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Abstract. AIRS is an immune-inspired supervised learning algorithm
that has been shown to perform competitively on some common datasets.
Previous analysis of the algorithm consists almost exclusively of empirical
benchmarks and the reason for its success remains somewhat speculative.
In this paper, we decouple the statistical and immunological aspects of
AIRS and consider their merits individually. This perspective allows us
to clarifying why AIRS performs as it does and identify deficiencies that
leave AIRS lacking. A comparison with Radial Basis Functions suggests
that each may have something to offer the other.

1 Introduction

The Artificial Immune Recognition System (AIRS) was proposed by Watkins [23,
22], extending a lineage of immune-inspired work on unsupervised learning to the
supervised domain. Initial results were favourable and these results have been
reproduced several times by different authors [14]. To this day, AIRS remains
one of the most widely studied and applied AIS in pattern classification. This
popularity is further encouraged by a publicly available plug-in! for the Weka
Data Mining environment [24].

Theoretical insight into why AIRS performs as it does remains scant. Several
hypotheses have been tentatively offered in the literature [7,12], but did not
reach any definite conclusions. These studies tend to lack the rigour typical
of machine learning literature. It is from this perspective that we attempt to
approach AIRS in this paper.

The paper unfolds as follows: In Sect. 2, after introducing AIRS, an exper-
iment with a simplified derivative algorithm validates some concerns and allow
us to work back towards the full AIRS algorithm, bringing its main functional-
ity into focus. This then points to additional issues that we explore and verify
experimentally, building a rather complete technical picture of AIRS as a learn-
ing algorithm. In Sect. 3, we propose that some of these issues can be rectified
by exploiting aspects of a more classical approach, Radial Basis Functions. By
comparison and experiment, we demonstrate that each may have something to
offer the other. This leads to a more general comparison between clonal selection
and classical iterative descent algorithms. We conclude in Sect. 4 by taking a
broader view toward future work.

! nttp://www.artificial-immune-systems.org/algorithms.shtml



2 AIRS

ATRS is an unweighted k-nearest neighbour classifier. The immunological in-
spiration contributes to how the algorithm is trained to develop a repertoire
of “memory cells” which is based, loosely, on Burnet’s Clonal Selection theory
[9]. We outline this process in Algorithm (1): memory cells (prototypes) stimu-
lated by antigen (data) proliferate and mutate; these stimulated cells and their
progeny compete under selective pressure for continued stimulation, resulting in
only the fittest being aggregated into the repertoire. It is this repertoire that is
used for classification, in proxy of the full data set.

memory = initialiseRandomRepertoire()
for (z,y) in trainingData do
best = memory.bestMatchingCell(x,y)
pool = [best]
while pool.avgStimulation() < threshold do
for cell in pool do
pool.add(cell.mutations(cell.stimulation(x)))
end
pool.cellsCompeteForResources|()
end
fit = pool.fittestCell()
if fit > best then
memory.add (fit)
if ||best — fit||2 < € then
memory.remove(best)
end
end
end

Algorithm 1: Pseudo-code for the AIRS training procedure

Variations of this general strategy abound in the Pattern Recognition litera-
ture, thus, the immunological component is the key point of distinction of AIRS
as an algorithm. Typically, clonal selection is applied in a (black-box) optimi-
sation setting: each cell represents a solution; their “stimulation” reflecting an
objective function value. This variant on evolutionary algorithms has some prac-
tical benefits that result from the immune-system’s particular hyper-mutation
process: there is no arbitrary parental cross-over in generating new solutions;
and mutation in inverse proportion to stimulation promotes poor solutions to
explore the space (few large mutations) and exploits better solutions which more
conservatively approach their local optima (via many small mutations).

This population-based stochastic hill-climbing strategy has proven to be most
effective in complex multimodel and multi-objective optimisation settings [6].
Certainly, finding the locations of prototypes in our data’s feature space can be



cast as an optimisation problem. This is vaguely implied in the AIRS literature,
but a simple argument shows that this implication is misleading.

2.1 Clonal selection in the learning context

Recall, AIRS takes a “one-shot” pass through the training set, responding to
each datum individually. Each prototype uj receives stimulation as an inverse
function of distance? from the datum z;. This stimulation parameterises the
quantity of mutants produced and the magnitude of mutation suffered.

