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Abstract

Ubiquitous Computing promises to enrich our everyday lives by enabling the
environment to be enhanced via computational elements. These elements are
designed to augment and support our lives, thus allowing us to perform our tasks
and goals. The main facet of Ubiquitous Computing is that computational devices
are embedded in the environment, and interact with users and themselves to

provide novel and unique applications.

Ubiquitous Computing requires an underlying architecture that helps tonpte

and control the dynamic properties and structures that the applications require. In

this thesis, the Networking package of Communicating Sequential Processes for Java
(JCSP) is examined to analyse its suitability as the underlying architecture for
Ubiquitous Computing. The reason to use JCSP Networking as a case study is that
2yS 2F (KS LINRPLRAaAaSR Y2RSft a-Caclli) hasothelj dzA G 2

potential to have its abstractionsplemented within JCSP Networking.

This thesis examines some thfe underlying properties of JCSP Networking and
examines them within the context of Ubiquitous Computing. There is also an
SEFYAYLFOA2Y Ayil2 GKS LlRaaroAfArde 2F AYLX
Calculus and similar mobility models within JQ&Rvorking. It has been found

that some of the inherent properties of Java and JCSP Networking do cause
limitations, ard hence ageneralisationof the architecture has been made that

should provide greater suitability of the ideas behind JCSP Netwotdisgpport

Ubiquitous Computing.The generalisation has resulted in the creation of a verified
communication protocol that can be applied to any Communicating Process

Architecture.
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Chapter 1 Introduction

Compuers are everywhere. From mobile phones and watches, to corporate
databases and industrial control systems, every day we interact with more and
more computational devices in our daily lives. In one morning, between awaking
and arriving at the office itsipossible to interact with a plethora of computational
devices in one form or another. Alarm clock, shower, radio, TV, MP3 player, mobile
phone, bank machine, laptop. This is but a small list of devices with which we may
interact with inside the firstédw hours of the day. But what does this mean for the
world at large, and where are we going within this new technological age? Enter

the era of Ubiquitous Computing.

1.1 Motivation

This motivation for this research came about from initial work within JCSP
(Gommunicating Sequential Presses for Java) Networking tocorporate code
mobility and thus lead to distributed mobile processes within JCEPBy enabling
code mobility within JCSP Networking in an easier and more concise manner, it
became possible to investigate mobile agent scenarios with JCSP Netwi@king
and likewise Ubiquitous Computing scenarif®. The ability to augment
functionality and have dynamic architectural topologies in dastributed
environment is an enabling factor of Ubiquitous Computing, and thus iigadsig

JCSP Networking within the context of Ubiquitous Computing becomes interesting.

1.2 Ubiquitous Computing

Ubiquitous Computing is a research area conedrwith not only the vast number
of computational devices in the environment, but also with how they can be made
to interact with one another. The introduction of this research field is generally

attributed to Weiser[4], although the origins are in 1988 at the Xerox Palo Alto
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Research Centre (PARB] At this time, an interactivevhiteboard was developed
which encouraged Weiser to look at how people interact with computationally
enabled physical objects. This led to various scales of devices being developed,
ranging from the whiteboard sized to early handheld computers and tags as
PARCTAB]. Simultaneously, early location aware systems were being developed

[7] and the amalgamation of these ideas lead to Ubiquitous Computing.

The main aim of Ubiquitous Computing is to connect the real world with the
computational, and also interlink the computational arscale never before seen.

For example, a door may b@made to open (or not) automatically as a person
approaches it. This is a simple example, but underlines the key idea of physical and
computational merging. The connection of nhumerous varied devices comes into
play when it is considered how the door knowko to open for. Sensors could be
scattered aroundhe environmentand their readings sent to a centralised system
which identifies the person and their intent and sends a message to the door
accordingly. Another approach would be the use of a tag ezhry the person

which the door itself detects and aatponaccordingly.

1.3 Mobility

Dynamic interactions enablé&Jbiquitous Computing environmentdue to the
requirement of adaptionwithin Ubiquitous Computing8, 9]. Mobility is a key
factor when consideng dynamic interactions, both mobility of devices and logical
mobility of the individualcomponents of an applicationThis thesis focuses on the

latter form of mobility.

Software, or logical, mobility requires runtime transfer of components between
devh OS & @ C2NXIf Y20Af Ale@-CHARHRA], have beeiR A Y
proposed as enabling reasoning of Ubiquitous Computing applicatidi®$ ¢KS -
Calculus incorporates name passing within a process calculus, which enables
dynamic topologies of interacting processes by allowing channel connections to be
migrated between components. Channel mobility enables process mobility, and
thus the mollity of channels and processes in a suitable software éa&ork can

be seen as enablingbiquitous Computing environments.
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There are frameworks available that allow development of channel and process
mobility models, such asccam™ [12] and JCSIP13, 14] Both are based on
another processriented model ¢ Communicating Sequential Processg®b, 16]
Work on JCSP has enabled simpler usage of the mobility fedturds] and the
ubiquitous availability of Javg being avdable on a multitale of devicesg

encourages exploration of JCSP in a Ubiquitous Computing context.

1.4 Communicating Sequential Processes for Java

Enabling distributed mobility of channels and processes is diffidn. JCSP
Networking allows construction of distributed channel and process models, and the
inclusion of the mobility extensions enable basic channel and process mobility. By
providing mechaisms to transparently create virtual networked channels across
communication mechanisms, JCSP Networking provides a good initial platform to

base an investigation into Ubiquitous Computing.

1.5 Aims

The aim of this thesis is to examine JCSP Networking witiéncontext of

Ubiquitous Computing. For this, there are two main research questions:

1 Is the current implementation of JCSP Networking a suitable framework for
the development of Ubiquitous Computing systems?
1 What are the practicalities of implementing tineobility abstractions of the

" -Calculus within JCSP Networking?

These two questions can be broken into further objectives.

1.5.1 Suitability of JCSP Networking for Ubiquitous Computing

To examine the suitability of JCSP Networking for Ubiquitous Computingmnienu

of properties of interest must be discovered, and experiments conducted to
examine whether these properties are suitably supported in JCSP Networking. If
these properties are not supported, then the problems with JCSP Netwottkatg

limit usage witin Ubiquitous Computingnust be discovered Furthermore, an

investigation into whether these problems can be overcome is also required.
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1.5.2 Practicalities of Mobility

To examine mobility, there are three points to consider. Firstly, what are the
advantages btaking such an approach to mobility in comparison to standard logical
mobility models such as objectientation? Secondly, can a suitable channel

mobility model be developed that enables the type of dynamic interactions
required by Ubiquitous Computiffg Finally, can process mobility be enabled in such
a manner that allows components to move freely through an environment such as

Ubiquitous Computing?

1.6 Contribution

The work presented within this thesis contributesamumber of areas. Firstly, an

examiration of the current implementation of JCSP Networking within a resource
constrained environmenthas been undertaken and various properties of the
architecture calculated to provide expected performance of the underlying
communication mechanism. The un@leng messaging mechanism has been

examined and layout and structure of sent messages extrapolated.

This thesis also describes a new implementation of JCSP Networking that overcomes
the problems of the current implementation of JCSP Networking when canside
Ubiquitous Computing scenarios. This new architecture is a reduced and refined
version of theexisting architecture.Importantly, a new protocol is proposed and
developed that promotes inteoperability between different communicating
process archécture frameworks. The new implementation is also examined by
repeating the experiments performed on the original implementation, and thus
showing improvements within the new implementation of JCSP Networkirte

protocol has had a SPHodel created toverify its operation.

Certain properties of the original and new architecture are also examined against
properties that are of interest to Ubiquitous Computing scenarios, which enables
examination of the suitability of JCSP Networking for Ubiquitous Contpu

applications.
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An analysis of different approaches to connection mobility in the context of
practical distributed channel mobility is also presented. Seven different models of
channel mobility are examined against properties of iagtr allowing
categorisation of the different models. This categorisation allows closer
examination of the possible suitability of the different connection mobility models

when considering the dynamic requirements of Ubiquitous Computing.

Finally, a method to transform JE®rocesses into strongly mobile processes is also
presented. This method allows active process networks to effectively be paused
and subsequently resumed at a new location. The ability to pause process networks
in this manner is novel, and builds uporisting approaches to capturing process

network state.

1.7 Thesis Structure

This thesis takes the following structure. @hapter 2an investigation into the
objectives is presented.Chapter 3present the current implementation of JCSP
Networking andChaper 4 analyses the current implementation by perfomgi
experiments within a suitablyesource constrained environment. Chapter 5
proposes anew implementation of JCSP Networking to overcome highlighted
problems, andChapter 6examines this new implementation by repeating the
experiments conducted on the original implementatiorChapter 7investigates
possible channel mobility models, highlighting strengths and weaknesses of each
and reflects these features back into the context of Ubiquitous Comput@iwpter

8 reviews techniques that have been proposedptermit process mobility, and then
proposes an approach that may help processes exhibit the strong mobility aspired
to by mobile agent systems, which are another proposed approach to Ubiquitous

Computing. Finally, i@hapter conclusions are drawn and future work proposed.



Chapter 2 Background

In this chapter, an investigation into Ubiquitous Computing is presented.
Requirements and challenges are presented, and in particular software architecture
properties are examined. Mobilitpne of the key factors of Ubiquitous Computing,

is also examined in depth. Finally, background information into Communicating
Process Architectures is presented, focusing on JCSP and linking properties of Java

to Ubiquitous Computing requirements.

2.1 Ubiquitous Computing

Historically, Ubiquitous Computing is attributed to Weig&r 5], the original focus
being on computational devices of different scales being embedded within the
environment. Ubiquitous Computingsi also sometimes referred to as Pervasive
Computing[18], although there are differences which shall be highlighted presently.

First, general descriptions of Ubiquitous Computing are presented.

2.1.1 Describing Ubiquitous Computing

Numerous descriptions of Ubiquitous Contipg exist, partially from the differing
contexts that the description may come from. Ubiquitous Computing can be
considered the availability of computational resources wherever wegl§j, an
extension of the mobile computing paradigm of all the time anywheie
everywhere at all times with any devicR0]l. A common theme is the
disappearance of technology into the backgroyd, 22] which allows focusing on
the task at hand rather than the technology itsglB]. The general notion is that it
moves compting forward to many devices to many usefl], a natural
progression from the many users to one device mainframe era, through the one to
one relationship of the PC era and the step through the Internet era of hybrid one

to one and many t@ne relationships.
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Ubiquitous Computing can also be considered as Everyday Compj2éjg
occurring within our everyday lives without our knowledge. This leadth¢o
natural progression of Pervasive Computing, which focuses more on smart spaces
and ambient intelligencg25]. In fact, Pervasive Computing can be thought of as
the application of Ubiquitous @aputing ideas, as Pervasive Computing extends the
focus from small devices, network protocols and power consumption towards

remote data access, smart spaces and context aware@é$s

However, the terms Ubiquitous Computing and Pervasive Computing are often
interchanged, Pervasive Computing sometimes begfgrred to asresearch into
mobile connected ubiquitous devicd27], or environments requiring little user
interaction [28]. For this reason, Pervasive Computing ideas must also be
considered when discussing Ubiquitous Computing, due to the tight coupling of the

research areas.

Pervasive Computing is not only considered the outcome and application of
Ubiquitous Compting ideas. It is also considered the natural evolution of
distributed computing through mobile computinfd8], and thus is considered an
extension of distributed computing with devices augmenting the environnj29i
There is also the argument that it emerged from requirements for coping with
heterogeneous mobile devices reguag interconnection, while abstracting from

the technology required for interconnectidB0].

It would appear that Ubiquitous Computing therefore comes from a number of
different areas but is particularly focused on mobile and distributed systems
interacting with embedded computational infrastructure. There is also focus on the
user being only lightly engaged in the computational environment, although users
are an integral part of theUbiquitous Computing infrastructur¢ll]. These
descriptions are very vague however, and some more concrete examples are
necessary to fully appreciate some of the ideas behind Ubiquitous / Pervasive

Computing.
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2.1.1.1ExampleScenarios

Examples of Ubiquitous / Pervasive Computing applications generally focus on
augmenting existing everyday tasks with computing technology. Satyanarayanan
[31] describes a scenario where the application determines ttia current
network infrastructure cannot support transferral of user files prior to a flight
departing, and therefore finds nearby infrastructure that can support the transferral
in time. Another scenario describes editing a presentation at a workstation and
then taking the work onto a nimle device and edihg using voice commands.
Cheng[32] describes a similar scenario where a user reviewing images
handheld device is automatically given higher resolution and colour depth when

better network bandwidth is available.

Banavar [23] describes a scenario where rmeone attending a meeting
automatically switches to video conferencing on a mobile device when they leave
early, and the video feed transferring to a screen in a car from the device when the

car is entered.

A common field of interest is healthcar@3, 34] Accessing patient records
electronically on mobile devices in a secure manner is foreseen as a goal, so much
so that it is seen as a foothill project in the Grand Challenge in Ubiquitous

Computing ReseardB5].

These scenarios and example applications help illustthte application areas
where Ubiquitous / Pervasive Computing is aimed at. From the scenarios it also
becomes apparent that the current context of the user plays a key role in deciding
how an application should behave. In particular, location and theices provided

in a location are paramount.

2.1.1.2LocationAwareness

Location awareness appears to be one of the driving factors behind Ubiquitous /
Pervasive Computing, particularly from the business point of y8&} Location

allows discovery of nearby seces[37-39], although determining which service to
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use and the protocol to discover nearby services are ongoing research problems
[25, 40]

The interest in location can be directly related to the notion of Pervasive Computing
smart spaces. A smart space is merely a locatiam pinovides services to users,
and thus the services providedealLocation Based Servicg6, 37] The focus on
locality is important when considering some of the other requirements of

Ubiquitous / Pervasive Computing.

2.1.2 Requirements

2 SAaSNDa AYyAlGAlLtE @OASe 2F ! oAljdzid2dza / 2YL
low power and wireless hardave components[41], with network protocols to

permit access to media. Weiser does state that Ubiquitous Computing reaches
further than normal mobile computing, and incorporates autonomous agent ideas.

The notion of small lower powered devices is continued further to incainay

thin clients and thin servers populating the environmg®1], which provide only

minimal capabilities as standard, and are designed to be augmented during

operations. This implies a deal of adaptisithin the computational environmat.

A number of authors have tried to list the requirements for Ubiquitous Computing.
Banavalf23] states that dynamic tasks, device heterogeneity, constrained messu

and social computing are the main requirements. Kindbptg] focuses on
requirements from different aspects of Ubiquitous Computing, mainly looking at
software challenges. Again, resource constraints, heterogenetmwces and
adaption are seen as key requirements, along with scalability, robustness and

service discoveryRobustness is also a key concern stated by Sd3$a

Niemela[26] lists interoperability, heterogeneity, mobility, security, adaptability,
autonomy and scalability as requirements. Mobility in this sense is more than
simple device mobility however, and r@iges mobility of software components
between devices also. Software mobility allows dynamic binding of components,
and thus promotes adaption. This idea is repeated by Lindpktly who states

that handling heterogeneity and the dynamic nature of users, services and

environments is a key challenge ¢vercome.
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The Grand Challenge in Ubiquitous Computing Resg¢ablapproaches Ubiquitous
Computing Science, stating that focus should be on system and software
architectures, mobility, context awareness, language design, protocol design, and
support tools and verification of these factors. In particular,canmunication
infrastructure beyond standard TCP/IP protocols is called for. Milner continues the
modelling andscientific argumenfl11], discussing whether the inherent complexity
and scale of Ubiquitous Computirggn be modelled, and what this implies for
engineering such applications. Sufficient models of abstraction are required to

enable understanding of the underlying architectures.

da Costa[20] lists scalability, heterogeneity, dependability, security, integration,
invisibility of the wunderlying infrastructure, and context awareness and
management as requirements, stating that a siént middleware is required to
support these features. Many of these requirements can be attributed from
existing computing fields. Heterogeneity, scalability, dependability and security can
be attributed to distributed computing, and spontaneous irdperation, mobility,

and context awareness and management can be attributed to mobile computing.
These ideas fit into the idea of Pervasive Computing extending distributed and

mobile computing.

Examining requirements for Pervasive Computing repeats tmenuan notion of
extending distributed and mobile computing. Satyanarayaftl] lists remote
communication, fault tolerance and high availability from distributed systems, and
mobile networking, adaptive applications and location sensitivity from mobile
computing as regirements. These ideas are extended with Pervasive Computing

requiring smart spaces and invisibility of the environmental architecture.

Henricksen[8] states that Pervasive Computing requires examination of four key
areas: devices, software components, users and user interfaces. Of these four,
devices require heterogeneous support and mobility, and softwawenponents
require mobility, adaption, interoperability, scalability and component discovery
and deployment. Henricksen focuses further on middlewpt8], stating that

support is requiredfor heterogeneity, mobility, scalability, and fault tolerance.
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Cardoso[29] adds Quality of Service (QoS) requirements also, due largely to the

scale and user interaction requirements.

Cheng[32] considers the minimal human oversight requirements of Pervasive
Computing spaces in relation to the dynamic requirements of user movement and
changing resources such as bandwidth and service availability, and thus fault
tolerance is a may consideration. Sah@l8] repeats the call for a suitable
middleware to interface between the hardware and applications within the
environment, and also support the heterogeneous nature of these interactions.
However, Edwardpi6] statesthat total inter-operability between components and
devices is not possible, due to the inability to predict future requirements and
standards. Thus, limited inteperability is required and sensible extensionslt

upon it.

From the brief overview of requirements for Ubiquitous Computing and Pervasive
Computing architectures, it can be seen that there are a number of common

themes. In particular, the following properties seem to be of interest:

1 Interoperability ¢ to support heterogeneous devices and software
components.

1 Performance; to support Quality of Service and scalability, althoagstrict

requirementon performance is not in itself a requirement.

Scalabilityg due to the large number of device interamtis envisioned.

Stability¢ robustness and fault tolerance.

Adaptability¢ the ability to adapt to different operating conditions.

= =2 =/ =

Mobility ¢ to help support adaptability, both device and software mobility is

a consideration.

Another common argument is theequirement of a software middleware to
support these properties. Therefore, an analysis of software architecture

properties is also required.
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2.1.3 Software Architecture for Ubiquitous Computing

Proposals for Ubiquitous / Pervasive Computing software ardiites generally
focuson component oriented architectures. Garlan discusses the Aura framework
[47], repeating the calls for mobility, adaptability and resource awareness within
software components. The Aura framework works on the idea of tasks which follow
users throughout the environment, tasks themselves being made asfows
components. The idea of tasks following users returns to the fundamental ideas
behind Ubiquitous / Pervasive Computing. Garlan also calls for refocusing of
software from monolithic enterprise applications to dynamic components, and
states that a ethinking of how components are specified and implemented is
required. A foreseen challenge is deciding on the types of interactions between low
level infrastructure and the upper application task lay&dwards[46] states that

this interoperation layer must be minimal, and provide few fixed parameters,
allowing the user / developer the ability to join devices together in sensible
manners. However, Henricksed5] approaches the problem by creating a
transparent communication layer that is similar to CORBA, and allows various
frameworks to create the required connections between components

automatically.

Sousa returns tahe Aura frameworl43], calling for a rethinking towards acity
oriented computing, which supports the notion of tasks being important. This
requires dynamic reconfiguration of software architecture to support user needs,
which relates to software mobility. A main argument is that application models
aimed at Ulguitous / Pervasive Computingo not consider that user tasks are
generally defined at runtime, and therefore packaging for all user requirements at
design time is boundo fail. The ability to suspend and resume existing tasks is
simply not enough to symrt Ubiquitous Computing. da Cog0] complements

the inability to package all possibility at design time by arguing thamnanwon API
within a single framework will not support heterogeneity due to the lack of a

common framework that can operate on all devices.

Hoareau[48] argues on implementing stridtierarchicalcomponent archiectures

with well defined interfaces connecting the components together. By conforming
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to these requirements, applications can be made to adapt based on architectural
rules built within an Architectural Description Language (ADL) and observed

environmentl resources.

A common approach to coping with autonomy and the idea of smart spaces in
Pervasive Computing is to apply agent oriented architectures to Ubiquitous /
Pervasive ComputingZambonelli{49] promotes the usage of agents in Ubiquis
Computing applications, but does also warn of some dasmgddiemeld26] also
supports agents as suitable giotypes for Ubiquitous Computing, and Jufxp]
considers Ubiquitous Computing as a maljent system which is targeted at
everyday life. This is also suppaltdy the Grand Challenge in Ubiquitous
Computing Researd35], where agents are considered the base platform to build
Ubiquitous Computing systems upon. Molij®4d] argues that multagent systems

are becoming more relevant in Pervasive Computing environments, particularly as

they provide an interface between users and the environment.

Anather common wewpoint on software architecture is the requiremeot mobile
software architectures. For example, Henrick§&Jrargues on transparent mobility
supported by the underlying software architecture, and Card¢@®| believes
mobile agents support the adaption, performance and scalability requirements of
Pervasive Computing application®lilner [11] argues that modeltig of Ubiquitous
Computing applications should also be supported by formal mobility models,
particularly due to theinherent mobility of users, devices and software
components. Mobility of software is considered especially difficult to deal with, due

to the lack of physical constraints placed on software mobility.

From a software architecture view point, it can be seen that agents are considered
an interesting area for Ubiquitous Computing, coupled with mobile and dynamic
architectures. These two facethal be examined in greater detail in Secti¢h2

and2.3respectively. First a brief analysis of hardware requirements is presented.

2.1.4 Hardware for Ubiquitous Computing

2 SAASNDa Ay rofi Abigditousk Soin@utidy baiidivapyrl] focussed on

three different sizes of device the tab, the pad, and the board. The tab can be
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considered a small, pocket sized device, similar to the Active Badge system
developed by Wan{7], which enabled tracking cd badge wearer via infraed
sensors, and the PARCTAB device described by $ihilithich provided sevices

that augmented a small handheld device. Pad sized devices were envisioned as
small scrapcomputersg similarto pieces of paper or notepadsand board sized

devices covered such items as electronic whiteboards.

Modern viewpoints on Ubiquitous / iPeasive Computing hardware focus largely on
small scale devices with wireless connectivity. Harty{dg] has argued on
augmenting the environment with small wireless servdrattprovide services for
users & a vable model, whereas War{63] considers a small personal wireless
server with no user interface as a more viable option. Card@8pmerely states

that mobile devices are essential for Pervasive Computing, siodrs [54]
integrates wireless technology with the service and adaption ideas to control how
mobile devices behave based on locations determined by wireless beacons. For
example, a phone cabe made to go into silent mode when a beacon signals that

the user is within a cinema.

Thus, modern Ubiquitous Computing hardware seems to focus on small mobile
devices that are wireless enabled. The smart phone is seen as the first real world
UbiquitousComputing devicg55], and mobile telephony and SMS text messaging
are considered the first real world Ubiquitous Computing applications. Relaisg

to the software architectural considerations, any proposed framework should at

least initially be examined within the context of wireless enabled mobile devices.

2.2 AgentOriented Systems

The term agent within software is an often overused term basedhenfield of
computing that is examining agent properties. Tok[&®] takes a viewpoint where
agents are concurrent objects that are autonomous so that they can perform tasks.
The agent is comdered capable of reacting to incoming events and reacting
accordingly. Langi7] also takes an object view point of software agents, stating
that they are autonomous, reactive and goal driven. Iglef&8Fconsiders objects

and agents similar due to both relying on message passing communication.
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The combination of object ideas and concurrency come together in the description
provided by Bauef59, @], where agents are considered more akin to active
objects, with autonomy, reactivity (responds to events) and-actvity (generates
events) being the fundamental differences between standard objects and agents, or
adding the ability for an object to udnomously say go and navhen
communicating with other computational entities This idea is cemented by
Wooldridge[61], who states thatt 2 6 2S5 0la R2 AdG F2NJ FNBST
glyid (2 op¢

2.2.1 Describing Agents

Agerts have a strong background in artificial intelligence. Nw@&2adistinguishes

agent types based on three propertieshe ability to learn, the ability to cooperate,

and the ability to be autonomous. Depending on these bdjiges, an agent may

be consideredas smat, collaborative or eme other category Silva[63] has
defined that the artificial intelligenceapabilities of an age based framework
depends on how strong the sense of agenmewithin the framework. A strong
sense of agency provides an Al agent framework, a weak sense of agency is simply
an agent based framework, anlde object-orientated viewpoint of agency is régpl
middleware. Silva considers agents to be active components that perform tasks on

behalf of others.

Wooldridge [61] also considers the autonomy of agents as the important
distinction, and considers this is accomplishBdagents having encapsulated state
and the ability to make decisions based on this state. Agents are also considered to
be reactive and proactive, and must have social capabilities, or the ability to

communicate.

Kendall[64] also considers the same properties\&®oldridge to be important, and
also provides a layered model of capabilities of an agmnsideringmobility as the
highest level capabili due to the provision of dynamic architectures. As already

stated, dynamic architectures are important to Ubiquitous Computing applications.

Molina [51] takes a Ubiquitous Computing viewpoint on agents, ,aasl well as

repeating the needto respond to events and communicatstatesthat agents
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provide adaption and reasoning to allow usage within Ubiquitous Computing

applications.

2.2.1.1AutonomousAgents

When agents are described within the context of artificial intelligence, the
autonomous behaviour of agents is usually the main focusiteirest. The most
common architecture for defining agent behaviour is the Belief, Desire and
Intention (BDI) mode[65, 66] BDI defines that agents are given a set of goals
(Desires), plans, some @fhich have been committed to (Intentions), and some
internal state (Beliefs) that is used to make decisions. This model follows closely to

the idea of encapsulated components that are reactive and proactive.

Another common method to define behaviour isetractive object[67], which
extends object orientation by allowing objects to have their owmead of
existence. Bhaviour must be added to the object to alldive active object to be
more proactive Garcig68] attempts to incorporate behaviour by injecting code
into objects using aspect oriented techniques, which may lead to some form of

adaptive behaviour.

2.2.2 Modelling Agents

Considering agent orientation as a possible architecture for Ubiquitous Computing,
the question arise on how agent oriented architectures are modelled. Kif@®}
describes an agent as having two models: internal and external. The internal model
incorporates the internal state of the agent, and can incogtersuch ideas as BDI.
Externally, an agent utiliseservices and is also provided with a type based on a

hierarchy.

Iglesias[58] focuses on the external service viewpbiof agents, considering the
similarities between objects and agents when the communication mechanisms are
compared. In particular, Iglesias argues that although both utilise message passing,
agents have the ability to analyse messages and determine \ehdth execute
them. This idea returns to the notioof an agent having thability to say no,
althoughDI NODA | Q& ¢2NJ] 2y LI eAy3a | aLlsSoi
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behaviour in object orientation would allow an object some capability to refuse

messdes.

Bauer [60, 69] utilises UML to try and model agent based systems, providing
extensions to help model the autonomy and active runtime of agents. However,
Baue does note that UML is not entirely suitable to model agent orientated

architectures.

Others have tried a more formal approach to modelling agents. [A@;k71]has

used Z Specificati@to model agent orientedsystems, and notes that there is
difficulty due to the overuse of the term agent. Luck defines a hierarchy of
properties that allows an agent to be defined. An entity is a set of attributes, and
an object is an entity with a set of actions. An agemini®bject with a set of goals,
and an autonomous agent is an agent with a set of motivations, which allows goals

to be modified.

Duvigneay72] examines agents by utilising Pelitets, and egues that agents form
hierarchies, thus requiring @y S & ¢ A pafadigfh. Y83} dlsb examines

PetriNets as a method to model agent oriented applications.

Gonzale474] has approached agent development using Communicating Sequential
Processes (CSH), 16] and has argued that various behavioural aspects can be
modelled using the CSP falism. Gonzalez argues that the notion of agents and

processes with CSP are strongly related.

Yu[75]dzi0 A f AaSa | y2iKSN-CatnRsSmodel d0ént s@stansiza >
dzQa | NBdzYSyd OSyGaNBa 2y U KGlcuRehidbsy O
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and argues that thé -Calculus process is also very similar to an agent.

2.2.3 Summary

Although agents have been proposed as a possible architecture famuittus
Computing, the fact that the term agent is over used does lead to questions on
what Ubiquitous Computing views as an agent. The common features of agent
descriptions focus on the ability to perform a task for another entity, autonomy,

and activeess. However, autonomy is alsedéfined, and it is unclear whether

- NJ
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autonomy simply means being active and performing a task, or whether an agent
should have intelligence and adapt to its environment. Considering one of the
properties of Ubiquitous Coputing is adaptability, it is likely the latter description

that is being used to define Ubiquitous Computing agents.

The following section examines mobile software architectures, which is the second
architectural viewpoint considered for Ubiquitous Comipgt Mobility is also one

of the requirementf Ubiquitous Computing, and therefore requires investigation.

2.3 Mobility

Software, or logical, mobility is different from the more commonly thought of
physical mobility, and has a number of different challengeBaude [59]
distinguishes between mobile computing (physical devices) and mobile
computation (mobile software components), and in particular looks at mobile active
object systems. As Secti@® described, active objects have similarities to agents,
thus there is a commonality between the mobile and agent architectures. Baude
also distinguishes between strong and weak mobility, with strong mobility capturing

the execution state of tb component, and weak not doing so.

Fuggetta[76] argues that there is general confusion on what statebility actually
means. The state of a component may or may not include the current execution
point, or progam counter, of the mobile componentTo bestrongly mobile, this
information must be captured and transferred transparently, without programmer
intervention. Data state contains no execution state, and mobile data state allows

weak component state to beansferred.

These views on logical mobility generally focus on the component, and the

following section examines these ideas in greater detail.

2.3.1 Logical Component Mobility

Troger[77] redefines strong and weak mobility to active and passive component
mobility. A pasive component can be considered one that has no path of
execution, and can be considered to be data or code library mobility. Many

frameworks provide this mechanism using serialization, which allows passive object
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replication. Active component mobilityescribes components that have a path of
execution, and Troger mentions the possibilities of such components within

Pervasive Computing environments.

Bettini [78] provides a further type of migration beyond weak and strong, that of
full mobility. Full mobility allows an entire operatingssym process to migrate,
and would be akin more toraentire application migrating rather than just an
individual component. Ghezz9] considers a different third type of mobility, that

is communication based rather than component based. For example, Remote
Procedure Calls (RPC) can be relibuo enable a component to move and

reconnect to existing components.

The idea of RPC enabling mobility is also considered by Cdafd/liwho also
defines five separate mobile component properties. A componeal provide
control mobility, which allows the thread of control of a component to virtually
transfer to another location, using RPC. Databifity allows the transfer of data
from one network host to another, and link mobility allows the migration of a
connection between two components to be migrated. Object mobility allows the
migration of objects, whereas remote evaluation permits an object to migrate to
another location, execute and return. The interlinking of location and migration has
been addressg by Roman81], who states that location defines the position of the
logical component, and thus a change of position is a change of location and

therefore migration.

Phillips[82] has argued further on the notion of location, stating that a means of
expressing a process location is required, both physically and logically. Phillips has
also argued that the very nature of distributed mobile components requires
concurrent behaviour,and that communication between components must be

modelled.

Roman[81] also considers coordination between components, and believes that
coordination and location are the two most important factors for a logicalbpile

framework. The consideration of coordination separately from the components
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allows a decoupling of the components, and coordination should be considered

separately to the actual mobile component behaviour.

2.3.2 Properties and Requirements

There are a nmber of considerations when developing a mobile architecture.
Fortino [83] has argued that existing technologies such as RPC must be considered
to allow interoperability between frameworks. As interoperabilityséen as a key
feature of Ubiquitous Computing, the argument is justified within the Ubiquitous
Computing context. Openness to new architectures must also be available

however.

Roman [81] has argued that componentode and component state must be
considered as first class elents of the component, and Welcli2] agrees that
some form of passive state must be considered as pa#mbbile component for
there to be a reason for mobility. Roman has also stated thatodrsection of
components and subsequent reconnection is required to allow mobility, and thus
algorithms to support message passing between mobile components while they

move is also required.

A common requirement for logically mobile components is code rtppdnd the

following section examines this is more detail.

2.3.2.1Code Mobility

Code mobility is the ability to transfer code from one host to another, and allow the
dynamic loading of this code into an already running process. Gf&4zhas
summarised a number of different application$§ code molility, providing the

different behaviours each exhibit. These applications are:

1 Clientserver ¢ server has the knowledge, resources and processors to
execute the task. There is really no migration of actual code in this
application.

1 Remoteevaluationg client has the knowledge, whereas the server has the

resources and processor.
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1 Code on demand client has the resources and processor, and the server
has the knowledge
1 Mobile agentg client has the knowledge and processor, and the server has

the resources.

Fuggetta[76] has taken a view where there are two types of code mobity
LINPOS&aa YAINIGA2Y YR 202S00G YAEAMHOGAZ2Y ®
mobility. Fuggetta also considers some applications of code mobility, and metions
location aware programming as an advantage. As described in S&cliclocation

is a key idea within Ubiquitous / Pervasive Computing. This helps to reaffirm

mobility as a suitable architecture for Ubiquitous Computing application

Active networks are added as a code mobility application by Brf@Ks An active
network is a distributed system with the ability to adapt to environmental
conditions by modifying the communication structure. Again, this dynamic nature is
a requirement for Ubiquitous Computing, reaffirming mobility as a suitable

Ubiquitous Computing architecture.

2.3.3 Mobility Architecture

So far, the discussion on mobility has focused on the description and requirements
of logical mobility, and this has highlightad/o separate mobile constructs
component mobility and the mobility of connections between components. In this

section, a further analysis of mobile software architectures is presented.

Fuggetta[76] considers omponents and their interactions as the architectural
constructs to consider within a logical mobility architecture, and LdB&$ has
stated that a clear separation of components via connectors is required to allow
adaptation. Zheng86] has also called for parate coordination and computation,

with clear input and output interfaces defined.

Zheng and similarly Oquend®7] have utilised Architectural Description Languages
6! 5[ a0 0l a&Rulugly] tolh&lsdefine the dynamic architectures of
f23A0Ft Y20Af Ale a<ddildsYhastalso beeld usaditd bepR >

describe agent based architectures (Secti®r?). Oquendo also considers a
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separation of components and connectors within the mobility architestuand
considers the configuration of these components and connectors to be the high

level architectural view of a logical mobility system.

