that a range of different configurations were measured. The
total number of measurements thus is 288 (= 3 x 4 x 3 x 8). This data set is used for
robot calibration and evaluation.

Figure 4.3. Experimental Set-up for Data Collection

47

Chapter 4 - Kinematic Identification Using RNN Processing

Figure 4.4. Measurement grid for data acquisition

The schematic of the measurement set-up is shown in Figure 4.5. The CMM has an
accuracy of 4 (im which is accurate enough for robot calibration. Measurements are
made by manually moving the CMM one axis at a time until the touch probe mounted
on the CMM contacts an object to be measured. When the touch probe is triggered, the
x, y and z co-ordinates of the tip point of the probe are recorded and transferred to the
personal computer by the CMM controller. The Amstrad personal computer is used to
record the manipulator configuration, collect the CMM data, and perform some data
processing. The robot end-effector is equipped with a measuring cube so that the end-
effector position and orientation can be obtained from the positions of the touch points
on the cube. A more detailed description of the CMM measuring system can be found
in Rea (1992). Pose measuring using CMM is very time consuming and took skilled
operators several days work to collect the data required. The high cost of the CMM and
its bulky volume preclude its use in robot on-site calibration in a shop-floor
environment A novel approach suitable for on-site application is developed in the next
chapter. However, the precise full pose data collected using the CMM is very useful for
the purpose of proof of concept calibration and the calibration evaluation. Below we
give the principles of obtaining robot end-effector position and orientation inaccuracy
data from the positions of the CMM probe touch points.

48

Chapter 4 - Kinematic Identification Using RNN Processing

Puma 560 Robot Ferranti Merlin 750
Coordinate Measuring Machine

Figure 4.5. Schematic of measurement set-up

The robot end-effector consists of a calibrated measuring cube with a dimension L
x L x L. and its co-ordinate system XeYJZe is shown in Figure 4.6. The position and
orientation of the measuring cube can be described by a homogenous transformation
matrix as introduced in Chapter 3. The homogenous transformation of the measuring
cube in the world co-ordinate system is determined if the position vector of the cube
centre point pc and three orientation vectors nc, sc and oc are determined in the world
co-ordinate system. The world co-ordinates of the touch points on the measuring cube
are estimated and reported by the CMM. Let the position vectors of the touch points be
rBi, r^r^w here the n, s, o subscripts represent the touch surface of the cube and i
denotes the number of the touch points. Clearly at least three different touch points are
needed to determine the normal vector of the side surface of the cube. Therefore three
touch points were measured on each of the three side surface of the cube to determine
the position and orientation of the cube:

|(r »3- r»2) x (rB2 - r<ii)||
(4.26)

r (ri3 - r,2)x (r l2 - r xl)
||(ri3 - r/2) x (r,2 - rxl)||

(4.27)

49

Chapter 4 - Kinematic Identification Using RNN Processing

Q = (r o3 ~ r o2) X (ro2 ~ To\)
||(r o3 ~ r «2) X (r o2 “ r ol)||

(4.28)

Figure 4.6. The end-effector (measuring cube) co-ordinate system

The orientation vectors must satisfy the orthogonal condition oc = nc x sc. Noting

that the projection of the difference vector between touch point and the cube centre-
point in the direction of the surface normal equals the half side length of the cube (L),
we have the following scalar equations which are used to determine the position vector
of the cube centre point:

(r„, - Pc) . nc = 0.5L (4.29)

(r„ - pc) . sc = 0.5L (4.30)

(r„, - pc) . oc = 0.5L (4.31)

where i = 1, 2,3. The position vector p,. = [p^, pcJ T has three unknowns therefore is
uniquely determined by the three scalar equations above. More scalar equations (more
touch points) can be used to determine the position vector in the least square sense.
After the position and orientation vectors are determined, the actual measured end-
effector homogenous transformation matrix Tfl is obtained:

nescocpc
0 0 0 1

(4.32)

50

Chapter 4 - Kinematic Identification Using RNN Processing

Comparing with the nominal commanded end-effector transformation T„, the additive
differential transformation is:

dT = Ta - T„, (4.33)

Then the multiplicative differential transformation is (Paul, 1982):

AT = ifT • T"1 (4.34)

Ideally, AT has the structure of an upper 3X 3 skew-symmetric matrix:

AT =

■ 0 - S z Sy dx'

Sz 0 -S x dy
(4.35)

- S y Sx 0 dz

0 0 0 0

In real cases, the actual AT obtained has the following general form due to numerical
errors.

*n *12 *13 *14

*21 *22 *23 *24

*31 *32 *33 *34

0 0 0 0

(4.36)

Then the elements of the Equation 4.35 can be obtained through the following
procedure:

Sx = — (*32 ” *2 3) (4.37)

Sy = ~ (*1 3 — *31) (4.38)

Sz = — (*21 “ *12) (4.39)

II•8 (4.40)

d y = tu (4.41)

4?II (4.42)

51

Chapter 4 - Kinematic Identification Using RNN Processing

The position and orientation inaccuracy vector is then subtracted from Equation 4.35:

r< ip l_ (dx,dy,dz)T
W [(Sx,Sy,8z)T

(4.43)

The postional and orientational inaccuracy, representing in length (Euclidean norm),
are:

dr = \\dp\\ = -yjdx2 +dy2 +dz2 (4.44)

dtr = ||Jw|| = -yJSx2 + Sy2 + 8z2 (4.45)

4.5 Kinematic Identification Results for a PUMA 560 Robot

The Puma 560 robot is a six DoF manipulator with six revolute joints. The link co­
ordinate frame assignment for the Puma robot using the D-H convention is shown in
Figure 4.7. Robot end-effector frame transformation represented in the world co­
ordinate frame can be obtained through the following sequential homogenous
transformations:

Te = BASE*A1*A2*...*A6*FLANGE*TOOL (4.46)

where

1) BASE represents the transformation between the world co-ordinates x^y^z* and
the first link co-ordinate frame Xoy0Zo on joint 1 fixed in the robot base.

2) Ai (i = 1, 2,.., 6) represents the transformation between joint coordinate frame i
and i-l as defined in Chapter 3.

3) FLANGE represents a transformation between the last joint co-ordinate frame
nominally located on the last joint axis to a co-ordinate frame located on the
manipulator’s flange used for mounting the end-effector or tool (the measuring cube in
this case).

4) TOOL is the transformation from the mounting point on the manipulator's
FLANGE to the tool frame located on the tool centre point (TCP frame).

52

Chapter 4 - Kinematic Identification Using RNN Processing

I

Figure 4.7. Puma Co-ordinate Frame Assignment

The Puma robot is installed in the workspace which is common with the CMM so
that its first link frame is aligned with the CMM reference frame (i.e. the frame xwy^zw
is aligned with the frame x0y0Zo). By this choice of frame arrangement, the CMM
measurements can be converted to the robot measurements in its base frame by a pure
translation transformation Trans(x0,y0,Zo)» where xQ,yQ,Zo are relative position co­

53

Chapter 4 - Kinematic Identification Using RNN Processing

ordinates between the origins of the world frame and the robot base frame. Since the
first link co-ordinate frame, according to the D-H convention, is inside the robot, the
alignment of the robot base frame with the CMM is accomplished by using a locating
dowel and precision holes in the robot base. We assume that the robot base is exactly
located with the world frame therefore no errors exist in the BASE transformation. The
effects of the errors in the BASE transformation will be investigated using a modified
D-H modelling convention.

Due to parameter redundancy of the A*, FLANGE and TOOL transformation, the A6
and FLANGE are normally combined into a single transformation A6. Since the tool
mounted to the flange is a high-precision measuring cube, the TOOL transformation
will always be assumed to be error-free during calibration and all the errors in the last
link will be compensated using kinematic parameters in A6. The assumption of an
error-free TOOL is made because it is impossible to distinguish the effects of errors in
the last link from errors in the TOOL by measuring a reference point located on the
TOOL (Veitschegger and Wu, 1988).

Based on the above assumptions that BASE and TOOL transformation are error-free,
the causes for robot positioning inaccuracy are basically kinematic parameter errors in
A, (i = 1, 2,..., 6). Using the D-H modelling notation, four parameters ab dh a* and 6,
are needed to specify one transformation, therefore there are 24 parameters in total
which need to be identified. The nominal values of these parameters are defined as in
Table 4.1. Joint variables 0, are determined by the nominal inverse kinematic model
which change from one configuration to another. Another six parameters are involved
in TOOL transformation, the first three are rotational parameters (roll-pitch-yaw) and
the last three are translation parameters. The standard D-H model has the singularity
problem for the consecutive parallel joint axes as introduced in Chapter 3. Since
kinematic modelling is not the focus of this chapter, the standard D-H model is used
firstly to verify the RNN-based kinematic identification algorithm.

54

Chapter 4 - Kinematic Identification Using RNN Processing

Table 4.1 Nominal Parameters of a Puma 560 Robot Using D-H Model

No. a, (mm) di (mm) a, (rad.) TOOL

1 *0.0 0.0 -n/2 0.0 (rad.)

2 431.8 149.09 0.0 0.0 (rad.)

3 -20.32 0.0 id 2 0.0 (rad.)

4 0.0 433.07 -id2 0.0 (mm)

5 0.0 0.0 id2 0.0 (mm)

6 0.0 56.25 0.0 55.0 (mm)

After the kinematic model has been established, the actual measurements are used
for kinematic identification. One hundred and twenty poses have been randomly chosen
from the collected data set for identification processing. The RNN-based kinematic
identification algorithm was implemented using MATLAB® (MathWorks Inc., 1992a)
on a Hewlet-Packard 9000 workstation. The neural dynamic equations were solved by
calling SIMULINK™ (MathWorks Inc., 1992b) ordinary differential equation (ODE)
solver. Given the learning rate as a high gain constant (I = 106, and the initial conditions
of neural states Ap = 0, the kinematic errors (Table 4.2) were identified rapidly (in less
than two seconds of simulation time and in about 20 (¿is) of the circuit settling time).
Figure 4.8 shows the time evolution trajectory of the kinematic parameter errors during
the first iteration of the identification process, which exhibits efficient and robust
convergence. The identification process stopped after three iterations, when further
iterations will not obtain much improvements on the final residual errors. The average
position error in length decreased from 3.33 (mm) to 0.70 (mm) for the 120 calibration
points, and to 0.68 (mm) for 100 independent test points after updating the kinematic
parameters by the identified errors. Table 4.3 compares the residual position and
orientation errors before and after kinematic calibration based on the 100 independent
test points from the collected data set. The position accuracy has improved after

55

Chapter 4 - Kinematic Identification Using RNN Processing

calibration by a factor of about 5, and the orientation improvement is less significant
due to the scaling problem. The balance between the position and orientation residual
error can be adjusted by a weight matrix Q as defined in Equation 4.3. For most robot
applications, position accuracy is more critical than prientation accuracy, therefore
position accuracy improvement is emphasised in the following work.

For comparison, the non-linear and linear square optimisation approaches (using
Equation 4.3 and 4.6) were also used for identification based on the same data set. After
about two hours computation (1200 iterations) using quasi-Newton searching strategy
(MathWorks Inc., 1992c), the non-linear optimisation approach converged to results
that were identical to the neural net solution, while the linear optimisation approach
failed to converge due to the singularity of the identification Jacobian using the
standard D-H model. As observed by Cichocki and Unbehauen (1993), the computation
efficiency and robustness of the RNN approach compared with numerical optimisation
methods are largely due to the use of systems of ordinary differential equations rather
than the difference equations as used in conventional optimisations. The advantage of
converting an optimisation problem into a system of differential equations are outlined
as follows (Cichocki and Unbehauen, 1993):

• Due to the massively parallel operations and due to the better convergence
properties in comparison with iterative schemes, the simulation of a system of
differential equations enable us to solve many optimisation problems in real time. The
better convergence properties of the continuous-time systems are due to the fact that
some controlling parameters (learning rates) can be set arbitrarily large without
affecting the stability of the system in contrast to discrete-time systems where the
corresponding controlling parameters must be bounded in a small range or else the
system will be unstable. For example, the learning rate in the above simulation is set as
a high gain constant (p = 106) which enables the system to converge in the order of
(jjs) settling time.

• A dynamic system implemented on the basis of differential equations usually
exhibits more robustness (insensitivity) to certain parameter variations and it tends to
retain information better through time.

• In the simulation of continuous-time dynamic systems more sophisticated and
faster simulation techniques than simple first-order difference equations can be used
(Mathworks Inc., 1992b).

56

Chapter 4 - Kinematic Identification Using RNN Processing

• Theoretical ordinary differential equation techniques often offer better
understanding of the convergence conditions of the corresponding iterative algorithms.

Table 4.2. Identified Kinematic Parameter Errors of the PUMA 560 (D-H Model)

Link No. Aa, (mm) Adi (mm) Aa, (rad.) Adi (rad.)

1 -0.478 -0.301 -0.0003 0.0009

2 -0.023 0.909 -0.0068 -0.0025

3 0.719 0.909 0.0143 0.0004

4 -0.222 -2.026 -0.0107 0.0167

5 0.204 -3.400 -0.0187 0.0053

6 0.064 -0.041 -0.0067 0.0132

Table 4.3 Residual Error Comparisons Using the Standard D-H model

Before Calibration After Calibration

(in length) position (mm) orien. (degree) position (mm) orien. (degree)

average 3.30 2.63 0.68 1.19

standard dev. 1.15 0.41 0.46 0.46

maximum 4.74 3.21 1.83 2.30

57

A
ng

ul
ar

 P
ar

am
et

er
Er

ro
rs

 (
R

ad
ia

n)

L
in

ea
r

Pa
ra

m
et

er
 E

rr
or

s
(c

m
)

Chapter 4 - Kinematic Identification Using RNN Processing

0.15

0.05 -

-0.05 -

-0.15 -

-0.25 -

-0.35

dei 1) ¿¿(1)

dei 2) ¿¿(2)

dei?») ¿¿(3)

dei 4) ¿¿(4)

dci5) ¿¿(5)

dei 6) ¿¿(6)

i----------- 1-----------r
IE-05 2E-05 3E-05 4E-05

Time in Seconds

(a). Linear Parameter Error Identification

0.02

0.01

nt.r.i.'ni.«-.;,

- 0.01 -
__

- 0.02 --- 1------------ 1------------1---
IE-05 2E-05 3E-05

d a i 1) d0(l)

d a i 2) d0i2)

d a i 3)" 7(9(3)”

da(4) ¿0(4)

da(5) ¿0(5)

d a i 6) ¿0(6)

4E-05

Time in Seconds

(b). Angular Parameter E rror Identification

Figure 4.8. Time Evolution of Kinematic E rror Identification

58

Chapter 4 - Kinematic Identification Using RNN Processing

The standard D-H model is adopted to perform the concept-proof calibration using
the RNN-based kinematic identification algorithm. The D-H model singularity and the
assumption of error-free BASE may be attributable to the large residual errors after
kinematic calibration as seen from the Table 4.3. As introduced in Chapter 3, the D-H
model singularity can be avoided by a modified D-H notation which uses a rotation
parameter ¡5 to replace the common normal parameter d for the two consecutive parallel
joint axes. The joints 2 and 3 of the Puma robot are the consecutive joints with parallel
joint axes, therefore the common normal parameter d2 is replaced by the rotation
parameter /Jj, and the values of the d2 and /J, (i *2) are set to zero during the
identification process. Following Veitschegger and Wu (1988), robot BASE parameters
can also be included in the identification by using an introduced transformation. Since
the BASE frame is aligned with the world frame, an extra transformation BOFF was
introduced to change the relative arrangement of the world frame and robot base frame.
From Equation 4.46, we have:

BOFF*Te = BOFF*BASE*A1*A2*...*A6*FLANGE*TOOL (4.47)

where BOFF represents an introduced translation and/or rotation transformation. By
selecting BOFF such that the world co-ordinate frame origin lies on the manipulator's
base mounting surface, the errors in the transformed BASE (BOFF*BASE) will
correspond to the errors within the manipulator's physical base. An extra rotation
Rot(x, 90°) was made so that the zw and z0 are perpendicular to each other. Therefore
BOFF = Trans(xb,y0»Zo)*Rot(x, 90°), where Xq = -450 (mm), y0 = -145 (mm), z0 = -260
(mm) are relative position co-ordinates between the origin points of the world frame
and the robot base frame. Through this introduced transformation, the robot BASE
(link 0) can be described using the standard four D-H parameters. The nominal
parameters of the Puma robot (including the BASE) are redefined in Table 4.4 using
the modified D-H model.

Kinematic identification was performed based on the modified D-H model using the
RNN-based algorithm. The identified parameter errors are listed in Table 4.5. It is seen
that there exists large translation errors in robot base parameters which may not be
ignored for kinematic calibration. The residual errors comparison of the end-effector
positioning accuracy before and after the kinematic calibration was made in Table 4.6
based on the 100 test points. It shows that the average residual error of robot end-
effector position was reduced from 3.3 (mm) before calibration to 0.19 (mm) after

59

Chapter 4 - Kinematic Identification Using RNN Processing

calibration, which indicates an improvement factor of more than 10, comparing the
improvement factor of about 5 by using a standard D-H model and ignoring the BASE
errors. The achieved positioning accuracy of 0.19 (mm) is of the same order of the
Puma robot repeatability which is the limit of the robot calibration. The results show
that robot positioning accuracy can be improved significantly through kinematic
calibration only. Although the measurements are limited to the local volume in the
workspace, hence produced an ill-conditioned identification Jacobian3, the RNN-based
identification algorithm is able to identify the kinematic errors efficiently and
accurately. The identification accuracy is further improved by using a modified D-H
model. Figure 4.9 plots the residual position error distribution after calibration for the
100 test points. The figure consists of 5 bars that represents the number of points for
which the position error fell within the range indicated on the horizontal axis. For
example, the first bar from the right shows that only one point out of 100 points had a
position error in the range between 0.4 (mm) and 0.5 (mm). The figure illustrate that
the position errors of most test points lies around the mean of 0.19 (mm).

It can be seen from Table 4.6 that the residual orientation error is rather large after
calibration. The simple identity scaling matrix Q used in the calibration is attributable
to the large residual orientation error. If more accurate orientation is required, proper
weighting on the orientation component of the pose vector can be used. For example,
choosing Q = diag(l, 1, 1, 20, 20, 20), the residual error comparison is listed in Table
4.7, which shows that the average residual error of orientation is reduced to 0.79
degree, at the expense of position accuracy (average position error is up to 0.82 (mm)
in this case). Since robot end-effector orientation errors can be corrected by using
passive mechanical fixtures, in most cases robot end-effector position accuracy is more
critical than orientation accuracy, therefore the simple identity scaling on position and
orientation is appropriate, and no weighting on the orientation component will be used
in the following work.

3 The condition number o f the identification Jacobian using standard D -H m odel is 3.1968 X 1017

60

Chapter 4 - Kinematic Identification Using RNN Processing

Table 4.4 Nominal Parameters of a Puma Robot Using a Modified D-H Model

Link No. a, (mm) di (mm) a, (rad.) A (rad.) TOOL

0 0.0 0.0 0.0 0 —

1 0.0 0.0 -nil 0 0.0 (rad.)

2 431.8 149.09 0.0 0 0.0 (rad.)

3 -20.32 0 n il n il 0.0 (rad.)

4 0.0 433.07 -nil 0 0.0 (mm)

5 0.0 0.0 nil 0 0.0 (mm)

6 0.0 56.25 0.0 0 55.0 (mm)

Table 4.5. Identified Kinematic Errors of the Puma robot (a modified D-H Model)

Link No. Aa, (mm) Ad, (mm) A a, (rad.) Adi (rad.) AA (rad.)

0 0.302 -3.356 -0.003 0.0005 0

1 0.174 1.112 -0.0011 0.0004 0

2 0.157 0 -0.0031 -0.0026 -0.011

3 0.048 1.174 0.0045 0.0010 0

4 -0.033 -0.719 -0.0043 0.0110 0

5 -0.169 -2.447 -0.0209 0.0046 0

6 -0.031 0.455 0.0002 0.0111 0

61

Chapter 4 - Kinematic Identification Using RNN Processing

Table 4.6 Residual Error Comparisons Using the Modified D-H model

Before Calibration After Calibration

(in length) Position (mm) Orien.(degree) Position (mm) Orien.(degree)

average 3.30 2.63 0.19 1.31

standard dev. 1.15 0.41 0.097 0.45

maximum 4.74 3.21 0.40 2.49

Table 4.7 Residual Error Comparisons Using the Modified D-H model

Before Calibration After Calibration

(in length) position (mm) orien. (degree) position (mm) orien. (degree)

average 3.30 2.63 0.82 0.79

standard dev. 1.15 0.41 0.43 0.30

maximum 4.74 3.21 2.06 1.71

(Using weight matrix Q = diag(l, 1,1, 20, 20,20) in the residual pose vector (4.4))

62

Chapter 4 - Kinematic Identification Using RNN Processing

a
£
<£

1
2

Position error (mm)

Figure 4.9. The Residual Position Errors Distribution for the 100 Test Points

Number of Observations

Figure 4.10. The Relationship Between the Observations and Final RMS Errors

63

Chapter 4 - Kinematic Identification Using RNN Processing

The number of measurement points is an important factor which affects the
kinematic identification efficiency and accuracy. An insufficient number of
measurements (insufficient excitation) will produce an ill-conditioned or singular
identification Jocobian which in turn causes numerical problems during the
identification process. Too many measurements will increase the data collection cost,
computation time, and sometimes even degrade the quality of identification solution.
The number of measurements (M - 120) used in this calibration is determined based on
extensive numerical experiments. Figure 4.10 shows the relationship between the
number of measurements and the final residual position errors for the 100 test points.
The final RMS (Root Mean Square) error decreased with increasing number of
observations. But the decrease of the RMS after certain number of observations is not
significant. The number of 120 is decided as an adequate number of measurements for
this calibration based on the Figure 4.10.

4.6 Chapter Summary

The Hopfield type recurrent neural network (RNN)-based kinematic identification
algorithm has been developed and experimentally evaluated in this chapter. The'
quadratic form of robot inaccuracy was constructed as the network energy function.
The network connection weights and input currents are determined by nominal
kinematic model and parameters. The network converges rapidly (in a few
characteristic time constants of the neural circuit) to the optimal solutions which
minimises the network energy function. The final states of the neuron variables
correspond to the kinematic parameters to be identified. If robot inaccuracy data can be
collected on-line, robot kinematic identification can be performed in real time by using
the RNN-based real time optimisation technique. Due to the use of ordinary differential
equations (ODE) in the simulation, the RNN-based algorithm also exhibit numerical
robustness over conventional least square methods. For parallel implementation, the
computation time of the RNN-based algorithm is independent of the number of robot
DoF and the number of parameters to be identified. Therefore, the RNN-based
algorithm is especially attractive for a robot with multiple DoF (redundant robot) and
requiring to maintain its own calibration in real-time.

