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Abstract

Robot calibration is an integrated procedure of measurement and data processing to 
improve and maintain robot positioning accuracy. Existing robot calibration techniques 
require extensive human intervention and off-line processing, which preclude the 
techniques from being used to perform on-site calibration in an industrial environment 
at regular intervals. This thesis investigates and develops intelligent calibration 
processing algorithms and a novel measurement method toward rapid autonomous 
robot calibration in a shop-floor environment.

Artificial Neural Network (ANN) techniques have been vigorously investigated for 
calibration data processing (modelling, identification and compensation). A new 
identification algorithm has been developed for estimating robot kinematic parameter 
errors using Hopfield continuous-valued type Recurrent Neural Network (RNN). The 
RNN-based algorithm is computationally more efficient and robust compared with 
conventional optimisation approaches.

A generic accuracy model which accounts for various error sources was introduced. 
A higher-order neural network was used for implementation of the generic accuracy 
model. Due to the ANN learning capability, computational power and adaptability, the 
ANN-based accuracy representation offers an appealing solution to the complex 
modelling problem.

Efficient and robust accuracy compensation algorithms have been developed under 
the framework of artificial neural networks. The ANN-based algorithms provide 
constant-time inverse compensation therefore are suitable for on-line implementation. 
Both path compensation and compensation near robot singularity were tackled using 
the new algorithm.

A novel autonomous calibration tool was developed using a trigger probe and a 
constraint plane. The new method eliminates any use of external measuring devices to 
determine robot end-effector location measurements, enabling the robot to perform 
self-calibration on a production line. Robot accuracy was improved to the level of its 
repeatability within the local calibration volume using the new calibration scheme, 
which is consistent with the results from using a precision external measuring device, 
in this case a Coordinate Measuring Machine (CMM).
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Chapter 1 - Introduction

CHAPTER 1

INTRODUCTION

1.1 Research Background and Motivation

The role played by industrial robots in modem factories is not as widespread as was 
predicted a decade ago. There are many reasons why robot systems have not met early 
expectations. One of the reasons is that most robot systems fail to deliver the promised 
flexible manufacturing environment. Industrial robots, as they currently exist, must be. 
taught even the most basic tasks required of them for operation in a complex and highly 
diverse human world. Programming or teaching a robot to perform a desired task is 
exceedingly labour intensive. Any minor change in the task or uncertainties which exist 
in the robot or the environmental set-up will invalidate, partially or completely, the 
developed programs. Off-line programming which supports the development of a robot 
program in a simulated environment has resulted from research seeking better robot 
programming methods. Robot positioning accuracy, however, is critical for off-line 
generated programs to be implemented successfully on a shop floor.

One major goal of robotics research is to instil some human-like intelligence in 
robots, enabling them to function autonomously in an unstructured environment. An 
intelligent robot must have the ability to adapt its behaviour quickly and effectively to 
unpredictable environmental changes without human intervention. To position its end- 
effector as precisely as desired in a changing environment is one of the fundamental 
capabilities for a robot to achieve high level intelligence or autonomy. To address robot 
motion control accuracy in particular and robot programming flexibility in general, a
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Chapter 1 - Introduction

great deal of research endeavour has been made in various areas ranging from 
automated task planning, fine-motion planning, error detection and recovery, to 
learning control and adaptive control, focusing on robot controller's performance 
enhancement. While many encouraging results in laboratory environments have been 
reported in these areas, it is generally believed that it will still be years before there is a 
major impact on the robot systems currently used in most manufacturing applications. 
Robot calibration is an approach that can improve robot positioning accuracy 
significantly without increasing the robot controller's complexity, and can be easily 
integrated with existing systems. As robot positioning accuracy is a highly complex 
problem dealing with various error sources which exist in changing environments, an 
intelligent calibration scheme is needed to make error sources robust with minimum 
human intervention.

An artificial neural network (ANN) is a new technique in the field of artificial 
intelligence which imitates the functional processes of the human brain. By taking 
advantage of the structure of the human brain, which features massive parallelism and 
high interconnectivity, it is hoped that extremely complex problems can be solved by 
neural networks. Due to their computational power, learning methodology, adaptability 
and fault tolerance, neural networks offer appealing solutions to intelligent robotic 
problems. In this thesis, artificial neural network techniques are applied to the robot 
calibration processes, aiming at autonomous robot calibration in a shop floor 
environment.

1.2 Robot Positioning and Calibration Problem

One of the basic capabilities of industrial robots is to position their end-effectors 
precisely so that they can perform manipulation tasks successfully. Precise positioning 
control is difficult for multi-joint articulated manipulators since they are open-chain 
mechanisms with coupling between motions of each individual link. The desired 
locations (or pose: position and orientation) of a robot end-effector are normally 
specified in Cartesian space (workspace), while these locations are achieved by 
controlling joint values (angles for revolute-joint robots) in robot joint space (Figure 
1.1). The transformation from Cartesian space to joint space is called the inverse 
kinematics in robotics. The inverse kinematics problem is typically a computationally 
intensive procedure for general-form multi-link manipulators, the accurate solution of

2



Chapter 1 -  Introduction

which depends upon the algorithms used and upon precise knowledge of robot 
parameters.

In practice, most industrial robots are designed to have simple-form kinematics 
(Hayati and Roston, 1986) so that the inverse kinematics problems have analytic close- 
form solutions. For instance, the widely-used PUMA robot is designed so that the 
second and third joint axes are parallel and the last three joint axes intersected 
orthogonal in a point. The inverse kinematics of the PUMA robot is analytically 
solvable due to its special kinematic structure (Fu, Gonzalez and Lee, 1987; Craig, 
1986); However, for a number of reasons (including manufacturing tolerance, repair 
and set-up errors, wear and tear, transmission errors, and compliance), the internal 
design model used in the robot controller will not accurately describe the actual 
relationship between robot workspace and joint space. Therefore, the actual locations 
achieved by controlling joint values, obtained from the controller's internal model, will 
deviate from the desired locations. Robot calibration is defined as a process of 
improving robot positioning accuracy through modifying robot control software 
without changing the robot's hardware configuration (Mooring, Roth and Driels, 1991). 
The modification of control software can be performed either in robot workspace 
(forward calibration), or in joint space by finding the corrected joint values to drive the 
robot so that the end-effector deviations can be minimised (inverse calibration) 
(Shamma and Whitney, 1987).

Figure 1.1 Positioning Control of a Robot Manipulator

3
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Several performance specifications are used to describe positioning characteristics of 
robot manipulators, which include accuracy, repeatability, and resolution 
(Kozakiewicz, Ogiso and Miyake, 1990). The resolution is the smallest motion (linear 
and angular) the robot's end-effector can reliably execute. The repeatability is a 
measure of the robot's ability to return its end-effector to exactly the same point in 
workspace many times in succession. The (absolute) accuracy is a quantitative 
parameter describing the robot's ability to position its end-effector exactly in the World 
coordinate system. When a six degree of freedom (DoF) robot is issued a command to 
move its end-effector to a location P in workspace:

P[x, y, z, 6» By, 0J (1-1)

it will actually move to a location:

P '[x+dx, y+dy, z+dz, 9X+Sx, 6y+Sy, 6Z+Sz] ( 1.2)

By commanding the robot to move to the location P consecutively, each time the 
achieved location P ' will be slightly different from P due to the joint servo and actuator 
repeatability errors. The average values of the deviations [dx, dy, dz, Sx, 5y, &] from 
their mean are a measure of the robot's repeatability in a given direction in a given 
configuration.

If there were no other sources of errors in the robot except from the joint servo 
system, the average (mean) values of deviations [dx, dy, dz, Sx, dy, Sz\ would be zero. 
However, because of other error sources, such as geometric errors in the robot 
components, assembly errors, transmission errors, etc., the average positioning errors 
are always non-zero. Therefore, when a robot is sent to many different locations in its 
workspace, the variation in [dx, dy, dz, Sx, 5y, &] will be much larger than variations 
due to repeatability alone. The average values of the deviation in different 
configurations are a measure of the robot's accuracy in a given direction. For a six DoF 
robot, the position and orientation accuracy are defined as:

Aav = — t ^ d x f + d y f  + dzf nn=i

<5av = — l^ S x f  + dy.+5z^
m ¡=i

(1.3)

(1.4)
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where dxb dyb dzb Sxh 5yb 5zt are linear and angular errors measured at randomly 
chosen locations (i = 1, 2 , m) in the specific region of the robot workspace. Root 
Mean Square Error (RMS) can also be used as another measure of accuracy. Robot 
position and orientation accuracy according to the RMS are defined as :

> a ii l — I ( d x .  + d y -  + d z - )  
1 m  ¡=1

Hj

f— ¿ ( « x f  +  S y f +  a z f )
m  /=i

(1.5)

(1.6)

Robot accuracy will always be positive according to the definitions above.

Another useful accuracy specification is standard deviation. Robot position and 
orientation standard deviations are specified as:

+ dyf+dz‘ - A J 1
V m -1  ¡=1

- o ’v m —i ¡=1

(1.7)

(1 .8)

With the definitions of average and standard deviation errors, there is 99.7% 
probability that the positioning error of the end-effector will be within the limits of the 
linear and angular error ranges as specified by Aa+3crA; and 8a+3 cr6 (Kozakiewicz, 
Ogiso and Miyake, 1990). The average and standard deviation errors as defined above, 
together with the absolute error measured by the maximum deviation, are used in this 
work to describe robot positioning (both linear and angular) accuracy.

Robot resolution and repeatability are determined by the joint servo and actuator 
system of the robot, therefore they can only be changed by modifying hardware design. 
Robot accuracy, however, is determined by the software of the robot (robot geometric 
model, forward and inverse kinematic control software), and can be improved by the 
robot calibration process. Robot repeatability is the limit of any robot calibration 
efforts. Hardware based robot teaching methods, such as manual teaching robot joints 
by using a teaching pendant, require only good repeatability so that the robot can return 
to the memorised location exactly time after time. Software based robot teaching 
(programming), such as off-line programs, require good absolute accuracy in addition 
to a good repeatability because the robot is controlled indirectly through a computer
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model of the manipulator, so that an exact robot model is needed to ensure that the 
robot will move exactly where it is commanded. Most industrial robots have reasonably 
good repeatability but rather poor absolute accuracy. For example, the repeatability of 
the commonly used PUMA robot is 0.1-1 (mm), but its- accuracy is normally up to 10- 
20 (mm). The aim of robot calibration is to improve robot position accuracy to the 
order of its repeatability.

1.3 Application of Robot Calibration

Robot calibration plays an increasingly important role in all areas of robot 
production, integration and operation within Flexible Manufacturing Systems (FMS). 
The utilities of robot calibration can be explained as follows (Bernhardt and Albright, 
1993):

1) Implementing off-line planned and simulated robot tasks: Whilst off-line 
programming can reduce significantly robot programming time and avoid costly 
mistakes compared with on-line teaching methods, the discrepancies between the 
simulated environment and the actual physical workcell must be minimised through 
calibration before the off-line generated programs can be implemented on a shop floor.

2) Evaluating robot production: Robot accuracy can be achieved by manufacturing 
the robot closely to its design specifications at a minimum tolerance. However, high 
precision is a costly manufacturing demand. In addition, many specifications can not be 
explicitly evaluated after a robot is completely manufactured and assembled. Robot 
calibration, on the other hand, provides a practical and effective means of accuracy 
improvement by implicitly determining its physical parameters.

3) Improving control of robot motion: Robot control accuracy can be improved by 
incorporating the identified parameters into the robot controller. Advanced control 
strategies can also take advantage of the precise knowledge of model parameters for 
accurate motion control, e.g. in adaptive control, robot kinematic parameters are 
assumed to be known (Bennett, Geiger and Hollerbach, 1991). 4

4) Monitoring robot component wear: Once a robot is operating in a flexible 
manufacturing system, component wear-and-tear or repairs can detrimentally affect 
positioning accuracy. A periodic re-calibration can be performed to determine if repairs

6
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are necessary and/or if programs need adjusting (re-programming). If a robot is 
replaced, robot re-calibration also enables replacement robots to share programs of the 
old robot with necessary adjustments.

A robot calibration system consists of two major subsystems: measurement and data 
processing. Requirements for the measurement and data-processing of calibration 
systems are different depending on the purpose of robot calibration and the 
circumstances under which it is performed. When a robot is to be calibrated on the shop 
floor, its environment can place severe limitations on measurement and identification 
capabilities. While an accurate and sophisticated global measurement device is 
desirable for accurate identification of all model parameters in a laboratory before robot 
installation, it may not be practical for robot re-calibration in a production line. There 
are a number of robot calibration systems commercially available which are mainly for 
robot calibration in a controlled laboratory environment (Silma Inc., 1992). A 
calibration system, which is suitable for rapid re-calibration at regular intervals over the 
lifetime of the robot in a shop floor environment, is still not available in practice. The 
aim of this research is to develop measurement and data processing techniques suitable 
for rapid and automatic calibration in the shop-floor environment at periodic time 
intervals.

1.4 Overview of Thesis

This thesis focuses on the application of artificial neural network (ANN) techniques 
in robot positioning accuracy modelling, identification and compensation processes. 
The aim of this research is to develop measurement and data processing techniques 
suitable for robot autonomous calibration in an industrial application environment. For 
the purpose of this thesis, autonomous calibration is defined as a fully automated 
process for the robot to improve its positioning accuracy using its internal sensor 
measurements on-site whenever and wherever necessary (after a certain period of robot 
operation and in the volume where high accuracy is required). The remainder of this 
thesis is organised as follows:

Chapter 2 reviews the previous work in the area of robot calibration and related 
techniques.

7
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Chapter 3 introduces robot kinematics based on the Denavit-Hartenberg (D-H) 
parameter description. The linear error model and the special Jacobian matrix are 
derived using a geometric approach, which are the basis for kinematic identification. A 
modified D-H parameter notation using an extra rotation parameter for consecutive 
parallel joints is discussed.

Chapter 4 develops a new kinematic identification algorithm using Hopfield 
continuous-valued recurrent neural networks (RNN). The network energy function is 
constructed such that its minimum corresponds to the minimum least square error 
between the actual and desired end-effector locations. The network connection weights 
are determined directly from the nominal kinematcs and the network neuron states 
represent the kinematic parameter errors to be identified. A full-pose (position and 
orientation) measurement scheme using a coordinate measuring machine (CMM) is 
described. Kinematic identification results for a six DoF Puma 560 robot are obtained 
using the RNN-based algorithm and conventional optimisation approaches. The 
identification network finds optimal solutions within a few characteristic time constants 
of the neural circuit, even for the singular model and the measurements are constrained 
to a local volume. Issues about the optimal number of measurement points and the 
modelling of the robot base and tool are also discussed.

Chapter 5 presents a novel robot autonomous calibration method using a trigger 
probe. The new method eliminates the use of any other external measuring devices to 
determine the robot end-effector location measurements, thus it is suitable for a 
periodic robot re-calibration on a production line. The kinematic constraint conditions 
are obtained from the known shape of the constraint surfaces, rather than from known 
reference locations as used by other researchers. The fully automated data collection 
scheme is described in detail. Kinematic identification is performed using the 
developed RNN-based algorithm. Both simulation and experimental results for a 
PUMA robot are presented, which show that robot positioning accuracy can be 
improved to the level of repeatability using the proposed method.

Chapter 6 discusses the development of a robot generic accuracy model which 
accounts for various error sources using feedforward neural networks. The generic 
accuracy function is introduced based on an expansion of the Fourier series, which 
serves as the basis for the design of a neural network architecture. The Pi-sigma 
network architecture is used as a generic model for robot accuracy problem because of 
its capability to generate higher-order trigonometric polynomial approximations
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efficiently and dynamically, which is suited to the structure and the order of the generic 
accuracy function. Results for a six DoF Puma robot within a local volume of 
workspace are presented, and compared with the results of accuracy modelling using a 
Back-propagation network.

Chapter 7 focuses on robot accuracy compensation using ANNs, this being a subset 
of the inverse kinematics problem of the calibrated robot. A Pi-sigma feedforward 
network is used to approximate the relationship between robot nominal joint 
configurations and joint compensation. The trained network is used to perform a 
constant-time inverse compensation. While the feedforward network is effective for 
robot inverse compensation in a small portion of robot workspace, its training 
efficiency and accuracy is compromised if a large calibration volume is considered. For 
robot accuracy compensation which involves a large number of work points, the 
inverse compensation problem is reformulated and the Hopfield type recurrent neural 
network (RNN) is applied to the design of a robust and efficient accuracy compensator. 
The derivation of the RNN-based compensation algorithm is similar to that of 
kinematic identification, with the difference being the structure of the Jacobian matrix 
and the interpretation of neuron states. The RNN-based inverse compensation 
algorithm takes advantage of the a priori knowledge of kinematic structure therefore 
requires no training, and finds an accurate solution efficiently. Both path compensation 
and compensation near robot singular configurations are solved successfully using the 
RNN-based algorithm, and are compared with the widely-used Newton-Raphson 
approach.

Chapter 8 concludes the thesis and gives the directions for future research.
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CHAPTER 2

REVIEW OF PREVIOUS WORK

2.1 Methods of Robot Calibration

There has been extensive robot calibration research over the past decades and good 
reviews of the subject can be found in (Roth, Mooring and Ravani 1987), (Hollerbach 
1989) and (Mooring, Roth and Driels 1991). Calibration methods can be classified as 
model-based parametric calibration and model-free non-parametric calibration. Most 
work on model-based parametric calibration has concentrated on kinematic model- 
based calibration or simply kinematic calibration (Hayati 1983; Wu 1983 1984; Stone 
1986; Hollerbach 1989; Zhuang 1989; Mooring, Roth and Driels 1991), while a few 
papers have also taken non-geometric factors such as backlash, gear eccentricity, and 
joint compliance into account (Whitney, Lozinski and Rourke 1986; Judd and 
Knasinski 1991). In the category of model-based calibration methods, geometric and/or 
non-geometric factors are modelled and identification techniques are applied to identify 
the model parameters. The identified parameters are then used in algorithms for on-line 
compensation. In the category of non-parametric calibration, instead of modelling and 
identifying specific error sources, numerical fitting methods are adopted to approximate 
robot inaccuracy data which has been collected from local workspace (Shamma and 
Whitney 1987; Kozakiewicz, Ogiso and Miyake, 1990; Rea 1992). It is difficult to 
judge which method is better since the relative contributions of geometric and non- 
geometric errors to robot inaccuracy vary from one particular robot to another. While 
Whitney et al (1986) reported that non-geometric errors are as significant as geometric 
errors in affecting robot accuracy for a geared robot (PUMA 560), Judd and Knasinski
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(1991) showed that as much as 95% of robot inaccuracy arises from geometric errors. 
Veitschegger and Wu (1987,1988) found that non-geometric errors only accounted for 
less than 0.3 (mm) of PUMA robot inaccuracy, which is in agreement with the result by 
Stone, Sanderson and Neuman (1986).

Generally kinematic model-based calibration is considered as a global calibration 
method which improves robot accuracy across the whole volume of robot space, while 
non-parametric calibration is a local calibration method which only works within a 
portion of the robot workspace. However, no clear boundary line can be drawn between 
these two categories of calibration. Kinematic calibration can be regarded as non-linear 
regression which uses kinematic functions as its basis functions. Kinematic parameters 
identified with data collected from the local workspace may perform better in the 
specific workspace than in the total work volume. This implies that these parameters do 
not necessarily represent the real parameters of the robot over the entire workspace but 
are the best fitting for the collected data in a least square sense. Therefore, some non- 
geometric factors can also be compensated in kinematic calibration by collecting 
enough data and choosing an adequate model. For most robot tasks, only accuracy over 
a subset of robot workspace is critical, in which most fine motions such as assembly 
operations are executed. As we concentrate on robot on-site calibration over a local area 
of robot workspace, both kinematic model-based calibration and non-parametric 
calibration are studied and evaluated in this work.

2.2 Kinematic Model-based Calibration Methods

Generally kinematic calibration consists of four sequential procedures: 1) modelling,
2) measurement, 3) identification, and 4) compensation, enabling precise kinematic 
parameters to be identified thus leading to improved accuracy. These procedures are 
described below. Related work has been reviewed and categorised on the basis of their 
primary emphasis.

1) Modelling:

A kinematic model is a mathematical description of the geometry and motion of a 
robot. Choosing a kinematic model to describe the relationship between robot joint 
space and its workspace co-ordinates is the basis for the kinematic model-based robot
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calibration. Denavit-Hartenburg (D-H) homogenous transformation is a mathematical 
tool adopting four parameter pairs to describe the spatial relationship between 
manipulator workspace and joint space co-ordinates (Denavit and Hartenberg, 1955). 
Early work on robot calibration concentrated on robot accuracy model development 
based on D-H representation (Wu, 1983, 1984; Ibarra and Perrier, 1986; Zhen, 1985). 
Mooring (1983) and Hayati (1983) pointed out the model singularity problem inherent 
in the D-H formalism. Parameter jumps occur in the identification process when the D- 
H modelling convention is used to describe two consecutive nominally parallel axes. A 
modification to D-H modelling was proposed by Hayati (1983) by incorporating an 
extra rotation parameter for parallel revolute axes. Similar modifications were reported 
subsequently by Veitschegger and Wu (1986), and Judd and Knasinski (1987).

Many other alternative kinematic models have also been proposed for robot 
calibration. Examples of these include: the 'zero-reference model' by Mooring and Tang 
(1984) which avoids model singularity by not using a common normal as a link 
parameter; the S-model by Stone, Sanderson and Neumann (1986) which uses six 
parameters for each link to allow an arbitrary placement of link coordinate frames; the 
shape matrix model by Broderic and Cipra (1988) and Ziegert and Datseris (1990) 
which separates the joint variables from other link parameters based on screw theory as 
described by Suh and Radcliffe (1978); the CPC model by Zhuang (1989) and Zhuang, 
Wang and Roth (1993a,b) which is complete and parametrically continuous as it is 
defined for manipulator calibration. However, the kinematic models used in most 
existing robot controllers are still based on D-H notations. The alternative models 
designed for calibration need to be converted back to D-H equivalent parameters after 
calibration for model consistency consideration.

2) Measurement

Experimental measurements of robot end-effector locations are collected using 
external co-ordinate measuring devices in this phase. The actual measured locations of 
the robot end-effector are then compared with the locations predicted by the theoretic 
model to obtain the workspace inaccuracy data.

Measurement is the most difficult and time-consuming phase of robot calibration. A 
variety of measurement methods have been used and a survey of major techniques
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designed for robot test and calibration can be found in (Lau, Dagalakis and Myers, 
1988). Such techniques include the use of co-ordinate measuring machines (Driels, 
Swayze and Potter, 1993; Zhuang, Wang and Roth, 1993b), visual and automatic 
theodolites (Chen and Chao, 1986; Whitney, Lozinski and Rourke 1986; Judd and 
Knasinski, 1991), servo-controlled laser interferometers (Lau, Hocken and Haynes, 
1985; Prenninger, Vincze and Gander, 1993; Mayer and Parker, 1994), acoustic sensors 
(Stone, Sanderson and Neuman 1986, and Stone 1992) and visual sensors (Tsai and 
Lenz, 1989; Zhuang, Wang and Roth, 1993a). The measurement devices vary 
considerably in their cost, ease of use and accuracy, but they all have certain drawbacks 
which include:

• The measuring techniques are mainly designed for robot calibration in a well- 
controlled laboratory environment. The robot has to be removed from its normal 
operating environment in order to perform the calibration.

• Trained personnel are required to operate the measuring devices properly.

• Data collection is time-consuming and difficult to automate.

• Set-up and measurement processes require a lot of human intervention. Therefore,, 
these techniques are not suitable for robot on-site calibration in an industrial application 
environment.

It is known that partial pose information of robot end-effector is sufficient for 
complete kinematic parameter identification. Tang and Mooring (1992) utilised a 
mechanical fixture to obtain partial information of a robot end-effector location. The 
fixture consists of a flat plate with some accurately located points on it. An end-effector 
is designed with a flat surface at a known angle to the last axis of the robot. In the 'free' 
mode of the robot, the robot end-effector was manually moved to the known points of 
the plate and against the flat plate such that components of the end-effector position and 
orientation were 'measured'. Veitschegger and Wu (1988) calibrated a PUMA robot 
based on the use of the similar plate fixture with a set of precisely positioned holes. The 
end-effector with a pointing device was moved passively to the holes to make point 
measurements. The partial pose measurement scheme eases the requirements for 
measuring devices. The low cost and elimination of large-sized external measuring 
device make it appealing for on-site applications. However, the measuring process is 
not automatic and requires intensive human intervention. The success of such a scheme
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also relies on the predetermined locations of reference points on the fixture. In addition, 
as pointed out by Driels and Swayze (1994), not every robot provides a 'free* mode in 
which the manipulator can be moved manually while the joint encoders are powered up 
and the joint servos are disabled.

The approach to use physical constraints in the workspace was further developed by 
Bennett and Hollerbach (1990, 1991), who proposed that a passive mechanism be used 
to transform the open-loop manipulator into a closed kinematic chain. The concept of 
autonomous robot calibration was introduced which was defined as the automated 
process of determining a robot's model by using only its internal sensors (Bennett, 
Geiger and Hollerbach, 1991). It has been observed that autonomous calibrations are 
possible for robot manipulators with either some a priori knowledge of the task 
constraint or redundancy of the sensing systems (e.g., adding additional links or joints 
to connect robot end-effector and ground, or two robots gripping together to form 
kinematic chain closure). Based-on these observations, the automated data collection 
schemes were proposed for robot calibration using LVDT (linear-variable differential 
transformer) ball bar system (Goswami, Quaid and Peshkin, 1993) or wired 
potentiometer (which can be considered as a flexible ball bar system) (Driels and 
Swayze, 1994) connecting the robot end-effector to the known reference point in the 
ground. Closed-loop constraints were formed for kinematic identification by obtaining 
accurate radial measurements of the ball bar or the wired potentiometer. But special 
fixtures are needed for such a system, which may require painstaking efforts to set up; 
and the added fixtures are rather difficult to model.

Autonomous calibration of hand-eye systems has also been performed by using 
robot joint readings and camera co-ordinate measurements to form the closed-loop 
constraints (Tsai and Lenz, 1989; Bennett, Geiger and Hollerbach, 1991; Zhuang, 
Wang and Roth, 1993a). The drawbacks for autonomous calibration of hand-eye 
systems are that not all robotic applications incorporate a visual camera as part of the 
system; and the camera measurements are known to be insufficiently accurate for 
manipulator calibration covering a large workspace volume. Another kind of task 
constraint has been proposed for robot kinematic parameter identification which utilised 
laser line tracking in the robot workspace (Newman and Osborn, 1993). While the 
motion of the robot tip-point was constrained to a line motion in the workspace, the 
robot joint values were recorded for kinematic identification. But only simulation 
results for a planar two-link manipulator were presented. An active and fully
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autonomous calibration scheme was proposed by Zhong and Lewis (1995) which uses a 
trigger probe to touch a constraint surface in a workspace. The constraint conditions are 
obtained from the known shape of the constraint surface rather than the known 
locations of reference points. This autonomous calibration scheme will be discussed in 
depth in Chapter 5.

3) Identification

Kinematic parameter errors are identified in this phase by minimising the collected 
workspace inaccuracy in the least mean square sense. Kinematic identification is 
basically a standard non-linear or linear least square optimisation procedure. Non-linear 
algorithms do not require the identification Jacobian and are computationally more 
robust but more computation time is required for convergence. Linear least square 
algorithms require less computation time to converge but suffer from numerical 
problems of ill-conditioning of the identification Jacobian. Robust minimisation 
techniques such as the Levenberg-Marquardt algorithm have been applied to cope with 
the problem at the expense of computation time (Bennett and Hollerbach, 1991; 
Mooring and Padavala, 1989). More advanced parameter estimation techniques are also 
applied in kinematic identification. A maximum likelihood estimator was used by 
Renders et al (1991). Mooring, Roth and Driels (1991) applied Kalman Filtering 
techniques to investigate the relationship between calibration accuracy and 
measurement noise.

To improve kinematic identification robustness and efficiency, some theoretic issues 
have been addressed by a number of researchers. Kinematic identifiability was defined 
by Bennett and Hollerbach (1991). Meng and Borm (1988) introduced an observability 
index to find the optimal measurement configurations for robot calibration, while 
Khalil, Gautier and Enguehard (1991) used the condition number of the identification 
Jacobian to determine optimum calibration configurations. Experimental and simulation 
studies were performed by Borm and Menq (1989, 1991) and Pathre and Driels (1990) 
to demonstrate the importance of observability to kinematic identification. Determining 
the optimal configurations for robot calibration according to the observability criteria is 
a high dimensional non-linear optimisation problem. An advanced optimisation 
technique, simulated annealing, was used by Zhuang, Wang and Roth (1994) for off­
line selection of measurement configurations. Generally the optimal measurement
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configurations determined by using the observability index are that the measurement 
points should spread across the whole workspace as widely as possible. This 
observation is useful for robot calibration performed in the laboratory environment 
where the robot can be controlled to move to arbitrary configurations. For robot on-site 
calibration in a crowded industrial environment, the calibration movement of robots is 
normally constrained. Given the limitation of constrained movement for data collection, 
numerically more robust and efficient algorithms are needed for robot on-site 
calibration processing. A Hopfield-type recurrent neural network(RNN)-based 
algorithm was proposed by Zhong and Lewis (1994) for efficient and robust kinematic 
identification, which is the focus of Chapter 4.