Connection migration is examined by a number of authors. M{B@fhas called a
mature connection mechanism as beingble to communicate itself¢ a
communication that can communicate another method of communication. Zhong
[89] argues that connection migtion must accommodate interacting components
migrating simultaneously, and this should oce¢ransparently and reliably. Molina
[51] agrees with the notion of transparency, as well as location transparency as a
whole. Molina also argues that mobility and communication are intetedla

requiring one another to operate.

May [90] has analysed the different types of mobility that both components and
connections can exhibit, and how these effect a communication mechanism. May
describes copying, moving and borrowiQgopying replicates the sent entity at a
new location, movingopies an entity and destroys the original, and borrowing is

similar to moving, but with the mobile entity returning.

There is therefore a requirement for mobility of both components and connectors
in the software architecture to support logical mobilitiMlobile and agent oriented
architectures have both been described as potential models for designing
Ubiquitous Computing applications, and therefore examining these ideas in unison
is desirable. SectioB.4 will discus mobile agents In the following subsection,
object orientation is examined as logical mobility architecture. As the argument has
been made to the similarities between agents aslgjects, mobile objects require

further examination.

2.3.3.10bject Oriented Architectuse

There are problems when considering objects as mobile. Baf8#&f has
highlighted that object orientation naturally supports mobility within the structure
of its architecture, and mobile design is used exteslgivn single machine based
applications. However, the problem stems from the inability to ensure that a

mobile object can safely move all its parts.
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Hoare [92] has highlighted the key problem whetonsidering mobile objects.
Object orientation allows aliasing of objects, in that an object may be accessible via
more than one path of references from the root object. In fact, Hoare has stated
that there is no method to explicitly name an object,trat just the connections to
objects. With this in mind, when examining mobilitycan be considered that
objects are not first class elements, as there is no tangible method to own an

object.

Locke [93] has argud that objects also have no location due to this lack of
ownership. As mobility and location are intertwined, there is further evidence of a
problem when considering objects as a mobility architecture. Vj8K goes
further, and points out security flaws when considering mobile object systems that

arise from covert channels (aliases) crossing protection domains.

However, there has been work on trying to protect against aliasing (for example
[95]) by imposing ownership on objects. By enforcing strict encapsulation instead
of weak encapsulation, many of the problems asated with object mobility can

be overcome.

2.3.4 Formal Modelling of Mobility

As objects appear to be unsuitable for distributed mobile architectures, a more
formal approach to modelling mobile architectures is required. There are two main
approachesg state based and communicatiobased. Mobile UNITM5, 96, 97]
provides a state based model of mobility, and is an extension to the CommUNITY
formalism. Mobility is modelled by allowing components to change a locatate
variable, and also define behaviour based on this varif@8¢ Locations caralso

be transferred between componen{99]. Mobile UNTY has been used to mdde

mobility protocols such as Mobile [ROO].

¢ K SCalculug10] promotes the mobility of connections between components to a
FANRG Ofl aa 02y aadnsicdvers ohly pak dfddiKmobilek S
capabilities of a mobile architecture, further work on mobility formalisms attempts

to capture all aspects of mobility (for aremary seg101)).
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I 2YYdzy A Ol G A 2 yCalasldsiisksinghrofioksSin rature, and Phillii2]
has argued that distributed systems do not exhibit synchronous but asynchronous

behaviour. Therefore Philip LINRP LJI2aSa |y | aéy OGaNBEug 2dza O

to model real distributed mobile architectures.

Cardelli80, 103K & SEGSYRSR (KS acal&ulusianddsslapsdy i S R
the Ambient Calculus. Unliké K SCalculus, the Ambient Calculus promotes
ambient as the first class mobile entity. An ambient is considered to be a bounded,
nested collection of processes that migrates as a single entity. The idea of a

bounded entity assists in modelling protemtidomains for applications.

~

I & ({-®afulus has been proposed as both a model for agent orientation and
mobile architectures, it would appear to provide a suitable model to investigate
Ubiquitous Computing. This is also proposed by Mi[dél, who states that to

sufficiently support Ubiquitous Computing, protocols that enable communication

mobility are required.

Mobile agents also provide a mechanism to combine the ideas of agents with the
ideas for mobile ardkectures. In the following section, this area is further

examined to determine the suitability of mobile agents for Ubiquitous Computing.

2.4 Mobile Agents

As with agents, the term mobile agent is often overused and lacks a particular
definition. Langd57], in a similar manmeto normal agents, considers a mobile
agent to be a software object that is reactive and proactive, but with the added
capability of being able to change its execution environment. Contrary,
Papastavrou[104] does not consider agent capabilities at all, and states that a
mobile agent is a process that is dispatched from a source device to perform a task
within another execution environment, and upon completion returns to the source.

This description is also followed by Gfa95].

Spyrou[106] considers the active object view of agents and applies it to mobile
agents. Data can be viewed as a collection of objects, and a mobile active object

can therefore be seen as a mobile agent, or a mobile set of datia some
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execution capabilities. Cabjl07] on the other hand sees data as the unit of

exchange between several mobile agents which make up an application.

2.4.1 Using Mobile Agents

Picco[108] states that the key contributiof mobile agents (and codmobility in
general) is that they allowocation to be consideredsa first class construct, and
promotes functionality based on location. Returning to the Ubiquitous / Pervasive
Computing argument, this is rather important kxcality is seen as an important
construct. Picco also discusses different analogies for mobile agents. A single move
agent is simply a migratory service, whereas an agent that migrates many times is
an actual mobile agent. Both of these analogies fibiw the scope of Ubiquitous /
Pervasive Computing, where services are also seen as an area of interest. Picco
does warn that mobile agents are not always the best solution in all cases however,

and Langg57] also states that there has to be a reason for mobility.

Picco ao returns to code mobility when describing mobile agents. A mobile agent
consists of code, data state, and behavioural state. However, most agent systems
are built utilising Java, which cannot promote strong mobility bgpturing
behavioural state, andnodifications are usually required to allow strong mobility.
Picco also points out that connections to resources can also be a problem, and this
stems back to the unsuitability of objects for mobility purposes. Picco does not

seem to consider connectiof®tween agents as being part of the mobile unit

A number of authors have also overviewed mobile agent requirements and applied
them to current mobile agent platforms (for example, Gfa§5] and Silvg63]). In
general, it has been argued that no mobile agent platform has suitably met all
required properties, mainly stemming from the lack of strong mobility because of a
reliance on Java, or lack of interoperdtgibetween different frameworks (e.g. Java
and .NET agents). Silva does mention that there are commonalities between mobile
agent platforms, which include usage of agent servers, autonomous active

components, and distributed agent communication.
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2.4.2 Advantags of Mobile Agents

Many authors have listed advantages of mobile agents, although authors such as
Chess[109] have noted that there is no real application made possible only by
mobile agents. Chess argues thaetmain advantage for mobile agents is a
software engineering one, as they enable design of development of certain

applications in a simpler manner.

Other authors have focussed on implementation advantages of mobile agents.
Lange [110] lists reduced network load, reduced network latency, protocol
encapsulation, asynchronous and autonomous execution, dynamic adaptability,
heterogeneous applications, and robust fault tolerant applications. Returning to

the requremeni & 2 F ! 0AljdzZA2dza / 2YLJziAy 3z [ly3S
cover interoperability, performance, stability and adaptability, leaving only
scalability as an unanswered requirement. Lange also lists applications suitable for
mobile agent systems, manyf avhich can fit into the sphere of Ubiquitous /

Pervasive Computing.

Gray[105, 111]considers mobile agents useful within dynamic, mobile computing
environments, and also lists bandwhidconservation and other performance criteria

as advantages, as does Pi¢t08]. Molina[51] adds a further advantage, that of
simplified maintenance. As Ubiquitous / Pervasive Computing requires easily
maintainable applications, due to the vast scale and minimal human interaction,
there is further evidene to support mobile agents as a Ubiquitous / Pervasive

Computing architecture.

2.4.3 Problems with Mobile Agents

There are some perceived problems with mobile agent approaches. {1l0&sas
questioned the supposed a&dntages of efficiency and flexibility, and has also raised
concerns of the security of mobile agent platforms. Considering the requirements
of a mobile architecture, which promotes both component and connection mobility,
Silva[63] has raised the question on what happens when two connected agents

move simultaneously. This problem can be related t® ck of consideration of
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connection mobility within mobile agent approaches, and code mobility

applications in general.

Picco[108] believes that many of the problems within mobile agent applications
stem from the usage of Java and similar obj@aénted platforms. In partical,

the reliance on the threading mechanisms in Java leads to problems with scalability,
and communication between components has been raised as an issue.
Communication in this respect can be considered as the connections between other
agents and resource Picco notes that this problem is generally overcome by only
allowing celocated elements the ability to communicate with one another. This
does negate some possible applications of mobile agents however. Picco also
argues that there is too much focasm how mobile agents can be developed, and
not on why they should be. Java is seen as a blessing and curse in this respect, and
there is generally no willingness to develop applications that interact with existing

applications.

The communication and codination between agents problem has been examined
by a number of authors. Cabfl07] believes coordination between agents is
fundamental, and utilises Linda like coordination to overcome the grobl Fortino
[112] defines an event based architecture built upon existing communication

middleware, including Linda and also RPC.

2.4.4 Mobile Agent Platforms

Most mobile agent platforms have been applied within Jalzange[57] describes

the Aglet API for Java, and believes that Java provides a number of characteristics
that make it advantageous to use. These include platform independence, secure
execution, dynamic class loading, multithreaded programming, object serialization
and refle¢cion. Many of these advantages focus on allogvsimple mobility of
agents and code (dynamic class loading, object serialization, reflgctand
execution of agents (platform independence, multithreaded programming).
However, from a Ubiquitous / Peniae Computing point of view, platform
independence is advantageous. Moliftd] also repeats these advantages when

considering Ubiquitous Computing.



Chapter 2 Background 28

However, Lange does point out some limitations within Java when considering
mobile agent platforms. These include inadequate suppartdésource control, no

protection of referenced objects, no sense of object ownership, and no strong
mobility. Many of these have been discussed already, although the resource

control does raise questions on scalability when considering Ubiquitous Cargpulti

Izatt [113] describes the Ajents platform, which also utilises Java. Although adding
little in comparison to Aglets, Izatt does argue against the suitability of Java Remote
Method Invocation (RMI) for mobile agent communication, due partiadlythe
ownership problems imposed by object orientation. Ajents also tries to overcome
the strong mobility problem of Java by imposing asynchronous communication and
allowing an agent to be called and a reply to be waited upon by the caller. This
does notsolve the two simultaneously migrating agent problem highlighted by

Silva.

The JADE Agent Platforfhl4] focuses on communication and coordination as
opposed to mobility115], although it has been shown that various design common
mobile agent design patterns can be implemed using JADA16]. JADE provides

an almost strong approach to mobility, in thatezution state is captured without
extra developer code, but not at any poimturing execution. JADE is also
implemented in Java, and provides its own communication mechanism that utilises

serialization.

Gray[111]RSAONA 0 Sa (KS 5Q! 3Syia aeaidsSys ¢KAC
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far, although there are limitations when considering communication and migration
of agents between platforms. Different language platforms also do not allow the
alYS Ol oAtAlGASE a 20KSNE® te@@md SEI YL

overcome the strong mobility problem caused by Java.

2.45 Summary

Although mobile agents are a promising approach to Ubiquitous Computing, there
are still a number of disadvantages. Interoperability has been raised as an issue,

and there seems to bettle regard for promoting connection mobility. Considering
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(i K SCalculus as a model for Ubiquitous Computing, the mobility of connections is
seen as more prominent. Java does appear to be the platform of choice, although
there are limitations. Howeverconsidering how prominent Java is as a platform, it
does provide a suitable starting point to investigate Ubiquitous Computing

middleware.

In the following section, an approach that incorporates both component and
connection mobility is discussed, whiclan incorporate many of the ideas from

agents, and thus provide a possible platform to support Ubiquitous Computing.

2.5 CommunicatingProcess Architectures

Communicating Sequential Processes (THJ)16]is a formalism that describes a

set of processes (components) communicating witlke another via a set of events
602y YySOlA2y a0 o -@aKulug whei préckss disb toMinunigate i K S
via events There are currently a number of implementations of CSP behaviour, and
in particular Java has the Communicating Sequential ProsefseJava (JCSP)
library [117], which provides the necessary constructs to build CSP like applications
within Java. JCSP also has a package that entitdes constructs to operate
across a communication mechanigii4], thus providing a base mechanism to
support distributed systems. tAthe heart of mobile agents and mobility
architectures, there is the notion of a distributed architecture, and likewise for

Ubiquitous / Pervasive Computing.

2.5.1 SimilaritiesbetweenCSP and Agent Orientation

Agents have their roots in the actor model, whiale self contained, interactive,
concurrently executing objects, with internal state and respond to messages from
other agents[62]. This description is similar to that of a CSP proaess
concurrently executing entity, with internal state, which communicates with other

processes using chaals (message passing).

The concurrent behaviour of agents and processes also brings a number of
similarities, and GonzaleZ4] has utilised CSP techniques to describe agents.

Petitpierre[118, 119]has argued on the similarities of active objects and CSP, and
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considering the similarities discussed between agentsautiye objects, there does

appear to be commonalities between a CSP process and an agent.

2.5.2 Mobile Processes and Mobile Channels

Recently, mobility has been of interest within the field of Communicating Process
Architectures (CPA). Languages suclo@am™ [12] have added channel and
process mobility, and the distributed framework foccam™ ¥ L] €also
added mobility of networked channels. Connentmobility is seen as missing from
mobile agent platforms, so applying these ideas may overcome this problem.
Previous work on JCSP mobility 17] has also attempted to incorporate both

channel and process mobility

There are advantages when cahexing mobility in this form and examining
Ubiquitous Computing ideas. One of the required properties of Ubiquitous
Computing is scale, and Minefll] 6 St A S @S &Lalculuk Svill enable
understanding of this sde. Ritson[121] has shown some of this capability, by
implementing a system with millions of interacting mobile process camepts in a

manner that can be considered simple to comprehend.

Considering the ideas of mobility presented thus far, it is possible to define how
practically a mobile process can be defined. As location is integral to the notion of
mobility, a mobile proess can be considered as a process that has the ability to

change location. This description is basically the same as a mobile agent.

2.5.3 Examining the Capabilities of JCSP Networking

As mobile processes can be considered similar to mobile agents, and ak mob
channels enable the connection migration which is considered missing from mobile
agent definition and application, JCSP Networking can be considered a possible
architecture for Ubiquitous Computing applications. JCSP Networking brings
together a numbe of strengths from the different fields that have been seen as
applicable for Ubiquitous Computing, such as distribution and coeoay, and

work on pony hashown that distributed channel mobility is possible. However,

there are still properties thataquire examination.
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Firstly, the defined requirements for Ubiquitous Computing (Se@idn? must be
analysed within the JCSP Networking architecture. This will require extensive
analysis of the JCSP Networking architectame the performance characteristics
thereof. Due to the distributed nature of JCSP Networking, the common
approaches to analyse networking performance of throughput and latency are
required. Considering Ubiquitous Computing, these properties require iexaion

in a suitably constrained environment, utilising wireless networking and mobile

devices.

Java utilises serialization to enable transfer of objects between remote machines,
YR (Kdza &SNARIFEATFGAZ2Y NBIjdzA NBE at®El YAY | |
mechanism is provided iAppendix A JCSP utilises serialization, e commonly
utilised communication architecture for distributed Java applications is Java Remote
Method Invocation (RMI). Serialization has beearaied by a number of authors
[122, 123]with the focus being on analysing performance based on the complexity
of the objects. Analysis of Rj1I23] has also shown that examining the individual
parts of the communication mechanism allows greater insight into the underlying
architecture. Applying these concepte tJICSP Networking is therefore worth

considering.

The next consideration is the implementation of the distributed mobile channel
structure. Although the pony architectuf@20] has proposed a method to enable
distributed channel mobility, a more in depth analysis of the suitability of this model
within the context of Ubigitous Computing is required.pony itself has some

significant overheads associated with its channel mobility model.

Finally, it has been noted that strong mobility is a requirement of logical mobility,
and that Java has problems in permitting this formnebbility. Therefore, the
development of a technique to enable the strong mobility of processes is required.
Due to the restrictions of Java, the actual capabilities of any technique must also be
brought into question. Currently, within JCSP, distribdt@rocess mobility is only

allowed at either the start state of the process, or when the process is in a stopped



Chapter 2 Background 32

state. The aim is to permit the same level of process mobility as local JCSP

processes.

2.6 Summary

Within this chapter, an analysis of the regennents of Ubiquitous Computing has
been presented, and has primarily focused on the underlgftyare architecture
requirements for Ubiquitous Computing. By examining the potential models for
software to support Ubiquitous Computing, it has been shotat mobility is seen

as a key feature, and likewise the capabilities of distributed systems due to the
distributed nature of the applications under consideration. Although several
platforms provide some of the properties of interest, there are still latiins when
considering such approaches as mobile agents when considering Ubiquitous
Computing, therefore another approach has been proposed as requiring

examination, utilising JCSP Networking as a test case.

In the following chapter, the current implemeation of JCSP Networking is
presented. The existing architecture and functionality are described, and some
initial observations are made. These observations are required for further analysis
of JCSP Networking against Ubiquitous Computing requiremehtshws presented

in Chapter 4



Chapter 3 JCSP Networking

In this chapter, a description is presented of the current implementation of JCSP
Networking. From this description, rainitial examination ofthe structure and
individual conponents required for thenetwork architecture to operate ahsome
initial observations aremade prior to a more torough evaluationof the
implementationin Chapter 4 Section3.1 presents the aim ofJSP Networking, and
Section 3.2 presents the current architecture. SectioB.3 examines the
functionality and SectioB8.4 provides a brief analysis before initial obgations are

made in SectioB.5.

3.1 Aim of JCSP Networking

The core implementation of JCSP is aimed at progidionstructs necessary for a
CSP basedoncurrency model in Java. The network architecexpands JCSP by
providing channels that operate over a communication mechanism.  Two
statements of the aim adCSP Networking have been madée firs{14] alludes to

the creation of process networks over a communication medium by interpreting the
T9000 virtual channelmodel [124]. The secondstated aim[125] is ¢to build
efficient, richly functional, scalable, distributed and dynamic evolving syst@ns ¢ K
second interpretation of the aim of JCSP Networking comes from a discussion
cluster computingwhich is the mairapplicationareaof JCSP Networking. Thwin

aim of JCSP Networkingan therefore beinterpreted as the exploitation of
parallelism in distributed system applicatiansThis aim does not fit within the
sphere of Ubiquitous Computing per se, but the scalability ahdamic
architecturesare requirements.Therefore, it carbe claimed that JC3¥etworking

may be a suitable framework for Ubiquitous Computing.
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3.2 JCSP Network Architecture

There are a number of components required to achi¢tve functionality within
JCSP Nworking, and in this section a description of thesemponentsshall be

presented. [agrams illustrahg componeninteractions shall also be given.

The diagrams presented do not reflect previous reporting of JCSP Netw{itking

as a number of modifications have been made. The original implementation of JCSP
Networking utilised service processes for output channels, ancEtleatPr ocess
described in the next section was also not present. OdwpbackLink was also a

later addition to allow local channel ends to connect.

3.2.1 High Level View

Figurel illustrates the high level view of the current JCSP Networ&inbitecture,
presenting the key components and how they intera8blid lines with arrow heads
represent channel connections, and dashed lines represent object references.
Ovals represent active components (processesjnded rectangles represent a
collection of active componentand rectangles represent passive components

(objects). Channels with an infinity sign are provided with an infinite buffer.

Application Application Application Application Application
Process Process Process Process Process

Link Lost
Event
Channels

Event Process

Net Channel Net Channel Net Channel Net Channel
Input Output Input Output

A A

Net Channel
Index Manager--—-- R—
Input Process ;

Link Manager

( Communication Mechanism ()

Figurel: Current JCSP Networking Architecture
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{1 Link ¢ the Link component is responsible for connecting a JCSP Node (a
single JVM) to another JCSP Node. T and its relevant sub
components are designed to allow operation upon any camization
mechanism if the necessargddressing and connectiofunctionality is
developed. At present only TCP/IRechanisms arprovidedwithin the JCSP
Networking package TheLink component has two stisomponents which
provide input ancbutput operations between Nodes:

0 Link TX ¢ the Link TX process is responsible fotransmitting
messages to the remote JCSP NodekTX has little responsibility
except serialization of the sent message onto the communication
output stream.

0 Link RX(¢ the Link RXprocess is responsible for receiving messages
from the remote JCSP NodeéinkRx interpretsincoming messages
and actson the message typeaccessing the destination channel if
required.

1 Loopback Link ¢ the Loopback Link operatesas a normalLink and
provides a virtuatonnectionwithin the local Node. If an output end of a
channd is connected to an input enevithin the same JCSP Node, the
message will travel through this component.

1 Link Server ¢ the Link Server process is responsible for receiving
incoming connection request$or the Node, creating the requiredLink
component to sevice the connection, and interacting with the
Link Manager to control, store and mange theinks within the Node.

1 Link Manager ¢ the Link Manager process is responsible for managing the
Links operating withinthe Node. This process ensures that only aivek
to a given Node is active at artyne, and retrievesan existingLink to a
given Node when requested.

1 Event Process ¢ the Event Process is spawned by thelink Manager
and broadcastLink Lost messages to anmterestedprocess. Whenever a
Link fails, theLi nk informs theLink Manager which sends a message to

the Event Process . The EventProcess  writes this messageto all
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registered LinkLostEvent Channel s.  These channels are infinitely
buffered to avoid deadlock.

1 NetChannel Output ¢ the NetChannel Output componer provides the
interface to the writing end of a networked channge and hides the
underlying interactions with theLink . The channel receiving messages
from theLink is infinitely buffered.

1 NetChannel Input ¢ the NetChannel Input component provides the
interface to the reading end of a networked channel, although the
interaction with theLink is handled by a separate process.

1 NetChannellnput Process ¢ the NetChannellnput Process services
communication between thé&etChannel Input and theLink . It receies
messages from theLink , and either forwards the messageto the
NetChannel Input , or respondsto the message directly. The incoming
channelto the NetChannellnputProcess from the Link is infinitely
buffered.

1 Index Manager ¢ the Index Manager is a shared data object which
manages the networked channel endsthin the Node. This component
allocates index numbersviftual Channel Numberdqjl24] to channels and

allows retrieval of channel objects basedtbese indices.

The describedcomponents provide the application level channeiunctionality.
Some components may have numerous instances in operatfor example, each
NetChannellnput created has dront end and aNetChannellnput  Process ,
and each conngtion to a remoteNode requires d.ink . There may be multiple

Link Server processes if multiple interfaces or protocols are used.

The channels connecting theénk s with the networked channel components are
shared at the writing end (they are A2yOne). Tis permitsmultiple channel ends
to write to aLink TX, and any Link RX to receive incoming messagésr any
channel A virtualchannel operationcan be defined as a number @omponent

interactions, as described the following section.
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3.3 JCSP NetworkinguRctionality

Figure 2 presents the component interactions that occur during a normal

networked channetead/write operation.

4. Write to Net
Channel Input
Process

3. Write to

stream
2. Write to
1. Write Link
—

Application Net Channel }4;::::/:// -

Process Output

5. Write to Net
Channel Input 6. Read
«—

.

Net Channel
nput Process

Net Channel Application

Input Process

y=

11. Write
acknowledgemen
to Net Channel
Output 10. Write

to stream

12. Return
(complete write)

8. Write 7. Return sent
completed message

:

9. Acknowledge

Figure2: Networked Channel

1. An Application FPocesscalls thewrite method on theoutput end of a
networked channelpassing the datso be sentwithin the method call

2. TheNetChannel Output wraps the data withira ChannelMessage . The
Channel Message contains the destination index, source index, flag
indicating ifthe messagehouldbe acknowledged, and possibly the name of
the channel on the remote Node. TInetChannel Output contains the
specific channelconnected diectly to the Link TX and can write the
Channel Message onto this channel directly

3. Thelink TX readsthe outgoingChannel Message from its input channel
and streams it tothe other Nodevia the communication stream This
involves serialization of the Channel Message via an
Object Output Stream .

4. ¢ KS NB OS A bk R&deskralRes ¢ha incominGhannel Message
from the connecibn stream, and examines the object tetdrmine its type
For an incoming senthessage, the destination index extracted and used
to retrieve the channel to theNetChannellnputProcess . TheLinkRX
adds the channel connecting to its partner LinkTX proces to the
ChannelMessage to allow the NetChannellnputProcess to send the
acknowledgement  The ChannelMessage is then sent to the
NetChannellnputProcess

5. The NetChannellnputProcess reads the incomingChannelMe ssage

from the LinkRX and sendghe sentdatato the NetChannellnput . This
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is a blocking operatignand until the Application iecess calls ead on the
NetChannellnput , the NetChannellnputProcess will wait.

6. The Application Process callsad on the NetChannellnput . Thiscall
may have occurredt any stage prior to this step causing thereceiving
Application PPocess to block until now

7. TheNetChannellnput  returns the sentlata.

8. The send is completed betweenthe NetChannellnput and
NetChannellnputProcess , allowing the later to resume.

9. The NetChannellnpu tProcess creates an acknowledgement message.
The destination index of the message is the source index of the orggndl
message. The ackn@mdgement message is communicated to thieskTX
usingthe channel attached to the incomir@hannelMessage in step 4.

10.TheLink TX process receivethe outgoing acknaledgement and serializes
it overthe connection stream.

11.ThelLink RXprocess of the original sending Node deserializes the incoming
Channel Message. As an acknowledgement messagas been received
the Link RX retrieves the channel to theNetChannelOutput  from the
Index Manager using the destination index from th€hannelMessage .
TheChannelMessage is then sent to the NetChannelOutput.

12.The NetChannelOutput ~ readsthe acknowledgement and complete¢he

write  method call, allowing the writind\pplication Process to proceed

This illustrates the basic read/write operation. There are a number of different
message types with JCSP NetworkingA brief description ofthese is provided

next

3.3.1 JCSP Network Message ldrehy

The hierarchy of network messages is presenteigure3. The message types for
networked chanel operations are on the leff ChannelMessage and its children.
The other messages are of no concern for the rest of this wBdunce Message
was used byMigratable Channels (an original implementation of mobile

channels) while Ping Message and PingReply Message are used during initial
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Link interactions. TheConnection Messages are used byNetConnections

and although a consideratiofor the future, are not examined in detail here.

Message
#destindex : long
#sourcelndex : long
#destVCNLabel : string

AN
l |
Channel Message Message.BounceMessage Message.PingMessage Message.PingReplyMessage ConnectionMessage
AN

ConnectionMessage.Open ConnectionMessage.Close

-data : object -data : object
ChannelMessage.Data
#data : object
#acknowledged : bool ConnectionMessage.Ping ConnectionMessage.Pong

-data : object -data : object

ChannelMessage.Ack ChannelMessage.WriteRejected

Figure3: JCSP Network Message Hierarchy

Figure3 helps toillustrate the amount of data sent in@hannel Message. This will

be examined more fully in Chigs 4. The brief analysis in the following section
focuses on previous analysis performed on JCSP Networking and similar
frameworks as well as presenting sonssues based on the architecture presented

thus far.

3.4 Brief Analysif the Current Architecture

Previous research into networked artdtdtures based on CSP hasmarily focused

on the performance gained frotask parallelisation. In this work, the main focus is
the performance of the communication mechanism, and the overheads associated
with the achitecture. Categorisation of some of the different CSP inspired
frameworks has beerpreviously presented [126] when considering localised

systems, indicatinthe suitability of these framewrks within different contexts.

3.4.1 Previous Analysis on JCSP Networking

Little performanceanalysis of theeommunicationmechanismsf JCSP Networking
has been made Schallef127] examinedperformance of Java parallel cguting

libraries undertakingtasks across multiple networked Nodes. Vintdr25]



Chapter 3JCSP Networking 40

examined similar prperties with other Java libraries and different tasks, but
analysis was again based @arallel performance and not the communication

mechanism. Kumdgf28] examined JCSP performance in the context of multiplayer
games, and although providingteresting results on the scalability of JCSP, little

performance of the communication mechanism is provided.

3.4.2 Previous Analysis on Other Processrek Network Architectures

Greateranalysis otommunicationperformance has been carried owtithin other
CSP basearchitectures. Browrn129] has examined latency and performance
overheads in C++CSP, but no extensive testing of the communication mechanism
was made. A work allocation method was useith different packet sizes sent to
remote machines for processing. Although this did lead to some information on
communication performance, it does not go into enough detail to analyse the
variancebetween gandard communicatiorand C++CSP Networked.roBn also
conducted experiments for ping time, but this does not give a good indication to
communication timeon its own. The problem isnessageflow, where the
acknowledgment for the original send is sent and immediately followed by the
resulting ping rely. From the point of view of the pinging process, the time taken

would vary little from the ®ndard sendacknowledge cycle

Schweigler [130] has performed extensive analysis on CPU overhead and
throughput inpony, and provdes comparisons tdCSRetworking Little analysis is
made of the communication mechanism in comparison to standapr@aches,
although efforthas beemmade to analyse theerformance of the pony networked
channel. Comparisons with JCSP are mada @se study although the main
conclusions ghered are interpreted fromthroughput and comparison when

parallelising a task.

Analysis of CSP.NET31] provides only simplistic results thus fawithout any
comparison to othercommunication approaches. A brief comparison to JCSP
Networking has been madeowever. The authors themselves note that the tests

performed are by no means thorough enough to constitute a benchmark.
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3.4.3 Resource Usage

If Figurel (page34) is examined, there are mumber of processes required for the
network functionality. Each connection to another Node involves two processes
the Link TXandLink RX EachNetChannel In put requires a servicgrocess (the
NetChannellnput  Process ) and the NetChannelOutput is lightweight in
comparison.Link creation and managemenequires at least three processdabe
Link Server , the Link Manager, and the Event Process , but, as previously
stated, there may be multipleLink Server processes in operation withia Node.
TheLoopback Link is created when a Node isitialised, requiring twoprocesses.
Finally, although not illustrated iRigurel, there is a process spaed withthe first
NetChannel Output . This process meantto inform NetChannelOutputs  of

Link failure, although this does not always operate as expected

A number of temporary processes aa¢so created during Node initialisation and
subsequentLink conrection. These prosses are used to set ugsources and
perform connection handshaking andre subsequently killed when they have

completed their task.

Therefore, there are amumber of processesitilised by JCSP Networkirgrior to
application processedeing considered As ech process requires a thread to
operate, it can be seen than unconnected Node requires shreadsc two for the
Loopback Link ; a Link Manager ; a Link Server ; an Event Process ; and the
main thread. A Node connexd to a Channel Nantgerver (used as@annelname
broker) requires 11 processestwo for the newLink ; one service process to the
CNS, the service having an input and output channel;, one for a

NetChannellnput  Process ; and theNetChannel Output Link failure process.

The requied processes increasas the number ofinks andNetChannel Inputs
increases. As an example, a Node connected to five other Nodes, with ten
networked input ends and an initial CNS connection will require a total of 31
processes. On resource constrainegldes such as those required irbiguitous

Gomputing it can be seen that JCSP Networking does not scale well.
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Unfortunately, hese processes are spawned withaigageof the JCSParallel
construct. TheParallel  acts as a pool for created thads, and aempts to reuse
threads whenever possible. As madtthe processesised within JCSP Networking
are created withoutthe Parallel , the reclamation 6 resources may be slow.
Many of these spawned processes aiso created outside theapplicationlevel,

and therefore cannot easily be stopped. Methods are in place to destroy the
NetChannellnput Process  components, but if a reference to the

NetChannel Input is lost, thenthe process cannot be reclaimed and is lost.

The main reason for the heawesource usagestems from the CSP /foccam
philosophy of using a process wheneymwssible. This is an ill advisagproach
when consideringlava, particularlyvithin resource constrained devicesA major
problemis the use of process to serviceNetChannel Input , asthis reduces the

number of possible input channels into a Node.

3.4.4 Complexity

JCSP Networking i@ complex architecture. One of the propertied JCSP
Networking ighat the architecture is removed from the underlying communication
mechanism, meaning it came implementedupon any guaranteed packet delivery
protocol. The argument is that if the correct addressing amek creation
mechanism is provided JCSP Networking can utilise the communication
mechanism Although this statement is true, it is difficutt achieve, equiring a
great deal ofknowledgeof the internalarchitecture ofJCSMetworking Without
the souce code it would balifficult for a custom communication mechanism to be

used.

3.4.5 Objects Only

JC8 Networking only permits serializable objetide transferredbetween Nodes.
In princple this is not a problent JCSks consideed within the context of standard
Java, but addglifficultly when trying tocommunicate with other frameworks. It
would be useful to send raw data between Nodes aguieed, which can be done in
principle asa byte array is an object in Java, but there i @verhead in the

serialization. It is also a problem that not all Java platforms support serialization,
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leading to difficulties when trying to implement JCSP Nekmg on reduced Java
platforms[132].

Depending on serializatiomeans that primitive data must berapped in an object
prior to sendng. This bring an overhead, and limitsetworked channels to object
types only. The core JCSP packbBigeexampleimplements a primitive iteger

channel forincreasel performance

3.5 Initial Observations

This chapter presented a very high level analy$ishe current JCSP Networking
implementation, and from this somiaitial observations can be made. dtly, there

has been little indepth analysis of the communication mechanism in JCSP
Networking, although this is a key indicator of the overall performca of JOS
Networking Although other fameworks have been examined gneater depth,
little comparison with standard communication mechanisms has been made.
Secondly, the resource requirements for J8®Rvorking are high, and thus reduce
scalability Thirdly, the complexity of JCSP ledadsdifficulties when porting the
architecture to different platforms and communication mechanisms. Finally,
allowing only objects for network interaction@events the interaction with other

platforms unless they impment Java serialization.

In the followingchapter, a deeper analysis of JCRBtworking is presented. For
Ubiquitous ©mputing, there isa need to understand the properties of JCSP
Networking to determine how suitablethe implementation is for Ubiquitosi
Computingapplications Performance ofetworkedchannel communicationis the

main focus, with other properties examined that are relevant to JCSP Networking

within the context of Ubiquitous Computing.
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In this chaper, experimental data is presented that allows examination of the
current implementation of JCSP Networking in the context of Ubiquitous
Gomputing. The data is gathered froraxperimentswithin an environment that is
restrictive enough to determine the @come of using JCSNetworking in a
relatively resource constrained manner similar to the gibke scenarios envisioned
for Ubiquitous ©@mputing. The aim of the experiments is to produce metrics that
allow a close approximaitn of the separate interaction of the individual JCSP
Networkingcomponentsthat form the basic network channel. By doing this, it is
possible to determine where any overads occur which calne resolved. Section

4.1 describes the test framework in whidime experiments are conducted, and
Section4.2 examines the two Java Virtual Machines in use. SedtiBiprovides
experimental results that allow analysis of the network which allows analysis of
JCSP Networking in Sectidrl. Sectiond.5 examines serialization within the test
framework, and Sectiod.6 illustrates the overhead of JCSP Networking. Finally

condusions are drawn in Secticgh?.