64

Chapter 5 - Autonomous Calibration Using a Trigger Probe

CHAPTER 5

AUTONOMOUS CALIBRATION USING A TRIGGER PROBE

5.1 Introduction

It is inevitable that a robot will have its links bent, base moved, or some components
repaired during its service lifetime. A robot needs to have periodic re-calibration to
maintain its positioning accuracy. In such situations it is desirable not to have to resort
the use of special-purpose calibration equipment to update the model for robot control.
An ultimate goal would be for the robot to be able to calibrate its internal model in real
time (Bennett, Geiger, Hollerbach, 1991). In Chapter 4, a RNN-based kinematic
identification algorithm was developed which is capable of performing kinematic
identification in real-time. However, as reviewed in Chapter 2, measurement is one of
the most difficult aspects of robot calibration which consumes the most time and effort
involved in the calibration process. Typically, existing calibration systems have large
volume and very stringent installation requirements, and the robot has to be removed
from its normal working environment in order to perform the calibration. Moving the
robot leads to a loss of base information, which will affect the accuracy of the
calibrated model seriously since robot base location is as significant as the
identification of robot kinematic parameters (Driels and Swayze, 1994). Due to the high
cost of calibration equipment, the need for trained skilled operators, and the long
production down-time, extensive calibration is still an expensive procedure, and
becomes unacceptable when it has to be applied repeatedly. The development of a low-
cost, easy-to-use calibration tool suitable for on-site autonomous calibration is the
subject of this chapter.

65

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Autonomous calibration is defined as an automated process that determines the
model parameters by using only the robot's internal sensors (Bennett, Geiger and
Hollerbach, 1991). The basic observation, that a mobile closed-loop kinematic chain
can be formed either by connecting the end-effector of two open-chain mechanisms or
by adding additional links or joints between the end-effector and ground, serves as the
basis for several other researchers' work (Tang and Mooring, 1992; Goswami, Quaid
and Peshkin, 1993; Driels and Swayze, 1994). The concept of robot self-calibration
using a defined task constraint is appealing, since it dispenses with the need for pose
measurement equipment. There are however some disadvantages to this method. In
general either another robot or some special mechanical fixtures are needed to
accomplish the kinematic closure, which requires painstaking efforts to set up. The
method is therefore not autonomous in the sense that it requires extensive human
intervention during experimental set-up and calibration.

In this chapter, we present a new robot kinematic calibration scheme which can be
implemented autonomously and is suitable for on-site calibration in an industrial
environment. The known shape of an object is used to obtain robot kinematic constraint
equations instead of using known reference locations in workspace. Gripping a simple
trigger probe-Renishaw probe (Figure 5.2), the robot uses the probe as its extended
link to touch constraint planes in its workspace (the locations of the constraint planes
are not necessarily known exactly). Only the robot joint readings and the Cartesian
position values (reported by the controller) are recorded for identification while the tip-
point of the probe is touching the constraint planes from various configurations. Neither
external sensor measurements nor human intervention are required in the calibration,
hence the calibration process is fully autonomous. A linear identification model has
been derived from the consistency conditions of a plane, and is presented in the next
section. A RNN-based kinematic identification algorithm based on the Chapter 4 is
given in section 5.3. In section 5.4, we describe the data collection method used and the
experimental set-up. Both simulation and experimental results for a PUMA 560 robot
are given in section 5.5. The cross evaluation results using an external global measuring
device are also presented. Discussions and conclusions are given in the final section.

66

Chapter 5 - Autonomous Calibration Using a Trigger Probe

5.2 Formulation of the Kinematic Identification Model

The objective of kinematic identification is to identify the actual kinematic
parameters of the robot manipulator. Let A p be the kinematic errors which are assumed
to be small perturbations from the nominal values specified by the robot manufacturer,
where A p is an n by 1 vector, and n is the number of kinematic parameters. Without
external measurements, the actual position p, = [x;y;z,F of the robot end-point remains
unknown but must be near the nominal position p/° predicted by the robot controller.
Using the Taylor series to the first order, we have:

p, = p/> + JjAp = [xP yp zPY + [if i f tfFAp (5. 1)

where J; is a 3 by n matrix which is the positional component of robot special Jacobian,
which can be calculated with robot joint readings and nominal kinematic parameters;
if, i f and i f is the x, y and z component of J, respectively, and / is the subscript index
representing different touch points.

Figure 5.1. Constraint conditions for co-planar points

Although the exact locations of touch points are unknown, they are constrained to he
on a plane. The consistency condition of a plane leads to the construction of the
identification model (Figure 5.1). The difference vector between two consecutive touch
points is:

Api = pi - pM = [Axp AyP AzPY + [4F Atf Aj/]rAp (5. 2)

where

Axp = xP-Xi.!°, Ayp = yP-yi.P, Azp = zp - Zm°;

67

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Ah*= i f - - jM>, Ai/2 =if-j/-i*

The difference vectors are normalised to roughly unit vectors by dividing the vectors
using their nominal length.

A p = P ' P m « P / P / - i

' | P / - P j-.II ~

(5.3)

The necessary and sufficient condition for touch points p,.2, p,.,, pu and p/+i to lie on
one constraint plane is that the volume of the parallelepiped formed by the difference
vector Ap, .„ Ap,, and Ap,+, must be equal to zero, i.e., the determinant of the matrix
formed by the difference vectors must be zero. Using (5.2), we have Equation (5.4):

|[APm Ap, Api+1]|
A x ,0. , + A j f _ ,A p A x ° + A j * A p A x °+1 + A j f +1A p

A y ^ + A j f . j A p A ^ + A j / A p A y °+1 + A j f +1A p

A z ^ + A J m A p A z ° + A j zA p Az,°+1 + A j ; +1A p

= 0 (5.4)

Ignoring the second and higher order of Ap, Equation (5.4) can be written as:

Alz-iAp Ax,0 Ax,°+1 Ax,0. , AjfAp Ax,°+, Ax,0. , Ax,° A iw A p

Ajf-iAp Ay,0 Ay,°+1 + Ay,0- , Aj/Ap Ay,°+i + Ay,0- , Ay,0 Ajf+iAp

Aj,-iAp Az,° Az,°+i Az,°-i AjfAp Az,°+, Az,0- , Az,° Aj,z+,Ap

Ax,0-! Ax,° Ax,°+I
Ay,0. ,

Az,°_,

Ay,° Ay,°+1
Az,° Az,°+.

= 0

(5.5)

Prior to the expansion of the equation (5.5), let us introduce a more compact
notation. We define a function detm(X,, X2, X3) which generalises determinant
calculation to the situation where one of the three variables X,, Xh X3 is a 3 by M matrix
(where M is an integer larger than one), and the other two variables are 3 by 1 vector.
The detm(Xb X2, X3) will return a matrix of 1 by M, whose element resulting from the
determinant of the matrix formed by the corresponding column vector of the matrix
variable and the other two vector variables. For example:

" * i ■*21 *22 * 3 " *1 *21 *3 *1 *22 *3
detm yi ?21 ?22 ?3 = ?1 >21 *3 >1 ?22 >3

<Z1 _Z21 Z22_ ZJ Z1 Z21 Z3 Z1 222 Z3

(5.6)

Using the definition of detm(*), Equation (5.5) is written as:

68

Chapter 5 - Autonomous Calibration Using a Trigger Probe

'A l U Ax? A*?+r V - l Ai? A*?+i> f Ax?_, Ax? Aj?+i
(dean Al?-! Ay? Ay?+i + detm Ay?_! Ai? Ay?+i + detm Ay?_, Ay? Ai?+i

Lai?_! Az? Az?+i J I az?_, Aj? Az?+i j I az?_, Az? Ai/+i,

Ax?_, Ax? Ax?,•¿+i
Ay?_i Ay? Ay?+1
Az?_i Az? Az?+1

= 0

)Ap

(5.7)

Note that in equation (5.7) Aj, = [Aj/* Aj^ Aj^]r is a 3 by n matrix, as well as ÀJ,., and
Aj/+i.

Ax?_! Ax?
andDenoting AXt = Ay?_i

Az?-i
Ay?
Az?

Ax?+1
Ay?+i
Az?+i

'Aj?-! Ax? Kl) fAx?-! Aj? Ax?+i f Ax?_, Ax? A i? ^

m ii & u Ai?_i Ay? Ay?+i + detm Ay?-1 Ai? Ay?+, + detm Ay?_, Ay? Aj?+i

I ai?_, Az? Az?+i J I az?-i Aj? Az?+i j I az?_, Az? Aj?+i,

We have a linear system:

H, Ap + AX; = 0 (5-8)

From the above derivation, we see that every four consecutive touch points will decide
a constraint equation (5.8). Using (m+3) consecutive touch points, a linear system
consisting of m constraint equations is obtained:

HAp + AX = 0 (5.9)

where H = [H1H2,...,Hmf and AX = [AX1AX2,...,AXJr

In Equation 5.9, the coefficient matrix H and AX can be calculated based on the
difference of nominal positions predicted by the controller, and the difference of special
Jacobian for each pair of consecutive touch points (only joint readings are required for
the computations). The only unknown remaining is the kinematic error to be identified.
Equation 5.9 serves as the linear identification model of the new method.

The derivation of the above model assumes the general case in which neither the
position nor the orientation of the constraint plane is known accurately. As a special
case, assuming that we have the knowledge of the orientation of the constraint plane
with respect to the robot base co-ordinate system, for example, the constraint plane is

69

Chapter 5 - Autonomous Calibration Using a Trigger Probe

aligned with the robot base x-y plane, then the z component of Ap, will be zero. From
(5.2), we have:

AtfAp + Az/° = 0 (5.10)

Comparing the above equation with the constraint Equation 5.8, we see that the
coefficient matrix AX'/is simply the difference of z component of two consecutive touch
points, and the H/ simply the difference of z component of special Jacobian at two
consecutive touch points. Similarly, we have the constraint equations for the cases
where the constraint plane is aligned with robot base y-z or x-z planes:

AjfAp + Ax/° = 0 (5.11)

or

AjfAp +Ay,° = 0 (5.12)

Although the exact location of the constraint plane is not necessarily known, care
must be exercised in placing the constraint plane in the workspace. Considerations
include:

• the robot configurations enabling desirable and safe touch on the plane;
• the workspace in which accuracy is critical;
• the optimal identification configurations of the robot;
• the workcell layout and kind of constraint plane available.

As robot base axes are always aligned with respect to some reference planes in the
workcell, the assumption made earlier, in which the constraint plane is aligned with the
robot base co-ordinates, has practical significance. In the case that external constraint
planes are used, it is also easy to align the plane with the robot base axis using the
probe and V A LII4 axis motion function. To maximise the range of robot movements,
it is desirable to have the robot touch the constraint planes separately which lie
perpendicular to the robot’s base axes. The linear identification model in this case can
be constructed according to Equations 5.10-5.12. The calculations are simplified and
the calibration results can be evaluated directly in the special case.

4 For UNIM ATION PUM A robot in this case

70

Chapter 5 - Autonomous Calibration Using a Trigger Probe

5.3 RNN-based Identification Algorithm

In Chapter 4, a RNN-based kinematic identification algorithm was developed which
exhibited numerical efficiency and robustness. A similar algorithm is presented here for
the linear identification problem, which might be ill-conditioned due to the limited
range of robot movement during data collection. The resolution of Equation 5.9 is
equivalent to the minimisation of the following energy function in the least square
sense:

E = — (¡HAp + AX||2 + a||Ap||2) (5.13)
2

where a is a positive scalar coefficient for regulation (Cichocki and Unbehauen, 1993),
and | || is a Euclidean norm. Comparing Equation 5.13 with 4.11, an extra regulation

(penalty) term is added to improve the conditioning of identification Jacobian, which is
near singular due to the partial pose information used in this case, and the limited
movement ranges for data collection. The physical meaning of the regulation (penalty)
term is to ensure a small norm of the identified kinematic error vector.

Writing Equation. 5.13 in.the form of Hopfield network energy, we have:

I L^Ap.Ap, - I / .A p ;. + jI(A X ,)2
¡=ly=l 7=1 ¡=1

(5.14)

where

Tj, - -Y.H'iH'j + aSÿ,
s= 1

w h e r e o f '
' IO, i f ; * ;

and

Ij =
i=l

(5.15)

(5.16)

and 7; determine the network connection weights and input currents respectively
based on the nominal kinematic model and parameters. The Ap; is the y'-th component
of kinematic parameters to be identified which corresponds to the y'-th neuron state, n is
the dimension of the vector of kinematic error while m is the row number of coefficient

71

Chapter 5 - Autonomous Calibration Using a Trigger Probe

matrix H. Following the procedure of the derivation of Equation 4.16, the neural
dynamic equation is given as:

d(Apf)
dt

= Pi& T ijAp + /;) (5.17)

where the net connection weight and input current are defined as (5.15) and (5.16), and
Hi is the same as defined in Chapter 4. The resolution of the ordinary differential
equation (ODE) (5.17) determines the kinematic parameter errors to be identified.

5.4 Data Collection

Renishaw Probes were originally used for accurate workpiece set up and workpiece
measurement for CNC lathes. The probe is in effect an omni-directional switch that
triggers when the probe contacts the workpiece from any direction (Renishaw
Metrology, Ltd, 1983). For our application, a special tool changer was made to hold the
probe (Figure 5.3). The trigger signal is transmitted as an input to control the robot. The
switch is kept on while the probe is in contact with the object. The tip-point of the
probe is a ruby ball so that the contact point from any direction is a constant distance
from the centre of the tip. The probe has 12.5 over-travel in ±X, Y direction (which is
equivalent to about 22 mm over-travel for a 100 mm long probe stylus), and 6.5 mm
over-travel in Z direction, which allows a certain probing speed and misplacement of
workpieces. The trigger force in the X, Y direction is set at 10 (g) and 15 (g) in the Z
direction. The probe has repeatability of 1 (Jim) thus can be used for high precision
measurements. The data collection procedure written in pseudo-code is as follows;

Repeat until the maximum number of touch points is reached {
MoveTo(START);
Point = RandomConfiguration(MAX, MIN);
MoveTo(Point);
while(ProbeSignal = OFF){

ProbeBy(XSTEP, YSTEP, ZSTEP);

}
while(ProbeSignal = ON){

ProbeBy(-XSTEP/10, -YSTEP/10, -ZSTEP/10);

}
RecordData(JointValues, Cartesian Values);

}

72

The robot moves from a start point to a point above the constraint plane where its
configuration is randomly generated within the robot movement ranges, from which a
desirable and safe touch on the constraint plane is ensured5. From that point, the robot
probes the plane by moving in small steps toward the constraint plane until the probe
signal is on. As there is some over-travel of the stylus, the stop point is not the point of
the first touch due to the probing speed. Therefore fine tuning is needed to retract the
first touch point. Whilst still in contact with the plane, the fine tuning process begins by
moving the tip-point away from the plane in steps of one tenth of the probing steps.
Then the joint values of the robot and the corresponding Cartesian co-ordinates are
recorded for post-processing. The above process is repeated until the desired number of
touch points has been reached.

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Figure 5.2. The Trigger Probe

5 This can be done either on-line using VAL II random generator, given the intervals of Cartesian
coordinates, or through off-line planning process using robot simulation package.

73

Chapter 5 - Autonomous Calibration Using a Trigger Probe

The probing and fine tuning direction is along the normal to the constraint plane.
The probing steps are normally set less than 1 (mm) hence the fine tuning steps are less
than 0.1 (mm), thus achieves a measurement accuracy in the order of 0.1 (mm) which is
sufficient for robot calibration (if more accurate measurement is required, smaller
probing steps can be set). In the special case when the constraint planes are aligned
with robot base planes, the robot only probes in one axis direction, the movements
along the other two axis directions are set to zero. The data collection program for
probing z-constraint plane written in VALII are listed in the appendix 5.

5.5 Results for a Puma 560 Robot

The PUMA 560 robot is a six DoF manipulator with six revolute joints. There are in
total 24 kinematic parameters, using Denavit-Hartenberg (D-H) notation, to describe
the kinemtaic model. Since joints 2 and 3 of the Puma robot are consecutive joints with
parallel joint axes, a modified D-H model is used to avoid a model singularity
(Veitschegger and Wu, 1988). The common normal parameter error Ad2 is replaced by
a rotation parameter Afc, and the value of Ad2 and the values of A/J, (i * 2) are fixed to
zero during the identification process. In general, another six parameters including
three each of rotation {roll-pitch-yaw} and translation parameters are needed for TOOL
transformation. The nominal parameters for the Puma robot are listed in Table 5.1.
Since only position information are used for calibration, only three position parameters
of the TOOL transformation are identifiable. To eliminate parameter redundancy
between the TOOL and the last link, the TOOL parameters are incorporated into the
last link. The three positional parameters of the tool are represented by the three
parameters d6, a6 and d6 of the last link, and is not identifiable. The total number of
identifiable kinematic parameters is therefore 23.

74

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Table 5.1 Nominal Parameters of a Puma 560 Robot

No. a; (mm) di (mm) ai (rad.) ßi (rad.) TOOL

1 0.0 0.0 -nil ■ 0 0.0 (rad.)

2 431.8 149.09 0.0 0.0 0.0 (rad.)

3 -20.32 0.0 n il 0 0.0 (rad.)

4 0.0 433.07 -nil 0 5 (mm)

5 0.0 0.0 nil 0 0.0 (mm)

6 0.0 56.25 0.0 0 302.34 (mm)

5.5.1 Simulation Results

The simulation program was built to test the proposed calibration algorithm using
MATLAB® running on Hewlet-Packard 9000 workstation. The flowchart of the
simulation program was shown in Figure 5.3. To maximise the robot joint movements,
three constraint planes were simulated to be placed perpendicular to each base axis: x =
-550 (mm); y = 300 (mm); z = -450 (mm). Sixty random configurations in Cartesian
space for each constraint plane were generated satisfying the constraint conditions.
Then the nominal inverse kinematic model was used to find the corresponding joint
values for each of the Cartesian configurations. If there was no error in the kinematic
model, it would be found that the positions achieved by controlling those joint values
would perfectly match those constraint conditions. However, by inducing small errors
in the parameters, the achieved positions by the 'actual' robot will be different from the
commanded ones thus deviate from the constraint planes. An iterative inverse Jacobian
method was adopted to find the corresponding joint compensations so that the positions
achieved by the 'actual' robot were identical to those commanded ones. The updated
joint values then feed to the nominal forward kinematic model to simulate the positions
reported by the robot controller. The positions reported by the nominal forward
kinematic model will not satisfy the plane constraint conditions. These position values,
together with the robot special Jacobian, are used to calculate coefficient matrix H and
AX in Equation (5.9). Then the recurrent neural network is applied to identify the

75

kinematic errors. The identified errors are then used to update the forward kinematic
model. This process is repeated until the discrepancy is decreased to the desired level.
Finally the identified errors are compared with the induced errors to evaluate the
simulation results.

The ordinary differential Equation (5.17) was resolved by calling the SIMULINK™
ODE solver. Choosing the coefficient a = 0.1, and the learning rate |i = 106, it took less
than one second of simulation time, and about 20 (pis) of the circuit settling time for the
system to converge. Table 5.2 lists the identified kinematic errors using the
identification model where neither orientation nor position of the constraint planes are
known. The induced errors were randomly produced in the range of ±0.15 (mm) for
linear parameters and in the range of ±0.015 radians for rotary parameters (the values in
parenthesis). Comparing the induced errors with the identified, we can see that the
angular errors are almost identical and the linear errors are similar but have small
residual errors. Table 5.3 compares the deviations from the constraint planes before and
after calibration, dx represents the deviations from the x-axis constraint plane x = -550
(mm), dy represents the deviations from the y-axis constraint plane y = 300 (mm), and
dz represents the deviations from the z-axis constraint plane z = -450 (mm). The
statistical analysis is based on the 40 calibration points on each of the constraint planes.
It is seen that the induced errors, though small, will produce a maximum deviation from
the constraint plane of up to 13.2 (mm). After identifying the kinematic errors, the
deviations from the constraints planes are close to zero. Small residual errors exist in
the x-axis and z-axis constraint planes (dx and dz), but the standard deviations of the
residual errors are very small, which implies that the calibrated positions shift parallel
from the constraint plane a small amount. Increasing the magnitude of the induced
errors will result in an invalid identification which leads to the identified model
pointing to a plane parallel to the constraint plane (the constraint condition still holds).
This is due to the fact that no information of the relative position and orientation
between the constraint planes and robot base frame are provided in the identification.
The general model is suitable for robot on-site re-calibration on a periodical basis
where the parameter changes from the previous calibration are relatively small.
Information about the relative relation between the constraint planes and robot base
(such as the constraint planes aligned with the base) will enable the model to identify
larger kinematic errors.

Chapter 5 - Autonomous Calibration Using a Trigger Probe

76

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Generate randomly Cartesian coordinates
satisfying surface constraint conditions

Nominal Inverse Kinematic Model

Nominal
Joint Values Joint

Compensations

Actual Joint
Values
Induced
Errors Actual Forward

Kinematic Model
Inverse
Jacobian

Cartesian
Error Vectoi&x

O

Nominal Forward r
Kinematic Model ^

Identification
Algorithm

CalculateAX Calculate H

ÎAXlsmaÜ. N o Special
^nough^ Jacobian

Figure 5.3. Simulation Program Flowchart

77

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Table 5.2. Induced & Identified Kinematic Errors

Link No. Au, (mm) Adi (mm) A a, (rad.) Adi (rad.) Aß, (rad.)

1 0.087 0.055 0.0081 -0.0011 0
(induced) (0.087) (0.000) (0.0080) (-0.0019) (0)

2 0.049 0 -0.0026 0.0059 0.0131
(induced) (0.069) (0) (-0.0027) (0.0060) (0.0131)

3 -0.036 0.075 -0.0122 -0.0039 0
(induced) (-0.004) (0.011) (-0.0123) (-0.0039) (0)

4 -0.061 -0.147 -0.0014 -0.0070 0
(induced) (-0.053) (-0.07) (-0.0014) (-0.0070) (0)

5 0.015 0.029 0.0022 -0.0074) 0
(induced) (0.041) (0.016) (0.0022) (-0.0076) (0)

6 0.146 -0.039 0 -0.0084 0
(induced) (0.146) (0.040) (0) (-0.0070) (0)

Table 5.3. Accuracy Comparisons for Calibration Points

Before Calibration After Calibration

(mm) dx dy dz dx dy dz

avg. -3.756 -6.8745 -6.2575 -0.2049 -0.0876 -0.2646

stdev. 2.6299 2.7775 2.6459 0.0411 0.0429 0.0132

max. 6.5839 12.7363 13.1583 0.2681 0.1916 0.3098

(Simulation results with induced errors)

78

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Table 5.4 lists the identification results using the identification model where the
orientations of the constraint planes are known (aligned with the robot base axes). The
induced errors were randomly produced in the range of ±2 (mm) for linear parameters
and in the range of ±0.02 radians for angular parameters (the values in parenthesis).
Both the linear and angular parameter errors identified are almost identical to those
induced in this case. Comparing with the assumed positions of the constraint planes, the
corresponding position component of the calibration points can be evaluated directly,
which is listed in Table 5.5. The x component evaluation (dx) are based on the forty
calibration points which lie on the constraint plane x = -550 (mm). The y, z component
of position evaluation (dy and dz) are based on the calibration points which lie on the
constraint plane y = 300 (mm), and z = -450 (mm) respectively. It is shown that the
positioning accuracy has been improved significantly by identifying the induced errors,
the maximum deviation from the constraint plane being decreased from up to 15 (mm)
to below 0.2 (mm).

