
A Perspective on Middleware-oriented Context-aware Pervasive Systems

Zakwan Jaroucheh, Xiaodong Liu, and Sally Smith
School of Computing

Edinburgh Napier University
{z.jaroucheh, x.liu, s.smith}@napier.ac.uk

Abstract

The evolving concepts of mobile computing,
context-awareness, and ambient intelligence are
increasingly influencing user's experience of services.
Therefore, the goal of this paper is to provide an
overview of recent developments and implementations
of middleware-based pervasive systems, and to explore
major challenges of implementing such systems. This
paper also provides a comprehensive access to the
literature of the emerging approaches and design
strategies of middleware for providing users with
personalized services taking into consideration their
preferences and the overall operating context.
Middleware systems were categorized according to
their internal coordination model.

1. Introduction

With the great growth of mobile devices such as
laptops, palmtops, and smart phones, it is hardly
surprising that the mobile computing has attracted
considerable attention in recent years. In an attempt to
go beyond the traditional view of explicitly used
computers and terminal devices, a new more general
paradigm of user-centric mobility has been emerged. In
this paradigm, the “Ubiquitous Computing” concept
which has been introduced by Mark Weiser in 1991
[8], a smart and autonomous computing technology
will be embedded in every device to [15] enhance the
use of computers by making computers effectively
available throughout the physical environment and, at
the same time, making them invisible to the user. Mark
Weiser [8] expressed this goal as achieving the most
efficient technology and making computing as ordinary
as electricity. Thus, instead of relying on specialized
devices carried and maintained by the user such as
mobile phone, the focus is now on provisioning
services to the user [3].

Accordingly, the main objectives of this review are:
- To highlight the pillars of the pervasive computing

as well as relevant technologies standards and research
areas.

- Laying the groundwork for developing context-
aware systems.

- To highlight different approaches for
personalization of services and their interaction, and
how these approaches can take advantage of current
software engineering techniques.

The remainder of this paper is structured as follows.
Section 2 discusses the current distributed systems.
Section 3 describes the fundamental requirements of
context-aware pervasive systems. Section 4 presents an
abstract architecture of middleware-based context-
aware systems. Section 5 presents the role of
middleware. In Section 6 we outline context-aware
service discovery, service composition and service
adaptation. Finally, Section 7 concludes the paper with
brief concluding remarks.

2. Today’s Distributed Computing

The evolution of distributed computing was driven
by the new pervasive networking. Network
connectivity is embedded in most digital resources
thanks to the widespread of the Internet, the availability
of broadband and wireless networks, and the
convergence of telecom and computer networks. Two
application areas were emerged that exploit such
network connectivity [10]. These are grid and
ubiquitous computing which further drive the
middleware evolutions and research.

2.1 Grid Computing
Grid computing is a form of distributed computing

that depends on software to divide and allocate pieces
of a program among several (sometimes thousands)
networked, loosely coupled computers, therefore
creating a "super and virtual computer" acting to
perform very large tasks.

The Grid is a truly heterogeneous environment
where the resources are geographically distributed and
managed by a multitude of institutions and
organizations. It offers a persistent, standard-based
service infrastructure for the purpose of creating a
distributed community that share resources such as
storage space, software applications and data [10]. In
this respect, the objective of the resource sharing,
achieved by direct and coordinated access to resources,
is to achieve collaboration problem solving.

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.142

249

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on January 14, 2010 at 09:24 from IEEE Xplore. Restrictions apply.

2.2 Pervasive Computing
The vision of “disappearing technologies”,

pioneered by ubiquitous computing [8], adopts the idea
of building smart environments where computing and
communication facilities are “everywhere”, being
embedded in almost every surrounding object and can
be seamlessly accessed “every time”.

This vision is becoming reality [10] thanks to the
great evolution of software and hardware technologies
(e.g., wireless networks, mobile computing, and
agents).

3. Requirements of Pervasive Context-
aware Systems

Context-aware applications bring to light several
architectural design challenges. In the following we
present some of the new kind of requirements that have
to be treated by the pervasive context-aware systems:

3.1 Coordination

In decentralized setting of pervasive environments,
resources need to be able to coordinate, from the
application to the network layer. Furthermore,
coordination must be supported in a decentralized way
to avoid reliance on a specific infrastructure whose
accessibility cannot always be guaranteed in mobile
and open network [10]. In other words, without a single
controlling entity, the coordination of adaptations
among individual components or subsystems becomes
a major design consideration, with cross-cutting
impacts on numerous functional and non-functional
properties [16].