4) Compensation

Implementation of the identified kinematic model is the final and crucial stage of 
kinematic calibration. Due to the difficulty in modifying kinematic parameters in the 
robot controller directly, joint compensations are made to the encoder readings of the 
robot obtained by solving the inverse kinematics of the calibrated robot. The 
assumption of simplified kinematic structure which applies to the nominal robot is no 
longer valid for the calibrated robot due to kinematic parameter changes. Therefore the 
inverse kinematics of the calibrated robot is generally not analytically solvable. 
Numerical algorithms such as the Newton-Raphson approach are normally adopted to 
find the joint corrections needed to compensate for Cartesian errors (Kirchner, 
Gurumoorthy and Printz, 1987; Mirman and Gupta, 1992). However, the Newton- 
Raphson method is based on iterative inversion of the compensation Jacobian, therefore 
on-line compensation is problematic due to the computation expense, and the algorithm 
breaks down in the vicinity of robot singular configurations. The differential 
transformation compensation algorithm was presented by Veitschegger and Wu (1988), 
in which two nominal inverse problems are solved for one task point compensation. A 
comparison of various compensation algorithms was made by Vuscovic (1989). 
Zhuang, Hamano and Roth (1989) who formulated the accuracy compensation as a 
linear optimal control problem such that the linear quadratic regular method was 
applied to the design of a robust accuracy compensator. Existence and uniqueness are 
ensured in robot configurations near singularities by adding a regulation term to the 
performance index. The computation of the linear quadratic regulator algorithm is 
rather expensive, though simplification can be made in special cases. Zhong and Lewis
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(1994), and Zhong, Lewis and N-Nagy (1995) presented neural network-based 
algorithms for inverse compensation. The neural network-based inverse compensation 
algorithms will be discussed in detail in Chapter 7.

2.3 Non-parametric Calibration Methods

Model-based parametric calibration is limited by the inability to model and identify 
all error sources which contribute to robot inaccuracy. Non-parametric calibration, on 
the other hand, employs non-parametric methods to establish an approximation function 
based on a sufficient number of measurement data collected from the local volume. 
Shamma and Whitney (1987) distinguished between forward calibration, which 
determines the end-effector location from joint angles, and inverse calibration, which 
determines the joint angles from the end-effector location. The inverse calibration was 
considered by Shamma and Whitney, in which the third-order trivariate polynomials 
were applied as approximation functions to relate the end-effector location to joint 
angles. The single calibration of a six DoF PUMA robot was separated into two 
calibrations, which comprised the first three major DoF calibration and then the 
remaining three minor DoF calibration. The training data points were generated by 
Tchebychev spacing in one quadrant of the robot workspace. Simulation showed that 
accuracy was reduced to below 0.3 (mm). Direct extension of the three DoF robot to a 
general robot would be difficult due to the limitation of polynomial approximations. In 
the case that a higher DoF are considered, the polynomial functions required will be too 
complex to be determined by the least square solutions, and would require a large 
number of data points which are practically difficult to obtain.

Mooring , Roth and Driels (1991) discussed a table lookup scheme for a simple two- 
link planar robot based on CMAC (Cerebellar Model Articulation Controller), which 
was originally developed by Albus (1975a,b) to model the function of the cerebellar 
cortex of the brain, but it can also be used as a general purpose function approximator. 
Even for a simple two-link planar robot, CMAC implementation of inverse kinematics 
exhibited unacceptable low accuracy and poor interpolation ability, and required a large 
number of training points. It concluded that CMAC scheme is still not ready to use for 
multiple joint robots. Another table lookup scheme was proposed by Everestt and 
McCarroll (1986) which was based on a finite element method.
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Kozakiewicz, Ogiso and Miyake (1990) applied a multi-layered neural network 
approximation of the joint corrections for a four DoF Scara robot. Simulations were 
performed which included non-geometric model such as joint compliance. Comparisons 
with the polynomial approximations showed that the neural network gave poor 
accuracy. More recently, Miyazaki, Maekawa and Bamba (1992) proposed a hybrid 
compensation method to improve positioning accuracy of industrial robots by 
introducing a feedforward layered neural network in addition to the conventional 
kinematic model. The maximum position error for test points was improved from 17.67 
(mm) before compensation to 1.73 (mm) after kinematic calibration, to 4.30 (mm) after 
neural network compensation, and to 1.01 (mm) after both kinematic calibration and 
neural network compensation were used. Only forward calibration was discussed and 
inverse compensation was not addressed. Zhong, Lewis and Rea (1994) proposed a 
generic accuracy compensator for industrial robots based on the Pi-sigma neural 
network. The ANN-based accuracy compensation eliminates the need for model-based 
calibration, with the various error sources being represented in the distributed network 
weight connections. The ANN-based forward compensation will be discussed in 
Chapter 6 and the inverse compensation discussed in detail in Chapter 7.

2.4 Artificial Neural Network Techniques

Artificial Neural Networks (ANNs) have emerged from studies of how human and 
animal brains perform operations. The human brain is made up of many millions of 
individual processing elements, called neurons, that are highly interconnected. Artificial 
neural networks are made up of individual models of the biological neuron (artificial 
neurons or nodes) that are connected together to form a network. The neuron models 
that are used are typically much simplified versions of the actions of a real neuron. 
Information is stored in the network often in the form of different connection strengths, 
or weights, associated with the synapses in the artificial neuron models. A neuron 
model processes information by summing the weighted inputs to the neuron and 
passing the result through some non-linear activation functions such as a sigmoid 
function to an output.

There are many types of neural network available, depending on the specific 
arrangements of artificial neurons and their interconnections. The most widely used 
neural network architecture is the Multi-Layered Perceptron (MLP) because of its
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simplicity. The network consists of an input layer, a number of hidden layers (typically 
only one or two hidden layers are used) and an output layer as shown in Figure 2.1. 
Data flows through the network in one direction only, from input to output; hence, this 
type of network is called a feedforward network. The most common training algorithm 
for the network is back-propagation algorithm originally proposed by Werbos (1974) 
and Rumelhart, Hinton and Williams (1986). An important feature of the MLP is that 
this network can accurately represent any continuous non-linear function relating inputs 
and outputs (Homik, 1991; Homik, Stinchcombe and White, 1990). Hence, the MLP 
network exhibits potential for many applications which can be formulated as a non­
linear mapping problem. Other famous neural network architecture include Hopfield 
networks (Hopfield and Tank, 1986); Counter-Propagation networks (Hecht-Nielsen, 
1990); and self-organising Kohonen networks (Kohonen, 1984), etc.

Sigm oid Function

Figure 2.1 Biologically-Inspired Neurocomputing Model — Multiple-Layered 

Perceptron with One Hidden Layer
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2.5 Artificial Neural Network Applications in Robotics

A variety of uses for ANNs related to robotics and control have recently been 
reported. The use of ANN control is particularly suited to problems related to the 
control capabilities of animal nervous systems, and robot inverse kinematics 
transformation application naturally fall into this domain of applications. One of the 
earliest ANN approaches to robot control is due to Albus (1975b). The basic idea of his 
CM AC scheme for robot control is to compute control commands by look-up tables 
rather than by solving control equations analytically. While the CMAC has a 
computational advantage over conventional approaches due to its distributed fashion, it 
requires a large size of computer memories for multiple DoF robot, and is not able to 
perform interpolations. Kuperstein (1988) concerned himself with models of visual 
motor coordination in robots. While he did not explicitly address the inverse kinematics 
problem, his work did in fact use neural networks to obtain the transformation needed 
to convert desired hand coordinates in Cartesian space into appropriate joint 
coordinates. A neural controller called INFANT, which learns sensory-motor 
coordination from its own experience, has been reported which achieved an average 
positioning accuracy of 3% of the arm's length in position and 6 degrees in orientation 
(Kuperstin and Rubinstein, 1989). Other attractive features of the INFANT include real­
time operation, learning and maintaining its own calibration, and fault tolerance.

Inverse kinematic control has also been studied by a number of researchers, e.g., 
Guez and Ahmad (1988), Josin (1988) and Josin, Chamey and White (1988), using 
back-propagation learning algorithms for feedforward networks. However, the back- 
propagation network-based inverse kinematics solutions are typically not accurate 
enough for practical applications even for 2 or 3 DoF robots. Attempts to apply back- 
propagation directly to systems with more DoF have not been very successful 
(Kozakiewicz, Ogiso and Miyake, 1991; Daunicht, 1991), since these systems typically 
exhibit high-order nonlinearities and hence very slow learning rate and unacceptable 
learning accuracy. To exploit both ANN efficiency and numerical accuracy, Ahamad 
and Guez (1990) proposed a hybrid approach that used the ANN outputs as a initial 
solution for iterative numerical Newton-Raphson method, which resulted in a reduced 
number of iterations of the numerical method.

20



Chapter 2 -  Review of Previous Work

All the papers cited above concentrate on position-based inverse kinematic control 
where only position (location) information needs to be converted. In velocity-based 
inverse kinematic control or Jacobian control (Fu, Gonzalez and Lee, 1987), both 
position and velocity information needs to be transformed from Cartesian space to joint 
space. Velocity-based inverse kinematics is much more complex than position-based 
inverse kinematics since the number of input variables is doubled. The network training 
problem may become intractable with the increase in the dimensionality of the input 
space since the input space will experience an exponential growth in size (Yeung, 
1989). Following the divide-and-conquer principal, Yeung (1989), and Yeung and 
Bekey (1989) proposed context-sensitive networks which partitioned the set of input 
variables into two groups. One set is used as the input to the network which 
approximates the basic mathematic operations being represented (the function 
network), while the second set determines the setting or context within which the 
function is determined (context network). They have shown that context-sensitive 
networks improved learning accuracy and reduced convergence time drastically 
compared with the standard back-propagation networks. Similar network architecture 
has been used by Bassi and Bekey (1989) to extend the work to inverse dynamics 
learning. A complete solution to the inverse dynamics problem has been presented by 
Miyamoto, Kawato, et al (1988). With a priori detailed knowledge of the dynamics 
equation for a three DoF robot, they decomposed the network into 26 sub-networks 
according to the primitive non-linear function terms in the analytic dynamic equations. 
The performance of the system is excellent due to the simplification of the learning task 
for sub-networks, which is equivalent to the determination of the coefficients in the 
dynamics equations.

The Hopfield type recurrent neural network (RNN) architecture (Hopfield and Tank, 
1986) has been applied to the velocity-based inverse kinematics problems for robots 
with redundant DoF. Guo and Cherkassky (1989) implemented the Jacobian control 
scheme using the Hopfield analogue (continuous-valued) computation model. The 
states of neurons represent joint velocities of a manipulator, and the connection weights 
are determined from the current value of the Jacobian matrix. The network energy 
function is constructed so that its minimum corresponds to the minimum least square 
error between the actual and desired joint velocities. Simulation shows that the method 
is capable of solving the inverse kinematics problem for a planar redundant manipulator 
in real time. In contrast to the feedforward neural network-based inverse kinematics 
solutions, the RNN-based algorithm, by taking advantage of the kinematic structure of
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the specific robot, requires no training and can find quality solutions within a few 
characteristic time constants of neural circuits. Li and Jiang ( 1993) extended Guo and 
Cherkassky's work by integrating the optimising properties of the RNN-based inverse 
kinematic control and the technique of the Variable Structure Control (VSC). The 
pseudoinverse Jacobian control scheme was implemented using an RNN algorithm for 
a planar redundant robot (Wu and Wang, 1994).

Other neural network architecture have also been vigorously investigated for robotic 
applications. Martinez, et al (1990) have shown that an extension of Kohonen's 
algorithm (Kohonen, 1984) for the formation of topological correct feature maps, 
together with an error-correction rule of the Widrow-Hoff type, can learn to control the 
robot arm and gripper movement by using only the input signals of two cameras. Wu, 
Jiang and Shiau (1993) used the modified two-layered counter-propagation network 
(Hecht-Nielsen, 1990) to control a robot's gross motion (first layer) and fine motion 
(second layer). The counter-propagation network, which combines the Kohonen self- 
organising feature map with the Grossberg outstar map (Grossberg, 1982), can be a 
statistically optimal self-programming lookup table for the adaptive control of robots. 
However, these neural network learning algorithms belong to unsupervised learning 
therefore they are not associative (Yeung, 1989). This implies that the training of such 
networks normally requires a large number of training data and the interpolation ability 
of the trained networks are typically poor. A more comprehensive review on the various 
ANN architecture and their applications in robot task planning, path planning, and 
sensor/motor control can be found in Kung and Hwang (1989).

2.6 Conclusions

Previous work on robot calibration and related techniques have been reviewed in this 
chapter. Although a great deal of research has been done on robot calibration over the 
past decade, most of the calibration techniques developed are only suitable for robot 
calibration within well-controlled laboratory environments. Rapid autonomous robot 
calibrations within a shop floor environment, although highly desirable, are still not 
available in practice. Efficient and robust data processing techniques and fully 
automated data collection methods are required to perform on-site calibration on a 
regular basis and within local workspace. Artificial neural networks are appealing for 
robot calibration processing including modelling, identification and compensation, due 
to their computational power, learning abilities, and fault tolerance. Selection of neural
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network architecture are critical for their successful applications in robotics and a priori 
model knowledge are useful for designing NN architecture. A measurement method 
capable of collecting data from a local workspace automatically using portable physical 
constraints needs to be developed for on-site calibration,
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CHAPTER 3

ROBOT KINEMATICS AND KINEMATIC ERROR MODELLING

3.1 Introduction

Robot tasks are normally described in terms of the relative locations (positions and 
orientations) of the workpieces and equipment which exist in the working environment. 
The study of kinematics reveals that the relative locations of objects can be defined 
clearly by attaching co-ordinate frames to each object so that when the object moves, so 
does the frame. The spatial transformation between robot end-effector location and its 
individual link geometry and joint movement is established in terms of the assigned 
Cartesian co-ordinate frames fixed relative to each of the links. The (4 x 4) 
Homogenous transformation matrix introduced by Denavit and Hartenberg (1955) and 
later adopted by Paul (1982) has become the most common approach to describing 
spatial transformations in robotics. In this chapter, we will review the Denavit- 
Hartenberg (D-H) method for robot kinematic modelling, and later develop a kinematic 
error model which describes the relationship between robot kinematic parameter 
variations and the predicted end-effector location error, which is the basis for kinematic 
calibration.

The kinematic error model for a single link is normally derived using the analysis 
approach of the homogenous transformation matrix and then applying it to the entire 
robot. The analytic expression of the coefficient matrix which gives a linear 
relationship between the kinematic parameter errors and the end-effector error was 
derived by Wu (1984) and Veitschegger and Wu (1986). The coefficient matrix has
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been termed by Mirman and Gupta (1992) as a special Jacobian matrix which has been 
derived using a similar approach. A disadvantage of using the analysis approach is that 
the derivation requires a lot of mathematical operations and geometric interpretation is 
not obvious. Vuscovic (1989) presented a geometric expression for the special Jacobian 
matrix and termed it differently as kinematic sensitivities, but no derivation process 
was given. In section 3.3, a geometric approach to deriving the kinematic model is 
developed based on the theory of rigid body kinematics with moving (translating and 
rotating) co-ordinate frames. The geometric approach to formulating the special 
Jacobian matrix is straightforward and the geometric interpretation of the Special 
Jacobian is useful for identifying model singularities. The D-H model singularity for 
consecutive parallel revolute joints is then discussed. Finally, a modified D-H notation 
which overcomes the model singularity is introduced for use in following chapters.

3.2 Kinematic Modelling Using Denavit-Hartenberg Model

For robot manipulators with general kinematic structure of linkages, their complex 
spatial orientation and position can be specified by allocating kinematic frames to each 
of the robot links and then specifying transformation from one link to another. Denavit' 
and Hartenberg (1955) interpret the sequential transformation from one link to another 
as a multiplicative operation of (4 x 4) matrix:

T„ = A1*A2*...*Ai*...*A„ (3.1)

where T„ is a (4 x 4) homogenous transformation matrix which has the form:

" x * x Ox P x

n > S7 P y

n z S z o* P z

0 0 0 1

(3.2)

and in terms of its vector components, n = [nx n, n jr, s = [j x sy j J 7, o =[ox oy o J rare 
three unit vectors specifying the orientation of the x, y and z axis of the co-ordinate 
frame associated with T„ with respect to a reference frame, while p = [px py p j r 
specifies the position of the origin of that frame in a reference frame. For robot 
manipulators with n-links, the co-ordinate frame associated with T„ is normally 
attached to the robot end-effector frame while the reference frame is the robot base
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frame. Therefore T„ determines the robot end-effector orientation and position 
completely in the robot base co-ordinate frame.

A, is a (4 x 4) homogenous transformation matrix which represents the spatial 
transformation between the (i-1) frame fixed to the (i-1) link and i-th frame fixed to the 
z'-th link of the robot. Its contents depend on the specific kinematic structure of the z'-th 
link of the robot manipulator and the assignment of the kinematic parameters. The D-H 
parameters are defined through allocation of co-ordinate frames to each link using a set 
of rules to locate the origin of the frame and the orientation of the axes. The D-H frame 
assignment procedures are summarised as follows.

The process is begun by identifying the axis of motion for each link. Next, the 
common normal between consecutive joint axes is then identified. The origin of co­
ordinate frame z (attached to the z'-th link) is then located at the intersection of joint axis 
(z'+l) and the common normal between axis (z'+l) and z. The z-axis of co-ordinate 
system z points along the axis of joint (z'+l) and the x axis is aligned with the common 
normal. Once the x, z-axes for frame z are determined, the y-axis can be decided using 
right hand rule. After the frame system is assigned to the link, the kinematic parameters 
are then defined to describe the geometric relation between consecutive frames. Figure 
3.1 shows the D-H parameter assignment for link z with revolute joints. The parameter 
assignment for prismatic joint follows the same rule, the only difference with the 
revolute joint is that a different interpretation of the joint variable applies.

With reference to Figure 3.1, the transformation between frame (z'-l) and frame z 
can be interpreted as the following sequential steps:

• rotate frame (z'-l) about z^ by an angle 6„ the joint angle;

• translate along zM a distance ¿¡, the link offset;

• translate along the rotated xM, a distance a„ the link length;

• rotate about x, the twist angle a{.
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Figure 3.1. Denavit-Hartenberg Parameters for a Revolute Joint

Using Paul's notation of the primitive transformations (Paul, 1982), the above 
transformation procedure can be written in the matrix form such that the homogenous 
transformation matrix A, is defined as:

A, = Rot(z„i, 0,)Trans(O,0, 4)Trans(a„ 0 ,0)Rot(x„a,) (3.3)

where Rot(.) and Trans(.) are the primitive transformation matrices of rotation and 
translation:

Rot(z/.i, 0,) =

Trans(0,0, di) =

'cos 0, -sin 0, 0 O'
sin 0, COS0, 0 0

0 0 1 0
0 0 0 1

'1 0 0 O'
0 1 0 0
0 0 1 4
0 0 0 1
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Transfo, 0,0) =

'1 0 
0 1 
0 0 
0 0

0 ar
0 0
1 0 
0 1

Rot(x„a;) =

1 0 0 O'
0 cosa, -s in a , 0
0 sina, cosa, 0
0 0 0 1

Expanding equation 3.3, the general form of the homogenous transformation matrix A, 
is:

'cos 0, -sin  0, cos a, sin 0, sin a, a,cos0,'
sin0; cos 0, cos a ; -cos 0, sin a ; a; sin 0,

0 sin a. cos^ 4
0 0 0 1

As shown in Equation 3.4, the homogenous transformation is a function of the link 
geometry such as the link length ah the twist angle a„ the offset dh and the joint angle 
0,. This equation may be used as a recursive transformation relating the position and 
orientation of one frame with respect to the previous one. Using Equation 3.4 in 
Equation 3.1, let i = 1, 2,..., n, and frame 0 representing robot base frame and n is the 
number of robot links, then T„ represents the position and orientation of robot end- 
effector frame with respect to the base frame, which is the function of 4n kinematic 
parameters. The position and orientation of robot end-effector frame in the Cartesian 
base frame can also be represented in the more compact vector form using a six- 
element vector x = [pr, w7]7-, rather than a (4 x 4) matrix using 12 significant elements 
as in Equation 3.1, where p = \p„ py, p j r is a position vector which takes the first three 
row elements of the last column of the homogenous matrix T„, and w is the orientation 
vector which has various forms using three independent angle elements to represent the 
orientation of co-ordinate frame. Typical orientation representations include Roll-Pitch- 
Yaw and Eulers angles. The conversion between Euler angles and an orientation 
transformation matrix [n, s, o] written in MATLAB M-files (Mathworks Inc., 1992a) is 
shown in Appendix 1. Robot end-effector position and orientation is written in vector 
form:
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x = -£-]=f(a, d, a, 6) (3.5)

where a = [au a2, ..., a„] is the link offset vector, d = [du d2, .... d„] is the link length 
vector, a  = [a l5 a2, ..., a j  is the twist angle vector, 0 = [0U 02, ..., 8„] is the joint angle 
vector, and f(.) is a non-linear function mapping robot kinematic parameters to robot 
end-effector position and orientation, which can be obtained using the above 
homogenous transformation. Normally (a, d, a )  are the robot geometric parameters 
which are specified by a robot manufacturer, while Sis the controllable joint variables.

The process to find the end-effector position and orientation, given robot joint 
variable, is called forward kinematics in robotics, whilst the process to find joint 
variables, given the end-effector position and orientation, is called the inverse 
kinematics. For robot calibration problems, both forward and inverse kinematics are 
involved. Generally the modelling and identification phase of calibration are considered 
as forward kinematics, that is, given robot joint variable and geometric errors, to 
estimate the end-effector position and orientation errors. The implementation phase of 
calibration is the inverse process which compensates the end-effector error in the robot 
joint encoders. The forward kinematics of PUMA 560 Robot written in MATLAB M- 
files (MathWorks, 1992a) is appended in Appendix 1. In general, inverse kinematics 
involves a numerical procedure since f(.) in Equation 3.5 is a multivariate non-linear 
function. Closed-form analytic inverse solutions are available for some industrial robots 
with simple-form kinematics. The analytic inverse solution for Puma 560 robot written 
in MATLAB M-files is shown in Appendix 2. In the next section, a kinematic error 
model will be derived which estimates the end-effector position and orientation, given 
geometric parameter and joint variable errors.

3.3 Kinematic Error Model and Special Jacobian Matrix

For reasons described in the previous chapters, the actual kinematic parameters will 
deviate from nominal values specified by the robot manufacturer, which in turn causes 
robot end-effector positioning inaccuracy since the robot is controlled by a kinematic 
control model which is based on nominal parameters. Let p° = [a0, d°, a 0, 0°] be the 
nominal kinematic parameters and A p = [Aa, Ad, Aa, A0] be the kinematic parameter 
error vector which is a small perturbation from the nominal value. The end-effector
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position and orientation error Ax due to the kinematic error can then be obtained using 
Equation 3.5:

Ax = f(a°+Aa, d°+Ad, a°+ A a, 0°+ A0) - f(a°, d°, a 0, 0°) (3.6)

Expanding Equation 3.6 using Taylor series around nominal kinematic parameters, and 
ignoring second and higher order terms, Equation 3.6 becomes:

. a t  . a t . j a t  a t AQ TAAx = —  Aa + — Ad + —— Aa + — A0 = JAp 
da dd do dQ

(3.7)

where J  = and is called a special Jacobian matrix to distinguish the
da dd do dQ

<9fordinary Jacobian matrix J e = —  as defined by Paul (1982). Using the position and
<70

orientation vector p and w to replace f(.) as in Equation 3.5, the special Jacobian matrix 
can be portioned into its position and orientation component as follows:

dp dp dp dp
^ ’d d ’d à ’dè

(3.8)

dw dw dw dw 
'da'~dd,~da,~dQ

(3.9)

As can be seen from Equation 3.7, the special Jacobian matrix plays a vital role in 
transforming individual link kinematic error to the end-effector positioning inaccuracy. 
The published work (Veitschegger and Wu, 1986; Mirman and Gupta, 1992) on the 
derivation of the special Jacobian matrix is based on analytic methods which involve 
complex and abstract mathematical operations. A geometric approach to deriving the 
detailed structure of the special Jacobain matrix is given below which is straightforward 
and has direct physical interpretations.

Firstly the theory of absolute movement with respect to the stationary base frame 
and the relative movement with respect to the moving frame should be introduced. The 
relationship between the base frame and the moving frame (rotating and translating) 
was established in Fu, Gonzalez and Lee (1987) (A more thorough vectorial treatment 
of rigid body kinematics is referred to the textbook by Easthope (1964)). With 
reference to Figure 3.2, let v0 and O)0 be the translation and rotation speed of the frame 
o*x‘y*z* with respect to the base frame ox0y0Zo, and v* and co* be the translation and 
rotation speed of the frame OpXpypZp with respect to the moving frame o*x*y*z\ The

30



Chapter 3 - Robot Kinematics and Kinematic Error Modelling

origin points of the frame o*x*y*z* and frame opXpypZp are specified by the vectors p0, p 
respectively with respect to the base frame, and let p* be the vector with respect to the 
base frame connecting o* and op. Then the translation and rotation speed v and w of the 
frame opXpypZp with respect to the base frame is (Fu, Gonzalez and Lee, 1987):

v = v° + v*+£oxp* (3.10)

CD = C0o + GO* (3.11)

Figure 3.2. Relationship between in Moving Co-ordinate Frames and Base
Frame

Multiplying both sides of the Equation (3.10) and (3.11) by the infinitesimal time 
change dt, then we obtain the infinitesimal translation and rotation changes 
correspondingly:

dp = dpo + d*p* + dw x p* (3.12)

dw = dw0 + d*w (3.13)

where dp0 and dw0 are the differential translation and rotation change of the frame 
o*x*y*z* with respect to the base frame respectively, d*p* and d*w are the differential 
translation and rotation change of the frame opxpypZp with respect to the frame o*x*y‘z* 
respectively, and the dp and dw are the differential translation and rotation change of 
the frame OpXpypZp with respect to the base frame ox0y0Zo respectively.
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xi
The i-th Link

End-effector
frame

Figure 3.3. Relationship between the differential change of the end-effector frame 
and the differential changes in the i-th link parameters.

Next we apply the relationship of the differential translation and rotation change 
between moving frames and base frame to the derivation of the special Jacobain matrix. 
With reference to the Figure 3.3, we assign the starred moving frame in Figure 3.2 to 
the (i-l)-th frame of the robot, and the frame OpXpypZp in Figure 3.2 to the robot end- 
effector frame. To develop the relationship between the i-th link parameter changes and 
the end-effector position and orientation change, the end-effector frame is rigidly 
attached to the i-th link by fixing all the link movements after the i-th link. Using 
Equation 3.12 and 3.13, we have:

dp = dp*1 + cTpi.1 + dw x pH (3.14)

dw = dw*1 + ctw (3.15)

where dp and dw represent the differential translation and rotation changes of the end- 
effector frame with respect to the base frame respectively, dp '1 and JwM represent the 
differential translation and rotation change of the (i-l)-th frame with respect to the base 
frame respectively, and rf*pH and d*w are differential translation and rotation of the 
end-effector frame with respect to the (i-l)-th frame respectively.

Recalling the definition of the D-H parameters and the fact that the end-effector 
frame is rigidly attached to the i-th link, the relationship between the differential change
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of the end-effector frame and the differential changes in the i-th link parameters can be 
described in the following manner.

1) Allowing the joint variable 0, a differential change dd, (rotating around z,_i), then 
the relative rotation with respect to the (i-l)-th frame' <Tw = ddfru and the relative 
translation with respect to the (M)-th frame rf*pM = dd-z^ x p^. From Equation 3.14 
and 3.15, we have:

dp = dpi1 + dvrM x p^ + ¿0jZM x pM (3.16)

dvr = dvr-1 + d d ^ x (3.17)

Differentiating Equation 3.16 and 3.17 with respect to 0,, and note that dpi l and dvr'-1 
are independent of dd, therefore their derivatives with 0, are equal to zero; and that the 
derivative of vector pi4 with respect to 6, is equal to zero due to the end-effector is 
rigidly attached to the i-th frame, we have:

i P
de, = Z-l X  Pi-1 (3.18)

(3.19)

2) Allowing joint variable a, a differential change da, (along the z^), then the 
relative rotation with respect to the (i-l)-th frame dvr = 0, and the relative translation 
with respect to the (i-l)-th frame dtp,., = d a ^ ,. From Equation 3.14 and 3.15, we have:

dp = dpi1 + da,zn + dvr^x pM (3.20)

dvr = dvr11 (3.21)

Differentiating Equation 3.20 and 3.21 with respect to a, and noting that dpM and dw '1 
are independent of da, therefore their derivatives with a, equals to zero, and that the 
derivative of vector p,.i with respect to a, is equal to zero due to that the end-effector is 
rigidly attached to the i-th frame, we have:

dp
da, = Zm (3.22)

33



Chapter 3 - Robot Kinematics and Kinematic Error Modelling

“  = 0  (3.23)
ddi

3) Let ddi be the differential change in parameter d, (along the axis x,), similar to the 
derivation of the Equation 3.22 and 3.23, we have:

dp
ddi

= Xi (3.24)

(3.25)

4) Let da, be the differential change in parameter a, (rotate about the axis Xj), 
recalling that the i-th frame is fixed to the i-th link and the end-effector frame is rigidly 
attached to the i-th link, the relative differential rotation of end-effector frame with 
respect to the (i-l)-th frame equals the relative rotation of the i-th frame with respect to 
the (i-l)-th frame, i.e. d*w = da,xr Note that the rotation is about the axis through the 
origin o„ then the relative translation of o, with respect to the (i-l)-th frame equals 
-dapti xpj_i', therefore d*pM = -daptix pH. Using the above relations in Equation 3.14 
and 3.15, we have:

dp = dp?1 + dvf^x p,_i + dapt, x (p,,r  pw0 (3.26)

dvr = d w 1 + dapti (3.27)

Differentiating Equation 3.26 and 3.27 with respect to ab noting that dpM and dwH 
are independent on da ,, their derivatives with respect to a, equal zero; (p,., - p,.!*) = p,; 
and that the derivative of vectors pM and p, with respect to a, are equal to zeros due to 
that the end-effector is rigidly attached to the i-th frame, we have:

— = x, x pi (3.28)
da,

dw
da,

=  X; (3.29)

From Equations 3.8 and 3.9, we have the basic structure of the special Jacobian 
matrix as shown by the Equations 3.18-19; 3.22-23; 3.24-25; and 3.28-29. Following
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Equation 3.7, the relationship between position and rotation error of end-effector frame 
and its individual link parameter errors can be expressed as follows:

Ax “i-i
o

+ A a.
XiXPi

x.
+ Ad: Z,-1 xp,¡-1 (3.30)

-i-i

Comparing Equation 3.30 with Equation 3.7, the special Jacobian matrix J can also 
be written in the partitioned form whose i-th columns are:

"x,l fz- , ]  fx .xp, ]  IV-iXp -
(Ja),= 0 ,CU = I Q l, (Ja),= x , (Je),= I (3.31)

dt d i dtwhere Ja = — , Jd = ——, J a = — , J —  are the Jacobian matrices with regard to
da dd da dQ

the specific parameters. The vectors xh y z, are x, y z axis of the frame i associated
with the homogenous transformation T, which can be computed recursively using 
Equation 3.1. And the p, is the vector connecting the origin of end-effector frame and 
the origin of the i-th frame with respect to the base frame, which is determined using 
the following recursive procedure:

P„ = 0

Pm = p, +djXi + afri, i = n, n-1, ...1,

(3.32)

(3.33)

The ordinary Jacobian matrix (Je) and special Jacobian matrix (J) for Puma 560 
robot were implemented using MATLAB M-files which are listed in Appendix 3 and 4. 
From Equation 3.30 and 3.31, we see that robot end-effector inaccuracy vector is a 
linear combination of the column vectors of the special Jacobian matrix. It is 
straightforward from linear algebra (Landesman and Hestenes, 1992) that the Jacobian 
matrix is singular (not full rank) if its column vectors are linearly related. If the 
Jacobian matrix is singular then the kinematic parameter errors (coefficients in 
Equation 3.30) can't be uniquely determined in Equation 3.30 and those parameters are 
defined as unidentifiable. The strict definition and proof of parameter identifiability is 
given by Bennet and Hollerbach (1991). From the conditions of matrix singularity and 
Equation 3.31, the conditions for parameter identifiability can be described by the 
following theorem:

Theorem 3.1 (Identifiability): Kinematic parameters are unidentifiable if and only if 
there exists constants c, and not all zero, such that
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'LciZi_l +kixi =0
¿=1 (3.34)

for all configurations (Bennet and Höllerbach, 1991).