4.1 Test Framework

The data preser®d is gathered fronthe interactions between a small factor device

(a PDA) and a desktop BE€ing as a server.o@munications occur over a wireless
network. Varous interaction propertiesare examined that incorporate both raw
data and objects of different sizes and complexities. This promotes insight into how
well JGP Ntworking compares to standard communication within the test

framework First, alescription of the framework is provided



Chapter 4 Analysis of Current JCSP Networking 45

4.1.1 PDA Specifications

The mobile devicas an HP iPaq 2210unning Windows Mobile 4.2 It has 64
MBytes of memoryshared betweenstorage and applications.The processor is

Intel XScale based and operatesaamaximum frequacy of400 MHz. The PDA

only hasBluetooth capabilitieso provide wireless communication, and therefore a
SDIO wireless card has been added to provide 802.11b wireless capabilities. The
wireless card is a SafeCom Technologies SDW11B and gravid® retre range at

11 Mbits/s bandwidth.

4.1.2 PC Specifications

The PChas a Pentium IV 3 GHz processor and 512 megabytes of memory. It is
connected to the network using a standard Ethernet card to a wireless router. This
provides the PC with a pential bandwidthof 100 Mbitgs. The operating system

installed is Ubuntu Linux 7.10.

4.1.3 Network Specifications

The network is controlled via a wireless routea NetGear WGR614. The wireless
interface is 802.11g compatible, angotentially supports54 Mbits/s bandwidth.

The PDA restricts bandwidtto 11 Mbits/s due to its wireless interface. The
wireless network does not utilise any form of security. The Ethernet interface
allows 100 Mbits/s bandwidthfor the PC.

As two separate interfaces are usdthere are differingmaximum packet size

(Maximum Transmission Uiin operation The Ethernet irgrface has an MTU of
1500 bytes andthe wireless interface2272 bytes The larger packets are
fragmented by the routerfor sendingon the Ethernet interface, and are then

reconstructed by the PC.

4.1.4 Test Classes

A collection of classes have been developed to analyse the performance of a
networked JCSP channel in comparisonJ&va object stream#hen considering
object serialization These objects vary in complexity agide toallow examination

of these properties todetermine if they have an effect on communication time.
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Complexity elates to the number of object referencasnt against the number of
unique objects sent. As Java serialization recreates the sent object gitzgue, is
the possibility that thesent objectcontains multiple references to the same object.
As this requires the usage of a lookup table, mooating complexity allows the

lookup timecharacteristic to be taken into account.

The definitions of thdest classes arprovidedin Appendix B Abrief summary of

the different classes is presentéere:

1 Integer arrayq an array ofinteger objects. The lengtbf the array ranges
from O to 100.

1 TestObject ¢ an object that contais both aninteger objectarray anda
Double object array. Théengths of these arrays are equal and range from
0to 10Q

1 TestObject2 ¢ extendsTestObject , andthus contains theénteger and
Double arrays TestObject2 declares its owninteger and Double
array. All four arrayfave equalength.

1 TestObject3 ¢ extendsTestObject and contains its ownnteger and
Double arrays. Howevergeach individual element of thimteger array is
referenced in thepartner Integer array, thus leading to only 100 unique
Int eger objects instead of 200Likewise for theDouble arrays.

1 TestObject4 ¢ extendsTestObject , and has the same array definitions
as TestObject3 . TestObject4  also contains a reference to another
TestObject4  which has its own unique arraynd array elemsts. The
secondTestObject4  references the originalestObject4 , creating a pair
of objects bound together.

1 TestObject5 ¢ extends TestObject , and is similar toTestObject4
However, the otheimestObject5 referenced withinthis object has arrays
which conain the same elementss this TestObjects . Thus there are

only 100 uniquenteger objects and 100 uniquBouble objects.
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A description ofJava serialization is presented Appendix A For clarity, the
amount ofdata sent fo each object relative tam (the lengthof the internal arrays)

Is provided inTablel. All valuesre in bytes.

Tablel: Test Object Sizes

Object Type | n=0| n>0

Integer array| 41| 118 + (g 1)A0
TestObject | 167 | 297 + (g 1)R4
TestObject2 | 247 | 401 + (ng 1)A48
TestObject3 | 247| 387 + (g 1)84
TestObject4 | 326 | 500 + (ng 1)88
TestObject5 | 326 | 486 + (g 1)54

The number of references against unique objects is presente@lallle2. This
information alludes to the different object complexities, and helps to determine if
there is an effect on communication performaniecause of this complexityJava
object streams hold references to all sent/received objects Gppendix A Thus
lookup tables are kept of all serialized objects and classes. For serialized object
graphs with more unique objects, these tables will grow larger than object graphs
with fewer unigue objects. Serializatidime should therefore increase for object

graphs containing more unigue objects.

Table2: Test Object Reference Count against Unique Object Count

n=0 n>0
Object Type | Obj Ref| Unique Obj| Obj Ref | Unique Obj
Integer array 1 1 n+1 n+1
TestObject 3 3| 3+2:n 3+2n
TestObject2 5 5| 5+4-n 5+4-n
TestObject3 5 5| 5+4-n 5+2:n
TestObject4 10 10| 10+ 8:n 10+ 4-n
TestObject5 10 10| 10+ 8:n 10+ 2:n

These objects have been chosen as it allows examination of the seioaipeocess
itself. The largest object size will fit within the buffer JCSP has within its Link
connection streams (8192 bytes). Larger data sizes are tested by sending raw data

without the serialization process.



Chapter 4 Analysis of Current JCSP Networking 48

In the following section, the versiond dava used on the diffent devices are
examinedto allow a better understanding of the results presented laierthis
chapter. Full results can be found isppendix D Unless otherwise required, only
the results forTestOb ject4 are presented within this chapteasthe sizeand

complexityof TestObject4  allowsanalysis for the majority afases.

4.2 Examining the Java Virtual Machines

In this section, the two different JVMs are examined. The specifications of the
different versonsof Java are presented, and benchmapksvidedto allow a closer

comparison

4.2.1 Java Versions

The two JavaVirtual Machinesin operation are quite different. The PC has a
standard Sun Java Development Kit versionJY¥Bl The PDA has a reduced IBM J9
MM that conforms to the Java 2 Micro Edition (J2ME) Connected Device
Configuration (CDC) Personal Profile. This provides a JVM that is approxiaate
1.3.1compatible

To benchmark the JV&two methods have beensed. The Java Grande Benchmark
Suite [133], although designed to benchmark JVMs in the context of high
performance computing, provides a number of tests that allow comparison of the
two JVMs. The secondethodis aimed athe JCSP iptementationspecificallyby
performing standard benchmarks used to evaluate performance of CSP based
frameworks A comparison of the two JVMs is providedAppendix C In general,

the PDA operates between 1 andbdrders d magnitude slower than the PC in
these tests. The variand@tweenthe different result setswill be largelydue to the

PC having faster I/O antiaving gecialised machine instructions for some

operations.

There are sombéenchmarks that are relevant ttné discus®n of the performance
of JCSP éworking in the context of the experiments that have been performed.

The Java Grande Suite provides object crea#ind serialization benchmarkand
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the CommsTime benchmark in JCSP provides an approximatiome ofhannel

communication time between two processes.

4.2.2 Java Grand©®bject Creatioenchmarks

TheJava Grande Suite olgfecreation benchmarks angerformed onsmallobjects

with certain properties, such amternal fields and sukclassing. The results are
based on allocation time, which does not allewough insight into theéime taken

to create the various object types being examined in this chapter. Therefore, the
operation of the benchmark is rephtedusing the test classesThe results for the
PCare presented inFigure4 and the results for the PDA irigure5. The values
represented arehe average time taken to create a single object of the given size

(along the xaxis)and type in milliseconds.

The creation time for the PC is almost negligible, the largest object taking
approximately 11 microseconds to create. The PDA performs approximately two
orders of magnitude slower than the PC. The Java Grande benchmark for object
creation (seeFigure80 in Appendix ¢ shows the PDA performing one order of
magnitude poorer than the PC with more complicated objects increasing this
variance. The increase from 1 to 2 orders of magnitude variance bettieeRC

and PDA can be attributed to memory allocation as the test objects are large in

comparison to the small objects tested using the normal Java Grande benchmark.

These results indicate that memory allocation time has the greatest impact on
object credion. TestObject2 andTestObject5 are approximately equal in size
for n < 100 (sedablel, paged7), and take approximately the same time to create.
TestObject4 , which is less complex tharestObje ct5 , takes a greater time to
create, andTestObject3 , which is more complex thahestObject2 , takes less
time to create. Object complexity due to the number of references appears to have

little effect on object creation time.
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Figure5: PDA Test Object Creation Times
4.2.3 Java Grande Object Serialization Benchmarks

The ava Grande Suitg@rovides object serialization benchmarks based on data
structures of various sizeend complexities This test can be modified wperate

on the test classes The Java Grande serialization benchmark does not reset its
streams after every object write operation, so the test is modiftedreset the
streams after every communicationdVithin JCSP Networking, this is done to avoid
aliasing problems upon the object stream (s@ppendix A Therefore, this is
replicated within the serialization benchmarks.The standard Java Grande

serialization benchmark writehe serialized object to file.

Figure6 presents the results for the PC performing the Java Grande serialization

benchmarkwith the test objecs. The results represerthe average timein
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Figure6: PC Java Grande Test Object Serialization

The interesting phenomenon where the lines f@stObject2  and TestObject4
increasem unison and likewise forestObject , TestObject3 andTestObject5

can be attributed to the object complexities defined ifable 2 (page 47).
TestObject2  and TestObject4  increase the number of uniquebjects by a
factor of 4 relevant ton. The other object types (aside from th&eger array)
increase by a factor of 2. Therefore, for the Java Grande serialization benchmark,

the lookup table increasing in size does have an effect on performance.

Figure 7 presents the reglts for the PDA performingerialization on the test
objects. Te lines are not grouped based on the number of unique objantsthe
interesting phenomenon is thafestObject2  and TestObject5 are closely
grouped. These objects are approximately equal in sizeéforl00. Therefore, for

the PDA the 1/O time associated with writing the serialized objects to file has a

significant effect.
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- |nteger Array=—— TestObject - TestObject2
—— TestObject3 == TestObject4 —— TestObject5

Time ms

Size of Internal Object Array:

Figure 8 compares the performance of the PDA and PC for (de)serialization of

TestObject4 . The results present the average time in milliseconds to (de)serialize

a singleTestObject4

from Tablel. These results show the PC performs approximately 2.5 orders of
magnitude faster than the PDA, which concurs with the general performance
difference of the two devices.
serialization on the PDA, while the conversaisally true for the PC. This may be

due to the extra lookup required for each serialization of an object prior to it being

Figure7: PDA Java Grande Test Object Sexation

52

. The xaxis represents the object size lbytes as generated

It is also of note thatsdrialization is faster than

written, whereas the deserialization process onlerforms a lookup when

prompted to by a reference signal appearing on the stream. The PDA may also have

slower file output performance that input performance.

10000
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Time ms

- PDA Serializatior =—=PC Serializatior

PDA Deserializatio+=PC Deserializatior

2132 3832 5532 7232

Size of Internal Object Array:

Figure8: PC against PDA TestObject4 Java Grande (De)SerializZeiaihmark
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The results presented give some indication to the performance of the
(de)serializationprocesson the different devices, but they also incorporate file /10
time. For JCSPnetwork communications,objects are (de)serialized withina
memory buffer, which incurs a lowerl/O overhead. Therefore, experiments

involving(de)serializationwithin memoryare performed.

4.2.4 Serialization within Memory

The Java Grande serialization benchmark cambdified to usememory streams
instead of a file stream. His opeation is generally fast, and would require a
greater number of operations within a timed cycle of operations to avoid noise
within the results. The available memoryestricts this possibility, as the memory
stream must be declared prior to any tim@peraions. To avoid the buffer within
the stream requiring expansion during thiened cycle a 10 million byte allocation
within the PC and a 1 million teyallocation within the PDA issed. This restricts
the maximum number of opet®ns in a timed cycleat1000 and 100 for the PC and

PDA respectively.

Figure9 presents the results from the PC performing serialization into memory.
Unlike the file based setiaation, the lines are more separated@estObject2 and
TestObject4  are 4gill rising close to uniformly. Botbf these object types increase

in object size at different rates and tmefore the amount of data is not the major

factor in their close proximity at these data ranges.

- nteger Array=— TestObject —TestObject2
——TestObject3 = TestObject4 —— TestObject5

Time ms

Size of Internal Object Array:

Figure9: PC Memory T& Object Serialization
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Figure10 presents the results for the PDA serializing the various test classes into
memory. Unlike file based serialization, the PDA HastObject2 and
TestObject4 grouped together, and TestObject , TestO bject3 and
TestObject5  grouped together. These results show the same object complexity
and lookup attributes as the PC, with time increase based on the number ofauniqu

objects as opposed to 1/0 throughput

Integer Array=—— TestObject ——TestObject2
——TestObject3 = TestObject4 —— TestObject5
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300 /_’,,.A

200

100 ﬂ
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0 25 50 75 100

Time ms

Size of Internal Object Array:

Figurel0: PDA MemoryTest Object Serialization

As JCSP Networking initially serializes objects directly into memory, the number of
unique objects has a greater effect on serialization time than object size when
considering these test classes. JCSP Networking resets it ebjgmms after
every Link communication, which leads to more data being sent within a single
transaction due to class information requiring transmission every time. However, it
would appear that the reduction in lookup time does provide increased

performance, and this may overcome the increase in transferred data.

Figurel1l presents the PC against the PDA (de)serialization ofTestObject4

within memory.Figurell is similar toFigure8, andan approximate 2.5 order of
magnitude difference between the two devicesstill evident This is despite the
different trends seen for the PDA for memory based serialization. It is also of note
that the difference between serializaticand deserialization is smaller than the file
based serialization operatiorfer the PDA, and that serialization is now faster than

deserializatioron the PDAat larger sizes ofestObject4



Chapter 4 Analysis of Current JCSP Networking 55

- PDA Serializatior =——PC Serializatior

PDA Deserializatio+=PC Deserializatior
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Figurell: PC against PDA TestObject&Mory (De)Serialization Benchmark
4.2.5 CommsTime

The CommsTime benchmark is a common mechanism for measuring channel
communication performance in a CSP based framewWa8d]. The BPA has a
CommsTime figure adpproximately720 microseconds and th&Capproximately
62 microseconds for object based channel{see C.6.). As CommsTime
incorporates a system with four channel communications, tlohannel
communication time for he PDA can be approximated atOlL&icresseconds, and
the PC at 15nicroseconds. The PC has approximately a one order of magnitude

faster channel communication time.

4.3 Examining the Network Performance

In this section, the network infrastructure used in the test framework is examined.
Thereare a number of dierent propertiesof concern. The effect dhe JVM on the
PDA networking performancés a factor, and therefore the underlyingative
network libraries (Winsock) are tested. A comparison between normal Java
network streams and Java objedtesams onthe network isrequiredto establish

the overhead from using object based streantsnally, lhere is the buffeed stream
that has been placed withinhe JCSR.ink and thus object streams require
bufferingwithin these experiments The buffer is set at 819Rytes, thesize of the

buffer internal to JCSPevorking.
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There are two standard propertige measure networkperformanceg latency and
bandwidth A ping testallows analysis ofatency, which is theoverhead of the
communication compared to expectedesults, and bandwidth allows an
approximationof throughput. Various sizes of byte array are passed betwees t
two devices to evaluate the netwopkroperties. The smallest geible data size to
send via anetwork stream is a single byteThe smallestdata sizefor an object

stream is a null value, whidisotakes up a single byte.

4.3.1 Simple Ping

To determine the basic seratknowledge operationa simple ping test is usedA

single byte ornull object is sent from one device the other and back. Each
operation is carried out 10,000 times within a timed cycle, and ten timed cycles are
performed. The tenitnes aretrimmed to six by removing the top two and bottom

two values, and thenean of thesixmedianvalues calculated. Times are gathered
from both devices for when the PC pings the PDA (PC to PDA), and when the PDA
pings the PC (PDA to P@3ingboth network streamsand olject streams Tests are
repeated 2 to 3 times to ensure consistency, and one set of the results chosen for
representation. All individual results of the median six are within twenty percent

variance of the trimmed mean.

JCSP networking has the Nagle algorithm switched off for underlying TCP/IP
network connections. The Nagle algorithmncrease performance by buffering
outgoing nessages until either an entiggacketof datais ready for transferor the
previous packet is acknowledged. By default, N&gierned on, aml turning it off

is ill advised Therefore, fothe simple ping tst, sockets with Naglen and off are
examina. The usage of Nagle highlights the reason to use 10,000 operations in a
timed cycle. For 1,000 operations, the amount of data would fit into a single packet
on both interfaces, and would therefore give the Nagle based results significant
improvement. Therefore,the number of operationds increasedby an order of
magnitude Figurel2 presents the results of the simple ping testhe values are

the average timsin milliseconds to pedrm a single pingpong operationusing tre

various communication mechanisms
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m PC mPDA
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Nagle PGlo Nagle Nagle No Nagle Nagle No Nagle Nagle No Nagle
to PDA PCto PDAto PDAto Object Object Object Object
PDA PC PC PCto PCto PDAto PDAto
PDA  PDA PC PC

Figurel2: Simple Ping Test
For standard networked streams, it can be seen that performance is slightly better
with Nagle turned on, and the time for PC to PDA has no large variance from the
PDA to PC. For object streams, having Nagle turned off appears to improve
performance by 100 microseconds per message. For an object stream, there is a
150 to 250 microsecond overhead, which is probably due to the encoding and
decoding of the null value othe stream, and the examination process required to

determine the object type during sending.

4.3.2 Bandwidth

Small packetsend timecan be determined by device senthg a single byte to the
other and gathering an average time for this operation from both $keding and
receiving device. These results are presentelligurel3. Asfor the ping test, the
time taken to perform 10,000 operations is gathered ten times, and the median six

used to calculate the mean time to send a packet

Figure 13 indicates that network streams have no significant improvement for
having Nagle on or off. Of interest is the time the PC takes to send a small message;
approximately 1.5 microseconds. The PDA takes 5 milliseconds) 8.5 orders

of magnitude greater. The PDA records a time of 240 microseconds to receive from
the PC, 2.5 orders of magnitude greater than the time for the PC to send the
message. Thus, it can be determined that the greatest bottleneck for smék{pac

sizes in the test framework is the PDA sending data to the PC. All JCSP network
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communications require acknowledgement, which is a relatively small message size
of 207 bytes. It can be estimated that that the PDA takes at least 5 milliseconds to
sendan acknowledgement to the PC. The PC acknowledgement time is close to

insignificant in comparison.

m PC mPDA

Time ms
OFRL N WMOOGIO

Nagle P@Qlo Nagle Nagle No Nagle Nagle No Nagle Nagle No Nagle
to PDA PCto PDAto PDAto Object Object Object Object
PDA PC PC PCto PCto PDAto PDAto
PDA  PDA PC PC

Figurel3: Send and Receive Benchmark

Object streams showa similarperformance diffeence, although the results ar
better with Nagle than without This contradicts thping time test. e nature of
the Nagle algorithm means thating tests are not well suited as no buffering will
ocaur for sent messages. JCSE&work send messages are acknowledgednd
therefore Nagle may notause an increase in perfoemnce. Rrformance would

therefore be determined by how many channelee serviced by a specifiink .

To determineactual bandwidth, different byte array sizes are transferrégtween
the PDA and PC.iz8s range fromi0®to 10° bytes. Each array is sent ten times in a
timed cycle, and ten timed cyclgeerformed. Te six median values are taken, and
the mean time calculated from themkigurel4 presents the PDA sending data via
Javanetwork streamspative network streams, and networkedbject streams. The
results representhroughput inbytes per milliseond achieved with the different

data sizes.
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Figurel4: PDA Bandwidth

FromFigurel4, it can bedetermined that the PDA can transmit data between 100
and 225 bytes per millisecond. There are three interesting points. At data size
7,000, the native streams appear to perform better than Java network and object
streams¢ sending the data packet 10 nfigster than the other two mechanisms.

The reason for this apparent performance increase is unclear.

At 9000 bytes, bothnative and Java streams dip in performance, whereas the
object streams do not. The reason for this occurring has not idgndetermined,
although repetition within native and Java results points to an issue with thehBC,
PDA hardwaregr the network infrastructure Further analysis of this phenomenon
is presented in SectioA.5.1 The reason the obgt stream does not exhibit this
property is due to the extra data semtue to serialization. A primitive array object
has 23 bytes of sedlization information, andthis is enough to egate the
performance drop. The difference in the actukdta packetsizecause a similar

drop in performancdor the object streams at 30,000 bytes.

Figurel5 presents the results for the PC sending to the PDA. These results show
the PC performs better for small packet sizes, which is the ceaverthe PDA. The
result for data size 1,000 is not shown as this gives bandwidth in excess of 60,000
bytes/ms, and would not permit the detail presentkigurel5. From these results,
it can be determined that the PC can outpdata onto the network between 800

and 300 bytes/ms.
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Figurel5: PC Bandwidth
4.3.3 Latency

Latencyrefers to theoverheadtime taken for a message to travel from one device
to another beyond expected timegand includes any encodinghé decoding of
messages. A spife methodto determine latency is to perform a roundtrip (ping
pong) message between the two devices and remove the time iilshake forthe
two devicesto send datato one another From te send and receive benchmark
(Figurel3 ¢ page58) and ping testRigurel2 ¢ page57), it is possible taletermine
latency d approximately 1.5 ms for a roundtrip messagea network stream, and
approximately 1.7 ms omn object streamfor small message sizes-or amore
thorough examination the bandwidth benchmark is repeated using roundtrip

operations

Figurel6 presents the results for the PDA&rgling to and then receiving from the
PC. The results presented are the time in milliseconds taken to perform a single
roundtrip operation. The gected times are calculated by additite time taken

for the send from thePDA tothe PC and the send fronhé PC to the PDANative
Winsock streams performapproximately as the standard Java streamsthis

experimentand are not presented. hEse results are given #ppendix D
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Figurel6: Roundtrip PDAo PC

At certain data sizes withifrigure 16 performance drops during the roundtrip
operation. The data sizes of these drops (5,000 and 90,000) are different from the
performance drop for only sending data (9,000 bytes). Théopmance drop at
9,000 bytes has actually disappeared. This leads to further evidence that a network

centric or device centric issue is causing the drop in performance.

Object streams havéhe same performance drop at 30,000 bytesyd the actual
result has a larger peakhan expected It is unlikely that a serialization issue is
causing this drop, as after the initial headmformation for a serialized array,

performance idased on I/O throughputmmthe number of bytes.

Figurel? presents the roundtrip time for the PC sending to the PBAcomparison
of Figurel6 and Figurel7 showthat the resultsfor PDA to PC and PC to Pio/Ae

approximatelyequal with the same points gboor performance.

From the roundtrip results, actual roundtrip time and estimated roundtrip time are
approximately equal, particularly for large data sizes. Excluding the peaks, only

smaller packet sizes have latency times noticeable in relation totaken.
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Figurel?7: Roundtrip PC to PDA

The network experiments presented within this sectishow thatthere is little
performance overheadincurred by the PDA JVM with respect to network
bandwidth, and tlat latency is generalljow. There are some unexplained
performance issues at certain data sizes, but thesepaiobably due to device or
network problems as opposed to anythifgom the JVM on the PDA. h&@
deactivatingof the Nagle algorithm in JC&ky be an issue for perforamce, but
considering the sendcknowledge communication of network channels, this may

not strictly be true.

4.4 Examining JCSP Performance

With the information from sectionst.2 and 4.3 it is possibleto estimate tre
expected performance of JCSBtMorking for sending the specified test objects. If
Figure2 (page37) is examined, there are eleverperations that havemeasured

values

1. NetChannelOut put writes to theLink (channel communication)

2. Link serializes sent object message (data plus 249 byte medseader
overheadg seeAppendix A

3. Link transmits the data to the remoteink

4. RemoteLink deserializes the object nssage

5. Link writes the object message to theNetChannellnputProcess

(channel communication)
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6. NetChannellnput Process writes the object to theNetChannel Input
(channel communication)

7. NetChannellnput Process writes the acknowledgement to the.ink
(channel commuieation)

8. Link serializes the acknowledgement message

9. Link transmits the acknowledgement message to the remiote

10.RemoteLink deserializes the acknowledgement message

11.Link writes acknowledgment to theNetChannel Output (channel

communication)

A virtual netvorked channel will havene end on the PDA and orad on the PC,
and therefore the two channel times will bdifferent. Separatinghe above
interactions into output operations and input operations allowsvaluesto be
entered intoa performance calculan. Thus, there is a formufar channel output
time and a formula for channel input time. chan represents channel
communication time on thelevice and the size in bytes of the ack messa&j204

bytes, and a send message incurs a 249 byte overferdte header
Ogo0 = 2 BAXDE + 1'QGHAQ T AE" QA Qi S + 249 + 'XI'Q "AHAY 60 X)
6 = 3 gWAE + XA GHYQ I "YE QG Ai SM + 249 + {QGHAQY LX)
The totl time to communicate from acroske channel is
ODOBE = G0 + Op + ACEIAQTAE QA AIEM + 249 + G (Ei ¢ AN

Transmission time is sepated asit relies on sender throughpuand receiver
throughput independently, andhe network infrastucture. From Sectios 4.2 and
4.3 approximate values for the properties of interestin be given These values are

presented inTable3.

Table3: Communication Properties

Channel | Seial Serial Deserial Deserial Min Transfer
(ms) Small (bytes/ms) | Small (bytes/ms) | Transfer | Throughput
(bytes/ms) (bytes/ms) Time (bytes/ms)
(ms)
PC 0.015 20000 10000 2000 10000 0.001 320
PDA 0.18 80 20 40 15 5 215
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Channel is the channel communication time gained from the Coifime
benchmark. Serialngall is the approximate bytéms serialization performancéor
small objects, and likewise Deseriaim8ll for deserialization. Serial is the
approximate throughput for s#alization,and is calculatedrom the approxinate
value for byte throughput when serializing the test objeatdarge sizeggathering
the mean of thee six values and rounding up to one significant digit. Deserial i
likewise calculated, but th®DA @serialization value has two significant digits due
to the closer proximity to 15 and thelatively small value. MifiransferTime isthe
send timefor small messagegathered fromFigurel3. Finally, throughput is the
approximate bandwidth values presented Figurel4 and Figurel5 (pages59and

60 respectively)

JCSP networkingastwo network channel types: acknowdged synchronousand
asynchronouswithout acknowledgement. The latter channel type is used to
implement server type connections, where a channel requests a message from a
server and the server responds. The unacknowledged channel would appear to be
an atempt to circumvent the poor exception handling in JCSP networking, which
could cause deadlock on the server iE@nection failed135]. If aserver replies
asynchronously, there is no issuf.usedfor standard communicatignthe infinite
buffering in the underlying channel can cause a problgnen no synchronization
occurs. Wacknowledged channels are tested to ascertain whether they can lead to
further insight into the overhead of network channel communication caused by the

acknowledgenent signal.

To evaluate the network performance overhead of JG&Rvorking the ping,
bandwidthand latency tests are repeatedThe results from these experiments are

presented in the following subsections.

4.4.1 Simple Ping

It is possible to estimate the pintimefor a JCSP networked chantelsed on the
communication formulaNetChan As object streamsre in operation within the
JCSP Networking architectyrhe smallest data value to send over a networked

channel is null. With the 249 byte message headtken into considerationthis
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provides a 250 byteent dataobject, which is considered a small messag&ewise
the 204 byte acknowledgementmessage is considered smallApplying known
values tothe NetChanformula provides theestimatedoverhead forJCSP network
channelswithin the test framework Thesevalues are presented ifable4. The
NetCharvalues are those for the specified device outputting to the oth&l.times

are in milliseconds.

Table4: Net Channel Overhead

Gout GCn NetChan
PC Sync | 0.1445| 0.1802| 14.4855
PC Async | 0.0275| 0.155| 6.6385
PDA Sync| 8.585| 9.34| 13.7662
PDA Asynd 3.305| 6.61 8.46

As asynchronous channels arexamined, these values arealso calculatel.
Removing a channeglommunication andhe (de)serialization and transfer time for
the acknowledgment provides thesevalues With the calculated approximate
channel communication value# is possible to evaluateoundtrip time on small
messages. These results are presdnteFigurel8. The Object Streams values are

taken from the No Nagle results gurel2.

EPC mPDA mExpected mObject Streams

40
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25 -
20 -
15 -
10 + —

Time ms

PC to PDA Syn PDAto PC Syn PC to PDA Asyn PDA to PC Asyn

Figure18: JCSP Network Channel Ping Test
For null messages JCSP Networking isirsigst slower for a ping operation than
Object Streams when using synchronous channels. This is a significant overhead,

attributed to the extra information required for channel messages and the
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synchronisation during the send. Asynchronous channels arerutidee times
slower than the Object Stream results, and this will be largely due to the message

header overhead.

Actual values are greater than the expected valueby 8 ms for synchronous
channels and 2 ms for asgimronous channels. There is tlegtra overhead for
lookup time with thelndexManager when an incoming mssage is receiveth
consider There is also the underlying latency of the network architecture which is
1.5 ms or a roundtrip message. This will deubledfor synchronous channekss

two send and acknowledge interactions are occurring for each roundtrip. Another
consideration is actual (de)serialization time, which may be gre#tan the
estimated valuadue to the numier of properties within a JCSP Networkaignnel

message.

The asyrchronousresults arebelow half the time for synchronous channels. This
doespoint to goodperformance benefits for having asynchronous message passing
within JCSRletworking but the inherent danger due to the infinite bufferimgthin

the underlying chanelrequires care.

4.4.2 Bandwidth

As Sectiord.3.2 both the time to send the smallest possible message (null) and the
time to sendbyte arrays of various sizeme gatheredwithin JCSP Networking.
Small message passing resultsjtiw Object Stream and Expected resulisr

comparisonare presented irFigurel9.

In this case, Expected results are approximately 2 ms better than actual results.
When latency is considered, Expected and actual values are xapm@tely equal.
From the synchronised channel results, the estimated ping time should be 31.5 ms.
The actual result is 36 ms ngurel8, and therefore an approximate latency of 4.5
ms is present for a JCSP Networking chanmehdtrip communication in the test

framework.
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Figurel9: JCSP Network Channel Send and Receive Benchmark

The Asynchronousresults for the PC to PDHRelp illustrate a problem with the
underlyingLink processesn JCSMetworking, which will be analysedfurther in
Section 4.6. The Link processesare given maximum prioritywithin JCSP
Networking to enable communication to startquickly and data transferto be
servicedquicdy. The usage dfigh priority is dueto the aim of JCSP éiworkingfor
cluster computing scenarios whethe computationtime to communicationtime
ratio is high However this usage of high prioritgan lead to a problem whea
slow device is flooded by laggdata packets sent frora fasterdevice. Therefore

the PDA appears to take no time to receive messages from the PC asynchronously
as the lower priority application processannot start the timer whilethe PC
effectivelyfloods the devicewith data However, macknowledged charels should
not really be used in this manner due to the infinite buffering issue, and their

existence in JCSP is questionable.

TheExpected time to send a message asynchronously from the PC to PDA is greater
than the actual time, and idue to the channebeing able to continuously write to

the Link to serd amessagewithout blocking. Me Link is responsible for @ and
thereforethe PC applicatiodoes not registethistime fully within its asynchronous

results

To gatherthroughput informationfor JCSRetworking the bandwidthexperiments
are repeated with the synchronous and asynchronous channelBhe expected

resultsare calculated usig the NetChanformulawith the propertiesin Table3. As
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the bytes within the array are not serialized, the (de)serialization overhead is
calculated as the message header plus @8 byte array description Figure20
presents the bandwidth results for the PDA for synchronous and asynchronous

channels, with the expeed results also given.
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Figure20: PDA Channel Bandwidth

Synchronous bandwidth is lower than expected, and levels at 205 bytes/ms. This
value is 10 bytes/ms lower than expected. For asynchronous channels, bandwidth
is as exped&d. This suggests that synchronisation inflicts an approximate 10
bytes/ms overhead within the test framework at large data sizes. The
asynchronous resultsnly reach 7x10 bytes, asafter this point the PDA cannot
handle the amount of data being pushddwards it and fails with a memory
exception. This is the result of the high prioritink problem, as all the sent

information requires bufferingvhich is obviously limited on the PDA

The channel bandwidth for the PCpgesented inFigure2l. Expected results are

provided based on th&nownproperties andhe NetCharformula



Chapter 4 Analysis of Current JCSP Networking 69

=——SyNCc = Async Expected Sync = Expected Async
700
600
0 N\
g 500 AN
~ 400
(%] —
2 300 =
2 Pz \\A,
& 200 — >
100 A=
0o LT
[ejolololololololololololololoNoNoNo N}
888888888000000000OOOOOOOOOO
lefoleloloNefefoRololololololololololojlojololololoNe e No)
ANNTIOHOONODOOOO0OO0OO0O0OO0000O0O000O0O0000
ANNITOHOONOVOOOOOOOO0O0O0O
HNO’)Q’LOLOI\GDCDS
Data Size in Bytes

Figure21: PC Channel Bandwidth

For the PC, hte throughput for sending small (1,000 to 3,000) byte arrays
asynchronously is riopresented on the chart due to the significalarge value
when compared to the othecommunicationresults. These values give throughput

of up to 60,000 bytes/ms. The asynchronous results have greater throughput than
expected, due to the applicationvel channel object outputting to theink and

not waiting for the actual I/O to occurAs the PDA cannot accept the amount of

data pushed at it by the PC, the PC results also only reacR GyES.