3.2 Interoperability

The vision of pervasive computing requires a very
large range of devices and software components to
interoperate seamlessly. Interoperability is required at
all levels of ubiquitous computing [15]. On the
application level, mobile client applications must
discover and interoperate with application services
available to them at their present location. However,
these services will be developed upon a range of
middleware types and advertised using different service
discovery protocols unknown to the application
developer [18]. Therefore, interoperability on the
middleware level is also required.

3.3 Heterogeneity/Transparency

In ubiquitous world, we can identify two main types
of heterogeneity:

- Hardware heterogeneity: Applications must be
aware of two kinds of heterogeneity [11]. The first one
relates to the computational environment offered by the

context in which they are running (e.g. the bandwidth
offered by the communication medium). The second
one concerns the device itself: the same communication
infrastructure can be accessed by a large variety of
devices which are all homogeneous in terms of basic
resources and functionalities, but different with respect
to quantitative and qualitative characteristics (e.g.,
memory size, computational power, etc.).

- Software heterogeneity: heterogeneity of software
is expressed by a diversity of software structures,
component models, interface technologies and
languages [15].

3.4 Mobility

The focus in mobile computing research should
consider four types of mobility: device mobility,
“personal mobility”, service mobility, and code
mobility. In general, mobility results in context change
which may affect how clients consume the services and
how the provider serves them [19].

3.5 Survivability & Security

In ubiquitous world, the behavior of components
may be unpredictable because of changes in the
environment (e.g. network connection failure, services
failure to provide the expected functional and/or non-
functional qualities, etc.). This is why we see an
increasing interest towards self-healing solutions [7].
A key characteristic of a survivable system is its ability
to deliver essential services even in the face of attack,
failure or accident [15].

3.6 Adaptability

The need for adaptability in software is growing,
driven in part by the emergence of pervasive and
autonomic computing [14]. Software services must
adapt to different kinds of terminals and networks.
They also have to handle dynamically emerging and
evolving contexts and user preferences. Due to
mobility in ubiquitous environment, dynamically
changing conditions make adaptability a big challenge
[15].

3.7 Autonomic Behavior

Autonomic computing becomes critical to managing
mobile devices at the wireless edge, and also in
managing large-scale computing centers.

Traditional instructive systems with their passive,
deterministic, context-free, and pre-programmed nature
are suggested to be replaced by autonomous computing
systems, which are active in nature and implement non-
deterministic, context-dependent, and adaptive
behaviors.

250

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on January 14, 2010 at 09:24 from IEEE Xplore. Restrictions apply.

3.8 Scalability and Resource-discovery
Pervasive systems may include a large number

(potentially tens of thousands) of distributed
components or subsystems [16]. The mobility and
availability of a potentially this infinite number of
heterogeneous resources at the same time entail
requirements such as scalability and resource-discovery
[10].

3.9 Context-awareness

3.9.1. Defining Context-awareness

Context can be defined as [4] meta-information to
characterize the specific situation of an entity, to
describe a group of conceptual entities, and to partition
a knowledge base into manageable sets or as a logical
construct to facilitate reasoning services.

As stressed by the ubiquitous vision, distributed
systems need not only to adapt to the change in the
available resources, but also to the users’ preferences
and profiles over time and the physical environment.
This ability is generally referred to as context-
awareness [10].

Obviously, context-awareness is central to
ubiquitous computing that aims at delivering
applications to end-users in an opportunistic way, with
the best quality possible. Therefore, development of
context-aware systems requires: context management
as well as context-based adaptation [10].

Furthermore, in ubiquitous environment, we can
define context-awareness as [12]: the capability of a
context-aware system or middleware to provide
anytime access to heterogeneous, distributed, and
unanticipated context information in global scale and
for distinct scenarios.

The question now is how the many parameters
defining the context of a service request and acquired
from different sources (i.e. user, device and
environment profile) can be formally represented,
managed and integrated to be used by the upper service
layer for adaptation?

Wang et al. [2] identified a set of necessary
functional elements that context-aware systems have to
support:

- Context acquisition, which concerns mechanisms
to obtain the context data from different context
sources.

- Context modeling, which forms the basis for
context sharing and interpretation. Current context
models differ in the expressiveness they support and
the types of context they represent [20].

- Context Aggregation: Based on a shared context
model, context aggregation merges interrelated

information gathered from different sources and enable
further data interpretation, and alleviating context-
aware services from overhead caused by querying from
distributed context sources.

- Context Interpretation: The low-level information
needs to be interpreted to derive high-level context
understood and utilizable by services.

- Context Query: Context-aware services need a
mechanism to access to interrelated information spread
across distributed context repositories.