We question the validity of applying black-box stochastic optimisation in a
unimodal setting where stimulation and location have a monotonic relationship.
Quite simply, the algorithm “knows” the direction and distance from its current
optimum — this is used directly in calculating stimulation — and so random
search appears to serve no valid purpose. As illustrated in Fig. (1) each best
matching prototype p; has a surrounding region of potential mutations (solid
circle) with an obvious optimal step p¢41. Over half of the potential mutations
(shaded region) will be a priori less fit than the parent.

! Mugiq

Fig. 1. A schematic representation of the stochastic search procedure for AIRS. There
is a trivial (one generation) optimum p:41 easily derived from the same information
used to calculate stimulation. Further, over half the potential mutations of a prototype
e will necessarily be less fit.

One might reason that the benefit of this stochasticity may be to overcome
AIRS’ necessarily myopic nature: rather than directly chasing immediate short-
term optima, some random noise allows the algorithm to average out movements
without averaging across the data (which should be inaccessible in batch form).
While attractive, this justification is heavily contradicted by the implementation.
The algorithm has an overly elitist selection criteria: only the best matching
memory cell initiates a response, and only the best matching mutant becomes
a candidate memory cell. Further, the generation of separate mutation pools

2 Specifically 1 — ||ux — ||z where the hat represents a “normalised” Euclidean dis-
tance. We will have more to say on this later.



per datum, from which only the best candidate can survive, does not favour
retaining mutants that may still prove beneficial in hindsight.

A simple experiment clarifies. We completely remove the immunological com-
ponent from AIRS, replacing it with a trivial, deterministic update which we dub
ATRS™ (see Alg. 2). Here, we simply choose a single candidate memory cell ex-
actly halfway between the datum and the best matching memory cell.

memory = initialisesRandomRepertoire()
for (z,y) in trainingData do
best = memory.bestMatchingCell(x,y)
fit = 0.5 * (best + x)
memory.add(fit)
if || fit — best||2 < € then
memory.remove(best)
end

end

Algorithm 2: Pseudo-code for ATRS™ . The optimal (one step) candidate is
chosen deterministically, rather than via AIRS’ many rounds of mutation and
resource competition.

The performance differences for several datasets are reported in Table 1.
The figures validate our concern: the clonal selection phase of AIRS has almost
no positive effect on classifiers performance. Not only is the stochastic search
unnecessary, it can be detrimental. AIRS™ performs significantly better on all
high-dimensional datasets. Indeed, on the newsgroup dataset AIRS performs
no better than random guessing. For comparison, on the same task 3-nearest
neighbour achieves 75% accuracy, linear regression 80% and Multinomial Naive
Bayes 97%. This suggests that the degrees of freedom in high-dimensional space
seriously impede the stochastic search procedure; which is intuitive, but contrary
to previous claims.

2.2 From AIRS™ back to AIRS

In deriving the deterministic update rule for AIRS™ we simply performed the
logical extreme of what AIRS was indirectly attempting by blind search. We can
improve our understanding of AIRS if we pursue this idea some more. Recall,

3 In an earlier experiment, rather than replace the evolutionary search phase we al-
lowed the deterministically chosen candidate to compete with AIRS’ mutants, but
did not allow the candidate to mutate new solutions. In this regime, it is possible
that the stochastic search could mutate past the optimal (one step) midpoint, getting
even closer to the antigen. In fact, this almost never occurred — our deterministically
selected midpoint was, almost without exception, selected as the fittest candidate
for each training instance.



dimension|AIRS AIRS™
elements 2 74.35 £7.29 |71.95 £7.72
iris 4 94.67 £5.36 |94.47 £6.34
balance 5 80.93 £4.11%|77.36 +4.83
diabetes 8 71.60 £4.40%|69.45 +4.98
breastcancer 9 96.28 £2.35 |96.35 £2.19
heart-statlog 13 78.15 £8.63 |77.11 £7.34
vehicle 18 62.05 £4.89%|57.06 £6.04
segment 19 88.21 £2.48%|83.79 £2.91
ionosphere 34 84.44 £5.18 |89.66 £5.39 =
sonar 60 67.03 £11.60|84.58 £7.86 *
newsgroup 3783 [51.35 +4.60 |78.87 +14.05 *
* significant at p-value of 0.001