Synchronous channels initially providéose toexpected performance but drop
below expected resultior data sizes above, @0 bytes. Performance legls at 275
bytes/ms, which igl5 bytes/ms lower than expected. This will be largebe to the
expeced calculations not considerirthe time for the PDA to inpt data, which is
greater than the time taken for the PC to output data. Receive time data is

provided inAppendix D

4.4.3 Latency

The final property to examine within JCS&working is latency. The roundtrip
experimens conducted on network and object streamare repeated withboth
synchronous and asynchronous channels. The eéggdaesults are calculatefiom
the properties inTable3 and the NetChanformula. As the results presented are

similar for both PDA to PC and PC RDA, only the former mailts are presented
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Other datacan be found inAppendix Dfor comparison. Figure22 presents the

channel roundtrip results.
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Figure22: Channel Roundtrip PDA to PC

There is some variance between expected results and actual results. Excluding the
peaks within the Sync results, the mean latency is approximately 28hm@s actual
results are compared to expected resultsor asyohronous channels, performance

is initially better than syrfwronous channels, but does redue higher values.
Figure 23 illustrates the variance between actual and expected results for the
roundtrip time in milliseconds, withhie significant peaks removed, and subsequent

adjoining points connected.
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Figure23: Variance between Actual and Expected Channel Roundtrip Results
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AsFigure23illustrates, Asynchronous channels degradgerformance over time.

As the same underlying channel mechanism is used for both acknowledged and
unacknowledged channels, these results do seem to indicate that any initial benefit
for small message sizes sent asynchronously is balanced by pooci@mpance for

large data sizes. From the expected values, asynchronous channels should have a
14 ms lower roundtrip time. Therefore, subtracting 14 ms from the values
presented inFigure23 indicates that asynchronous channelsveawhat could be
considered a severe roundtrip overhead in the test architecture for large packet
sizes. As the results presented are similar for both PDA to PC and PC to PDA, and
the PDA starts its timer before initiating the roundtrip operation, theiaace
cannot be due to the application process being unable to start its timer before the
PC sends data. After each timed cycle, a handshake is also performed to ensure
that the PDA is not flooded with the next cycle of data from the PC. The variance is

therefore not the fault of the high prioritink processes.

From the results presdad in this section, i can be ascertained that JCSP
Networking does have some communication overhead, particularly for small
message sizes. OF large message sizes, chatmandwidthis not far removed from
that of Java object streams. Most of the overhead thus far can be attributed to the
message header that reqeis serialization, anthe acknowledgement message. In
the following section, serialization is examihi@ greater detail by comparing JCSP

and object streams for sending the various test objects.

4.5 Test Object Messages

To examineserializationand the effect serialization has on JCSBtworking the
various test classes are subjected to the sending and roundteriments that
raw datamessages wersubjected to. These experiments operate upibre various
test objects with sizes ranging from 0 to l0@nd examinethe different
communication mechanisnmgesented thus far Themeanis gatheredrom the six

median valies from ten timed cycles
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4.5.1 Sending vi®bject Streams

The firstresults presentthe time taken for thePC to send the test classes using
networked object streams These values are presented Figure24. Thex-axis
represens the length of the Integer and Double object arrays within the

specified object.
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Figure24: PC Sending Test Objects via Object Streams

Unfortunately, this does not allow close examination due to significant peaks.
However, he results forTestObject4  do increase significantly after size 80. At
this point, TestObject4 is largerthan 6000 bytes, and no othetest object

reaches this size.

The peaks, unlike those in previous results, aresimaller datasizesand allow
closer examination. Te seven peaks within th&estObject2  results for
example, occur at regular intervald)et size interval beteen each peak being.
From the datasizecalculated using the equation fdrestObject2 in Tablel, the
interval between each pea@if these seven peak®presents 19dytes, whichis a
multiple of 16 Thisindicatesa probablereasoninternal to the test framework.
Table5 presents thedata size atall the peaks present ifrigure24, calculated with

the equationsn Tablel and sorted. The letval values are the variance between a
Peak Value andhe previous Peak Value. The Rounded values are the Interval

values roundedy 1to a suitable number.
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Table5: Object Sizes at Peaks

Peak Value | Interval | Rounded
1768 - -
2268 500 500
2461 193 192
3024 563 564
3137 113 112
3152 15 16
3281 129 128
3345 64 64
3473 128 128
3665 192 192
3857 192 192
4049 192 192
4050 1 0
4240 190 192
4241 1 0

Table5 indicates a pattern within the peaks, asost variances are multiples of 16
when rounded except the large intervals &00 and 564. Howevethe differerce
between these two alues is also aultiple of 16,and thusthe observation of an
underlying pattern is strengthened. Two pairs of values havly a singlebyte
variance. The first pair (4049 and 4050) is ffoestObject2  and TestObject5
respectvely, and he second paif4240 and 4241) is fronTestObject4 and
TestObject2  respectively. This indicates a data packet size problem and not an

object complexity problem.

As the peaks can likely lmismissed, any subsequeptesenteddata will have the
peaks removedandthe two adjoining value points connected. cual data results
are given inAppendix D Figure25 presents theresults from Figure24 with the

peaks removed The results forTestObj ect4 are shortenedto allow closer

examination.
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Figure25: Cleaned PC Sending Test Objects via Object Streams
Figure25 indicates a number of steps within the results which occur when extra
packet send perations are required.Table6 presents the data size when the steps
occur. The MTU for the Ethernet interface is 1500 and for the wireless ingerfac

2272.

Table6: Object Sizes abters

TestObject| Testject2 | TestObject3| TestObject4| TestObject5
1785 1649 2121 2132 2160
2945 2937 2948 2970
3905 4240 3942
5124 5130

5736

6144

Three test object types have an initisiep atapproximatelythe samesize, and
these values areclose to the wireless interface packet siz&estObject and
TestObject2  have thar initial step appearing earliehowever. Four of the test
classes show a step at approximately 2950 bytekich is approximately two
Ethernet packet in size TestObject 2 and TestObjects have a step at
approximately 3900 bytes, which is approximately an Ethernet packet plus a
wireless packein size TestObject4 has a thirdstep value at 4240, which does
not conform to apacket size ratio BothTestObject4 and TestObjec t5 have a

step atapproximately 5130 bytesyhich isapproxmately two Ethernet packets plus
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a wireless packet in sizeTestObject4  has two further steps. At 5736 bytes,
there is noconformity to a packet combination.However, 573ds approximately
one Ethernet packet larger than the othd@iestObject4  value(4240)that did not
conform to a packet combination. The final step in thestObject4  results

comes at 6144 bytes, approximately one Ethernet and two wireless packets in size.

From these results, @ time is the key factor for the PC sending objects to the PDA
in the test framework due to the extra packet requiremenftThus, saller objecs
will be more efficientfor the PC Large data objecteequire the PCto sendextra
network packets,and in tre test frameworkeach packet tais approximately 2to

2.5msto send

Figure26 presents the results gathered from the PDA sending tis¢ ¢asses to the

PC. No peaksave been removed from this result set.
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Figure26: PDA Sending Test Objects via Object Stream
Unlike the PC results, the P&sults haggrouping based owobject complexity. In
fact, this chart is almost exactly dsigure 10 (page 54), which indicates that
serializationis the main contributing factofor the PDA sending theest classes.
This is of course in line with the lower (de)serialization throughput of the PDA in

comparison to I/O throughput on the network, as showT able3.

A possible caus#r the PDA being serialization bound is tbenversion ohumeric

valuesinto bytes for transmissionFor the test classes, moshique objecs wrap a
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primitive data type Analysing primitive data sendindustrates why this is not the

case.

Figure27 presents results for the PO sending primitive irggers using different
convesion mechanisms. Int Array is tipeimitive int[]  type sentvia an object
stream. Ints takes every elemein the array and transfers it with theritelnt
method on a Jav®ataOutputStr eam, which is the stream which underlies the
Java object streamsConverted Inthaseachintegerelementconverted into four
bytes withbitwise operationswith the subsequat bytes stored in a byte arragnd
the byte array transferreds raw data on the network stream. Only Aray has a
result at size 0 as the other methods sendthing at this point. All streams are
buffered aswith the other experiments, except Conted Ints which sends tke

generated byte array directly on the network stream.

=Nt Array = Ints Converted Ints

Time ms

Number of Values

Figure27: PDA Sending Ints

There is no significant increase in overhead as more numbers are converted. If this
was a major factor in the serializatioprocess, it would be expectethat

performance would changas the Integer array results presentedrigure26.

There are othelinteresting points inFigure27. The bitwise conversion of eders

into bytes appeas to give a marginal performance increasgden compared to
sending the intgers directly. This may beecause othe flush operation required

in the buffered stream results. The other interesting point is the slight overhead for

sendingthe int[]  object, which is approximatel§.55 ms. This will partially be
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from the 23 byte serialization header sent with the oljjeend may in fact be the
serializationoperation time. If this is true, thenit is likely to increase samore
objects are serigzed, as the 0.55 ms per object overhead aloosannot attribute
the difference between thelnteger Array results presented ifrigure26 and the

primitiveint[]  results presented ifrigure27.

Figure28 comparessend times and receive times foestObject4  taken from the
PC and PDA with peaks removedhe »axis provideghe calculated size of the
object in bytes The PDA sendingime and the time recordedor the PC receiving
are equal andthe variance between the two resslsets never increases above 1
ms. Thus it appears as if only three lines are presenfFigure 28, asthe PC

Receiving result is imposed upon the PDA Sending results.
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Figure28: Sending and Receiving TestObject4 via Object Streams

4.5.2 Sending via Channels

To compare the JCSPetWorking against object streams for sending the test
classes, the results fromendingTestObject4  via JCSP networked channal®
preented. Q@her channel result setare providedin Appendix D Expected times
are generatedusing the NetChanequation and the performance characteristics
provided inTable3 (page63) and object sizes calculated frofrablel (page47).
Only expected synctonised channel values are calculatad synchronisation has

little effect on communication timefor objects of ths complexity Figure 29
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presents these results for the P he xaxis represents the size in bytes of the

serialized object.
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Figure29: PC Sending TestObject4 via Networked Channels

Synchronised charmfs perform better than expected, the variance being between
30 and 50 ms. However, mt all test classes show improved performance over
expected results (sedppendix ) and therefore it is deemed that there armo
adverse pdormance differencesfor large serialized objectsent via JCSP
Networking channels Async results are relatively flat until spiking at the end similar
to Object Streams. The difference in object sizes at the two spikes is greater than
the JGP messageverhead, although thiswill have an effect orthe observed

results.

Figure30 presentsexpected and actual results for the PDA sendiagtObject4
and ro peaks were removed from this daté&swith the PC results, the PDwitially
shows betterthan expected results, buss object size increases the variance
between the two resulisets reduces to zero. Adgth the PCresults the different

test classes exhibdither better orworse results than expectdohased on their type

Asyrt channels perform initially as well as Sync channels, but degrade as object size
increases. The variance between the Sync results and Object Stream results also
increases with object size, although initially channels have performance that is

comparable b object streams.



Chapter 4 Analysis of Current JCSP Networking 79

e SYyNC = ASync Expected Sync = Object Streams
500
400 —
7]
€ 300
£
= 200
100 -
0 T T T T T T T T T T T T T T T T T T T T T
326 1112 1792 2472 3152 3832 4512 5192 5872 6552 7232
Size in Object in Bytes

Figure30: PDA Sending TestObject4 via Networked Channels

Fromthe TestObject4  sending results presented it is possible to approximate the
throughput ofthe networked channel for a complex object. This valiees into
considerationthe serialization and deserialization time of both devic&se PC can
transfer TestObject 4 messages aapproximatelyl5 bytes/ms, andhite PDAcan
transferTestObject4  at approximatelyl7 bytes/ms. The variance in performance
is due to the PDA havindower deserialization performancehan serialization

performance, and the PD@e)serialization process beirtge significant bottleneck.

The throughput reductionis concerning, and isttributed to (de)serialization
performanceof the PDA IfPC chnnel bandwidth result§Figure21 ¢ page69) and
PDA channel bandwidth resuliSigure20 ¢ page68) are examinedthe serializéion
process forrestObject4  reduceschannel performance by 260 bytes/ms and 188
bytes/ms for the PC and PDA respectivelowever,JCSBerformance isbetter
than expected, and the PDA results indichitde overhead in comparison to object

streamns.

Conparing transfertime for large serialized objects gaeome indication to the
overhead associated with the PDA, but PC results are inconclusive due to the lack of
acknowledgement on the object streansausing significantly better resultghen
compared toJCSP NetworkingTherefore, rounttip results are also presented to

help compare the object stream and JCSP Networking results further.
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4.5.3 Roundtrip

Figure 31 presents the results for the PC peméming a roundtrip operation with
TestObject4 using Sync and Async channels and Object Streams.expeeted
results are also calculatedsing the properties fronirable 3 and the NetChan

formula. The PDA results are not shoas they are similarand areavailablein

Appendix D
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Figure31: PCto PDARoundtrip TestObject4

Figure 31 illustrates that actual channel communication time is better than
expected, and the expected and actuasuéts increase in unison. Async results are
also comparable to Sync results. Object Streams perform better than networked
channel communications, and over time the performance gap increases. This
highlights a possible problem with complex objects serdrachannels, the variance
between the two result sets reaching approximately 100 m3etObjectd 104~

If results from the PDA sendifigstObject4  (Figure30) are examined, there is an
approximate 50 ms variance between charmebnd Object Streams at
TestObject4 100 The variance between receive timdsgure32) on the PDA is
approximately 50 ms. Therefore, the PC has no significant overhead observed when
using JCSP Networking to send complex objeitsn the test framework, and any

overhead can be attributed to PDA performance.

! The notation TestObjegtis used to signify the length of the internal arrays within the object in
question. e.g. If n = 100, the length of the internal arrays of TestObject is 100.
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Figure32: PDA Receiving TestObject4
4.6 Examining JCS®etworking Overhead

Experimental data presentedhus far has focused on communication overhead
within JCSPNetworking Another concern isresource overhead of the JCSP
Networking architecture.  Sectior8.4 highlighted some initial observations
regardingscalability, and issues witkink priority were highlighted in Sewn 4.4.

In this section the latter problem isxamined in more depth.

To investigate th priority problem, aCommsTimdenchmark utilising fastinteger
based channelds performedon the PDA and P@ conjunctionwith the roundtrip
experimentfor large data sizesThe latter expeiment involves data beingent and
received inlarge blocks,and thus it ispossible to examine theomputational
overhead forl/O. Thereis a warm up and cool down periaghen the bandwidth
expaiment is not operating, allowing the base CommsTime result to be
determined. The PDA reissi for the CommsTime benchmark in this scenaie
presented inFigure33. Experiment time increases with theaxis, and e broken
horizontalline across thdigure is the recorded CommsTime figure at various times
during the experiment.Verticallines indicate a packet size time being recorded
that point in time during the experimenfpacket sizes increasing dgetroundtrip
experiment (0, 18, 2x10 ... 10, 2x1d ... 1, 2x16 ... 18). Gaps in the
CommsTimélue lineresultindicates that no time was gathered during the packet
sizes represented by the red linegor example, between the times gathered for

packet size 0 and 1M0 no CommsTime figure is gatherasl the relevant packet
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sizes each record a time while the CommsTime benchmark doedeacling to a
gap in theblue line representing th€ommsTime resultThis is due to the device
being consumed by I/O operations amlunable to perform computation for the

CommsTime benchmark.
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Figure33: PDA CommsTime Stressed Network

Figure33illustrates the high priorityink problem as theCommsTime on the PDA
increases frmm appoximately 680>s to approximately70nnn >& RdzNA y 3
packet size transfer. The PD/Aessentiallyflooded and has reducedomputation

performance within this period, particularly during the larger packet sizes.

There isan interesting phenomeon where CommsTime reducde approximately
normal levels, and no bandwidth results are recorded. This valley occurs during
data size 60,00Q where channelroundtrip performancealso drops inFigure 22
(page70). It can therefore be judged that the PDA is not performing @usration

that should be significantly affectingetwork performanceat this stage, which leads

to the probable cause of the network infrastructure causing a performance.drop

Roundtrip results recorded during this experiment, and the origiredorded results
for roundtrip operations,are presented irFigure34. As can be seenhé results are
similar, indicating that I/O hasot suffered during the CommsTim&periment, and
I/O has effectively causedthe application level CommsTimbenchmarkto be

allocatedless computation resource
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Figure34: Networked Channel Roundtrigvith CommsTime

The PC results are not presented as CommsTpresents no impact on

performance and channel roundtrip time results are similar to PDA results.

4.7 Summary

A number of performance experiments have begerformed thatallow an analysis
of the current JCSPeNvorking implementation. Reflecting tke characeristics
and the initial observations Section3.5 upon the usage of JCSP Networking in a
Ubiquitous ©mputing context raises a number of concernsConsidering the
required properties for Ubiquitous Computing highlighted it Chapter 2 the

following subsections discuss the problems

4.7.1 Interoperability

JCSP &tworking relies on Java serializatiomthe point where itis used in¢érnally
to transfer evennon-data messagesFrom a Ubiquitous Compiay point of view,
this is a weaknesss not all versions of Java implemesarialization, particularly
versions aimed at small factor devicgk32], which will be in operaion in a
Ubiquitous ©mputing environment. As reflection ison available in reduced
versions oflava, it is not possible to implement a customaeration mechanisno
overcome the lack of serializatiofdCSP Netwking requires modification to permit
non-serializationinteractions with methodsimplemented by classes and uséunl

conwert an object into a byte arrgyand the serialization header information
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transferred with thebyte array The channel message headsa problem, but as a

structure is presenfseeAppendix Ait ispossible b overcome

A separateLink could be developedo allow communicatiorwithout serialization,
and a different message header mechanistould also kb developed. @Gannel
messages are constructed in the netrrked channel objecthowever, and thus the
channel would require modifation to communicatewith the Link , or the Link

would requirefurther modification to extract the information to send.

If either approach is taken]CSP &tworking will require modificationto promote
interoperability between Java versionsHowever, here is still consideratiotfior
interoperability beween different frameworks. bt all computational elemerg
within a UbiquitousComputing environment will be capabtd operatinga Java
Virtual Machine. When this further restriction is placed on requirements, any
notion of Java serialization becomes a problemn particular, he difficulty
interpreting the sent Java objetd aproblem, asnot all platforms provide reference
based data structures and object graph®ata structures are often interpreted
differently on different platforms, and thusbject basedserialization should be
avoided. Although work by RipkEL36] has shown that the underlying serialization
headers can be accommodated for in languages suchoa@am the actual

implementation of data structures within Java does cause problems.

4.7.2 Performance

JCSR\etworking provides performance in the test framewockose to optimal
performance betweerhe two devices. When using JG&Rworkedchannels, the
PC drps to 275 bytes/ms bandwidth from 320 bytes/nas45 bytes/msreduction.
The PDAdrops to 205 bytes/ms bandwidtfrom 215 bytes/ms when using JCSP
network channels. The low variance in performance for the PDA indicates that no
significant throughput ovehead is observable The PC has a @ter variance
between the JCSP Networkiolgannel and networkedtreams, although this can be
attributed to the deserialization timefor the sent objecton the PDA, and

subsequentserialization of theacknowledgement peket. From an initial analysis,
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JCSP @&tworking has no significant communication overhead to arguairesj its

usage invarious distributed computingontexts, na just Ubiquitous Gmputing.

Bandwidth does drop when complexjebt serialization is consided; performance
dropping to 15 bytes/ms. This highlights another problem with the reliance on
serialization for message encoding Therefore it is argued that reliance on
serialization is a bad choice for high communication ratio applications, veloigh

be prevalent in a WiquitousComputing environment.

Latency is a problemhowever Within the test framework, aping takes
approximately36 ms on a synchronized chanmaeld approximately 16.75 ms on an
asynchronous channel. I@ect streans record ping aapproximately 6.75 msnd
network streamsapproximately 6.5 ms. The comparison to a synchronous channel
is possibly unfairdue to the synchronisation between sender and receiver.
However, he asynchronous channel indicat@a pingoverhead of 10 ms fodCSP
networked channelswithin the test frameworkabove the object strears. The
majority of the overhead can be attributed to serialization of the message header
on the PDA High latency can ba problem in high communication plications, and

therefore JCSP &working may not be suitable for such applications.

Asynchronous channeldo provide an initial performance increasehut over time
the benefit reduces. Eventually asynchronous channels perform poorer than
synchronous channels. The infinite buffeing mechanismwithin the JCSP
Networking architectureand garbage collectiomay havean effect. Therefore
asynchronous channetio not appear to be good solutionfor high latencyin all

scenaios.

Serialization performance on the PDA is disappointingd is the greatest
bottleneckwithin the test framework. The PC can serialize objects at approximately
10,000 bytes/ms. The PD#an only achieve approximately 20 bydéns in
comparison Considering thaetwork throughputrecorded on the PC and PDA (320
bytesims and 215 bytes/mgespectively, the PC is I/O bound anthe PDA
serializationbound. Performance cannot be attributed to conversiaf individual

valueswithin the transferredobject Figure27 ¢ page76) and appears toelate to
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the lookup table internal to the serialization proces&reasing in size Memory
allocation and 1/0O time do not indicate a relationttoe size of the senbbject. On
small factor devices the usage of serialiaatcan be considered a severe limitation.
As Ubiquitous Computing scenariosnvolve computational elements ranging from

large to smallthere isa further argument againgibject serialization

4.7.3 Resource Usage

As discussed in Secti@b, process usagwithin JCSP &tworking increases as the
number of networked input channels and intenode connections increases.
Temporary processes are created and destroyed during operataond thus
problemscanarise in resource constrainetkvices The PDAas anapproximate
400 thread limit, and althouglpossiblya large number, smat deviceswill have
fewer threads available On smaller devices however, a single connection to a
server and a single input channelay beall that is requied, and the excessive

usage of pocesses may not be a factor

JCSP &tworking relies on a JVM capable of object serialization, wkiche ofthe
reduced Java configuratiordo not accommodate As discussed in Sectidti/.],
this prdolem can be overcome, betven a reduced JVhay be tooresource heavy
to operate on some devices. A reliance on Javdbiquitous Computing scenarie

is therefore dimitation.

4.7.4 System Overhead

JCSP &tworkingwas desigred operatein cluster compting type scenariaswhich
leads to conflict when considering other usagesLink processes are given
maximum priority, and herefore during intense I/O operations the application and
device will be allocated less computational resoutoeaccommodatel/O. For
applications with high computation to low communication ratios, such as cluster
computing, high priority 1/Oenables fast service afommunicatiors. For high
communication to low computation ratios, thapplication must wait for I/O to
complete, anl overtime a small devicean be flooded Small factor devices and
high communication ratios ar@ossiblein Ubiquitous Computing, thus the high

priority Link can cause problem.
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Other overheads in JCSP Networking attibuted to using objects as messge
headers. Te required information in a message packet (type, source and
destination)is small andherefore 249 and 204 byte headers are excessive. This is

another problem withthe reliance on serializatiofor communicatiors.

4.7.5 Scalability

Linked to rsource usage and system overheadaalability. Ubiquitousdnputing
demands large scaledenvironments with multitudes of devices interacting
Scalability is one of the main argumentor usinga formalised mobility model. JCSP
Networking does not sda well wthin these architectures. Considering the
capabilities for creating dynamic topologies of interactimgnponents possible with

JCSP @&tworking, scalabilitgan be seen asne of the major problems to overcome.

Java isalsoa problem for scalabty. A JVM isnot available on every deviceéhus
relianceon Jawa and serialization is a limitationThread limitatiors allow the PDA
approximately400 processes and the PC 7,000 processgsplications inwlving
thousands of agent processes moving tbugh devicesbecome difficultif not
impossible to achieveReliance on Java to asmmodate such scale therefore a

limitation.

4.7.6 Stability

No evidence of erroneous behaviour withJCSP @tworking is presentedput
usage of the frameworkhighlights a nunber of problems. The underlying
architecture does not accommodate exception handling that is accessible
application layer developes. A process may blockvhile communicating to a
remote process ifthe connection between the two ddes fails Ubiquitous
Computing requiresnanagement of failure to enable an environment to stay active
in the presence oferroneous behaviour JCSP dtworking does not indicate
erroneous behavioureasonably ancdcannot be considered a suitable framework

from this perspective
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4.7.7 Accessibility and Extensibility

Properties internal to JCSP Networking are hidderhe Nagle algorithm being
turned off improves performance in cluster computing scenarios, but does not for
scenarios where sendinas muchdata as possiblen a packet ismore efficient.
High priority I/O also causes problemsfor usage of JCSP Networkingdomains
outside cluster computing. WBfering the underlying network stream increases
performance, but the sizedf the buffer cannot be modified to suit individual
purposes. Finally, reliance on serializatibtor communicatiors limits inter-

frameworkinteraction.

Exposingthe underlying mechanisms and attributesould allow modification.
Unfortunately, many of these properties are hidden and cannot be moddfigdide
the source code Numerous scenarioare possible inUbiquitous Computing due to
differing communication, device and ditecture configurations. Thus, the

underlying properties should bexposel to allow modification

A final consideration isextensibiity. In principle,JCSP Networkingan utilise
different communication mechanisms, and functionality can be extended using the
networked channes. However, theexisting architecture requires numerous
resources to allow aetworked channel, and thereforeesource usagdor other
communication scenariosegates scalability. The implementation &socomplex
[135], requiring a level of understanding of the internal mechanisms of JCSP

Networking to allow extensions to be created.

4.7.8 Conclusion

In this chapter, weaknesses have been identifi@ithin JCSHNetworking that
highlights issueswhen consideringa Ubiquitous ©mputing scenario. Manyf
theseproblems can be linked to Java and serialization, although soelated to
implementation decisons within JCSPdWvorking. Therefore, iis necessar to
address these problems and modify JC@&RBwvIrkingto accommodate Ubiquitous
Computing ideas In the following chaptera new implementation of JCSP

Networking is presented whichims to rectify many of the highlighted problems
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Although performance outside object serialization is not considered a major

problem, any improvement of performance is also desirable.



Chapter 5 A New Architecture andseneralProtocol for
JCSP Networking

Chapters 3 and sighlighted limitations of JGP Networking when considering
Ubiquitous ©mputing requirements In this chapter, a description of a new
implementationof JCSP Networking presented andh definition of a protocoto
allow communication between various implementats of distributed
communicating process dritecturesis provided Section5.1 presents the new
architecture, and Sectioh.2 the underlying protocol. Sectioh.3 discusses the
operation of the new implementation, and Sectiém illustrates why it promotes
data independence. Finally, Sectiéb provides a summary of the new JCSP

Networking implementation.

5.1 New Architecture for JCSP Networking

Two architectual views of the new implementatioare presented. The first view
provides a layered examination of JCSP Networking, allowing separatiof
functionality into different layers. The second viewxaminesthe internal
components of thelayers, discusing how they interact together to support the

underlying distributed channel mechanism.

5.1.1 Layered Model

A basic layered view of the architecture is presenteBigure35. It consists ofour

layers:

Application

Event
Link

Communication

Figure35: Basic Layered Architecture
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1 Application Layeg user level processes and applications.

1 Event Layec networked channel ends andleer synchronization primitives.
Interfaces are provided to the application level processesand the
communication functionality of the componengsicapsulate.

1 Link Layer connections to otkr nodes within the system, includimgceive
(RX, transmit (TX, serverand manager processes.

1 Communication Layet the underlying commuication mechanism thaa

JCSP &tworking system is implemented upon.

The original implementation of JCSP Networlalgp has some layered attributes,
but the new implementation places morerestrictions on cross layer
communi@tion. Messages travel up amdbwn the layes as far as necessary, and

this willbe discussed further in Secti®@n3.

The layereddiagramcan be expandedo illustrate how each ler communicates
with others, and how addressingvithin each layer is handled This diagramis

presented inFigure36.

‘ Application g N
\

Channel End Interfaces \ Java Objects

//,
Virtual Numbering ‘ Event g: N
\\

Channel & Link

Connection Channels /;CPA Network Protocol

Node Addressing ‘ Link \\
\

\
Connection Stream | Raw Byte Data
y

/

4

Communication
Specific Addressing

Communication

Communication Specific
Messaging

Figure36: Detailed Layered Architecture
On the leftthe addressing mechanism is giyem the right the message types are
given, and down the centre the intexfes between the layers is given. The

interfaces are:
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1 Channel End Interfaces interfaces defined bythe core, nonnetworked,
JCSP channels witletworked functionalityadded.

1 Channel & Link Connection Chanmglse crossbar allowing multipleink s
to communicate tomultiple channel ends and multiple channel enids
communicate to multipletink s. The crossbar isnplemented using Anf-
One channels in both directions.

9 Connection Stream¢ Link s communicate with the communicatn
mechanism using stream3.hese streams are communicatispecific.

1 Communication Specific Messagirgg the communication mechanist a
specific messagingrotocol (e.g. TCP/IP). This is af ooncern to thenew

implementationor the rest of thigesearch.
Addressing mechanisms betewr each layer are:

1 Virtual Numbering; numberallocated for addressing and lookup purposes.
These ag 4 byte signed integers fan addressing range 62> to 2°-1.

1 Node Addressing each Node isiniquely identifiable to allow intelNode
connections Link management relies on addressing émsure that only
one Link to a remote Node exist. An address takes the form
<Protocol¥\<Address> Protocolidentifies the underlying communication
mechanism(e.g. tcpip)and Addresgs the unique address of the e based
on the addressing mechanism of the communication mechanism.

1 Communication Specific Addressqitpe addressing mechanism enforced by

the communication mechanism, for exampld® Address>:<Port>.

Most interface and addressing concepése inherited from the original JCSP
Networking implementation. Addressing has been modified to allow addresses to
be easily constructe@nd deconstructed into strings to promoiater-framework
interoperability. For examplea NetChannel Location (address of a speaif
channel end) of a channelith virtual number 74on a TCP/IP connected Notikes

the formtcpip\\192.168.1.100:5000/74

Each layeonly understands certain message typeghese are:
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1 Java Objectg the Application Layer of a Java system operates udava
objects. Therefore this is the type of data it will communicate via the
networked channel ends.

1 CPA Network Protocal the responsibility of the Event Layerto convert
outgoing messages intdetwork Protocol messages for communicatioia
the LinkLayer, and conversioof incomingNetwork Protocol messages from
the Link Layeto communicate with the Application LayeiThis protocol will
be discussed further in Secti&n2.

1 Raw Byte Data; data leavinga Node issent asbytes, which aidsother
platforms to interpret the incoming message. In particular protocol

messages argansmitted as primitive data written directly onto the stream.

To avoid a reliance odava objects and serialization, the Application Layer can
operate using whatever data type it understand3he Event Layer convestdata
into raw bytesfor transmission and subsequent reconstruction on recepti®n.do
this, the Event Layautilises data encoders and decodéosperformthe conversion.

This will k& explained further in Sectiortss3and5.4.

5.1.2 High Level Model

The individual components and how they are connected is present&ayimre37,
which closely resemble&igure 1 (page 34) with changes to the implemented

components.

1 LoopbackLink has been removed. This component was unnecessary and
locally connected NetChannelOutput s now send directly to the
correspondingNetChannellnput end. This will be explained further in
Section5.3.

1 NetChannellnputProcess has been removedThe required dinctionality
has been folded into théletChannelinput , and theNetChannellnput
is now as lightweight athe NetChannelOutput

1 IndexManager has been renamed ChannelManager . Each
communication primitive requires its own management component within

the Event Layer, and the renaming reflects this change.



Chapter 5 A New Architecture andseneralProtocol for JCSP Networking 94

1 LinkManager is now a shared data object instead of a pss.
1 The EventProcess has been removed. When theinkManager is
informed ofLink failure, the event is immediately written to the Link Lost

Event Channels. These channels are infinitely buffered to avoid deadlock.

Application Application Application
Process Process Process
: : A
K

Net Channel Net Channel Channel
Input Output Manager
! A ! !

A

iLink R | ’—
3 Y |

L |
@( RX Link TX i Link Manager |- @

,,,,,,,,,,,

( Communication Mechanism O)

Figure37: Hich Level Architectural Model

The key feature of thenew architecture is th reduction inresourceusageby
reducingthe number of processes internal ttfCSP Networkinglhe removal of the
NetChannellnputProcess es ensures thatchannels aremore lightweight,and
other unnecessary processésmve also been removed. Ithough not shown, the
connection service to the Channel NarBerver haalsobeen modified to a shared
passive object instead of a process, althouglinid could have trivially been

accomplished inhe existing architecture

5.2 GeneralProtocol for Communicating Process Architectures

Permitting interframework communication is difficult without well defined
protocols. In this section, a description of the communication protocol for JCSP
Networking is pesented. The primargoal is that messages should p&atform

independent and wsing simple data primitiveselps to achievehis goal
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5.2.1 Protocol Definition

The protocol is basegrimarily on an examination of the original JCSP Networking
implementation, the pony Frameworl{130] and C++CSP Networked29]. By
performing this examination, a great deal of common functionality and messaging
can be deduced. The keghared feature is a virtual channel across a
communicationmechanism Sent nessages have a destination, and permit
synchronisation the mssage must be acknowledged, amrefore messages also
have a source Thughere are two attributes for a basic semdessage. The type of
the message must also be included, providing a message triple. Aliraequ
messagesan be defined witha triple. There is also the optional data segment for

data messages, providing the following message signature:
(<messagedype>, <attribute 1>, <attribute 23<data>)

Each value in thenessage headeis represented bya primitive daa type The

messagédieadersignature is:
(byte, 32 bit signed integer, 32 bit signed integer)

Inclusion of the data segmedepends orkmessage type Amessageaeceiveracts
accordingly to read data from the communication stre@asedon the incoming
message type If the size of the data is sent as a header, then the receiver will know

how many byes to read. Thereforalata has thefollowing signature
(<size>, <bytes>)

or
(32 bit signed integer, [1..size] byjes

A signed integer isised asJavaprovides no unsignedalue types although this
could be changed t@void negatively sizedlata messages.It is not envisioned
howeverthat a data message will be as large 852bytes (2 Gixes) which is
beyond the limits of allocated data sizeShenext standard data size is a b

unsigred integer, and this woulanly provide a maximum message size &
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kilobytes.  Althoughlarger data packets couldbe avoided, they are not

unimaginable.
The basichannelmessage types are:

1 SEND¢ basic sendmessa@e, requiring a source, dstination, and data
segment. (SEND, <destination>, <source>, <data>)

1 ACK- SENDacknowledgementwhich notifies the sender that the message
has been read. Only the destination of the acknowledgement is required.
(ACK, <destinain>, nul)

1 REJECT_CHANNEihen a message is sent toreon-existent or destroyed
channelthe sending channe$ informedwith a REJECT_CHANNEL message.
The term eject is taken from rejectable channels that were dise pass 1/0
exceptions to applcation processes in the originalCSP Networking
implementation. Only a destination is required. (REJECT_CHANNEL,
<destination>, nul

1 POISON, poisoring of channels is a new addition to JCJ3B7], based on
work originally by Welc138] and then Sputh[139]. Poisoning will be
briefly discussed irChapter 8in relation to process mobility.A POISON
message requires a destination and a poison strengtiPOISON,
<destination>, <strength>)

1 LINK _LOS@ when alLink fails, NetChannelOutputs  connected via the
Link to their correspondingNetChannelinputs must be informed.
LINK_LOST messagare sent to eaclNetChannelOutput by the Link .
This message is not channel specific as other components in the Event Layer
will also be informed of this occurrence. LINK LOST messatjealso
never be transmitted beveen Nodes, but by &ink to local components.