3.9.2. Characteristics of Context Information
One of the main design considerations of context-

aware systems is the operating context representation to
capture its features. Such a representation has to be
flexible and powerful to allow applications to easily
react at provision time to the frequent context changes.

In [8, 19], contextual information resides at three
levels:

- The environment level enables defining the overall
environment context.

- The service level models and manages the context
surrounding individual services offered over mobile
devices.

- The resource level presents the context of
resources on which the services are to operate.

3.9.3. Context-aware Personalization
Mobile devices enable users access a wide range of

services without guiding them through their actual
demand. Thus, to provide mobile users with an
acceptable and affordable set of services and
information the offered set must be custom-tailored to
the individual needs. In other word, they must be
personalized. Two important categories of
personalization motivation can be identified:
personalization to facilitate work and personalization to
accommodate social requirements.

3.9.4. Personalization Approaches
We can distinguish three approaches to achieve

personalization:
- Location-based: meaning that a user’s location is

taken into consideration for service provision.
- Context-aware: meaning that beyond location

information, service provision takes into account user’s
environment context information. Obviously this helps
delivering the right service at the right time.

- Situation-aware: meaning that an abstraction of
context information could be done by translating this
information into logical situation (e.g., being in a car,
in a conference room, eating, etc).

251

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on January 14, 2010 at 09:24 from IEEE Xplore. Restrictions apply.

4. Abstract Architecture of Context-aware
Systems

As a result of literature review that explores the
context-aware systems, we present here general layer
architecture for context-aware systems. Figure 1
illustrates this architecture which consists of 3 layers:
(i) network layer, (ii) mobile middleware layer, and
(iii) application layer.

Mobile middleware consists of two parts: generic
service set and synchronous and asynchronous
communication support. Generic services set include
for example, context management, resource
management, service discovery, etc. There is no
absolute core set of middleware services that all
applications require [3].

5. Middleware

5.1 Role of Middleware

Development of ubiquitous applications is a
complex and error-prone task because they must cope
with heterogeneous infrastructures and with system
dynamics in an open network. Middleware role is
therefore essential to support mobility and adaptation
of applications to the current context [9].

5.2 Middleware Categorization

 Middleware platforms can be classified according
to the coordination model they implement, as the
following [10]:

- Transactional Middleware: it offers an interface
for running transactions among distributed parties.

- Tuplespace-based Middleware: it abstracts
distributed tuplespace, which further managed in order

to assure non-functional properties like reliability,
persistence and scalability.

- Message-Oriented Middleware: it provides
functionality to publish, select and deliver messages
with properties like persistence, real-time performance
as well as scalability and security.

- Remote Procedure Call: it offers services for:
generating client/server stub, marshalling/
unmarshalling data (parameters), establishing
synchronous communication as well as assuring non-
functional properties.

- Object and Components Oriented Middleware: it
offer tools that: generate stubs from the object
(component) interface specification, obtain a reference
to a remote object (component) to interact with, to
establish synchronous communication, and invoke
requested methods (operations) by marshalling and
unmarshalling exchanged data.

- Service-Oriented Middleware: it supports the
development of distributed software systems in terms
of loosely coupled networked services. Service-
oriented middleware hides the heterogeneity of the
underlying environment by introducing languages for
service description and protocols for service discovery
and access.

5.3 Context-aware Middleware Requirements:
- Connection Management: Due to the frequent

disconnection and reconnection of mobile devices
Middleware has to provide asynchronous
communication. Additionally it has to decouple sender
and receiver as well as manage data synchronization.

- Resource Management: The limitation of the
hardware resources introduces another design
constraint on the middleware: Mobile middleware has
to be lightweight [3]. On the other hand, it has to
efficiently use available resources and avoid
overloading the device itself.

- Context Management: is responsible for
aggregating context information from different sources,
storing them in appropriate format, and provide
querying and notification support. Mobile middleware
must represent context to upper layer and communicate
changes until the service layer is reached. It is in this
layer the decision takes place about the best way to
react to the context change. The middleware should be
implemented in such a way as to achieve a trade-off
between transparency and awareness [3].

- Publishing Services: Middleware should provide a
way to publish, in a registry known to all parties, the
service description, its context information, and types
of contexts it is interested in.

- Service Discovery: Middleware should provide the
possibility for the client to discover services based on

252

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on January 14, 2010 at 09:24 from IEEE Xplore. Restrictions apply.

the service description, its contextual information or
the context it is interested in receiving from the service.

- Adaptation: Middleware should provide behavior
adaptation triggered by this context change.