From Equation 3.34, the singularity of the D-H model with two consecutive parallel 
joint axes can be easily identified. Two consecutive parallel joint axes imply

*i - = 0 (3.35)

Thus Equation 3.34 is true. The geometric interpretation of this singularity is that there 
is no unique common normal for parallel joint axes, therefore the link parameter dt and 
dM can not be uniquely identified.

The inherent D-H model singularity for two consecutive joint axes can be avoided 
using a modified D-H convention originally proposed by Hayati (1983). The modified 
model uses an extra rotation parameter around the y joint axis to avoid the use of 
common normal for parallel joint axes. Post-multiplying Equation 3.3 a rotation 
transformation Rot(x, /?,), the Homogenous transformation A, in Equation 3.4 becomes:

A,=

cos 9i cos/?, -  sin 0, sin a, sin ßt -sin  0, cos a, cos 0, sin ßi + sin 6j sin a, cos/?, af cos 0,
sin 6i cos ßi + cos 6i sin a, sin ß. cos 0, cos a, sin 0, sin ß i -  cos 9i sin a, cosß, a, sin 6i

0 sin a, cos a, cos/?,
0 0 0 1

(3.36)

It is known that only four parameters are required to specify a co-ordinate frame 
from the previous frame. When consecutive axes are not parallel, the value of /?, is 
defined to be zero, while for the case when consecutive axes are parallel, d{ is the 
variable chosen to be zero. Similar to the derivation of Equation 3.29, the special 
Jacobian matrix with regard to the parameter p written in its column vector form is:

(J  ß)i =
y .xp ,
. y.- .

(3.37)

If the axes of joints (i-1) and i are parallel, then (J^), is used to replace the (Jd)t to 
formulate the special Jacobian matrix.
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3.4 Chapter Summary

The D-H modelling technique was reviewed for robot kinematics modelling. The 
special Jacobian matrix was derived using a geometric approach based on the theory of 
rigid body movement with rotating frame. The geometric approach is more 
straightforward than analytic derivation since it has explicit physical interpretation. The 
linear error model based on robot kinematics is then formulated. The inherent model 
singularity for the standard D-H convention was discussed, and a modified D-H 
notation to overcome the singularity was introduced. All the models derived in this 
chapter have been implemented and validated using the experimental data from a six 
DoF Puma robot. This chapter serves as the basis for kinematic model-based calibration 
presented in the following chapters.
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CHAPTER 4

KINEMATIC IDENTIFICATION USING RECURRENT NEURAL 
NETWORK PROCESSING

4.1 Introduction

Kinematic identification is the process of estimating the set of model parameters by 
minimising the deviations between the poses (positions and orientations) computed by 
the theoretic model and the measured poses. Therefore three basic ingredients are 
required for the system identification problem; a mathematical model, measured data 
and the set of variables that needs to be estimated. A robot kinematic model based on 
the D-H model convention has been introduced in Chapter 3. Using the vector 
formulation as Equation 3.5, the /-th robot end-effector location vector x, is represented 
as a non-linear function of the kinematic parameter vector:

X/= f(p) (4.1)

where p = [a, d, a , 0/]r and a, d ,a  represent manipulator link length, link offset, and 
twist angle respectively, 0, is the /-th joint variable which is changing from one 
configuration to another, / = 1,2,..., M, and M  is the number of robot configurations. 
The computed vectors of Equation 4.1 are then compared with the actual measured 
pose vectors x f  to obtain the workspace inaccuracy vector:

Ax^Ap) = x f  - f(p° + Ap) (4.2)
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Ax, is the non-linear function of the kinematic errors Ap = [Aa, Ad, Aa, A0]r and p° is 
the nominal kinematic parameter. The kinematic errors are then identified by a non­
linear optimisation procedure which minimises the workspace inaccuracy vector in the 
least mean square sense:

min Z  [ Ax, (Ap)]r Q[Ax( ( Ap)] (4.3)
Ap /=1

where Q is a positive diagonal weight matrix used to adjust the balance between the 
end-effector position and orientation accuracy. By linearizing the inaccuracy model 
(4.2) using the first order Taylor series around the nominal kinematic parameters p°, the 
inaccuracy vector is then represented as a linear function of kinematic errors:

Ax, = J/Ap (4.4)
^  ^  ^  ^

where J, = [— , — , — , — ] is a special Jacobian matrix relating the differential 
<9a <9d da <90

changes in kinematic errors to the changes in workspace, which was derived in Chapter 
3. The kinematic errors are then identified iteratively using a linear least square 
method:

Ax = JAp (4.5)

Ap = [JrJ]‘1J IAx (4.6)

where Ax = [Ax, Ax2 ... AxM]r is the aggregated workspace inaccuracy vector at 
different robot configurations, J  = [J, J 2 ...JMF  is the aggregated special Jacobian 
matrix, M  is the number of robot configurations at which measurement data is 
collected.

Both linear and non-linear least square optimisation methods as described above 
have been commonly used to identify geometric and non-geometric errors. To make the 
identification accurate and fast, many issues such as the choice of algorithms, selection 
of measurement points and the number of measurements have been addressed by other 
researchers (Pathre and Driels, 1990; Driels, Swayze and Potter, 1993). Since kinematic 
identification is a highly complex numerical problem which involves a large number of 
variables to be estimated, normally the standard optimisation methods require a long 
convergence time, and the measurement points must be distributed widely in the 
workspace to ensure the numerical stability. These identification algorithms are usable

39



Chapter 4 - Kinematic Identification Using RNN Processing

for robot off-line calibration performed in a laboratory environment where computation 
time is not critical and there are no physical constraints on data collection. It is not the 
case for robot on-site calibration performed in an industrial environment, which may 
impose severe limitations on data collection and identification capabilities. In this 
chapter, a Hopfield type recurrent neural network (RNN) based algorithm has been 
developed for the robot kinematic identification problem. The RNN-based algorithm is 
computationally more efficient and robust compared with the numerical optimisation 
algorithms and therefore is suitable for robot on-site calibration processing. Calibration 
results for a six DoF Puma 560 robot are presented using the new calibration 
processing method.

4.2 Hopfield Recurrent Neural Network

A Hopfield net is a neural network composed of a layer of fully interconnected 
artificial neurons. Each neuron of the network is connected to every other neuron in the 
network. The architecture of the Hopfield network differs significantly from the 
feedforward network in that it belongs to the class of recurrent (or feedback) neural 
networks in which dynamics play an important role. The dynamics of such networks 
are described by a system of non-linear ordinary differential equations and by an 
associated energy (called the Lyapunov, potential, or simply network energy) function 
which is minimised during the computation process. Hence the Hopfield network is 
dynamic by nature and is categorised as a searching (or optimisation) type of network.

There are two types of the Hopfield model: binary model and continuous model 
(Hopfield and Tank, 1985). The continuous model of the Hopfield network is 
analogous to an analogue circuit model of an operational amplifier with resistive 
connections and additional capacitors (Figure 4.1). The dynamics of the neuron circuit 
is governed by the following non-linear ordinary differential equations:

,  " ^  U- dii-
, i + S r ' v' “ * +CiT

(4.7)

V, =  g,{uò (4.8)
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Figure 4.1. Hopfield Neuron Circuit

where It is input current of the i-th neuron (amplifier), «, is the input voltage and v, is 
the output voltage; g{ = g(x) = tanh(jStc) is the output function which is usually taken to 
be related to the hyperbolic tangent function1, ¡5 is the amplifier gain constant. 7), = 
1/Ry, Ry is the connection resister between amplifier i and j ,  c, is the input capacitor. 
Figure 4.2 depicts the Hopfield network which consists of n fully interconnected 
artificial neurons described in Figure 4.1. Hopfield (1985) discovered a Lyapunov 
function for a network of n neurons characterised by Equation 4.7 and 4.8 which 
measures the total energy represented by the network with respect to the network 
outputs:

E  = -  t i p ,  + i - k V ( v)l*,
2  i= ly = l  ¡=1 i= lR i

(4.9)

when the gain of the monatomic increasing activation function is sufficiently high, the 
last term of the Energy function can be ignored. It can be shown that the changes in the 
network output governed by the network dynamics such as Equation 4.7 and 4.8 will 
always cause the network to evolve toward a minimum of the energy function. The 
stable states of the network therefore correspond to the local minima of the energy 
function.

1 It is known that the shape o f the output function (or activation function) is not important to guarantee 
the network convergence as long as it is m onotonically increasing with high positive gain constant. More 
often than not, the output function is sim plified as a linear function with high gain constant
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Because the network of neurons will seek to minimise the energy function, one may 
design a Hopfield type neural network for function minimisation by associating 
variables in an optimisation problem with variables in the energy function. Developing 
a neural network to seek solutions to an optimisation problem becomes the task of 
selecting appropriate values for the connection strengths Ty and the external inputs 7, so 
that the desired network behaviour results. Hopfield and Tank (1985, 1986) have 
illustrated the use of energy functions by configuring the network to find good 
solutions to difficult optimisation problems such as the travelling salesman problem 
which is of the np-complete class. The Hopfield type simple "neural" optimisation 
networks have been used (Tank and Hopfield, 1986) to find globally optimal solutions 
for a class of less complicated optimisation problems such as A/D converter and a 
linear programming problem which have no local minima in their solution spaces (in 
the vicinity of specific initial conditions). Since kinematic errors are only small 
perturbations from the nominal parameter values, we show in the following sections 
how the kinematic identification can be solved rapidly by using the Hopfield recurrent 
neural network.

Figure 4.2. Hopfield analogue neural circuit model (Hopfield and Tank, 1986). 
Black square at intersections represent resistive (weight) connections (with 
conductance Ti}).
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4.3 RNN-based Kinematic Identification Algorithm

The key to the application of the Hopfield type neural networks is the formulation of 
the network energy function. In our application, the quadratic form of robot workspace 
inaccuracy is constructed as a network energy function so that a decrease of network 
energy corresponds to a decrease of robot positioning inaccuracy in workspace. The 
kinematic parameter errors are chosen as the neural circuit variables. From Equation 
4.4, the linear residual error model for M  measurement points, writing in the compact 
matrix form, is:

e(Ap) = Ax° - JAp (4.10)

where e is the residual positioning error vector in workspace which is the linear 
function of kinematic error Ap, Ax° is the initial value of the aggregated inaccuracy 
vector and J  is the aggregated special Jacobian matrix as defined above. Kinematic 
identification is equivalent to determining the kinematic error vector by minimising the 
residual positioning error vector in the least square sense. Using the Euclidean norm, 
the energy function then can be constructed as follows:

E  = ^-[Ax°-JAp]r [Ax°-JAp] (4.11)

Expanding Equation 4.11, and rearranging it in the standard form of the network 
energy, we have:

E = (4.12)
1=1 7=1 7=1 1=1

where

(4.13)
J=1

I, = (4.14)
i=l

Ty and 7y determine the network connection weights and the input currents respectively 
based on the nominal kinematic model and the workspace inaccuracy vector. The Ap; is
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the j-th kinematic parameter error to be identified which corresponds to the y-th neuron 
state, n is the number of kinematic parameters while m is the dimension of vector Ax°.

The energy function gradient with respect to the i-th neuron state is obtained from 
Equation 4.12:

(4.15)

The time evolution of neuron states should follow the opposite direction of the energy 
function gradient, so we have the neuron circuit dynamics equation:

d jAp,) 
dt

= /*, Œ  TyAPj + 7, ) (4.16)

where p, is the i-th diagonal element of the positive diagonal coefficient matrix (or 
learning rate) |i which is chosen to ensure the stability and convergence speed of the 
neural circuit. Given the initial condition of the neuron states (Ap, = 0, i = 1,..., n), the 
above ordinary differential equation (ODE) determines the neuron state trajectories, 
and hence the kinematic errors to be identified (the stable states of the neurons). 
Equation 4.16 is actually a linear differential equation of high gain which can be solved 
by any standard ODE methods such as Runge-Kutta method, Euler's method, etc 
(MathWorks Inc., 1992b). To improve the robustness against measurement noise and 
numerical perturbations, non-linearity can also be incorporated into Equation 4.16 
through the introduction of the neuron "sigmoid" to the network as in Equation 4.7 and 
4.8. The linear neuron processing units were used here for simplicity.

From Equation 4.15 and 4.16, the time derivative of the energy function is derived 
as Equation 4.17 which is always non-positive. Therefore the above algorithm is 
guaranteed to converge to a lower energy level.

dE _ " dE d(Apj) 
dt i=u?(Ap,) dt

I - / i ,( IT ,A p .
i=l ;=1 + '()2 (4.17)

The convergence speed of the Equation 4.17 depends on the choice of the learning 
rate |i which is shown as follows. Using the definition of the Equation 4.13 and 4.14, 
the dynamic system Equation 4.16 can be written in compact matrix form:

= p (-JrJAp + J rAx°) = -pJr(Ax - Ax°) (4.18)
dt
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where Ax = JAp. Using Equation 4.18 in Equation 4.17, we have: 

dE
—  = -(Ax - Ax°)rJ|xJr(Ax - Ax°) (4.19)
dt

Theorem 4.1. Let Aj and Ap be the minimum eigenvalue of symmetric matrix J J r and 
positive diagonal matrix ft respectively, then the time derivative of the energy function 
Equation 4.19 satisfies the following inequality:

^  <-A„Ay ||Ax-Ax0||2 (4.20)

where ||| is a Euclidean norm.

Proof:

We introduce the Rayleigh quotient (Landesman and Hestenes, 1992): 

vr Av/?(v) = l f l  (4.21)
v v

where v is any vector excluding v = 0, A is a symmetric matrix. The Rayleigh quotient 
satisfies that

< tf(v) £ A„, (4.22)

where and A ^  is the minimum and maximum eigenvalues of A.

The following inequality is obtained by setting A = ft, v = JTAx-Ax0) in the 
expression of R(y) and using inequality 4.22:

(Ax - Ax°)rJ |iJ r(Ax - Ax°) > A„(Ax - Ax°)rJ J r(Ax - Ax°) (4.23)

In Equation 4.21, let A = J J r, v = (Ax-Ax°) and using 4.22, then we have:

(Ax-Ax°)r J J r (Ax-Ax°)> AJ(Ax-Ax°)r (Ax-Ax°) = Ay|A x-A x°|2 (4.24)

From 4.23 and 4.24, and noting that (i is positive definite thus A„ is positive, we have:

(Ax -  Ax°)TJfiJT (Ax -  Ax°) > A^A^liAx -  Ax° )||2 (4.25)

From 4.19 and 4.25, it is straightforward to have 4.20. The proof is completed.
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From Theorem 4.1 we can see that

• the system has a quadratic convergence speed in terms of the residual error vector 
in workspace (Ax - Ax°).

• by increasing we can achieve very fast convergence of the energy function to 
its minimum. If the learning rate p is set to be a constant k,2 then the energy function 
is linearly decreasing in time with the scalar gain of k. This observation agrees that in 
Cichocki and Unbehauen (1993).

Comparing the discrete-time steepest-descent algorithm in which the controlling 
parameter p should be bounded in a small range to ensure the stability of the 
algorithm, in the continuous-time system the learning rate p can be set theoretically 
arbitrarily large without affecting the stability of the algorithm (Cichocki and 
Unbehauen, 1993). It is an important advantage of using the continuous-time neural 
system which will be shown through numerical examples in the following sections. 
Another advantage of the RNN-based method is the potential implementation of 
parallel computation which leads to on-line identification of kinematic parameters. It 
only takes a few characteristic time constants of the neuron circuit and is independent 
of the robot DoF and the number of parameters to be identified.

After kinematic errors have been obtained through Equation 4.16, the kinematic 
parameters are updated in the forward kinematic model and the neuron inputs and 
weight connections are updated correspondingly. The above procedure is repeated until 
the algorithm converges to the prescribed accuracy. The Hopfield type recurrent neural 
network can converge to the global optimal given the specific initial conditions which 
are in the vicinity of its optimal solutions (Tank and Hopfield, 1986). Since the 
kinematic errors are only small perturbations from the nominal parameters, the above 
procedures are guaranteed to converge to the global optimal provided the kinematic 
errors are small. Normally three iterations are sufficient to get the desirable results.

2 A ll diagonal elem ents o f the diagonal matrix JJ. are equal to k, then =  k.
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4.4 Pose Measurement Using a CMM

The experimental set-up consists of a Ferranti Merlin 750 precision co-ordinate 
measuring machine (CMM) and a Puma 560 robot as illustrated in Figure 4.3. A local 
calibration volume is chosen in the common working volume of the CMM and the 
robot. The calibration volume is a parallelepiped measuring 200 (mm) in width, 400 
(mm) in length, and 200 (mm) in height. This is justified by the fact that high 
positioning accuracy is only required in the robot local working area in which fine 
motion operations (like assembly) are executed. The measurement points are uniformly 
distributed in the calibration volume with four points in length, and three points each in 
the width and height dimension. The measurement grid ( 3 x 4 x 3 )  for data acquisition 
is shown in Figure 4.4. Eight different orientations of the end-effector were placed at 
each measuring point so that a range of different configurations were measured. The 
total number of measurements thus is 288 (=  3 x 4 x 3 x 8 ). This data set is used for 
robot calibration and evaluation.

Figure 4.3. Experimental Set-up for Data Collection
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Figure 4.4. Measurement grid for data acquisition

The schematic of the measurement set-up is shown in Figure 4.5. The CMM has an 
accuracy of 4 (im which is accurate enough for robot calibration. Measurements are 
made by manually moving the CMM one axis at a time until the touch probe mounted 
on the CMM contacts an object to be measured. When the touch probe is triggered, the 
x, y and z co-ordinates of the tip point of the probe are recorded and transferred to the 
personal computer by the CMM controller. The Amstrad personal computer is used to 
record the manipulator configuration, collect the CMM data, and perform some data 
processing. The robot end-effector is equipped with a measuring cube so that the end- 
effector position and orientation can be obtained from the positions of the touch points 
on the cube. A more detailed description of the CMM measuring system can be found 
in Rea (1992). Pose measuring using CMM is very time consuming and took skilled 
operators several days work to collect the data required. The high cost of the CMM and 
its bulky volume preclude its use in robot on-site calibration in a shop-floor 
environment A novel approach suitable for on-site application is developed in the next 
chapter. However, the precise full pose data collected using the CMM is very useful for 
the purpose of proof of concept calibration and the calibration evaluation. Below we 
give the principles of obtaining robot end-effector position and orientation inaccuracy 
data from the positions of the CMM probe touch points.
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Puma 560 Robot Ferranti Merlin 750 
Coordinate Measuring Machine

Figure 4.5. Schematic of measurement set-up

The robot end-effector consists of a calibrated measuring cube with a dimension L 
x  L x L. and its co-ordinate system XeYJZe is shown in Figure 4.6. The position and 
orientation of the measuring cube can be described by a homogenous transformation 
matrix as introduced in Chapter 3. The homogenous transformation of the measuring 
cube in the world co-ordinate system is determined if the position vector of the cube 
centre point pc and three orientation vectors nc, sc and oc are determined in the world 
co-ordinate system. The world co-ordinates of the touch points on the measuring cube 
are estimated and reported by the CMM. Let the position vectors of the touch points be 
rBi, r^r^w here  the n, s, o subscripts represent the touch surface of the cube and i 
denotes the number of the touch points. Clearly at least three different touch points are 
needed to determine the normal vector of the side surface of the cube. Therefore three 
touch points were measured on each of the three side surface of the cube to determine
the position and orientation of the cube:

|(r »3-  r»2) x (rB2 -  r<ii )||
(4.26)

r (ri3 - r,2)x (r l2 - r xl) 
||(ri3 -  r/2) x (r,2 -  rxl )||

(4.27)
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Q = (r o3 ~ r o2 ) X (ro2 ~ To\ ) 
||(r o3 ~  r «2 ) X  ( r o2 “  r ol )||

(4.28)

Figure 4.6. The end-effector (measuring cube) co-ordinate system

The orientation vectors must satisfy the orthogonal condition oc = nc x sc. Noting 

that the projection of the difference vector between touch point and the cube centre- 
point in the direction of the surface normal equals the half side length of the cube (L), 
we have the following scalar equations which are used to determine the position vector 
of the cube centre point:

(r„, - Pc) . nc = 0.5L (4.29)

(r„ - pc) . sc = 0.5L (4.30)

(r„, - pc) . oc = 0.5L (4.31)

where i = 1, 2,3. The position vector p,. = [p^, pcJ T has three unknowns therefore is 
uniquely determined by the three scalar equations above. More scalar equations (more 
touch points) can be used to determine the position vector in the least square sense. 
After the position and orientation vectors are determined, the actual measured end- 
effector homogenous transformation matrix Tfl is obtained:

nescocpc 
0 0 0 1

(4.32)

50



Chapter 4 - Kinematic Identification Using RNN Processing

Comparing with the nominal commanded end-effector transformation T„, the additive 
differential transformation is:

dT = Ta - T„, (4.33)

Then the multiplicative differential transformation is (Paul, 1982):

AT = ifT • T"1 (4.34)

Ideally, AT has the structure of an upper 3X 3  skew-symmetric matrix:

AT =

■ 0 - S z Sy dx'

Sz 0 -S x dy
(4.35)

- S y Sx 0 dz

0 0 0 0

In real cases, the actual AT obtained has the following general form due to numerical 
errors.

*n *12 *13 *14

*21 *22 *23 *24

*31 *32 *33 *34

0 0 0 0

(4.36)

Then the elements of the Equation 4.35 can be obtained through the following
procedure:

Sx = — (*32 ”  *2 3) (4.37)

Sy =  ~  (*1 3 — *31 ) (4.38)

Sz = — (*21 “ *12) (4.39)

II•8 (4.40)

d y = tu (4.41)

4?II (4.42)
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The position and orientation inaccuracy vector is then subtracted from Equation 4.35:

r< ip l_  (dx,dy,dz)T 
W  [(Sx,Sy,8z)T

(4.43)

The postional and orientational inaccuracy, representing in length (Euclidean norm), 
are:

dr = \\dp\\ = -yjdx2 +dy2 +dz2 (4.44)

dtr = ||Jw|| = -yJSx2 + Sy2 + 8z2 (4.45)

4.5 Kinematic Identification Results for a PUMA 560 Robot

The Puma 560 robot is a six DoF manipulator with six revolute joints. The link co­
ordinate frame assignment for the Puma robot using the D-H convention is shown in 
Figure 4.7. Robot end-effector frame transformation represented in the world co­
ordinate frame can be obtained through the following sequential homogenous 
transformations:

Te = BASE*A1*A2*...*A6*FLANGE*TOOL (4.46)

where

1) BASE represents the transformation between the world co-ordinates x^y^z* and 
the first link co-ordinate frame Xoy0Zo on joint 1 fixed in the robot base.

2) Ai (i = 1, 2,.., 6) represents the transformation between joint coordinate frame i 
and i-l as defined in Chapter 3.

3) FLANGE represents a transformation between the last joint co-ordinate frame 
nominally located on the last joint axis to a co-ordinate frame located on the 
manipulator’s flange used for mounting the end-effector or tool (the measuring cube in 
this case).

4) TOOL is the transformation from the mounting point on the manipulator's 
FLANGE to the tool frame located on the tool centre point (TCP frame).
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I

Figure 4.7. Puma Co-ordinate Frame Assignment

The Puma robot is installed in the workspace which is common with the CMM so 
that its first link frame is aligned with the CMM reference frame (i.e. the frame xwy^zw 
is aligned with the frame x0y0Zo). By this choice of frame arrangement, the CMM 
measurements can be converted to the robot measurements in its base frame by a pure 
translation transformation Trans(x0,y0,Zo)» where xQ,yQ,Zo are relative position co­
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ordinates between the origins of the world frame and the robot base frame. Since the 
first link co-ordinate frame, according to the D-H convention, is inside the robot, the 
alignment of the robot base frame with the CMM is accomplished by using a locating 
dowel and precision holes in the robot base. We assume that the robot base is exactly 
located with the world frame therefore no errors exist in the BASE transformation. The 
effects of the errors in the BASE transformation will be investigated using a modified 
D-H modelling convention.

Due to parameter redundancy of the A*, FLANGE and TOOL transformation, the A6 
and FLANGE are normally combined into a single transformation A6. Since the tool 
mounted to the flange is a high-precision measuring cube, the TOOL transformation 
will always be assumed to be error-free during calibration and all the errors in the last 
link will be compensated using kinematic parameters in A6. The assumption of an 
error-free TOOL is made because it is impossible to distinguish the effects of errors in 
the last link from errors in the TOOL by measuring a reference point located on the 
TOOL (Veitschegger and Wu, 1988).

Based on the above assumptions that BASE and TOOL transformation are error-free, 
the causes for robot positioning inaccuracy are basically kinematic parameter errors in 
A, (i = 1, 2,..., 6). Using the D-H modelling notation, four parameters ab dh a* and 6, 
are needed to specify one transformation, therefore there are 24 parameters in total 
which need to be identified. The nominal values of these parameters are defined as in 
Table 4.1. Joint variables 0, are determined by the nominal inverse kinematic model 
which change from one configuration to another. Another six parameters are involved 
in TOOL transformation, the first three are rotational parameters (roll-pitch-yaw) and 
the last three are translation parameters. The standard D-H model has the singularity 
problem for the consecutive parallel joint axes as introduced in Chapter 3. Since 
kinematic modelling is not the focus of this chapter, the standard D-H model is used 
firstly to verify the RNN-based kinematic identification algorithm.
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Table 4.1 Nominal Parameters of a Puma 560 Robot Using D-H Model

No. a, (mm) di (mm) a, (rad.) TOOL

1 *0.0 0.0 -n/2 0.0 (rad.)

2 431.8 149.09 0.0 0.0 (rad.)

3 -20.32 0.0 id 2 0.0 (rad.)

4 0.0 433.07 -id2 0.0 (mm)

5 0.0 0.0 id2 0.0 (mm)

6 0.0 56.25 0.0 55.0 (mm)

After the kinematic model has been established, the actual measurements are used 
for kinematic identification. One hundred and twenty poses have been randomly chosen 
from the collected data set for identification processing. The RNN-based kinematic 
identification algorithm was implemented using MATLAB® (MathWorks Inc., 1992a) 
on a Hewlet-Packard 9000 workstation. The neural dynamic equations were solved by 
calling SIMULINK™ (MathWorks Inc., 1992b) ordinary differential equation (ODE) 
solver. Given the learning rate as a high gain constant (I = 106, and the initial conditions 
of neural states Ap = 0, the kinematic errors (Table 4.2) were identified rapidly (in less 
than two seconds of simulation time and in about 20 (¿is) of the circuit settling time). 
Figure 4.8 shows the time evolution trajectory of the kinematic parameter errors during 
the first iteration of the identification process, which exhibits efficient and robust 
convergence. The identification process stopped after three iterations, when further 
iterations will not obtain much improvements on the final residual errors. The average 
position error in length decreased from 3.33 (mm) to 0.70 (mm) for the 120 calibration 
points, and to 0.68 (mm) for 100 independent test points after updating the kinematic 
parameters by the identified errors. Table 4.3 compares the residual position and 
orientation errors before and after kinematic calibration based on the 100 independent 
test points from the collected data set. The position accuracy has improved after
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calibration by a factor of about 5, and the orientation improvement is less significant 
due to the scaling problem. The balance between the position and orientation residual 
error can be adjusted by a weight matrix Q as defined in Equation 4.3. For most robot 
applications, position accuracy is more critical than prientation accuracy, therefore 
position accuracy improvement is emphasised in the following work.