No extra information is required within this messadeINK_LOST, null, null

1 ASYNC_SEN[an unacknowledged SEND messagsage of this message
permits the unacknowledged channdlnctionality from the existng JCSP
Networking architecture.Asynchronous messages are used by @annel
Name Server to avoid blocking imservicingname registration orequest.

Therequirement forasynchronous messaging wasawoid deadlockcaused
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by connectionfailure prior to acknowledgement, buthis problem hasiow
been resolvedSection5.3). The ASYNC_SEND message has the same form
as aSEND(ASYNC_SEND, <destination>, <sourmata>

Beyond the networ&d channels, there are other compents within the Event
Layer. These include networkeBarriers  and Connections , but currently not
networked AltingBarriers . For completeness, the required message types are

provided inAppendix E

Theprotocol is not completeand futher work is needed to discovether required
message types. For examptecamuses a claiming technique to control access to
shared channel end440]. JCSP has no such technique, butousth be possible to
enforce on networked channelswithout modifying the channel interfaces
However, claiming of channels may not be a requirement as future versions of
occam may nhot utilise explicit claiming. Alting Barrier  [137] is a further

consideraion for networked systems.

5.2.2 GeneralNature of the Protocol

Theprotocol promotes intesframeworkcoordination due to howthe messages are
defined. Message type is mesented by a single byte providing 255 message
types ¢ and thus a lookup enumeration an be usedon the message typeon
reception. If all frameworkagree on message valuyesachframeworkcan focus on
how the architecture can be implemented. If oect behaviour is emitted by an
implementation (e.g. each SEND must be given an ACK) then individual
implementations are separatedAddressing of individual synchronisation primitives
in the Event Layer utilises 338t signed integers, allowing interpretatioon the
majority of other frameworks There is a&oncernrelated to the usage dbig-endian

or little-endian to represent valuesn a frameworl{129]. Network byte-order (big
endian) should therefore be conformed to Data within a message has been
separatedfrom the headerand thus2 yf &€ O2y @SNRAA2Y 2F Rl Gl

concern. This will be discussed in Sechch
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5.3 Operation

In this section,basic operations of thenew JCSP Networking architectuege

outlined. "he method to capture Link failure and data conversion aralso

covered. First a brief description of the newrtual channel is psented.

5.3.1 Virtual Channel

Thenewimplementation of the virtual channel is futh@nally similar to the original
implementation with NetChannelinput

NetChannel Input .

explicitly. Thereforeh (i A &

object (or otherwise).

Figure 38 illustrates how a virtual channel crossdbe layers of one system to

Process operations folded into the

Thus the reading process performthe read operéion

0KS NBFRAY3I LINROS&aQ

another, the arrow being the virtual chaal.

Applicﬁtion

Event

L{nk

Appliv*ion

Event

Link!

Com

jcation

Figure38: Layered Virtual Channel

Gk an

Figure 39 illustrates how components interact in the new architecture to form a

networked channel.

NetChannellnput

Process removed. Messages betweae components illustrate

Figure 39 is similar to Figure 2 (page 37) with

the data that isbeing communicated, wittHHEEND beingepresented byl in the

protocol and ACK beingepresented by2. Numbers in parenthesis within the

NetChannellnput

use

and NetChannelOutput

are the virtual channel numbeiin
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3.[1,0,0,0,97,0,0,0,45][data]

2. SEND|97|45|[data] 4. SEND|97]45|[data]
1. write(Object) — 5. read()
Application Net Channel Net Channel
Process Output (45, 97)
10. return «—
9. ACK|45|-1

8.[2,0,0,0,45,-1,-1,-1, 1]

\
\

Application
Process

Input (97, 45)

e
I 6. Object

7. ACK|45]-1

Figure39: New Networked Channel
5.3.2 Basic SEND / ACK Operation

Figure 39 illustrates a normal read-write operation in the new architecture A
description ofthe operation within tte existing architecturgvas providedn Section
3.3. Herethe same description is gn for the new implementation of JCSP

Networking disussing the messages being sent between the components.

1. An ApplicationProcess callsvrite  on aNetChannel Output , passing an
Object to send as a parameter

2. TheNetChannel Output constructs a network message, settitige type as
SEND, attribute 1 as the destion value (97) and attribut2 as the source
value (45). TheNetChannel Output then must convert the Object into
bytes This is the only point at which data is copied, and if actual bytes are
sent then no copying may happen at .all On creation of the
Net Channel Output , an encodingfilter was provided to accomplish this,
and ace passed through the filter, an arraf bytes is returned. The
NetChannel Output attachesthis to the network message and sends the
messagdo the Link TX, and awaitsacknowledgenent.

3. ThelLink TXreads in thenetwork message and writes the typ#)(and two
attributes (97 and 45)o the stream The stream of bytes sent therefore
<1,0,Q0,97,0,0,0, 45 TheLink TX examines the type of message, and
asit is SENDhere is adata portion. The.ink TX writes the size of the byte
array to the stream, and then the bytéisat make up the object

4, ¢ KS NB OS A GidkyRHE redo iR & pe and the two attributes
creating a network messadeom them. TheLinkRX procesghen examines
the message type, which is SEND and thus contains data. The size is read

from the streamand used to readthe required number of bytefrom the
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stream. TheLink RXthen retrieves thedestinationchannel end from the
Channel Manager and checks its sta. If the channel is in an OK_INPUT
state the channel connecting to the partnerLink TX is added to the
message, and thmessage sertb the NetChannellnput

5. The Application Processilsread to receive the incoming message.

6. The NetChannel Input reads inthe network message and checks the
message type. As the type is SEND the message is to be delivEned.
NetChannellnput ~ has adecodingfilter to convert a sequence of byse
back into an object, antetrieves the bytes from the messageasses them
through the filter to recreate the sent Objeand returnsthis to the
Application PPocess

7. Duringstep 6, anetwork message is creategiith the type ACK. Attribute 1
IS set toattribute 2 of the incoming message (the original source) and
attribute 2 is not sed and set tel. This message is writtem the channel
contained in the original message; the channel to thiek TX process
connected to the sending Node.

8. TheLink TX process readthe networkmessage and writes the type (@hd
the two attributes (45 ad -1) to the stream The stream of bytes sent i,

0, 0, 0, 45/1,-1, -1, -1>0r <2, 0,0, 0, 45, 255, 255, 255, 25% byte is
considered unsigned. Thénk TX examines the type of the message, and
as the type is ACK there is no data

9. The originalda Sy R A y JLinlb RXReAd3 dn the type and twattributes
creating a network messageom them. TheLink RX then examines the
message type, andsit is atype that contains no data there is no need to
read data from the stream The Link RX retrieves thechannel from the
ChannelManager and checks its state. If the channel is in an OK_OUTPUT
state the netwok message is written to thidetChannel Output .

10.The NetChannel Output reads in the network message and checks the
message type. As the type is ACKuinge operationcompletes normally,

freeing the Application Process.
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The steps provideddescribe the operation undenormal conditions If the
NetChannelOutput is connected locally to aetChannellnput , the same
operations occur although at step 2 the megsais sent directly to the
NetChannellnput object with the acknowledge channel of the

NetChannelOutput  attached for direct acknowledgement

Asthe architecture utilsesl/O there is the possibility that erroneous behaviour can
occur. The following susections illustrate how this is handled in the new

architecture.

5.3.3 SEND / REJECT operation

As stated inChapter 3 the existing method foerroneous message delivery was
implemented by the now deprecated rejectable channel mecéiami It is obviously

still possible that erroneous message delivery can occur due to channel destruction
or 1/O operations.Thereforemessage rejectiois kept, but implemented withithe

Link Layer instead of thBetChannellnput Process . Figure40 illustrates the

component interactions that occur The sequence of operations is:

3.[1,0,0,0,97,0,0,0,45][data]

2. SEND|97]45|[data]
—
1. write(Object)
Application ’ Net Channel /7 i
Output (45) | // 4. REJECT_CHANNEL|45]-1
7. exception
—
6. REJECT_CHANNEL|45|-1

5.[8,0,0,0,45,-1,-1,-1,-1]

Figure40: Reject Channel Operation
As normal operation
As normal operation

As normal operation

R

Initially this operaon occus as before. When théink RX attempts to
retrieve channel 97 from th€hannel Manger, the channé may not exist or
its state may not be OKNPUT. In either case, thénk RX generates a
network message and assigns the type REJECT_CHANNEL (8). Atisibute 1
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set to attribute 2 of the original messag@b) and attribue 2 is not
required. The network message is sent to the partek TX.

5. As normal operatiorstep 8, theLink TX writes the message to theream.
There is no data segment

6. TheLink RXreads inthe type and two attributes. Ade type contains no
data segmentno datais read from the stream. Theink RXthen retrieves
the necessary channel from ti@hannelManager YR OKSOl1a GKS
state. If the channel iISOK_OUTPUT the message is sémt the
NetChannelOutput

7. The NetChannel Output reads in the message and checks the message
type. As the message type is REJECT_CHANNMEdetermined thathe
previous send was rejected. ThetChannel Output changes its state to
BROKEN anemoves itsé from the Channel Manager. An exception is

raised and causethe Application Process tmntinuebut with an exception.

5.3.4 SEND /LINK_LOST

Another form of erroneous behaviouoccurs when the connetion to the Node
where the NetChannel Input resides fails. As stated inChapter 3 this is not
always captured by theoriginal architecture depending on the stagef the
read/write operation. To overcome this, MetChannelOutput  registersitself
with aLink when it is created. AsisetChannelOutput  will only connect to one
NetChannellnput , aLink canretain a set of all connected output channels. If
the connetion to the remote Node is losthe Link can inform allits registered
channels by sending them a LINK_LOST mesdadgk. failure may occur at any
stage and therefore cannot easlhye mapped into operational stepsThere are two

possibilitieshowever.

1 Prior to awrite operation, theLink to the remote Node hosting the
NetChannellnput  fails, causing a LINK _LD#essage to be seto the
NetChannel Output on its acknowledgement channel. Whewite is

called on theNetChannel Output , the acknowledgment channel idirst

O«
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checked for pending messages. AWK LOST will be preserthe
Net Channel Output can behave as if a message wajected.

1 After performing awrite , but prior to receiving the ACK, thénk to the
NetChannel Input fails. TheLink informs all registered channel ends
with a LINK_LOSTessageon their acknowledgement channels The
Net ChannelOutput ~ will read in this mesage, discover it is a LINK_LOST

message and act as if the message was rejected.

By having allNetChannel Output s register with Link s, Link failure can be
transmitted as requiredthus avoiding the deadlock problem describedSaction

4.7.6 NetChannel Input s do not have this requirement as thegnay service
multiple incoming connections.To avoid deadlock, theinkTX remains active to
black hole any outgoing messages. This restriction can be overcome either by
converting theLinkTX into a passive object which throws an exception when

closed, or by poisoning the incoming channel.

5.3.5 Exception Handling

I/O operationscan fail for a number of reasons. Pasdmitures to the Application
Layer is thekey to allowing recovery byserlevel applications. Passirgxceptions
as I/O exceptions is not an optiohowever, as I/O exceptions must be explicitly
caught by an applicatiowithin Java JCSP @&tworkingutilisesthe existingJCSP core
interfacesfor channel endsandthese do not spcify 1/0 exceptions as possible
failures. Terefore an exception has been eated ¢ JCSPNetworkException ¢
which isan uncheckedexceptionand does not have to be expitly caught by an
application, allowing existing processes to operaas if networkedchannel ends
were not in use. If the exception is raised, it will cause the program to terminate if
not explicitly caught, thereby allowing erroneousHaviour to be accommodated
for if required. Any underlying I/@xceptions within the new JCSRtiNorking

architecture are caughtrad JCSPNetworkException ~ thrown appropriately

5.3.6 Channel States

Previous operational descriptions have mentioned channel states to determine how

the Link Layer and Event Layer should behalbese state objects are shared
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between separde processes, andaccess and modificatioms protected using

standardJava monitors. The individual channel states are as follows:

INACTIVE initial channel state. This occurs prior to initialisation
OK_INPUT aNetChannellnput  willing toreceive incoming messages.

OK_OUTPUJaNetChannelOutput  willing tosend outgoing messages.

A =/ =4 =4

DESTROYKhe channel enchas ben destroyed by an Application Laye

process. This is usually performedrecover resources.

1 BROKEWN aNetChannel Output endthat has become broken due to some
form of erroneous behaviour.

1 POISONEBa channel endhat has become poisoned, either by receiving a

POISON message or by an Applicatiayer process invokinmison .

Figure4l illustrates the transibns that occur between states within the channel.
This diagram is important wheverification of the new architecture is presented in

Chapter Gand when channel mobility is presented@mapter 7and Appendix G

POISONED

POISON
or
poison()

POISON
or
poison()

REJECT_CHANNEL
or
LINK_LOST

create() create()

BROKEN

destroy() destroy()

DESTROYED

Figure41: Channel State Transition
The SEND / ACK operation highlighted the usage of filters to encode and decode
objects into bytes for transfer. The usage of these filters provalésvel of data

independence which is discussed in the next section.
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5.4 Data Independence

Responsibility for conversion of datam®w with the componentswithin the Event
Layer. These componentgve filters placedvithin them to handle encoding to
(output) and decodingrom (input) raw bytes. Té default filter within a JCSP
Networking channel usesserialization as the existing architectuidid, except
serialization is performed within memory streams irede of buffered
communication strearm This is regired asLink s no longer interpret object
messages. Differenfilters will allow conversion using othetechniques;the

simplestfilter sending a byte array and performing conversion.

Separating data conversion provides the user wgitmedata indepenénce, which

IS important for cross frameworkommunication. Itwo frameworks agree on a
data transfer mechanism, then intdéramework communication via the
communication protocol becomes possible. There atd problems however.
Brown [129] illustrates the point when considering C++CSP Networkedhat
different platforms may define data structures differently, endianess of bytes being
highlighted as a particular problem. Endianess can be overcome by enforcing the
network standard byte orderbut if other platforms such as pony.20, 130]are

consderedthen somestandards must be enforced.

occamhas ro cyclc data structures as Java, C, ader reference / pointer based
languagesdo. Thusobject graphs cannot be faithfully transferred from a JCSP
Networking system to pony. The solution is simple although it enforces certain
constraints on the Java programmer. If data structures are to be transferred
between platforms in a manner that can be interpreted by all available platforms,
thenthe mostrest© 0 A @S & G NHzOGdzNB 2F RIFGF Ydzad o685
on pony [120, 130] permitted communication ofoccam data structures, thus
providing insight into possible direction$roviding such a mechanism avd is left

for future work.

As data conversion has been abstracted to the point where the Beg#orking
user can implement their own mechanism, then ubiquitous communication

between devices becomes easier. There is no requirement of having Java on the
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target platform, thus opening up the possibilities of communication. Bhe key
feature to permit JCSPevorking to beconsidered asn architecturesuitablefor
Ubiquitous @mputing applications The only hurdle lies in graph based data
structures. Sending such datstructures may be a problem for certain frameworks
anda question ist what point acyclic graph becomes a necessary data structore

sendbetween two remote Nodes

5.5 Summary

In this chapter presentation of the new JCSBtiNorking architecture and protocol

has beerpresented. Architectural diagranamd protocol definition were provided,
andhow separate components communicat&/here necessarngomparisonto the
original JCSP Networkimgchitecture was provided to illustrate improvemis and
differences. Exception handling and channel states were also presented. Finally the

mechanism for providing data independence was described.

An implementation of this architecture and is currently available via the JCSP
repository’. The currentversion is the reference version based on the work
presented in this chapter. The reference implementation also includes
implementations of the channel mobility and code mobility models presented in

previous worl17].

In the following chapter, the new architecture is examined from a penfonce
point of view, repeatingthe experiments performed on theoriginal JCSP
Networking implemetation. A verification of the new model and protocol &so
presented that illustrates that certain propertiegre present in the new

architecture, and thaproblems in theoriginalarchitecture have been overcome

The JCSP reposigois available fronhttp://www.cs.kent.ac.uk/projects/ofaljcsp/



http://www.cs.kent.ac.uk/projects/ofa/jcsp/

Chapter 6 Examining the New Architecture

In this chapter, experimental data is presentdd compare the new JCSP
Networking implementation with the original implementation. Relevant
experimentsconducted inChapter 4are repeated to compare the properties of
interest within the test framework described in Sectidrl. To check error handling
and other possible architectural implementation issues, a model of the new
implementation has ben developed using the SPiNodel checker[141]. A
discussion of the model is presented at the end of this chapt&ection6.1
presents the expected performance for the new implementation before actual
performance is presentkin Sectior6.2. Section6.3 examines object serialization
and Section6.4 presents the overhead of the new implementation of JCSP
Networking. The verification mode presented in SectioB.5, before conclusions

are drawn in Sectiof.6.

6.1 Expected Channel Performance

Section4.4 described interactiondetween each component withinhe original
JCSP Networkingchannel and provided formulae to approximate channel
performance based on known properties. In this section, new formulae are
presented based on the new implementation presentedChapter 5 Thereare

eightoperations withvalues:

1. NetChannelOutput encodeghe sent object message

2. NetChannelOutput writes the message to the Link TX (channel
communication)

3. Link transmitsthe messagdo the remoteLink .

4. RemoteLink sendsreceivedmessage to theNetChanne linput  (channel

communication)
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5. NetChannellnput  decodegshe sent object

6. NetChannellnput writes the acknowledgementmessageto the Link
(channel communication)

7. Link transmitsthe acknowledgement to the origin&link

8. Link sendsthe acknowledgement to theNetChannelOutput  (channel

communication)

The channel has two ends. Both requirdfoamula to determine approximate

communication time. Thedermulaeare:
Oepp = 2 BOIBE + {'Q EHAQ{ "AE" QG Qi (3ND)
Og = 2 gODE + O 'Q"GHAN [ "YEQA Qi SM)
Total communicationtime from outputto input iscalculated as
ODOWBE = Ogpp+ O+ AEIAQIAE QA QIGM + 13 + AGEidQ9)

These formulae includebject (de)seriatation time, but the new implementation
allows raw data communication without serialization. In such circumstances,
(de)serialization timeis omitted.  Asynchronous channel operatiomemove
acknowledgement time of a channel communication per networkkdnnel end,

and the transmission of the 9 byte ACK message.

FromTable3 (page63) it is possible to estimate channel performanaten sending
a nullor single bytevalue These values are presentgdTable7. All values are in

milliseconds.

Table7: New Net Channel Overhead

Gout Gn NetChan
PC Sync | 0.030| 0.031 5.404
PC Async | 0.015| 0.016 0.221
PDA Sync | 0.373]| 0.385 5.404
PDA Asynd 0.193]| 0.205 5.208

From an initial comparisoof expected resultdrom the original JCSP Networking
implementation presented inrable4 (page65) and expected results of the new

implementation presented ifable7, expectedcommunication timehas decreased



Chapter 6 Examining the New Architecture 109

by approximately 9 ms for a synchronised channel. Asynchronous channels on the
PCshouldperform a send impproximately 0.22 ms and on the PDA performance is
expected to be approximatel 5.208 ms. The significant decrease for the PC
asynchronous channeis dueto the PDA not performing deserialziation on the

incoming channel message header.

6.2 New JCSP Networking Performance

To analyse the new implementation, the ping, bandwidth and rdrpd
experiments are repeated using large data packetRaw byte data can be sent
directly on a channel with no conversiaihus experimental data representinthis
scenario is also presented. Unlike the experiments conducted on the original JCSP
Networking implementation,Links are only given normal priority within the test

framework.

6.2.1 Simple Ping

Figure42 presents results for a pingenchmarkusing the new JCSRetworking
channel implementation. Original JCSP Networking andaDBtreamresults are
provided for comparison. Expectedsults are generated with the nenNetChan
formulae. Tmes presented are the average time in milliseconds to perform the

ping operation.

m PC mPDA mExpected mOriginal m Object Streams

40
35
30
25
20 -
15
10 +

Time ms

PC to PDA Syn PDAto PC Syn PC to PDA Asyn PDA to PC Asyn

Figure42: Simple Ping New Netw# Channel

Figure 42 indicates an increase in performance for small data packets. For

synchronous channels, both the PDA and PC results show an apatexl5 ms
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improvement There is an approximate 10 ms variance frerpected results.
However, #@king into account netwd latency subtracts3 ms from this figure,
providing an approximate latency of 7 ms for retwork channelroundtrip
operation or 3.5 ms for a send operatiorfhere is an approximate 14 manance

between Synand Object Stream results

Async results aréavourable, actual results beirapproximately 3 ms greater than
expected. Taking into accounmbundtrip latency of the network at 1.5 ms, the
latency for Async roundtrip can be approximated at 1.5 n@bjectStream results
perform approximately2 ms better than asynchronous channelgnder these

conditions.

6.2.2 Bandwidth

Bandwidth experiments consist of single byteessage and large data sizes. For
the former, only null value objects are sent via a netkamt chanel using
serialization, andor the latter, both serializatio and raw data results are provided

As serialization takes place within the channel, a memory bufartilised to
serialize the object into. The bufferaocated8192 bytes, the same fffier size as

the Link streamin the new and existing JCSP Networking implementati&@ach
NetChannelOutput is given its own buffer. As the size of the data to be serialized
is greater than 8192 bytewithin these experimentsthe buffer is doubled as
required by Java At the next serialization operation the buffer is reset to 8192
bytes. Increasing the buffein this mannemwill have an effect on performance, but

it is necessary for large data objects. Giving each channel a large buffer will
constrainresources and is therefore not a suitable option. The other approach is to
use asingle large shared bufferThis could require guarded access whiclowd

also reduce performance, although is a possible area of investigation in the future.

Figure43 presents results for sending null objects via the new JCSP Networking
channel. The rginal network channednd Object Stream results are provided for
comparison Expected values are calculated using the ndl@tChanformulae.
Values arethe average time in milliseconds to perform a singlend or receive

operation
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Figure43: New Network Channel Send and Receive Benchmark

Figure43 illustrates that the time taken to send a null sgage using the new JCSP
Networking implementation is approximately half the time taken within the original
implementation. Synchronous channels perform approximately 2 ms slower than
expected, but taking into account the roundtrip latency of 1.5 ms therean
approximate 0.5 ms difference. Discounting PC Object Stream results due to the
low value, PDA Object Streams are 3 ms faster at sending a simple packet than a

new networked channel. Roundtrip network latency reduces this value to 1.5 ms.

Asynchromus channels for PC DA indicatehat the high priorityLink problem

has been overcomeThe PC and PDA both register low timéng PC being 0.01 ms
lower than expected. Comparindhis value to the original JCSRetiNorking
implementation where high pority Links flooded the PDA, the P&ttuallygains
performance asthe PDA is able to service incoming messagequickly.
(De)serialization of the message headers in the original implementation will also be
a contributing factor to the lower fige however PDA Async resulshow an
improvement of approximately 4 ms, and arapproximately 1.5 ms slower than

Object Streams.

For actual bandwidth of the new networked channel, large data packets are sent
with and without serialization. Both synchronous andyashronous channels are
examined, and expected results are provided. The performance of tigenal

implementation of JCSP elvorking and Object Streamsare provided for
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comparison. Figure44 presentsPDAsynchronous channel salts andFigure45

presents PDAsynchronous channel results.
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Figure44: PDA New Synchronous Channel Bandwidth

For synchronous channels there is an initial approximate 50 bytes/ms performance

improvemern with the new implementation. Performance does converge over time

however. Throughput within the new implementation is approximately 2 bytes/ms

better than the original at the largest packet sizes, which can probably be attributed

to the removal of theobject message header. Object Streams have approximately 4

bytes/ms better throughput when compared to the new synchronous channel

results.
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Figure45: PDA New Asynchronous Channel Bandwidth
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Asynchronous channels show improved rigemance before bandwith values
converge. e new implementationdoes showimproved peformance for larger
packets, and tis will be due to the reduction ofink priority. Under these
conditions, no memory exception occurs due to large packet sizegdifig the PDA,
and thus results continue to the maximum data size, unlike the original
implementation. At large packet sizes, performance is approximately 20 byses/
better than expected. Ais will be due to the.ink performingthe actuall/O when

the gpplication process has finishedhis is also wh{bject Streams show poorer

performance than the newmplementation.

Results for sending the dataithout serializatiorare provided imMppendix D There
is little performancedifference between the serializednd raw data results.
Asynchronous channels performpproximately 8bytes/ms faster for large data
sizes, buthis willlargelybe due to the buffering problem described at the start of

this section.

Results folPC synclumous channels are presented kigure46 and asynchronos
channelsin Figure47. Object Stream resultare provided for datasizes greater
than 3000 bytes due to the large bandwidth value that snpaitket sizes provide.
For asynchronous channelall presentedresults ae for data sizes greater than
3,000 bytes due tdarge bandwidth values. As serialized and 3enalizedvalues

are similarthe latter are providedn Appendix D
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Figure46: PC New Synchronous Channel Bandwidth
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For synchronous channels on the PC there is a performance improvement for all
data sizeexcept for avalley at 800,000 bytesThe new implementation provides

an approxmate 35 bytes/ms improvement, reaching 310 bytes/ms. Thi%0is
bytes/ms lower than expected, which is similar to PDA throughput variance
between actual and expected results for synchronous channels. The improvement
in performance can be attributed to hPDA nohavingto deserialize the incoming

message header.
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Figure47: PC New Asynchronous Channel Bandwidth
Asynchronous results show an initial improvement within the new implementation
in compariso to the original. Resultsonverge before the original results end due
to the menory exception on the PDA. synchronous results show a 35 bytes/ms
improvement over the expeed results, but this wilbe due to theLink performing

I/O whenthe application proceskas completed

6.2.3 Latency

From the ping and send experimental resyfsgure42 and Figure43 ¢ pages109

and 111), latency can be estimated for nullmessages witin the new
implementation. Theestimated atencyis 10 ms for a roundtrip operation when
compared to expected results, and 5 ms when actual ping time is compared to
actual send time. Halving these values gives an approximate latency of 5 ms and 2.5

ms repectivelywithin the new implementation of JCSP Networking
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Forcloser analysis, large data packets are sent via synchronous and asynchronous
channels with and without serialization. The serialization scenario utilises an 8192
byte buffer within the chanel. Expectedind original JCSP Networkiresultsare
provided for comparison. As thaluesrecordedfor both PC to PDA and PRAPC

are similar only PDA to Pf@sults are presentedTheother results areavailable in

Appendix D

Figure48 providesresults for a roundtrip operatiofrom the PDA to the PQver the
various data sizes, usirsgrializing synchronised channelBigure49 presents the
resultsserializingasyn&ironous channels. Expected timase generated using the
NetCharformula. Original and Object Stream resudte also provided The values

presented are the average time to perform a single operation in milliseconds.
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Figure48: PDA Synchronous Serialization Channel Roundtrip
For synchronous channels, performance within the new implementation is initially
better than the old implementation but poorer than Expected and Object Stream
results. For larger packet sizes, the origingblementation performs better than
the new implementation when using serialization within the channels. The new
implementation is approximately 150 ms slower than expected, and approximately

70 ms slower than the original implementation.
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Figure49: PDA Asynchronous Serialization Channel Roundtrip

Asynchronous channels perforsimilar to the original implementation an@bject

Sreams. Performance is approximatey 150 ms slower than expected.
Asynchronousnd synchronous roundp times arenow within a few milliseconds
variance for large packet sizesinlike the original implementation where

asynchronous performance deteriorated over time.

To determine the effect dbuffer resizing, theexperiment isepeatedwith the data
sernt with no serialization Figure50 preserts the synchronous results forRDAto
PCroundtrip and Figure51 presents the aynchronous results for a PDA to PC
roundtrip. Expected times are adjusted to mve the serialization time and the

extra data overhead incurred by the byte array class description.

Aside from the peak at data size 2,000, synchronous channels with no serialization
perform similarly to serializing channels. There is slight improvemosvards large

packet sizes. Actual results are approximately 120 ms greater than expected at the
largest packet size. There is an approximate 40 ms variance in performance from

the original implementation at this packet size.

For asynchronous resultshé new implementation performs better than the
original implementation over all packet sizes. For the largest packet size, the new
implementation performs approximately 70 ms better. Compared to expected

results, the new implementation is 85 ms slower latge packet sizes. The
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performance of the new asynchronous channel is similar to the performance of the

original synchronous channel under these conditions.
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Figure50: PDA Synchronous Raw Channel Roundtrip
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Figure51: PDA Asynchronous Raw Channel Roundtrip

A possiblecause of the performance reduction is the lower priority 1/0. As an
example,Figure52 presents the results recorded on the PDA when the PC sends
data to the PDAnN a roundtrip asynchronousperation without seialization. For

the new JCSP daWvorking implementation, there is an approximate 300 ms
performance improvement for the largest packet size. From the tdltth results

for the new JCSPdWvorking implemendation (Figure44 and Figure46 ¢ pagesll12

and 113), there is an observed increase in throughputower priority /O does

mean |/Ois not servced as quicklyn the new implementation compared tthe
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original mplementation and terefore reducing 1/O priority may have increased
latency. Rducing I/O priority des permit the applicatiomo handle incoming and
outgoing messages, overcoming theplem of a fast device flooding a slower one.
Thus, exposing theLink priority as a property in the new JCSRtMorking

implementation permitanore ubiquitous usage of JCS&Working within different

scenarios.
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Figure52: PDA Rceiving Asynchronous Raw Channel Roundtrip

To examine the assumption that lower Link priority is effecting latebiok, s are
given maximum priority and the neserializing synchronous roundtrip experiment
repeated. Figure53 presents these results. Here, high priority 1/O results are the
same as normal priority 1/0. Therefore high priority does not account for the
differing performance. A further possible explanation is the removal of the
NetChannellnputProcess , Which servied input messages prior to actual

reading by the application process. This could possibly lead to faster performance.
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Figure53: High Priority vs. Normal Priority Link
6.3 Test Object Messages

Fromexperimental data presented in Sem 4.5.2 transmission time of the various
test objectswas shown to béound byPDAserializationperformance exceptiuring
asynchronous sending by theC to the PDA. The new implementation should
likewise beserializationbound, although improvemenshouldbe evidentbecause

of the removal of the object channel message header. In this sectimntest
object experiments are repeated within the new implementation, with oriferad
expected results provided forcomparison. Only TestObject4  results are
presented within this section as these providmough insight into performance.

Other resultsare available inAppendix D

6.3.1 Sending

Figure 54 presentsresults for the PCsending TestObject4  to the PDA via
synchronous and asynchronous communication within the new implementation of
JCSP Networking. Original Sync and Asyndsesel also provided, as aexpected
Sync and the underlying Object Streams. The values prabente the average
times taken to perform a single send operation in millisecond$he »axis
represents the size of the sent object in byteAny significant peaks have been

removed to allow better analysis, with actual results being providepipendix D
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Figure54: PC Sending TestObject4 via New Networked Channel

For Sync channelin the new JCSP Networking implementation there is a
performance increase in comparison to the original implementation At
TestObject4d 190 this improvement is approximately 50 ms. Considering the
deserialization time on the PDA for the object message header (approximately 16.5
ms) and the serialization time for the acknowledgement (approximately 10.5 ms)
there is an appoximate 23 ms variance between the original implementation and
new implemantation results. Performancef the new implementation apears to
level slightly at size greater th&®. TestObject4 o5 has a peak in the new results,
soTestObjectd go4is comparedetween the new JCSP Networking implementation
and the originhimplementation. Tere is an approximate 30 ms variance between
the two resultsat TestObject4 o4, Which i3 ms greater than the overhead

removed due to (de)serialization of message headers.

New Async results do not show the same jump in time taken as the Original Async
results. There is a slight increase in the time taken to perform an operatilamge
object sizes, but the nenbject message header and lower prioritink seems to

have renoved this overhead. Asynchronous channalso perform better than
Object Streams, thoughis will be due to theLinkT X process performing the 1/0O

thus reducing application I/O time.

Figureb5 presents the results for the PDAmsBng TestObject4  to the PC utilising

the new implementatiorof JCSP Networking. Due to similarities betw8gncand
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Async results within the PDdnly the Sync results are presented here. No peaks

have been removed from these results.
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Figure55: PDA Sending TestObject4 via New Networked Channel
As expected, the new implementation shows similar performance to the original
implementation for sendingTestObject4 . There is an improvement in
performance for large sized objects, athis will be partially due to the removal of
the object message header in the original implementation. Performance of the new
channels is only slightly poorer than Object Streams for larger sizes, and would
appear to increase more or less in unison wiita Object Streams. This is unlike the
original implementation where the performance difference between the two results

appears to widen.

From Figure54 and Figure55 it is possible to estimate throughpwf the PC and
PDA when performingomplex serialization using the new networked channel. For
the PC this figure is approximately.5 bytes/ms and for the PDA approximately
19.5 bytes/ms.

6.3.2 Roundtrip

Figure56 presents synchronairoundtrip results from PC to PDA fiarstObject4
within the new JCSP Networking implementatiofixpected, Original Sync and

Object Stream results are also provided for comparison. PDA to PC results are
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similar, and Async resulghow only slight improament. Thus these results are

provided inAppendix D
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Figure56: PC to PDA TestObject4 Synchronous Roundtrip via New Networked Channel
For the new implementation, there is some improvement in congmarito the
original implementation. This is due to the removal of the object message header.
Results are better than expected, but this does not hold for all test object types and
is related to the different serialization performance between the objeciBhe
roundtrip operation forTestObject4 in the new implementation is 60 ms slower

at TestObject 4;i00than when performed via an object stream.