- Reliable Asynchronous Invocation: middleware
should support asynchronous invocation so that clients
can send request to service when connected and then
later receive response during reconnection phase.

6. Developing Context-aware Applications
in Pervasive Environment

Designing and implementing distributed
applications for such environment is a complex task
[16, 28]. In particular, application adaptation based on
context such as environmental factors, device
limitations and connectivity, requires the programmer
to handle a complex combination of factors that
manifest themselves throughout the application [6].

6.1 Context-aware Service Discovery
In general, we can distinguish three categories of

service discovery and interaction platforms [17]:
- Solutions in which discovery protocols are

supported by mobile code. That is, after discovery the
service is downloaded onto the mobile device where it
can operate. Example of such solutions is Jini.

- Solutions where the discovery protocols are
integrated with interaction protocols, which are used to
invoke the service after the service has been
discovered. Examples are: Universal Plug and Play
(UPnP) with SOAP, Saturation with Sun Remote
Procedure Call (RPC), and Gaia with Common Object
Request Broker Architecture (CORBA).

- Solution where the discovery protocols are
independent from interaction protocols. These
discovery protocols can be integrated with a range of
interaction protocols. Examples are: Service Location
Protocol, and ReMMoC [17].

It has been shown that incorporating context and
situation awareness in service discovery can greatly
improve the precision and recall of the discovery
results [3], where recall is defined as number of
relevant services retrieved in service discovery divided
by the total number of relevant services available, and
precision is defined as the number of relevant services
retrieved in service discovery divide by the total
number of services discovered.

6.2 Context-aware Service Composition

6.2.1 Composition in Mobile Environment

Research in service composition has followed two
directions: One direction defines languages to formally
describe services and composite services in terms of

e.g. service input/output, service constraints and
invocation mechanisms. This research also includes
developing engines that utilize these languages to
generate workflow specifications that compose
different services. The other direction concerns
development architectures [13] that enable service
composition. Based on a declarative description of
services, these architectures perform the task of
discovering, integration and execution of the relevant
services.

Service composition facilities in general, and
service composition incorporating personalization and
context awareness in particular, offer the potential to
simplify the life of the mobile user [1].

6.2.2 On Personalizing Web services Composition
We can identify personalization from two

perspectives, each one raises questions:
- The Web content provisioning perspective raises

questions like: what content should to deliver to the
user, how to ensure user’s privacy, and how to create a
global personalization schema?

- Web services provisioning perspective raises
questions like: at what level can the Web service be
personalized, does Web service personalization occur
before or after composition, to what extent can a user
personalize a Web service without altering its
consistency, and does Web service personalization
have to adhere to specific policies? [5].

6.3 Context-aware Adaptability
The need for adaptability in pervasive environment

is particularly evident at the “wireless edges” of the
Internet where the recurring change of operating
context (e.g. wireless signal loss), require from the
mobile device software to find compromise approaches
to the conflicting concerns such as quality-of-service
(QoS) and energy consumption [14].

6.3.1 Adaptation Difficulties
The difficulty in developing and maintaining

adaptable applications is [14] the cross-cutting nature
of the adaptive code. That is, the adaptive code tends to
crosscut the functional code. Furthermore, developing
new adaptable application is more challenging than
enhancing existing ones by dynamic aspects not
considered during their design.

6.3.2 Adaptation Strategies
Context-aware systems have the ability to

seamlessly adapt their behavior according to the
environment context. This adaptation may take several
forms, spanning: changing internal processing, altering

253

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on January 14, 2010 at 09:24 from IEEE Xplore. Restrictions apply.

the context being processed and exchanged over the
network, and modifying user interfaces [10].

Looking at pervasive application development from
the software engineering perspective, we observe that
the environment state, device limitations, user mobility
and connectivity have an impact across the application
as a whole (in other words, they are crosscutting).

7. Conclusion
The potential advantage gained from the

cooperation the services discovery and composition
from one side and the personalization and context-
awareness form the other side has two advantages.
First, it provides a focused composed service and
tailored to user needs and wants, and second, it
alleviating the user from searching for services most
appropriate for their needs among huge amount number
of available services.

Therefore, by making use of a close coupling
between discovery and composition, personalization
and context awareness using Service-oriented
Architecture (SOA) mechanism to create a truly user-
centric environment could be established.

Finally, given the heterogeneity, mobility and
adaptation aspects in the distributed computing
environment, SOA could be a good candidate since it
offers seamless integration between wired and unwired
environments.