Table 1. Performance comparison of AIRS and our deterministic derivative. Experi-
ments were performed in Weka using the default algorithm parameters, 10-fold strat-
ified cross-validation and a paired T-test. Most datasets are standard UCI bench-
mark problems. Elements is a synthetic mixture of gaussians taken from [8] which is
designed, for pedagogical reasons, to favour neither local nor global learning meth-
ods. Newsgroups is a two-class classification of determining comp.graphics from
alt.atheism posts using a subset of the 20 Newsgroup dataset.

that for every datum the evolved candidate lies (somewhat) between the datum
and the previously closest prototype. In AIRS™ we used the update rule

parr = Y (e + pr) (1)

where pyy1 is the candidate, pu; was the previous best matching prototype
and v = 0.5 was the distance to the boundary of the mutation region. Some
trivial manipulation allows us to express (1) as

per1 = p + (@ — pr) (2)
which is also the formula for an exponentially weighted moving average. Rather

than holding ~ fixed, we can incorporate AIRS’ mutation as a function of stim-
ulation, by allowing v to decrease as stimulation increases

pregr = (1= y)pe + v 3)
which is simply a linear interpolation between prototype and datum. The only
significant difference between this and AIRS is that AIRS will take many indirect
steps over several generations, before selecting the “best” found.

Now, Eq. (2) and (3) are exactly the update rule for MacQueen’s 1967 online
k-means algorithm [11]. But whereas K-means explicitly moves p; to py41, AIRS
keeps one or both depending on their mutual pairwise distance. Also, k-means
will monotonically decrease v over time, ensuring convergence of centroid loca-
tions; in contrast, AIRS employs a datum-specific value of v based on pairwise
distance. We now address any contribution of these differences in AIRS.



2.3 Representational power of the AIRS repertoire

Given the previous analysis, we can see that the repertoire of memory cells in
AIRS are a distorted snapshot of the trajectory of a moving average — distorted,
because the direction and magnitude of movements are stochastic, undirected
and unconstrained.

Based on this observation, we hypothesise that, though smaller in size, the
ATRS repertoire does not compress or otherwise extract meaningful structure
from the original dataset. We validate this claim by comparing the sum of
squared distances between data and their closest memory cell, against that of
k-means with the same number of centroids as AIRS memory cells (see Table 2).
For non-trivial datasets, AIRS is far from the local optima found by k-means.
Indeed, we can find the value k for k-means that produces the same perfor-
mance as AIRS. It is apparent that a significantly larger amount of compression
is possible than is achieved by AIRS.

k (memory)|AIRS |k-means| k

iris 47 1.10 ]0.768 20
balance 295 16.93 |13.5 225
diabetes 407 22.81 [8.028 125

breastcancer 209 55.22 [28.0 100
heart-statlog 209 108.46(9.036 20

vehicle 336 92.50 (23.284 |25
segment 219 135.81(51.81 45
ionosphere 145 410.66|94.86 12
sonar 143 420.04(38.679 | 3

Table 2. The within-cluster squared distances for AIRS and k-means using the same
number of centroids as AIRS’ memory cells. The value k is the number of k-means
required to produce the same performance as AIRS. This tends to be dramatically
lower than the number of AIRS memory cells, reinforcing that AIRS’ repertoire, though
smaller than the dataset, has not extracted meaningful structure.

In Fig. (2) we illustrate this effect for the 2-dimensional elements dataset,
on which AIRS performed reasonably. As Table (2) shows, the effect is less
pronounced in low dimensions, but we are limited by what can be visualised. It
is still clear from inspection that the density of the repertoire does not reflect the
density of the data. Indeed, the repertoire appears to be uniformly spread within
the same bounding region as the data. A similar result has been demonstrated
by Timmis and Stibor for the algorithm ai-Net [19]. Although the details of
both algorithms are quite different, AIRS also suffers from the same problem:
when deciding if the candidate should replace the original prototype, inflicting
a fixed threshold (based on mean pairwise distance) makes it is impossible for
the algorithm to represent densities at a finer granularity than that threshold.
Further, the mutual exclusion between prototype and candidate precludes any