Figure 5.4 plots the x, y, and z component of the positioning deviations from the
corresponding constraint plane. The first 40 points are the x component deviations from
the constraint plane x = -550 (mm), the next 40 are y component deviations from the y
= 300 (mm) constraint plane and the last 40 are z component deviations from the z =
-450 (mm) constraint plane for the 40 calibration points on the corresponding constraint
plane respectively. Note that only relative position information (the nominal position
difference between two consecutive touch points) is used for calibration. But the
calibrated model can predict accurately the absolute positions of the constraint planes.
There exists a small residual error in the x component deviations from the x-axis
constraint plane after calibration (the average error is 0.1114 mm, Table 5.5). It is due
to the fact that the linear position information between robot base and the constraint
planes are not provided in the identification. The big value of induced errors used in the
simulation resulted in the calibrated model pointing to the positions shifted parallel
from the constraint plane. This small parallel shift will be diminished by decreasing the
induced errors. Since the assumed errors are larger than those for actual robots we
generally dealt with in on-site calibration, the identification algorithm used in
simulation is suitable for practical applications.

79

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Table 5.4. Induced & Identified Kinematic Errors

Link No. Aa, (mm) Adi (mm) AOj (rad.) Adi (rad.) A/J, (rad.)

1 1.737 0.038 -0.0036 -0.0119 0
(induced) (1.696) (0.130) (-0.0036) (-0.0120) (0)

2 1.175 0 -0.0012 -0.0175 0.0106
(induced) (1.256) (0) (-0.0011) (-0.0175) (0.0106)

3 0.248 0.373 0.0160 -0.0005 0
(induced) (0.236) (0.374) (0.0160) (-0.0005) (0)

4 0.179 1.560 -0.0106 -0.0048 0
(induced) (0.195) (1.662) (-0.0106) (-0.0048) (0)

5 -0.788 -0.167 -0.0096 0.0076 0
(induced) (-0.955) (-1.367) (-0.0130) (0.0080) (0)

6 -1.893 -1.932 0 0.0147 0
(induced) (-1.894) (-1.835) (0) (0.0138) (0)

Table 5.5. Accuracy Comparisons for Calibration Points

Before Calibration After Calibration

(mm) dx dy dz dx dy dz

avg. -5.0646 1.9947 8.1754 0.1114 -0.0648 0.0051

stdev. 3.8930 3.6056 2.3923 0.0034 0.0093 0.0053

max. 14.8847 10.0196 13.0042 0.1186 0.1110 0.0148

(Simulation results with induced errors)

80

Chapter 5 - Autonomous Calibration Using a Trigger Probe

B efore
Calibration

A fter
Calibration

Figure 5.4. Simulation Result with Induced Errors

5.5.2 Experimental Results

To verify the proposed calibration scheme, the experimental set-up was used for data
collection (Figure 5.5). A calibrated flat plate measuring 530 (mm) long and 250 (mm)
wide was placed perpendicular to robot base x, y-axes for data collection. The robot x-y
base plane was aligned precisely with the granite worktable of a co-ordinate measuring
machine (CMM), therefore the worktable surface was used as the z-axis constraint
plane. The positions of the x, y, z-axes constraint planes in the robot base frame,
according to average values of the robot controller's readings, are at x = -652.070 (mm);
y = 491.337 (mm); and z = -470.558 (mm). The worktable surface has a reachable area
for the robot of about 80 (cm) by 110 (cm) which allows a wide range of robot
movements in the x, y direction. The robot movement ranges are restricted such that the
probe touch points lie on the constraint planes. The flat plate has a flatness of about
±0.001 (mm) and the flatness of the granite worktable surface is in the order of 5 (jm)
which are accurate enough for robot calibration. The data collection procedure was

81

Chapter 5 - Autonomous Calibration Using a Trigger Probe

implemented in VAL-II and it took about five seconds to collect one data point. One
hundred touch points on each of the plane were collected. Sixty pairs randomly chosen
from each of the 100 pairs were used for calibration and the remaining points were used
for independent test. Choosing a learning rate ¡1= 106, the dynamic system (5.17)
converges to its minimum rapidly. The trajectory of the kinematic identification in the
first iteration is illustrated in Figure 5.6, which exhibits efficient and robust
convergence (in about 20 pis for circuit implementation and less than 1 second in
simulation), where linear parameters are in centimetres and angular parameters in
radians. Table 5.5 lists the identified kinematic errors using the RNN-based
identification algorithm based on the experimental data.

Fig.5.5 (a). Robot touch worktable surface (z-aixs constraint plane) using a probe

82

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Fig. 5.5 (b). The robot touch an aligned (y-axis) constraint plane using a probe
Figure 5.5. Experimental Set-up for Data Collection

Figure 5.7 plots the x, y, and z component of the differences between each two
consecutive touch points on the same constraint plane (the first 39 points are the
difference of x components obtained from the 40 test points on the x-axis constraint
plane, and the next 39 are y component differences obtained from the 40 test points on
the y-axis plane and the last 39 are z component differences obtained from the 40 test
points on the z-axis plane). The dashed lines represent the differences of positions
predicted by the un-calibrated model in the robot controller while the solid lines
represent the differences of positions predicted by the updated model using the
identified errors. The symmetry of the graph is due to the use of the differences
between consecutive points. It is shown that the calibrated model works well for test
data points as well. Therefore the calibrated model is valid not only for the calibration
points but also for the test points.

Using the reference positions of the constraint planes perpendicular to the base axis,
we can evaluate directly the positioning accuracy achieved by this calibration. The
accuracy comparisons based on the forty test data points on each of the three constraint

83

Chapter 5 - Autonomous Calibration Using a Trigger Probe

planes are given in Table 5.7, where dx, dy and dz represent the x, y and z component
deviations from the x, y and z-axes constraint plane respectively. The average of
absolute error after calibration has improved to below 0.3 (mm). The z component
deviations from the x-y plane (z-axis constraint plane) before and after this calibration
are illustrated in Figure 5.8 based on the 100 collected data from the z-axis constraint
plan. The x, y-axes represent the x, y coordinates of those touch points on the z-axis
constraint plane (which shows that the touch points on the z-axis constraint plane lie in
the area of 400 x 200 mm2), and the z-axis represents the z coordinate differences
between the model predicted and the actual position of the z-axis constraint plane.
Figure 5.8 (a) shows the z-axis constraint plane predicted by the robot model before
calibration, while Figure 5.8 (b) shows the z-constraint plane predicted by the model
after calibration. Figure 5.8 (b) is much closer to the actual shape and position of the z-
axis constraint plane than Figure 5.9 (a). It has shown that the deviations from the z-
axis constraint plane has been decreased significantly after calibration. We can see that
this approach achieves an accuracy improvement comparable to other calibration
methods using sophisticated external measurements. The maximum inaccuracy after
calibration is of the order of robot repeatability for the test points on the constraint
planes (Table 5.7).

Trajectory of Parameter Identification

Figure 5.6. Time Evolution of Kinematic Errors during Identification

84

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Table 5.6 Identified Errors of a Puma 560 Robot

Link No. Aa, (mm) Adi (mm) Act, (rad.) ■A0,(rad.) AÂ (rad.)

1 1.027 -0.010 0.0018 0.0017 0

2 0.688 0 -0.0023 -0.0048 -0.0013

3 0.453 0.128 0.0007 0.0024 0

4 0.139 -0.252 0.0056 0.0172 0

5 -0.126 -0.441 -0.0061 0.0041 0

6 0.068 -0.348 0 0.0082 0

Table 5.7 Accuracy Comparisons Based on Test Points

Before Calibration After Calibration

(mm) dx dy dz dx dy dz

average 1.017 4.058 1.890 0.190 0.259 0.223

stdev. 0.165 0.658 0.306 0.031 0.042 0.036

max. 2.218 4.866 3.924 0.558 0.573 0.571

85

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Before
Calibration

A fter
Calibration

Figure 5.7 Test Result with Experimental Data

86

Chapter 5 - Autonomous Calibration Using a Trigger Probe

(b) z-axis Constraint Plane Perceived by die Robot After Calibration

Figure 5.8. z-axis Constraint Plane Perceived by the Robot

87

Chapter 5 - Autonomous Calibration Using a Trigger Probe

5 .5 3 Cross-Evaluation using CMM

In the above sections, we have shown through simulation and experimentation that a
robot can calibrate its kinematic control model using the measurements of its internal
sensors only. However, for the evaluation of the calibration results, the internal sensor
measurements are inappropriate and some external global measurements are needed.
Furthermore, although we show through experimentation that the positioning accuracy
of the test points on the constraint planes are improved, it needs to be verified that the
positioning accuracy of those points beyond the constraint plane are also improved.
Therefore a precision co-ordinate measuring machine (CMM) was used to obtain the
actual locations achieved by the robot end-effector. A measuring cube was mounted in
the end-effector to obtain the full pose information of the end-effector as described in
Chapter 3. Two hundred and eighty eight points uniformly distributed in a volume of
200 (mm) by 400 (mm) by 200 (mm) in Cartesian space and 45 (degrees) by 90
(degrees) by 135 (degrees) in orientation space were collected. The measurement
volume was located near the area where the constraint plates were placed. Since the
actual measurements of the CMM were with respect to a reference point, the reference
point was calibrated before the collected data were used. The calibration of the
reference point could be considered as the robot base calibration and was performed by
minimising the total inaccuracy of the whole 288 points in the least square sense. To
evaluate the robot kinematic model before and after calibration, the effects of the robot
base and the tool were eliminated, since the robot was set-up at different time for
calibration and for evaluation and used the different end-effector tools.

Both the actual measured positions and orientations of the end-effector were
compared with the locations reported by the kinematic model without calibration, and
by the kinematic model updated using the identified errors of Table 5.5. The
comparison results are listed in Table 5.8 which are based on twenty test points
randomly chosen from the whole data set. After compensating robot base error, the
average position error in length was decreased from 3.75 (mm) to 2.15 (mm). The
average error decreased further from 2.15 (mm) to 0.76 (mm) after robot kinematic
calibration. The standard deviation decreased from 1.15 to 0.19. Although only position
information was used in calibration, the orientation accuracy was improved as well due
to the robot wrist parameters being calibrated using the tool offset. The accuracy
improvement of the cross-evaluation is encouraging, considering that the set-up for

88

Chapter 5 - Autonomous Calibration Using a Trigger Probe

calibration and evaluation was changed and the evaluation volume was beyond the
constraint planes used for calibration.

Table 5.8 Cross-Evaluation Results Using CMM

Before Calibration
After Base
Calibration

After Base & Robot
Calibration

in length Pos.(mm) Ori.(deg.) Pos.(mm) Ori.(deg.) Pos.(mm) Ori.(deg.)

average 3.7509 2.5743 2.15 1.57 0.76 0.84

stdev. 1.1506 0.4227 0.52 0.42 0.19 0.37

max. 4.7437 3.1496 2.86 2.45 1.14 1.41

5.6 Chapter Summary and Discussions

A new autonomous robot calibration scheme has been developed in this chapter.
Renishaw probes were originally used for workpiece set-up and measurements for
CNC lathes. We applied these cost effective sensors successfully for robot on-site
calibration in an industrial application environment. Instead of taking partial or
complete pose measurements for robot calibration, the tip-point of the probe was
constrained to a plane movement and only robot internal joint measurements were used
for kinematic identification. Neither external measurements nor accurate fixture set-up
are needed for such a calibration. The recurrent neural network-based parameter
identification algorithm is used for calibration processing. Both simulation and
experimental results for a Puma robot show that robot positioning accuracy can be
improved to the level of robot repeatability.

The six dimensional robot kinematic error model was projected into one positional
dimension in this study. The full kinematic parameters can be calibrated as long as the
inaccuracy function of the specific dimension component contains all the kinematic
parameters. If the specific component is not sufficient to identify all kinematic
parameters, more than one constraint plane can be placed in different positional axis

89

Chapter 5 - Autonomous Calibration Using a Trigger Probe

separately for the data collection. Proper tool offsets are also needed to make the robot
wrist parameters identifiable. The general kinematic identification model does not
require the exact knowledge of the constraint plane locations but the model can only
identify small kinematic errors. The orientation knowledge of the constraint planes
(aligned with robot base planes) enable the model to identify reasonably large
kinematic errors for practical applications. The alignment of the constraint plane with
the robot base axis can be easily performed with the robot and a trigger probe. Future
work will investigate the optimal placement of the constraint plane in the constrained
environments so that the robot has the optimal identification configurations. The study
could lead to the construction of a portable mechanical fixture for robot on-site
calibration. Constraint surfaces other than planes may also be suitable for the proposed
calibration method (such as a spherical ball) as long as the surfaces have known shapes
and are suitable for touching with the probe. The effect of measurement noises such as
the flatness of constraint planes on identification accuracy need to be studied by
simulation in future work.

90

Chapter 6 - Generic Accuracy Modelling

CHAPTER 6

GENERIC ACCURACY MODELLING USING FEEDFORWARD
NEURAL NETWORKS

6.1 Introduction

Accuracy modelling is an important aspect for robot calibration which uses some
mathematical tools to represent the functional relationship between robot end-effector
positioning error and model parameter errors of each individual link. Either analytic or
numerical modelling techniques are used to estimate robot end-effector accuracy as a
function of robot joint configurations. In previous chapters, robot end-effector
inaccuracy was modelled as an analytic function of robot kinematic or geometric errors.
If geometric error modelling is not sufficient, non-geometric errors such as
transmission error, compliance, gear backlash, etc. can be added into the model
(Whitney, Lozinski and Rourke, 1986; Judd and Knasinski, 1990) and the calibration
technique developed remains valid. Another objective of the study of robot accuracy
modelling is to understand the interactions between errors which is useful for
diagnosing various error sources. To diagnose robot error sources is difficult since
different errors in individual links may cause identical errors in the robot end-effector.

As argued by Everett (1993), however, existing geometric and non-geometric error
models are ad-hoc and are not suitable for investigating the causes of errors. Existing
models are not complete and are unable to model all the phenomena that contribute to
robot end-effector inaccuracy. The assignment of non-geometric parameters in the
models are ad-hoc since the importance of non-geometric factors in affecting the

91

Chapter 6 - Generic Accuracy Modelling

accuracy vary from one particular robot to another, and the added non-geometric
parameters may have dependency on the existing model parameters which might lead
to invalid identification results. Instead, a general error function for each parameter,
based on the expansion of Fourier series, was proposed by Everett (1993). The error
function provides a more systematic way to represent both geometric and non-
geometric errors than previous models. While the general error function is useful for
analysing the contributions of various errors, and understanding the error characteristics
of a robot, the size of the general error model makes it impractical for calibration
purposes because the terms that need to be identified are numerous and the
identification algorithm becomes intractable. No numerical identification algorithm is
given for the general error model in Everett's work.

In this chapter, a generic accuracy function is defined based on the concept of
Everett's error function. Instead of defining each parameter error using the expansion of
Fourier series, the generic accuracy function defines robot end-effector inaccuracy by a
series of trigonometric functions of joint variables expanded by Fourier series. The
accuracy function is generic in that it accounts for various error sources and it can
apply to any type of robot. The functional relationship between end-effector inaccuracy
and joint variables is useful for the design of robot accuracy compensators using
feedforward neural networks. Multi-layered feedforward neural networks are known to
be universal function approximators which are theoretically capable of approximating
any continuous function to an arbitrary accuracy. Regarding robot joint configuration
as inputs and end-effector inaccuracy as outputs, multi-layered feedforward neural
networks can be used to learn the non-linear mapping between robot joint configuration
and end-effector inaccuracy. However, the design of such a network is not
straightforward due to the complexity of the robot accuracy problem, which involves
multiple joints and various error sources. The generic accuracy function serves as the
basis for the design of the neural network architecture. While maintaining the
completeness of Everett's general error model, the neural network learning technique
provides a practical solution to the calibration problem using the generic accuracy
model.

In the next section, we explain that robot end-effector inaccuracy can be represented
by a series of trigonometric polynomials of robot joint variables through the discussion
of the error function, therefore an expansion of Fourier series can be employed as a
generic accuracy function for completeness. In section 6.3, a higher-order neural

92

Chapter 6 - Generic Accuracy Modelling

network architecture-Pi-sigma network (Ghosh and Shin, 1992)-is introduced. The Pi-
sigma network is capable of generating a higher-order polynomial representation
efficiently and dynamically, which provides potential for practical implementation of
the generic accuracy model. To illustrate this, Section 6.4 takes a one degree-of-
freedom manipulator as an example which shows that the trained network is equivalent
to the simulated analytic higher-order error function. In Section 6.5, experimental data
for a six DoF Puma robot is used for the network training, and compared with the
network training using the commonly used back-propagation algorithm.

6.2 A Generic Accuracy Function

Typical error sources for robot inaccuracy can be classified into two types; geometric
errors and non-geometric errors. Geometric errors are normally defined as static
parameter deviations which are constant for all robot configurations. Kinematic
parameter errors discussed in the previous chapters are geometric errors. Non-
geometric errors are dependent on the robot configurations (model terms are functions
of the joint variables). Everett (1993) represents both geometric and non-geometric
errors systematically as an error function which is based on the expansion of Fourier
series. The configuration-independent geometric errors can fit exactly the error function
when the function only contains the zero’th order of joint variables. A similar fit can be
achieved for the configuration-dependent non-geometric errors although the error
function order may vary. For example, typical non-geometric errors such as gear
transmission error, compliance and gear backlash can be modelled as robot joint offset
errors which are trigonometric functions of the joint variables (The detailed expressions
of the model are referred to Whitney, Lozinski and Rourke, 1986). The trigonometric
function of the actual joint values will therefore contain terms which are trigonometric
functions of the trigonometric function of the joint variables, such as cos(psin(0)),
sin(pcos(0)), etc, where p is a coefficient constant and 6 is joint variable. Using Taylor
series expansion and some trigonometric operations, such functions like cosine of sine
can be expressed as a series of higher-order trigonometric function of joint variable. For
example:

cos(/?sin(0)) = A0+Al cos(20) + \ cos(40)+... (6.1)

where A0, Ab and A2,... are coefficient constants in the series form of the coefficient p.

93

Chapter 6 - Generic Accuracy Modelling

Based on the above observation, model parameter errors (both geometric and non-
geometric) can be described by the error function which is defined by a Fourier series.
The error function is applied to the standard homogenous transformation as an ordinary
kinematic parameter, it is similar to the kinematic error except that it allows the error to
change with joint variables. However, the development of the relationship between
end-effector error and each error function by expanding the function is impractical for
multi-degree of freedom robots, because the size of the model grows exponentially with
the number of DoF and the order of the error function. Figure 6.1 illustrates the
relationship between robot end-effector error AT and each link transformation error AA,
for a six DoF robot (i = 1,2,..., 6), where A, is the standard Homogenous transformation
for link i which is the first order trigonometric function of joint variable 0, as defined in
Chapter 3, AA, contains error functions which may be expanded to a certain order of the
trigonometric functions of joint variables as discussed above. If AA; is purely geometric
then it is the zero'th order of the joint variables, the model of the end-effector error AT
can be established as described in Chapter 3, which is however the sixth order of the
trigonometric functions of joint variables. The higher-order terms of the trigonometric
functions in AT are developed due to the fact that individual link errors are transmitted
through each link transformation to the end-effector error, and there is coupling effect
between link transformations. When AA, is expanded to the higher-order of the
trigonometric functions of the joint variables, the order of end-effector error AT in
terms of the trigonometric functions of the joint variables will grow considerably. For
example, if AA, is expanded to the second order of the trigonometric functions of joint
variables, the order of AT will be 26 (64) due to the multiplicative transmission of the
errors.

94

Chapter 6 - Generic Accuracy Modelling

Through the above discussion, we see that robot end-effector errors due to link
parameter errors (represented by an error function) can be represented by a series of
trigonometric functions of joint variables with varying orders. For the purpose of robot
accuracy compensation, it would be very useful to develop a generic accuracy model
that establishes the functional relationship between robot end-effector error and joint
variables, taking all the error sources into account. Similar to the definition of the error
function which describes each parameter error using an expansion of the Fourier series,
we define a generic accuracy function which defines robot end-effector positioning
error (inaccuracy) by a series of trigonometric functions of joint variables expanded by
Fourier series. For example, the generic accuracy function for end-effector error of a
one degree of freedom robot can be written as

Axe = a ̂+ 'Z a, cos {16) + b{ sin(/0) (6.2)
i= i

where 6 is the joint variable and m is the highest order of error; Axe represents the e-th
component of the robot end-effector error (inaccuracy). For rotary type joints, 6 is the
joint angle; for prismatic type joints, conversion of linear movement into rotary angle 6
= q*2n/L is applied so that the generic accuracy function can be used for prismatic type
joints, where q is the joint variable and L is the joint range of the prismatic joint. If m is
equal to zero, the end-effector inaccuracy is equal to a constant which can be
interpreted as a constant error existing at the robot base. If only purely geometric errors
exist, then the first order expansion is sufficient for a one DoF robot to represent the
end-effector inaccuracy due to the geometric errors. The kinematic accuracy model
based on geometric errors as developed in Chapter 3 is a special case of the generic
accuracy function. The generic accuracy function can be expanded incrementally to
accommodate various orders of error function and number of DoF.

For a multi-degree of freedom robot, the generic accuracy function becomes rather
complicated since it is a multi-dimensional Fourier series. The basis functions of a
multi-dimensional Fourier series expand significantly with the degree of freedom and
the order of the function. For example, the basic trigonometric system for a two
dimensional series are as follows:

1, cos(m<?i), sin(m^), cosfn^), sin(n62), cos(mQl)cos{n61) , ...
sinfm^jcosf/z^), cos(m6l)sm(n62), sin(m01)sin(/i82) , ... (6.3)
(m =1, 2,...; n = 1, 2,...)

95

Chapter 6 - Generic Accuracy Modelling

The structure of the generic accuracy function provides useful information for the
design of a robot accuracy model which attempt to approximate the functional
relationship between end-effector inaccuracy and joint variables. In the following
sections, a feedforward neural network is used to model the accuracy function.

6.3 Neural Network Architecture and Learning Algorithm

6.3.1 Neural Network Architecture

The involvement of neural networks in this case is to construct the non-linear
mapping between robot joint space and end-effector inaccuracy in Cartesian space
using a NN internal representation. Multi-layered perceptron (MLP) neural networks
are capable of approximating any continuous function from one dimensional space to
another to an arbitrary accuracy, provided sufficiently many hidden units are available
(Homik, Stinchcombe and White, 1989). However, there are currently no constructive
methods available for the design of NN architecture for specific problems. Typically,
an internal representation of a MLP network is constructed from a group of first-order
units via a learning rule such as back-propagation. The first-order neuron processing
units are linear in the sense that they can capture only first-order correlation of inputs. It
has been shown that higher-order correlation among input components can be used to
construct a higher-order network which exhibits greatly enhanced performance in
learning, generalisation and knowledge (symbol) representation (Giles and Maxwell,
1987). This performance is due to the fact that the order or structure of a higher-order
neural network can be tailored to the order or structure of a problem, which enables
such a network to learn geometrically invariant properties more easily. For example,
learning the XOR has been the classic difficult problem for first-order units which
requires thousands of iterations of the fastest learning rule to train a hidden unit to
perform the XOR function. However, if a second-order correlation term Xi*x2 between
the two inputs x x and x2 is provided, no hidden unit is needed and one iteration of
training will converge (Giles and Maxwell, 1987).