For comparison, the non-linear and linear square optimisation approaches (using 
Equation 4.3 and 4.6) were also used for identification based on the same data set. After 
about two hours computation (1200 iterations) using quasi-Newton searching strategy 
(MathWorks Inc., 1992c), the non-linear optimisation approach converged to results 
that were identical to the neural net solution, while the linear optimisation approach 
failed to converge due to the singularity of the identification Jacobian using the 
standard D-H model. As observed by Cichocki and Unbehauen (1993), the computation 
efficiency and robustness of the RNN approach compared with numerical optimisation 
methods are largely due to the use of systems of ordinary differential equations rather 
than the difference equations as used in conventional optimisations. The advantage of 
converting an optimisation problem into a system of differential equations are outlined 
as follows (Cichocki and Unbehauen, 1993):

• Due to the massively parallel operations and due to the better convergence 
properties in comparison with iterative schemes, the simulation of a system of 
differential equations enable us to solve many optimisation problems in real time. The 
better convergence properties of the continuous-time systems are due to the fact that 
some controlling parameters (learning rates) can be set arbitrarily large without 
affecting the stability of the system in contrast to discrete-time systems where the 
corresponding controlling parameters must be bounded in a small range or else the 
system will be unstable. For example, the learning rate in the above simulation is set as 
a high gain constant (p = 106) which enables the system to converge in the order of 
(jjs) settling time.

• A dynamic system implemented on the basis of differential equations usually 
exhibits more robustness (insensitivity) to certain parameter variations and it tends to 
retain information better through time.

• In the simulation of continuous-time dynamic systems more sophisticated and 
faster simulation techniques than simple first-order difference equations can be used 
(Mathworks Inc., 1992b).
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• Theoretical ordinary differential equation techniques often offer better 
understanding of the convergence conditions of the corresponding iterative algorithms.

Table 4.2. Identified Kinematic Parameter Errors of the PUMA 560 (D-H Model)

Link No. Aa, (mm) Adi (mm) Aa, (rad.) Adi (rad.)

1 -0.478 -0.301 -0.0003 0.0009

2 -0.023 0.909 -0.0068 -0.0025

3 0.719 0.909 0.0143 0.0004

4 -0.222 -2.026 -0.0107 0.0167

5 0.204 -3.400 -0.0187 0.0053

6 0.064 -0.041 -0.0067 0.0132

Table 4.3 Residual Error Comparisons Using the Standard D-H model

Before Calibration After Calibration

(in length) position (mm) orien. (degree) position (mm) orien. (degree)

average 3.30 2.63 0.68 1.19

standard dev. 1.15 0.41 0.46 0.46

maximum 4.74 3.21 1.83 2.30
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The standard D-H model is adopted to perform the concept-proof calibration using 
the RNN-based kinematic identification algorithm. The D-H model singularity and the 
assumption of error-free BASE may be attributable to the large residual errors after 
kinematic calibration as seen from the Table 4.3. As introduced in Chapter 3, the D-H 
model singularity can be avoided by a modified D-H notation which uses a rotation 
parameter ¡5 to replace the common normal parameter d for the two consecutive parallel 
joint axes. The joints 2 and 3 of the Puma robot are the consecutive joints with parallel 
joint axes, therefore the common normal parameter d2 is replaced by the rotation 
parameter /Jj, and the values of the d2 and /J, (i *2) are set to zero during the 
identification process. Following Veitschegger and Wu (1988), robot BASE parameters 
can also be included in the identification by using an introduced transformation. Since 
the BASE frame is aligned with the world frame, an extra transformation BOFF was 
introduced to change the relative arrangement of the world frame and robot base frame. 
From Equation 4.46, we have:

BOFF*Te = BOFF*BASE*A1*A2*...*A6*FLANGE*TOOL (4.47)

where BOFF represents an introduced translation and/or rotation transformation. By 
selecting BOFF such that the world co-ordinate frame origin lies on the manipulator's 
base mounting surface, the errors in the transformed BASE (BOFF*BASE) will 
correspond to the errors within the manipulator's physical base. An extra rotation 
Rot(x, 90°) was made so that the zw and z0 are perpendicular to each other. Therefore 
BOFF = Trans(xb,y0»Zo)*Rot(x, 90°), where Xq = -450 (mm), y0 = -145 (mm), z0 = -260 
(mm) are relative position co-ordinates between the origin points of the world frame 
and the robot base frame. Through this introduced transformation, the robot BASE 
(link 0) can be described using the standard four D-H parameters. The nominal 
parameters of the Puma robot (including the BASE) are redefined in Table 4.4 using 
the modified D-H model.

Kinematic identification was performed based on the modified D-H model using the 
RNN-based algorithm. The identified parameter errors are listed in Table 4.5. It is seen 
that there exists large translation errors in robot base parameters which may not be 
ignored for kinematic calibration. The residual errors comparison of the end-effector 
positioning accuracy before and after the kinematic calibration was made in Table 4.6 
based on the 100 test points. It shows that the average residual error of robot end- 
effector position was reduced from 3.3 (mm) before calibration to 0.19 (mm) after
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calibration, which indicates an improvement factor of more than 10, comparing the 
improvement factor of about 5 by using a standard D-H model and ignoring the BASE 
errors. The achieved positioning accuracy of 0.19 (mm) is of the same order of the 
Puma robot repeatability which is the limit of the robot calibration. The results show 
that robot positioning accuracy can be improved significantly through kinematic 
calibration only. Although the measurements are limited to the local volume in the 
workspace, hence produced an ill-conditioned identification Jacobian3, the RNN-based 
identification algorithm is able to identify the kinematic errors efficiently and 
accurately. The identification accuracy is further improved by using a modified D-H 
model. Figure 4.9 plots the residual position error distribution after calibration for the 
100 test points. The figure consists of 5 bars that represents the number of points for 
which the position error fell within the range indicated on the horizontal axis. For 
example, the first bar from the right shows that only one point out of 100 points had a 
position error in the range between 0.4 (mm) and 0.5 (mm). The figure illustrate that 
the position errors of most test points lies around the mean of 0.19 (mm).

It can be seen from Table 4.6 that the residual orientation error is rather large after 
calibration. The simple identity scaling matrix Q used in the calibration is attributable 
to the large residual orientation error. If more accurate orientation is required, proper 
weighting on the orientation component of the pose vector can be used. For example, 
choosing Q = diag(l, 1, 1, 20, 20, 20), the residual error comparison is listed in Table 
4.7, which shows that the average residual error of orientation is reduced to 0.79 
degree, at the expense of position accuracy (average position error is up to 0.82 (mm) 
in this case). Since robot end-effector orientation errors can be corrected by using 
passive mechanical fixtures, in most cases robot end-effector position accuracy is more 
critical than orientation accuracy, therefore the simple identity scaling on position and 
orientation is appropriate, and no weighting on the orientation component will be used 
in the following work.

3 The condition number o f the identification Jacobian using standard D -H  m odel is 3.1968 X  1017
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Table 4.4 Nominal Parameters of a Puma Robot Using a Modified D-H Model

Link No. a, (mm) di (mm) a, (rad.) A (rad.) TOOL

0 0.0 0.0 0.0 0 —

1 0.0 0.0 -nil 0 0.0 (rad.)

2 431.8 149.09 0.0 0 0.0 (rad.)

3 -20.32 0 n il n il 0.0 (rad.)

4 0.0 433.07 -nil 0 0.0 (mm)

5 0.0 0.0 nil 0 0.0 (mm)

6 0.0 56.25 0.0 0 55.0 (mm)

Table 4.5. Identified Kinematic Errors of the Puma robot (a modified D-H Model)

Link No. Aa, (mm) Ad, (mm) A a, (rad.) Adi (rad.) AA (rad.)

0 0.302 -3.356 -0.003 0.0005 0

1 0.174 1.112 -0.0011 0.0004 0

2 0.157 0 -0.0031 -0.0026 -0.011

3 0.048 1.174 0.0045 0.0010 0

4 -0.033 -0.719 -0.0043 0.0110 0

5 -0.169 -2.447 -0.0209 0.0046 0

6 -0.031 0.455 0.0002 0.0111 0
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Table 4.6 Residual Error Comparisons Using the Modified D-H model

Before Calibration After Calibration

(in length) Position (mm) Orien.(degree) Position (mm) Orien.(degree)

average 3.30 2.63 0.19 1.31

standard dev. 1.15 0.41 0.097 0.45

maximum 4.74 3.21 0.40 2.49

Table 4.7 Residual Error Comparisons Using the Modified D-H model

Before Calibration After Calibration

(in length) position (mm) orien. (degree) position (mm) orien. (degree)

average 3.30 2.63 0.82 0.79

standard dev. 1.15 0.41 0.43 0.30

maximum 4.74 3.21 2.06 1.71

(Using weight matrix Q = diag(l, 1,1, 20, 20,20) in the residual pose vector (4.4))
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Figure 4.9. The Residual Position Errors Distribution for the 100 Test Points

Number of Observations

Figure 4.10. The Relationship Between the Observations and Final RMS Errors
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The number of measurement points is an important factor which affects the 
kinematic identification efficiency and accuracy. An insufficient number of 
measurements (insufficient excitation) will produce an ill-conditioned or singular 
identification Jocobian which in turn causes numerical problems during the 
identification process. Too many measurements will increase the data collection cost, 
computation time, and sometimes even degrade the quality of identification solution. 
The number of measurements (M -  120) used in this calibration is determined based on 
extensive numerical experiments. Figure 4.10 shows the relationship between the 
number of measurements and the final residual position errors for the 100 test points. 
The final RMS (Root Mean Square) error decreased with increasing number of 
observations. But the decrease of the RMS after certain number of observations is not 
significant. The number of 120 is decided as an adequate number of measurements for 
this calibration based on the Figure 4.10.

4.6 Chapter Summary

The Hopfield type recurrent neural network (RNN)-based kinematic identification 
algorithm has been developed and experimentally evaluated in this chapter. The' 
quadratic form of robot inaccuracy was constructed as the network energy function. 
The network connection weights and input currents are determined by nominal 
kinematic model and parameters. The network converges rapidly (in a few 
characteristic time constants of the neural circuit) to the optimal solutions which 
minimises the network energy function. The final states of the neuron variables 
correspond to the kinematic parameters to be identified. If robot inaccuracy data can be 
collected on-line, robot kinematic identification can be performed in real time by using 
the RNN-based real time optimisation technique. Due to the use of ordinary differential 
equations (ODE) in the simulation, the RNN-based algorithm also exhibit numerical 
robustness over conventional least square methods. For parallel implementation, the 
computation time of the RNN-based algorithm is independent of the number of robot 
DoF and the number of parameters to be identified. Therefore, the RNN-based 
algorithm is especially attractive for a robot with multiple DoF (redundant robot) and 
requiring to maintain its own calibration in real-time.
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CHAPTER 5

AUTONOMOUS CALIBRATION USING A TRIGGER PROBE

5.1 Introduction

It is inevitable that a robot will have its links bent, base moved, or some components 
repaired during its service lifetime. A robot needs to have periodic re-calibration to 
maintain its positioning accuracy. In such situations it is desirable not to have to resort 
the use of special-purpose calibration equipment to update the model for robot control. 
An ultimate goal would be for the robot to be able to calibrate its internal model in real 
time (Bennett, Geiger, Hollerbach, 1991). In Chapter 4, a RNN-based kinematic 
identification algorithm was developed which is capable of performing kinematic 
identification in real-time. However, as reviewed in Chapter 2, measurement is one of 
the most difficult aspects of robot calibration which consumes the most time and effort 
involved in the calibration process. Typically, existing calibration systems have large 
volume and very stringent installation requirements, and the robot has to be removed 
from its normal working environment in order to perform the calibration. Moving the 
robot leads to a loss of base information, which will affect the accuracy of the 
calibrated model seriously since robot base location is as significant as the 
identification of robot kinematic parameters (Driels and Swayze, 1994). Due to the high 
cost of calibration equipment, the need for trained skilled operators, and the long 
production down-time, extensive calibration is still an expensive procedure, and 
becomes unacceptable when it has to be applied repeatedly. The development of a low- 
cost, easy-to-use calibration tool suitable for on-site autonomous calibration is the 
subject of this chapter.
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Autonomous calibration is defined as an automated process that determines the 
model parameters by using only the robot's internal sensors (Bennett, Geiger and 
Hollerbach, 1991). The basic observation, that a mobile closed-loop kinematic chain 
can be formed either by connecting the end-effector of two open-chain mechanisms or 
by adding additional links or joints between the end-effector and ground, serves as the 
basis for several other researchers' work (Tang and Mooring, 1992; Goswami, Quaid 
and Peshkin, 1993; Driels and Swayze, 1994). The concept of robot self-calibration 
using a defined task constraint is appealing, since it dispenses with the need for pose 
measurement equipment. There are however some disadvantages to this method. In 
general either another robot or some special mechanical fixtures are needed to 
accomplish the kinematic closure, which requires painstaking efforts to set up. The 
method is therefore not autonomous in the sense that it requires extensive human 
intervention during experimental set-up and calibration.

In this chapter, we present a new robot kinematic calibration scheme which can be 
implemented autonomously and is suitable for on-site calibration in an industrial 
environment. The known shape of an object is used to obtain robot kinematic constraint 
equations instead of using known reference locations in workspace. Gripping a simple 
trigger probe-Renishaw probe (Figure 5.2), the robot uses the probe as its extended 
link to touch constraint planes in its workspace (the locations of the constraint planes 
are not necessarily known exactly). Only the robot joint readings and the Cartesian 
position values (reported by the controller) are recorded for identification while the tip- 
point of the probe is touching the constraint planes from various configurations. Neither 
external sensor measurements nor human intervention are required in the calibration, 
hence the calibration process is fully autonomous. A linear identification model has 
been derived from the consistency conditions of a plane, and is presented in the next 
section. A RNN-based kinematic identification algorithm based on the Chapter 4 is 
given in section 5.3. In section 5.4, we describe the data collection method used and the 
experimental set-up. Both simulation and experimental results for a PUMA 560 robot 
are given in section 5.5. The cross evaluation results using an external global measuring 
device are also presented. Discussions and conclusions are given in the final section.
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5.2 Formulation of the Kinematic Identification Model

The objective of kinematic identification is to identify the actual kinematic 
parameters of the robot manipulator. Let A p be the kinematic errors which are assumed 
to be small perturbations from the nominal values specified by the robot manufacturer, 
where A p is an n by 1 vector, and n is the number of kinematic parameters. Without 
external measurements, the actual position p, = [x;y;z,F of the robot end-point remains 
unknown but must be near the nominal position p/° predicted by the robot controller. 
Using the Taylor series to the first order, we have:

p, = p/> + JjAp = [xP yp zPY + [if i f  tfFAp (5. 1)

where J; is a 3 by n matrix which is the positional component of robot special Jacobian, 
which can be calculated with robot joint readings and nominal kinematic parameters; 
if, i f  and i f  is the x, y and z component of J, respectively, and / is the subscript index 
representing different touch points.

Figure 5.1. Constraint conditions for co-planar points

Although the exact locations of touch points are unknown, they are constrained to he 
on a plane. The consistency condition of a plane leads to the construction of the 
identification model (Figure 5.1). The difference vector between two consecutive touch 
points is:

Api = pi - pM = [Axp AyP AzPY + [4F Atf Aj/]rAp (5. 2)

where

Axp = xP-Xi.!°, Ayp = yP-yi.P, Azp = zp - Zm°;
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Ah*= i f  - - jM>, Ai/2 =if-j/-i*

The difference vectors are normalised to roughly unit vectors by dividing the vectors 
using their nominal length.

A p  =  P '  P m  «  P /  P / - i

'  | P / - P j-.II ~

(5.3)

The necessary and sufficient condition for touch points p,.2, p,.,, pu and p/+i to lie on 
one constraint plane is that the volume of the parallelepiped formed by the difference 
vector Ap, .„ Ap,, and Ap,+, must be equal to zero, i.e., the determinant of the matrix 
formed by the difference vectors must be zero. Using (5.2), we have Equation (5.4):

|[APm  Ap, Api+1]|
A x ,0. ,  +  A j f _ ,A p  A x °  +  A j * A p  A x °+1 +  A j f +1A p  

A y ^ + A j f . j A p  A ^ + A j / A p  A y °+1 +  A j f +1A p  

A z ^ + A J m A p  A z °  +  A j zA p  Az,°+1 +  A j ; +1A p

=  0 (5.4)

Ignoring the second and higher order of Ap, Equation (5.4) can be written as:

Alz-iAp Ax,0 Ax,°+1 Ax,0. , AjfAp Ax,°+, Ax,0. , Ax,° A iw A p

Ajf-iAp Ay,0 Ay,°+1 + Ay,0- , Aj/Ap Ay,°+i + Ay,0- , Ay,0 Ajf+iAp

Aj,-iAp Az,° Az,°+i Az,°-i AjfAp Az,°+, Az,0- , Az,° Aj,z+,Ap

Ax,0-! Ax,° Ax,°+I
Ay,0. ,

Az,°_,

Ay,° Ay,°+1
Az,° Az,°+.

=  0

(5.5)

Prior to the expansion of the equation (5.5), let us introduce a more compact 
notation. We define a function detm(X,, X2, X3) which generalises determinant 
calculation to the situation where one of the three variables X,, Xh X3 is a 3 by M  matrix 
(where M  is an integer larger than one), and the other two variables are 3 by 1 vector. 
The detm(Xb X2, X3) will return a matrix of 1 by M, whose element resulting from the 
determinant of the matrix formed by the corresponding column vector of the matrix 
variable and the other two vector variables. For example:

" * i ■*21 *22 * 3 " *1 *21 *3 *1 *22 *3
detm yi ?21 ?22 ?3 = ?1 >21 *3 >1 ?22 >3

<Z1 _Z21 Z22_ ZJ Z1 Z21 Z3 Z1 222 Z3

(5.6)

Using the definition of detm(*), Equation (5.5) is written as:
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'A l U Ax? A*?+r V - l Ai? A*?+i> f Ax?_, Ax? Aj?+i
(dean Al?-! Ay? Ay?+i + detm Ay?_! Ai? Ay?+i + detm Ay?_, Ay? Ai?+i

Lai?_! Az? Az?+i J I az?_, Aj? Az?+i j I az?_, Az? Ai/+i,

Ax?_, Ax? Ax?,•¿+i
Ay?_i Ay? Ay?+1 
Az?_i Az? Az?+1

=  0

)Ap

(5.7)

Note that in equation (5.7) Aj, = [Aj/* Aj^ Aj^]r is a 3 by n matrix, as well as ÀJ,., and 
Aj/+i.

Ax?_! Ax?
andDenoting AXt = Ay?_i

Az?-i
Ay?
Az?

Ax?+1
Ay?+i
Az?+i

'Aj?-! Ax? Kl) fAx?-! Aj? Ax?+i f  Ax?_, Ax? A i? ^

m ii & u Ai?_i Ay? Ay?+i + detm Ay?-1 Ai? Ay?+, + detm Ay?_, Ay? Aj?+i

I ai?_, Az? Az?+i J I az?-i Aj? Az?+i j I az?_, Az? Aj?+i,

We have a linear system: 

H, Ap + AX; = 0 (5-8)

From the above derivation, we see that every four consecutive touch points will decide 
a constraint equation (5.8). Using (m+3) consecutive touch points, a linear system 
consisting of m constraint equations is obtained:

HAp + AX = 0 (5.9)

where H = [H1H2,...,Hmf  and AX = [AX1AX2,...,AXJr

In Equation 5.9, the coefficient matrix H and AX can be calculated based on the 
difference of nominal positions predicted by the controller, and the difference of special 
Jacobian for each pair of consecutive touch points (only joint readings are required for 
the computations). The only unknown remaining is the kinematic error to be identified. 
Equation 5.9 serves as the linear identification model of the new method.

The derivation of the above model assumes the general case in which neither the 
position nor the orientation of the constraint plane is known accurately. As a special 
case, assuming that we have the knowledge of the orientation of the constraint plane 
with respect to the robot base co-ordinate system, for example, the constraint plane is
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aligned with the robot base x-y plane, then the z component of Ap, will be zero. From 
(5.2), we have:

AtfAp + Az/° = 0 (5.10)

Comparing the above equation with the constraint Equation 5.8, we see that the 
coefficient matrix AX'/is simply the difference of z component of two consecutive touch 
points, and the H/ simply the difference of z component of special Jacobian at two 
consecutive touch points. Similarly, we have the constraint equations for the cases 
where the constraint plane is aligned with robot base y-z or x-z planes:

AjfAp + Ax/° = 0 (5.11)

or

AjfAp +Ay,° = 0 (5.12)

Although the exact location of the constraint plane is not necessarily known, care 
must be exercised in placing the constraint plane in the workspace. Considerations 
include:

• the robot configurations enabling desirable and safe touch on the plane;
• the workspace in which accuracy is critical;
• the optimal identification configurations of the robot;
• the workcell layout and kind of constraint plane available.

As robot base axes are always aligned with respect to some reference planes in the 
workcell, the assumption made earlier, in which the constraint plane is aligned with the 
robot base co-ordinates, has practical significance. In the case that external constraint 
planes are used, it is also easy to align the plane with the robot base axis using the 
probe and V A LII4 axis motion function. To maximise the range of robot movements, 
it is desirable to have the robot touch the constraint planes separately which lie 
perpendicular to the robot’s base axes. The linear identification model in this case can 
be constructed according to Equations 5.10-5.12. The calculations are simplified and 
the calibration results can be evaluated directly in the special case.

4 For UNIM ATION PUM A robot in this case
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5.3 RNN-based Identification Algorithm

In Chapter 4, a RNN-based kinematic identification algorithm was developed which 
exhibited numerical efficiency and robustness. A similar algorithm is presented here for 
the linear identification problem, which might be ill-conditioned due to the limited 
range of robot movement during data collection. The resolution of Equation 5.9 is 
equivalent to the minimisation of the following energy function in the least square 
sense:

E = — (¡HAp + AX||2 + a||Ap||2) (5.13)
2

where a  is a positive scalar coefficient for regulation (Cichocki and Unbehauen, 1993), 
and | || is a Euclidean norm. Comparing Equation 5.13 with 4.11, an extra regulation 

(penalty) term is added to improve the conditioning of identification Jacobian, which is 
near singular due to the partial pose information used in this case, and the limited 
movement ranges for data collection. The physical meaning of the regulation (penalty) 
term is to ensure a small norm of the identified kinematic error vector.

Writing Equation. 5.13 in.the form of Hopfield network energy, we have:

I  L^Ap.Ap, -  I / .A p ;. + jI(A X ,)2
¡=ly=l 7=1 ¡=1

(5.14)

where

Tj, - -Y.H'iH'j + aSÿ,
s= 1

w h e r e o f '
'  IO, i f ; * ;

and

Ij =
i=l

(5.15)

(5.16)

and 7; determine the network connection weights and input currents respectively 
based on the nominal kinematic model and parameters. The Ap; is the y'-th component 
of kinematic parameters to be identified which corresponds to the y'-th neuron state, n is 
the dimension of the vector of kinematic error while m is the row number of coefficient
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matrix H. Following the procedure of the derivation of Equation 4.16, the neural 
dynamic equation is given as:

d( Apf) 
dt

= Pi& T ijAp + /;) (5.17)

where the net connection weight and input current are defined as (5.15) and (5.16), and 
Hi is the same as defined in Chapter 4. The resolution of the ordinary differential 
equation (ODE) (5.17) determines the kinematic parameter errors to be identified.

5.4 Data Collection

Renishaw Probes were originally used for accurate workpiece set up and workpiece 
measurement for CNC lathes. The probe is in effect an omni-directional switch that 
triggers when the probe contacts the workpiece from any direction (Renishaw 
Metrology, Ltd, 1983). For our application, a special tool changer was made to hold the 
probe (Figure 5.3). The trigger signal is transmitted as an input to control the robot. The 
switch is kept on while the probe is in contact with the object. The tip-point of the 
probe is a ruby ball so that the contact point from any direction is a constant distance 
from the centre of the tip. The probe has 12.5 over-travel in ±X, Y direction (which is 
equivalent to about 22 mm over-travel for a 100 mm long probe stylus), and 6.5 mm 
over-travel in Z direction, which allows a certain probing speed and misplacement of 
workpieces. The trigger force in the X, Y direction is set at 10 (g) and 15 (g) in the Z 
direction. The probe has repeatability of 1 (Jim) thus can be used for high precision 
measurements. The data collection procedure written in pseudo-code is as follows;

Repeat until the maximum number of touch points is reached {
MoveTo(START);
Point = RandomConfiguration(MAX, MIN);
MoveTo(Point);
while(ProbeSignal =  OFF){

ProbeBy(XSTEP, YSTEP, ZSTEP);

}
while(ProbeSignal =  ON){

ProbeBy(-XSTEP/10, -YSTEP/10, -ZSTEP/10);

}
RecordData(JointValues, Cartesian Values);

}
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The robot moves from a start point to a point above the constraint plane where its 
configuration is randomly generated within the robot movement ranges, from which a 
desirable and safe touch on the constraint plane is ensured5. From that point, the robot 
probes the plane by moving in small steps toward the constraint plane until the probe 
signal is on. As there is some over-travel of the stylus, the stop point is not the point of 
the first touch due to the probing speed. Therefore fine tuning is needed to retract the 
first touch point. Whilst still in contact with the plane, the fine tuning process begins by 
moving the tip-point away from the plane in steps of one tenth of the probing steps. 
Then the joint values of the robot and the corresponding Cartesian co-ordinates are 
recorded for post-processing. The above process is repeated until the desired number of 
touch points has been reached.

Chapter 5 - Autonomous Calibration Using a Trigger Probe

Figure 5.2. The Trigger Probe

5 This can be done either on-line using VAL II random generator, given the intervals of Cartesian 
coordinates, or through off-line planning process using robot simulation package.
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The probing and fine tuning direction is along the normal to the constraint plane. 
The probing steps are normally set less than 1 (mm) hence the fine tuning steps are less 
than 0.1 (mm), thus achieves a measurement accuracy in the order of 0.1 (mm) which is 
sufficient for robot calibration (if more accurate measurement is required, smaller 
probing steps can be set). In the special case when the constraint planes are aligned 
with robot base planes, the robot only probes in one axis direction, the movements 
along the other two axis directions are set to zero. The data collection program for 
probing z-constraint plane written in VALII are listed in the appendix 5.

5.5 Results for a Puma 560 Robot

The PUMA 560 robot is a six DoF manipulator with six revolute joints. There are in 
total 24 kinematic parameters, using Denavit-Hartenberg (D-H) notation, to describe 
the kinemtaic model. Since joints 2 and 3 of the Puma robot are consecutive joints with 
parallel joint axes, a modified D-H model is used to avoid a model singularity 
(Veitschegger and Wu, 1988). The common normal parameter error Ad2 is replaced by 
a rotation parameter Afc, and the value of Ad2 and the values of A/J, (i *  2) are fixed to 
zero during the identification process. In general, another six parameters including 
three each of rotation {roll-pitch-yaw} and translation parameters are needed for TOOL 
transformation. The nominal parameters for the Puma robot are listed in Table 5.1. 
Since only position information are used for calibration, only three position parameters 
of the TOOL transformation are identifiable. To eliminate parameter redundancy 
between the TOOL and the last link, the TOOL parameters are incorporated into the 
last link. The three positional parameters of the tool are represented by the three 
parameters d6, a6 and d6 of the last link, and is not identifiable. The total number of 
identifiable kinematic parameters is therefore 23.
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Table 5.1 Nominal Parameters of a Puma 560 Robot

No. a; (mm) di (mm) ai (rad.) ßi (rad.) TOOL

1 0.0 0.0 -nil ■ 0 0.0 (rad.)

2 431.8 149.09 0.0 0.0 0.0 (rad.)

3 -20.32 0.0 n il 0 0.0 (rad.)

4 0.0 433.07 -nil 0 5 (mm)

5 0.0 0.0 nil 0 0.0 (mm)

6 0.0 56.25 0.0 0 302.34 (mm)

5.5.1 Simulation Results

The simulation program was built to test the proposed calibration algorithm using 
MATLAB® running on Hewlet-Packard 9000 workstation. The flowchart of the 
simulation program was shown in Figure 5.3. To maximise the robot joint movements, 
three constraint planes were simulated to be placed perpendicular to each base axis: x = 
-550 (mm); y = 300 (mm); z = -450 (mm). Sixty random configurations in Cartesian 
space for each constraint plane were generated satisfying the constraint conditions. 
Then the nominal inverse kinematic model was used to find the corresponding joint 
values for each of the Cartesian configurations. If there was no error in the kinematic 
model, it would be found that the positions achieved by controlling those joint values 
would perfectly match those constraint conditions. However, by inducing small errors 
in the parameters, the achieved positions by the 'actual' robot will be different from the 
commanded ones thus deviate from the constraint planes. An iterative inverse Jacobian 
method was adopted to find the corresponding joint compensations so that the positions 
achieved by the 'actual' robot were identical to those commanded ones. The updated 
joint values then feed to the nominal forward kinematic model to simulate the positions 
reported by the robot controller. The positions reported by the nominal forward 
kinematic model will not satisfy the plane constraint conditions. These position values, 
together with the robot special Jacobian, are used to calculate coefficient matrix H and 
AX in Equation (5.9). Then the recurrent neural network is applied to identify the
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kinematic errors. The identified errors are then used to update the forward kinematic 
model. This process is repeated until the discrepancy is decreased to the desired level. 
Finally the identified errors are compared with the induced errors to evaluate the 
simulation results.