compromise by selecting, say, an intermediate representation such as an average
between both.
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Fig. 2. AIRS memory repertoire for the elements dataset (top) compared to the same
number of k-means (bottom). The left column illustrates the repertoire/means (blue)
superimposed over the class density of the training data (red and green gradients
with dark regions representing p(+) ~ p(—)). It is clear from inspection that the
AIRS repertoire does not follow the density of the data. This is emphasised in the
right column, where we illustrate the density of the repertoire/means with the dataset
superimposed. The AIRS repertoire appears to have a weak uniform coverage compared
to k-means. In higher dimensions, these effects would be much more pronounced, as
demonstrated quantitatively in Table (2).

In learning, in order to improve compression, generalisation and discrimina-
tion it is necessary to control the granularity of density representation: coarse
in coherent, homogeneous regions; fine in ambiguous regions near the decision
boundary. AIRS is limited in what it can achieve here. All prototypes share a
common pairwise distance constraint and violations are resolved simplistically,
with no regard for the engineering goal (or relevant biological dynamics).

2.4 Discriminatory power of the AIRS repertoire

Following training, to classify data AIRS takes an unweighted majority vote
amongst the prototypes. This produces very coarse decision boundaries and it is



apparent that there is a lot of additional information that AIRS is ignoring. Some
form of weighting (e.g. by prototype stimulation to test datum and prototype
training fitness) would likely be beneficial. A previous investigation lends some
support to this idea [12].

It is worth making entirely explicit that AIRS is essentially a generative
model: it is an unsupervised learning process repeated in C; separate compart-
ments; one for each class. The classification decision can be easily interpreted
as asking for the compartment that would be most likely to have generated
the test instance. However, unlike a generative model, AIRS makes no use of
(anything equivalent to) prior probability in either determining the most repre-
sentative class or the most appropriate prototype to select as the best. If the
class distribution is skewed, the former will significantly influence AIRS’ accu-
racy. The latter reduces AIRS’ choice of “best” to simply closest, rather than a
more general criteria of “fittest” developed during the training period.

AIRS is further limited because there is no feedback between data or pro-
totypes of different class compartments. As such, the training process is blind
to any ambiguity in the regions where complementary prototypes overlap: the
most important regions for classification.

2.5 Omne-Shot or not?

Prior to commencing Alg. (1) AIRS performs two relatively expensive initiali-
sation procedures. Together, these procedures are O(nm) and O(nm?), where
m is the size of the dataset and n the dimensionality. We suspect this initial-
isation process is largely responsible for AIRS’ often touted “out of the box”
performance. However, such convenience is not without cost.

The O(nm?) step is the computation of an internal parameter — the mean
pairwise affinity — which is used as a threshold distance to decide whether a
candidate should replace its parent memory cell. In Sect. (2.3) we demonstrated
the negative effects of using a uniform fixed threshold. The O(nm) procedure is
a “min-max” attribute normalisation. All data are rescaled and translated to lie
in a unit bounding box, which simplifies logic by bounding affinity values and
legal mutations. However, by computing these bounds at initialisation, AIRS
cannot continually learn, as claimed, as such bounds do not remain valid — even
for hold-out test data. Further, such normalisation largely presumes a Euclidean
distance metric and does not generalise well. In short, this is arbitrary pre-
processing, best left to the practitioner. Currently, the internals of AIRS are
unnecessarily coupled with this particular initialisation procedure.

Though only polynomial in time, these costs further undermine any practical
value in the claim of “one-shot” learning. Both historical and contemporary
interest in online learning has been largely driven by its linear-time, fixed-space
computational costs — e.g. learning from streaming or massive datasets. In these
contexts, an initial linear scan or pairwise comparison is highly undesirable, if
not impossible. The current design of AIRS assumes a batch/online compromise
that suits neither situation: the computational cost of a batch algorithm and the
learning restrictions of a one-shot algorithm.