From the generic accuracy function as defined above, we can see that robot end-
effector inaccuracies are higher-order trigonometric polynomials of joint variables.
Therefore, a higher-order neural network which can capture higher-order correlation
among input components will be desirable for our application. One straightforward

96

Chapter 6 - Generic Accuracy Modelling

higher order network can be constructed by using non-linear basis functions, chosen
from a priori knowledge of the model, as the network inputs, and no hidden layer is
needed (such networks are sometimes called functional link networks (Pao, 1989)). A
similar network architecture was used by Kawato and Suzuki (1988) for robot inverse
dynamics learning where the basis functions were selected from the non-linear terms of
dynamics equations. This kind of network has fast and accurate learning ability because
it belongs to Widrow-Hoff type linear learning (Mathworks Inc., 1993). Unfortunately,
a priori knowledge of models is essential for this kind of network, and the terms
required in the input layer become unpractically large for higher dimensional and
higher-order non-linear mapping problems due to the problem of combinatorial
explosion. Take the accuracy modelling problem as an example, if a two DoF robot is
considered, the basis functions for network input can be chosen from the generic
accuracy function (6.3); if only purely geometric errors are considered, only second-
order correlation between the trigonometric functions of joint variables are required, the
number of the basis functions is 9. However, the number of basis functions grows
exponentially with the dimension of input space and the order of the problem since it
belongs to multi-dimensional Fourier series expansion.

A class of higher-order networks, Pi-sigma networks, was introduced by Ghosh and
Shin (1992). This network is a fully connected two-layered feedforward network, the
weights from a hidden layer to the output are fixed at 1, and only weights between
input and the hidden layer are adjustable (Figure 6.2). The Pi-sigma network uses linear
summing units in the hidden layer and product units in the output layer to incorporate
the approximation capabilities of higher-order networks while greatly reducing network
complexity. It has been shown that the size of the network is linear in input size and the
order of the network. The total number of adjustable weights for a AT-th order Pi-sigma
network with A-dimensional inputs is K*(N+1) (Ghosh and Shin, 1992). This also
enables the network to be incrementally expandable since the order can be increased by
adding another summing unit and associated weights. The highest order of correlation
among inputs is equivalent to the number of hidden units used. Figure 6.2 shows a AT-th
order Pi-sigma network with one output. For multiple outputs, multiple Pi-sigma
networks can be used for each component of the output. Due to the higher-order
approximation capability and the network simplicity, the Pi-sigma network has been
employed to construct a generic model to approximate robot accuracy in this work.

97

Chapter 6 - Generic Accuracy Modelling

hidden layer
o f linear sum m ing units

adjustable
w eights

input layer

Figure 6.2. A Pi-sigma network with one output (Ghosh and Shin, 1992)

Let x =(1, xu x2, ..., xN) be an N+\-dimensional augmented input vector, xk denotes
the (ifc+l)-th component of x. The inputs are weighted by K * (jV+l)-dimensional
augmented weight vectors w,•= (bj, wXj, w2j, ..., wNj)T, j = 1, 2, and summed by a
layer of K "linear summing" units where b} is a bias or the threshold of theyth summing
unit and K is the desired order of the network. The output of the /-th summing unit, hp
is given by:

N
hj = w/x = +bj, 7 = 1 , 2 , ..., K

* = i
(6.4)

The output y is given by

K
y=S(Uh j)

y-i
(6.5)

where £(•) is an appropriate activation function which can be chosen as the sigmoid
activation function:

(6 .6)

or the hyperbolic tangent function:

(6.7)

98

Chapter 6 - Generic Accuracy Modelling

where c is a coefficient constant. If no non-linear activation function is used in the
output layer, the network output is actually a higher-order polynomial of input
variables. Pi-sigma networks without non-linear activation function are used as the
basic building blocks to construct Ridge Polynomial networks which are capable of
representing any multivariate polynomial (Shin, 1992). Since our target is to represent
the generic accuracy function, no non-linear activation function is used in our network
and the inputs are pre-processed using non-linear trigonometric transformations, and
therefore the output is the ÆT-th order trigonometric polynomial of robot joint variables.
The network learning algorithm provides a natural computational mechanism for the
generic accuracy modelling problem.

6.3.2 Network Learning Algorithm

The theoretical proof of Pi-sigma network approximation capability and learning
stability has been given in (Ghosh and Shin, 1992). For efficient and stable learning,
the asynchronous updating rule has been adopted (Ghosh and Shin, 1992). That is, at
each learning epoch, only weights associated with one hidden unit will be chosen to be
updated at one time, this process is repeated until all weights associated with each
hidden unit are updated once. The weight updating is based-on a LMS (least mean
square)-type learning rule, and the batch learning is used to speed up the training
process. To derive a network weight updating rule based on the gradient descent
algorithm, the network objective is constructed as the sum squared error (SSE)
function:

e2 = Ì (t p - y p)2 (6.8)p-1

where superscript p denotes the p-th training pattern, tp is the desired output for the p-
th pattern, yp is the network output, and summation is over all Q training patterns.

Let the l -th hidden unit be selected for updating, applying gradient descent on the
selected weights w,, we have:

A wu °c de2

tou
k =1,2, ...,N (6.9)

99

Chapter 6 - Generic Accuracy Modelling

Using (6.7) and (6.4) in (6.8), and noting that no non-linear activation function is used
in the output layer, we obtain the weight updating rule as follows:

where tp is the desired output andyp is the network output, hf is the hidden unit output
and x p is the input vector, for the p-th training pattern respectively. All Q training
patterns are applied simultaneously to determine the weight changes. The learning
rate ri is chosen to be a small valued number and changes adaptively according to the
sum square error (adaptive learning rate). The learning algorithm for the Pi-sigma
network is implemented using MATLAB neural network toolbox (Mathworks Inc.,
1993) running on a Hewlet-Packard 9000 workstation.

6.4 Simulation Example for a One DoF Manipulator

Simulation for a one DoF manipulator (Figure 6.3) is performed to illustrate how a
Pi-sigma network can be tailored to realise a generic accuracy model. The robot end-
effector position (x, y) is dependent on its joint variable 6, for example:

p-
(6.10)

Q
Ai* = n . £ (r ' - / M I W)

/>=1 1
(6.11)

X = l*cos(ff) (6.12)

7 7 7 7 V

Figure 6.3. One Degree of Freedom Manipulator

100

Chapter 6 - Generic Accuracy Modelling

The end-effector inaccuracy dx , due to its link geometric errors dl and d6, is given as:

dx = dl*cos(6) - dd*l*sm{6) (6.13)

The inaccuracy model (6.13) due to purely geometric error is the first-order
trigonometric function of joint variable. Assuming the second-order term p*sm(26) =
2p*sin(0)*cos(0) due to non-geometric errors, and letting coefficient parameter p =
0.025, kinematic parameter l - 10, dl = 0.3, dd = 0.02, the analytic expression of the
inaccuracy model dx is:

dx = O.3Ocos(0) - O.2sin(0) + O.O5sin(0)cos(0) (6.14)

To realise a second-order trigonometric polynomial (6.14), a second-order Pi-sigma
network is designed as shown in Figure 6.4. The input is joint variable encoded by
trigonometric functions. Two hidden units are employed to generate second-order
correlation and one output unit without activation function is used. The training
patterns comprise of 25 pairs of data generated by using the analytic model (6.14)
which are uniformly distributed in the joint variable range [-n/2, 7t/2]. After about 1000
epochs training using the learning algorithm presented above, the network converged
with the final RMS (root mean square) error in the order of 10"6. The trained network
connection weights are shown in Figure 6.4. Due to the small size of the network, we
can expand the trained network analytically:

dx = 0.0+ O.2999cos(0) - O.2sin(0) + O.O5sin(0)cos(0) + O.OOOlcos2(0) + O.Osin2(0)
(6.15)

Figure 6.4. NN Representation of Generic Accuracy Model for a One DoF Robot

101

Chapter 6 - Generic Accuracy Modelling

Comparing (6.15) with (6.14), we can see that the achieved second-order
trigonometric polynomial is very close to the simulated accuracy model. Several
observations can be made from this simple example:

• It has been shown that the Pi-sigma network can be tailored to represent the
generic accuracy function, with pre-processed inputs by using trigonometric functions,
and hidden units being selected to fit the order of problem and robot DoF.

• The capability of this simple network architecture of realising higher-order
trigonometric polynomial is attractive for our application since it suits the structure of
the problem which is represented by a series of trigonometric polynomials. The
network training is fast due to only one layer of connection weights being modified and
the small network size needed.

• Instead of identifying the numerous error source items explicitly, the error
source information is represented by the distributed network connection weights. The
NN learning method provides a natural computation mechanism for the generic
accuracy modelling.

• Using the incremental learning algorithm as suggested by Shin (1992) for
realising higher-order multi-variate polynomials, the size and the order of the network
can grow incrementally by adding a higher-order Pi-sigma network without affecting
the established network connections.

Explicit evaluation realising an exact accuracy model for a multi-DoF robot is
difficult due to multiple input variables involved. The training accuracy for multiple
input variable network can not be achieved as well as in the example due to the basic
learning algorithm (LMS-type) adopted, which stuck to local minima easily for
multiple-variate non-linear optimisation problems. Advanced optimisation methods
such as simulated annealing, or genetic algorithm (GA) (Masters, 1993) can be
incorporated into the learning algorithm to escape from local minima, which however is
not the focus of this study.

102

Chapter 6 - Generic Accuracy Modelling

6.5 Network Training Using Experimental Data

The end-effector inaccuracy data in the local calibration volume was collected for a
six DoF PUMA robot using the CMM experimental set-up described in Chapter 4. The
neural network was used to construct a robot accuracy model which relates robot joint
configurations to end-effector inaccuracy, based on the training samples from the
collected data. The trained network was then used to predict the end-effector
inaccuracy, given joint configurations determined by the nominal inverse kinematics.
The outputs of the trained network were used to modify the desired pose so that the
actual pose achieved, by controlling joint values recommended by the nominal inverse
kinematics, are close to the desired pose. The schematic of training and implementation
of the NN-based accuracy model is shown in Figure 6.5.

a). Training of Neural Network Accuracy Model

b). Implementation of the Trained Network
Figure 6.5. Training and Implementation of NN Accuracy Model

103

Chapter 6 - Generic Accuracy Modelling

As shown in Figure 6.6, a single Pi-sigma network has been used for each
component of the pose inaccuracy vector, with the same inputs of joint variables
encoded by sinusoidal functions. Note that only sinusoidal transformations are used in
the input layer instead of using both sine and cosine transformations for each input
component as in the simulation. This is because the input space is highly-dimensional
(six dimensions); if both sine and cosine transformations are used in the input layer, the
dimension of the input space will be doubled. Experiments show that network
architecture with lower dimensions of input space outperform those with higher
dimensions in this case. The product units have no activation functions and are used in
the output layer so that the outputs are actually higher-order polynomials of sinusoidal
functions of joint variables. The order of the polynomials is equal to the number of
units used in the hidden layer of each Pi-sigma network. For the six DoF puma robot,
our experiments show that six units in the hidden layer achieves best results. This
agrees well with analytic kinematic accuracy models which are generally up to sixth
order trigonometric polynomials of joint variables. Figure 6.7 shows the positional
accuracy learning curve which exhibits fast and stable learning. The particular learning
parameters are chosen for each component of output vector learning. The trained
networks are then put together for implementation to obtain multiple outputs
simultaneously.

Figure 6.6. Neural Network Architecture for Accuracy Modelling

104

Chapter 6 - Generic Accuracy Modelling

(a). The x-component of accuracy learning curve

(b). The y-component of accuracy learning curve

105

Chapter 6 - Generic Accuracy Modelling

(c). The ¿-component of accuracy learning curve

Figure 6.7. Learning Curves for Positional Accuracy Modelling

Half of the collected 288 data points were used for network training and the
remaining 144 points were used for evaluation. Figure 6.8 shows the neural network
generalisation test of the positional accuracy modelling for the 144 test points (sorted in
ascending order). It is shown that the network can predict robot inaccuracy well in the
calibrated area even for the points unseen in the network training patterns. Three
statistical measures (average error, standard deviation and maximum error) were used
to evaluate the achieved accuracy by the trained network. Table 6.1 lists both position
and orientation residual error (learning error) achieved by the trained network based on
the 144 test points not included in the training data. Comparing Table 6.1 with the
achieved accuracy using kinematic calibration in Chapter 4 (Table 4.6), it can be seen
that the NN-based generic accuracy model achieves the same level of positional
accuracy as the kinematic calibration, and achieves better orientation accuracy than
kinematic calibration. It shows that kinematic model-based calibration can compensate
the non-geometric errors in the local calibration volume, since kinematic modelling
achieves the same level of positional accuracy as the NN-based generic accuracy

106

Chapter 6 - Generic Accuracy Modelling

modelling. The better orientation accuracy achieved by the NN model is partially due to
the fact of there being independent Pi-sigma networks for each component of pose error
vector, and that there are more adjustable parameters (weights) in the NN model than
for the kinematic model. The NN-based model uses in total 6*6*(6+l) = 252 adjustable
parameters (weights), in comparison with the total 30 adjustable parameters used in the
kinematic model.

For comparison, a standard feedforward neural network using a back-propagation
learning algorithm (Hecht-Nielsen, 1990; Masters, 1993) was used to approximate the
same accuracy model. The input data are also encoded by sinusoidal functions. A three
layered network of 6 x 30 x 3 were used for positional and orientation inaccuracy
approximation respectively6. The hyperbolic tangent activation functions were used in
the hidden layer units and linear activation functions are used in the output units.
Several network training heuristics such as learning with momentum, Nguyen-Widrow
initial conditions, adaptive learning rate (Mathworks, 1993) were used to improve the
back-propagation learning. After about 1500 epochs training using 144 training data,
the network converged to the desired level of learning accuracy. Accuracy evaluation
for the trained back-propagation network based on the remaining 144 data points are
shown in Table 6.2. Comparing Table 6.2 with Table 6.1, it shows that the back-
propagation networks achieved the same level of accuracy as the Pi-sigma networks.-
However, the total number of adjustable weights in the back-propagation networks is
2*(30*(6+l)+30*3) = 600, in comparison with the 252 adjustable weights used in the
Pi-sigma networks. The computation required in the back-propagation networks is
much more intensive than the Pi-sigma networks due to the larger network size and the
use of non-linear hyperbolic tangent functions in the hidden units, compared with only
one layer of connection weights to be modified and no non-linear activation function
used in the Pi-sigma networks.

6 Since there is no constructive methods for network design, the network architecture is decided based on
extensive numerical experiments.

107

Chapter 6 - Generic Accuracy Modelling

Fig. 6.8 (a) dx Generalisation Test

S■a

Test Points (Seated Numbering)

□
Measured Error

o
NN Output

Fig. 6.8 (b) dy Generalisation Test

10S

Chapter 6 - Generic Accuracy Modelling

Fig. 6.8 (c) dz Generalisation Test
Figure 6.8. NN Generalisation Test for Position Compensation

Table 6.1. Accuracy Evaluation for Pi-sigma Network Based-on Test Pints

Position Error in Length Orientation Error in Length

average 0.2411 (mm) 0.4419 (degree)

std. dev. 0.1488 (mm) 0.3744 (degree)

max. 0.7774 (mm) 1.9460 (degree)

109

Chapter 6 - Generic Accuracy Modelling

Table 6.2. Accuracy Evaluation for Back-Prop. Network Based-on Test Points

Position Error in Length Orientation Error in Length

average 0.2383 (mm) 0.4249 (degree)

std. dev. 0.1450 (mm) 0.3494 (degree)

max. 1.0140 (mm) 1.4229 (degree)

6.6 Chapter Summary

A generic accuracy function which accounts for various error sources has been
introduced. Feedforward mapping neural networks are used to implement the generic
accuracy model. The generic accuracy function serves as the basis for the design of the
network architecture. Pi-sigma networks, which are capable of representing higher-
order non-linear functions using simple network architecture, provide natural
computational mechanism for implementation of the generic accuracy function. Instead
of identifying various error sources explicitly, the error source information is encoded
in the distributed network connection weights. Due to the complex nature of the
accuracy problem for multiple DoF robots, the NN representation is appealing because
of its learning methodology, robustness and efficiency. However, the NN training
accuracy and efficiency will suffer if larger data sets covering larger workspaces for
multiple DoF robot are used. Neural network design methodology, which incorporates
a priori knowledge into network architecture so that the network can capture invariant
properties of the problem from high-dimensional data, remains an open research topic.

The generic accuracy modelling problem discussed in this chapter, and kinematic
calibration discussed in previous chapters, concentrate on estimating robot end-effector
accuracy (exact pose), given robot joint variables readings. This problem is also called
robot forward calibration (Shamma and Whitney, 1987). The inverse calibration
problem is to determine exact joint variable values, given the desired end-effector pose
in robot workspace, which will be investigated in the next chapter.

110

Chapter 7 - Robot Accuracy Compensation Using ANNs

CHAPTER 7

ROBOT ACCURACY COMPENSATION USING ARTIFICIAL
NEURAL NETWORKS

7.1 Introduction

Robot accuracy compensation is a process by which robot pose errors in a workspace
are compensated through corrections to the nominal joint variables based on the
identified geometric and non-geometric errors. Since robot controllers which accept
identified parameter changes are still not widely available, implementation of robot
calibration is generally performed through accuracy compensation in robot joint space.
Robot accuracy compensation can be regarded as a subset of the inverse kinematics
problem, which determines joint variable corrections given robot end-effector pose and
the nominal joint values determined by the nominal inverse kinematic model.

There are two approaches to solving the robot accuracy problem; non-parametric
and model-based parametric approaches. The non-parametric approach is based on
fitting abstract interpolation functions to relate the joint transducer readings in a
selected group of robot measurements to the measured pose errors. Such functions can
then be used to compute the joint commands correction terms at the application points
(a precise inverse kinematic solution is determined from the computed joint correction
and nominal joint variables). Shamma and Whitney (1987) used third-order trivariate
polynomials as interpolation functions to relate joint variables input and joint
corrections output for a three DoF robot. Direct extension of the multi-variate
polynomials for a six DoF robot is difficult since the number of polynomial terms

111

Chapter 7 - Robot Accuracy Compensation Using ANNs

required grows considerably with the number of DoF and the order of polynomials.
Approximation functions are valid only in the regions of the workspace where data
were taken on which the coefficients of the functions were based. Therefore non-
parametric accuracy compensation is a local compensation by nature. Methods of robot
local accuracy compensation are discussed in Section 7.2. A local accuracy
compensation method based on the Pi-sigma neural network is developed. The Pi-
sigma network can generate a multi-variate higher-order polynomial approximation
efficiently through NN learning method. The NN-based accuracy compensation has a
constant-time solution which is efficient for on-line implementation. Simulation and
experimental results of local accuracy compensation are presented in Section 7.2 for a
six DoF Puma robot.

Model-based accuracy compensation methods are based on numerical inverse
solutions of the calibrated robot. As discussed in Chapter 1, for robots with simple-
form kinematics, the nominal inverse kinematics has closed form solutions. However,
closed form solutions do not exist for the calibrated robot due to the changes of
kinematic structure. Numerical techniques are involved to find the precise inverse
solutions for the calibrated non-simple form kinematic model. As to the numerical
techniques for solving inverse kinematics problem, the Newton-Raphson (N-R)
algorithm is widely used due to its simplicity. Stone (1987) developed numerical
inverse kinematics algorithms for the general form kinematic model (calibrated
signature model) based on the N-R method and the Jacobi iterative method. A
comparative studies of computation complexity of the two algorithms has been
performed by Stone (1987). It shows that the N-R algorithm has a quadratic
convergence rate while the Jacobi iterative algorithm has a linear convergence rate. The
Jacobi iterative method is similar to the differential transformation compensation
algorithm as suggested by Veitschegger and Wu (1987), in which an iterative procedure
of nominal inverse kinematics is applied until the achieved pose by the identified model
is sufficiently close to the desired pose. Model-based compensation belongs to global
compensation since it is not limited to specific local workspace. However, numerical
compensation algorithms suffer from certain numerical problems such as ill-
conditioning and singularities of the Jacobian. More robust compensation algorithms
such as Levenberg-Marquardt and linear quadratic regulator algorithm (Zhuang, 1989)
can find good solutions in the vicinity of singularities by using regulation terms in the
cost functions, but require longer computation time due to the algorithm complexities
which make on-line implementation problematic. A recurrent neural network (RNN)

112

Chapter 7 - Robot Accuracy Compensation Using ANNs

approach to model-based accuracy compensation (Zhong and Lewis, 1994; Zhong,
Lewis and N-Nagy, 1995) is developed in Section 7.3 which is both computationally
efficient for on-line implementation and robust even at singular configurations. Firstly
the N-R compensation algorithm is analysed. The RNN-based accuracy compensation
algorithm is then presented. Simulation examples of path compensation and
compensation near a singularity are given using the RNN-based compensation
algorithm based on the identified kinematic errors for the Puma robot.

7.2 Non-parametric Accuracy Compensation

7.2.1 Accuracy Compensation Using Polynomial Functions

This Section intends to explain the method of non-parametric accuracy
compensation using polynomial approximation based on the works by Shamma (1985),
Shamma and Whitney (1987) and the review chapter by Mooring, Roth and Driels
(1991).

"Black Box”

Figure 7.1. N on-param etric Accuracy Compensation (Sham m a and W hitney,
1987; M ooring, Roth and Driels, 1991)

The basic idea of non-parametric accuracy compensation is to approach the accuracy
problem as a "black box". Figure 7.1 illustrates the non-parametric accuracy
compensation scheme. The criteria for the approximation function inside the "black
box" were that it be continuous, be able to represent high order functions, and still be
implementable in a noisy environment while remaining numerically well behaved. The

113

Chapter 7 - Robot Accuracy Compensation Using ANNs

first approximation function attempted by Shamma (1985) was the CMAC (Albus,
1975a,b). It was discovered that the CMAC is a discrete (not continuous) linear (unable
to represent higher order functions) interpolator therefore is not suitable as an
approximation device. Instead, multi-variable polynomials were used as approximation
functions. The third-order trivariate polynomials were chosen for a Puma robot
comprising of the first three major DoF. Each of the three joint correction 6qt (i = 1, 2,
3) is then represented as the trivariate polynomial function of the three joint variables
(9i. 9s):

Sqt = £ 1 1 CqiqZql (7.1)
r=0*=0f=0

where r , i , i a r e non-negative integer exponents that satisfy the inequality:

0 < r + s + r< 3 (7.2)

and c'm is the polynomial coefficient to be determined from the collected training data
pairs (q, 8q). Taking all possible combinations into account, there are in total 20 terms
in (7.1) for the third-order trivariate polynomial. The unknowns of the polynomial
coefficients are determined through resolving the over-determined linear system
formulated by aggregating linear equation (7.1) at different measurement
configurations. The selection of measurement configurations is based on the
Tchebychev spacing and the polynomials are created to be mutually orthonomal so that
the linear least square solutions of the coefficients are numerically efficient and robust
(Shamma and Whitney, 1987).

The accuracy compensation procedure for the three DoF Puma robot can be
summarised as follows:

Step 1: Define a calibration volume of robot workspace and generate a set of training
points via Tchebechev spacing.

Step 2: Construct a set of orthonormal polynomials with the joint encoder angles qlt
q2, and q3 as the independent variables.

Step 3: At the above training points find the required joint corrections. To find the
joint encoder corrections necessary to drive the manipulator to the desired workspace
position involves the following experimental procedure:

114

3a) Send the robot to the desired position xd, the corresponding joint encoder reading
is q„ The actual position achieved by controlling joint angles q„, xa is measured using a
measuring device.