The ordinary differential Equation (5.17) was resolved by calling the SIMULINK™ 
ODE solver. Choosing the coefficient a  = 0.1, and the learning rate |i = 106, it took less 
than one second of simulation time, and about 20 (pis) of the circuit settling time for the 
system to converge. Table 5.2 lists the identified kinematic errors using the 
identification model where neither orientation nor position of the constraint planes are 
known. The induced errors were randomly produced in the range of ±0.15 (mm) for 
linear parameters and in the range of ±0.015 radians for rotary parameters (the values in 
parenthesis). Comparing the induced errors with the identified, we can see that the 
angular errors are almost identical and the linear errors are similar but have small 
residual errors. Table 5.3 compares the deviations from the constraint planes before and 
after calibration, dx represents the deviations from the x-axis constraint plane x = -550 
(mm), dy represents the deviations from the y-axis constraint plane y = 300 (mm), and 
dz represents the deviations from the z-axis constraint plane z = -450 (mm). The 
statistical analysis is based on the 40 calibration points on each of the constraint planes. 
It is seen that the induced errors, though small, will produce a maximum deviation from 
the constraint plane of up to 13.2 (mm). After identifying the kinematic errors, the 
deviations from the constraints planes are close to zero. Small residual errors exist in 
the x-axis and z-axis constraint planes (dx and dz), but the standard deviations of the 
residual errors are very small, which implies that the calibrated positions shift parallel 
from the constraint plane a small amount. Increasing the magnitude of the induced 
errors will result in an invalid identification which leads to the identified model 
pointing to a plane parallel to the constraint plane (the constraint condition still holds). 
This is due to the fact that no information of the relative position and orientation 
between the constraint planes and robot base frame are provided in the identification. 
The general model is suitable for robot on-site re-calibration on a periodical basis 
where the parameter changes from the previous calibration are relatively small. 
Information about the relative relation between the constraint planes and robot base 
(such as the constraint planes aligned with the base) will enable the model to identify 
larger kinematic errors.

Chapter 5 - Autonomous Calibration Using a Trigger Probe
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Figure 5.3. Simulation Program Flowchart
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Table 5.2. Induced & Identified Kinematic Errors

Link No. Au, (mm) Adi (mm) A a, (rad.) Adi (rad.) Aß, (rad.)

1 0.087 0.055 0.0081 -0.0011 0
(induced) (0.087) (0.000) (0.0080) (-0.0019) (0)

2 0.049 0 -0.0026 0.0059 0.0131
(induced) (0.069) (0) (-0.0027) (0.0060) (0.0131)

3 -0.036 0.075 -0.0122 -0.0039 0
(induced) (-0.004) (0.011) (-0.0123) (-0.0039) (0)

4 -0.061 -0.147 -0.0014 -0.0070 0
(induced) (-0.053) (-0.07) (-0.0014) (-0.0070) (0)

5 0.015 0.029 0.0022 -0.0074) 0
(induced) (0.041) (0.016) (0.0022) (-0.0076) (0)

6 0.146 -0.039 0 -0.0084 0
(induced) (0.146) (0.040) (0) (-0.0070) (0)

Table 5.3. Accuracy Comparisons for Calibration Points

Before Calibration After Calibration

(mm) dx dy dz dx dy dz

avg. -3.756 -6.8745 -6.2575 -0.2049 -0.0876 -0.2646

stdev. 2.6299 2.7775 2.6459 0.0411 0.0429 0.0132

max. 6.5839 12.7363 13.1583 0.2681 0.1916 0.3098

(Simulation results with induced errors)
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Table 5.4 lists the identification results using the identification model where the 
orientations of the constraint planes are known (aligned with the robot base axes). The 
induced errors were randomly produced in the range of ±2 (mm) for linear parameters 
and in the range of ±0.02 radians for angular parameters (the values in parenthesis). 
Both the linear and angular parameter errors identified are almost identical to those 
induced in this case. Comparing with the assumed positions of the constraint planes, the 
corresponding position component of the calibration points can be evaluated directly, 
which is listed in Table 5.5. The x  component evaluation (dx) are based on the forty 
calibration points which lie on the constraint plane x  = -550 (mm). The y, z component 
of position evaluation (dy and dz) are based on the calibration points which lie on the 
constraint plane y = 300 (mm), and z = -450 (mm) respectively. It is shown that the 
positioning accuracy has been improved significantly by identifying the induced errors, 
the maximum deviation from the constraint plane being decreased from up to 15 (mm) 
to below 0.2 (mm).

Figure 5.4 plots the x, y, and z component of the positioning deviations from the 
corresponding constraint plane. The first 40 points are the x  component deviations from 
the constraint plane x = -550 (mm), the next 40 are y component deviations from the y 
= 300 (mm) constraint plane and the last 40 are z component deviations from the z = 
-450 (mm) constraint plane for the 40 calibration points on the corresponding constraint 
plane respectively. Note that only relative position information (the nominal position 
difference between two consecutive touch points) is used for calibration. But the 
calibrated model can predict accurately the absolute positions of the constraint planes. 
There exists a small residual error in the x component deviations from the x-axis 
constraint plane after calibration (the average error is 0.1114 mm, Table 5.5). It is due 
to the fact that the linear position information between robot base and the constraint 
planes are not provided in the identification. The big value of induced errors used in the 
simulation resulted in the calibrated model pointing to the positions shifted parallel 
from the constraint plane. This small parallel shift will be diminished by decreasing the 
induced errors. Since the assumed errors are larger than those for actual robots we 
generally dealt with in on-site calibration, the identification algorithm used in 
simulation is suitable for practical applications.
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Table 5.4. Induced & Identified Kinematic Errors

Link No. Aa, (mm) Adi (mm) AOj (rad.) Adi (rad.) A/J, (rad.)

1 1.737 0.038 -0.0036 -0.0119 0
(induced) (1.696) (0.130) (-0.0036) (-0.0120) (0)

2 1.175 0 -0.0012 -0.0175 0.0106
(induced) (1.256) (0) (-0.0011) (-0.0175) (0.0106)

3 0.248 0.373 0.0160 -0.0005 0
(induced) (0.236) (0.374) (0.0160) (-0.0005) (0)

4 0.179 1.560 -0.0106 -0.0048 0
(induced) (0.195) (1.662) (-0.0106) (-0.0048) (0)

5 -0.788 -0.167 -0.0096 0.0076 0
(induced) (-0.955) (-1.367) (-0.0130) (0.0080) (0)

6 -1.893 -1.932 0 0.0147 0
(induced) (-1.894) (-1.835) (0) (0.0138) (0)

Table 5.5. Accuracy Comparisons for Calibration Points

Before Calibration After Calibration

(mm) dx dy dz dx dy dz

avg. -5.0646 1.9947 8.1754 0.1114 -0.0648 0.0051

stdev. 3.8930 3.6056 2.3923 0.0034 0.0093 0.0053

max. 14.8847 10.0196 13.0042 0.1186 0.1110 0.0148

(Simulation results with induced errors)
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B efore
Calibration

A fter
Calibration

Figure 5.4. Simulation Result with Induced Errors

5.5.2 Experimental Results

To verify the proposed calibration scheme, the experimental set-up was used for data 
collection (Figure 5.5). A calibrated flat plate measuring 530 (mm) long and 250 (mm) 
wide was placed perpendicular to robot base x, y-axes for data collection. The robot x-y 
base plane was aligned precisely with the granite worktable of a co-ordinate measuring 
machine (CMM), therefore the worktable surface was used as the z-axis constraint 
plane. The positions of the x, y, z-axes constraint planes in the robot base frame, 
according to average values of the robot controller's readings, are at x = -652.070 (mm); 
y = 491.337 (mm); and z = -470.558 (mm). The worktable surface has a reachable area 
for the robot of about 80 (cm) by 110 (cm) which allows a wide range of robot 
movements in the x, y direction. The robot movement ranges are restricted such that the 
probe touch points lie on the constraint planes. The flat plate has a flatness of about 
±0.001 (mm) and the flatness of the granite worktable surface is in the order of 5 (jm  ) 
which are accurate enough for robot calibration. The data collection procedure was
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implemented in VAL-II and it took about five seconds to collect one data point. One 
hundred touch points on each of the plane were collected. Sixty pairs randomly chosen 
from each of the 100 pairs were used for calibration and the remaining points were used 
for independent test. Choosing a learning rate ¡1= 106, the dynamic system (5.17) 
converges to its minimum rapidly. The trajectory of the kinematic identification in the 
first iteration is illustrated in Figure 5.6, which exhibits efficient and robust 
convergence (in about 20 pis for circuit implementation and less than 1 second in 
simulation), where linear parameters are in centimetres and angular parameters in 
radians. Table 5.5 lists the identified kinematic errors using the RNN-based 
identification algorithm based on the experimental data.

Fig.5.5 (a). Robot touch worktable surface (z-aixs constraint plane) using a probe
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Fig. 5.5 (b). The robot touch an aligned (y-axis ) constraint plane using a probe 
Figure 5.5. Experimental Set-up for Data Collection

Figure 5.7 plots the x, y, and z component of the differences between each two 
consecutive touch points on the same constraint plane (the first 39 points are the 
difference of x components obtained from the 40 test points on the x-axis constraint 
plane, and the next 39 are y component differences obtained from the 40 test points on 
the y-axis plane and the last 39 are z component differences obtained from the 40 test 
points on the z-axis plane). The dashed lines represent the differences of positions 
predicted by the un-calibrated model in the robot controller while the solid lines 
represent the differences of positions predicted by the updated model using the 
identified errors. The symmetry of the graph is due to the use of the differences 
between consecutive points. It is shown that the calibrated model works well for test 
data points as well. Therefore the calibrated model is valid not only for the calibration 
points but also for the test points.

Using the reference positions of the constraint planes perpendicular to the base axis, 
we can evaluate directly the positioning accuracy achieved by this calibration. The 
accuracy comparisons based on the forty test data points on each of the three constraint
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planes are given in Table 5.7, where dx, dy and dz represent the x, y and z component 
deviations from the x, y and z-axes constraint plane respectively. The average of 
absolute error after calibration has improved to below 0.3 (mm). The z component 
deviations from the x-y plane (z-axis constraint plane) before and after this calibration 
are illustrated in Figure 5.8 based on the 100 collected data from the z-axis constraint 
plan. The x, y-axes represent the x, y coordinates of those touch points on the z-axis 
constraint plane (which shows that the touch points on the z-axis constraint plane lie in 
the area of 400 x 200 mm2), and the z-axis represents the z coordinate differences 
between the model predicted and the actual position of the z-axis constraint plane. 
Figure 5.8 (a) shows the z-axis constraint plane predicted by the robot model before 
calibration, while Figure 5.8 (b) shows the z-constraint plane predicted by the model 
after calibration. Figure 5.8 (b) is much closer to the actual shape and position of the z- 
axis constraint plane than Figure 5.9 (a). It has shown that the deviations from the z- 
axis constraint plane has been decreased significantly after calibration. We can see that 
this approach achieves an accuracy improvement comparable to other calibration 
methods using sophisticated external measurements. The maximum inaccuracy after 
calibration is of the order of robot repeatability for the test points on the constraint 
planes (Table 5.7).

Trajectory of Parameter Identification

Figure 5.6. Time Evolution of Kinematic Errors during Identification
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Table 5.6 Identified Errors of a Puma 560 Robot

Link No. Aa, (mm) Adi (mm) Act, (rad.) ■A0,(rad.) AÂ (rad.)

1 1.027 -0.010 0.0018 0.0017 0

2 0.688 0 -0.0023 -0.0048 -0.0013

3 0.453 0.128 0.0007 0.0024 0

4 0.139 -0.252 0.0056 0.0172 0

5 -0.126 -0.441 -0.0061 0.0041 0

6 0.068 -0.348 0 0.0082 0

Table 5.7 Accuracy Comparisons Based on Test Points

Before Calibration After Calibration

(mm) dx dy dz dx dy dz

average 1.017 4.058 1.890 0.190 0.259 0.223

stdev. 0.165 0.658 0.306 0.031 0.042 0.036

max. 2.218 4.866 3.924 0.558 0.573 0.571
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Before
Calibration

A fter
Calibration

Figure 5.7 Test Result with Experimental Data
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(b) z-axis Constraint Plane Perceived by die Robot After Calibration 

Figure 5.8. z-axis Constraint Plane Perceived by the Robot
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5 .5 3  Cross-Evaluation using CMM

In the above sections, we have shown through simulation and experimentation that a 
robot can calibrate its kinematic control model using the measurements of its internal 
sensors only. However, for the evaluation of the calibration results, the internal sensor 
measurements are inappropriate and some external global measurements are needed. 
Furthermore, although we show through experimentation that the positioning accuracy 
of the test points on the constraint planes are improved, it needs to be verified that the 
positioning accuracy of those points beyond the constraint plane are also improved. 
Therefore a precision co-ordinate measuring machine (CMM) was used to obtain the 
actual locations achieved by the robot end-effector. A measuring cube was mounted in 
the end-effector to obtain the full pose information of the end-effector as described in 
Chapter 3. Two hundred and eighty eight points uniformly distributed in a volume of 
200 (mm) by 400 (mm) by 200 (mm) in Cartesian space and 45 (degrees) by 90 
(degrees) by 135 (degrees) in orientation space were collected. The measurement 
volume was located near the area where the constraint plates were placed. Since the 
actual measurements of the CMM were with respect to a reference point, the reference 
point was calibrated before the collected data were used. The calibration of the 
reference point could be considered as the robot base calibration and was performed by 
minimising the total inaccuracy of the whole 288 points in the least square sense. To 
evaluate the robot kinematic model before and after calibration, the effects of the robot 
base and the tool were eliminated, since the robot was set-up at different time for 
calibration and for evaluation and used the different end-effector tools.

Both the actual measured positions and orientations of the end-effector were 
compared with the locations reported by the kinematic model without calibration, and 
by the kinematic model updated using the identified errors of Table 5.5. The 
comparison results are listed in Table 5.8 which are based on twenty test points 
randomly chosen from the whole data set. After compensating robot base error, the 
average position error in length was decreased from 3.75 (mm) to 2.15 (mm). The 
average error decreased further from 2.15 (mm) to 0.76 (mm) after robot kinematic 
calibration. The standard deviation decreased from 1.15 to 0.19. Although only position 
information was used in calibration, the orientation accuracy was improved as well due 
to the robot wrist parameters being calibrated using the tool offset. The accuracy 
improvement of the cross-evaluation is encouraging, considering that the set-up for
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calibration and evaluation was changed and the evaluation volume was beyond the 
constraint planes used for calibration.

Table 5.8 Cross-Evaluation Results Using CMM

Before Calibration
After Base 
Calibration

After Base & Robot 
Calibration

in length Pos.(mm) Ori.(deg.) Pos.(mm) Ori.(deg.) Pos.(mm) Ori.(deg.)

average 3.7509 2.5743 2.15 1.57 0.76 0.84

stdev. 1.1506 0.4227 0.52 0.42 0.19 0.37

max. 4.7437 3.1496 2.86 2.45 1.14 1.41

5.6 Chapter Summary and Discussions

A new autonomous robot calibration scheme has been developed in this chapter. 
Renishaw probes were originally used for workpiece set-up and measurements for 
CNC lathes. We applied these cost effective sensors successfully for robot on-site 
calibration in an industrial application environment. Instead of taking partial or 
complete pose measurements for robot calibration, the tip-point of the probe was 
constrained to a plane movement and only robot internal joint measurements were used 
for kinematic identification. Neither external measurements nor accurate fixture set-up 
are needed for such a calibration. The recurrent neural network-based parameter 
identification algorithm is used for calibration processing. Both simulation and 
experimental results for a Puma robot show that robot positioning accuracy can be 
improved to the level of robot repeatability.

The six dimensional robot kinematic error model was projected into one positional 
dimension in this study. The full kinematic parameters can be calibrated as long as the 
inaccuracy function of the specific dimension component contains all the kinematic 
parameters. If the specific component is not sufficient to identify all kinematic 
parameters, more than one constraint plane can be placed in different positional axis
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separately for the data collection. Proper tool offsets are also needed to make the robot 
wrist parameters identifiable. The general kinematic identification model does not 
require the exact knowledge of the constraint plane locations but the model can only 
identify small kinematic errors. The orientation knowledge of the constraint planes 
(aligned with robot base planes) enable the model to identify reasonably large 
kinematic errors for practical applications. The alignment of the constraint plane with 
the robot base axis can be easily performed with the robot and a trigger probe. Future 
work will investigate the optimal placement of the constraint plane in the constrained 
environments so that the robot has the optimal identification configurations. The study 
could lead to the construction of a portable mechanical fixture for robot on-site 
calibration. Constraint surfaces other than planes may also be suitable for the proposed 
calibration method (such as a spherical ball) as long as the surfaces have known shapes 
and are suitable for touching with the probe. The effect of measurement noises such as 
the flatness of constraint planes on identification accuracy need to be studied by 
simulation in future work.
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CHAPTER 6

GENERIC ACCURACY MODELLING USING FEEDFORWARD 
NEURAL NETWORKS

6.1 Introduction

Accuracy modelling is an important aspect for robot calibration which uses some 
mathematical tools to represent the functional relationship between robot end-effector 
positioning error and model parameter errors of each individual link. Either analytic or 
numerical modelling techniques are used to estimate robot end-effector accuracy as a 
function of robot joint configurations. In previous chapters, robot end-effector 
inaccuracy was modelled as an analytic function of robot kinematic or geometric errors. 
If geometric error modelling is not sufficient, non-geometric errors such as 
transmission error, compliance, gear backlash, etc. can be added into the model 
(Whitney, Lozinski and Rourke, 1986; Judd and Knasinski, 1990) and the calibration 
technique developed remains valid. Another objective of the study of robot accuracy 
modelling is to understand the interactions between errors which is useful for 
diagnosing various error sources. To diagnose robot error sources is difficult since 
different errors in individual links may cause identical errors in the robot end-effector.

As argued by Everett (1993), however, existing geometric and non-geometric error 
models are ad-hoc and are not suitable for investigating the causes of errors. Existing 
models are not complete and are unable to model all the phenomena that contribute to 
robot end-effector inaccuracy. The assignment of non-geometric parameters in the 
models are ad-hoc since the importance of non-geometric factors in affecting the
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accuracy vary from one particular robot to another, and the added non-geometric 
parameters may have dependency on the existing model parameters which might lead 
to invalid identification results. Instead, a general error function for each parameter, 
based on the expansion of Fourier series, was proposed by Everett (1993). The error 
function provides a more systematic way to represent both geometric and non- 
geometric errors than previous models. While the general error function is useful for 
analysing the contributions of various errors, and understanding the error characteristics 
of a robot, the size of the general error model makes it impractical for calibration 
purposes because the terms that need to be identified are numerous and the 
identification algorithm becomes intractable. No numerical identification algorithm is 
given for the general error model in Everett's work.

In this chapter, a generic accuracy function is defined based on the concept of 
Everett's error function. Instead of defining each parameter error using the expansion of 
Fourier series, the generic accuracy function defines robot end-effector inaccuracy by a 
series of trigonometric functions of joint variables expanded by Fourier series. The 
accuracy function is generic in that it accounts for various error sources and it can 
apply to any type of robot. The functional relationship between end-effector inaccuracy 
and joint variables is useful for the design of robot accuracy compensators using 
feedforward neural networks. Multi-layered feedforward neural networks are known to 
be universal function approximators which are theoretically capable of approximating 
any continuous function to an arbitrary accuracy. Regarding robot joint configuration 
as inputs and end-effector inaccuracy as outputs, multi-layered feedforward neural 
networks can be used to learn the non-linear mapping between robot joint configuration 
and end-effector inaccuracy. However, the design of such a network is not 
straightforward due to the complexity of the robot accuracy problem, which involves 
multiple joints and various error sources. The generic accuracy function serves as the 
basis for the design of the neural network architecture. While maintaining the 
completeness of Everett's general error model, the neural network learning technique 
provides a practical solution to the calibration problem using the generic accuracy 
model.

In the next section, we explain that robot end-effector inaccuracy can be represented 
by a series of trigonometric polynomials of robot joint variables through the discussion 
of the error function, therefore an expansion of Fourier series can be employed as a 
generic accuracy function for completeness. In section 6.3, a higher-order neural
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network architecture-Pi-sigma network (Ghosh and Shin, 1992)-is introduced. The Pi- 
sigma network is capable of generating a higher-order polynomial representation 
efficiently and dynamically, which provides potential for practical implementation of 
the generic accuracy model. To illustrate this, Section 6.4 takes a one degree-of- 
freedom manipulator as an example which shows that the trained network is equivalent 
to the simulated analytic higher-order error function. In Section 6.5, experimental data 
for a six DoF Puma robot is used for the network training, and compared with the 
network training using the commonly used back-propagation algorithm.

6.2 A Generic Accuracy Function

Typical error sources for robot inaccuracy can be classified into two types; geometric 
errors and non-geometric errors. Geometric errors are normally defined as static 
parameter deviations which are constant for all robot configurations. Kinematic 
parameter errors discussed in the previous chapters are geometric errors. Non- 
geometric errors are dependent on the robot configurations (model terms are functions 
of the joint variables). Everett (1993) represents both geometric and non-geometric 
errors systematically as an error function which is based on the expansion of Fourier 
series. The configuration-independent geometric errors can fit exactly the error function 
when the function only contains the zero’th order of joint variables. A similar fit can be 
achieved for the configuration-dependent non-geometric errors although the error 
function order may vary. For example, typical non-geometric errors such as gear 
transmission error, compliance and gear backlash can be modelled as robot joint offset 
errors which are trigonometric functions of the joint variables (The detailed expressions 
of the model are referred to Whitney, Lozinski and Rourke, 1986). The trigonometric 
function of the actual joint values will therefore contain terms which are trigonometric 
functions of the trigonometric function of the joint variables, such as cos(psin(0)), 
sin(pcos(0)), etc, where p  is a coefficient constant and 6 is joint variable. Using Taylor 
series expansion and some trigonometric operations, such functions like cosine of sine 
can be expressed as a series of higher-order trigonometric function of joint variable. For 
example:

cos(/?sin(0)) = A0+Al cos(20) + \  cos(40)+... (6.1)

where A0, Ab and A2,... are coefficient constants in the series form of the coefficient p.
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Based on the above observation, model parameter errors (both geometric and non- 
geometric) can be described by the error function which is defined by a Fourier series. 
The error function is applied to the standard homogenous transformation as an ordinary 
kinematic parameter, it is similar to the kinematic error except that it allows the error to 
change with joint variables. However, the development of the relationship between 
end-effector error and each error function by expanding the function is impractical for 
multi-degree of freedom robots, because the size of the model grows exponentially with 
the number of DoF and the order of the error function. Figure 6.1 illustrates the 
relationship between robot end-effector error AT and each link transformation error AA, 
for a six DoF robot (i = 1,2,..., 6), where A, is the standard Homogenous transformation 
for link i which is the first order trigonometric function of joint variable 0, as defined in 
Chapter 3, AA, contains error functions which may be expanded to a certain order of the 
trigonometric functions of joint variables as discussed above. If AA; is purely geometric 
then it is the zero'th order of the joint variables, the model of the end-effector error AT 
can be established as described in Chapter 3, which is however the sixth order of the 
trigonometric functions of joint variables. The higher-order terms of the trigonometric 
functions in AT are developed due to the fact that individual link errors are transmitted 
through each link transformation to the end-effector error, and there is coupling effect 
between link transformations. When AA, is expanded to the higher-order of the 
trigonometric functions of the joint variables, the order of end-effector error AT in 
terms of the trigonometric functions of the joint variables will grow considerably. For 
example, if AA, is expanded to the second order of the trigonometric functions of joint 
variables, the order of AT will be 26 (64) due to the multiplicative transmission of the 
errors.
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Through the above discussion, we see that robot end-effector errors due to link 
parameter errors (represented by an error function) can be represented by a series of 
trigonometric functions of joint variables with varying orders. For the purpose of robot 
accuracy compensation, it would be very useful to develop a generic accuracy model 
that establishes the functional relationship between robot end-effector error and joint 
variables, taking all the error sources into account. Similar to the definition of the error 
function which describes each parameter error using an expansion of the Fourier series, 
we define a generic accuracy function which defines robot end-effector positioning 
error (inaccuracy) by a series of trigonometric functions of joint variables expanded by 
Fourier series. For example, the generic accuracy function for end-effector error of a 
one degree of freedom robot can be written as

Axe = a  ̂+ 'Z a, cos {16) + b{ sin(/0) (6.2)
i= i

where 6 is the joint variable and m is the highest order of error; Axe represents the e-th 
component of the robot end-effector error (inaccuracy). For rotary type joints, 6 is the 
joint angle; for prismatic type joints, conversion of linear movement into rotary angle 6 
= q*2n/L is applied so that the generic accuracy function can be used for prismatic type 
joints, where q is the joint variable and L is the joint range of the prismatic joint. If m is 
equal to zero, the end-effector inaccuracy is equal to a constant which can be 
interpreted as a constant error existing at the robot base. If only purely geometric errors 
exist, then the first order expansion is sufficient for a one DoF robot to represent the 
end-effector inaccuracy due to the geometric errors. The kinematic accuracy model 
based on geometric errors as developed in Chapter 3 is a special case of the generic 
accuracy function. The generic accuracy function can be expanded incrementally to 
accommodate various orders of error function and number of DoF.

For a multi-degree of freedom robot, the generic accuracy function becomes rather 
complicated since it is a multi-dimensional Fourier series. The basis functions of a 
multi-dimensional Fourier series expand significantly with the degree of freedom and 
the order of the function. For example, the basic trigonometric system for a two 
dimensional series are as follows:

1, cos(m<?i), sin(m^), cosfn^), sin(n62), cos(mQl)cos{n61) , ... 
sinfm^jcosf/z^), cos(m6l)sm(n62), sin(m01)sin(/i82) , ... (6.3)
(m =1, 2,...; n = 1, 2,...)
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The structure of the generic accuracy function provides useful information for the 
design of a robot accuracy model which attempt to approximate the functional 
relationship between end-effector inaccuracy and joint variables. In the following 
sections, a feedforward neural network is used to model the accuracy function.

6.3 Neural Network Architecture and Learning Algorithm

6.3.1 Neural Network Architecture

The involvement of neural networks in this case is to construct the non-linear 
mapping between robot joint space and end-effector inaccuracy in Cartesian space 
using a NN internal representation. Multi-layered perceptron (MLP) neural networks 
are capable of approximating any continuous function from one dimensional space to 
another to an arbitrary accuracy, provided sufficiently many hidden units are available 
(Homik, Stinchcombe and White, 1989). However, there are currently no constructive 
methods available for the design of NN architecture for specific problems. Typically, 
an internal representation of a MLP network is constructed from a group of first-order 
units via a learning rule such as back-propagation. The first-order neuron processing 
units are linear in the sense that they can capture only first-order correlation of inputs. It 
has been shown that higher-order correlation among input components can be used to 
construct a higher-order network which exhibits greatly enhanced performance in 
learning, generalisation and knowledge (symbol) representation (Giles and Maxwell, 
1987). This performance is due to the fact that the order or structure of a higher-order 
neural network can be tailored to the order or structure of a problem, which enables 
such a network to learn geometrically invariant properties more easily. For example, 
learning the XOR has been the classic difficult problem for first-order units which 
requires thousands of iterations of the fastest learning rule to train a hidden unit to 
perform the XOR function. However, if a second-order correlation term Xi*x2 between 
the two inputs x x and x2 is provided, no hidden unit is needed and one iteration of 
training will converge (Giles and Maxwell, 1987).

From the generic accuracy function as defined above, we can see that robot end- 
effector inaccuracies are higher-order trigonometric polynomials of joint variables. 
Therefore, a higher-order neural network which can capture higher-order correlation 
among input components will be desirable for our application. One straightforward
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higher order network can be constructed by using non-linear basis functions, chosen 
from a priori knowledge of the model, as the network inputs, and no hidden layer is 
needed (such networks are sometimes called functional link networks (Pao, 1989)). A 
similar network architecture was used by Kawato and Suzuki (1988) for robot inverse 
dynamics learning where the basis functions were selected from the non-linear terms of 
dynamics equations. This kind of network has fast and accurate learning ability because 
it belongs to Widrow-Hoff type linear learning (Mathworks Inc., 1993). Unfortunately, 
a priori knowledge of models is essential for this kind of network, and the terms 
required in the input layer become unpractically large for higher dimensional and 
higher-order non-linear mapping problems due to the problem of combinatorial 
explosion. Take the accuracy modelling problem as an example, if a two DoF robot is 
considered, the basis functions for network input can be chosen from the generic 
accuracy function (6.3); if only purely geometric errors are considered, only second- 
order correlation between the trigonometric functions of joint variables are required, the 
number of the basis functions is 9. However, the number of basis functions grows 
exponentially with the dimension of input space and the order of the problem since it 
belongs to multi-dimensional Fourier series expansion.