8. References

[1] A. Davy , F. Mahon , K. Doolin , B. Jennings , M.
Foghlú. Secure Mobile Services Infrastructures for
mGovernment: Personalised, Context-aware Composition of
Pervasive Mobile Services. 1st Euro Conf. on Mobile
Government, Euro mGov 2005, Brighton, UK, 2005.
[2] W. Xiaohang. The Context Gateway: A Pervasive
Computing Infrastructure for Context Aware Service.
Research Report, School of Computing, National University
of Singapore & Context -Aware Dept., Institute for Infocomm
Research, November, 2003.
[3] P. Bellavista, A. Corradi. The Handbook of Mobile
Middleware. Auerbach Publications, 2006.
[4] K. Boukadi et al. CWSC4EC: How to Employ Context,
Web Service, and Community in Enterprise Collaboration.
NOTERE '08: Proceedings of the 8th int conference on New
technologies in distributed systems, 2008.
[5] Z. Maamar. On coordinating personalized composite web
services, Information and Software Technology 48 (2006)
540–548, ELSEVIER.
[6] A. Carton et al. Aspect-Oriented Model-Driven
Development for Mobile Context-Aware Computing.
SEPCASE'07: Proceedings of the 1st Int Workshop on
Software Engineering for Pervasive Computing

Applications, Systems, and Environments, IEEE Computer
Society, 2007.
[7] S. M. Sadjadi et al. Transparent Shaping of Existing
Software to Support Pervasive and Autonomic Computing.
DEAS '05: Proceedings of the 2005 workshop on Design and
evolution of autonomic application software, ACM, 2005.
[8] M. Weiser, "The computer for the twenty-first century,"
Scientific American, pp. 94-104, 1991.
[9] H. Schmidt, F. J. Hauck. SAMProc: Middleware for Self-
adaptive Mobile Processes in Heterogeneous Ubiquitous
Environments. MDS '07: Proceedings of the 4th on
Middleware doctoral symposium, November 2007
[10] V. Issarny, M. Caporuscio, N. Georgantas. A
Perspective on the Future of Middleware-based Software
Engineering. IEEE Computer Society, FOSE '07: 2007
Future of Software Engineering, May 2007
[11] P. Inverardi, F. Mancinelli, and M. Nesi. A declarative
framework for adaptable applications in heterogeneous
environments. In Proceedings of the 19th ACM Symposium
on Applied Computing, 2004.
[12] R. C. Rocha, M. Endler, T. S. Siqueira. Middleware for
Ubiquitous Context-Awareness. MPAC '08: Proceedings of
the 6th international workshop on Middleware for pervasive
and ad-hoc computing, December 2008.
[13] K. Geebelen et al. Dynamic Reconfiguration Using
Template Based Web Service Composition. MW4SOC '08:
Proceedings of the 3rd workshop on Middleware for service
oriented computing, ACM, December 2008
[14] S. Masoud Sadjadi, Philip K. McKinley, Betty H.C.
Cheng. Transparent Shaping of Existing Software to Support
Pervasive and Autonomic Computing. DEAS '05:
Proceedings of the 2005 workshop on Design and evolution
of autonomic application software, ACM, July 2005.
[15] E. Niemelä , J. Latvakoski. Survey of Requirements and
Solutions for Ubiquitous Software. MUM '04: Proceedings
of the 3rd international conference on Mobile and
ubiquitous multimedia, ACM, October 2004.
[16] G. Edwards et al. Self-* Software Architectures and
Component Middleware in Pervasive Environments. MPAC
'07: Proceedings of the 5th international workshop on
Middleware for pervasive and ad-hoc computing: held at the
ACM/IFIP/USENIX 8th International Middleware
Conference, ACM, November 2007.
[17] P. Grace, G. S. Blair, S. Samuel. A Reflective
Framework for Discovery and Interaction in Heterogeneous
Mobile Environments. SIGMOBILE Mobile Computing and
Communications Review , Volume 9 Issue 1, ACM, 2005.
[18] Tomasz Rybicki. Semantic Service Discovery in
Pervasive Computing Environment. ICPS '08: Proceedings
of the 5th international conference on Pervasive services,
2008.
[19] Umesh Bellur, Siddharth Bondre. Towards Seamless
User Mobility in Service Oriented Environments Via Context
Awareness. ICPS '08: Proceedings of the 5th international
conference on Pervasive services, July 2008.
[20] Abdelghani Chibani et al. Semantic Middleware for
Context Services Composition in Ubiquitous Computing.
MOBILWARE '08: Proceedings of the 1st international
conference on MOBILe Wireless MiddleWARE, Operating
Systems, and Applications, ICST February 2008.

254

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on January 14, 2010 at 09:24 from IEEE Xplore. Restrictions apply.