3b) Manually perturb the joints until the manipulator end point is in the desired
training position xd. Record the joint readings qa. Then the joint correction is Aq = qa-

q -

Chapter 7 - Robot Accuracy Compensation Using ANNs

Step 4: Solve for the coefficients that give the polynomial the best fit to the training
data samples. There will be three such sets of coefficients, one set for each joint.

The procedure was applied to a simulated PUMA robot. Simulations show that the
maximum position error improved from 2.5 (mm) before compensation to 0.31 (mm)
after compensation within the calibration volume of about one quadrant of robot
workspace. Robot positioning errors were simulated using both geometric and non-
geometric error models. No experimental results were given in the work by Shamma
and Whitney.

Several observations are in order:

1) Direct extension of the method presented for calibrating a 3 DoF manipulator to
the general manipulator may be very cumbersome computationally. For instance, the
use of third-order, six-variate polynomials requires 84 terms (compared to 20 terms for
the third-order trivariate polynomial as shown in the example), thus requiring a very
large number of data points7 and making the computation very complicated. If higher-
order polynomials are required, the number of terms grow considerably and the
problem may become intractable.

2) The data collection method (Step 3) involves manually measuring and teaching
the robot, which is time-consuming, tedious and error prone. It is impractical to do so if
large number of data points are required.

3) Although the non-parametric accuracy compensation is based on the "black-box"
approach, one may still want to benefit from the robot analytic accuracy model as a
prime source of useful information. Due to the fact that most of the functions in the
analytic accuracy model are trigonometric functions of joint variables (as discussed in

7 For a six D O F robot using the third-order polynom ials, m ore than 6*84 = 504 data points are needed to
satisfy an ova: determ ining condition

115

Chapter 7 - Robot Accuracy Compensation Using ANNs

Chapter 6), it may be more appropriate to use the trigonometric terms of joint variables,
rather than directly joint variables as above, as the polynomial variables. The order of
the polynomial should match the order of analytic accuracy model.

Based on the above observations, the Pi-sigma neural network, as introduced in the
previous chapter, is used as an approximation function for accuracy compensation
problem for a six DoF Puma robot

7.2.2 Accuracy Compensation Using Feedforward Neural Network

For the robot local calibration problem in which robot accuracy is only critical in a
small portion of its workspace, a simple feedforward network with higher-order
approximation capability is designed to learn the non-linear mapping between robot
configurations and joint corrections. As discussed in Chapter 4, 288 data points of a six
DoF Puma robot end-effector pose were collected using a CMM. These data points
were uniformly distributed in the calibration volume. However, because of the large
number of data points required and the contact type measurement method utilised by
the CMM, it is impractical to obtain corresponding joint corrections (network training
data) to compensate end-effector errors using this manual data collection method (Step
3). Alternatively, the actual joint values which drive the robot to minimise the end-
effector deviations can be found using non-linear least square optimisation using the six
controllable joint angles as optimisation variables. The initial values of joint angles are
the nominal joint values frota the robot controller. Joint corrections are then the
differences between the computed joint values and the nominal ones. The optimisation
procedure is as follows.

min[x, - f(k ,q ,)f Q[x, - f(k,q;)] (7.3)
«i

where f(.) is robot forward kinematic model, k is a constant kinematic parameter
vector, X/is a directly measured end-effector pose vector corresponding the Z-th joint
configuration vector q , . Q is the weight coefficient matrix as defined before. Since
there are six adjustment variables to compensate six dimension end-effector pose errors
at each configuration, the residual errors after compensation can be very close to zero.
The optimisation procedure is equivalent to manually perturbing joint variables so that
the end-effector pose is the desired one, but the optimisation procedure is automatic and

116

'P P Ü 'iip

time efficient compared with the manual data collection procedure. As we have seen
from the kinematic identification (Chapter 4), non-linear optimisation uses a more
robust search strategy and can converge to good solutions given sufficient time.
However, its convergence is too slow for on-line implementation of accuracy
compensation. Therefore, a feedforward neural network is used to store and interpolate
the joint corrections obtained from the off-line non-linear optimisation routine. Figure
7.2 illustrates the neural network training and implementation schemes. The trained
neural networks are used to augment the robot controller to perform constant-time
inverse compensation which is suitable for on-line implementation.

The Pi-sigma network has been employed to approximate robot inverse
compensation in this work. As shown in Figure 7.3, a single Pi-sigma network has been
used for each compensation vector component, with the same inputs of joint angles
encoded by sinusoidal functions. The product units without sigmoid functions are used
in the output layer so that the outputs are actually higher order polynomials of
sinusoidal functions of joint angles. Six hidden units are used, the Pi-sigma network
approximation is equivalent to a sixth order polynomial of six variates. It will be very
difficult to determine the sixth order polynomial of six variates numerically if direct
polynomial approximation functions are used. This, however, is straightforward if the
Pi-sigma network learning method is used.

Chapter 7 - Robot Accuracy Compensation Using ANNs

D esired Pose Nom inal Inverse
K inem atics

Learning
Algorithm

Nom inal Joint
V alues

Actual Robot

Actual Pose
(M easured) IJoint

Corrections

N onlinear
O ptim isation

J

Figure 7.2. a). Training of Neural Network Accuracy Compensator

117

Chapter 7 - Robot Accuracy Compensation Using ANNs

Neural
Network
Accuracy
Compensator

D esired Pose

N om inal Inverse
K inem atics Nom inal Joint

V alues

Actual Robot
Actual Pose
= D esired

b). Implementation of the Trained Network

Figure 7.2. Training and Implementation of NN Accuracy Model

Figure 7.3. Neural Network Architecture for Accuracy Compensation

The network shown in Figure 7.3 has been trained separately for each component of
output vector and put together for implementation after training. Therefore, the network
training comprises of six Pi-sigma network training processes. Half of the collected
data (144 points) are used as training exemplars for network training using the training
algorithm as described in the previous chapter. The remaining data are used as a test
data set. Figure 7.4 shows the first three of six joint Puma robot compensation learning

118

Chapter 7 - Robot Accuracy Compensation Using ANNs

curves which exhibit fast and stable learning. The final RMS (root-mean-square) error
of each joint compensation is below 0.1 degree which is the resolution of robot joint
transducers.

Joint 1 Com pensation Learning .Curve

Joint 2 Compensation Learning Curve

119

Chapter 7 - Robot Accuracy Compensation Using ANNs

Joint 3 Com pensation Learning Curve

Figure 7.4. Learning Curves for Inverse Compensation

The trained network can generalise well in the calibrated volume. Three statistical
measures (average error, standard deviation and maximum deviation), were used to
evaluate robot accuracy compensation results. The results of using optimisation inverse
compensation and neural network-based inverse compensation are listed in Table 7.1,
which are based on 100 randomly-chosen test data points. The compensated positions
and orientations are calculated using the compensated joint variables in the forward
kinematic model and then compared with the actual data collected. From Table 7.1 we
can see that the NN accuracy compensation achieves an average accuracy improvement
factor of about 6. Comparing the NN-based forward accuracy modelling in the previous
Chapter (Table 6.1), the NN-based inverse compensation has larger residual errors.
This is due to the inverse mapping being a more complex relationship than the forward
mapping. The optimisation compensation uses six controllable joint variables to
compensate for Cartesian error at each configuration, therefore it can achieve a
compensated accuracy error close to zero if the robot has sufficient DoF to move in
each direction (non-singular configurations). The inverse compensation network stores
and interpolates the joint corrections from off-line optimisation procedure and then can
be used for on-line implementation of inverse compensation. Figure 7.5 shows the

120

Chapter 7 - Robot Accuracy Compensation Using ANNs

position and orientation accuracy improvement after using the NN inverse
compensation (sorted in ascending order for 100 randomly chosen test points),
compared with the results of the optimisation approach. Not surprisingly, the NN
inverse compensation is less accurate than optimisation compensation due to the
residual errors of the NN learning.

Table 7.1 Inverse Accuracy Compensation Results of Puma Robot

Before Compensation Optim. NN Compensation
________________________ Compensation____________________

Position Orientât. Position Orientât. Position Orientât.

average 4.3707 2.5767 0.0021 0.1191 0.6474 0.4974

std dev. 0.8768 0.4075 0.0022 0.1033 0.3127 0.2828

maximum 5.3814 3.2331 0.0119 0.4327 1.7311 1.1477
(length in mm and angles in degrees)

Table 7.2 Experimental Evaluation of Inverse Compensation Results

Before Compensation Optim. Compensation NN Compensation

Position Error (mm) Position Error (mm) Position Error (mm)

average 4.1994 1.2504 1.5776

std dev. 1.0527 0.1416 0.2972

maximum 5.1482 1.4631 1.9678

Table 7.2 lists the experimental evaluation results of joint compensations based-on
12 test points across the calibrated area. The positioning errors before compensation are
obtained by measuring robot end-effector positions achieved by controlling joint angles

121

Chapter 7 - Robot Accuracy Compensation Using ANNs

recommended by the robot controller. The positioning errors after compensation are
obtained by measuring end-effector positions achieved by controlling joint angles
updated by compensation algorithms (only position data are collected for simplicity).
The average position error (in length) decreased from 4.20 (mm) before compensation,
to 1.25 (mm) after optimisation compensation and to 1.57 (mm) after the NN
compensation. The accuracy improvements indicated by experimental results are less
significant compared with the improvement as shown in Table 7.1. This can be partially
explained by the fact that the measurements for calibration and the measurements for
evaluation were made at a different time and therefore system error may have occurred
in the measuring set-up8. Note that the standard deviation has been improved from 1.05
before compensation, to 0.14 after optimisation compensation and to 0.29 after the NN
compensation, implying that the error changes after compensation are small and the
relatively large average errors are due to constant system errors which existed in the
measuring set-up. The final residual errors for evaluation points are expected to be less
if joint compensations are obtained using on-line pose measurements during evaluation.
Robot repeatability, which is limited by the robot controller, also attributed to the final
residual error. However, experimental results show that the NN approach can achieve
the same level of accuracy improvement as that achieved by numerical optimisation
approaches which are computationally more expensive.

8 The robot has been m oved for other com m itm ent therefore system atic error may occur in the base in
w hich the robot has been installed.

122

O
ri

en
ta

tio
n

E
rr

or
 (d

eg
re

e)

P
os

iti
on

in
g

E
rr

or
 (m

m
)

Chapter 7 - Robot Accuracy Compensation Using ANNs

a
Before
Com pensation

«
A fter the N N
Com pensation

After Optim isation
Com pensation

Figure 7.5 Accuracy Improvement of Inverse Compensation

123

Chapter 7 - Robot Accuracy Compensation Using ANNs

The implementation of a Pi-sigma net is economical and efficient. The total
adjustable weights used in the inverse compensation net are 6 * (6 * (6+1)) = 252. For
parallel computation, only 1 trigonometric function call, 48 multiplication, and 42
additions are needed, which is equivalent to about 100 floating-point additions
according to the conversions in Stone (1992). Even simulating on serial computers, the
NN inverse compensation only requires about 6 * 100 = 600 floating-point addition-
equivalent computations.

As a rule of thumb, the larger number of data points to be approximated, die larger
the number of adjustable connection weights required in the network. A large number
of network connection weights means a large network size. It is well-known that
training of large feedforward networks is exceedingly slow and the residual training
error is unacceptably high. Therefore, the feedforward neural network-based calibration
is only suitable for local calibration compensation which has a relatively small number
of training data points covering a small portion of robot workspace. Where robotic
applications involve a large number of work points across the workspace (such as path
or trajectory control), a Hopfield continuous-valued neural network architecture is
appropriate to resolve the inverse compensation problem (Zhong and Lewis, 1994;
Zhong, Lewis and N-Nagy, 1995).

7.3. Model-based Accuracy Compensation

7.3.1. Problem Formulation and Numerical Solutions

Model-based accuracy compensation is a subset of the robot inverse kinematics
problem which involves a process to find the solution of a group of coupled non-linear
functions, given the initial conditions determined by the nominal inverse kinematic
model. The accuracy compensation problem can be stated as follows:

Given:

1) The robot nominal kinematic model relating the end-effector homogenous
transformation matrix T to the vector of joint configuration q:

T = F„(q) (7.4)

124

Chapter 7 - Robot Accuracy Compensation Using ANNs

2) The robot actual pose homogenous transformation Ta predicted by the calibrated
model or directly measured by measuring device

T„ = Fe(q) (7.5)

3) Desired pose transformation T d and a corresponding nominal inverse kinematic
solution q„ at this pose

q,*F„-i(T,) (7.6)

Find:

The necessary joint change dq of the joint values such that

Fc(q„ + dq) = Td (7.7)

Note in the above problem formulation, the actual pose transformation Ta can be
determined by the calibrated model or by direct end-effector pose measurement. The
calibrated model is not necessarily restricted to the kinematic model, the non-geometric
model can also be added to the model to predict the actual end-effector pose. If an on­
line measurement device is used to determine the end-effector pose, then no calibrated
model need be involved and the problem can be regarded as the correction phase of the-
robot re-programming problem (Zhuang 1989; Mooring, Roth and Driels, 1991).
Therefore, model-based accuracy compensation methods developed below are not
necessarily limited to kinematic calibration compensation. An outline of the commonly
used Newton-Raphson (N-R) algorithm is given below.

Newton-Raphson (N-R) Algorithm:

Step 1: Compute an estimated robot pose Ta that corresponds to the available
nominal inverse kinematics solution q* (In the case that on-line measurement is used,
T„ is obtained directly from sensor measurement of robot joint configuration q„).

T . = Fe(q.) (7.8)

Step 2: Calculate the pose error matrix between the desired pose Td and the
estimated actual pose Ta.

125

Chapter 7 - Robot Accuracy Compensation Using ANNs

dT = T0 - Td (7.9)

Step 3: From d l form the equivalent differential error vector dx

(7.10)

This is done through the steps as described in Chapter 4 (Equations 4.27-4.35).

Step 4: Compute joint changes 8q using

where J is the robot Jacobian formulated using the nominal model. The Jacobian
matrix J is an ordinary Jacobian which is obtained by linearizing the robot inaccuracy
model with respect to joint variables only (Je), compared with the special Jacobian
matrix which is linearized with respect to all kinematic parameters. Here we denote the
J e as J for convenience without confusing with the special Jacobian matrix as used in
kinematic identification phase.

Step 5: Update joint commands by setting

Steps 1-5 are repeated until an appropriate termination condition is satisfied. One of
the termination conditions can be that the joint changes 5q become smaller than the
joint encoder resolution. Or if the error vector dx reaches to the pre-specified threshold,
then stop the algorithm.

The computation efficiency of the above algorithm depends critically on Equation
7.6 and Step 4. For robots with general geometry, finding the compensated joint
commands with the above algorithm may not be any more effective than directly
solving the inverse kinematics of calibrated robot using numerical methods. For
industrial robots with simple geometry, closed form analytic inverse solutions are
available and the analytic solutions are very time efficient. The initial solutions
provided by the nominal inverse kinematics can speed up the convergence of the N-R
algorithm. Stone (1992) showed that if the initial nominal solutions are close to the
actual solutions (the initial end-effector errors are typically within 5 millimetres), then

5q = (7.11)

q„ = q„ + 6q (7.12)

126

Chapter 7 - Robot Accuracy Compensation Using ANNs

the N-R algorithm can converge in two iterations, compared with four iterations
required to solve directly the inverse kinematics of the calibrated robot.

However, the N-R method breaks down when the desired pose (task points) fall at or
near a robot singular configuration. When the robot is at one of its singular
configurations, the inversion of the Jacobian (Step 4) does not exist. If the task points
are near singular configuration, the Jacobian matrix will be badly-conditioned and the
joint compensations determined by Equation (7.11) will be relatively large. The
physical interpretation of this is that large joint adjustments are needed to compensate
small errors in workspace. Large joint compensation is not desirable for robot accuracy
compensation since the joint limits might be exceeded and the large joint adjustment
movements of the robot may cause collision with the objects in the robot workspace.
To overcome the singularity problem, robust compensation algorithms such as the
Singular Value Decomposition (SVD), Levenberg-Marquardt and Linear Quadratic
Regulator algorithms were proposed (Zhuang 1989; Zhuang, Hamano and Roth 1989).
Existence and uniqueness of the compensation solution are ensured due to the
particular structure of the performance index. However, the computation of such robust
algorithms is typically rather complex which makes on-line implementation of inverse
compensation problematic. In the next section, the inverse compensation problem has
been re-formulated such that the recurrent Hopfield continuous-valued neural network
is applied. Given the initial conditions of the network, which are determined by the
robot nominal kinematic parameters and joint solutions, the network obtains global
optimal solutions in a few characteristic time constants of the neural circuit, even in the
robot configurations near singularity where the N-R algorithm breaks down.

7.3.2 The RNN-based Algorithm for Accuracy Compensation

Recall that the quadratic form of the linear residual error model was used to
construct the network energy for the RNN-based identification algorithm during the
identification phase (Equation 4.10-4.11). The same procedure applies for the accuracy
compensation problem with a difference in the construction of the linear residual error
model and the associated Jacobian. Instead of linearizing the robot inaccuracy model
with respect to all kinematic parameters as in the identification phase, the robot
inaccuracy model is only linearized with respect to the controllable joint variables in
the case of accuracy compensation. Let Ax = f(k, q) - f(k°, q°) be the inaccuracy vector

127

Chapter 7 - Robot Accuracy Compensation Using ANNs

of the robot end-effector location predicated by the actual control model f(k, q) and the
nominal kinematic model f(k°, q°), then the linearized residual errors obtained by
perturbing the controllable joint variables 8q around the nominal values is:

e(5q) = A x-j8q . (7.13)

where J is the ordinary Jacobian of robot manipulator evaluated at robot nominal
kinematic parameters and joint values (k°, q°); whilst the aggregated special Jacobian
was used in kinematic identification.

The quadratic form of the linearized residual error is then formulated as a network
energy function so that a decrease of network energy corresponds to a decrease of robot
residual positioning inaccuracy. It is desirable to have only small joint compensation
values, therefore a penalty term is added to the energy function to ensure small outputs.
The energy function for joint compensation is:

E = |[e(<5q)fQ[e(5q)] + ̂ 5 q rA5q (7.13)

where A is a positive diagonal weight matrix for regulation, and Q is a weight
coefficient matrix defined as in Equation 4.3.

Using the linear residual error model (7.12) in (7.13), and expressing in the standard
form of the network energy, we have:

E = - { ' ¿ T ij8qi6qj - + * £ (J (A x ,)2
u=i 7=i >=i (7.14)

where

Tÿ — + %jSÿ) çj

and

c f1’ X i = j
* [0, if i * j

Qi is the i-th diagonal element of coefficient matrix Q, A, is the i-th diagonal element of
the coefficient matrix A , and

128

Chapter 7 - Robot Accuracy Compensation Using ANNs

/ , = £ / , A*,
i= 1 (7-16)

Tÿ and 7; determine the network connection weights and input currents respectively
based on the nominal kinematic model and parameters (the ordinary Jacobian). The 5%
is the j-th joint compensation which corresponds to the j-th neuron state, n is the robot
DoF while m is the dimension of robot Cartesian space.

Note that the structure of the above formulation is exactly the same as that in the
formulation of the RNN-based identification algorithm except for the definitions of the
network connection weights and input current (Equation 7.15 and 7.16). Following the
same derivation procedures as in the identification algorithm, the neuron circuit
dynamics equation of the accuracy compensation network is given as follows:

d (8 q d
d t

+ /,) i = 1,2,..., n (7.17)

where is the i-th diagonal element of the positive diagonal coefficient matrix |i
which is chosen to ensure the stability and the convergence speed of the circuit. Given
the initial condition of the neuron states (&?, = 0, i = 1, 2,..., n), the above differential
equation determines the neuron state trajectories, hence the joint compensation amounts
(the stable states of the neurons).

Equation (7.17) is a group of coupled first-order ordinary differential equations
(ODE). As the implementation of the RNN-based identification algorithm, the RNN-
based accuracy compensation algorithm was implemented using the dynamic system
simulation software SIMULINK™ (Mathworks, 1992b). There are several options of
the ODE solvers provided by the SIMULINK™, the method which subtracts the linear
dynamics of system was chosen due to the linear model involved. The ODE solver is
called as linsim which has the following calling format:

[t, x, y] = linsim('modeF, [tstart, tfinal], Xo, [tol, minstep, maxstep]);

where [t, x, y] are returned variables, t is a vector of the recorded time sequence of
the system evolution, x and y are the system state variable and output vector
respectively, [tstart, tfinal] specifies the simulation start and stop time; while [tol,
minstep, maxstep] specifies tolerance, minimum and maximum step size of the

129

Chapter 7 - Robot Accuracy Compensation Using ANNs

integration. Xo is the initial conditions of the dynamic system. The model is the name of
subroutine which defines the system using the state space description:

x' = Ax + Bu (7.18)

y = Cx + Du (7.19)

where x, u and y are state, input, and output vectors, respectively. A, B, C, D are
coefficient matrices which can be specified as follows according to above problem
formulation (Equations 7.15-7.17).

A = -n*(Jr*J + A) (7.20)

B = \i*JT (7.21)

Since the desired system output is the final state of the state variable x, C and D are
set to be an identity matrix and zero respectively. The input vector u is specified by the
robot inaccuracy vector Ax.

To exemplify the efficiency and robustness of the Hopfield neural net compensation
scheme for robot global inverse compensation, we address path compensation and
compensation near a robot singularity, comparing with the numerical compensation
algorithm (the N-R).

7.33 Path Compensation

There are many applications (such as welding) which require a robot to execute a
continuous path or trajectory accurately. Robot end-effector inaccuracy at a number of
points along the trajectory are calculated by the calibrated model or measured by an on­
line measurement sensor. In such cases an accuracy compensation algorithm is required
to find joint correction in real-time to compensate the inaccuracy in Cartesian space.
Due to the difficulty of actual measurements of robot end-effector across the large
volume of workspace using a co-ordinate measuring machine, the end-effector location
errors are computed using the calibrated kinematic model based on the identified
kinematic parameters (Table 4.2). The end-effector of the PUMA robot was
programmed to execute a spiral trajectory specified by the Homogenous transformation
in Cartesian space:

130

Chapter 7 - Robot Accuracy Compensation Using ANNs

f n s o p
L o o o l .

where

n = (-sinç), cos <p, 0)r , (7.23)

o = (cos(7r/4)cos(<p),cos(7r/4)sin(<p),sin(;r/4))r (7.24)

s = o x n (7.25)

p = (-45 + 20sin(ç>),4.5 + 20cos(ç>),-26 + 5m)T (cm) (7.26)

and

q>{t) = (tt/4) t , 0 < t < 5 (7.27)

The task points were specified at discrete points along the path with a cycle time of
25 ms.9 The cycle time is demanding to most of the numerical algorithms for on-line
compensation. However, this time is sufficient for the neural circuit to converge. The
setting time of neural circuit is in the order of /is (simulation time is about 23 ms based
on the HP workstation), given the coefficients of Q as an identity matrix, A equal to.
zero in Equation 7.13, M» = 106, and the initial conditions of neuron states
5qi = 0 ,i = l,2,...n in the neuron dynamics Equation 7.17. Figure 7.6 is the position
and orientation errors (in length) caused by kinematic errors before and after one and
two iterations of neural network compensation (one of the eight robot joint
configurations-RIGHT and ABOVE arm, and UP wrist-is selected), which shows a
significant accuracy improvement along the path. After two iterations of the RNN-
based compensation, both position and orientation residual errors are decreased to near
zero. The regulation coefficient A is set to be zero because the Jacobian is well-
conditioned in those task configurations.