A class of higher-order networks, Pi-sigma networks, was introduced by Ghosh and 
Shin (1992). This network is a fully connected two-layered feedforward network, the 
weights from a hidden layer to the output are fixed at 1, and only weights between 
input and the hidden layer are adjustable (Figure 6.2). The Pi-sigma network uses linear 
summing units in the hidden layer and product units in the output layer to incorporate 
the approximation capabilities of higher-order networks while greatly reducing network 
complexity. It has been shown that the size of the network is linear in input size and the 
order of the network. The total number of adjustable weights for a AT-th order Pi-sigma 
network with A-dimensional inputs is K*(N+1) (Ghosh and Shin, 1992). This also 
enables the network to be incrementally expandable since the order can be increased by 
adding another summing unit and associated weights. The highest order of correlation 
among inputs is equivalent to the number of hidden units used. Figure 6.2 shows a AT-th 
order Pi-sigma network with one output. For multiple outputs, multiple Pi-sigma 
networks can be used for each component of the output. Due to the higher-order 
approximation capability and the network simplicity, the Pi-sigma network has been 
employed to construct a generic model to approximate robot accuracy in this work.
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hidden layer
o f linear sum m ing units

adjustable
w eights

input layer

Figure 6.2. A Pi-sigma network with one output (Ghosh and Shin, 1992)

Let x =(1, xu x2, ..., xN) be an N+\-dimensional augmented input vector, xk denotes 
the (ifc+l)-th component of x. The inputs are weighted by K * (jV+l)-dimensional 
augmented weight vectors w,•= (bj, wXj, w2j, ..., wNj)T, j  = 1, 2, and summed by a 
layer of K "linear summing" units where b} is a bias or the threshold of theyth summing 
unit and K  is the desired order of the network. The output of the /-th summing unit, hp 
is given by:

N
hj = w/x = +bj,  7 = 1 , 2 , ..., K

* = i
(6.4)

The output y is given by

K
y=S(Uh j )

y-i
(6.5)

where £(•) is an appropriate activation function which can be chosen as the sigmoid 
activation function:

(6 .6)

or the hyperbolic tangent function:

(6.7)
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where c is a coefficient constant. If no non-linear activation function is used in the 
output layer, the network output is actually a higher-order polynomial of input 
variables. Pi-sigma networks without non-linear activation function are used as the 
basic building blocks to construct Ridge Polynomial networks which are capable of 
representing any multivariate polynomial (Shin, 1992). Since our target is to represent 
the generic accuracy function, no non-linear activation function is used in our network 
and the inputs are pre-processed using non-linear trigonometric transformations, and 
therefore the output is the ÆT-th order trigonometric polynomial of robot joint variables. 
The network learning algorithm provides a natural computational mechanism for the 
generic accuracy modelling problem.

6.3.2 Network Learning Algorithm

The theoretical proof of Pi-sigma network approximation capability and learning 
stability has been given in (Ghosh and Shin, 1992). For efficient and stable learning, 
the asynchronous updating rule has been adopted (Ghosh and Shin, 1992). That is, at 
each learning epoch, only weights associated with one hidden unit will be chosen to be 
updated at one time, this process is repeated until all weights associated with each 
hidden unit are updated once. The weight updating is based-on a LMS (least mean 
square)-type learning rule, and the batch learning is used to speed up the training 
process. To derive a network weight updating rule based on the gradient descent 
algorithm, the network objective is constructed as the sum squared error (SSE) 
function:

e2 = Ì ( t p - y p)2 (6.8)p-1

where superscript p  denotes the p-th training pattern, tp is the desired output for the p- 
th pattern, yp is the network output, and summation is over all Q training patterns.

Let the l -th hidden unit be selected for updating, applying gradient descent on the 
selected weights w,, we have:

A wu °c de2

tou
k =1,2, ...,N (6.9)
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Using (6.7) and (6.4) in (6.8), and noting that no non-linear activation function is used 
in the output layer, we obtain the weight updating rule as follows:

where tp is the desired output andyp is the network output, hf is the hidden unit output 
and x p is the input vector, for the p-th training pattern respectively. All Q training 
patterns are applied simultaneously to determine the weight changes. The learning 
rate ri is chosen to be a small valued number and changes adaptively according to the 
sum square error (adaptive learning rate). The learning algorithm for the Pi-sigma 
network is implemented using MATLAB neural network toolbox (Mathworks Inc., 
1993) running on a Hewlet-Packard 9000 workstation.

6.4 Simulation Example for a One DoF Manipulator

Simulation for a one DoF manipulator (Figure 6.3) is performed to illustrate how a 
Pi-sigma network can be tailored to realise a generic accuracy model. The robot end- 
effector position (x, y) is dependent on its joint variable 6, for example:

p-
(6.10)

Q
Ai* = n . £ ( r ' - / M I W )  

/>=1 1
(6.11)

X = l*cos(ff) (6.12)

7 7 7 7 V

Figure 6.3. One Degree of Freedom Manipulator
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The end-effector inaccuracy dx , due to its link geometric errors dl and d6, is given as:

dx = dl*cos(6) - dd*l*sm{6) (6.13)

The inaccuracy model (6.13) due to purely geometric error is the first-order 
trigonometric function of joint variable. Assuming the second-order term p*sm(26) = 
2p*sin(0)*cos(0) due to non-geometric errors, and letting coefficient parameter p  = 
0.025, kinematic parameter l -  10, dl = 0.3, dd = 0.02, the analytic expression of the 
inaccuracy model dx is:

dx = O.3Ocos(0) - O.2sin(0) + O.O5sin(0)cos(0) (6.14)

To realise a second-order trigonometric polynomial (6.14), a second-order Pi-sigma 
network is designed as shown in Figure 6.4. The input is joint variable encoded by 
trigonometric functions. Two hidden units are employed to generate second-order 
correlation and one output unit without activation function is used. The training 
patterns comprise of 25 pairs of data generated by using the analytic model (6.14) 
which are uniformly distributed in the joint variable range [-n/2, 7t/2]. After about 1000 
epochs training using the learning algorithm presented above, the network converged 
with the final RMS (root mean square) error in the order of 10"6. The trained network 
connection weights are shown in Figure 6.4. Due to the small size of the network, we 
can expand the trained network analytically:

dx = 0.0+ O.2999cos(0) - O.2sin(0) + O.O5sin(0)cos(0) + O.OOOlcos2(0) + O.Osin2(0)
(6.15)

Figure 6.4. NN Representation of Generic Accuracy Model for a One DoF Robot
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Comparing (6.15) with (6.14), we can see that the achieved second-order 
trigonometric polynomial is very close to the simulated accuracy model. Several 
observations can be made from this simple example:

• It has been shown that the Pi-sigma network can be tailored to represent the 
generic accuracy function, with pre-processed inputs by using trigonometric functions, 
and hidden units being selected to fit the order of problem and robot DoF.

• The capability of this simple network architecture of realising higher-order 
trigonometric polynomial is attractive for our application since it suits the structure of 
the problem which is represented by a series of trigonometric polynomials. The 
network training is fast due to only one layer of connection weights being modified and 
the small network size needed.

• Instead of identifying the numerous error source items explicitly, the error 
source information is represented by the distributed network connection weights. The 
NN learning method provides a natural computation mechanism for the generic 
accuracy modelling.

• Using the incremental learning algorithm as suggested by Shin (1992) for 
realising higher-order multi-variate polynomials, the size and the order of the network 
can grow incrementally by adding a higher-order Pi-sigma network without affecting 
the established network connections.

Explicit evaluation realising an exact accuracy model for a multi-DoF robot is 
difficult due to multiple input variables involved. The training accuracy for multiple 
input variable network can not be achieved as well as in the example due to the basic 
learning algorithm (LMS-type) adopted, which stuck to local minima easily for 
multiple-variate non-linear optimisation problems. Advanced optimisation methods 
such as simulated annealing, or genetic algorithm (GA) (Masters, 1993) can be 
incorporated into the learning algorithm to escape from local minima, which however is 
not the focus of this study.
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6.5 Network Training Using Experimental Data

The end-effector inaccuracy data in the local calibration volume was collected for a 
six DoF PUMA robot using the CMM experimental set-up described in Chapter 4. The 
neural network was used to construct a robot accuracy model which relates robot joint 
configurations to end-effector inaccuracy, based on the training samples from the 
collected data. The trained network was then used to predict the end-effector 
inaccuracy, given joint configurations determined by the nominal inverse kinematics. 
The outputs of the trained network were used to modify the desired pose so that the 
actual pose achieved, by controlling joint values recommended by the nominal inverse 
kinematics, are close to the desired pose. The schematic of training and implementation 
of the NN-based accuracy model is shown in Figure 6.5.

a). Training of Neural Network Accuracy Model

b). Implementation of the Trained Network 
Figure 6.5. Training and Implementation of NN Accuracy Model
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As shown in Figure 6.6, a single Pi-sigma network has been used for each 
component of the pose inaccuracy vector, with the same inputs of joint variables 
encoded by sinusoidal functions. Note that only sinusoidal transformations are used in 
the input layer instead of using both sine and cosine transformations for each input 
component as in the simulation. This is because the input space is highly-dimensional 
(six dimensions); if both sine and cosine transformations are used in the input layer, the 
dimension of the input space will be doubled. Experiments show that network 
architecture with lower dimensions of input space outperform those with higher 
dimensions in this case. The product units have no activation functions and are used in 
the output layer so that the outputs are actually higher-order polynomials of sinusoidal 
functions of joint variables. The order of the polynomials is equal to the number of 
units used in the hidden layer of each Pi-sigma network. For the six DoF puma robot, 
our experiments show that six units in the hidden layer achieves best results. This 
agrees well with analytic kinematic accuracy models which are generally up to sixth 
order trigonometric polynomials of joint variables. Figure 6.7 shows the positional 
accuracy learning curve which exhibits fast and stable learning. The particular learning 
parameters are chosen for each component of output vector learning. The trained 
networks are then put together for implementation to obtain multiple outputs 
simultaneously.

Figure 6.6. Neural Network Architecture for Accuracy Modelling
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(a). The x-component of accuracy learning curve

(b). The y-component of accuracy learning curve
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(c). The ¿-component of accuracy learning curve 

Figure 6.7. Learning Curves for Positional Accuracy Modelling

Half of the collected 288 data points were used for network training and the 
remaining 144 points were used for evaluation. Figure 6.8 shows the neural network 
generalisation test of the positional accuracy modelling for the 144 test points (sorted in 
ascending order). It is shown that the network can predict robot inaccuracy well in the 
calibrated area even for the points unseen in the network training patterns. Three 
statistical measures (average error, standard deviation and maximum error) were used 
to evaluate the achieved accuracy by the trained network. Table 6.1 lists both position 
and orientation residual error (learning error) achieved by the trained network based on 
the 144 test points not included in the training data. Comparing Table 6.1 with the 
achieved accuracy using kinematic calibration in Chapter 4 (Table 4.6), it can be seen 
that the NN-based generic accuracy model achieves the same level of positional 
accuracy as the kinematic calibration, and achieves better orientation accuracy than 
kinematic calibration. It shows that kinematic model-based calibration can compensate 
the non-geometric errors in the local calibration volume, since kinematic modelling 
achieves the same level of positional accuracy as the NN-based generic accuracy
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modelling. The better orientation accuracy achieved by the NN model is partially due to 
the fact of there being independent Pi-sigma networks for each component of pose error 
vector, and that there are more adjustable parameters (weights) in the NN model than 
for the kinematic model. The NN-based model uses in total 6*6*(6+l) = 252 adjustable 
parameters (weights), in comparison with the total 30 adjustable parameters used in the 
kinematic model.

For comparison, a standard feedforward neural network using a back-propagation 
learning algorithm (Hecht-Nielsen, 1990; Masters, 1993) was used to approximate the 
same accuracy model. The input data are also encoded by sinusoidal functions. A three 
layered network of 6 x 30 x 3 were used for positional and orientation inaccuracy 
approximation respectively6. The hyperbolic tangent activation functions were used in 
the hidden layer units and linear activation functions are used in the output units. 
Several network training heuristics such as learning with momentum, Nguyen-Widrow 
initial conditions, adaptive learning rate (Mathworks, 1993) were used to improve the 
back-propagation learning. After about 1500 epochs training using 144 training data, 
the network converged to the desired level of learning accuracy. Accuracy evaluation 
for the trained back-propagation network based on the remaining 144 data points are 
shown in Table 6.2. Comparing Table 6.2 with Table 6.1, it shows that the back- 
propagation networks achieved the same level of accuracy as the Pi-sigma networks.- 
However, the total number of adjustable weights in the back-propagation networks is 
2*(30*(6+l)+30*3) = 600, in comparison with the 252 adjustable weights used in the 
Pi-sigma networks. The computation required in the back-propagation networks is 
much more intensive than the Pi-sigma networks due to the larger network size and the 
use of non-linear hyperbolic tangent functions in the hidden units, compared with only 
one layer of connection weights to be modified and no non-linear activation function 
used in the Pi-sigma networks.

6 Since there is no constructive methods for network design, the network architecture is decided based on 
extensive numerical experiments.
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Fig. 6.8 (a) dx  Generalisation Test

S■a

Test Points (Seated Numbering)

□
Measured Error 

o
NN Output

Fig. 6.8 (b) dy Generalisation Test
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Fig. 6.8 (c) dz Generalisation Test 
Figure 6.8. NN Generalisation Test for Position Compensation

Table 6.1. Accuracy Evaluation for Pi-sigma Network Based-on Test Pints

Position Error in Length Orientation Error in Length

average 0.2411 (mm) 0.4419 (degree)

std. dev. 0.1488 (mm) 0.3744 (degree)

max. 0.7774 (mm) 1.9460 (degree)
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Table 6.2. Accuracy Evaluation for Back-Prop. Network Based-on Test Points

Position Error in Length Orientation Error in Length

average 0.2383 (mm) 0.4249 (degree)

std. dev. 0.1450 (mm) 0.3494 (degree)

max. 1.0140 (mm) 1.4229 (degree)

6.6 Chapter Summary

A generic accuracy function which accounts for various error sources has been 
introduced. Feedforward mapping neural networks are used to implement the generic 
accuracy model. The generic accuracy function serves as the basis for the design of the 
network architecture. Pi-sigma networks, which are capable of representing higher- 
order non-linear functions using simple network architecture, provide natural 
computational mechanism for implementation of the generic accuracy function. Instead 
of identifying various error sources explicitly, the error source information is encoded 
in the distributed network connection weights. Due to the complex nature of the 
accuracy problem for multiple DoF robots, the NN representation is appealing because 
of its learning methodology, robustness and efficiency. However, the NN training 
accuracy and efficiency will suffer if larger data sets covering larger workspaces for 
multiple DoF robot are used. Neural network design methodology, which incorporates 
a priori knowledge into network architecture so that the network can capture invariant 
properties of the problem from high-dimensional data, remains an open research topic.

The generic accuracy modelling problem discussed in this chapter, and kinematic 
calibration discussed in previous chapters, concentrate on estimating robot end-effector 
accuracy (exact pose), given robot joint variables readings. This problem is also called 
robot forward calibration (Shamma and Whitney, 1987). The inverse calibration 
problem is to determine exact joint variable values, given the desired end-effector pose 
in robot workspace, which will be investigated in the next chapter.
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CHAPTER 7

ROBOT ACCURACY COMPENSATION USING ARTIFICIAL 
NEURAL NETWORKS

7.1 Introduction

Robot accuracy compensation is a process by which robot pose errors in a workspace 
are compensated through corrections to the nominal joint variables based on the 
identified geometric and non-geometric errors. Since robot controllers which accept 
identified parameter changes are still not widely available, implementation of robot 
calibration is generally performed through accuracy compensation in robot joint space. 
Robot accuracy compensation can be regarded as a subset of the inverse kinematics 
problem, which determines joint variable corrections given robot end-effector pose and 
the nominal joint values determined by the nominal inverse kinematic model.

There are two approaches to solving the robot accuracy problem; non-parametric 
and model-based parametric approaches. The non-parametric approach is based on 
fitting abstract interpolation functions to relate the joint transducer readings in a 
selected group of robot measurements to the measured pose errors. Such functions can 
then be used to compute the joint commands correction terms at the application points 
(a precise inverse kinematic solution is determined from the computed joint correction 
and nominal joint variables). Shamma and Whitney (1987) used third-order trivariate 
polynomials as interpolation functions to relate joint variables input and joint 
corrections output for a three DoF robot. Direct extension of the multi-variate 
polynomials for a six DoF robot is difficult since the number of polynomial terms
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required grows considerably with the number of DoF and the order of polynomials. 
Approximation functions are valid only in the regions of the workspace where data 
were taken on which the coefficients of the functions were based. Therefore non- 
parametric accuracy compensation is a local compensation by nature. Methods of robot 
local accuracy compensation are discussed in Section 7.2. A local accuracy 
compensation method based on the Pi-sigma neural network is developed. The Pi- 
sigma network can generate a multi-variate higher-order polynomial approximation 
efficiently through NN learning method. The NN-based accuracy compensation has a 
constant-time solution which is efficient for on-line implementation. Simulation and 
experimental results of local accuracy compensation are presented in Section 7.2 for a 
six DoF Puma robot.

Model-based accuracy compensation methods are based on numerical inverse 
solutions of the calibrated robot. As discussed in Chapter 1, for robots with simple- 
form kinematics, the nominal inverse kinematics has closed form solutions. However, 
closed form solutions do not exist for the calibrated robot due to the changes of 
kinematic structure. Numerical techniques are involved to find the precise inverse 
solutions for the calibrated non-simple form kinematic model. As to the numerical 
techniques for solving inverse kinematics problem, the Newton-Raphson (N-R) 
algorithm is widely used due to its simplicity. Stone (1987) developed numerical 
inverse kinematics algorithms for the general form kinematic model (calibrated 
signature model) based on the N-R method and the Jacobi iterative method. A 
comparative studies of computation complexity of the two algorithms has been 
performed by Stone (1987). It shows that the N-R algorithm has a quadratic 
convergence rate while the Jacobi iterative algorithm has a linear convergence rate. The 
Jacobi iterative method is similar to the differential transformation compensation 
algorithm as suggested by Veitschegger and Wu (1987), in which an iterative procedure 
of nominal inverse kinematics is applied until the achieved pose by the identified model 
is sufficiently close to the desired pose. Model-based compensation belongs to global 
compensation since it is not limited to specific local workspace. However, numerical 
compensation algorithms suffer from certain numerical problems such as ill- 
conditioning and singularities of the Jacobian. More robust compensation algorithms 
such as Levenberg-Marquardt and linear quadratic regulator algorithm (Zhuang, 1989) 
can find good solutions in the vicinity of singularities by using regulation terms in the 
cost functions, but require longer computation time due to the algorithm complexities 
which make on-line implementation problematic. A recurrent neural network (RNN)
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approach to model-based accuracy compensation (Zhong and Lewis, 1994; Zhong, 
Lewis and N-Nagy, 1995) is developed in Section 7.3 which is both computationally 
efficient for on-line implementation and robust even at singular configurations. Firstly 
the N-R compensation algorithm is analysed. The RNN-based accuracy compensation 
algorithm is then presented. Simulation examples of path compensation and 
compensation near a singularity are given using the RNN-based compensation 
algorithm based on the identified kinematic errors for the Puma robot.

7.2 Non-parametric Accuracy Compensation

7.2.1 Accuracy Compensation Using Polynomial Functions

This Section intends to explain the method of non-parametric accuracy 
compensation using polynomial approximation based on the works by Shamma (1985), 
Shamma and Whitney (1987) and the review chapter by Mooring, Roth and Driels 
(1991).

"Black Box”

Figure 7.1. N on-param etric Accuracy Compensation (Sham m a and W hitney, 
1987; M ooring, Roth and Driels, 1991)

The basic idea of non-parametric accuracy compensation is to approach the accuracy 
problem as a "black box". Figure 7.1 illustrates the non-parametric accuracy 
compensation scheme. The criteria for the approximation function inside the "black 
box" were that it be continuous, be able to represent high order functions, and still be 
implementable in a noisy environment while remaining numerically well behaved. The
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first approximation function attempted by Shamma (1985) was the CMAC (Albus, 
1975a,b). It was discovered that the CMAC is a discrete (not continuous) linear (unable 
to represent higher order functions) interpolator therefore is not suitable as an 
approximation device. Instead, multi-variable polynomials were used as approximation 
functions. The third-order trivariate polynomials were chosen for a Puma robot 
comprising of the first three major DoF. Each of the three joint correction 6qt (i = 1, 2,
3) is then represented as the trivariate polynomial function of the three joint variables 
(9i. 9s):

Sqt = £  1 1  CqiqZql (7.1)
r=0*=0f=0

where r , i , i a r e  non-negative integer exponents that satisfy the inequality:

0 < r  + s + r< 3  (7.2)

and c'm is the polynomial coefficient to be determined from the collected training data 
pairs (q, 8q). Taking all possible combinations into account, there are in total 20 terms 
in (7.1) for the third-order trivariate polynomial. The unknowns of the polynomial 
coefficients are determined through resolving the over-determined linear system 
formulated by aggregating linear equation (7.1) at different measurement 
configurations. The selection of measurement configurations is based on the 
Tchebychev spacing and the polynomials are created to be mutually orthonomal so that 
the linear least square solutions of the coefficients are numerically efficient and robust 
(Shamma and Whitney, 1987).

The accuracy compensation procedure for the three DoF Puma robot can be 
summarised as follows:

Step 1: Define a calibration volume of robot workspace and generate a set of training 
points via Tchebechev spacing.

Step 2: Construct a set of orthonormal polynomials with the joint encoder angles qlt 
q2, and q3 as the independent variables.

Step 3: At the above training points find the required joint corrections. To find the 
joint encoder corrections necessary to drive the manipulator to the desired workspace 
position involves the following experimental procedure:
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3a) Send the robot to the desired position xd, the corresponding joint encoder reading 
is q„ The actual position achieved by controlling joint angles q„, xa is measured using a 
measuring device.

3b) Manually perturb the joints until the manipulator end point is in the desired 
training position xd. Record the joint readings qa. Then the joint correction is Aq = qa-

q -
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Step 4: Solve for the coefficients that give the polynomial the best fit to the training 
data samples. There will be three such sets of coefficients, one set for each joint.

The procedure was applied to a simulated PUMA robot. Simulations show that the 
maximum position error improved from 2.5 (mm) before compensation to 0.31 (mm) 
after compensation within the calibration volume of about one quadrant of robot 
workspace. Robot positioning errors were simulated using both geometric and non- 
geometric error models. No experimental results were given in the work by Shamma 
and Whitney.

Several observations are in order:

1) Direct extension of the method presented for calibrating a 3 DoF manipulator to 
the general manipulator may be very cumbersome computationally. For instance, the 
use of third-order, six-variate polynomials requires 84 terms (compared to 20 terms for 
the third-order trivariate polynomial as shown in the example), thus requiring a very 
large number of data points7 and making the computation very complicated. If higher- 
order polynomials are required, the number of terms grow considerably and the 
problem may become intractable.

2) The data collection method (Step 3) involves manually measuring and teaching 
the robot, which is time-consuming, tedious and error prone. It is impractical to do so if 
large number of data points are required.

3) Although the non-parametric accuracy compensation is based on the "black-box" 
approach, one may still want to benefit from the robot analytic accuracy model as a 
prime source of useful information. Due to the fact that most of the functions in the 
analytic accuracy model are trigonometric functions of joint variables (as discussed in

7 For a six  D O F robot using the third-order polynom ials, m ore than 6*84 = 504 data points are needed to 
satisfy an ova: determ ining condition
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Chapter 6), it may be more appropriate to use the trigonometric terms of joint variables, 
rather than directly joint variables as above, as the polynomial variables. The order of 
the polynomial should match the order of analytic accuracy model.

Based on the above observations, the Pi-sigma neural network, as introduced in the 
previous chapter, is used as an approximation function for accuracy compensation 
problem for a six DoF Puma robot

7.2.2 Accuracy Compensation Using Feedforward Neural Network

For the robot local calibration problem in which robot accuracy is only critical in a 
small portion of its workspace, a simple feedforward network with higher-order 
approximation capability is designed to learn the non-linear mapping between robot 
configurations and joint corrections. As discussed in Chapter 4, 288 data points of a six 
DoF Puma robot end-effector pose were collected using a CMM. These data points 
were uniformly distributed in the calibration volume. However, because of the large 
number of data points required and the contact type measurement method utilised by 
the CMM, it is impractical to obtain corresponding joint corrections (network training 
data) to compensate end-effector errors using this manual data collection method (Step 
3). Alternatively, the actual joint values which drive the robot to minimise the end- 
effector deviations can be found using non-linear least square optimisation using the six 
controllable joint angles as optimisation variables. The initial values of joint angles are 
the nominal joint values frota the robot controller. Joint corrections are then the 
differences between the computed joint values and the nominal ones. The optimisation 
procedure is as follows.

min[x, - f(k ,q ,)f Q[x, -  f(k,q;)] (7.3)
«i

where f(.) is robot forward kinematic model, k is a constant kinematic parameter 
vector, X/is a directly measured end-effector pose vector corresponding the Z-th joint 
configuration vector q , . Q is the weight coefficient matrix as defined before. Since 
there are six adjustment variables to compensate six dimension end-effector pose errors 
at each configuration, the residual errors after compensation can be very close to zero. 
The optimisation procedure is equivalent to manually perturbing joint variables so that 
the end-effector pose is the desired one, but the optimisation procedure is automatic and
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time efficient compared with the manual data collection procedure. As we have seen 
from the kinematic identification (Chapter 4), non-linear optimisation uses a more 
robust search strategy and can converge to good solutions given sufficient time. 
However, its convergence is too slow for on-line implementation of accuracy 
compensation. Therefore, a feedforward neural network is used to store and interpolate 
the joint corrections obtained from the off-line non-linear optimisation routine. Figure 
7.2 illustrates the neural network training and implementation schemes. The trained 
neural networks are used to augment the robot controller to perform constant-time 
inverse compensation which is suitable for on-line implementation.

The Pi-sigma network has been employed to approximate robot inverse 
compensation in this work. As shown in Figure 7.3, a single Pi-sigma network has been 
used for each compensation vector component, with the same inputs of joint angles 
encoded by sinusoidal functions. The product units without sigmoid functions are used 
in the output layer so that the outputs are actually higher order polynomials of 
sinusoidal functions of joint angles. Six hidden units are used, the Pi-sigma network 
approximation is equivalent to a sixth order polynomial of six variates. It will be very 
difficult to determine the sixth order polynomial of six variates numerically if direct 
polynomial approximation functions are used. This, however, is straightforward if the 
Pi-sigma network learning method is used.
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Figure 7.2. a). Training of Neural Network Accuracy Compensator
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= D esired

b). Implementation of the Trained Network

Figure 7.2. Training and Implementation of NN Accuracy Model

Figure 7.3. Neural Network Architecture for Accuracy Compensation

The network shown in Figure 7.3 has been trained separately for each component of 
output vector and put together for implementation after training. Therefore, the network 
training comprises of six Pi-sigma network training processes. Half of the collected 
data (144 points) are used as training exemplars for network training using the training 
algorithm as described in the previous chapter. The remaining data are used as a test 
data set. Figure 7.4 shows the first three of six joint Puma robot compensation learning
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curves which exhibit fast and stable learning. The final RMS (root-mean-square) error 
of each joint compensation is below 0.1 degree which is the resolution of robot joint 
transducers.

Joint 1 Com pensation Learning .Curve

Joint 2 Compensation Learning Curve
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Joint 3 Com pensation Learning Curve

Figure 7.4. Learning Curves for Inverse Compensation

The trained network can generalise well in the calibrated volume. Three statistical 
measures (average error, standard deviation and maximum deviation), were used to 
evaluate robot accuracy compensation results. The results of using optimisation inverse 
compensation and neural network-based inverse compensation are listed in Table 7.1, 
which are based on 100 randomly-chosen test data points. The compensated positions 
and orientations are calculated using the compensated joint variables in the forward 
kinematic model and then compared with the actual data collected. From Table 7.1 we 
can see that the NN accuracy compensation achieves an average accuracy improvement 
factor of about 6. Comparing the NN-based forward accuracy modelling in the previous 
Chapter (Table 6.1), the NN-based inverse compensation has larger residual errors. 
This is due to the inverse mapping being a more complex relationship than the forward 
mapping. The optimisation compensation uses six controllable joint variables to 
compensate for Cartesian error at each configuration, therefore it can achieve a 
compensated accuracy error close to zero if the robot has sufficient DoF to move in 
each direction (non-singular configurations). The inverse compensation network stores 
and interpolates the joint corrections from off-line optimisation procedure and then can 
be used for on-line implementation of inverse compensation. Figure 7.5 shows the
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position and orientation accuracy improvement after using the NN inverse 
compensation (sorted in ascending order for 100 randomly chosen test points), 
compared with the results of the optimisation approach. Not surprisingly, the NN 
inverse compensation is less accurate than optimisation compensation due to the 
residual errors of the NN learning.

Table 7.1 Inverse Accuracy Compensation Results of Puma Robot

Before Compensation Optim. NN Compensation
________________________ Compensation____________________

Position Orientât. Position Orientât. Position Orientât.

average 4.3707 2.5767 0.0021 0.1191 0.6474 0.4974

std dev. 0.8768 0.4075 0.0022 0.1033 0.3127 0.2828

maximum 5.3814 3.2331 0.0119 0.4327 1.7311 1.1477
(length in mm and angles in degrees)

Table 7.2 Experimental Evaluation of Inverse Compensation Results

Before Compensation Optim. Compensation NN Compensation

Position Error (mm) Position Error (mm) Position Error (mm)

average 4.1994 1.2504 1.5776

std dev. 1.0527 0.1416 0.2972

maximum 5.1482 1.4631 1.9678

Table 7.2 lists the experimental evaluation results of joint compensations based-on 
12 test points across the calibrated area. The positioning errors before compensation are 
obtained by measuring robot end-effector positions achieved by controlling joint angles
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recommended by the robot controller. The positioning errors after compensation are 
obtained by measuring end-effector positions achieved by controlling joint angles 
updated by compensation algorithms (only position data are collected for simplicity). 
The average position error (in length) decreased from 4.20 (mm) before compensation, 
to 1.25 (mm) after optimisation compensation and to 1.57 (mm) after the NN 
compensation. The accuracy improvements indicated by experimental results are less 
significant compared with the improvement as shown in Table 7.1. This can be partially 
explained by the fact that the measurements for calibration and the measurements for 
evaluation were made at a different time and therefore system error may have occurred 
in the measuring set-up8. Note that the standard deviation has been improved from 1.05 
before compensation, to 0.14 after optimisation compensation and to 0.29 after the NN 
compensation, implying that the error changes after compensation are small and the 
relatively large average errors are due to constant system errors which existed in the 
measuring set-up. The final residual errors for evaluation points are expected to be less 
if joint compensations are obtained using on-line pose measurements during evaluation. 
Robot repeatability, which is limited by the robot controller, also attributed to the final 
residual error. However, experimental results show that the NN approach can achieve 
the same level of accuracy improvement as that achieved by numerical optimisation 
approaches which are computationally more expensive.