6.4 Overhead of the New Implementation

It has been shown that the reduction link priority has reduced the chanaoaf
potential flooding on a resource constrained device. To analyse the reduction in
performance overhead that lowering the priority has caused, the CommsTime with
roundtrip data experiment is repeated. The lower priority I/O should enable the
PDA to recal generally lower CommsTime values, while thendtrip time should
increase. Figure57 presents the Comsilime results for the PD&hen performing
roundtrip operations of large data sizedgth serializing channels. Verticlhes
indicate when a time is recorded for one of the data sizes. Gaps in the blue
CommsTime line indicate when no CommsTime value was recorded between the

packet sizes.
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ComparingFigure57 againstFigure33 (page82), the maximum CommsTime value
recorded has been reduced from approximatéy ms to 55 ms. This valigestill a
significant increase in thEommsTime figure ioomparison to the approximate 68
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Figure58 presents the recorded roundtrip time on the PDA for large data packets
while performing CommsTimeThere is little variancketween the times recorded
with CommsTime and without, excepbowards the larger packet sizes. Here,
performance varies, with the roundtrip time With CommsTime sometimes
performing better, and likewise Without CommsTime. The variance between the

two result sets can reach approximately 180 ms.
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Figure58: New Networked Channel Roundtrip with CommsTime
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It can be judged that the overhead when implementing lower priority 1/O has been
reduced, but can still be considered as significant. /O does not appear to suffer
due to lower priority. Thee may be some effect from the removal of the
(de)serialization of the message header from the original JCSP Networking
implementation, as on the PDA this has been shown to be a slow operation and

thus takes some CPU time.

6.5 Verifying the Protocol and Archécture

One of the problems highlighted in the original JO®&RBvorkingarchitecture was
poor error handling. NetChannelOutputs  can fail due toLink failure whenthe

subsequent exceptions not passed to the application levelln the new JCSP
Networking implementation, NetChannelOutputs are registered with the
relevant outgoingd.ink . If the connection fails, theink iterates through the list of

registered channels and sigsalach in turn

To determine whether registering with theink is enough to avoidhe output
channel hanginga model of the new architecture and protodas been developed
with the SPINModel Checkef141]. The development of the model also allows
general verificabn of the achitectureto check that it is deadlock freas well as

examination ofproperties that are of interest.

6.5.1 SPIN

SPIN (Simple Promela INterpreter) is a model checker that allows examination of
properties within a derived model by thoroughly checking the estgpace of the
model. SPIN can verify a number of correctness requirements by usage of
assertions, checking for deadlock, fairness and liveness of the defined model. The
underlying language used to build a SPIN model is Promela (PROcess MEta
LAnguage), hich has similar semantics to CSP (e.g. channels, processes, choice).
SPINs similar enough that is possible to almost directly compose a JCSP application

into a SPIN model for verification.

To verify a model, SPIN converts the Promela code into C eddeh is then

compiled into an application. The application attempts to verify the model by
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creating the entire possible state space of the model, thus visiting every possible
state that the model can be in. If at any point it is impossible for the egpdin to
move to another state and the model is not in a correct end state, then verification
fails. This is a basic deadlock check, and other propeartiesechecled from the

built state model.

Normally, CSP based architectures are verified usingFDR tool[142], which
allows verification of anodel based on properties such asadllock and livelock,
and alsoprovidesrefinement checking. Refinement checking allows comparison of
a modé agains expected behaviour.CSP does natt present incorporateehannel
mobility however, and neitherdoes FDR.Although it is possible to circumvent
channel mobility directly by passing values that represent a chgdidgl, it is not

strictly channel mobility.

SPINdoes permit channel mobility by passing channels aarpaters in a message.
The SPINhannel is similar to @hannel in CSP, although SPpérmits guarded
operations onshared channel ends. SAICSP does not allow these operations, they
are not used within the new JCSRetiNorking implementation. Thus the SPIN

model of the architecture does not utilise such operatieitber.

The full SPIMnodel of the verified architecture is provided Appendix F Here, a
high level description is provided. The model represents only the channel
operations and architecture within the new implementation. Fasdescription of

the protocolmessagess provided.

6.5.2 Protocol Definition

SPINuses themtype keyword to define message types. From the discussion
presented in Sectiorb.2, six message types within the protocol amdevant to
channels. fie ASYNC_SEND operation cannot be modelled as it can occur at any
point during execution and requiresonsynchronisation between communicating
components. This would increase the state space of the model beyond the
capabilities of the model hecker. An argument on its verification shall be

presented at the end of this section.
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Discouning the ASYNC_SEND messaggpe is definedas follows:

mtype = {SEND, ACK, REJECT_CHANNEL, POISON, LINK_LOST};

6.5.3 Channel

A networked channel has a number @quired definitions: the possible channel
states, the data structure representing a channel, and the processes that represent

NetChannellnput  andNetChannelOutput

6.5.3.1Channel States

Figure4l (pagel04) presented the possible states and state transitions of the new
networked channel. These states are given constant values and added to the

model.

6.5.3.2Channel Data Structure

Each channel is provided tivia data structure that containghe Virtual Channel
Number, the state and the channel that thienk usesto communicate withthe

channel object. This is defined as follows:

typedef CHANNEL_DATA
{

byte vcn;
byte state = INACTIVE;
chan toChannel;

}

6.5.3.3Channel Process

SPINuses processes to rement componats, thus a networked channel must be
represented by a process. The process is givébBHANNEL DATstructure to
represent the channel, and an interface of channels that represent the possible
method calls that can be made on the channel. There are tianmel types,
NetChannellnput and NetChannelOutput . Figure 59 presents the

NetChannelOutput  process.
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poison toLinkTx
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destroy NetChannelOutput ackChannel
N e
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- |

Figure59: NetChannelOutput Process
On the left of Figure 59 the interface channels are provided. Each channel
represerts the calling of a method oNetChannelOutput , exceptcallReturn

which is reado simulate the end of a method call on the process.

On the right ofFigure59 are the chanels connecting the channerocess to the
Link process toLinkTx is a fixed channahat connects to theLinkTx where the
input end of the virtual channel is connectedckChannel is the channel coming

from theLink , and is the channel defed in the CHANNEL_DATA type.

Figure60 presents theNetChannellnput ~ process. The method interface is on the
left, and includes extended rendezvoaisd poisonoperations which were added to
JCSP in version 1[137], and thus reguire addition to the new JCSRetMorking

implementation. Focompleteness theseperations are added to the SPihbdel.

The NetChannellnput ~ process has only one connection to thimk processes,
the fromLink channel. This channel is the same as declared in the
CHANNEL_DATA type. Whehirk sends theNetChannellnp ut a message, it
also sends the channel to send the response back toLihke . This is where

channel mobility is required.
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Figure60: NetChannellnput Process
6.5.4 Link Processes

Link contains two processesiinkTx and LinkRx . LinkTx receives messages
from the channel processes and sends them to the remoté&Rx . Figure6l

represents theLinkTx process

input txStream
— LinkTx —

Figure6l: LinkTx Proces

input receives messages from the channel processgStream represents the

connection to the remote.inkRx process.

LinkRx receives messages from a remadtimkTx and sends them to the correct

channel. It is represented ifrigure62.

rxStream toLinkTx
e LinkRx ——

Figure62: LinkRx Process

rxStream represents the incoming stream from the rematékTx . toLinkTx
connects to the complemeritinkTx , and is used to send messages directly to the
LinkTx and t attach to incoming messages to allow a subsequent

acknowledgement to beent directly to theLinkTx .
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A Link represents a connection to another node, and is composed bihlarx

and aLinkRx . Figure63represents theLink proces.

toNetwork

toLinkTx >
- Link fromNetwork
e

Figure63: Link Process

6.5.5 Application Processes

There are two typesof application processan outputting application and an
inputting application These processes operate on the complement endrfiate
channels that connect to &letChannelinput or NetChannelOutput . The
application process chooses ndeterministically to write to one of the method call
channels and then reads from theallReturn channel, thus waiting for the
operationto complete. callReturn  returns either O or 1 to represent either an
EXCEPTION or an OK return message. |If an EXCEPTION is, rétameie

application procesgerminates.

Full details of these processes are availabl@ppendix Fand are namedSender

for an outputting application an&eceiver for an inputting application.

6.5.6 Node

Within the model, two noddypes are definedinputNode and OutputNode . An
InputNode starts a number of Receiver processes with relevant
NetChannellnput  processes. AnOutputN ode starts a number ofSender

processes and relevarfetChannelOutput  processes. Figure 64 presents the
InputNode  process. The connection between thénk process(es) and the

NetChannellnput  process(es) is showalthough this is dynamic

InputNode

Link NetChannellnput Receiver

A
A
AAAAA

Figure64: InputNode Process
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Figure65illustrates theOutputNode process. In this circumstance, the connection

between theNetChannelOutput  andLink is static.

OutputNode

\ 4

Sender > NetChannelOutput Link

Figure65: OutputNode Process

For both Nodes, thetoNetwork and fromNetwork channels represent the
txStream andrxStream across the network connecting the two remote Nodes. A

processs also added that allows simulation of the network connection itself.

6.5.7 Network Process

To simulate network failure, a simple process to represent the network is added to
the model. The process nafeterministically chooseso either send a message
from the OutputNode to the InputNode , from the InputNode to the
OutputNode , or fail and break the connection. In the later casd, K _LOST
signal is sent to the two correspondingnkRx processesand a flag iset which

the LinkTx processes check to determiné they should fail. Within theJCSP
Networking implementation, the latter occurrence is detected when thiakT X
process tries to write to a closed stream. The setting of a flag achieves the same

outcome.

Figure66 presents tle overallSPINmodeldeveloped for JCSRetworking The two

nodes are connected via thdetwork process.

OutputNode Network InputNode

Figure66: Simple JCSP Networking Model

6.5.8 Global Values

There are a number of global values withie model, and these are summarised

below:
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=

NUMBER_INPUTShe total number ofinput channelswithin the model.

7 NUMBER_OUTPUT $e number of output channels connected to a single
input channel

1 TOTAL OUTPUTSE the total number of output channels ¢
NUMBEROUTPUTS * NUMBER_INPUTS

1 BUFFER_SIZEhe size of the buffer tdhe channel processes. This is used
to simulate the infinite buffer within the actual application. For the
application to operate, BUFRESIZE should equal NUMBER_OUT.PURIS
value is maipulated to verify this assumption

1 CHANNEL_ARRAM type declaration for the array of channel ends on a
particular node¢ CHANMEL_ DATA channels[TOTAL_OUTPUSBINdoes
not permit arrayso be passed as parameters into processes, therefore this
must be declared globally. For channels above NUMBER_INPUTS on the
InputNode , the channel state is set to INACTIVE.

1 chans ¢ all the channels within the model. As CHANNEL_ ARRAY cannot be
passed as a parameter to an individual process, this is declared glgbally
CHANNEL_ARR#hans|2.

1 linkLost ¢ the flag used to indicatéink failure. This is initially set to

false

6.5.9 Basic Verification

Simple verification can be carried on a model comprisiofy a single
NetChannelOutput ~ connected to aNetChannellnput  with BUFFE_SIZE = 1.
This is the default assumption that for every connected output channel end to an
input channel end, there is required a single place in the buffer to avoid deadlock.
When pased through SPINhe model isverified with no deadlockerrors. Ths is
enough to reasonably assume that having tlikek processes inform the relevant
output channels of connection failure overcomes the deakil@roblem in the

original JCSPdiworking implementation.

The model also allows some indication of othgnoblems in the original JCSP

Networking implementation. In the new implementation, tHeénkR X process
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retrieves a channel from th€hannelManager and locks thestate object of the
channel before cheking said state. ThereblyinkR Xis the only process actingho

the channel state at any one time. This allows various behaviours to occur based on
the state of the channel object. This feature was added to the new implementation
when the model originally pointed out deadlock due to this occurrence not being
takeninto consideration. As the channel object can change state based on certain
calls (poison, destroy), this would have caused inconsistent behaviour within the

implementation.

The original implementation usatb such state variable, ariddnkRx would send a
message to a channel object based purely on availability within the
IndexManager . ThelndexManager would only return the connecting output
channel end connected to the networked channel object. When a channel object
was destroyed, it was removed from tHedexManager prior to any clean up
operations (rejection of pending messages). Therefore, a channel either existed
within the IndexManager or it did not. There were no other possible states as no
common protected state value was exposed. This meant thach of the
behaviour required for more advanced functionality (poison, mobility, barriers) was
not possible as there was no method to expose these states without
reimplementation of theunderlying mechanisms of JCS&wobrking. As the new

implementatin exposes these properties, this problem has been overcome.

6.5.10 Advanced Verification

The simple verified model does not allow analysis of the common assumption of
JCSMetworking that the channel connected to thgetChannellnput  requires

exactly one buffer space for each connectedNetChannelOutput . With
manipulation of the BUFFER_SIZE value, this can be analysed to provide a stronger
insight into this assumption.Table8 presents results from different verification
scenarios. To able verification of he model, the option within SPIk use

minimal automata to search is activated.
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Table8: SPINVerification Results

NUMBER_OUTPUT 1 2 3 4

BUFFER_SIZE

0 FAIL FAIL| FAIL| FAIL

1 3.06x10 states FAIL| FAIL| FAIL
351 depth

2 2.78x10 states| 3.71x10 states| FAIL| FAIL
351 depth 3264 depth

3 2.78x10 states| 3.71x10 states| PASS*| FAIL
351 depth 3264 depth

4 2.78x10 states| 3.71x10 states| PASSY PASSH
351 depth 3264 depth

Table 8 illustrates that aNetChannellnput ~ requires one buffer space for each
connected NetChannelOutput ~ for connected NetChannelOutputs less than

four. The number of states does not increase when the buffer size is increased
beyond the required buffer size, excepthan a singleNetChannelOutput  to
NetChannellnput ~ has the buffer increased from 1 to 2, although search depth
does not increase. The reason for the reduction in state space could be the usage
of the minimal atomata search option within SPINor that the
NetChannelOutput requires less state space in conjunction with thenk
processes at BUFFER_SIZE = 2Ndt@dannelOutput  also utilises the same size
buffer as theNetChannellnput  in the model, and this could have an effect in

total required states.

6.6 Summay

The performance experiments performed on the original implementation of JCSP
Networking have been repeated on the new implementation of JCSP Networking.
Analysing the results from the new implementation, and the description of the new
architecture presnted withinChapter 5 against the original implementation within
the context of the problems highlighted in Sectidrv, a number of observations

can be made. These are summarised in the follgvembsections.

® Results marked with a * are gathered using the bit state compression technique due to the state
space size. Thus, these results deemed as approximations.
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6.6.1 Interoperability

JCSP Networking no longer relies on Java serialization, although it can utilise this
functionality for convenience when necessary. As channels now have the
responsibility of converting data using a specific encoder/decaalgplications can

be tailored to their context. By implementing this mechanism, it is now possible to
implement a reduced version of JCSP Networking on reduced versions of Java. The

lack of serialization capabilities is no longer a factor for basic cornuation.

Removing the object message header allows interoperability beyond Java.
Communication is implemented on a base protocol which can be interpreted by
numerous frameworks. Data transfer is a problem due to the different approaches
taken to represat data in different frameworks, buthie abstraction of encoding
and decoding into a user customizable manner permits mechanisms to be
developed to allow inteframework communiation of data ifwell defined data

conversion is created.

For Ubiquitous Comging interoperability is important, and JCSP Networking now
exhibits a level of interoperability which enables usage within various versions of
Java and, if the same communication protocol is utilised, within different

frameworks.

6.6.2 Performance

The performage of the new implementation in comparison to the original
implementation shows slight improvement, but this can largely be attributed to the
removal of the object based message header in the original implementation. PC
networked channel bandwidth has irased from 275 bytes/ms to 310 bytes/ms,

10 bytes/ms lower than the optimum 320 bytes/ms throughput of the network.
The PDA shows only a 2 bytes/ms improvement, which is considered insignificant.

Therefore, no adverse loss in performance is observédemew implementation.

As expected, for complex object serialization there is still a significant drop in
performance. The removal of thebject message header has improved

performance, but not significantly.
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Latency has been reduced, and specificalimpée message transfer time is
approximately half of the original implementation within the test framework. For a
ping experiment, there has been a further reduction from approximately 36 ms to
approximately 20.5 ms for synchronous message passing. Koichaenous
messaging, the figure is approximately 8.25 ms. Object Streams record a ping time
of approximately 6.75 ms, thus asynchronous chanmelge a 1.5 ms overhead
Original channels had an approximate 10 ms overhead. Latency for larger data
packes has increased however, and is likely due to the removal of the
NetChannellnputProcess . The increase of 70 ms for a roundtrip of 1 million

bytes is not a significant increase in latency however.

Asynchronous channels perform uniformly better than synaoxgs channels within

the new implementation, which is unlike the original implementation of JCSP
Networking. The increase in performance is only slight, and as 1/O priority has been
reduced within the new experiments this allows the application to serVtoeand

thus not inflict problems due to buffering. Asynchronous channels now ertabl

high latency to be overcome, if the priority of the 1/O is suitably set. As priority has

been exposed to the JCSP Networking user, this problem has been overcome.

Lower priority 1/0O has not affectedperformance observably although there is
variance when running other operations with I/O. Considering serialization as a
CPU intensive operation, particularly on the PDA, reducing I/O priority enables
improvement for oher computation at the expense of I/O but not at the exge of
(de)serialization. fe (de)serialization process is performed by the application
process engaging in the I/Gnd as this functionality has been folded into the
passive NetChannellnput object, (de)serialization timedepends on the
application process performing the (de)serializationrhus, (de)serialization is

prioritised based on the priority of the application process.

As there were no adverse performance problems within the original
implementation of JCSP Networking when considering Ubiquitous Computing,

besides low serialization performance on the PDA, then the new implementation
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can likewise be argued that the new implementation has no adverse performance

problems when considering Ubiqaits Computing.

6.6.3 Resource Usage

Process usage in the new implementation of JCSP Networking has been reduced,
specifically by removing thigetChannellnputProcess and various management
processes within the original architecture. No temporary processes asgett for
handshaking, and therefore the only process increases come from application
processes and intelode connections requiringink processes. The latter is still a
problem, and can be overcome by using polling statements on incoming
connections, witch has been shown to further improve performandet4]. This
feature is not available ineduced Java versions, therefore cannot be implemented

as a solution for resource constrained devices in all occurrences. However, as
stated, it may be that small devices exhibit only a single incoming connection from

another device, andlink processes arao longer a factor.

JCSP Networking no longer relies on a JVM capable of object serialization, and thus
an initial problem of requiring a resource heavy JVM has been reduced. However,
JCSP Networking is still implemented within Java, and as arguednaswvaot be
available within all devices. The introduction of a communication protocol which
does not require Java serialization enables native applications to communicate with
a JCSP Networking system utilising the same communication methods, but data
enading would still need to be agreed upon. Reliance on Java is therefore reduced,

which is more practical for Ubiquitous Computing on a larger scale.

6.6.4 System Overhead

As the new implementation of JCSP Networking does not have fixed, high priority
I/O, interse I/O operations do not impose as large an overhead when other
computation is occurring. As the priority of the I/O is now flexible, higher priority
I/O can be enabled for high computation to low communication scenarios, whereas
lower priority I/O can beutilised in high communication to low computation

scenarios. This reduces the risk of smaller devices being flooded, and enables a
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more ubiquitous use of JCSP Networking beyond the cluster computing scenarios

originally designed for.

Overheads associateavith the object message header have been removed.
Message headers are now relatively small, being at most 13 bytes in size, reduced

from 249 bytes.

6.6.5 Scalability

As resource usage and system overhead has been reduced within the new
implementation of JCSPelNvorking, it can be argued that scalability has likewise
improved. There may still be scalability issues when considering multiple incoming
connections into a single Node, although it may be possible to reduce this
overhead. JCSP Networking is now marétable for Ubiquitous Computing
architectures, but not necessarily ideal. Java is still considered a problem, although
the introduction of a protocol means that Java is not necessary on every device. As
argued, applications with thousands of mobile agprocesses are still difficult for

Java to accommodate.

6.6.6 Stability

Error handling within the new implementation of JCSP Networking has been
improved in comparison to the original implementation. Exceptions are now passed
to the application level processe and the problem of aNetChannelOutput
becoming blocked while awaiting an acknowledgement from a disconnected Node
has been overcome. By permitting better error handling, the usage of JCSP
Networking within a Ubiquitous Computing environment has beerproved,
although further experiments will be required to fully analyse potential failures and
how they are handled by the JCSP Networking architecture or passed to the

application level processes.

6.6.7 Accessibility and Extensibility

Internal properties withinJCSP Networking have now been exposed. This allows
some modification of the architecture to suit individual purposes. The exposing of

data encoding to the user also enables user specified data transfer. The
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enablement of multiple configurations allows$iquitous usage of JCSP Networking,

and allows the numerous scenarios Ubiquitous Computing requires.

Extensibility has also been improved, and the interfaces allowing custom
communication mechanisms have been simplified. However, adding new primitives
to the Event Layer still requires access to the source code and modification of the

Link processes. The layered architecture matkes simpler to achieve.

6.6.8 Conclusion

In this chapter, the experiments conducted on the original implementation of JCSP
Networking have been repeated within the new implementation. Many of the
issues raised about the original implementation have been overcome, without any
adverse effects on performance. There are still problems when considering JCSP
Networking within the context bUbiquitous Computing, but these are now centred

on limitations of Java and JVMs available on resource constrained devices. The
introduction of a protocol enables communication outside Java, and the abstraction

of data encoding further enables intéramework communication.



Chapter 7 Channel Mobility

Previous chapters have focused on the properties of J@B#oNingwhen applied

to a resource constrained environmentConsiderationof JCSMNetworking as a
Ubiquitous ©mputing framework must also take intaccourn the dynamic
topologies required, wittconsiderationon the practicalities ofdistributed process

and channelmobility. In the following two chapters mobility is examined in this
context. Mobility is seen as a key feature when considering JCSP Netgy@sam
architecture for Ubiquitous Coputing, as it provideghe dynamic capabilitiethat

are consideredimportant in such an implementation context Thus far the
information presented has shown that JCSP Networking has no significant
communication ovdread in comparison to standard networking when considering
the reduced framework the experiments have been conducted in, although
resource usage oveaime may be a concernln this chapter, various approaches to
channel mobility argoresented,with various propertiesexamined in the context of
each model.In Section/.1a definition of channel mobility is providedection7.2
summarises potential channel mobility models, and Secti@analyses properties

of these models, Sectioii.4 summarising these properties. Finally, Sectibh
draws some conclusions on the suitability of these models within a Ubiquitous

Computing scenario.

7.1 Defining ChanneEndMobility

As discussed, channel mobility is the capability to migrate a connection from one
O2YLRY Syl (2 -cacalgkobmidels bahmeSmobility by allowing

names to be pssed between process contests a 2 0 A f -Calddlus allbwsi KS -
channel identifiers to be copied from one process to another, rather than strictly
moved. However, if the location that a hame is migrating from no longer utilises

the name, then the channel name becomes unbound frbmn driginal location, and
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thus is moved rather than copied. When a name arrives at a process, it becomes
bound at that location. For exampleFigure67 presents a process tree, witie
output end ofchannela communicated fromV to Rvia channeb. If V no longer
usesa then it becomes unbound iv. Within R a becomes bound. W has no

knowledge of the migration ai, andRnow has a new connection W.

Figure67: ChanneMobility

Figure67 indicates how channednd mobility is achieved. It requires a chanmesid

to be passed by another channel, or a communication that is communicable via
another form of communicatiof88]. A simple analogy is th&has been provided

with an address to communicate t&/. AsChapter 5discussed, the underlying
mechanism of JCSP Networking relies on channel addresses, thus mobility is

occurring on a very basic level as addresses are pastaden Nodes.

From this description, it is possible to define wiaamobile channel looks like at

basic level, which is essentially an address. As JCSP Networking utilises a channel
end mechanism, it can be argued that output channel mobility @s& of migrating

the address of the input end of a channel to another location. Input channel
migration is more complicated, and this chapter focuses more on mechanisms to
enable input channel mobility. Most models allow input channel mobility via

addres mobility also, although there are exceptions as highlightelpipendix G

7.2 Channel Mobility Models

Analysing current techniques for connection mobility, it is possible to extract seven

different models that enable channel mility. In this section, these seven models
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are presented. The relevant interaction sequences, state diagrams and new
protocol messages for these models are availableéppendix Gand can be used to
help illustrate exactly ho these models operate. For the discussion presented
here this is not necessary, and the general descniptis enough to analyse

interesting properties.

7.2.1 Oneto-One Networked Channels

Networked channels are generally considered to be-tar@ne in that agy output
end may connect to an input end. This makes mobility difficult as it is unknown
how many output ends may be connected to an input end, and tleeesinforming

output endsof the movement of an input end is not@ne-to-one communication.

Muller [145] has presented a mobile channel protocol that utilises a-tmene
channelmobility model. Channel end (port) states vary based on whether the port
is locally connected or remotely connected, and ports ararawof the address of
their companion port. A full explanation of channel states can be foufitdis]. A
port is aware of the location ats companion and informghe companion of the
new location on arrival.Mobility is easierin comparison to the Anrto-One model

of networked channels as it can be guaranteed ttieg companion port haveen

notified of the new location.

The main disadvantage with this model is that networked channels becoméd®ne
One conneabns instead of Anyo-One. This is not a major drawback @san Any
to-One architecture is required, a multiplexing process can receive from multiple
processes and send to a single process. ihkigs an overhead for transmission
time, and requires dixed process for each such channdf there arefew such

channels required these limitations may be considered inconsequential.

7.2.2 Centralised Server

Mobile channel ends controlledy a server is the approach taken in the pony
framework [120, 130] Each channel is allocated an identifier unique to the
application context the set of Nodes that make up a single pony application).

These identifiers are managed by a server which keeps the current location of the
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channel. As the channel end is migrated, this location is updated. An output end
connected toan input end can resolve this location, and then connect directly to
the input end. If the input end should later move, the output end retrieves the new
location from the central server. Therefore a channel end can be thought of as
either bang at the given locatiolr not ¢ in which case the server is checked for

the new location.

The server requirs messages to allow registration, resolution and updating of
chamel locations. The curre@CSP Networkinghannel Name Server implements
most of these functions. pony has separated the functionality into two separate
components, an Application Name Server, which allows registration and resolution
of applications agpposed to channels, and a main node for each application. The

main node is responsible of controlling channel mobility.

7.2.3 Message Box

Message boxs are the approach used for mobile agen{89], andwas previously
proposed as the modelfor JCSP &working channel mobility[17]. The Nde
declaring the NetChannellnput creates a message box, which allows the
NetChannelOutput  to send to a single address, and tNetChannellnput  to
request the next message from the message .bd@he message box is fixedo
there are no new channel states although the message box will require its own

state model.

The main disadvantage of message dmxs that the Nodealeclaringthe message
box mustremain operational. As the declaringZNRS Q& SESOdziA2y Y &

before the mobile channel ehis no longer required, this can be a severe limitation.

7.2.4 Message Box Server

Message box and server models can be combimedreatingmessage bason a
server instead of locall{63]. Apart from the requirement of server creation, the

operation of the message boxigentical to the message box.

Utilising a serveovercomes themaindisadvantage oftte message bgxbut does so

by having all messages channels ptssugh the server node. Thus there is a
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bottleneck in the architecture. This cgut strain ona server Node, although

multiple servers may overcome the problem.

7.2.5 Chain

The chain approachotmobility [51] requires eachprevious location of a channel
end to forward messageon to the next location. Whenan input end arrives at a
new location it informs the previous location of the new locatiaWhenan output
end movesthe previous location isentwith the migration mesage, which is used
to send to the previous locationThus a chain of connections is created, and any

message must traverse the entire chain to get from one entthémther.

In the Anyto-One networkchannel architecturethere will be chains of various
lengths in operation. The length from the original input location to the current
input location is always determined by the number of migrations that the input end
has made. The length of the output dgddepends how far the outputting end has
moved flom its original location. Thus, a different output ends may traverse

different distancesthere will bemultiple chain lengths in operation.

The main disadvantage of the chamodel is the disance travelled for each
message.The chain maylsocontainloops. A loop occurs when a message travels
through thesame node more than once.aéh previous location of a channeicis

a link in the chain and channel end may move to any location during operation,
therefore loops can be formed if a channel endvas through a Node where a link
in the chain already existsA further disadvantageccurs when a Node fajlgvhich

can cause multiple chains to break.

7.2.6 Reconfiguring Chain

To overcome the loop and transmissiomé problems of the chain modg9], the
chain can reconfigure itself by finding shortcuts to a previous link if it is accessible.
Any loop is therefore removed, and transmission timmeay become reduced

whenever the chain is shortened.

To achieve reconfigation, a migrating channel end takall previous locations in

the chain. On arrivalthe locations areiterated through and reconnection is
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attempted to the oldestpossiblelink in the chain. Loops are removed as Hode
can always shortcut to itselfTransmission time for messages d@nreduced as the
most direct route between two nodes is used instead of the total distance covered

by the mobile end.

7.2.7 Mobile IP Model

Mobile IP[146] is used for physical device mobility within IP based netaork
Gonnectiors are registered with a home agent which is responsibleféowarding

messages onto the current loban of the connection. When a connection
migrates, it informs the home agent, which buffers messages until the new location

is resolved. The new locatiaddressis generated by a foreign agent withthe
R2YFAY 2F (KS O atigny STOd] o yageat forwasis recéived
messagego the foreign agent, which forwards message2 G KS 02y y SOUGA 2
location. Wheaever the mobile end moveshe foreign agent informs the home

agent, and the same migration process occurs.

To enable mobilitypetween sub-domains, tunnellings used to allow messages to
be sent to the new foreign agent. ufinelling can bereproducedin a mobile

channel contexby utilising a chain of foreign agents tifatrward messages to the
respective channel end location or next émgn agent. In effect, this creates a
hybrid model of chainingserver and message boxThe foreign agents act as

gateways between domains.

The main disadvantage of this model is that there may still be loops within the chain
of foreign agents. A mobilaode may send to another mobile node within the
same domain, but the message would travel to the home agentdwgtich may be
within another domain. Intelligence built into the foreign agent may remove these
loops, providing direct connection, but wihl require more complex

reconfiguration of the architecture.

7.3 Analysing Channel Mobility Models

Foranalysisof the different channel mobility modelshe layout of standard TCP/IP

based communication networks is use@. network domain maygonsist of seveal
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sub-domains, which may themselves consist of slgimnains. At the root of the
domain tree is tle global domain. Eachode in the tree can be allocated an
identifier to represent the domain in the hierarchyMessages are sent between
members of domainsmessages being the communication from one machine to

another. Figure68 presents an example domain tree.

Figure68: Domain Tree

Each node in the tree has an identifier basedits donmain branch. For example,
leaf Ehas the identifierG.A.CE A simplistic viewpoint is taken to connectivity in
that members of asubdomain may connect t@ member ofits parentdomain
Thus any leaf in the tree can connect to ashymain furher up itsbranch untilthe
global domain root nodes reached For examplea member ofleaf G.A.CE can
connectto a member in three other domain nodeG.AC G.AandG. This form of
connectivity will be called addressability, implying that the nod@ @ddress a

member in a given domain unambiguously.

This view of addressability is taken to represent the fact that members of a given
sub-domain may be given addresses which are also used in anothedasuhin.

For example, domairG.A.CE may provide menbers with IP addresses in the
standard local domain form 192.168.x.x. Dom@&@rmACF may also use the local
domain addressing mechanism. Thus, a memb&s.4fC.Enay have an IP address
192.168.1.1, and so might a member@®fA.(F. The domain tree sficture ensures

that this is not a problem.

As a suldomain may address its parent domain, then it becomes obvious that a

member of the parent domain may be connected to a member of adarbain.
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However, this form of connection must be initiated by the nrzer of the sub
domain. Therefore, connectivity is permitted down the domain tree, but not
addressability. For the purposes of discussion, messages can travel either up or
down the tree, but not both in a single operation. A message travelling up on dow
must be received by a domain member before it is sent in a different direction

through the tree.

The analysis presented represents input channel end mobility, as this is the most
complicated to achieve. For an output end, the majority of models perhat t
address or some other representation of the input channel end to be sent and a
new output end to be created, effectively copying the output end at a new location.
¢ K ScCalculug10] permits this form of copy name passing, and therefore can be
considered to not b incorrect from the modellingyiewpoint either. There are

some exceptions which are presentedAppendix G
To aid in analysis, a number aflues are defined:

1 PROTOCOL a message in the protocol without data. This includes
acknowledgement messages. As these messages should be of fixed size, the
time taken to communicate one should be fixed.

1 ADDRc the size of a channel location address sture. These structures
are used to permit the output end of a channel to connect to a
corresponding input endADDRmay vary based on implementation, but not
enough to be considered unfixed.

1 MESSAGEa message sent in a communication from one domaimimer

to another. The size dIESSAGEE variable.

To represent mobilityM, is used. The parameteris the number of movement
operations that have occurred from initial setwpM, representing a channel end

that has not migrated.

There are four properéis that are of interest. These arEransmission time,

Reconfiguration time, Reachabilignd Strength  When defining an equation that
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has an optional value based on circumstance, the optional value will be enclosed

within square brackets [ ].

7.3.1 Transmissio Time

Transmission time is the timéaken for a sent data message to arrive at its
destination. The time taken to transfer a message of a particular tROTOCOL,
ADDRor MESSAQEcan be expressed using the functibrand is based on the
amount of datasent in the message. For discussion purposes, for a single
communication between two members of any two domainis not affected by the

actual distance up or down the domain tree travelled.

1 Oneto-One networked channek transmission timein this model is the
normal communication time between two domain members. Therefore, for
anyn, transmission time fomM, = t{(MESSAGE) + t(PROTOCOL)

1 Centralised serveg the connection between an input end and an output
end is always direct. The onlyception is wken the input end hasnoved,
leading to a messagiat must be resenta message to indicate that the
channel end has movednd a query for the new address from the server
Thus, transmission time fdvl, = t{(MESSAGE) + t(PROTOCOL) [+ t(MESSAGE)
+24(PROTQOOL) t(ADDR)

1 Message box a message is transferred twiceonce to the message box
and once to the input channel end prop€eFhe requesting message contains
the current input channel end location.Prior to the first move of the
channel, the requesand subsequent send is lo¢cals the input end is co
located with the message box. Thus, transmission timéigr t((MESSAGE)
+ t(PROTOCCANd forMpso= 2-t(MESSAGE) + t(ADDRPROTOCQL

1 Message box serveyhas the same transmission overheasl the message
box, although he message box is always remote to the input @éhdsthere
is no intial direct communication. ransmission time foM, = 2-t(MESSAGE)
+ t(ADDR) {PROTOCOL).