9 The servo cycle tim e o f Puma robot is 28 ms.

131

O
ri

en
ta

tio
n

E
rr

or
 (D

eg
re

e)

P
os

iti
on

 E
rr

or
 (m

m
)

Chapter 7 - Robot Accuracy Compensation Using ANNs

— a----
Before
Com pensation

After the RNN
Com pensation
(O ne Iteration)

— -o —

After the RNN
Com pensation
(Tw o Iterations)

Tim e in Trajectory (Seconds)

(a). Position Error Along the Path

----o—
Before
Com pensation

After the RNN
Com pensation
(One Iteration)

----o---
A fetr the RNN
Com pensation
(Two Iterations)

Tim e in Trajectory (Seconds)

(b). Orientation Error Along the Path
Figure 7.6. Accuracy Compensation Along the Path

132

Chapter 7 - Robot Accuracy Compensation Using ANNs

7.3.4 Compensation Near Robot Singularity

Next we examine the compensation near a robot singularity. Let the robot joint
configuration be 0 = [it/2, -it/l, it/4, it A , 65, 0] and allow only joint 5 to
rotate: - it/A < 05 < it/4. The robot will be in its wrist singular configuration when joint
5 is in the neighbourhood of zero. The PUMA wrist singular configurations are
commonly used for some typical assembly operations. Figure 7.7 illustrates the PUMA
robot wrist singular configuration (when the joint 5 equals to zero, the joint axes of
joint 4 and 6 are co-linear). Obviously this configuration is a convenient configuration
for many robotic tasks such as assembly, pick-and-place operations. Therefore robot
singularity problems for certain type robots can not simply stay away by avoiding the
use of singular configurations during the motion planning process.

Figure 7.7 Robot End-effector and Wrist Singularity

133

Chapter 7 - Robot Accuracy Compensation Using ANNs

Figure 7.8 and 7.9 compare the effects of position and orientation compensation
respectively near robot singularity after one iteration compensation using the RNN and
N-R method. Figure 7.8 shows that the RNN compensation is stable near robot
singularity while the widely used numerical algorithm (Newton-Raphson) failed to
converge. Figure 7.9 shows that both N-R and RNN method can converge but N-R
method has smaller residual orientation error than the RNN method after one iteration
compensation. It is not disadvantageous for RNN method since more often than not,
robot absolute position accuracy is more critical than orientation accuracy. In the case
that more accurate orientation is required, the coefficient matrix Q in the network
energy function Equation 7.13 can be used to adjust the balance weight between
residual position error and orientation error.

----□—
Before
Compensation

After
the N-R
Compensation

---- o----
After
the RNN
Compensation

-1 - 0.5 0 0.5 1
Joint 5 V alue (Radian)

Figure 7.8 Position Compensation Near Robot Singularity

134

Jo
in

t C
om

pe
ns

at
io

n
A

m
ou

nt
 (R

ad
ia

n)

g

O
rie

nt
at

io
n

Er
ro

r
(D

eg
re

e)

Chapter 7 - Robot Accuracy Compensation Using ANNs

-------- □ --------
Before
Compensation

---- o----
After the N-R
Compensation

---- o—
After the RNN
Compensation

gure 7.9. Orientation Compensation Near Robot Singularity

---- o----
The RNN Joint
Compensation

The N-R Joint
Compensation

Figure 7.10 Joint Compensation Amount Near Singularity

135

Chapter 7 - Robot Accuracy Compensation Using ANNs

The joint compensation amount obtained by the RNN and numerical approach are
also displayed in Figure 7.10 (length in radian). The joint compensations computed
using the Newton-Raphson (N-R) method are too large to be feasible near singularity
while the RNN joint compensations using the RNN method are reasonably small for
practical implementation. The large joint compensation amount needed to compensate
small errors in workspace using the N-R method is highly undesirable since robot joint
limits might be exceeded, and the robot might collide with fixtures or other objects in
the workspace during the joint adjustment movements. From Figures 7.8-7.10, we can
see that the RNN-based algorithm performs similarly with the N-R algorithm for non­
singular task points.

In the above simulations, all the network design parameters are set as the same as
used in the path compensation for all the task points. The effects of some parameters on
the compensation at singular configurations need to be investigated. One singular
configuration is chosen by setting joint 5 to -1 degree, i.e. [90, -90, 45, 45, -1, O].10
Simulation experiments are performed at this configuration to show the effects of the
regulation coefficient A and the learning rate p. The reason for choosing the
coefficient A and p as matrices is to consider the case that an individual coefficient
value is chosen for each joint variable. If no such discrimination among joint variables
is made, the coefficients can be set as scalar constants A = A; p =77 for convenience.
Table 7.3 lists simulation results in the singular configuration using the learning rate 77
= 101 for various cases: * A = 0.1; ** A = 0.01; *** A = 0.0. It shows that the regulation
parameter A has no effect on both the accuracy improvement (upper part of the Table)
and the joint correction required (lower part of the Table) in this case. The joint
correction required are small for various regulation parameters, and residual errors of
both position and orientation are smaller after correction, but the convergence speed is
slow due to the small learning rate used.

By increasing the learning rate to 106, the same simulations have been performed
and the results are listed in Table 7.4. The accuracy improvement in this case is more
significant compared with the Table 7.3 due to larger learning rate used. The regulation
parameter A has only a minor effect on accuracy and joint correction required. The
joint corrections required are reasonably small even setting A to zero.

10 This configuration is selected because it was studied in (Zhuang 1989, Morming, Roth and Driels,
1992). The condition number o f the compensation Jacobian at this configuration is up to 1.058 X 10 4.

136

Chapter 7 - Robot Accuracy Compensation Using ANNs

Table 7 3 Simulation Results for T] = 101 in a Singular Configuration

Residual Error in length Position Error (mm) Orientation (degree)

Before Correction 3.4065 2.3643

After Correction* 1.8176 2.3052

After Correction** 1.8176 2.3052

After Correction*** 1.8176 2.3052

*A = 0.1
**A = 0.01
***A = 0.0

Joint Correction Afy A 02 A03 A04 A 05 A06

For Correction* 0.2428 0.0241 -0.1032 0.0017 -0.0704 0.0010

For Correction** 0.2428 0.0241 -0.1032 0.0017 -0.0704 0.0010

For Correction*** 0.2428 0.0241 -0.1032 0.0017 -0.0704 0.0010
(Joint Correction is in Degrees)

Table 7.4 Simulation Results for 77 = 10* in a Singular Configuration

Residual Error in length Position Error (mm) Orientation (degree)

Before Correction 3.4065 2.3643

After Correction* 0.0424 1.8272

After Correction** 0.0470 1.8188

After Correction*** 0.0417 1.8155

Chapter 7 - Robot Accuracy Compensation Using ANNs

*A = 0.1
**A = 0.01
***A = 0.0

Joint Correction A0i A02 A03 'A04 A05 A06

For Correction* 0.4468 0.1518 -0.6458 0.4377 0.2013 0.6941

For Correction** 0.4585 0.3558 -0.6559 -0.0600 0.2519 1.2342

For Correction*** 0.4606 0.3566 -0.6570 -0.3177 0.2584 1.4903
(Joint Correction is in Degrees)

Table 7.5 shows that the regulation parameter A plays an important role in the case
that learning rate r\ is increased further to 10®. The joint correction required is very
large at a robot singular configuration if the regulation parameter is set to zero in this
case, although both position and orientation accuracy have been improved after
correction. Due to the axes of joint 4 and 6 being co-linear in the singular
configuration, the joint 4 and joint 6 rotate a large angle in opposite direction which
only result in a small movement at the end-effector. Choosing a small value of
regulation parameter A = 0.01 can suppress the large joint correction required.
Increasing A from 0.01 to 0.1 has relatively little effect on both accuracy and joint
correction.

______ Table 7.5 Simulation Results for 77 = 108 in a Singular Configuration

Residual Error in length Position Error (mm) Orientation (degree)

Before Correction 3.4065 2.3643

After Correction* 0.0424 1.8272

After Correction** 0.0409 1.8108

After Correction*** 1.2122 1.0522

138

Chapter 7 - Robot Accuracy Compensation Using ANNs

* A = 0 . 1

* * ¿ = 0 . 0 1

* * * A = 0 . 0

Joint Correction A0! A02 A03 A 04 Ads A 06

For Correction* 0.4468 0.3518 -0.6458 0.4376 0.2013 0.6942

For Correction** 0.4606 0.3567 -0.6552 -0.6854 0.2519 1.8581

sk ak jkFor Correction 0.6819 0.4413 -0.5864 -64.8128 0.2566 65.8153
(Joint Correction is in Degrees)

From the above simulations we can see that the RNN-based compensation algorithm
is not sensitive to regulation parameter and robot singular configuration until the
learning rate is very high. When the learning rate is relatively small (the learning rate is
normally set below 106), the RNN-based algorithm can find desirable joint correction
and achieve good accuracy improvement in singular configurations even without using
regulation parameter (A = 0). This capability of the RNN-based algorithm eliminates
the need of special treatments for singular configurations since no regulation is needed
when the robot is not in singular configurations. This is a good property of the RNN-
based algorithm because the algorithm can handle the singularity problem
automatically without explicitly identifying it.

Recent work by Everett, Colson and Mooring (1994) highlighted the importance of
automatic singularity avoidance during the joint compensation process. Compared with
the approach used by Everett, Colson and Mooring (1994), where the joint
compensation problem near singularity was formulated as a constraint optimisation
problem in which the joint movement constraints should be decided at a specific task
point, the RNN-based approach does not require any task specific constraints and can
obtain quality solutions automatically. The RNN-based algorithm is also
computationally more efficient than the non-linear constraint optimisation algorithm.

139

Chapter 7 - Robot Accuracy Compensation Using ANNs

7.4 Chapter Summary

The robot accuracy compensation problem has been treated in this chapter under the
framework of artificial neural networks. Both non-parametric and model-based
parametric compensation have been studied. For non-parametric compensation, a
simple feedforward neural network architecture has been applied successfully to
approximate the complex non-linear mapping between robot configurations and robot
inverse compensations. Using a NN learning method, the network can generate high-
order polynomial approximation efficiently and economically for robots with multiple
DoF. A constant-time compensation can be achieved by using the neural network
representation of the inverse compensation knowledge from the off-line non-linear
optimisation procedure. Results for a six DoF PUMA robot have been presented.
However, the feedforward neural network compensation is a local calibration which is
effective under the assumption that robot accuracy is critical only for a small volume of
workspace. For global compensation, which involves a large number of work points
across the whole workspace, a Hopfield continuous-valued recurrent neural network
has been applied to achieve efficient and robust inverse compensations. The RNN-
based compensation requires no training, only the end-effector inaccuracy and robot
nominal joint values should be provided to determine the input and connection weights
of the network (the internal representation of the network is based on the model
knowledge). Simulation examples of path compensation and compensation near a robot
singularity have been presented.

140

Chapter 8 - Conclusions and Future Work

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

The concept of autonomous robot calibration has been extended in this thesis to include
a fully automated process for a robot to perform self-calibration (using its internal
sensor measurements) on site whenever and wherever necessary (after a certain period
of operation and in the area where high accuracy is required). Autonomous calibration
requires an efficient and robust data processing algorithm, and a fully automated
measurement method. Artificial neural network techniques have been vigorously
investigated for calibration data processing (modelling, identification and
compensation), and a novel measurement method has been developed for autonomous
robot calibration in this thesis. The contributions of the thesis are summarised as
follows:

1) A new kinematic identification algorithm based on the Hopfield type recurrent
neural network (RNN) has been developed. The configurations of the network (network
connection weights and inputs) are determined by nominal kinematic model and
measured robot pose errors. Robot kinematic parameter errors are identified in a few
characteristic time constants of the neural circuit (which is determined by the chosen
learning parameter) even using a singular kinematic model (standard D-H model). If
robot inaccuracy data can be collected on-line, we have shown that robot kinematic
identification can be performed in real time by using the RNN-based real time
optimisation technique. The RNN-based algorithm also exhibited numerical robustness
over conventional least square methods due to the use of ordinary differential equations
(ODE) in the simulation. For parallel implementation, the computation time of the
RNN-based algorithm was independent of the number of robot DoF and the number of

141

Chapter 8 - Conclusions and Future Work

parameters to be identified. Therefore, the RNN-based identification algorithm is
especially attractive for robots with multiple DoF (redundant robots) which are required
to maintain calibration in real-time.

2) A generic accuracy function which accounts for various error sources was
introduced. Feedforward neural networks were used to implement the generic accuracy
model. The generic accuracy function served as the basis for the design of the network
architecture. Pi-sigma networks, which are capable of representing higher-order non­
linear functions using a simple network architecture, provide a natural computational
mechanism for implementation of the generic accuracy function. Instead of identifying
error sources explicitly, the error source information was encoded in the distributed
network connection weights. Because of the complex nature of the accuracy problem
for multiple DoF robots, the NN representation is appealing due to its learning
methodology, robustness and efficiency.

3) A new autonomous robot calibration tool was developed using a trigger probe and
a reference constraint plane. The probe was manufactured as a standard tool for the
robot, enabling the robot to grip it automatically and use it to touch constraint surfaces
for consistency checks and data collection when calibration is necessary. Instead of
taking partial or complete pose measurements for robot calibration, the tip-point of the
probe was constrained to movement within a plane and only robot internal joint
measurements were used for kinematic identification. Neither external measurements
nor accurate fixture set-up are needed for such a calibration. Both simulation and
experimental results for a Puma robot show that robot positioning accuracy can be
improved to the level of robot repeatability.

4) Robot accuracy compensation problems were extensively treated under the
framework of artificial neural networks. Both non-parametric and model-based
parametric compensation were studied. For non-parametric compensation, a simple
feedforward neural network architecture has been applied successfully to approximate
the complex non-linear mapping between robot configurations and robot inverse
compensations. Using NN learning methods, the network generates higher-order
polynomial approximation efficiently and economically for robot with multiple DoF. A
constant-time compensation was achieved by using the neural network representation
of the inverse compensation knowledge (obtained from the off-line non-linear
optimisation procedure). The feedforward neural network compensation is a local
calibration which is effective under the assumption that robot accuracy is critical only

142

Chapter 8 - Conclusions and Future Work

for a small volume of workspace. For global compensation which involves a large
number of work points across the whole workspace, a Hopfield continuous-valued
recurrent neural network (RNN) was applied to achieve efficient and robust inverse
compensations. The RNN-based compensation requires no training, only the end-
effector inaccuracy and robot nominal joint values were provided to determine the input
and connection weights of the network (the internal representation of the network is
based on the model knowledge). The RNN-based accuracy compensation algorithm is
suitable for on-line compensation, and is able to obtain good solutions even in the robot
singular configurations.

5) Robot calibration experiments were performed using a PUMA 560 robot. The
theories and techniques of modelling, measurement, identification, and compensation
developed in this thesis were all verified through experimentation. In the local
calibration workspace, it has been shown that positioning errors of the PUMA robot
were reduced from 4-5 (mm) to about 0.2 (mm). The model-based kinematic calibration
achieved the same level of positional accuracy as the generic model-based (non-
parametric) calibration, implying that kinematic models can be used to compensate
both geometric and non-geometric errors in local workspace volume. The new
autonomous calibration scheme presented in the thesis which uses a simple trigger
probe has improved robot positioning accuracy to the level of robot repeatability. These
results are consistent with the results obtained using precision external measuring
devices such as CMM (Coordinate Measuring Machine).

The following topics are suggested for further research:

1) This thesis primarily concentrates on calibration of robot static errors (e.g.
kinematic errors, static deformations, etc.). However, the dynamic characteristics of the
robot (e.g. actuator/link mass and inertia, friction in actuators and joints, stiffness, etc.)
are also very important in affecting robot positioning accuracy for high speed robots.
Therefore, dynamic calibration, which determines dynamics related parameters of robot
manipulator, is a natural extension of the static calibration techniques described in this
thesis. A dynamic measurement system, which can collect the information dynamically
regarding the end-effector's position, speed, and acceleration, is crucial for dynamic
calibration. The ANN-based calibration algorithms developed in the thesis are
particularly well suited to the problem of dynamic calibration processing.

143

Chapter 8 - Conclusions and Future Work

2) Accuracy evaluation and test experiments were limited to the specific
experimental set-up in this research due to the expensive Coordinate Measuring
Machine being used. With the availability of some economical and automatic on-line
measurement devices, more extensive experiments are needed to test and evaluate robot
accuracy performance according to ISO 9000 standard.

3) The optimal placement of the constraint plane in the constrained environments
must be investigated so that the robot has optimal identification configurations. Such a
study could lead to the construction of a portable mechanical fixture for robot on-site
calibration. Constraint surfaces other than planes may also be suitable for the proposed
calibration method (such as a spherical ball) as long as the surfaces have known shapes
and are suitable for touching with the probe. The effect of measurement noises such as
the flatness of constraint planes and the resolution of the probe on identification
accuracy need to be studied by simulation in future work.

4) Robot inaccuracy in Cartesian space is minimised in the least square sense by
configuring the network energy function as a quadratic form of the inaccuracy vector
(I^-norm). This standard least square criterion is optimal for a Gaussian distribution of
measurement noise. If the set of measurements has non-Gaussian error distribution due
to different sources of errors such as instrument errors, modelling errors, sampling
errors and human errors, other criteria such as the least absolute value (Lr norm), and
maximum likelihood criterion (L„-norm), etc. can be used to construct the network
energy function. Cichocki and Unbehauen (1992, 1993) discussed the design of an
efficient and robust neural network architecture based on various criteria. Future work
will investigate more advanced neural network architecture for the robot kinematic
identification problem taking various measurement errors (noise) into account.

5) The concept of using a known shape reference object for robot calibration
developed in the thesis can also be extended for non-contact type sensors such as CCD
camera.

6) The NN training accuracy and efficiency will suffer if larger data sets covering
larger workspace for multiple DoF robot are used. Neural network design methodology,
which incorporate a priori knowledge into network architecture so that the network
can capture invariant properties of the problem from high-dimensional data, remains an
open research topic.

144

Chapter 8 - Conclusions and Future Work

7) The Hopfield analogue (continuous-valued) model is one of the most popular
neural network model and has found many applications. It can easily be implemented
using VLSI electronic circuits (Cichocki and Unbehauen, 1993). There are two small
variations in the network used for inverse compensation. One is that the weight
connections are determined by robot Jacobian matrix which is time-variant This is
different from the normal Hopfield model which has fixed weights. This can be
implemented by electronic circuits with programmable resistors. Another variation is
that the neuron activation function is simply a linear function of high gain, which
simplifies the solution of the differential equations of the neuron dynamics. With the
availability of neural circuits, the hardware implementation of the neural network-based
identification and compensation algorithm is suggested for future work which can be
used to augment the nominal robot controller.

145

References

References

Albus, J.S., 1975a, "Data storage in the cerebellar model articulation controller
(CMAC)", Trans, o f the ASME Journal of Dynamic Systems, Measurement, and
Control, vol. 97: pp. 228-233

Albus, J.S., 1975b, "A New Approach to Manipulator Control: The Cerebellar model
Articulation Controller", Trans, o f the ASME Journal o f Dynamic Systems,
Measurement, and Control, vol. 97: pp. 270-277

Ahmad, Z. and Guez, A., 1990, "On the solution of the inverse kinematic problem,"
Proc. oflEEEInt. Conf. on Robotics and Automation, IEEE, pp. 1692-1697

Bassi, D.F. and Bekey, G.A., 1989, "High Precision Control by Cartesian Trajectory
Feedback and Connectionist Inverse Dynamics Feedforward", Proc. International Joint
Conf. on Neural Networks, vol. 2, pp. 325-332

Bekey, G.A., 1992, "Robotics and Neural Networks", Ch 6 in Neural Networks for
Signal Processing, Edited by Kosko, B„ Prentics-Hall international, pp. 161-188

Bennet, D.J. and Hollerbach, J.M, 1990, "Closed-loop kinematic calibration of the
Utah-MIT Hand," Experimental Robotics 1— The First Int. Symp., 1990, pp. 539-552

Bennet, D.J. and Höllerbach, J.M, 1991, "Autonomous Calibration of Single-Loop
Closed Kinematic Chains Formed by Manipulators with Passive Endpoint Constraints,"
IEEE Trans, on Robotics and Automation, Vol. 7, No. 5, pp. 597-606

146

References

Bennett, D. J., Geiger, D. and Hollerbach, J.M., 1991, "Autonomous Robot calibration
for hand-eye coordinaton", Int'l J. o f Robotics Research, Vol: 10, No. 5, pp. 550-559,
MIT Press

Bernhardt, R. and Albright, S.L., 1993, "Introduction to Robot Calibration", "Future of
Calibration", in Robot Calibration, Edited by Bernhardt, R. and Albright, S.L.,
Chapman & Hall Press

Borderick, P.L. and Cipra, R.J., 1988, "A method for determining and correcting robot
position and orientation errors due to manufacturing," J. o f Mechanisms,
Transmissions, and Automation in Design, Vol. 110, March, pp. 3-10

Bonn, J H and Meng, C H, 1989, "Experimental study of observability of parameter
errors in robot calibration," Proc. IEEE Inti Conf. on Robotics and Automation, IEEE,
Scottsadale, Arizona, pp. 587-592

Borm, J H and Meng, C H, 1991, "Determination of optimal measurement
configurations for robot calibration based on observability measure", Int'l J. Robotics
Research, vol. 10 no. 1, pp. 51-63, MIT Press

Chen, J., and Chao, L.M., 1986, "Positioning error analysis for robot manipulators with
rotary joints," Proc. of IEEE International Conf. on Robotics and Automation, IEEE,
San Francisco, pp. 1011-1016

Cichocki A. and Unbehauen, R., 1992, "Neural Networks for Solving Systems of
Linear Equations and Related Problems," IEEE Trans, on Circuits and Systems, Vol.
39, No. 2, pp. 124-138

Cichocki A. and Unbehauen, R„ 1993, Neural Networks for Optimization and Signal
Processing, John Wiley & Sons

Craig, J.J., 1986, Introduction to Robotics—Mechanics and Control, Addison Wesley,
Reading, MA.

Daunicht, W.J., 1991, "Approximation of the inverse kinematics of an industrail robot
by DEFAnet,", Proc. of IEEEInt. Conf. on Neural Networks, IEEE, pp. 1995-2000

147

References

Denavit, J., and Hartenberg, R.S., 1955, "A kinematic notation for lower-pair
mechanisms based on matrices," Trans. ofASME J. Applied Mechanics, June, pp. 215-
221

Driels, M.R., Swayze, LW and Potter L.S. 1993, "Full-pose calibration of a robot
manipulator using a coordinate measuring machine", Int. J. of Adv Manuf Technol 8:
pp. 34-41

Driels, M.R. and Swayze, W., 1994, "Automated partial pose measurement system for
manipulator calibration experiments", IEEE Trans, on Robotics and Automation, Vol.
10, No. 4, pp. 430-440

Easthope, C.E., 1964, Three Dimensional Dynamics-A Vectorial Treatment,
Butterworth & Co (Publishers) Ltd., London

Everett, L.J., 1993, "Models for Diagosing Robot Error Sources", Proc. of IEEE
International Conf. on Robotics and Automation, pp. 155-159

Everett, L.J., Colson, J.C. and Mooring, B.W., 1994, "Automatic Singularity
Avoidance Using Joint Variations in Robot Task Modification", IEEE Robotics &
Automation Magazine, Vol. 1, September 1994, pp 13-19

Everett, L.J., McCarroll, D.R., 1986, "Using finite element methods to approximate
kinematic solutions for robot manipulators when closed form solutions are
unattainable," Proc. of IEEE Int. Conf. on Robotics and Automation, Philadelphia,
IEEE, pp. 798-800

Everett, L.J., and Suryohadiprojo, A.H., 1988, "A study of kinematic models for
forward calibration of robot manipulators," Proc. of IEEE International Conf. on
Robotics and Automation, IEEE, Philadelphia, pp. 798-800

Fu, K.S., Gonzalez, R.C. and Lee, C.S.G., 1987, Robotics— Control, Sensing, Vision,
and Intelligence, McGraw-Hill, Inc.