8 The robot has been m oved for other com m itm ent therefore system atic error may occur in the base in  
w hich the robot has been installed.
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Figure 7.5 Accuracy Improvement of Inverse Compensation
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The implementation of a Pi-sigma net is economical and efficient. The total 
adjustable weights used in the inverse compensation net are 6 * (6 * (6+1)) = 252. For 
parallel computation, only 1 trigonometric function call, 48 multiplication, and 42 
additions are needed, which is equivalent to about 100 floating-point additions 
according to the conversions in Stone (1992). Even simulating on serial computers, the 
NN inverse compensation only requires about 6 * 100 = 600 floating-point addition- 
equivalent computations.

As a rule of thumb, the larger number of data points to be approximated, die larger 
the number of adjustable connection weights required in the network. A large number 
of network connection weights means a large network size. It is well-known that 
training of large feedforward networks is exceedingly slow and the residual training 
error is unacceptably high. Therefore, the feedforward neural network-based calibration 
is only suitable for local calibration compensation which has a relatively small number 
of training data points covering a small portion of robot workspace. Where robotic 
applications involve a large number of work points across the workspace (such as path 
or trajectory control), a Hopfield continuous-valued neural network architecture is 
appropriate to resolve the inverse compensation problem (Zhong and Lewis, 1994; 
Zhong, Lewis and N-Nagy, 1995).

7.3. Model-based Accuracy Compensation

7.3.1. Problem Formulation and Numerical Solutions

Model-based accuracy compensation is a subset of the robot inverse kinematics 
problem which involves a process to find the solution of a group of coupled non-linear 
functions, given the initial conditions determined by the nominal inverse kinematic 
model. The accuracy compensation problem can be stated as follows:

Given:

1) The robot nominal kinematic model relating the end-effector homogenous 
transformation matrix T to the vector of joint configuration q:

T = F„(q) (7.4)
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2) The robot actual pose homogenous transformation Ta predicted by the calibrated 
model or directly measured by measuring device

T„ = Fe(q) (7.5)

3) Desired pose transformation T d and a corresponding nominal inverse kinematic 
solution q„ at this pose

q,*F„-i(T,) (7.6)

Find:

The necessary joint change dq of the joint values such that

Fc(q„ + dq) = Td (7.7)

Note in the above problem formulation, the actual pose transformation Ta can be 
determined by the calibrated model or by direct end-effector pose measurement. The 
calibrated model is not necessarily restricted to the kinematic model, the non-geometric 
model can also be added to the model to predict the actual end-effector pose. If an on­
line measurement device is used to determine the end-effector pose, then no calibrated 
model need be involved and the problem can be regarded as the correction phase of the- 
robot re-programming problem (Zhuang 1989; Mooring, Roth and Driels, 1991). 
Therefore, model-based accuracy compensation methods developed below are not 
necessarily limited to kinematic calibration compensation. An outline of the commonly 
used Newton-Raphson (N-R) algorithm is given below.

Newton-Raphson (N-R) Algorithm:

Step 1: Compute an estimated robot pose Ta that corresponds to the available 
nominal inverse kinematics solution q* (In the case that on-line measurement is used, 
T„ is obtained directly from sensor measurement of robot joint configuration q„).

T . = Fe(q.) (7.8)

Step 2: Calculate the pose error matrix between the desired pose Td and the 
estimated actual pose Ta.
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dT = T0 - Td (7.9)

Step 3: From d l  form the equivalent differential error vector dx

(7.10)

This is done through the steps as described in Chapter 4 (Equations 4.27-4.35). 

Step 4: Compute joint changes 8q using

where J  is the robot Jacobian formulated using the nominal model. The Jacobian 
matrix J  is an ordinary Jacobian which is obtained by linearizing the robot inaccuracy 
model with respect to joint variables only (Je), compared with the special Jacobian 
matrix which is linearized with respect to all kinematic parameters. Here we denote the 
J e as J  for convenience without confusing with the special Jacobian matrix as used in 
kinematic identification phase.

Step 5: Update joint commands by setting

Steps 1-5 are repeated until an appropriate termination condition is satisfied. One of 
the termination conditions can be that the joint changes 5q become smaller than the 
joint encoder resolution. Or if the error vector dx reaches to the pre-specified threshold, 
then stop the algorithm.

The computation efficiency of the above algorithm depends critically on Equation 
7.6 and Step 4. For robots with general geometry, finding the compensated joint 
commands with the above algorithm may not be any more effective than directly 
solving the inverse kinematics of calibrated robot using numerical methods. For 
industrial robots with simple geometry, closed form analytic inverse solutions are 
available and the analytic solutions are very time efficient. The initial solutions 
provided by the nominal inverse kinematics can speed up the convergence of the N-R 
algorithm. Stone (1992) showed that if the initial nominal solutions are close to the 
actual solutions (the initial end-effector errors are typically within 5 millimetres), then

5q = (7.11)

q„ = q„ + 6q (7.12)
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the N-R algorithm can converge in two iterations, compared with four iterations 
required to solve directly the inverse kinematics of the calibrated robot.

However, the N-R method breaks down when the desired pose (task points) fall at or 
near a robot singular configuration. When the robot is at one of its singular 
configurations, the inversion of the Jacobian (Step 4) does not exist. If the task points 
are near singular configuration, the Jacobian matrix will be badly-conditioned and the 
joint compensations determined by Equation (7.11) will be relatively large. The 
physical interpretation of this is that large joint adjustments are needed to compensate 
small errors in workspace. Large joint compensation is not desirable for robot accuracy 
compensation since the joint limits might be exceeded and the large joint adjustment 
movements of the robot may cause collision with the objects in the robot workspace. 
To overcome the singularity problem, robust compensation algorithms such as the 
Singular Value Decomposition (SVD), Levenberg-Marquardt and Linear Quadratic 
Regulator algorithms were proposed (Zhuang 1989; Zhuang, Hamano and Roth 1989). 
Existence and uniqueness of the compensation solution are ensured due to the 
particular structure of the performance index. However, the computation of such robust 
algorithms is typically rather complex which makes on-line implementation of inverse 
compensation problematic. In the next section, the inverse compensation problem has 
been re-formulated such that the recurrent Hopfield continuous-valued neural network 
is applied. Given the initial conditions of the network, which are determined by the 
robot nominal kinematic parameters and joint solutions, the network obtains global 
optimal solutions in a few characteristic time constants of the neural circuit, even in the 
robot configurations near singularity where the N-R algorithm breaks down.

7.3.2 The RNN-based Algorithm for Accuracy Compensation

Recall that the quadratic form of the linear residual error model was used to 
construct the network energy for the RNN-based identification algorithm during the 
identification phase (Equation 4.10-4.11). The same procedure applies for the accuracy 
compensation problem with a difference in the construction of the linear residual error 
model and the associated Jacobian. Instead of linearizing the robot inaccuracy model 
with respect to all kinematic parameters as in the identification phase, the robot 
inaccuracy model is only linearized with respect to the controllable joint variables in 
the case of accuracy compensation. Let Ax = f(k, q) - f(k°, q°) be the inaccuracy vector
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of the robot end-effector location predicated by the actual control model f(k, q) and the 
nominal kinematic model f(k°, q°), then the linearized residual errors obtained by 
perturbing the controllable joint variables 8q around the nominal values is:

e(5q) = A x-j8q  . (7.13)

where J is the ordinary Jacobian of robot manipulator evaluated at robot nominal 
kinematic parameters and joint values (k°, q°); whilst the aggregated special Jacobian 
was used in kinematic identification.

The quadratic form of the linearized residual error is then formulated as a network 
energy function so that a decrease of network energy corresponds to a decrease of robot 
residual positioning inaccuracy. It is desirable to have only small joint compensation 
values, therefore a penalty term is added to the energy function to ensure small outputs. 
The energy function for joint compensation is:

E = |[e(<5q)fQ[e(5q)] + ̂ 5 q rA5q (7.13)

where A is a positive diagonal weight matrix for regulation, and Q is a weight 
coefficient matrix defined as in Equation 4.3.

Using the linear residual error model (7.12) in (7.13), and expressing in the standard 
form of the network energy, we have:

E  = - { ' ¿ T ij8qi6qj -  + * £ (J (A x ,)2
u=i 7=i >=i (7.14)

where

Tÿ —  +  %jSÿ) çj

and

c f1’ X i  = j
* [0, if i * j

Qi is the i-th diagonal element of coefficient matrix Q, A, is the i-th diagonal element of 
the coefficient matrix A , and
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/ , = £ / ,  A*,
i= 1 (7-16)

Tÿ and 7; determine the network connection weights and input currents respectively 
based on the nominal kinematic model and parameters (the ordinary Jacobian). The 5% 
is the j-th joint compensation which corresponds to the j-th neuron state, n is the robot 
DoF while m is the dimension of robot Cartesian space.

Note that the structure of the above formulation is exactly the same as that in the 
formulation of the RNN-based identification algorithm except for the definitions of the 
network connection weights and input current (Equation 7.15 and 7.16). Following the 
same derivation procedures as in the identification algorithm, the neuron circuit 
dynamics equation of the accuracy compensation network is given as follows:

d (8 q d
d t

+ /,) i = 1,2,..., n (7.17)

where is the i-th diagonal element of the positive diagonal coefficient matrix |i 
which is chosen to ensure the stability and the convergence speed of the circuit. Given 
the initial condition of the neuron states (&?, = 0, i = 1, 2,..., n), the above differential 
equation determines the neuron state trajectories, hence the joint compensation amounts 
(the stable states of the neurons).

Equation (7.17) is a group of coupled first-order ordinary differential equations 
(ODE). As the implementation of the RNN-based identification algorithm, the RNN- 
based accuracy compensation algorithm was implemented using the dynamic system 
simulation software SIMULINK™ (Mathworks, 1992b). There are several options of 
the ODE solvers provided by the SIMULINK™, the method which subtracts the linear 
dynamics of system was chosen due to the linear model involved. The ODE solver is 
called as linsim which has the following calling format:

[t, x, y] = linsim('modeF, [tstart, tfinal], Xo, [tol, minstep, maxstep]);

where [t, x, y] are returned variables, t  is a vector of the recorded time sequence of 
the system evolution, x and y are the system state variable and output vector 
respectively, [tstart, tfinal] specifies the simulation start and stop time; while [tol, 
minstep, maxstep] specifies tolerance, minimum and maximum step size of the
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integration. Xo is the initial conditions of the dynamic system. The model is the name of 
subroutine which defines the system using the state space description:

x' = Ax + Bu (7.18)

y = Cx + Du (7.19)

where x, u and y are state, input, and output vectors, respectively. A, B, C, D are 
coefficient matrices which can be specified as follows according to above problem 
formulation (Equations 7.15-7.17).

A = -n*(Jr*J + A) (7.20)

B = \i*JT (7.21)

Since the desired system output is the final state of the state variable x, C and D are 
set to be an identity matrix and zero respectively. The input vector u is specified by the 
robot inaccuracy vector Ax.

To exemplify the efficiency and robustness of the Hopfield neural net compensation 
scheme for robot global inverse compensation, we address path compensation and 
compensation near a robot singularity, comparing with the numerical compensation 
algorithm (the N-R).

7.33  Path Compensation

There are many applications (such as welding) which require a robot to execute a 
continuous path or trajectory accurately. Robot end-effector inaccuracy at a number of 
points along the trajectory are calculated by the calibrated model or measured by an on­
line measurement sensor. In such cases an accuracy compensation algorithm is required 
to find joint correction in real-time to compensate the inaccuracy in Cartesian space. 
Due to the difficulty of actual measurements of robot end-effector across the large 
volume of workspace using a co-ordinate measuring machine, the end-effector location 
errors are computed using the calibrated kinematic model based on the identified 
kinematic parameters (Table 4.2). The end-effector of the PUMA robot was 
programmed to execute a spiral trajectory specified by the Homogenous transformation 
in Cartesian space:
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f  n s o p
L o o o l .

where

n = (-sinç), cos <p, 0)r , (7.23)

o = (cos(7r/4)cos(<p),cos(7r/4)sin(<p),sin(;r/4))r (7.24)

s = o x n (7.25)

p = (-45 + 20sin(ç>),4.5 + 20cos(ç>),-26 + 5m )T (cm) (7.26)

and

q>{t) = (tt/4 ) t , 0 < t < 5 (7.27)

The task points were specified at discrete points along the path with a cycle time of 
25 ms.9 The cycle time is demanding to most of the numerical algorithms for on-line 
compensation. However, this time is sufficient for the neural circuit to converge. The 
setting time of neural circuit is in the order of /is (simulation time is about 23 ms based 
on the HP workstation), given the coefficients of Q as an identity matrix, A equal to. 
zero in Equation 7.13, M» = 106, and the initial conditions of neuron states 
5qi = 0 ,i = l,2,...n in the neuron dynamics Equation 7.17. Figure 7.6 is the position 
and orientation errors (in length) caused by kinematic errors before and after one and 
two iterations of neural network compensation (one of the eight robot joint 
configurations-RIGHT and ABOVE arm, and UP wrist-is selected), which shows a 
significant accuracy improvement along the path. After two iterations of the RNN- 
based compensation, both position and orientation residual errors are decreased to near 
zero. The regulation coefficient A is set to be zero because the Jacobian is well- 
conditioned in those task configurations.

9 The servo cycle tim e o f Puma robot is 28 ms.
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Figure 7.6. Accuracy Compensation Along the Path
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7.3.4 Compensation Near Robot Singularity

Next we examine the compensation near a robot singularity. Let the robot joint 
configuration be 0 = [ it/2, -it/l, it/4, it A , 65, 0] and allow only joint 5 to 
rotate: - it/A  < 05 < it/4. The robot will be in its wrist singular configuration when joint 
5 is in the neighbourhood of zero. The PUMA wrist singular configurations are 
commonly used for some typical assembly operations. Figure 7.7 illustrates the PUMA 
robot wrist singular configuration (when the joint 5 equals to zero, the joint axes of 
joint 4 and 6 are co-linear). Obviously this configuration is a convenient configuration 
for many robotic tasks such as assembly, pick-and-place operations. Therefore robot 
singularity problems for certain type robots can not simply stay away by avoiding the 
use of singular configurations during the motion planning process.

Figure 7.7 Robot End-effector and Wrist Singularity
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Figure 7.8 and 7.9 compare the effects of position and orientation compensation 
respectively near robot singularity after one iteration compensation using the RNN and 
N-R method. Figure 7.8 shows that the RNN compensation is stable near robot 
singularity while the widely used numerical algorithm (Newton-Raphson) failed to 
converge. Figure 7.9 shows that both N-R and RNN method can converge but N-R 
method has smaller residual orientation error than the RNN method after one iteration 
compensation. It is not disadvantageous for RNN method since more often than not, 
robot absolute position accuracy is more critical than orientation accuracy. In the case 
that more accurate orientation is required, the coefficient matrix Q in the network 
energy function Equation 7.13 can be used to adjust the balance weight between 
residual position error and orientation error.

----□—
Before
Compensation

After
the N-R
Compensation

---- o----
After
the RNN
Compensation

-1 - 0.5 0 0.5 1
Joint 5 V alue (Radian)

Figure 7.8 Position Compensation Near Robot Singularity
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-------- □ --------
Before
Compensation

---- o----
After the N-R 
Compensation

---- o—
After the RNN 
Compensation

gure 7.9. Orientation Compensation Near Robot Singularity

---- o----
The RNN Joint 
Compensation

The N-R Joint 
Compensation

Figure 7.10 Joint Compensation Amount Near Singularity
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The joint compensation amount obtained by the RNN and numerical approach are 
also displayed in Figure 7.10 (length in radian). The joint compensations computed 
using the Newton-Raphson (N-R) method are too large to be feasible near singularity 
while the RNN joint compensations using the RNN method are reasonably small for 
practical implementation. The large joint compensation amount needed to compensate 
small errors in workspace using the N-R method is highly undesirable since robot joint 
limits might be exceeded, and the robot might collide with fixtures or other objects in 
the workspace during the joint adjustment movements. From Figures 7.8-7.10, we can 
see that the RNN-based algorithm performs similarly with the N-R algorithm for non­
singular task points.

In the above simulations, all the network design parameters are set as the same as 
used in the path compensation for all the task points. The effects of some parameters on 
the compensation at singular configurations need to be investigated. One singular 
configuration is chosen by setting joint 5 to -1 degree, i.e. [90, -90, 45, 45, -1, O].10 
Simulation experiments are performed at this configuration to show the effects of the 
regulation coefficient A and the learning rate p. The reason for choosing the 
coefficient A and p as matrices is to consider the case that an individual coefficient 
value is chosen for each joint variable. If no such discrimination among joint variables 
is made, the coefficients can be set as scalar constants A = A; p =77 for convenience. 
Table 7.3 lists simulation results in the singular configuration using the learning rate 77 
= 101 for various cases: * A = 0.1; ** A = 0.01; *** A = 0.0. It shows that the regulation 
parameter A has no effect on both the accuracy improvement (upper part of the Table) 
and the joint correction required (lower part of the Table) in this case. The joint 
correction required are small for various regulation parameters, and residual errors of 
both position and orientation are smaller after correction, but the convergence speed is 
slow due to the small learning rate used.

By increasing the learning rate to 106, the same simulations have been performed 
and the results are listed in Table 7.4. The accuracy improvement in this case is more 
significant compared with the Table 7.3 due to larger learning rate used. The regulation 
parameter A has only a minor effect on accuracy and joint correction required. The 
joint corrections required are reasonably small even setting A to zero.

10  This configuration is selected because it was studied in (Zhuang 1989, Morming, Roth and Driels, 
1992). The condition number o f the compensation Jacobian at this configuration is up to 1.058 X  10 4.
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Table 7 3  Simulation Results for T] = 101 in a Singular Configuration

Residual Error in length Position Error (mm) Orientation (degree)

Before Correction 3.4065 2.3643

After Correction* 1.8176 2.3052

After Correction** 1.8176 2.3052

After Correction*** 1.8176 2.3052

*A = 0.1 
**A = 0.01 
***A = 0.0

Joint Correction Afy A 02 A03 A04 A 05 A06

For Correction* 0.2428 0.0241 -0.1032 0.0017 -0.0704 0.0010

For Correction** 0.2428 0.0241 -0.1032 0.0017 -0.0704 0.0010

For Correction*** 0.2428 0.0241 -0.1032 0.0017 -0.0704 0.0010
(Joint Correction is in Degrees)

Table 7.4 Simulation Results for 77 = 10* in a Singular Configuration

Residual Error in length Position Error (mm) Orientation (degree)

Before Correction 3.4065 2.3643

After Correction* 0.0424 1.8272

After Correction** 0.0470 1.8188

After Correction*** 0.0417 1.8155
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*A = 0.1 
**A = 0.01 
***A = 0.0

Joint Correction A0i A02 A03 'A04 A05 A06

For Correction* 0.4468 0.1518 -0.6458 0.4377 0.2013 0.6941

For Correction** 0.4585 0.3558 -0.6559 -0.0600 0.2519 1.2342

For Correction*** 0.4606 0.3566 -0.6570 -0.3177 0.2584 1.4903
(Joint Correction is in Degrees)

Table 7.5 shows that the regulation parameter A plays an important role in the case 
that learning rate r\ is increased further to 10®. The joint correction required is very 
large at a robot singular configuration if the regulation parameter is set to zero in this 
case, although both position and orientation accuracy have been improved after 
correction. Due to the axes of joint 4 and 6 being co-linear in the singular 
configuration, the joint 4 and joint 6 rotate a large angle in opposite direction which 
only result in a small movement at the end-effector. Choosing a small value of 
regulation parameter A = 0.01 can suppress the large joint correction required. 
Increasing A from 0.01 to 0.1 has relatively little effect on both accuracy and joint 
correction.

______ Table 7.5 Simulation Results for 77 = 108 in a Singular Configuration

Residual Error in length Position Error (mm) Orientation (degree)

Before Correction 3.4065 2.3643

After Correction* 0.0424 1.8272

After Correction** 0.0409 1.8108

After Correction*** 1.2122 1.0522
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* A  =  0 . 1  

* * ¿  =  0 . 0 1  

* * * A  =  0 . 0

Joint Correction A0! A02 A03 A 04 Ads A 06

For Correction* 0.4468 0.3518 -0.6458 0.4376 0.2013 0.6942

For Correction** 0.4606 0.3567 -0.6552 -0.6854 0.2519 1.8581

sk ak jkFor Correction 0.6819 0.4413 -0.5864 -64.8128 0.2566 65.8153
(Joint Correction is in Degrees)

From the above simulations we can see that the RNN-based compensation algorithm 
is not sensitive to regulation parameter and robot singular configuration until the 
learning rate is very high. When the learning rate is relatively small (the learning rate is 
normally set below 106), the RNN-based algorithm can find desirable joint correction 
and achieve good accuracy improvement in singular configurations even without using 
regulation parameter (A = 0). This capability of the RNN-based algorithm eliminates 
the need of special treatments for singular configurations since no regulation is needed 
when the robot is not in singular configurations. This is a good property of the RNN- 
based algorithm because the algorithm can handle the singularity problem 
automatically without explicitly identifying it.

Recent work by Everett, Colson and Mooring (1994) highlighted the importance of 
automatic singularity avoidance during the joint compensation process. Compared with 
the approach used by Everett, Colson and Mooring (1994), where the joint 
compensation problem near singularity was formulated as a constraint optimisation 
problem in which the joint movement constraints should be decided at a specific task 
point, the RNN-based approach does not require any task specific constraints and can 
obtain quality solutions automatically. The RNN-based algorithm is also 
computationally more efficient than the non-linear constraint optimisation algorithm.
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7.4 Chapter Summary

The robot accuracy compensation problem has been treated in this chapter under the 
framework of artificial neural networks. Both non-parametric and model-based 
parametric compensation have been studied. For non-parametric compensation, a 
simple feedforward neural network architecture has been applied successfully to 
approximate the complex non-linear mapping between robot configurations and robot 
inverse compensations. Using a NN learning method, the network can generate high- 
order polynomial approximation efficiently and economically for robots with multiple 
DoF. A constant-time compensation can be achieved by using the neural network 
representation of the inverse compensation knowledge from the off-line non-linear 
optimisation procedure. Results for a six DoF PUMA robot have been presented. 
However, the feedforward neural network compensation is a local calibration which is 
effective under the assumption that robot accuracy is critical only for a small volume of 
workspace. For global compensation, which involves a large number of work points 
across the whole workspace, a Hopfield continuous-valued recurrent neural network 
has been applied to achieve efficient and robust inverse compensations. The RNN- 
based compensation requires no training, only the end-effector inaccuracy and robot 
nominal joint values should be provided to determine the input and connection weights 
of the network (the internal representation of the network is based on the model 
knowledge). Simulation examples of path compensation and compensation near a robot 
singularity have been presented.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

The concept of autonomous robot calibration has been extended in this thesis to include 
a fully automated process for a robot to perform self-calibration (using its internal 
sensor measurements) on site whenever and wherever necessary (after a certain period 
of operation and in the area where high accuracy is required). Autonomous calibration 
requires an efficient and robust data processing algorithm, and a fully automated 
measurement method. Artificial neural network techniques have been vigorously 
investigated for calibration data processing (modelling, identification and 
compensation), and a novel measurement method has been developed for autonomous 
robot calibration in this thesis. The contributions of the thesis are summarised as 
follows:

1) A new kinematic identification algorithm based on the Hopfield type recurrent 
neural network (RNN) has been developed. The configurations of the network (network 
connection weights and inputs) are determined by nominal kinematic model and 
measured robot pose errors. Robot kinematic parameter errors are identified in a few 
characteristic time constants of the neural circuit (which is determined by the chosen 
learning parameter) even using a singular kinematic model (standard D-H model). If 
robot inaccuracy data can be collected on-line, we have shown that robot kinematic 
identification can be performed in real time by using the RNN-based real time 
optimisation technique. The RNN-based algorithm also exhibited numerical robustness 
over conventional least square methods due to the use of ordinary differential equations 
(ODE) in the simulation. For parallel implementation, the computation time of the 
RNN-based algorithm was independent of the number of robot DoF and the number of
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parameters to be identified. Therefore, the RNN-based identification algorithm is 
especially attractive for robots with multiple DoF (redundant robots) which are required 
to maintain calibration in real-time.

2) A generic accuracy function which accounts for various error sources was 
introduced. Feedforward neural networks were used to implement the generic accuracy 
model. The generic accuracy function served as the basis for the design of the network 
architecture. Pi-sigma networks, which are capable of representing higher-order non­
linear functions using a simple network architecture, provide a natural computational 
mechanism for implementation of the generic accuracy function. Instead of identifying 
error sources explicitly, the error source information was encoded in the distributed 
network connection weights. Because of the complex nature of the accuracy problem 
for multiple DoF robots, the NN representation is appealing due to its learning 
methodology, robustness and efficiency.

3) A new autonomous robot calibration tool was developed using a trigger probe and 
a reference constraint plane. The probe was manufactured as a standard tool for the 
robot, enabling the robot to grip it automatically and use it to touch constraint surfaces 
for consistency checks and data collection when calibration is necessary. Instead of 
taking partial or complete pose measurements for robot calibration, the tip-point of the 
probe was constrained to movement within a plane and only robot internal joint 
measurements were used for kinematic identification. Neither external measurements 
nor accurate fixture set-up are needed for such a calibration. Both simulation and 
experimental results for a Puma robot show that robot positioning accuracy can be 
improved to the level of robot repeatability.

4) Robot accuracy compensation problems were extensively treated under the 
framework of artificial neural networks. Both non-parametric and model-based 
parametric compensation were studied. For non-parametric compensation, a simple 
feedforward neural network architecture has been applied successfully to approximate 
the complex non-linear mapping between robot configurations and robot inverse 
compensations. Using NN learning methods, the network generates higher-order 
polynomial approximation efficiently and economically for robot with multiple DoF. A 
constant-time compensation was achieved by using the neural network representation 
of the inverse compensation knowledge (obtained from the off-line non-linear 
optimisation procedure). The feedforward neural network compensation is a local 
calibration which is effective under the assumption that robot accuracy is critical only
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for a small volume of workspace. For global compensation which involves a large 
number of work points across the whole workspace, a Hopfield continuous-valued 
recurrent neural network (RNN) was applied to achieve efficient and robust inverse 
compensations. The RNN-based compensation requires no training, only the end- 
effector inaccuracy and robot nominal joint values were provided to determine the input 
and connection weights of the network (the internal representation of the network is 
based on the model knowledge). The RNN-based accuracy compensation algorithm is 
suitable for on-line compensation, and is able to obtain good solutions even in the robot 
singular configurations.

5) Robot calibration experiments were performed using a PUMA 560 robot. The 
theories and techniques of modelling, measurement, identification, and compensation 
developed in this thesis were all verified through experimentation. In the local 
calibration workspace, it has been shown that positioning errors of the PUMA robot 
were reduced from 4-5 (mm) to about 0.2 (mm). The model-based kinematic calibration 
achieved the same level of positional accuracy as the generic model-based (non- 
parametric) calibration, implying that kinematic models can be used to compensate 
both geometric and non-geometric errors in local workspace volume. The new 
autonomous calibration scheme presented in the thesis which uses a simple trigger 
probe has improved robot positioning accuracy to the level of robot repeatability. These 
results are consistent with the results obtained using precision external measuring 
devices such as CMM (Coordinate Measuring Machine).

The following topics are suggested for further research:

1) This thesis primarily concentrates on calibration of robot static errors (e.g. 
kinematic errors, static deformations, etc.). However, the dynamic characteristics of the 
robot (e.g. actuator/link mass and inertia, friction in actuators and joints, stiffness, etc.) 
are also very important in affecting robot positioning accuracy for high speed robots. 
Therefore, dynamic calibration, which determines dynamics related parameters of robot 
manipulator, is a natural extension of the static calibration techniques described in this 
thesis. A dynamic measurement system, which can collect the information dynamically 
regarding the end-effector's position, speed, and acceleration, is crucial for dynamic 
calibration. The ANN-based calibration algorithms developed in the thesis are 
particularly well suited to the problem of dynamic calibration processing.
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2) Accuracy evaluation and test experiments were limited to the specific 
experimental set-up in this research due to the expensive Coordinate Measuring 
Machine being used. With the availability of some economical and automatic on-line 
measurement devices, more extensive experiments are needed to test and evaluate robot 
accuracy performance according to ISO 9000 standard.

3) The optimal placement of the constraint plane in the constrained environments 
must be investigated so that the robot has optimal identification configurations. Such a 
study could lead to the construction of a portable mechanical fixture for robot on-site 
calibration. Constraint surfaces other than planes may also be suitable for the proposed 
calibration method (such as a spherical ball) as long as the surfaces have known shapes 
and are suitable for touching with the probe. The effect of measurement noises such as 
the flatness of constraint planes and the resolution of the probe on identification 
accuracy need to be studied by simulation in future work.

4) Robot inaccuracy in Cartesian space is minimised in the least square sense by 
configuring the network energy function as a quadratic form of the inaccuracy vector 
(I^-norm). This standard least square criterion is optimal for a Gaussian distribution of 
measurement noise. If the set of measurements has non-Gaussian error distribution due 
to different sources of errors such as instrument errors, modelling errors, sampling 
errors and human errors, other criteria such as the least absolute value (Lr norm), and 
maximum likelihood criterion (L„-norm), etc. can be used to construct the network 
energy function. Cichocki and Unbehauen (1992, 1993) discussed the design of an 
efficient and robust neural network architecture based on various criteria. Future work 
will investigate more advanced neural network architecture for the robot kinematic 
identification problem taking various measurement errors (noise) into account.