1 Chaing sent messagemust travel the entirelength of the chain. A the

length of the chain increasesith each migration transmission time also
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increases. Acknowledgement and other protocol messages must also travel
the entire length of the chain. Therefore, transmission time kéy =
n-t{(MESSAGE) + n-t(PROTQCOL)

1 Reconfiguring chairg the dhain has the ability to shortewhenever possible,
thusthere are worst and best case scenarios for transmission time. For the
worst case scenario, any message must travel the entire length of the chain,
SO transmission time is & same as chaig for M, = n-t(MESSAGE) +
n-t(PROTOCOLJor the best case scenario, the chain may connect directly
between two domain members, thus providing optimum transmission time
¢ for M, = t(MESSAGE) + t(PROTOCOL)

1 Mobile IP¢ transmission time i9asal on the number of foreign agents
reach the destination.This is based on the number of nodes up and deawn
subtree that are traversed by the messagelThese values are represented
by up and down respectively. flansmission time for M, =

up-downt(MESSAGE) + up-dotfRROTOCOL).

7.3.2 Reconfiguration Time

Reconfiguration time is the time taken to reconfigure the communication
architecture to permit the new communication path created by the migration of a
channel. Reconfiguration complexitis represente by afunction,r. r takes three
possible valuesEASYor an architecturerequiring little reconfiguration to allow
two mobile channel ends to connedlODERATEor an architecture that takes
some extra functionality and link creation; andARDfor an achitecture that
requires a great deal of reconfiguration to allow mobilifihe timerepresented by

r will generallybe small in compariso to the time taken to transfer messages
between Nodes to allow reconfiguration. Message transfeme is talen into
consideration formessagdransfer and acknowledgement Channel transfer time
for all modes is either a protocol message an addressnessage. Further details

are provided inAppendix G

1 Oneto-One networked channek reconfiguration of the underlying

architecture involves changing the channel state and informing the
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complement channel end of the new addresslessages sent involve the
new address and possibly any message waiting on an input channel when it
migrates. Thusreconfiguration time forM, = r(EASY) + 2-t(ADDRESS) +
2-t{(PROTOCD+ t(MESSAGE)].

1 Centralised server, reconfiguration involves sending an acknowledged
message informing the server that the input channel end is about to
migrate, sending a acknowledgd message to the server with the new
address, and a protocol message from the output end to encuirthe new
address, and the address sent back as a response. Therefore,
reconfiguration time foM, = r(EASY) &t(PROTOCOL) + 2:t(ADDR).

1 Message box asmessages are always sent and requested from the same
location, and reconfiguration is a matter of sending the address of the
message box to the new location. Thus reconfiguration time Mar=
r(EASY) + t(ADDR}(PROTOCOL)

1 Message box serverreconfiguration time for the message box server is the
same as message box mobility. For=r(EASY) + t(ADDR) + t(PROTOCOL)

1 Chaing the chain is similar to the message box, arduires redirection of
the receiving chamel the channel linking thetink RXto the channel object
in Figure37 of Section5.1) to point to the newoutgoingLink . Amigration
message contains the previous location, dhe acknowledgement message
contairs the new address. Thusegonfiguration time forM, = r(EASY) +
2-t(ADDR).

1 Reconfiguring chaing there are best and worst case scenarios for
reconfiguring the chainWhen migrating, the channel end must take every
previous location of the channel end and on arrival iterate thiotige list,
checking connectivity to these previous locations. Therefore, the channel
end must take at least one previous location, and may in fact take all
previous locatios. The best case scenario tdy, = r(EASY) + 2-t(ADDRY
the worst case scengrisM, = r(HARD) + (n + 1)-t(ADDR)

1 Mobile IP¢ reconfiguration is based on how quickly tbtemmunication path
through the foreign agents can be created.mobile channeis sent via an

existing channelthus the backbone links between the foreign agsmhust
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already exist. Reconfiguration therefore involves the foreign agent
examining the migration message and determining where the registered
channel must be redirected. The number of domains travelled is a
consideration ¢ these values can be represext by up and down
respectively. Each migration message contains two addresses, and has a
complement ARRIVEDnessage with two addresses in most caseBhe
migration message must also be acknowledged through the communication
path back to the sender of theigrating end. Thus reconfiguration time for

Mn = r(MODERATER+p-down-2-t(ADDR)up-down-t(ADDR)

7.3.3 Reachability

Reachability is the set of domains within which a channel output end can
successfully communicate tan input end using the spemfl mobility model.

There are three setsf interest

1 DOMAINg the domain in which the input end of the channelosatedand
all the subdomains of this domain.

1 BRANCH, the set of domains within the same branch as the input end,
implying both up and down trarsal of the domain tree.

1 GLOBAL is the set of all domains.

As it is possible for a node within a domain to connect up the tree, any model that
allows such a connection is deemed to permit an output channel end that has
migrated using such an existingnreection to be connected to an input channel end
down the tree via this connection. This is a generalisatilbrihe input or output

ends were tomove further, then the link would be broken in many cases.

1 Oneto-One networked channelports are sent viaan existing connection to
a new node,thus the new host is reachable from the existing one.
Therefore, the first interaction allows connection into a sddmain from
the parent domain if thenigrated port and its complement are on the same
node. After his migration, then this is no longer the case as the port may

have moved to a node not addressable from the new location. This can be
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overcome by the sender of the port determining which node could connect
to the other. Therefore, reachability is givaeBBRANCH

1 Centralised server the server is used to maintain channel locations,
therefore onlydomain members can connectrdctly to the server. Thuys
normal reachability iDOMAIN However, this would imply that two distinct
subdomains of the servé&dd R2YIFAYy O2dzZ R 0O02YYdzyA Ol
channel, which is not the case. Thus, reachability is act@alivAIN,
BRANCH

1 Message box any node that can connect to the host of the mailbox can
form an end of the mobile channel. Therefore, reachability can be initially
thought of asDOMAIN However, as the sender of a channel end may
connect up the branch of the daain tree, it is possible that the host of the
message box be told likewise to connect up the tree. This gives reachability
of DOMAIN BRANCH

1 Message box serveyas a server is being used, it must be possible for any
receiver of a mobile channel end be able to connect to the server. Unlike
the centralised server approach, channel ends in two distinctdsabains
may communicate as the message is sent and retrieved from the server.
Thus reachability iBOMAIN

1 Chaing as every location which the chael visits leaves a forwarding
address, anywhere the channel migrates can be reached from the previous
location. As a connection between any siddmain and its parent is
possible, the chain can effectively stretch anywhere through the tree.
Reachabilitys thereforeGLOBAL

1 Reconfiguring chaing as the chain only reconfigures itself based on
connectivity to previous locations, the reachability of the reconfiguring chain
is the same as that of the chaiRReachability is thu6LOBAL

1 Mobile IP¢ as messags are passed between domains via the agents within
each domain, a channel end can effectively move anywhere. The path is
created dynamically as a channel end is migrated. Thus, reachability is
GLOBAL
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7.3.4 Strength

The strength of the mobty model relatesto the robustness othe connection
betweenthe input andthe output end Robustness include®liance on external
elements thus a server type system is considered to be relativedpust in
comparison to an individual node. This is due to the podsilmfimultiple servers
being usedand servers being dedicated to specific tasks, as opposed to a single

node which may terminate when computation is complete.
For strength there are three values:

1 WEAKg a connection relying on a number of external entities

1 MODERATEa connection relying on some external entities.

1 STRONG a direct connection between two nodes, requiring egternal
entities. Alldirect connections between two nodes within the same domain

are considere(sTRONG
The strengths of the diffent mobility models are:

1 Oneto-One networked channe] a port and its complement are always
directly connected. Thus, the strength of the modeb T RONG

1 Centralised serveg as the connection between input and output ends is
direct, the channel strengt can be consideredSTRONGIin most
circumstances. He reliance on an external server does reduce the strength
slightly. Strength is therefol@l ODERAT® STRONG

1 Message box each channel requires that the original declarer of the input
end remains opational and connected until the channel is no longer
required. This does not lend itself well to standard distributed systems
architectures as a node may disconnect when it has finished its own
operations. The channel itself only requires two iatede links, and is
therefore reasonably strong in that respecihe strength of this model is
therefore MODERATE
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1 Message box serverthe usage of a server removes the requirement of the
node creating the input end remaining operational. Thus, strengthas th
same as the centralised server mod&ODERAT® STRONG

1 Chaing the chain relies on every previous channel end location remaining
active during the lifetime of the system. This is a serious weakness, as any
one of these domain members may fail oratisnect for reasons outside
the control of the nodes containing the channel ends. Strength is therefore
WEAK

1 Reconfiguring chaig as the chain can potentially be shortened to the point
where the output and input ends of the channel are directly connercte
there is the potential for this model to BBTRONGConversely, there is the
potential that all previous locations are required for the chain to deliver
messages. Strength is therefadEAKO STRONG

1 Mobile IP¢ a reliance on domain agents routing ssages to the correct
location does mean that the intedomain connections must remain
operational. However, as these agents are effectively servers, dedicated to
routing and reconfiguration, the strength of the model can be considered

MODERATE

7.4 Summaryof Model Properties

Table9 summarises the different mobile channel models by placing them in order

from best to worstunder the respective property headings.

Table9: Summary of Mobile Channel Models

Transnmssion Time | Reconfiguration Reachability Strength

Time
Oneto-One Oneto-One Chain Oneto-One
networked channel | networked channel networked channel
Centralised server | Message box server| Reconfiguring chain| Centralised server
Message box Message box Mobile IP Message box server
Message box server| Chain Message box Mobile IP
Reconfiguring chain| Centralised server | Message box server| Message box
Mobile IP Mobile IP Oneto-One Reconfiguring chain

networked channel

Chain Reconfiguring chain | Centralised seer Chain
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For transmis®n time, theone-to-one networked channel model provides the best
scenario, followed closely by the centralised server model which is also normally
directly connected. The two message box models allow transmission time that is
fixed at twice the normal transmission time; the normal message box having an
initial interaction advantage. The reconfiguring chain has the potential of directly
connected channel ends, but may in fact have a greater transmission time if the
chain cannot b reconfigured. The Mobile IP model also has the potential of direct
connections, but may involve transmission via a number of domains. The
reconfiguring chain model allows domains to be jumped if a direct connection up or
down can be created, and thubke Mobie IP model is considered to have greater
transmission time due to the number of intermediate domain agents that must be
passed through Finally, the chain model increases transmission time with each

migration, with no potential foreconfiguration

For reconfiguration timethe oneto-one model provideshe best case, followed by
the two message box approaches which only require address transmigsion
migration.  The chainrequires an address for transmission, although a
reconfiguration message tthe previous location is required. As the centralised
server model does not permit easy input end migration without the output end
requiring reconfiguration, this model comeasext. The Mobile IP modeéquires
reconfiguring at multiple domain agents, eteas the reconfiguring chain attempts

to shorten the chain by linking to the furthest location back in the chain possible.

For reachability, only three models allow a channel end to potentially move
anywhere and remain connected to its complement. Thaircimodels require no
server to achieve this, and are therefore given a better reachability. The Mobile IP
model requires the domain to have an agent to permit mobility. As thesamgs

box approaches allow a channel eadd its complement to be in two parate sub
domains, these models come next. The do®ne model potentially allows
connection the entire length of a branch. The centralised server only allows two

channel ends to be within the same branch below the server.
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The directly connected model®ne-to-one networked channel and centralised

server, provide the strongest connection. The message box server, with the server
managing the message box, provides the next strongeshection Asthe Mobile

IP modelutilises server agents, it providesfairly robust channel structure. The
alFyRIFENR YSaal3aS 62EQa8 NBftAlIyOS Ayhey2RSA
reconfiguing chain may rely on sonexternal nodes, it is stronger than the chain

model which gets weaker with every movement.

7.5 Conclusons

Examining these properties, it can be seen that the-tmiene networked channel
model has the best transmission time, reconfiguration time and strength, although
it does fair badly for reachability. The main drawback for the-tmaene model is

the removal of the Am2-One communication architecture present in standard
networked channels. This problem is natiasue for aJbiquitous Computing per

se, butthe "-Calculus does permthis form of name sharing If the "-Calculus is
seen as a formal nmlity modelfor modelling Ubiquitous Computing architectures,
then having a shared channel end is advantageotike reachability problem is of
more concern, as it means that channel ends cannot migrate too far from their
complement. A further considerdabn is how the oneo-one architecture is
enforced. This can be done by adding registration and deregistration messages to
the protocol, and adding channel states for a channel that is registered (and thus

only accepts messages from the correct outputrainel end).

The centralised servehas low transmission time anbigh strength, although
reachability isan issue. Reconfiguration timepsor compared tothe majority of
other models, although the difference between this approach ang dheto-one
modelis not great This model is well suited for controlled environmerstuch as
cluster computing, which is where the pony framew@i0, 130]is aimed. For
Ubiquitous ©@mputing however, it does not provide the mattial reachability that

may be required.

The message box approaches have reasonable, and predictable, transmission time

and reconfiguration time. t&ngth is good, although the normal message box has
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weaknesses. Reachability is better than the servelr @meto-one channel models
due to the two st@ transmission process, thuke message boxffers greater
potential. Reachability is still not global, and therefore certain models of interaction

are not possible.

The chain based approaches provide glakeakhability, but do so at the detriment
of transmission time and strength. Reconfiguration time is gdmvever
Although the reachability permits the interactions that may be requined
Ubiquitous Computingthe increased transmission time and weaks@slllifies this
advantage, leading to channels that are not ahle for systems requiring service
guarantees. Ubiquitous Computing does have tomstraint of stability placed
upon it. Potentially, the reconfiguring chain provides a model that mayb&akle

for Ubiquitous ©@mputingconnection mobility

The Mobile IP modeprovides global mobility within domains that have agents
controlling channels. Transmission time may be slow, but it is more predictable
than the chain based approaches, and poteltyi allows direct connections
Reconfiguration time ispoor, although it is significantly better than the
reconfiguring chain model. This model is also stronger than the chain based
models. Therefore, the Mobile IP model provides a good model for adimme

mobility in many scenarios, including Ubiquitous@uting.

Therefore, there are two models that appear to provide the mobility required to
support truly dynamic architecturewithin a global architecture However, this is
assuming that channel endsequire this level of migration within Ubiquitous
Computing AsChapter 2de<cribed, the idea of the global Ubiquitous@puter is
possibly incorrect, and individually controlled ubiquitous domains may be a more
suitable appoach. Therefore, the server based approaches may be more suitable

due to the control they provide.

What is apparent from these different models is that mobility may not be possible
at the protocol level, due to the different requirements for different &ipption
contexts. For example, the cluster computing scenarios that pony is aimed at

require a model that has good transmission time, and strong connections. This
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server approach may not suilbiquitous ©mputing. Any protocol implemented
across the vaous CSP based network environments must be general enough to
provide the application context required for different scenarios. Picking one of the
models described does not provide thig\ focus could be placedn Ubiquitous

Computing only however.

A padential solution is to adopt both the centralised server and Mobile IP model. As
a node must resolve a new location if the input end moves in both models, the
potential of either a domain agent forwarding the message or a server that merely
provides a newaddress does not change how the node acts after the complement
end of a channel has migrated. Wdugh this may permit many scenarjdsrrther

research is required tdiscover if it satisfiehem all.

Another consideration not discussed is the handovetween local and networked
channels that is caused by migration. If a networked channel and a local JCSP
channel are to behave similarly, then it should be possible to send a local channel
end down a networked channel, and for the local channel to becaete/orked.

The main difference between a local channel and a networked channel is that a
networked channel has a location, and this must transparently be created and the

required network infrastructure put in place to handle the new networked channel.

In summary, there are models of chanmabbility that are suitable for Ubiquitous
Computing butwhich are not suitable for other applications. Therefore, building a
mobility model directly into the protocol and architectureasly reasonablewithin
individual application contexts. This is a limitation to the different possible
scenarios even Ubiquitous Computing promotefny framework with which JCSP
Networkinginteracts with must also adopt the sansbannel mobility model if used

in a Ubiquitous @mputing scenario.

A problem also exists with channels that are sent as part of another data structure,
as any protocol will have to take into account that a channel is sent with other data.
The most probable candidater this operationis a mobile process. h& following
chapter discusses pential process mobility, andotes why this is far more difficult

to achieve between different platforms.



Chapter 8 Process Mobility

In this chapter, a discussion of hgwocessmobility in JCSP Networking can be
achievedis preseited. Channel mobility models havdeen presentedin the
previous chapter with potential models of channel mobility that suit Ubiquitous
Computing scenarios highlightedonsideration of how distributed mobility can be
achieved allows a discussion onvwhauitable JCSP Networking is fbe dynamic
architectures of Ubiquitous dnputing. Process mobility is enabled by channel
mobility, although the migration of an actively running component is considered
difficult. In this chapter, an approach to enahbpeocess mobility is discussed.
Section8.1 introduces process mobility in more detail, and Sect& reviews
other attempts at active component mobility. SectiBr8 discusses a technique to
enable strong process mobility, and SectioB.4 illustrates a practical
implementation of the approach. Finally SectiB® summarises the technique

developed.

8.1 Introduction

Chapter Zrovided an abstract definition of process mobility. This was:

Process mobility is the ability to change the location of an actively running

process.

CtKS 1S& O02yOSLIi Aa al OGAG@STt ebilitNHA[Was y T € @
focussed on single stopped process providing code mobility mechanisms
necessary to move a process transparentlynirone system to another. Code
mobility is not difficult in a framework such as Java, however work previously
presented within this thesis has argued against reliance on Java as a platform. This
negates the code mobility argument. Currently it is nosgble to define a process

for one framework and send the code for execution in another without some form
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of virtualisation technologyor relying on typed processes and no mobility of code
Therefore, code mobility will not form any further discussionpgrocess mobility

presented here.

8.1.1 Defining a Mobile Process

Removing code mobility from strong mobility modifies what a stipngnobile
component comprises From the argument presented thus far, there is also the
consideration of channel or connection mbly. Finally, the removal of code
highlights thata mobile component cabe partially defined by its type. Thus it is

possible to redefine strong component mobility when considering process mobility:

1 Typec the type of the process, defining its structuand behaviour.
1 Stateg the state of the mobile component. This comprises of three parts:
o Connectiong the inter-component connections that are contained
within the mobile component.
o Datac the variables that are contained within the component. This
also includes any subomponents.

o Behaviourg the current execution state of the component.

Code can be considered as part of the type information if this is not known at the
receiving Node of a mobile component, although the receiving Node will require

some knowledge of the component in an abstract manner.

Connections form part of the state and due to channel mobility can also be
considered variable. Thus, although initially a host process will know all external
connections, it must be the case that all bstcomponents take their own

connections with them. This is due to the dynamic nature of the connections within

a component.

How the process executes can also define how the process can be viewed. If a
process is migrated to a new location, and then exedun sequence with the new

host process, the mobile process can be considered as a mobile sgi@8je This

is because the process has added functionality to the actively running host process.

If the mobile process is to run in parallel with the host process, then this psoce
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can be considered a mobile agent. This view is due to the idea of an agent
performing a task on behalf of another component, and thus executing outside the

normal running of another component.

The definition of strong mobility might also not be what wash to achieved.
Although strong mobility originally referred to a component which took its
execution state with it, the current direction is a component that can move at any
point in its execution and take its execution state with Ii. this chapterthe latter

definition is approached, as achieving this goal permits achievement of the former.

8.1.2 Transferring a Process

The ability to transfer an actively running process has been discymsguslyin

[17]. In particular the argument was made that complex process mobility is
difficult. Complex process mobility involves the suspension of a network of
interacting processes, the trafes of said process network, and the resumption of
the process network at the receiving location at the same execution state that the
network was suspendeat. The problem with suspendirggprocess network has
been evident in process oriented architectsréor some time (for examplg 38]).
Complex procesmigration can also be related to strong mobility of code / agents

[76], which is the mobility oéxecution andlata state within a mobile component

Process networks can be viewed in a tree structure. The iqitatess has a
number of child processes, which have child processes, Fetgure69 illustrates a
process tree view of a process network, and illustrates how process mobility is

viewed in such a context.

Figure69 shows the migration of processfrom the context ofQ to the context of
R As indicated, it is actually migration of a branch of the tree that is occurring, with

the connection fromQto T migrated to form the connection frorRto T.
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Figure69: Process Branch Mobility

Examining process mobility from this view illustrates where a migratignalmust

come from, which is the connection betwe€andT. Thus, eithef can transferT

to R or if self referential processes are allowedcan copy itself to R. The latter
case does raise the question of whether the original copy should remain active. For
the argument presented in this chapter, it is considered that strict mobility and not

copying is in effect for processes.

The ability to move an entire branch of a process network to a new location is
considered complex process mobility, whereas the ability to move a single leaf
process is considered simple process mobility. The latter camachéeved by
supplying a signal to the process to suspend. The former requires a mechanism that
ensures that externally the process behaves as expected, buapjsears willing to
migrate at any point. If this idea is imposed within the migratory practsm it

can be seen that each individual process must also appear to be willing to migrate

at any point.

This chaptepresents a method for allowing complex process mobility by capturing
the behaviour of currently running processes. The methodology isd means

complete and verified, and some problems are highlighted. Some of these
problems are related to current methods used to achieve primitives in architectures

such as JCSP, and a proof of this shall be given. First, some information on other
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approaches used to achieve strong mobility and process network suspension is

presented.

8.2 RelatedWork

Picco [108] has defined strongmobility asthe execution state of the mobile
componentbeing transferred transparentlywithout specific coding to handle the
mobility. Unfortunately, mny mobility systemsutilise Java, and thudo not offer
this capability due to the inability to capture thread state in Ja¥aher approaches
are used to attempt to artificially capture the execution state at a fixed point of
execution, with the possibiy of rolling back execution to the previously stored
fixed point if migration occurs between capture pointEhis technique is referred

to as checkpointin§l47].

8.2.1 Java Based Approaches

Howell [148] has used checkpointing to capture execution state of programs by
capturing the state of an entire JVM. This invohaesnodified Java Runtime
Environment (JRE) but no actual modification to code or compi&hough thread
state is captured, it is the entire JVM that is checkpointed and not individual
threads. The approach islsonot portableas it requires a modifit JRE Although
inter-framework mobility is negated by the lack of code mobility, an approach that

can be replicated between platformsbetter for UbiquitousGomputing.

Truyen[149] captured individual thead state by manipulating bytede to insert

code blocks to capture and resume execution state. By doing this, and abstracting
JavaThread s into tasks and creating their own scheduler, Truyen successfully
captured thead behaviour without manipulating the JVM or JREhe approach
works on individual threads, not numerous interacting onédlork was expanded
[150] to accommodate remote object systems, where multiple threads are
coordinating via Java RMI. Although interesting from a connectiobility point of

view, no work on threads with internal threads was undertakenhe Tproblem
solved is particular to distributedbject systems, where there is no encapsulated

ownership of individual remote objects.
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captureindividual thread states transparentlyThis approach somplicated due to

some Java bytecode instructions havimmdirect correlation on the native machine.

The method isalsorestrictive asit is Java specifionly capturesndividual thread

state, and requires a modified JRE to operate.

Bouchenak[152-154] has proposed a solutiothat requires modification of the

JVM, one of the main goals being elimination of overheacurred by other
approaches to thread migratich . 2dzOKSyYy I 1Qa FLILINRI OK 3L d
within the JVMfor correct and complete reinterpretation of the thad at its
destination. This approach is restricted by reliance on a modified JVM and allows

migration of single threads only.

Sakamoto[155] applied a technique that used bytecode transformation to modify
method calls to throw exceptionhat would emit the execution state of a method.
Points within method bodiesare marked as possibly migratorand the resultant
exception addedo the surrounding method. Tha&pproach is interesting as it could
be manipulated to mark methods as migratignarded in the same manner that
methods can be guarded against multiple thread acce¥sere is an overhead
incurred, and the authors note limitations to their approach. Theralso the
limitation of single thread migrationand reliance on threads esring marked

methods to allow the migration.

Ma [156] has provided strong process migration within Jdal (Message Passing
Interface) using the Java debugging interfaceNo modified JVM or bytecode
manipulationis required andthere is little overhead.A migration layer within the
MPI frameworkis utilisedto achieve strong migrationHowever, éatures of Java

are still required and there is nmapturing of multiple thread state

Java mobile agent systenadso attempt to capture execution state for transferral.
¢ KS 5 Q! 3Sy (i[H1]Frdvides Stnardy Nilgration of threads, but does not
allow multithreaded migrationg the authors noting that it is unclear whether this

should be a necessity. As the term agent is itself ambiguous this is understandable.
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The NDMADS systerfi57] provides strong mobility of multiple threads by allowing
migration of Java thread groups, whieaHows mgration of multiple mole agents

in a group.NOMADS&xecuteswithin a Javacompatiblevirtual machine.

Javahasa problem when considering thread migratiofihere is the problem that
thread state is not explicitly exposed to the user, thus negatingsample method

to allow thread migration. There is no concept of thread ownershignd thusit
becomes difficult to decide whether a single thread or multiple threads should be
migrated. This is not just a problem for threads, but for passive objects dsoa
only provides weak encapsulatipthus an object mape owned by morehan one
thread. No consideratiorof object ownershiphas been taken in the above
approachesxcept whennvolving Java RM150], the only solution thatappears to
consider connectionmobility. For CSP Jlccam based approaches, strict
encapsulation and boundaries are in place, with connectivity controlled via well
defined channd interfaces. If adhered tathis removes many limitations Java only

approaches face.

Serialization does provide mechanisms to enable transfer of object references by
allowing aliasing within the object stream. However, the mechanisms do not
support thetype of migration required for mobility in this context. If an object is
migrated as part of another object graph, and then modified at the original location
and subsequently transferred, updates to the data state are lost in transfer due to
the aliasingwithin the object stream. The lack of ownership of an object causes this

to be a significant problem when considering both data and behavioural objects.

8.2.2 GenericApproaches

Fortino [158] has proposedmobile agent desigmsing statecharts.A mobile agent
retains its current historical state when migrated, and reintroduces this state on
arrival. During execution, the mobile agent explicitly rids its execution state
between state points. These state points can be considered checkpoints. Only at a
checkpoint can a mobile agechoose tomigrate. This is enforced by the agent

interacting using events instead of standard methods. The weakoédhis
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approach is that the state points have to be created and stored to allow transfer.

The authorsalsonote that this approach is only suitable for single threaded agents.

Bettini [78] proposes making procedure strongly mobile via the iottuction of
mark points mark points being similar to checkpoints or state points. This
approach is platform independent, modifying the design of a procedure as opposed
to a specific implementation.The method is limited in that it does not consider
multiple internally interacting components, arile method producesignificantly

more code for choice and iteration primitives.

Phillips [102] has developed a mobile ambient implementation within Java,
although the technique to achieve mobility of agents is transferabBetween
computations and communications, an agent checks if it has been called to move,
and after migrationthe agentcontinues executiorat this point. Thdechniqueis
similar tointroducing checkpoints, ardkes into account child agentgth a parent
agent requesng that child agents migratealsa The technique is based othe

I & & y OK NZaje@udzdandhierefore does notconsidercommitted events in a
synchronous architecture. Recent work this area[82] no longer discusses this

approach, so it is unclear whether it has been expanded upon.

Generic approaches providmore insight into how a method to capture process
network state can be developed. This is due to the view beyond threadisJava

in particular. The ability to place points within code at which processes must check
whether or not they should migrate is ofost interest, but consideration of CSP
semantics must be tan into consideration. For furtheinsight approaches

specific to CSP inspired platforms are examined.

8.2.3 CSP Based Approaches

Sopping a process network is natnew problem[138]. Welchdiscussedlifferent
approaches to terminate a process netikoand in particularhow not to do it.
Resettingis seen as practically what is required as opposed to stopping a process
network, and resetting ismore related to the capturing of state for migration.

Resetting of a process network involves sendingsatrsignal through the network,
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which each process receigeand thus places itselinto the reset state. This

approach wagrior to new additions to JC$P37], which enables@other solution.

Sputh[139] K & ONX (i AsCappiioScR The Sritidsr$ arssomewhat JCSP

specfic, but computational processing andhcreased complexity are cited as

problems, and also the handling of shared channel endsAnother problem
over0O2YS o0& {LlziKQa ¢2NJ ys2tie bladkddingFok OF £ f &
incoming messages to prevent deack. Sputh overcomes this problem by allowing

reset signals to travel both backwards and forwards through a process network.

The reason that this is a problem is that black holing a message implies that the
message is lost, which does not effectively tca@ the current execution state

Within an entire system this is not a problem, but a mobile process will only form

part of a system and thus @ssages entering the mobile mbg lost

Sputh mentioned some problems with trying to reset a -stwork of processes
using the JCSPoison technique. $\a mobile processwill be a subnetwork this
problem is imposed on process mobility alseputh has mentioned the problem of
having tworesetting process networks connected together via a channel, but the
two process networks themselves having the possibility of being terminated
independently The problem scales, and resetting anderminating n processsub-

networks is a problem if each may be terminated individually.

Welch [12] has expanded resetting to incorporatthe suspension of mobile
processes. This approachis the mog complete solutiornthus far, butonly suggest
how suspension can be achievedth examples. A processmust handle an
incoming suspension signal externally from the process netwaltkough mly at
certain points in execution. Strong mobility requires migration at any point during
execution Agent mobility implies externally and internally activated migration,
thus relying solely on external signals may be a probleBarnes does use a

technique that retains current execution state via a state variable.

When considering mobility, using poison is not a suitable approach in all cases due
to the different problem poison was meant to overcome. Poison is invariably

injected into a process netwoifkom one of the leaves of the process tree (exgn
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Figure67, pagel40). It has been argued that a migration signal must come from
the parent process or from the process itself, and travel dowto iall sub
processes. Poison flows through a system via channels, angreoésses might
not be connected implying multiple poison signals entering the process network

Thus, poison does not enable complex process mobilié icircumstances.

Secifc approaches within CSP based frameworks have been used to attempt to
reset a networkof processes. However, noré these approaches isufficiently
generic enough for the problem of capturing the current behavioural state of an
actively running processetwork at any point The solution presented in the

following sectiorattempts to overcome this problem.

8.3 ObservablyStrongly MobileProcesses

The approach proposed builds on the idea of strong mobility, checkpointing, state
capture and processes havingetchoice to migrate at certain points. It builds upon
the newerideas presented byelch[12], but does not use the graceful resetting
techniqueoriginally proposed by Welch)l138]. It exploits recent additions to JCSP
[137], in particular the multway synchronisation capability provided by the
AltingBarrier . We are not going to discuss how channel mobility is modelled

here. To help illustratea small subset of CSP notation shall be used:

OYOO6OYYE: 6,6,6,8
QAL YE Ga®s
DIQDE GO 0
6BANE @ O 0)s(wO 0)
0G OB 6™ 6
MO SGN > 6 ;6
Y& RQE O 66 G
CWRQE GO 0 A {}
Processes are declared upper case and eventsn lower case. Prefix defines a
new process from an event and process definition. For exanipiefix above

means synchroniseon a then behave asP. Specific input and output events

(channel operations) are not defineas they are ofno consequenceas all events
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must be usable as guard<hoice allows a process to choose between two possible
guarded communications €.g. a or b), and choice affects process behaviour
depending on the chosen even This is a generalised guarded alternativeore
specific choices are used but are not examined hefemigration may be caused
internally due to the process causing the move, or externaliynfrthe parent
process. fe Parallel operatorields a process in which its operand processes
operate in parallel and which does not terminate until both its operand processes
terminate. Parallelis normally definedwith the events used toyschronise the
processesbut this is of no consequence for the discussion presentes. assumed
that processes will only synchronise on shared evesquential means that once
one process has finishetle next process should bgerformed. Renaming allows

an event name to be changed within a Process. For example, the aRemaming
operation replaces evenb with a in processP. Finally, Hiding is used to hide an
event from being externally visible. For example, the above Hiding operation states
that the eventa is not observable outside of the defined process, and therefore

externally the process behavesRs

8.3.1 Simple Process Migration

Consider thalefinitions given foprocess mobility and strong mobility:

1 Process mobility is the ability to change the locatafran actively running
process.
1 Strong mobility is the ability to migrate a mobid®@mponentat any given

point in its execution.

Thegoal is to allow processes to migrate at any point in their executioanother
location and resume execution at the pbiof migration To achieve thig process

is offeredthe choice tamigrate at any point. Consider procd3defined as:

~

0B ®° @O 0

P synchroniseson a, then b, and then behaves aB (a then b then P). To offer
migration, a new event is introducetzhlledmigrate. This event must be possible at

any point in execution. ThuBbecomes:
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Pmobile €Mits the same behaviour ag but also has the opportunity to migrateSKIP
indicatessuccessful completion of the process. Tédampledoes not outline how
migrate is fired. migrate will normally occur from outside the process @rocess
network, but as shall be shown is particular to whene tigration attempt occurs

and what exactly is to be migrated.

The problem is to retairthe execution stateof Pyopie after migration. As the
process has been split into two separate process definitions, it becomes possible to
start the process at any one of these definitions. What must occur is that the
current execution state of the prose must be stored or emitted somehow. This
depends on the implementation platform (for example, Jawa@uld retain it as an

internal attribute tothe object), so specific detaidge left.

This showshow a simple process can be given the option to migratg, this in
itself is not new. All that is occurring here is that an option of a migration signal is

given to themobile. To expand this, consider two interacting processes:

03 OGO ®O D
03 ©O° ®O O
YOO

Introducingmobility into theseprocessegives us the following:
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CSP enforces that an event can only be finden all relevant processesgree to
synchronisethus for migrate to fire both P and Q must be willing to pdaicipate.
ForRnobile parallel execution o and Q completesbefore the SKIRs reached. This
can only occur when botRand Q have finished, ths migrate must have been fired

bringingPand Qto a successful termination.