3 Radial Basis Functions

Having uncovered some theoretical and practical issues with AIRS, we look to
something more statistically solid on which to motivate and justify any novel
immune-inspired deviations. Radial Basis Functions (RBF) [8, 3] present a simple
and elegant compromise between the trade-offs inherent in global (e.g. least
squares) and local (e.g. k-nearest neighbour) methods of learning. These trade-
off are well documented and we will not labour over them here. An RBF classifies
a data point Z as

§=f2)
k
= ZailC(ci,i)
i=1

k
= ZaieXp(—ﬂin - ¢ill3)
i=1

where k is the number of ¢; kernel centres (i.e. prototypes), K is a symmetric
distance function parameterised by bandwidth 3;, and «; are the weights of each
prototype, to be found by training.

How the prototypes are chosen is quite arbitrary, though a common approach
is to perform a k-means clustering of the data, prior to the supervised learning
stage*. K-means converges on a local optima of minimising the sum of squared
distances between prototypes and their assigned data-points

argmmz > e — willy

i x;€C;

One can certainly question the validity of any optimisation criterion; the
only point we wish make here is that there is a criterion. However, choosing
the correct value for k is somewhat more troublesome. Further, the algorithm
must be run several times as the quality of local optima depends on the initial
(often randomised) placement of prototypes. Further still, this is typically a
batch process, scaling poorly in the size of the dataset.

Regardless, assuming appropriate prototypes the RBF represents each data-
point as k features — the distances from each of the k prototypes. The method of
least-squares is then employed in this reduced space to solve for v = X T4 where
X+ is the pseudo-inverse of the transformed training data XU = K(¢;, ;). The
elegance of this approach is two-fold: During training, the computational burden
of a global least-squares solution is eased by reducing the dimensionality. During
testing, performance is improved by avoiding lazy-learning. In both cases, the
kernel function incorporates beneficial, non-linear locality.

4 More generally, one can fit a finite mixture model with the EM Algorithm [13]. RBF
are essentially unnormalised, symmetric Gaussian mixtures.



3.1 A Comparison between RBF and AIRS

Though the details are somewhat different, there is an obvious high-level simi-
larity in both approaches: find the best positions for prototypes that can act as
a prozy for the full training data and the full feature set. We now highlight the
key differences.

— Training: The RBF has a well-defined optimisation criteria, although there
is no well-defined manner to choose k. In contrast, AIRS (and brethren) aim
to regulate the number of prototypes, but typically have no wider notion
of optimally with which to drive evolution. AIRS implicitly partitions the
repertoire into classes and fits prototypes to each class. Conversely, the choice
of prototype placement for an RBF is unsupervised; supervisory information
has its influence in the least squares solution for a.

— Testing: The RBF uses a combination of the optimal «, the chosen kernel
K and bandwidth 3 to arrive at a classification decision. Conversely, AIRS
simply chooses the partition with the majority of & matching prototypes.

— Updating: The cost of having optimal weights is that there is no efficient
manner to update an RBF model, without re-computing and inverting X.
Because AIRS is a lazy-learner, it is, in principle, more suitable to update
and adapt during execution.

— Data Access: A critical difference between both is that RBF uses the full
dataset to fit prototypes, whereas AIRS treats data sequentially. One-shot
learning may be a desirable feature to retain, but as we have demonstrated
above, some significant changes would be required.

We propose that each method has something to offer the other. The RBF
has a well defined optimisation criteria, a more elegant approach to handling
distances, and a more sophisticated weighted decision process. AIRS can natu-
rally perform multiclass classification, has the potential of deriving its own k per
class and an inherent, if poorly utilised, capacity for adaptive updating.

We illustrate the potential for contribution in Table (3) with a comparison
between AIRS and RBF fit by k-means. This comparison is not entirely fair, as
the RBF was fit in a batch setting. Although the RBF benefits from random
access to all data, we wish to emphasise the virtues of a higher-level optimi-
sation criteria; the capacity to generalise coherent and particularise ambiguous
regions using variable bandwidths; and a weighted decision process. As such, we
handicap the RBF to only two centroids per class; it still outperforms AIRS.

Much of the RBF theory cleans up ad-hoc features of AIRS. Note that none
of these changes compromise any “immunological metaphor”. On the contrary,
in some respects the metaphor is improved by introducing clone populations
(weights), weighted responses, and adaptive recognition regions (bandwidths).
Indeed, similar ideas have already been explored in the AIS literature, though
in somewhat different contexts [1, 2, 20].