5) The concept of using a known shape reference object for robot calibration 
developed in the thesis can also be extended for non-contact type sensors such as CCD 
camera.

6) The NN training accuracy and efficiency will suffer if larger data sets covering 
larger workspace for multiple DoF robot are used. Neural network design methodology, 
which incorporate a priori knowledge into network architecture so that the network 
can capture invariant properties of the problem from high-dimensional data, remains an 
open research topic.
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7) The Hopfield analogue (continuous-valued) model is one of the most popular 
neural network model and has found many applications. It can easily be implemented 
using VLSI electronic circuits (Cichocki and Unbehauen, 1993). There are two small 
variations in the network used for inverse compensation. One is that the weight 
connections are determined by robot Jacobian matrix which is time-variant This is 
different from the normal Hopfield model which has fixed weights. This can be 
implemented by electronic circuits with programmable resistors. Another variation is 
that the neuron activation function is simply a linear function of high gain, which 
simplifies the solution of the differential equations of the neuron dynamics. With the 
availability of neural circuits, the hardware implementation of the neural network-based 
identification and compensation algorithm is suggested for future work which can be 
used to augment the nominal robot controller.
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Appendix

Appendix 1. Forward Kinematics of Puma 560 Robot and Orientation
Representations

function f  = kinfwd(x)
% This function calculates the pose matrix T using forward kinematics based on modified D-H model 
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

T = [1 0 0 0; 0 1 0  0; 0 0 1 0; 0 0 0 1];
a = x(l:6);
d = x(7:12);
alfa = x(13:18);
theta = x(19:24);
belts = x(25:30);
NUM = 6;

for j = 1:NUM
ct = cos(theta(j)); 
st = sin(theta(j)); 
sa = sin(alfa(j)); 
ca = cos(alfa(j)); 
sb = sin(belta(j)); 
cb = cos(belta(j));
TM = [ct*cb-sa*st*sb -st*ca ct*sb+sa*st*cb a(j)*ct;... 

st*cb+ct*sa*sb ca*ct st*sb-sa*cb*ct a(j)*st;...
-ca*sb sa ca*cb d(j);...
0 0 0 1];

T = T * TM; 
end

% Return the pose transformation matrix 
f  = T;

Conversion of Euler angles to [n, s, o] orientation representation

function f  = conv(el,e2,e3)
% This function converts Euler angles (system II) (e l, e2, e3) into [n, s, o] orientation transformation 
% = = = — = = — = = = = = = — = = = = =
sel = sin(el); 
ce l = cos(el); 
se2 = sin(e2); 
ce2 = cos(e2); 
se3 = sin(e3); 
ce3 = cos(e3);
nx = cel*ce2*ce3 - sel*se3; 
ny = sel*ce2*ce3 + cel*se3; 
nz = -se2*ce3; 
sx = -cel*ce2*se3 - sel*ce3; 
sy = -sel*ce2*se3 + cel*ce3; 
sz = se2*se3; 
ox = cel*se2; 
oy = sel*se2; 
oz = ce2;
% Return orientation transformation matrix 
f  = [nx sx ox; ny sy oy; nz sz oz];
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Appendix 2. Closed-form Inverse Kinematic Solution of Puma Robot

function f  = kininv(x)
% This function is used to find joint vector for a given Cartesian Location (x) using nominal model 
% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
PI = 3.141592;
%nominal model
a = [0 431.800 -20.320 0 0 0]./10;
d = [0 149.090 0 433.070 0 0]./10;
alfa = [-PI/2 0 PI/2 -PI/2 PI/2 0];
nx = x(l); ny = x(2); nz = x(3);
sx = x(4); sy = x(5); sz = x(6);
ax = x(7); ay = x(8); az = x(9);
av = [ax;ay;az]; sv = [sx;sy;sz]; nv = [nx;ny;nz];
% Tool offset x, y, z 
offset_tx = 0.5; 
o ffse tjy  = -0.15; 
offset_tz = 35.859;
px = x(10) - offset_tz*ax - offset_tx*nx - offset_ty*sx; 
py = x (l 1) - offset_tz*ay - offset_tx*ny - offset_ty*sy; 
pz = x(12) - offset_tz*az - offset_tx*nz - offset_ty*sz;
% Cofigurations indicators
ARM = +1; % = -1 LEFT arm, = +1 RIGHT arm
ELBOW = + l; % = +1 ABOVE arm, = -1 BELOW arm
WRIST = + l; % = +1 WRIST DOWN, = -1 WRIST UP
sinthl = (-ARM*py*sqrt(abs(px*px+py*py-d(2)*d(2)))-... 

px*d(2))/(px*px+py*py);
costhl = (-ARM*px*sqrt(abs(px*px+py*py-d(2)*d(2)))+...

py*d(2))/(px*px+py*py); 
thl = atan2(sinthl,costhl); 
s i  =sinthl; c l  = costhl; 
if (-px*cl-py*sl) < 0 

ARM = -1;
sinthl = (-ARM*py*sqrt(abs(px*px+py*py-d(2)*d(2)))-... 

px*d(2))/(px*px+py*py);
costhl = (-ARM*px*sqrt(abs(px*px+py*py-d(2)*d(2)))+...

py*d(2))/(px*px+py*py); 
thl = atan2(sinthl,costhl); 

end
K = ARM*ELBOW;
R1 = sqrt(abs(px*px+py*py+pz*pz-d(2)*d(2)));
R2 = sqrt(abs(px*px+py*py-d(2)*d(2)));
sina = -pz/Rl;
cosa = -ARM*R2/R1;
cosb = (a(2)*a(2)+Rl*Rl-(d(4)*d(4)+a(3)*a(3)))/(2*a(2)*Rl); 
sinb = sqrt(l-cosb*cosb);

sinth2 = sina*cosb+K*cosa*sinb; 
costh2 = cosa*cosb-K*sina*sinb; 
th2 = atan2(sinth2,costh2);

cosf = (a(2)*a(2)+d(4)*d(4)+a(3)*a(3)-Rl*Rl)/...
(2*a(2)*sqrt(d(4)*d(4)+a(3)*a(3))); 

sinf = K*sqrt(l-cosf*cosf); 
sinbl = d(4)/sqrt(d(4)*d(4)+a(3)*a(3));
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cosbl = abs(a(3))/sqrt(d(4)*d(4)+a(3)*a(3));

sinth3 = sinf*cosbl-cosf*sinbl; 
costh3 = cosf*cosbl+sinf*sinbl; 
th3 = atan2(sinth3,costh3);

if  ARM*(d(4)*costh3-a(3)*sinth3) < 0
ELBOW = -1; K = ARM*ELBOW; 
sinth2 = sina*cosb+K*cosa*sinb; 
costh2 = cosa*cosb-K*sina*sinb; 
th2 = atan2(sinth2,costh2); 
sinf = K*sqrt(l-cosf*cosf); 
sinth3 = sinf*cosbl-cosf*sinbl; 
costh3 = cosf*cosbl+sinf*sinbl; 
th3 = atan2(sinth3,costh3); 

end
s l=  sin(thl); c l = cos(thl);
s23 =sin(th2+th3); c23 = cos(th2 +th3);
% Decision equation, to decide symbol of M
R3 = [cl*c23 -si cl*s23;. sl*c23 c l sl*s23; -s23 0 c23];
z3 = R3(:,3);
xv = cross(z3,av);
ip = sx*xv(l)+sy*xv(2)+sz*xv(3);
if ip =  0

EM = nx*xv(l)+ny*xv(2)+nz*xv(3); else 
EM = ip; 

end
if EM >= 0

M = WRIST*(+1);
else

M = WRIST*(-1); 
end
sinth4 = M*(cos(thl)*ay-sin(thl)*ax); 
costh4 = M*(cos(thl)*cos(th2+th3)*ax+...

sin(thl)*cos(th2+th3)*ay-sin(th2+th3)*az); 
th4 = atan(sinth4/costh4);
R4 = R3*[costh4 0 -sinth4;sinth4 0 costh4; 0 -1 0]; 
z4 = R4(:,3);
ip4 = sx*z4(l)+sy*z4(2)+sz*z4(3); 
if  ip4 < 0

WRIST = -1;M = -1*M; 
sinth4 = M*(cos(thl)*ay-sin(thl)*ax); 
costh4 = M*(cos(thl)*cos(th2+th3)*ax+... 
sin(thl)*cos(th2+th3)*ay-sin(th2+th3)*az); 
th4 = atan(sinth4/costh4); 

end
sinth5 = (cos(thl)*cos(th2+th3)*cos(th4)-sin(thl)*sin(th4))*...

ax+(sin(thl)*cos(th2+th3)*cos(th4)+cos(thl)*sin(th4))*...
ay-cos(th4)*sin(th2+tb3)*az;

costh5 = cos(thl)*sin(th2+th3)*ax+sin(thl)*sin(th2+th3)*ay+...
cos(th2+th3)*az; 

th5 = atan2(sinth5,costh5);
sinth6 = (-sin(thl)*cos(th4)-cos(thl)*cos(th2+th3)*sin(th4))*...

nx+(cos(thl)*cos(th4)-sin(thl)*cos(th2+th3)>,‘sin(th4))*...
ny+(sin(th4)*sin(th2+th3))*nz;

costh6 = (-sin(thl)*cos(th4)-cos(thl)*cos(th2+th3)*sin(th4))*...
sx+(cos(thl)*cos(th4)-sin(thl)*cos(th2+th3)*sin(th4))!(:...
sy+(sin(th4)*sin(th2+th3))*sz;
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th6 = atan2(sinth6,costh6); 
% Return joint variable vector 
f  = [thl th2 th3 th4 th5 th6];

Appendix 3. Ordinary Jacobian Matrix for Puma 560 Robot

function f = jcbrec(x)
% The ordinary Jacob matrix of 6 DOF Puma-560 robot using recursive procedure 
9c =======================================================
PI = 3.141592;
%nominal model 
a = [0 431.800 -20.320 0 0 0]./10; 
d = [0 149.090 0 433.070 0 113.25]./10; 
alfa = [-1.5708 0 1.5708 -1.5708 PI/2 0]; 
theta = x;
[1, NUM] = size(x);
JP = []; PP = []; JO = []; RR = [];
TT = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1]; 
T = [];

for j = 1:NUM
ct = cos(theta(j)); st = sin(theta(j)); 
sa = sin(alfa(j)); ca = cos(alfa(j));
% Transformation matrix j wrt j-1 
TM = [ct -ca*st sa*st a(j)*c(j);...

st ca*c(j) -sa*ct a(j)*st;...
0 sa ca d(j);...
0 0 0 1]; 

% Record of rotation j wrt j-1 
R R = [RRTM];
% Totaion matrix j wrt 0 
TT = TT*TM;
% Rrocord of transformation matrix
T = [T TT];
P = [a(j)*ct; a(j)*st; d(j)]; 
PP — [PP P];
OM = TT(1:3,1:3)*[0;0;1]; 
JO = [JO OM];

% Position vector j wrt j-1 
% Record of position vectors 
% jth revolute joint z-axis vector 
% Record of joint axis vectors

TINV = TT; 
TINM = Q; 
j = NUM;

while j > 0
RM = RR(:, (j-l)*4+l:j*4);
TINV = RM*TINV;
TINM = [TINM TINV(1:3,4)]; % Record of the 4th Column of T matrix wrt TCP
j = j-1; % Reverse order j = NUM to 1

end

for j = 1:NUM
% Position vector j wrt 0
JPJ = T(l:3,(j-l)*4+l:j*4-l)*[-TINM (2, NUM-j+1);...

-TINM(1, NUM-j+1); 0];
JP = [JP JPJ];
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end

% Return the ordinary Jacobian matrix 
f  = [JP; JO];

Appendix 4. Special Jacobian Matrix of Puma 560 Robot

function f  = sjcbrec(x)
% The special Jacob matrix of Puma-560 robot using recursive procedure based on the modified D-H 
%======================================================================
PI = 3.141592;
%nominal model 
a = [0 431.800 -20.320 0 0 0]./10; 
d = [0 149.090 0 433.070 0 0]./10; 
alfa = [-1.5708 0 1.5708 -1.5708 PI/2 0];
% Tool offset
%offset_tx = 2; offset_ty = 0; offset_tz = 11.125; %CMM calibration
offset_tx = 0.5; offset_ty = -0.15; offset_tz = 35.859; %probe calibration 
theta = x;
% Initialization of variables 
z _ x j)  = []; 
p_vecs = []; 
zaxis = [];
R R = 0; 
xaxis = []; 
x_x_p= []; 
yaxis = □; 
y_x_p = [];
TT = [1 0 0; 0 1 0; 0 0 1];
T = [];
NUM = 6;

for j = 1:NUM
c(j) = cos(theta(j)); 
s(j) = sin(theta(j)); 
sa(j) = sin(alfa(j)); 
ca(j) = cos(alfa(j));

% Rotation matrix j wrt j-1 
RM = [c(j) -ca(j)*s(j) sa(j)*s(j);...

s(j) ca(j)*c(j) -sa(j)*c(j);...
0 sa(j) ca(j)];

% Record of rotation j wrt j-1 
R R = [RRRM];
% Record of rotation matrix 
T = [TTT];
% (j-l)th revolute joint z-axe vector 
zaxis_l = TT*[0;0;1];
% Rotaion matrix j wrt 0 
TT = TT*RM;
% jth joint x-axe vector 
xaxis_0 = TT*[1;0;0];
% jth joint y-axe vector 
y axis_0 = TT* [0; 1 ;0];
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% Position vector j wrt j-1 
P_vec = [a(j)*c(j); a(j)*s(j); d(j)]; 
% Record of position vectors 
p_vecs = [p_vecs p_vec];
% Record of z-axis vector 
zaxis = [zaxis zaxis_l];
% Record of x-axis vector 
xaxis = [xaxis xaxis_0];
% Record of y-axis vector 
yaxis = [yaxis yaxis_0];

T = [T TT];
% Position vector connecting hand center to the origin of (j-l)th joint frame
phtj_l = [offsetjx; offset_ty; offset_tz];
phtjs_l = Ü;
phtjs_0 = [j;
phtj_0 = [0; 0; 0];
j = NUM;

while j > 0
RM = RR(:, (j-l)*3+l:j*3);
% Position vector wrt j-1 
phtj_l = RM*phtj_l + p_vecs(:,j);
% Record of position vector wrt j-1 
phtjs_l = [phtjs_l phtj_l];
% Record of position vector wrt j 
phtjs_0 = [phtjs_0 phtj_0];
% Reverse order j = 6 to 1
j = j-i;
phtj_0 = phtj_l; 

end

for j = 1:NUM
% jth vector (z X p) wrt base(0)
z_x_p_l = T(:,(j-l)*3+l:j*3)*[-phtjs_l(2,(NUM-j+l));...

phtjs_l(l,(NUM -j+l)); 0];
% (j+l)th vector (x X p) wrt base(0)
x_x_p_0 = T(:,j*3+l:(j+l)*3)*[0; -phtjs_0(3,(NUM-j+l));...

phtjs_0(2,(6-j+l))];
% (j+l)th vector (y X p) wrt base(0) 
y_x_p_0 = T(:,j*3+l:(j+l)*3)*[phtjs_0(3,(NUM-j+l)); 0;... 

-phtjs_0(l,(NUM-j+l))];
% Record of vector which is corss porduct between z and position vector p 
z_x_p = [z_x_p z_x_p_l];
% Record of vector which is cross porduct between x and position vector (p-d) 
x_x_p = [x_x_p x_x_p_0];
% Record of vector which is cross product between y and (p-d) 
y_x_p = [y_xj> y_x_p_0]; 

end

% Jacobian matrix w.r.t. theta 
jth = [z_x_p; zaxis];
% Jacobian matrix w.r.t. alpha 
jal = [x_x_p; xaxis];
% Jacobian matrix w.r.t. belta 
jbt = [y_x_p; yaxis];
% Jacobian matrix w.r.t. link length a
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ja = [xaxis; zeros(3,6)];
% Jacobian matrix w.r.t. link offest d 
jd = [zaxis; zeros(3,6)];

% Modified D-H representation 
jd(:,2) = jbt(:,2);

% Return the special Jacobian matrix 
f =  [jajaljdjth];

Appenix 5. Listed program for data collection using a trigger Probe

; This program is used to collect data using a trigger probe to probe the z-axis constraint plane 
listp
.PROGRAM lineup

1 SPEED 50 ALWAYS
2 FINE ALWAYS
3 i=  1
4 MOVES left
5 CALL probe
6 i = i+1
7 MOVES right
8 CALL probe
9 MOVES left
10 RETURN 

.END

.PROGRAM main
1 TOOL probe
2 SPEED 50 ALWAYS
3 FINE ALWAYS
4 TYPE /C25
5 MOVE #start
6 DELAY 0.5
7 HERE start
8 DELAY 0.5
9 ; PROMPT "Enter Number of Poses :", poses
10 ;set global variables
11 xmax = 200
12 xmin = 0
13 ymax = 200
14 ymin = -200
15 zmax = 0
16 zmin = 0
17 omax = 45
18 omin = -25
19 amax = 45
20 amin = -25
21 tmax = 45
22 tmin = -30
23 FOR i = init TO poses
24 CALL random
25 TYPE /C25, "Moving to Pose : ", i
26 MOVE random.loc
27 CALL probe
28 MOVE #start
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29 END
30 TOOL
31 RETURN 

.END

.PROGRAM probe
1 DELAY 0.5
2 SPEED 50 ALWAYS
3 TYPE "Probing for Position ..."
4 COARSE ALWAYS
5 WHILE SIG(-lOOl) DO
6 SET d = SHIFT(HERE BY xdist, ydist, zdist)
7 MOVEd
8 END
9
10 FINE ALWAYS
11 DISABLE CP
12 IF SIG(lOOl) THEN
13 SET d = SHIFT(HERE BY (-xdist/10), (-ydist/10), (-zdist/10))
14 MOVE d
15 END
16 DELAY 0.2
17 CALL record.loc
18 ENABLE CP
19 TYPE "Position ", i , " Stored"
20 SET temp = SHIFT(HERE BY 0, 0, 50)
21 MOVE temp
22 SPEED 100 ALWAYS
23 RETURN 

.END

.PROGRAM random
1 ;program to compose a transformation using a random value
2 ;for x,y,z,o,a,t
3
4 x = (RANDOM*(xmax-xmin))+xmin
5 x = x*(-l)
6 y = (RANDOM*(ymax-ymin))+ymin
7
8 o = (RANDOM*(omax-omin))+omin
9 a = (RANDOM*(amax-amin))+amin
10 t = (RANDOM*(tmax-tmin))+tmin
11 DECOMPOSE temp[] = start
12 temp[0] = temp[0]+x
13 temp[ 1 ] = tempt 1 ]+y
14 temp[2] = temp[2]+z
15 temp[3] = temp[3]+o
16 temp[4] = temp[4]+a
17 temp[5] = temp[5]+t
18 SET random.loc = TRANS(temp[0], temp[l], temp[2], temp[3], temp[4], temp[5])
19 DELAY 0.5
20 RETURN 

END
.PROGRAM record.loc

1 DELAY 0.5
2 HERE loc[i]
3 DELAY 0.5
4 HERE #loc[i]
5 DELAY 0.5
6 RETURN
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.END

.listi
; Recorded robot location data: X/#Jtl Y/#Jt2 Z/#Jt3 0/#Jt4 A/#Jt5 T/#Jt6
datum

#datum
loc[l]
loc[2]
loc[3]
loc[4]
loc[5]
loc[6]
loc[7]
loc[8]
loc[9]
loc[10]
lo c [ ll]
loc[12]
loc[13]
loc[14]
loc[15]
loc[16]
loc[17]
loc[18]
loc[19]
loc[20]
loc[21]
loc[22]
loc[23]
loc[24]
loc[25]
loc[26]
loc[27]
loc[28]
loc[29]
loc[30]
loc[31]
loc[32]
loc[33]
loc[34]
loc[35]
loc[36]
loc[37]
loc[38]
loc[39]
loc[40]
loc[41]
loc[42]
loc[43]
loc[44]
loc[45]
loc[46]
loc[47]
loc[48]
loc[49]
loc[50]
loc[51]
loc[52]

-573.09 21.66 -470.84 89.714 89.846 0.000
12.936 -142.169 -5.625: -0.099 -32.349 13.30

-539.13 269.69 -470.41 73.663 70.153 9.058
-574.41 -2.56 -470.97 65.550 88.006 30.031
-631.03 137.03 -470.75 63.875 78.300 8.641
-624.38 381.59 -469.16 100.272 69.016 -1.719
-662.09 393.94 -469.81 -133.044 87.682 -141.801
-658.41 169.34 -470.22 87.792 78.975 -19.995
-600.50 384.78 -470.13 70.807 88.830 21.736
-536.78 116.22 -470.47 -63.622 64.742 -156.022
-642.03 313.88 -471.00 -88.116 69.000 -137.955
-677.09 240.19 -470.75 54.470 71.082 10.184
-538.81 148.47 -470.97 58.255 84.441 -27.114
-562.06 141.69 -470.38 113.044 77.866 23.895
-610.59 185.16 -470.38 -70.626 55.931 -180.000
-562.06 214.75 -470.72 55.195 75.591 38.655
-696.06 20.56 -471.41 55.723 71.290 -■20.017
-652.19 327.72 -469.72 111.204 83.491 -7.295
-556.47 250.75 -469.97 108.490 78.184 5.422
-677.13 223.72 -468.59 -128.815 57.480 176.408
-600.72 285.00 -469.47 114.038 75.591 29.888
-607.69 242.78 -469.19 -90.802 44.731 -152.979
-515.66 51.47 -470.84 106.705 78.140 11.772
-590.66 93.84 -471.03 -84.716 70.444 165.998
-598.19 158.50 -470.38 85.605 70.175 -25.406
-668.78 353.56 -471.34 -77.553 66.396 -170.118
-570.84 33.81 -470.66 -104.255 75.531 178.616
-533.63 115.13 -470.19 -61.029 51.680 160.395
-509.63 109.03 -469.41 -127.793 65.028 166.361
-666.63 331.00 -470.06 -112.868 86.556 -135.989
-577.81 349.66 -470.47 112.538 76.970 29.553
-543.28 349.59 -470.34 -105.815 88.742 166.311
-554.34 6.16 -471.28 -87.407 i69.977 155.814
-621.91 57.66 -470.41 -69.802 65.347 -150.029
-526.00 371.16 -470.94 -75.701 57.437 -164.680
-504.13 60.91 -470.84 110.550 79.970 6.152
-695.88 197.22 -469.72 91.879 69.099 8.915
-615.38 311.72 -470.78 -90.000 82.326 147.101
-507.91 155.81 -470.88 94.570 83.452 23.961
-664.09 49.44 -470.88 -77.217 66.610 -178.308
-578.84 138.44 -470.56 112.368 85.660 38.419
-524.31 205.88 -470.44 -94.614 71.933 165.317
-528.97 210.31 -470.75 91.126 89.835 0.000
-512.31 79.94 -471.16 29.932 89.764 0.000
-526.03 373.88 -470.38 64.869 88.314 -21.780
-659.91 159.09 -470.28 103.387 86.193 -9.355
-654.31 319.41 -470.28 56.646 79.579 -14.178
-596.88 17.53 -471.09 -84.408 44.621 -146.942
-523.69 357.50 -470.84 -94.219 86.342 164.185
-607.34 301.28 -470.34 -74.438 46.176 167.305
-594.91 385.13 -469.16 106.452 77.970 40.891
-521.56 243.13 -470.34 -88.308 66.830 -172.227
-606.00 24.63 -470.97 78.519 65.330 36.178
-576.94 36.19 -470.91 81.447 86.710 11.140
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Appendix

loc[53]
loc[54]
loc[55]
loc[56]
loc[57]
loc[58]
loc[59]
loc[60]

#loc[l]
#loc[2]
#loc[3]
#loc[4]
#loc[5]
#loc[6]
#loc[7]
#loc[8]
#loc[9]
#loc[10]
# lo c [ll]
#loc[12]
#loc[13]
#loc[14]
#loc[15]
#loc[16]
#loc[17]
#loc[18]
#loc[19]
#loc[20]
#loc[21]
#loc[22]
#loc[23]
#loc[24]
#loc[25]
#loc[26]
#loc[27]
#loc[28]
#loc[29]
#loc[30]
#loc[31]
#loc[32]
#loc[33]
#loc[34]
#loc[35]
#loc[36]
#loc[37]
#loc[38]
#loc[39]
#Ioc[40]
#loc[41]
#loc[42]
#loc[43]
#loc[44]
#loc[45]
#loc[46]
#loc[47]
#loc[48]
#loc[49]
#loc[50]

-511.53 393.97 -470.03 -85.441 51.894-162.614 
-522.72 2.56 -470.28 -63.078 66.187 178.934
-670.50 208.09 -470.13-116.038 54.981 -163.603 
-647.59 94.94 -470.31 93.038 79.124 26.730 
-601.78 36.66 -470.44 106.430 78.799 16.408
-506.25 288.13 -471.53 ■■72.971 74.185 164.669
-625.94 291.19 -469.56 •■86.721 48.488 168.887
-546.13 91.88 -471.31 -89.594 55.756 -154.204
-12.876 -156.209 24.049 1.269 -67.659 11.83
14.963 ■■142.784 -4.092 2.230 ■34.684 67.65
-1.417- 154.298 22.083 5.702 -•58.563 29.93

-15.370 -171.755 57.761 -8.948 -85.139 -25.09
-18.809 -158.176 31.943 -1.214 -51.658 63.18
-1.934- 157.506 29.493 0.060 ■63.018 -19.75

-20.429 -153.946 22.599 -0.033 -49.829 20.58
-4.993 -139.927 ■■26.840 123.607 -15.469 -129.48

-17.287 -146.821 -0.110 27.532 -14.755 -2.69
-11.212 -171.101 56.783 7.723 -83.090 32.39
-1.752--143.240 -3.219 4.466 •■38.452 -0.75
3.400-■147.508 6.147 -5.279 -50.208 8.04

-13.458 -145.668 -17.183 124.096 -21.517 -154.16
-9.816 -152.122 16.353 7.158 -57.541 59.10
4.752 -■165.009 43.748 12.134 -73.834 14.07

-13.310 -158.500 32.448 -4.285 -59.387 -39.46
-7.185 ■-149.551 11.228 -6.422 -52.531 -15.85
5.367 -■146.662 -10.250 -93.675 -22.055 129.70

-8.190 -155.517 24.379 -8.690 -61.408 2.67
-13.442 -150.452 -24.225 166.036 -40.089 -151.17
11.816 -143.481 -3.988 -1.439 -44.357 8.01
5.290 -•139.598 -20.786 0.000 -0.060 -14.00

-1.642 -158.000 28.098 0.994 -69.906 -23.16
-23.022 -151.397 9.899 36.398 -23.049 -57.40
16.837 -138.246 -21.116 -42.429' -11.025 70.81

-12.299 -146.041 -28.740 133.841 -34.541 166.46
20.544 -138.565 -34.442 -106.957 -22.066 150.35
-14.293 -154.413 23.494 -0.720 -45.676 53.06
-14.233 -155.440 24.379 -8.981 -59.749 -1.92
-19.605 -146.591 5.477 0.137 -37.628 -17.53
18.528 -137.840 -28.713 42.731 7.965 -51.62
4.955 ■141.641 -18.583 123.030 -7.515 -107.19

-35.189 -147.112 -9.635 88.396 -24.164 -117.52
11.332 -141.713 -8.108 -2.483 -40.111 -1.04
-3.016 -174.825 64.127 -1.747 -90.132 4.33

-15.809 -147.914 7.767 3.873 -32.520 -51.84
-0.192 -141.724 -7.295 -0.890 -37.513 19.95
7.498 -143.146 -12.475 62.787 -2.357 -65.92
2.148 -■144.965 1.329 -2.313 -40.463 20.03

-6.658 ■-138.038 -24.851 146.058 -1.137 -162.70
-6.465 •-141.509 -7.333 -0.308 -31.207 -7.33
8.218 -138.494 -15.754 0.505 -25.653 67.83

-22.242 -148.008 8.882 0.126 -42.561 -18.97
-0.544 -152.078 18.259 -1.198 -49.889 -22.41

-15.754 -163.213 42.028 3.362 -68.796 1.92
19.116 -151.622 -35.228 12.189 52.059 35.08

-21.610 -144.926 1.099 2.027 -32.695 -34.88
-28.702 -152.040 -9.673 116.84C1 -32.800 -168.85
-17.265 -158.923 32.563 -7.405 -63.886 11.01
-13.914 -139.570 -24.983 138.697 -9.229 -145.69
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Appendix

#loc[51]
#loc[52]
#loc[53]
#loc[54]
#loc[55]
#loc[56]
#loc[57]
#loc[58]
#loc[59]
#loc[60]
probe

7.570-161.071 32.899 
10.909-143.586 -2.098 

-37.700 -148.123 -14.271 
11.898-138.373 -33.096 
4.098-146.393 -15.699 
4.845-154.616 23.038 
11.514-149.689 11.602 

-21.297 -140.658 -14.573 
-20.819 -149.634 -14.843 
10.025 -143.800 -37.310

8.091 -75.438 51.56 
1.802 -37.436 29.16 
115.428 -27.356 -136.34 
157.286 -15.727 -172.91 
52.581 21.270 -8.79 
0.396 -59.299 28.29 
-1.198 -53.075 12.28 
38.985 -15.590 -90.54 
144.723 -27.944 -177.63 
9.360 35.338 26.11

5.00 0.00 302.34 90.000 -90.000 0.000
random.loc -539.72 98.03 -368.66 -90.324 56.184 -153.787 
left -718.97 354.47 58.38-180.000 76.003 59.238 
right -358.00 354.50 58.38-179.984 75.992 59.233 

#start -5.345 -127.238 -14.821 0.000 -37.947 10.69 
start -500.22 197.41 -368.66 73.982 89.995 0.000
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