Ghosh, J. and Shin, Y., 1992, "Efficient Higher-order Neural Networks for
Classification and Function Approximation", Int'l J. of Neural Systems, Vol. 3, No. 4,
pp 323-350

148

References

Giles, C. L. and Maxwell, 1987, "Learning, invariance, and generalization in high-order
neural networks", Applied Optics, Vol. 26, No. 23, pp. 4972-4978

Goswami, A, Quaid, A, and Peshkin, M, 1993, "Complete parameter identification of a
robot from partial pose information", Proc. IEEE Int'l Conf. on Robotics and
Automation, Vol. 1: pp. 168-173

Grossberg, S., 1982, Studies o f Mind and Brain, Reidel, Boston, BA

Guez, A. and Ahmad, Z., 1988, "Solution to the Inverse Kinematics Problem in
Robotics by Neural Networks", Proc. IEEE Int'l Conf. on Neural networks, pp 11-617-
624

Guo, J. and Cherkassky, V., 1989, "A Solution to the Inverse Kinematic Problem in
Robotics Using Neural Network Processing," Proc o f International Joint Conf. on
Neural Networks, Vol. II, pp. 299-304

Hayati, S.A., 1983, "Robot arm geometric link parameter estimation," Proc. o f the 22nd
IEEE Conference on Decision and Control, pp. 1477-1483

Hayati, S.A. and Roston G.P., 1986, "Inverse Kinematic Solution for Near-simple
Robots and Its Application to Robot Calibration", Recent Trends in Robotics:
Modelling, Control, and Education, Elservier Science Publishing Co., Inc. pp 41- 49

Hecht-Nielsen, R., 1990, Neurocomputing, Addison-Wesley Publishing Company

Ho, J. and Wu, C.H., 1987, "Robot Accuracy Compensator,", Proc. IEEE International
Conference on Robotics and Automation, IEEE Philadephia, pp. 214-219

Hollerbach, J.J, 1989, "A review of kinematic calibration," in The Robotics Review 1,
Khatib, O., Craig, J.J., and LozanolPerez, T., Eds Cambridge, MA: MIT Press, pp. 207-
242

Hopfield, J.J and Tank, D.W., 1986, "Computing with Neural Circuits: A Model,"
Sciences, Vol. 233, pp. 625-633

Hopfield, J.J. and Tank, D.W., 1985, "Neural computation of decision in optimisation
problems", Biological Cybernetics, 52, pp 141-152.

149

References

Hornik, K., Stinchocombe, M. , and White, H., 1990, "Universal Approximation of an
Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks,"
Neural Networks, Vol. 3, pp. 551-560, Pergamon Press

Hornik, K., 1991, "Approximation Capabilities of Multilayer Feedforward Networks,"
Neural Networks, Vol. 4, pp. 251-257

Ibarra, R. and Perreira, N.D., 1986, "Determination of linkage parameter and pair
variable errors in open chain kinematic linkages using a minimal set of pose
measurement data," J. of Mechanisms, Transmissions, and Automation in Design, pp.
159-166, June 1986

Josin, G., 1988, "Neural-Space Generalization of a Topological Transformation",
Biological Cybernetics, Vol. 59, pp. 283-290, Springer-Verlag Press

Judd, R.P. and Knasinski, A.B., 1991, "A technique to calibrate industrial robots with
experimental verification", IEEE Trans, on Robotics & Automation, 6(1): pp. 20-30

Khalil, W., Gautier, M. and Enguehard, Ch., 1991, "Identifiable parameters and
optimum configurations for robots calibration," Robotica, vol. 9, pp. 63-70, Cambridge
University Press

Kirchner, H.O., Gurumoorthy, B. and Printz, F.B., 1987, "A Perturbation Approach to
Robot Calibration", Int. J. o f Robotics Research 6(4), pp 47-59

Kohonen, T„ 1984, Self-Organization and Associative Memory, Springer-Verlag, New
York, NY

Kumar, A., and Waldron, K.J., 1981, "Numerical Plotting of Surfaces of Positioning
Accuracy of Manipulators," Mechanism and Machine Theory, vol. 16, no. 4, pp. 361 -
368

Kung, S.-Y., and Hwang, J.-N., 1989, "Neural Network Architecture for Robotics
Applications," IEEE Trans, on Robotics and Automation, vol. 5, pp. 641-657

Kuperstein, M„ 1988, "Neural network model for adaptive hand-eye coordination for
single postures", Sciences, Vol. 239, pp. 1308-1311

150

References

Kuperstein, M., and Rubinstein, J., 1989, "Implementation of an adaptive neural
controller for sensory motor coordination," IEEE Control Syst. Mag., vol. 9, no. 3, pp.
25-30

Kozakiewicz, C., Ogiso, T., and Miyake, N., 1990, "Calibration Analysis of a Direct
Drive Robot", IEEE Int. Workshop on Intelligent Robot and Systems, pp 213-220

Kozakiewicz, C., Ogiso, T., Miyake, N., 1991, "Partitioned Neural Network
Architecture for Inverse Kinematic Calculation of a 6 DOF robot Manipulator", Proc.
o f IEEE International Conf. on Neural Networks, pp. 2001-2006

Landesman, E. and Hestenes, M., 1992, Linear Algebra for Mathematics, Science, and
Engineering, Prentics-Hall International

Lau, K., Hocken, R., and Haynes, L., 1988, "Testing," International Encyclopedia of
Robotics, Application and Automation, Dorf, R.C. and Nof, S.Y. Eds, John Wiley &
Sons, Inc., pp. 1753-1769

Li, Y.-T. and Jiang Y.-S., 1993, "A Neural Network Based Resolved Motion Rate
Control", Proc. of the Third Int'l Sympos. on Measurement and Control in Robotics,
Session Cm. H-13-18, Turino, Italy

Martinetz, T.M., Ritter, H.J. and Schulten, K.J., 1990, "Three-Dimensional Neural Net
for Learning Visuomotor Coordination of a Robot Arm", IEEE Trans, on Neural
Networks, Vol. 1, No. 1, pp. 131-136

Mirman, C.R. and Gupta, K.C., 1992, "Compensation of Robot Joint Variables using
Special Jacobian Matrices", J. o f Robotic System 9(1), pp. 113-137, John Wiley & Sons

Masters, T., 1993, Practical Neural Networks Recipes in C++, Academic Press

MathWorks Inc., 1992a, Matlab User's Guide for UNIX Workstation

MathWorks Inc., 1992b, SIMULINK-—Dynamic System Simulation Software User's
Guide for the X Window System

MathWorks Inc., 1992c, Optimization TOOLBOX for Use with MATLAB User's Guide

151

References

MathWorks Inc., 1993, Neural Network TOOLBOX for Use with MATLAB User's
Guide

Miyamoto, H., Kawato, M., Setoyama, T., and Suzuki, R., 1988, "Feedback Error
Learning Neural Networks for Trajectory Control of a Robotic Manipulator", Neural
Networks, Vol. l,pp. 251-265

Miyazaki, T., Maekawa, K. and Bamba, T., 1992, "Compensation of Positioning Errors
of Industrial Robot Using Neural Network", Proc. o f the 23rd International Symposium
on Industrial Robots, Barcerona, Spain, pp. 377-381

Mooring, B.W., Roth Z.S., and Driels, M.R., 1991, Fundamentals o f Manipulator
Calibration, John Wiley & Sons, Inc., pp. 221-225

Mooring, B.W., 1983, "The effect of joint axis misalignment on robot positioning
accuracy," Proc. o f the 1983 ASME Conputers in Engineering Conference, pp. 151-155

Mooring, B.W. and Padavala, S.S., 1989, "The effects of kinematic model complexity
on manipulator accuracy." Proc. of IEEE Int. Conf. on Robotics and Automation,
Scottsdale, Arizona, IEEE, pp. 593-598

Mooring, B.W. and Tang, G.-R., 1984, "An improved method for identifying the
kinematic parameters in a six axis robot," Proc. o f the 1983 ASME Conputers in
Engineering Conference, Las Vegas, Nevada, pp. 79-84

Newman, W.S. and Osborn, D.W., 1993, " A new method for kinematic parameter
calibration via laser line tracking", Proc. IEEE Int'l Conf on Robotics and Automation,

Vol. 2: pp. 160-165

N-Nagy, F L and Siegler, T, 1987, Engineering Foundation of Robotics, Prentice-Hall
International, pp 26-28.

Pao, Y., 1989, Adaptive Pattern Recongnition and Neural Networks, Addison-Wesley

Pathre, U.S., and Driels, M.R., 1990, "Simulation experiments in parameter
identification for robot calibration," Int J Adv ManufTechnol, Vol. 5, No. 2, pp. 13-33,
Springer-Verlag, London

152

References

Paul, R., 1981, Robot Manipulators: mathematics, Programming, and Control, MIT
Press, Cambridge, MA

Prenninger, J.R., Vincze, M. and Gander, H, 1993, "Contactless position and
orientation measurement of robot end-effector", Proc. of IEEE Int. Conf. Robotics and
Automation, Atlanta, Vol.l: pp. 180-185

Rea, H.J., 1992, "POSE Correction - Robot System Simulation/Real Environment",
PhD Transfer Report, Department of Mechanical, Manufacturing and Software
Engineering, Napier University, Edinburgh, Scotland

Renders, J.M., Rossignol, E., Becquet, M., and Hanus, R., 1991, "Kinematic
Calibration and Geometrical Parameter Identification for Robots," IEEE Trans, on
Robotics and Automation, Vol. 7, No. 6, pp. 721-732

Renishaw Metrology Ltd., 1983, User's Guide: LP2 and LP2H Probes with hard wired
or induction transmission

Roth, Z.S., Mooring, B.W., and Ravani, B., 1987, "An Overview of Robot Calibration,"
IEEE J of Robotics and Automation, Vol. RA-3, No. 5, pp. 377-385

Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986, "Learning Internal
Representation by Error Propagation," Ch 8 in Parallel Distributed Processing, Vol. 1,
Rumelhart, D.E. and McClelland, J.L., MIT Press

Roth, Z.S., Mooring, B.W. and Ravani, B.,1987, "An Overview of Robot Calibration,"
IEEE J. of Robotics and Automation, Vol.Ra-3, No.5, 337-385

Shamma, J.S., 1985, "A method for Inverse Robot Calibration," Master's Thesis,
Massachusetts Institute of Technology

Shamma, J.S. and Whitney, D.E., 1987, "A Method for Inverse Robot Calibration",
AMSE J. o f Dynamic Systems, Measurement, and Control, Vol. 109, pp. 36-43

Shin, Y., 1992, "Efficient higher-order feedforward networks for function
approximation and classification," Ph.D Disseration, Department of Electrical and
Computer Engineering, The University of Texas at Austin, USA

Silma Inc., 1992, "Robot Calibration Package", CimStation 4.3 User's Manual

153

References

Stone, H W, 1986, "Kinematic modelling, identification and control of robotic
manipulators," PhD Dissertation, Robotics Institute, Carnegie Mellon University

Stone, H W, 1992, Kinematic modelling, identification and control o f robotic
manipulators, Kluwer Academic Publishers, Chapter 5, pp 78-95

Stone, H.W., Sanderson, A.C. and Neuman, C.P., 1986, "Arm Signature Identification",
Proc. IEEE Int'l Conf on Robotics and Automation, San Francisco, CA, pp 41-48

Suh, C. and Radcliffe, C.W., 1978, Kinematics and Mechanisms Design, Wiley, New
York

Tang G.-R and Mooring B W, 1992, "Plane-Motion Approach to Manipulator
Calibration", Int J. of Adv Manuf Technol, Vol. 7, pp. 21-28

Tank, D and Hopfield, D, 1986, "Simple 'Neural' Optimisation Networks: An A/D
Converter, Signal Decision Circuit, and Linear Programming Circuit", IEEE Trans, on
Circuits and System, Vol. CAS-33, pp. 533-544

Tsai, R.-Y. and Lenz, R.K., 1989, "A New Technique for Fully Autonomous and
Efficient 3D Robotics Hand/Eye Calibration," IEEE Trans, on Robotics and
Automation, Vol. 5 No. 3, pp. 345-358

Veitschegger, W. K. and Wu, C.-H., 1986, "Robot Accuracy Analysis Based on
Kinematics," IEEEJ. Robotics and Automation, Vol. 2, No. 3, pp. 171-179

Veitschegger, W. K. and Wu, C.-H., 1988, "Robot Calibration and Compensation",
IEEE Int'l J o f Robotics and Automation, Vol. 4, No 6, pp. 643-656

Vira, N. and Tunstel, E„ 1989, "Computer generation of geometrical error equations
applicable for improvement of robots' positioning accuracy", Intelligent Autonomous
systems 2, Amsterdam, pp.650-660

Vuskovic, M.I., 1989, "Compensation of Kinematic Errors Using Kinematic
Sensitivities,", Proc. IEEE International Conf. on Robotics and Automation, Scottsdale,
Arizona, pp. 745-750

Werbos, P.J., 1974, "Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences," PhD Dissertation in Statistics, Harvard University

154

References

Whitney, D., Lozinsky and Rourke, J., 1986, "Industrial robot forward calibration
method and results", Trans, of the ASME J. of Dynamic Systems, Measur. and Control,
108, pp. 1-8

Wu, C.H., 1983, "The kinematic error model for the design of robot manipulator,"
Proc. of American Control Conference, San Francisco, pp. 407-502

Wu, C.H., 1984, "A Kinematic CAD Tool for the Design and Control of a Robot
Manipulator,' Int'l J. o f Robotics Research, MIT Press, Vol. 3, No. 1, pp. 58-67

Wu, C.H., Ho, J. and Young, K.,1988, "Design of Robot Accuracy Compensator after
Calibration", IEEE Int'l Conf on Robotics and Automation, pp 780-785

Wu, C.M., Jiang, B.C. and Shiau, Y.R., 1993, "Controlling a Robot's Position Using
Neural Networks," International J. of Advanced Manufacturing Technology, No. 8: pp.
216-226

Wu, G. and Wang, J., 1994, "A recurrent neural network for manipulator inverse
kinematics computation," Proc. o f IEEE Int. Conf. on Neural Networks, IEEE, Orlando,
vol. 5, pp. 2715-2720,

Yeung, D.-T., and Bekey, G.A., 1989, "Using a Context-Sensitive Learning Network
for Robot Arm Control," Proc. IEEE International Conf. on Robotics and Automation,
pp. 1441-1447

Yeung, D.-T., 1989, "Handling Dimensionality and Nonlinearity in Connectionist
Learning," Ph.D Dissertation, Computer Science Department, University of Southern
California

Zhen, H., 1985, "Error analysis of robot manipulators and error transmission
functions," Proc. o f the 15th International Conference on Industrial Robots, pp. 873-
878, Tokyo, 1985

Zhong, X.L., Lewis, J.M. and Rea, H., 1994, "Neuro-accuracy Compensator for
Industrial Robots", Proc. IEEE Int'l Conf. on Neural networks, IEEE World Congress
on Computational Intelligence, Orlando, Florida, Vol. 5 pp 2797-2802

155

References

Zhong, X.L. and Lewis, JM, 1994, "Kinematic Identification and Compensation of
Robot Manipulators Using Neural Optimisation Networks", Proc. Third Int'l Conf. on
Automation, Robotics and Computer Vision, Vol. Ill, pp 1472-1476, Singapore

Zhong, X. L. and Lewis, L.M., 1995, "A New Method for Autonomous Robot
Calibration", Proc. o f IEEE International Conference on Robotics and Automation,
Vol. 2, pp. 1790-1795, Nagoya, Japan

Zhong, X.L.and Lewis, JM, 1993, "A New Kinematic Measure of Robot
Manipulators", Proc. o f the Third International Symp. on Measurement and Control in
Robotics, Session Cm. 11-25-30, Torino, Italy

Zhong, X.L., Lewis, J.M., and N-Nagy, F, 1995, "Autonomous Robot Calibration
Using a Trigger Probe ", Accepted for publication in the Int'l J. o f Robotics and
Autonomous Systems, Elsevier Science Press, Amsterdam, the Netherland

Zhong, X.L., Lewis, J.M., and N-Nagy, F, 1995, "Robot Inverse Calibration Using
Artificial Neural Networks", Submitted to Int. J. o f Engineering Applications of
Artificial Intelligence, Pergamon Press

Zhuang, H., Hamano, F. and Roth, Z.S., 1989, "Optimal Design of Robot Accuracy
Compensators", Proc. IEEE Int. Conf. Robotics and Automation, Arizona, pp 751-756

Zhuang, H., 1989, "Kinematic modeling, Identification, and Compensation of Robot
manipulators", Ph.D Dissertation, Florida Atlantic University

Zhuang, H., Wang, L. and Roth, Z.S., 1993a, "Simultaneous calibration of a robot and a
hand-mounted camera", Proc. IEEE Int'l Conf. on Robotics and Automation, Vol. 2: pp.
149-154

Zhuang, H., Wang, L. and Roth, Z.S., 1993b, "Error-Model-Based Robot Calibration
Using a Modified CPC Model", Robotics & Computer-Integrated Manufacturing, Vol.
10, No. 4, pp. 287-299, Pergamon Press

Zhuang, H., Wang, K., and Roth, Z.S., 1994, "Optimal Selection of Measurement
Configurations for Robot Calibration using Simulated Anealing," Proc. o f IEEE Int.
Conf. on Robotics and Automation, San Diago, CA., 1994

156

References

Ziegert, J. and Datseris, P., 1990, "Robot Calibration Using Local Pose Measurements,"
International J. of Robotics and Automation, Vol. 5, No. 2, pp. 68-76

157

Appendix

Appendix 1. Forward Kinematics of Puma 560 Robot and Orientation
Representations

function f = kinfwd(x)
% This function calculates the pose matrix T using forward kinematics based on modified D-H model
% =

T = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
a = x(l:6);
d = x(7:12);
alfa = x(13:18);
theta = x(19:24);
belts = x(25:30);
NUM = 6;

for j = 1:NUM
ct = cos(theta(j));
st = sin(theta(j));
sa = sin(alfa(j));
ca = cos(alfa(j));
sb = sin(belta(j));
cb = cos(belta(j));
TM = [ct*cb-sa*st*sb -st*ca ct*sb+sa*st*cb a(j)*ct;...

st*cb+ct*sa*sb ca*ct st*sb-sa*cb*ct a(j)*st;...
-ca*sb sa ca*cb d(j);...
0 0 0 1];

T = T * TM;
end

% Return the pose transformation matrix
f = T;

Conversion of Euler angles to [n, s, o] orientation representation

function f = conv(el,e2,e3)
% This function converts Euler angles (system II) (e l, e2, e3) into [n, s, o] orientation transformation
% = = = — = = — = = = = = = — = = = = =
sel = sin(el);
ce l = cos(el);
se2 = sin(e2);
ce2 = cos(e2);
se3 = sin(e3);
ce3 = cos(e3);
nx = cel*ce2*ce3 - sel*se3;
ny = sel*ce2*ce3 + cel*se3;
nz = -se2*ce3;
sx = -cel*ce2*se3 - sel*ce3;
sy = -sel*ce2*se3 + cel*ce3;
sz = se2*se3;
ox = cel*se2;
oy = sel*se2;
oz = ce2;
% Return orientation transformation matrix
f = [nx sx ox; ny sy oy; nz sz oz];

158

Appendix

Appendix 2. Closed-form Inverse Kinematic Solution of Puma Robot

function f = kininv(x)
% This function is used to find joint vector for a given Cartesian Location (x) using nominal model
% =
PI = 3.141592;
%nominal model
a = [0 431.800 -20.320 0 0 0]./10;
d = [0 149.090 0 433.070 0 0]./10;
alfa = [-PI/2 0 PI/2 -PI/2 PI/2 0];
nx = x(l); ny = x(2); nz = x(3);
sx = x(4); sy = x(5); sz = x(6);
ax = x(7); ay = x(8); az = x(9);
av = [ax;ay;az]; sv = [sx;sy;sz]; nv = [nx;ny;nz];
% Tool offset x, y, z
offset_tx = 0.5;
o ffse tjy = -0.15;
offset_tz = 35.859;
px = x(10) - offset_tz*ax - offset_tx*nx - offset_ty*sx;
py = x (l 1) - offset_tz*ay - offset_tx*ny - offset_ty*sy;
pz = x(12) - offset_tz*az - offset_tx*nz - offset_ty*sz;
% Cofigurations indicators
ARM = +1; % = -1 LEFT arm, = +1 RIGHT arm
ELBOW = + l; % = +1 ABOVE arm, = -1 BELOW arm
WRIST = + l; % = +1 WRIST DOWN, = -1 WRIST UP
sinthl = (-ARM*py*sqrt(abs(px*px+py*py-d(2)*d(2)))-...

px*d(2))/(px*px+py*py);
costhl = (-ARM*px*sqrt(abs(px*px+py*py-d(2)*d(2)))+...

py*d(2))/(px*px+py*py);
thl = atan2(sinthl,costhl);
s i =sinthl; c l = costhl;
if (-px*cl-py*sl) < 0

ARM = -1;
sinthl = (-ARM*py*sqrt(abs(px*px+py*py-d(2)*d(2)))-...

px*d(2))/(px*px+py*py);
costhl = (-ARM*px*sqrt(abs(px*px+py*py-d(2)*d(2)))+...

py*d(2))/(px*px+py*py);
thl = atan2(sinthl,costhl);

end
K = ARM*ELBOW;
R1 = sqrt(abs(px*px+py*py+pz*pz-d(2)*d(2)));
R2 = sqrt(abs(px*px+py*py-d(2)*d(2)));
sina = -pz/Rl;
cosa = -ARM*R2/R1;
cosb = (a(2)*a(2)+Rl*Rl-(d(4)*d(4)+a(3)*a(3)))/(2*a(2)*Rl);
sinb = sqrt(l-cosb*cosb);

sinth2 = sina*cosb+K*cosa*sinb;
costh2 = cosa*cosb-K*sina*sinb;
th2 = atan2(sinth2,costh2);

cosf = (a(2)*a(2)+d(4)*d(4)+a(3)*a(3)-Rl*Rl)/...
(2*a(2)*sqrt(d(4)*d(4)+a(3)*a(3)));

sinf = K*sqrt(l-cosf*cosf);
sinbl = d(4)/sqrt(d(4)*d(4)+a(3)*a(3));