8.3.2 Parallelised Process Migration

A more complicated situation occurs when a procststs and thengoes parallel
before or after performing other interactionsThis occurrence sabeen highlighted
numerous time within the context of poison ancesetting[138, 159] The simple
technique of synchronising on an evedbes not work in all circumstances, as there
is no way of knowing whetheor not the parallel completed successfullythout
migrationor was paused due to migrationConsider two possibilities for interrig
parallel processes. process may perform somevents and then go parallel as the
last operation, or the parallel maycour prior to other events Both these

eventualities cover any combination of events and parallelisation.

8.3.2.1Processes Ending Parallelised

Consider the following process definition:
0B G0 &o (57

From the pevious definition of creating mobilprocesses,P can be converted to

the following:
Oseaen & Op
Oy B 00 Oy | (6 MO "HO)
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O B (Dacam” Yaiom)
Qmobile 2nd Rnopile Will synchronise omigrate if they aremade mobile in the manner

described thus it becomes evident thatP,, will only terminate whenmigrate

occurs. This is all that is needed for a process that ends internally parallel.
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8.3.2.2Processes Beginnifarallelised

Processes that begin internally parallelised before performing other operations are

more difficult. Consider the following:

0B (57 V); (0O GO b)
0> ©° Q0 WP
YB GO Q0 v

P begins by performindpoth Q and Rtogether,and thenperforminga then b. The
problem faced is that@® £R) can terminate due tanigrate or normal operations. It
must be possible to distinguish between successful termination of parallelised
processes and migration termination of parallelised processEse subtlety of the
example presented is thaD may successfully terminate prior ®Rif d is executed
first and vice vesaif e is executed first Tocheck completionthe introduction of a
further event,finished is required to check successful completion of the parallelised
processes This event is not observable from outsiBend is therefore hiddenBy

doing this,the following process definitions are generated

Ogeqen > g
GaB HO Dn | (6TRAERO "G)
Uo B (20 Dopomn) | (6 WERO "0'D)
O-poan = (CRUQO "HWO) | (4 MXQO "V "0)
acam B Ui
o & (Socam™ Yocom ~ ((@TREQ0 "0'0) | (ROARO )
N CROTD
G GO O | (G @E@QO "b'6)
Goh H0 Gy | (@m0 "0'0)

The definition ofRyopile IS Similar toQmobie @and Not given. The rest of the definition
of Pis straightforward. To hadie parallelisation, a separate process interacts with
both Q and Rviamigrate andfinished Qmopile Operates as a standard mobile except

when it reaches completion. At thpoint there are two options.
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1. If Rnobile SUcCcessilly completesfinishedis seécted, thus completin@obite
Rmobile@nd the manageprocess withirPmopile allowingPrnopie to continue.
2. migrate may occur, thus triggering the migration within all processes and

not allowingPmobile t0 CcONtinue to the next state point.

In eithercase, all the processes are terminated, and the relevant execution states

either captured orcontinued.

8.3.3 Connected Mobiles

Another subtle problem with capturinthe current behaviounof process networks
is ensuring that any other connected process netwodksnot deadlock due to
incorrect behaviour. Capturing the current state of the network, and the
assumption that channels / events are also mobile overcosmme of the initial
problems. However, if suprocess networks are independentiyobile within a

mobile processmore care must be takenConsider the following:

~ - ~ ~

VB ®WO wo

0B 00 o 0

If P and Q are independently mobile, then they cannot share the samigrate
event as this will enforce the two processes to termaatnigrate can be renamed

to overcome this.
Y D: 6(5( sg)mw 'mQIjQ_I']J & I T f)d S(()mm 'mun'Q_r]j & "o (X

This allows bothP and Q to be independently mobile If Rmust be mobile as well,
then a further comsideration must be taken into account wheiR receives a
migration signal,subsequentlysignal that the sulprocessesP and Q should
terminate, ard then signal thaR has terminated. To do this, another process and

the finishedeventare used again:

Yo eam B ( Ogegan 00 RAIQN] & I 0 ¢g5a000 R AIQNA] & T GO
© (A0 G MEQN © @ MR © REAN © "b'0)) A {TRUaD
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As Probile 2nd Qmobie are independently mobile, they can be terminated in sequence
within the new process. Once all processes have been terminatedfirtished

event is fired, thus signalling th&.opieis ready for migration.

Giving each suprocess a uniquenigrate event and signallingeach process in turn
could also be used to shut down internally parallel proces3es. reason not to do
this is that it would involve an extra manger procésseach sukprocess network.
Although shutting dow processes in sequeneecautioned againsf138], this was
due to a lack of otput guardsand multtway events being available. As this

problem has recentlpeen resolved137], there is no longer the same concern.

8.3.4 Example; Numbers Process

The Numbers Process used for the CommsTime benchmi@r&4], and consists of

three processe?REFPSUCCESSQRADELTA2 These processese defined as:

0YOODo) & O "@Q)"YOh
@O "YOW F GP® O I O @A) YO
"WOOOYV'Y X (P00 o @+ 1 © "WWooOYY'Y

OAY¥2 B (POO (BwO "WO™ Qwo "vo); Oav2

0™ 6'0YYE: (0'YOOUD 0 ~ "WOOYY'Y™ OQ)"™¥2) * {0y G}
Channel communication is defined usihdor output and ? for input. For this
example,no consideration on how the states of the processes are retained is given,
and it is assumed that when a procassestarted, the correct state is used-he

NUMBER®rocess has channels b and c hidden, thus leavingl exposedas an

external channel frofNUMBERShe others being internalFirstconsiderPREFEX

0 YOOy ¢ 0 B 0'YOORY; -geral)
0 YOOQ, ge0 © F (A0 O 0'YOOggsay) | (0 RO " 0O)
GYom)mom D: @O.)med)m
This allows termination oPREFI&nd subsequent restartingt any point. If the

internal IDENTIT)grocess is to be restarted, it is assumed that the correct execution

state of the internal process is choselENTITNself is simple:
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It is assumed that when thEDENT I T\iing pProcess is terminated, it retains the last

read value X) for subsequent sending when the process is restarted.
SUCCESSRReis similar td DENTIT¥bie and is not provided.

DELTAZequires more care due to the internal parallel. Toestt®e problem, a new
process definition is introduced which is responsible for outputting a value on a
channel:
W' YOO() & 60O W'D
DELTA® now redefined as:
OQ)"™B2 & (PmO (' YOIO(0)00d £600° 0 YO0 GY £660) ; 'CO) B2

Converting this into a mobile processquires a mobile version of th&VRITE
process, which musncorporate thefinishedand migrate events(Section8.3.2.2.
Thus

O YOQ ¢gen(6) B 0 YOQge0(0)
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Now DELTARZomie can be defined

OO)Yﬁ 2(3 S(I)m D: OO)Yﬁ 2| (e X 915)0)
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The definition of theNUMBERSRpie IS NOw straight forward:
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8.3.5 Limitations

The methodology described here is by no means complete, and there are
limitations from the theoretical point of view. Limitations from an implementation
point of view also exist, and shall be described presentlfirsttmust be considered
that this technique has been developed with practical implataéon of JCSP
process network mobilityn mind, and no formal analysis has been undertaken to

verify that the technique is correa all circumstances

The first limiation is the generalisation of choice. There are three choice types
within CSP: external choice, ndeterministic choice and conditional choice. With
this method, it is external choice that is the most likely to be considerethigisate

will likely befired from outside the process. Naiteterministic choice ofnigrate
implies that the process has itself decided to migrate. From a CSP point of view this
iscomplicatedas it implies that the external process idling to migrate the mobile
process Ths may not be the case, and the external process may be performing
other actions that do not consider migration. From an implementation point of
view, especially in Java, process may move itsedfs Java objects can reference
themselves. Care woulbave to be taken to ensure that the inner process is
terminated independently and moved without requiring the external process to

interact with it.

Priority of choice has also not been taken into account. If migrate is offered at any
point another eent is ofered, then the environmeninay not choose migrate over

the other offered event.As the process must be willing to migrate at any point, no
guaranteed selection ahigrateis a problem.In implementation terms, priority of
choice can be provided, althohgt is not always guarantedd37]. This has some
repercusons for implementation which shall be discussed shorttyigrate must
always be possiblerhen considering this approach to process state capture, and

should not be arbitrary.

Interleaving hasot been taken into account. Interleaving of processes mehas t

the processes do not interact together. It can be considered as a parallel without
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any shared events, and therefore interleaving could be converted into a parallel

sharing themigrate event.

No consideration has been taken for how current execu@od data state of a
process is stored This ismplementation specific. The methal described here
could add such information emitted on a channgthfus after migrate and prior to
successful termination. However, for a Java implementation, this stande

stored within theobject.

No indication as to wherenigrate is firedfrom is given, and this relates back to the
use of generalised choiceAs processes can be considered strictly owned by a
parent (or starting) procesdt is the parent process ahe process itselthat has the
ability to migrate the mobile An ancestor of the parent process should not have

access to the individuaub-processes of one of its children.

It has also been assumed that processes can be sent via channels, and thedrihey
be successfully restarted within the context of the receiving process. None of these
features are present in CSP, and therefore it is currently difficult to verify that this
approach will work. Future work will hopefully leadwerification that tte mobile
version of a process emits the same behaviour as the-mohile, and that the

mobile process is also willing to offierigrate at any point in its execution.

8.4 Implementation

The method described in Sectigh3 takes an &stract viewof process network
mobility via state capture. In this section, an implementation of il&MBERS
process in JCSP shall be presersted modified to allow migrationAn examination

of specific featureswvailable within J&a to aid the migratin process and limitations

due to the current implementation of JC&f also presented

8.4.1 Numbersint Process in JCSP

The Numbersint processin JCSP is an implementation of the&JMBER®rocess
described in SectioB.3.4 Ful cade listings of this process and the mobile process
version can be found inAppendix H Here only necessary code segments are

presented for discussion.
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The JCSP implementation Miimbersint is similar to the CS&efinition, and has
the same processes in operatioRrefixint , Successorint , and Delta2Int
There are alsddentityInt and ProcessWritelnt processes for necessary

internal processes. Then methods (modifiedor clarity) of these processes are

public class Prefixint

int prefix;
Channellnputint b;
ChannelOutputint a;

public void run()

a.write(prefix);
new ldentitylnt(a, b).run();

}
}

public class Identity  Int

{
Channelinputint b;

ChannelOutputint a;
public void run()
while (tr ue)

int x = b.read();
a.write(x);

}
}

public class Successorint

{

Channellnputint c;

ChannelOutputint b;

public void run()
while (true)

int x = c.read();
b.write(x);

}
}

public class Delta2int

Channellnputin  ta;
ChannelOutputint c;
ChannelOutputint d;

public void run()
ProcessWritelnt[] parWrite =

{new ProcessWritelnt(c), new ProcessWritelnt(d)};
Parallel par = new Parallel(parWrite);
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while (true)
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}
}

public class

int x = a.read 0;
parWrite[0] value = x;
parWrite[1].value = x;
par.run();

ProcessWritelnt

ChannelOutputint out;

public void run()

}

public class

out.write(value);

Numbers

ChannelOutputint d;

public void run()

TheDelta2Int

individual ProcessWritelnt

One20neChannelinta=C hannel.one2one();
One20neChannelint b = Channel.one2one();
One20neChannelint ¢ = Channel.one2one();
new Parallel(new CSProcess]]

new PrefixInt(0, b.in(), a.out 0,

new SuccessorInt(c.in(), b.out()),
new Delta2int(a  .in(), c.out(), d)

}).run();

process is defined in such a manmlere to Java constraints, asd

processesare required to provide parallel output.

The other approach would be to use inline code to represent the procesghks.

handler for thefinishedevent is likewise implemented in this fashionthe mobile

version ofDelta2Int

described in the next question.

8.4.2 MobileNumbersint Process

Recent additions to JCSR37] have added multivay synchronisation via

AltingBarrier
with One20neChannelSymmetricint

AltingBarrier

, and guarded output AltingChannelOutputint ) is offered
This channel operatesith an internal

to enableguarded output. Mobile Prefixint ~ is simple:
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public class MobilePrefixint
{
int prefix;
AltingChannelinputint b;
AltingChannelOutputint a;
AltingBarrier migrate;
Mobileldentity identity;

public void run()

Guard[] guards = {migrate, a};

Alternative alt = new Alternative(guards);

switch (state)

case WRITING:
int selected = alt.priSelect();
switch (selected)

case 0: break; // migrate
case l:// a
a.write(prefix);
state = IDENTITY;
identity.run();

break;
case IDENTITY:
identity.run();
}
}
}

state holds the current execution state of the process, and is initially set to
WRITING. If the first valle (refix ) is successfully written, the state changes to
IDENTITY and Identityint is executed. MAe IdentityInt
asthis process will have been initialised within the constructor, or will have state

based on the mvious run of the proess. Mbile Identityint

public class MobileldentityInt
AltingChannellnputint b;
AltingChannelOutputint a;
AltingBarrier migrate;
public void run()
Guard[] guards = {migrate, b, a};
Alternative alt = new Alternative(guards)
boolean running = true;
while (running)
switch (state)

case READING:

boolean(] active = {true, true, false};

int selected = alt.priSelect(
switch (selected)

case 0: // migrate
running = fal se;
break;

case 1://'b
X = b.read();
state = WRITING;

is also trivial:

179

process is just run,
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break;
case WRITING:
boolean(]

switch (selected)

case 0 :// migrate
running = false;
break;

case 2:// a
a.write(x);
state = READING;

break;
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active = {true, false, true};
int selected = alt.priSelect(active);

The usage of flagged guards in this process is tavalmplicity of implementation,

and two separateAlternative

requirement enforced by Java / JCSPMobileSuccessorint

MobileldentitylInt

Mobile Delta2Int

ProcessWritelnt

public class MobileProcessWritelnt

{
AltingChannelOutputint out;
AltingBarrier migrate;
AltingBarrier finished;

public void run()

Guard[] guards = {migrate, out, finished};
Alternative alt = new Alternative(guards);
switch (state)

case WRITING:
boolean[] active = {true, true, false};
int selected = alt.priSelect(active);
switch (selected)

case 0: break;
case 1: // out
out .write(value);
state = FINISHING;

/I migrate

break;

case FINISHING:
boolean[] active = {true, false, true};
int selected = alt.priSelect(active);
switch (selected)

case 0: break;
case 2: // finished
st ate = WRITING;
} I/ For reuse purposes
break;

/I migrate

is more complicated.

objects could have been usedstead. This is a

is similar to

andits full code listing can be found Appendix H

First, consider the mobile version of
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}
}
}

To capture that a process may be finished or not, a new prasesgined:

public class CheckFinished
{
AltingBarrier migrate;
AltingBarrier finished;
boolean isFinished;

public void r un()

Guard[] guards = {migrate, finished};
Alternative alt = new Alternative(guards);
isFinished = false;
int selected = alt.priSelect();
if (selected !=0)

isFinished = true;

The attribute isFinished is used to checkfithe processcompleted viathe

migrate  event or the finished event This value remaindgalse unless
finished is selected within theAlternative . With this process defined,
MobileDelta2int cannow be defined:

public class MobileDelta2Int

AltingChannellnputint a;
AltingChannelOutputint c;
AltingChannelOutputint d;

AltingBarrier migrate;
MobileProcessWrite[] parWrite;
CheckFinished checkFinished;
AltingBarrier[] barrier = migrate.expand(2);

public void run()

Guard[] guards = {migrate, a};
Alternative a It = new Alternative(guards);
CSProcess]] processes =

{parWrite[0], parWrite[1], checkFinished},
Parallel par = new Parallel(processes);
boolean running = false;
while (running)

switch (state)

case READING:
int selecte d = alt.priSelect();
switch (selected)

case 0:
finished = false;
break;
case 1:
x = a.read();
state = WRITING;

break;
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case WRITING:
parWrite[0].value = x;
parWrite[1].value = x
barrier[0].enroll();
barrier[1].enroll();
par.run();
if (\checkFinished.isFinished)
running = false;
else
state = READING;
barrier[0].resign();
barrier[1].resign();

break;

The reason for starting th&rocessWrite  and CheckFinished  procesgs in
parallel is to ensure that the underlying threads have finished before trying to
restart the processes, which may not be the case in Javalsing a
ProcessManager to spawn theMobileProcessWrite processesand allowing
MobileNumbersint ~ to guard on migrate and finished can lead to exceptions
caused by spawning too many thread$he process enrols and then resigns from
the AltingBarriers of the MobileProcessWrites prior to activationand after
termination. This is to ensure that the other processes can synchronise on migrate
independently of theMobileProcessWritelnt being in operation. Whenever

the process is started it must be enrolled on thiingBarrier , andonce it has

sucesstilly terminated, it must resign

It is now possibled define a mobil&Numbersint process:

MobileNumbersint(AltingChannelOutputint d)
AltingChannelOutputint d;
public void run()
AltingBarrier[] migrate = AltingBarrier.create(4);
One20neChannel Symmetricint a = Channel.one2oneSymmetricint();

One20neChannelSymmetricint b = Channel.one2oneSymmetricint();
One20neChannelSymmetricint ¢ = Channel.one2oneSymmetricint();

AltingBarrier innerMigrate = migrate[3];
prefix = new MobilePrefixInt(0, b.o ut(), a.in(), migrate[0]);
successor =

new MobileSuccessorlnt(c.in(), b.out(), migrate[1]);
delta = new MobileDelta2Int(a.in(), c.out(), d, migrate[2]);
new Parallel(new CSProcess|] { prefix, successor,delta B.run();
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The innerMigrate Alting Barrier is used to trigger the migration process

externally, as shall be described in the following subsection.

8.4.3 Java Serialization to Help Migration

Qustomisation of the serialization processan be exploited to enable the
suspension process A class can be declared Externalizable , or specific
methods overridden tocustomise the serialization behaviour. Whenever an
instance of theclassis written to or read from an object stream, these methods are
calledinstead of the standard mechanism useBor examie, the method called to

serialize an instance ofobileNumbersint  is:

private void writeObject(ObjectOutputStream out) throws IOException
{

innerMigrate.sync();
out.writeObject(prefix);
out.writeObject(successor);
out.writeObject( delta);

The inner Migrate iswaited upon by the writing procesthus it can be judged

that the processes are in such a state that they can be written to the stream safely.

8.4.4 Implementation Limitations

There are implementation problemswhen considering this method within the
context of JCSP. The first relates to certain assumptions made on the mobility of
events and channels. AZhapter 7described, distributed channel mobility is not a
guaranteed feature, and still requires finalisation. Gehegrearded events provided

by the AltingBarrier alsodo not have a networked equivalentCareful design

may get round these problems.

The second problem comes from the lackaohetworked AltingBarrier . As
guarded output is currently implemented usirag AltingBarrier , there is no
suchmethod to allow guarded network outputThis means that networked output
must be committed toand the general approach of guarding all events cannot be
used. However, as the mobile process will not span local matiwaedaries, this

is not anissue. The remote process communicated to via the network channel shall

not be part of the mobile and should be unaware of the migration of the process.
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Thus the networked output can be committed ito a write operation without fea

of deadlock, only input need be guarded upon

Another limitation comes from the lack of shared input and output guards (from the
Any-2-One, One2-Any and Any2-Any channels).Therefore, certain forms of input
and output cannot be guarded A simple metbd to overcome this is to place a
multiplex / demultiplex proceswithin the channeto handle therelative input and
output transactions. This comes at a cost of resources and perfoenéorc
expansion / contraction othe shared end, the selection sequee within the

process, and the need of an extra process.

A limitation also existfor this approach when usintpe current implementation of
AltingBarrier , a possibilityhinted at in [160]. This is not an error in the
AltingBarrier itself, as it provides the mechanism required for muay
synchronous event. However, for the approach to process mobility described, a
prioritised AltingBarrier is required. The AltingB arrier ~ operates by only
allowing one procesm the systento be in operationwithin an AltingBarrier at

any one time, using a coordination objeft37]. This leads to the following

problem:

Given a set of processes A that synchronise on AltingBarrier a, if there are
two or more disjoint subsets of A that alwayseofthoice between their own

AltingBarrier and a, then a can never be selected.

For example considétigure70.

Figure70: AltingBarrierSample Process Network

The processes can be defined as follows:
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a, b and c are AltingBarriers . To operate, a count on the number of required
synchronisations within theAltingBarrier iIs kept. When this reache® the
relevantAltingBarrier is fired. In the above exampla,has a count of 4 antd
and c both have a count of 2. Asnly one process can operate on

AltingBarriers at any one time, there are determinable outcomes.

B activates first and offera and b, taking the counts down to 3 antl respectively.

There arehree possible outcomes:

1. . Qctivates next and offera and b. The count orb reaches 0 and it is
selected. Thus the offers @nare removed taking the count back to 4.

2. EitherCor/ fxtivatesand offersa andc, taking their respective counts to 2
and 1. . Qctivates next and offera and b, taking the count orb to 0 and
selecting it. Thus two offers anare removed taking the count back to 3.

3. Cthen/ &xe activated in succession (or Weersa), thus taking the count on
ato 1, but the count orcto 0. Thuscis selected and two offers oa are

removed, taking the count oaback to 3.

Similar arguments can be given fofCand/ &ctivating first. Thus it can be seen
that it is impostble for a to ever be selected. This leads to a problem when
implementing the migration method. A8l processes must synchronige migrate

for migration to occur, no more than ondisjoint setof sub processes can offer
another guarded synchronisatiommongthem. As the guarded input and output
One20neChannelSymmetric Int channel does this to providguarded output,
there is a danger that the internal processes will never synmigmate. In fact, the
Mobile Numbersint will suffer from this problem if e output channel d) is

always willing to accept messages.

To overcome this problem, the technique for making individual parts of the process

network mobile can be used (Secti8B.3. Effectively, this approach can be used
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to the point where each individual process is given its @WtimgBarrier that
acts as a switch to turn off a process. However, this will come at a greater overhead

for normal process operations and migration operations.

Relative overheadn comparison tonormal operationis also a consideration. As
each communication / synchronisation event must be guarded upon, there is the
added overlead of performing Alternation on these event§or example, consider
Table 10 which presentsthe CommsTime benchmankith fast integer channels
performed normally, usg guarded channels, and witlmobile proceses
GCommunication overhead alone is significant without considering the migration

process itself. The times presented are the iteratiomes in microseconds

Table10: CommsTime for Mobiles

CommsTime | CommsTime | Mobile CommsTime| Mobile CommsTime
Symmetric Parallel Shutdown | Sequential Shutdown
PC 62 micros 123 micros 168 micros 168 micros
PDA 681 micros 1922 micros 2915 micros 2920 micros

The other time to consider is the time taken to showeh processes using these
methods. This is presented ifiable 11, which provides the shutdown times in
milliseconds ofMiobileNumbersint ~ processesusing the normal technique (Par)
and the sequential technique (Seq). Aslambers process consists of humerous
internal processes, the number of processes suspended is up to five times the
number of Numbers processes. Note that this time also incorporatehé time

taken to reclaim any threads used within the internal processes.

Table11l: Suspending Numbers Processes

Numbers Processe| 1 2 4 8 16 32 64

PC Par Shutdown | 0.14| 0.36| 0.76| 1.03| 1.32 2.22 3.88
PC Seq Shutdown | 0.21| 0.67| 1.61| 294| 6.35| 12.94| 29.26
PDA Par Shutdown 3.2| 9.58| 20.57| 42.03| 53.51| 95.79| 103.33
PDA Seq Shutdowr 2.04 | 14.23| 41.69| 96.63 | 183.2| 371.02 752
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Table 11 indicates that the time to shutdown processesncreases in an
approximately linearfashion when using the parallel shutdown techniquéhe

sequential shutdown does have a higher overhead, as expected

Another overhead incurred by implementation of this approach is the addition of
extra processes to handle internal parallelisation. Nuotthe argumat presented

thus far has beewon the removal of processes whenevecessary when using JCSP
in a Ubiquitous @mputing context. Therefore, careful consideration must be taken

when designing a process network that is intended to be mobile.

8.5 Summary

In this chapter, a discussian how process mobility can be achievedJDSP and
other process orientedarchitectures has been presented Initially, other
approaches to capture process state were analysed and found to have certain
limitations. h particular, the approach of capturing thread state is found to be
limited due to the lack of understanding of thread boundaries, which reflect on the
fact that it is difficult to decide what should be migrated in a thread orientated
system. These are ¢hsame problems that are apparent in Java object serialization,
where aliasing problems highlight the issues with self refereamal circular graph
topologies. Process based approaches are more promising because of strict
boundaries and ownership of ptessesand datg meaning that there is no
ambiguity over what should be migratetHowever, many of the proposed solutions
for shutting down process networks lack capabilities when considering mobile

process models.

A solution tothese limitations has beeproposed which should overcome many of
the issues presented. However, it also has limitations. Due to subtleties within
some designs, and certain limitations within current process oriented
implementations, the method is currently not mechanical excepé specification
point of view. Fulre work on implementing prioritisechulti-way synchronisation

that can be used in any context will overcome many of these problems.

A question is raised however on whether this is the type of mobility of a process

that is required. Strong mobility (the ability to capture execution state at any point)
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is probably not requireéind may indeed be impracticadspecially as a process can
take any of its external connections (channels) with it amigrates and alting on

every possible event incurs an overhead. CSP processes are generally defined by
their external behaviour, so it is possible for a process to move at any point without
concern over whether it behaves as expected. The only external communications to
a process to consider are channels connected to the local execution environment.

In other words, it is possible to limit the type of mobility to constrained mobility.
Constrained mobility allows migration with execution state, but only at certain well
defined sate points. Ensuring that an entire process network does shutdown
correctly prior to migration is therefore still considered difficult from this point of

view.
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In this chapter, final conclusions are drawn from the work preed in the rest of
this thesis, and some future work presente8ection9.1 discusses the suitability of
JCSP Networking as a framework for Ubiquitous Computing, and Setfion
discusses mobilt within the context of JCSP Networking and Ubiquitous

Computing. Finally, Secti@y presents future work.

9.1 Suitability of JCSRetworkingfor Ubiquitous Computing

The major question askedas thesuitability of JCSP Netwonkj as a framework for
Ubiquitous Computing. There are a number of different facets of JCSP Networking
that have been examined, in particular towards performance in a more resource
constrained environment than JCSP Networking was originally designedriom

the examination of the original architecture @hapter 3and the experimental data
presented inChapter 4it can be judged that the original implementation of JCSP
Networking had some fair pfarmance characteristics, providing throughput on a

PDA similar to the throughput from the underlying network connection.

Other features available or easily implemented within JCSP Networking also
promote possible usage within the context of Ubiquitous @atmg. In particular,
Ubiquitous Computing requires a sense of adaptability and dynamic interactions
which are possible in JCSP Networking utilising channel mobility and code mobility.
The partially transparent interface between networked and local rext@on
provided by the channel mechanism within JCSP Networking allow much of this
dynamic architecture to be implemented either locally or remotely, thus increasing
the usefulness of theyhamic architectures beyond what tllava object model can

provide
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However, the original implementation of JCSP Networking had some issues when
considering some of the other requirements of Ubiquitous Computing
architectures, particularly when considering more resource constrained and

heterogeneous application areas.

9.1.1 Problems with the Current Implementation

Chapter 2uncovered a number of properties that adesirablewithin a Ubiquitous
Computing framework, beyond the dynamic architectures that mobility helps to
support. To examine the prédms within the original JCSANetworking
implementation, somef these prgerties are returned tand examined within the
context of Ubiquitous Computing. Other issues relating to these properties are also

examined individually.

9.1.1.1Interoperability

A key fedure of Ubiquitous Computing is a sense of interoperability between
numerous, heterogeneous platformsAny feature of a framework that reduces
inter-platform communication should be considered as a serious problem when
considering Ubiquitous Computing. itW JCSP Networking, such a problem exists
with the heavy reliance on object serialization, which makes ir@nework

communication difficult

The main problem when considering interoperability and JCSP Networking is the
usage of objects to describe meges. As these objects are serialized upon the
outgoing stream, any framework wishing to communicate with JCSP Networking
requires a method to interpret these object message headers. Although this can be
built into a framework, it would require extra cquatational resources to do so.

Not every version of Java supports object serialization and thus there is even a

limitation for crossJava communication.

Another issue relating to the reliance on object serialization is that data sent
between two communicing systems within JCSP must be a Java object. This again
requires other communicating platforms to be able to interpret serialized Java

objects to allow communicationThis limitation can be circumvented by converting
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the data to be sent into a byte &y, and providing the receiving framework the
ability to strip the object header for the byte array, and reconstruct the data as
required. Thigequires extra functionality and computation, and limits the overall

interoperability between heterogeneousadmeworks.

For ubiquity between frameworks, a ubiquitous protocol is required that enables
the communication functionality within JCSP Networking to be replicated. The
protocol should not be locked into a particular platform, but should permit inter
platform communication. Thus, data transfer becomes the key problem, unless a
well defined data transfer mech&m is likewise developed. Common data transfer
negates the usage of common data structures usually implemented in Java (i.e.
cyclic graphs) as notldrameworks will allow such complex data structures. This
problem is therefore hard, due to the different data structures and encoding
mechanisms in place. The usage of existing data transfer techniques such as XML
may overcome this problem somewhat,utbthis will reduce communication
performance and require a greater amount of computational resources to achieve.

On resource constrained devices, this will cause a problem.

In general, interoperability between diverse frameworks is hampered by the sole
reliance within the original implementation of JCSP Networking on Java object
serialization. Any such reliance on a specific framework feature is to be avoided

whenever possible, and thus Java object serialization must be avoided.

9.1.1.2Performance

The performace of JCSP Networking from a communication viewpoint is not far
removed from the bare network communication mechanism on a small device. The
experimental data presented has shown that a PDA performs at close to optimum
throughput for large data sizes. &her data sizes show a performance reduction,
but this is largely due to the extra message overhead in the original implementation
of JCSP Networking, and the synchronisation that occurs when using a standard

networked channel.

However, serialization onnsall devices can reduce throughput due to the extra

computation time required to convert a Java object into an array of bytes. For
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sufficiently complex objects, performance can drop significantly. Thus, serialization
should be avoided whenever possibléhroughput igoound by the (de)serialization
performance ofthe PDA used within the experiments presented, and therefore
removing serialization will increase performance for basic communication. This
argument against the usage of Java serialization imllseevices leads to the

j dzZSadAz2y 2F WIH @I Qa dzl3aS Ay 3ISYSNIf
constrained frameworks. the sending ofobject databetween two small devices
should beavoided then applications can be developed odtsiJava. Thushe
general argument that Java supports Ubiquitous Computing due to its ubiquity

across platforms is weakened.

The bounding of the performance of object message communication by serialization
may appear initially as incorrect. However, the performance attaristics of the

PC and PDA show that serialization performance is within the bounds of the
variance between the two devices. Thus, it can be deemed that serialization time is
the largest contributor to object communication within the experimental

framework.

Serialization does not appear to be related to object creation time. Object creation
time is related to the amount of memory required for the object, and is thus based
on memory allocation time. Serialization, and in particular deserializatiorylého
also be related to memory allocation time as the object must bereated. On

small devices, this does not appear to be the case. The JVM utilised on the PDA
within the experiments showed serialization performance below both 1/O

throughputof the network, and object creation time.

9.1.1.3Resource Usage

Except for the reliance on Java serialization within the originplementation of
JCSP Networkingnd the problems this causes, the major issue when considering
JCSP Networking within Ubiquitous Computimyienments is the high resource
usage. The number of created processes within the original JCSP Networking
architecture limits the usage of JCSP Networking on resource constrained devices.

Numerous processes were spawned to service the architecture sahdequently
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this caused a limitation on the usage of JCSP Networking for large scaled,
distributed systems with numerousmalldevices. Some processes were spawned
and subsequently destroyed dag connection between devices, amkis process
could alsooccur when a connection between the two devices already existed.
Considering the limitedesources on small devices, temporary process creation

could cause the application to run out of memory.

Considemg JCSP as a whole, it is arguahlgt any requirenent of Ubiquitous
Computing on Java islimitation. A JVM requires extra resources to operate, and
for the smallest scale devices this will likely negate the possibility of running Java
and subsequently JCSP. Therefore, if the fundamental ideas ofaldSFCSP
Networking are of importace, then the requirement is to replicate theddeas

within other frameworks but allow interaction with JCSP Networking.

9.1.1.4System Overhead

Within the original implementation of JCSP Networking, system overhead is a
problem  Throughput performance is reasonable, but resource usage is high.
Another factor is the high priority given to I/O operations, which can lead to
computation being starved of resources as 1/O is serviced. This may or may not be
an issue depending on¢happlication context. However, the inability to modify this
property causes a limitation. It has been shown that it is possible to flood a small
device with messages, and thus break an application. Although the experimental
data gathered utilises funinality within JCSP Networking which should not be
used in such a manner, the same outcome could occur by having multiple fast

devices communicating to a single slow device.

9.1.1.5Scalability

An important characteristic of Ubiquitous Computing is the sense aales
envisioned within such environments. From the observations of resource usage and
system overhead within the original implementation of JCSP Networking, it can be
argued that scalability is a problem. #s number ofinter-device connections
increa®, and likewise the abstractions used to communicate within those devices

increases in number, resource usage and system overhead will increBee.
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Ubiquitous Computing scenarios, JCSP Networking is unlikely to be useful for larger

scaled applications.

9.1.1.6Sability

JCSP Networking suffers from a number of stability problems. In particular, poor
error handling within the underlying architecture causes a problem for error prone
applications. Within Ubiquitous Computing, error handling is seen as a keydeatur
and JCSP Networking cannot provide a reliable level of error protection. Ubiquitous
Computing environments envision numerous small devices interacting together,
and these devices may fail. As user interaction is considered to be minimal and
abstracted it is unlikely that these devices can be easily reset. The main issue with
JCSP Networking when considered in such a context is that a device failing could
cause another device to fail due to the poor error handling to detect the
disconnection of the dace. This could spread across an entire Ubiquitous

Computing environment.

Another stability problem relates to the high priority 1/0. It has been shown that a
device can be caused to fail dueftooding as I/O is serviced whilbe application
cannot atually complete the I/O operation, thus leading to the internal buffering

increasing beyond the capabilities of the device.

9.1.1.7Accessibility and Extensibility

A key problem with JCSP Networking, related to many of the issues discovered
when considering JC®etworking in the context of Ubiquitous Computing, is the
accessibility and extensibility of the architecture. The tightly coupled
implementation leads to difficulties when attempting to add new features to JCSP
Networking, or extend upon existing featw.e This leaslto extensions being built
using existing abstractions, and it has been shown that the existing architecture
utilises numerous resources to achieve these abstractions. If extensions are built
upon the existingorimitives then required resorces for these extensions will also

be high.