AIRS RBF (2)

balance 80.93+ 4.11 |[86.184 3.76 *
breastcancer [96.40+ 2.18 [96.184+ 2.17
diabetes 71.60+ 4.40 |74.064 4.93 *
heart-statlog|78.15+ 8.63 [83.114 6.50 *
ionosphere |85.53+ 5.51 [91.744+ 4.62 *
iris 94.67+ 5.36 |96.00+ 4.44 *
segment 88.21+ 2.48 *|87.32+ 2.15
sonar 67.03+11.60 |72.624 9.91 *
vehicle 62.05+ 4.89 |65.344 4.32 *
elements 69.854+10.69 [73.80+ 10.28 *

* significant at p-value of 0.05

Table 3. Classification accuracy comparison of AIRS and Radial Basis Functions. The
RBEF is handicapped to only two prototypes per class, compared to the AIRS repertoire
size for the same datasets in Table (2).

3.2 A Comparison between Clonal Selection and Iterative Descent

In the learning context, classical iterative descent algorithms, such as k-means
and the EM Algorithm, largely embody the “immune principles” that drive AIRS
— clonal selection (assign responsibility for data amongst prototypes) and affinity
maturation (optimise prototypes based on assigned data). Thus, although clonal
selection and affinity maturation may be a necessary element of immune-inspired
learning algorithms (in that they approach essential functionality), they do not
appear sufficient to determine novelty or value.

It would be remiss to not point out that the greedy nature of classical itera-
tive descent algorithms is not lost on the statistical literature. There are many
attempts to make these algorithms more adaptive and global in their optimisa-
tion ([13, Chapter 6] [18,17,4]). Evolutionary approaches have also contributed
to this domain, though to our knowledge, the evolutionary search typically en-
codes all mixture parameters in a single genotype, and is then used to find a
better initial configuration for iterative descent (see e.g. [10]). This is quite dif-
ferent from AIS learning algorithms, where each clone is, essentially, a mixture
component and the emphasis tends to be on continual adaptation and internal
dynamics of the repertoire.

By removing these internal dynamics, trivialising the fitness landscape and
using pairwise distance as a proxy for an overarching objective function, AIRS
leaves stochastic search with no competitive advantage over traditional iterative
descent. These issues can all be addressed. However, clonal selection alone seems
unlikely to induce convincing immune-like behaviour. Building upon clonal se-
lection appears necessary if AIRS is to offer more than a global optimisation
method for a prototype-based learning algorithm. Acknowledging the contri-
butions of, and any similarities to, classical algorithms seems the best way to
fruitfully direct novel immune-inspired research in this mature field.



4 Conclusion and Future Work

This paper reinforces warnings that one cannot work exclusively within the im-
munological metaphor [21]. In the present case, the metaphor has obscured con-
tradictory design decisions and functional omissions with regard to the problem
domain. Although these deficiencies may appear manifold, many are elementary
and quite straightforward to address. The exception being stochastic search on
a uni-modal landscape, which is neither theoretically valid, computationally de-
sirable or biologically plausible. We intend to address this in future work, by
trading-off complexity in the fitness landscape against scaling independently
from the size of the dataset.

When the strictly one-shot requirement on AIRS is relaxed, it begins to
resemble many of the idiotypic-network style algorithms that preceded and in-
spired it — Neal’s meta-stable memory [15], Timmis’ RAIN [6], Von Zuben and
de Castro’s CLONALG and ai-Net [5,16]. Because AIRS is still essentially an
unsupervised algorithm, run in class-specific partitions, any of these unsuper-
vised AIS could equally be used to determine a repertoire of memory cells. But
based on previous experience with some of these algorithms, we suspect that a
good deal of what has been discussed with regard to RBF and iterative descent
would largely translate to these settings. Rather, we would propose that there
may be an opportunity for unifying this lineage of work, by acknowledging (and
leveraging) existing research in machine learning and non-parametric statistics.
Decoupling the statistical aspects of AIS from the immunological component
aids clarity and correctness. Closure on the contribution of clonal selection would
clear the way for more focused and sophisticated immunological contributions;
that can be transparently motivated and communicated without metaphor.
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