159

Appendix

cosbl = abs(a(3))/sqrt(d(4)*d(4)+a(3)*a(3));

sinth3 = sinf*cosbl-cosf*sinbl;
costh3 = cosf*cosbl+sinf*sinbl;
th3 = atan2(sinth3,costh3);

if ARM*(d(4)*costh3-a(3)*sinth3) < 0
ELBOW = -1; K = ARM*ELBOW;
sinth2 = sina*cosb+K*cosa*sinb;
costh2 = cosa*cosb-K*sina*sinb;
th2 = atan2(sinth2,costh2);
sinf = K*sqrt(l-cosf*cosf);
sinth3 = sinf*cosbl-cosf*sinbl;
costh3 = cosf*cosbl+sinf*sinbl;
th3 = atan2(sinth3,costh3);

end
s l= sin(thl); c l = cos(thl);
s23 =sin(th2+th3); c23 = cos(th2 +th3);
% Decision equation, to decide symbol of M
R3 = [cl*c23 -si cl*s23;. sl*c23 c l sl*s23; -s23 0 c23];
z3 = R3(:,3);
xv = cross(z3,av);
ip = sx*xv(l)+sy*xv(2)+sz*xv(3);
if ip = 0

EM = nx*xv(l)+ny*xv(2)+nz*xv(3); else
EM = ip;

end
if EM >= 0

M = WRIST*(+1);
else

M = WRIST*(-1);
end
sinth4 = M*(cos(thl)*ay-sin(thl)*ax);
costh4 = M*(cos(thl)*cos(th2+th3)*ax+...

sin(thl)*cos(th2+th3)*ay-sin(th2+th3)*az);
th4 = atan(sinth4/costh4);
R4 = R3*[costh4 0 -sinth4;sinth4 0 costh4; 0 -1 0];
z4 = R4(:,3);
ip4 = sx*z4(l)+sy*z4(2)+sz*z4(3);
if ip4 < 0

WRIST = -1;M = -1*M;
sinth4 = M*(cos(thl)*ay-sin(thl)*ax);
costh4 = M*(cos(thl)*cos(th2+th3)*ax+...
sin(thl)*cos(th2+th3)*ay-sin(th2+th3)*az);
th4 = atan(sinth4/costh4);

end
sinth5 = (cos(thl)*cos(th2+th3)*cos(th4)-sin(thl)*sin(th4))*...

ax+(sin(thl)*cos(th2+th3)*cos(th4)+cos(thl)*sin(th4))*...
ay-cos(th4)*sin(th2+tb3)*az;

costh5 = cos(thl)*sin(th2+th3)*ax+sin(thl)*sin(th2+th3)*ay+...
cos(th2+th3)*az;

th5 = atan2(sinth5,costh5);
sinth6 = (-sin(thl)*cos(th4)-cos(thl)*cos(th2+th3)*sin(th4))*...

nx+(cos(thl)*cos(th4)-sin(thl)*cos(th2+th3)>,‘sin(th4))*...
ny+(sin(th4)*sin(th2+th3))*nz;

costh6 = (-sin(thl)*cos(th4)-cos(thl)*cos(th2+th3)*sin(th4))*...
sx+(cos(thl)*cos(th4)-sin(thl)*cos(th2+th3)*sin(th4))!(:...
sy+(sin(th4)*sin(th2+th3))*sz;

160

Appendix

th6 = atan2(sinth6,costh6);
% Return joint variable vector
f = [thl th2 th3 th4 th5 th6];

Appendix 3. Ordinary Jacobian Matrix for Puma 560 Robot

function f = jcbrec(x)
% The ordinary Jacob matrix of 6 DOF Puma-560 robot using recursive procedure
9c ===
PI = 3.141592;
%nominal model
a = [0 431.800 -20.320 0 0 0]./10;
d = [0 149.090 0 433.070 0 113.25]./10;
alfa = [-1.5708 0 1.5708 -1.5708 PI/2 0];
theta = x;
[1, NUM] = size(x);
JP = []; PP = []; JO = []; RR = [];
TT = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1];
T = [];

for j = 1:NUM
ct = cos(theta(j)); st = sin(theta(j));
sa = sin(alfa(j)); ca = cos(alfa(j));
% Transformation matrix j wrt j-1
TM = [ct -ca*st sa*st a(j)*c(j);...

st ca*c(j) -sa*ct a(j)*st;...
0 sa ca d(j);...
0 0 0 1];

% Record of rotation j wrt j-1
R R = [RRTM];
% Totaion matrix j wrt 0
TT = TT*TM;
% Rrocord of transformation matrix
T = [T TT];
P = [a(j)*ct; a(j)*st; d(j)];
PP — [PP P];
OM = TT(1:3,1:3)*[0;0;1];
JO = [JO OM];

% Position vector j wrt j-1
% Record of position vectors
% jth revolute joint z-axis vector
% Record of joint axis vectors

TINV = TT;
TINM = Q;
j = NUM;

while j > 0
RM = RR(:, (j-l)*4+l:j*4);
TINV = RM*TINV;
TINM = [TINM TINV(1:3,4)]; % Record of the 4th Column of T matrix wrt TCP
j = j-1; % Reverse order j = NUM to 1

end

for j = 1:NUM
% Position vector j wrt 0
JPJ = T(l:3,(j-l)*4+l:j*4-l)*[-TINM (2, NUM-j+1);...

-TINM(1, NUM-j+1); 0];
JP = [JP JPJ];

161

Appendix

end

% Return the ordinary Jacobian matrix
f = [JP; JO];

Appendix 4. Special Jacobian Matrix of Puma 560 Robot

function f = sjcbrec(x)
% The special Jacob matrix of Puma-560 robot using recursive procedure based on the modified D-H
%==
PI = 3.141592;
%nominal model
a = [0 431.800 -20.320 0 0 0]./10;
d = [0 149.090 0 433.070 0 0]./10;
alfa = [-1.5708 0 1.5708 -1.5708 PI/2 0];
% Tool offset
%offset_tx = 2; offset_ty = 0; offset_tz = 11.125; %CMM calibration
offset_tx = 0.5; offset_ty = -0.15; offset_tz = 35.859; %probe calibration
theta = x;
% Initialization of variables
z _ x j) = [];
p_vecs = [];
zaxis = [];
R R = 0;
xaxis = [];
x_x_p= [];
yaxis = □;
y_x_p = [];
TT = [1 0 0; 0 1 0; 0 0 1];
T = [];
NUM = 6;

for j = 1:NUM
c(j) = cos(theta(j));
s(j) = sin(theta(j));
sa(j) = sin(alfa(j));
ca(j) = cos(alfa(j));

% Rotation matrix j wrt j-1
RM = [c(j) -ca(j)*s(j) sa(j)*s(j);...

s(j) ca(j)*c(j) -sa(j)*c(j);...
0 sa(j) ca(j)];

% Record of rotation j wrt j-1
R R = [RRRM];
% Record of rotation matrix
T = [TTT];
% (j-l)th revolute joint z-axe vector
zaxis_l = TT*[0;0;1];
% Rotaion matrix j wrt 0
TT = TT*RM;
% jth joint x-axe vector
xaxis_0 = TT*[1;0;0];
% jth joint y-axe vector
y axis_0 = TT* [0; 1 ;0];

162

Appendix

% Position vector j wrt j-1
P_vec = [a(j)*c(j); a(j)*s(j); d(j)];
% Record of position vectors
p_vecs = [p_vecs p_vec];
% Record of z-axis vector
zaxis = [zaxis zaxis_l];
% Record of x-axis vector
xaxis = [xaxis xaxis_0];
% Record of y-axis vector
yaxis = [yaxis yaxis_0];

T = [T TT];
% Position vector connecting hand center to the origin of (j-l)th joint frame
phtj_l = [offsetjx; offset_ty; offset_tz];
phtjs_l = Ü;
phtjs_0 = [j;
phtj_0 = [0; 0; 0];
j = NUM;

while j > 0
RM = RR(:, (j-l)*3+l:j*3);
% Position vector wrt j-1
phtj_l = RM*phtj_l + p_vecs(:,j);
% Record of position vector wrt j-1
phtjs_l = [phtjs_l phtj_l];
% Record of position vector wrt j
phtjs_0 = [phtjs_0 phtj_0];
% Reverse order j = 6 to 1
j = j-i;
phtj_0 = phtj_l;

end

for j = 1:NUM
% jth vector (z X p) wrt base(0)
z_x_p_l = T(:,(j-l)*3+l:j*3)*[-phtjs_l(2,(NUM-j+l));...

phtjs_l(l,(NUM -j+l)); 0];
% (j+l)th vector (x X p) wrt base(0)
x_x_p_0 = T(:,j*3+l:(j+l)*3)*[0; -phtjs_0(3,(NUM-j+l));...

phtjs_0(2,(6-j+l))];
% (j+l)th vector (y X p) wrt base(0)
y_x_p_0 = T(:,j*3+l:(j+l)*3)*[phtjs_0(3,(NUM-j+l)); 0;...

-phtjs_0(l,(NUM-j+l))];
% Record of vector which is corss porduct between z and position vector p
z_x_p = [z_x_p z_x_p_l];
% Record of vector which is cross porduct between x and position vector (p-d)
x_x_p = [x_x_p x_x_p_0];
% Record of vector which is cross product between y and (p-d)
y_x_p = [y_xj> y_x_p_0];

end

% Jacobian matrix w.r.t. theta
jth = [z_x_p; zaxis];
% Jacobian matrix w.r.t. alpha
jal = [x_x_p; xaxis];
% Jacobian matrix w.r.t. belta
jbt = [y_x_p; yaxis];
% Jacobian matrix w.r.t. link length a

163

Appendix

ja = [xaxis; zeros(3,6)];
% Jacobian matrix w.r.t. link offest d
jd = [zaxis; zeros(3,6)];

% Modified D-H representation
jd(:,2) = jbt(:,2);

% Return the special Jacobian matrix
f = [jajaljdjth];

Appenix 5. Listed program for data collection using a trigger Probe

; This program is used to collect data using a trigger probe to probe the z-axis constraint plane
listp
.PROGRAM lineup

1 SPEED 50 ALWAYS
2 FINE ALWAYS
3 i= 1
4 MOVES left
5 CALL probe
6 i = i+1
7 MOVES right
8 CALL probe
9 MOVES left
10 RETURN

.END

.PROGRAM main
1 TOOL probe
2 SPEED 50 ALWAYS
3 FINE ALWAYS
4 TYPE /C25
5 MOVE #start
6 DELAY 0.5
7 HERE start
8 DELAY 0.5
9 ; PROMPT "Enter Number of Poses :", poses
10 ;set global variables
11 xmax = 200
12 xmin = 0
13 ymax = 200
14 ymin = -200
15 zmax = 0
16 zmin = 0
17 omax = 45
18 omin = -25
19 amax = 45
20 amin = -25
21 tmax = 45
22 tmin = -30
23 FOR i = init TO poses
24 CALL random
25 TYPE /C25, "Moving to Pose : ", i
26 MOVE random.loc
27 CALL probe
28 MOVE #start

164

Appendix

29 END
30 TOOL
31 RETURN

.END

.PROGRAM probe
1 DELAY 0.5
2 SPEED 50 ALWAYS
3 TYPE "Probing for Position ..."
4 COARSE ALWAYS
5 WHILE SIG(-lOOl) DO
6 SET d = SHIFT(HERE BY xdist, ydist, zdist)
7 MOVEd
8 END
9
10 FINE ALWAYS
11 DISABLE CP
12 IF SIG(lOOl) THEN
13 SET d = SHIFT(HERE BY (-xdist/10), (-ydist/10), (-zdist/10))
14 MOVE d
15 END
16 DELAY 0.2
17 CALL record.loc
18 ENABLE CP
19 TYPE "Position ", i , " Stored"
20 SET temp = SHIFT(HERE BY 0, 0, 50)
21 MOVE temp
22 SPEED 100 ALWAYS
23 RETURN

.END

.PROGRAM random
1 ;program to compose a transformation using a random value
2 ;for x,y,z,o,a,t
3
4 x = (RANDOM*(xmax-xmin))+xmin
5 x = x*(-l)
6 y = (RANDOM*(ymax-ymin))+ymin
7
8 o = (RANDOM*(omax-omin))+omin
9 a = (RANDOM*(amax-amin))+amin
10 t = (RANDOM*(tmax-tmin))+tmin
11 DECOMPOSE temp[] = start
12 temp[0] = temp[0]+x
13 temp[1] = tempt 1]+y
14 temp[2] = temp[2]+z
15 temp[3] = temp[3]+o
16 temp[4] = temp[4]+a
17 temp[5] = temp[5]+t
18 SET random.loc = TRANS(temp[0], temp[l], temp[2], temp[3], temp[4], temp[5])
19 DELAY 0.5
20 RETURN

END
.PROGRAM record.loc

1 DELAY 0.5
2 HERE loc[i]
3 DELAY 0.5
4 HERE #loc[i]
5 DELAY 0.5
6 RETURN

165

Appendix

.END

.listi
; Recorded robot location data: X/#Jtl Y/#Jt2 Z/#Jt3 0/#Jt4 A/#Jt5 T/#Jt6
datum

#datum
loc[l]
loc[2]
loc[3]
loc[4]
loc[5]
loc[6]
loc[7]
loc[8]
loc[9]
loc[10]
lo c [ll]
loc[12]
loc[13]
loc[14]
loc[15]
loc[16]
loc[17]
loc[18]
loc[19]
loc[20]
loc[21]
loc[22]
loc[23]
loc[24]
loc[25]
loc[26]
loc[27]
loc[28]
loc[29]
loc[30]
loc[31]
loc[32]
loc[33]
loc[34]
loc[35]
loc[36]
loc[37]
loc[38]
loc[39]
loc[40]
loc[41]
loc[42]
loc[43]
loc[44]
loc[45]
loc[46]
loc[47]
loc[48]
loc[49]
loc[50]
loc[51]
loc[52]

-573.09 21.66 -470.84 89.714 89.846 0.000
12.936 -142.169 -5.625: -0.099 -32.349 13.30

-539.13 269.69 -470.41 73.663 70.153 9.058
-574.41 -2.56 -470.97 65.550 88.006 30.031
-631.03 137.03 -470.75 63.875 78.300 8.641
-624.38 381.59 -469.16 100.272 69.016 -1.719
-662.09 393.94 -469.81 -133.044 87.682 -141.801
-658.41 169.34 -470.22 87.792 78.975 -19.995
-600.50 384.78 -470.13 70.807 88.830 21.736
-536.78 116.22 -470.47 -63.622 64.742 -156.022
-642.03 313.88 -471.00 -88.116 69.000 -137.955
-677.09 240.19 -470.75 54.470 71.082 10.184
-538.81 148.47 -470.97 58.255 84.441 -27.114
-562.06 141.69 -470.38 113.044 77.866 23.895
-610.59 185.16 -470.38 -70.626 55.931 -180.000
-562.06 214.75 -470.72 55.195 75.591 38.655
-696.06 20.56 -471.41 55.723 71.290 -■20.017
-652.19 327.72 -469.72 111.204 83.491 -7.295
-556.47 250.75 -469.97 108.490 78.184 5.422
-677.13 223.72 -468.59 -128.815 57.480 176.408
-600.72 285.00 -469.47 114.038 75.591 29.888
-607.69 242.78 -469.19 -90.802 44.731 -152.979
-515.66 51.47 -470.84 106.705 78.140 11.772
-590.66 93.84 -471.03 -84.716 70.444 165.998
-598.19 158.50 -470.38 85.605 70.175 -25.406
-668.78 353.56 -471.34 -77.553 66.396 -170.118
-570.84 33.81 -470.66 -104.255 75.531 178.616
-533.63 115.13 -470.19 -61.029 51.680 160.395
-509.63 109.03 -469.41 -127.793 65.028 166.361
-666.63 331.00 -470.06 -112.868 86.556 -135.989
-577.81 349.66 -470.47 112.538 76.970 29.553
-543.28 349.59 -470.34 -105.815 88.742 166.311
-554.34 6.16 -471.28 -87.407 i69.977 155.814
-621.91 57.66 -470.41 -69.802 65.347 -150.029
-526.00 371.16 -470.94 -75.701 57.437 -164.680
-504.13 60.91 -470.84 110.550 79.970 6.152
-695.88 197.22 -469.72 91.879 69.099 8.915
-615.38 311.72 -470.78 -90.000 82.326 147.101
-507.91 155.81 -470.88 94.570 83.452 23.961
-664.09 49.44 -470.88 -77.217 66.610 -178.308
-578.84 138.44 -470.56 112.368 85.660 38.419
-524.31 205.88 -470.44 -94.614 71.933 165.317
-528.97 210.31 -470.75 91.126 89.835 0.000
-512.31 79.94 -471.16 29.932 89.764 0.000
-526.03 373.88 -470.38 64.869 88.314 -21.780
-659.91 159.09 -470.28 103.387 86.193 -9.355
-654.31 319.41 -470.28 56.646 79.579 -14.178
-596.88 17.53 -471.09 -84.408 44.621 -146.942
-523.69 357.50 -470.84 -94.219 86.342 164.185
-607.34 301.28 -470.34 -74.438 46.176 167.305
-594.91 385.13 -469.16 106.452 77.970 40.891
-521.56 243.13 -470.34 -88.308 66.830 -172.227
-606.00 24.63 -470.97 78.519 65.330 36.178
-576.94 36.19 -470.91 81.447 86.710 11.140

166

Appendix

loc[53]
loc[54]
loc[55]
loc[56]
loc[57]
loc[58]
loc[59]
loc[60]

#loc[l]
#loc[2]
#loc[3]
#loc[4]
#loc[5]
#loc[6]
#loc[7]
#loc[8]
#loc[9]
#loc[10]
lo c [ll]
#loc[12]
#loc[13]
#loc[14]
#loc[15]
#loc[16]
#loc[17]
#loc[18]
#loc[19]
#loc[20]
#loc[21]
#loc[22]
#loc[23]
#loc[24]
#loc[25]
#loc[26]
#loc[27]
#loc[28]
#loc[29]
#loc[30]
#loc[31]
#loc[32]
#loc[33]
#loc[34]
#loc[35]
#loc[36]
#loc[37]
#loc[38]
#loc[39]
#Ioc[40]
#loc[41]
#loc[42]
#loc[43]
#loc[44]
#loc[45]
#loc[46]
#loc[47]
#loc[48]
#loc[49]
#loc[50]

-511.53 393.97 -470.03 -85.441 51.894-162.614
-522.72 2.56 -470.28 -63.078 66.187 178.934
-670.50 208.09 -470.13-116.038 54.981 -163.603
-647.59 94.94 -470.31 93.038 79.124 26.730
-601.78 36.66 -470.44 106.430 78.799 16.408
-506.25 288.13 -471.53 ■■72.971 74.185 164.669
-625.94 291.19 -469.56 •■86.721 48.488 168.887
-546.13 91.88 -471.31 -89.594 55.756 -154.204
-12.876 -156.209 24.049 1.269 -67.659 11.83
14.963 ■■142.784 -4.092 2.230 ■34.684 67.65
-1.417- 154.298 22.083 5.702 -•58.563 29.93

-15.370 -171.755 57.761 -8.948 -85.139 -25.09
-18.809 -158.176 31.943 -1.214 -51.658 63.18
-1.934- 157.506 29.493 0.060 ■63.018 -19.75

-20.429 -153.946 22.599 -0.033 -49.829 20.58
-4.993 -139.927 ■■26.840 123.607 -15.469 -129.48

-17.287 -146.821 -0.110 27.532 -14.755 -2.69
-11.212 -171.101 56.783 7.723 -83.090 32.39
-1.752--143.240 -3.219 4.466 •■38.452 -0.75
3.400-■147.508 6.147 -5.279 -50.208 8.04

-13.458 -145.668 -17.183 124.096 -21.517 -154.16
-9.816 -152.122 16.353 7.158 -57.541 59.10
4.752 -■165.009 43.748 12.134 -73.834 14.07

-13.310 -158.500 32.448 -4.285 -59.387 -39.46
-7.185 ■-149.551 11.228 -6.422 -52.531 -15.85
5.367 -■146.662 -10.250 -93.675 -22.055 129.70

-8.190 -155.517 24.379 -8.690 -61.408 2.67
-13.442 -150.452 -24.225 166.036 -40.089 -151.17
11.816 -143.481 -3.988 -1.439 -44.357 8.01
5.290 -•139.598 -20.786 0.000 -0.060 -14.00

-1.642 -158.000 28.098 0.994 -69.906 -23.16
-23.022 -151.397 9.899 36.398 -23.049 -57.40
16.837 -138.246 -21.116 -42.429' -11.025 70.81

-12.299 -146.041 -28.740 133.841 -34.541 166.46
20.544 -138.565 -34.442 -106.957 -22.066 150.35
-14.293 -154.413 23.494 -0.720 -45.676 53.06
-14.233 -155.440 24.379 -8.981 -59.749 -1.92
-19.605 -146.591 5.477 0.137 -37.628 -17.53
18.528 -137.840 -28.713 42.731 7.965 -51.62
4.955 ■141.641 -18.583 123.030 -7.515 -107.19

-35.189 -147.112 -9.635 88.396 -24.164 -117.52
11.332 -141.713 -8.108 -2.483 -40.111 -1.04
-3.016 -174.825 64.127 -1.747 -90.132 4.33

-15.809 -147.914 7.767 3.873 -32.520 -51.84
-0.192 -141.724 -7.295 -0.890 -37.513 19.95
7.498 -143.146 -12.475 62.787 -2.357 -65.92
2.148 -■144.965 1.329 -2.313 -40.463 20.03

-6.658 ■-138.038 -24.851 146.058 -1.137 -162.70
-6.465 •-141.509 -7.333 -0.308 -31.207 -7.33
8.218 -138.494 -15.754 0.505 -25.653 67.83

-22.242 -148.008 8.882 0.126 -42.561 -18.97
-0.544 -152.078 18.259 -1.198 -49.889 -22.41

-15.754 -163.213 42.028 3.362 -68.796 1.92
19.116 -151.622 -35.228 12.189 52.059 35.08

-21.610 -144.926 1.099 2.027 -32.695 -34.88
-28.702 -152.040 -9.673 116.84C1 -32.800 -168.85
-17.265 -158.923 32.563 -7.405 -63.886 11.01
-13.914 -139.570 -24.983 138.697 -9.229 -145.69

167

Appendix

#loc[51]
#loc[52]
#loc[53]
#loc[54]
#loc[55]
#loc[56]
#loc[57]
#loc[58]
#loc[59]
#loc[60]
probe

7.570-161.071 32.899
10.909-143.586 -2.098

-37.700 -148.123 -14.271
11.898-138.373 -33.096
4.098-146.393 -15.699
4.845-154.616 23.038
11.514-149.689 11.602

-21.297 -140.658 -14.573
-20.819 -149.634 -14.843
10.025 -143.800 -37.310

8.091 -75.438 51.56
1.802 -37.436 29.16
115.428 -27.356 -136.34
157.286 -15.727 -172.91
52.581 21.270 -8.79
0.396 -59.299 28.29
-1.198 -53.075 12.28
38.985 -15.590 -90.54
144.723 -27.944 -177.63
9.360 35.338 26.11

5.00 0.00 302.34 90.000 -90.000 0.000
random.loc -539.72 98.03 -368.66 -90.324 56.184 -153.787
left -718.97 354.47 58.38-180.000 76.003 59.238
right -358.00 354.50 58.38-179.984 75.992 59.233

#start -5.345 -127.238 -14.821 0.000 -37.947 10.69
start -500.22 197.41 -368.66 73.982 89.995 0.000

168

PUBLISHED PAPER(S)
NOT INCLUDED WITH THESIS

