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ABSTRACT

Quantum dots (QDs) are potentially advantageous tools for both diagnostics and therapeutics due to their light emitting characteristics.  The impact of QDs on biological systems however, is not fully understood.  The aim of this project therefore, was to investigate the interaction of a series of different surface modified QDs with macrophages and their subsequent toxicity.  CdTe/CdSe (core), ZnS (shell) QDs with either an organic, COOH or NH2 polyethylene glycol (PEG) surface coating were used.  Fluorescent COOH polystyrene beads (PBs) at (Ø) 20nm and 200nm were also studied.  J774.A1 murine ‘macrophage-like’ cells were treated for two hours with QDs (40nM) or PBs (50μg.ml-1) in the presence of 10% FCS prior to assessment of cellular uptake via confocal microscopy and flow cytometry.  COOH and NH2 (PEG) QDs, as well as 20nm and 200nm PBs entered macrophages within 30 minutes, and were found to locate within endosomes, lysosomes and the mitochondria.  T.E.M. also illustrated particles, including organic QDs, to be present inside J774.A1 cells within membrane-bound vesicles at two hours.  Organic QDs were unable to be visualised via fixed cell confocal microscopy.  Live cell confocal microscopy (without 10% FCS) did suggest however, that organic QDs entered cells in low quantities up to 30 minutes, after which fluorescence declined.  Particle toxicity was determined over 48 hours via the MTT, LDH and GSH assays, as well as via assessment of their potential to produce the pro-inflammatory cytokine TNF- and effect cytosolic Ca2+ signalling in J774.A1 cells.  Organic QDs were found to be highly toxic at all time points and concentrations used.  Both COOH QDs and NH2 (PEG) QDs induced significant (p<0.0001) cytotoxicity (MTT and LDH assays) at 80nM after   48 hours, as well as significant (p<0.01) GSH depletion over 24 hours at all doses, as well as increasing the level of cytosolic Ca2+ at 40nM when assessed over 30 minutes.  Organic and NH2 (PEG) QDs were found to significantly increase TNF- production after 24 hours at 80nM.  The findings of this study demonstrate that QDs differ in their uptake by macrophages according to their surface coating, with the organic surface coated QDs being the most toxic. At sub-lethal concentrations, in the presence of 10% FCS, the COOH and NH2 (PEG) QDs are taken up resulting in GSH depletion and modulated Ca2+ signalling, with NH2 (PEG) QDs and organic QDs only eliciting limited TNF- production.  Interestingly however, despite these observations, QD surface coating does not affect the intracellular fate of these NPs, with all of the different surface coated QDs observed to be present within endosomes, lysosomes and the mitochondria within J774.A1 macrophage cells.  Therefore, in conclusion, the surface coating of QDs plays a significant role in their interaction with macrophages, their uptake and their subsequent toxicity. 
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152

image of 20nm PB and 200nm PB (50µg.ml-1) 

particle only controls.

Figure 4.7d: Transmission electron microscopy (T.E.M.) 

154

images of J774.A1 cells treated with complete 

medium only and organic QDs (40nM) at two hours.

Figure 4.7e: Transmission electron microscopy (T.E.M.)

155

images of J774.A1 cells treated with COOH QDs 

and NH2 (PEG) QDs (40nM) at two hours.

Figure 4.7f: Transmission electron microscopy (T.E.M.) 

156

          images of J774.A1 cells treated with 20nm PBs and 

          200nm PBs (50µg.ml-1) at two hours.  
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4. Chapter Four (continued):
Figure 4.8a: Scanning electron microscopy (S.E.M.) images 

158

of J774.A1 cells treated with complete medium only, 
organic QDs, COOH QDs and NH2 (PEG) QDs (40nM) 

at 30 minutes.  

Figure 4.8b: Scanning electron microscopy (S.E.M.) images 
159

of J774.A1 cells treated with complete medium only, 

20nm PBs and 200nm PBs (50µg.ml-1) at 30 minutes.  

Figure 4.8c: Scanning electron microscopy (S.E.M.) images 

160

of J774.A1 cells treated with complete medium only, 
organic QDs, COOH QDs and NH2 (PEG) QDs 

(40nM) at two hours.  

Figure 4.8d: Scanning electron microscopy (S.E.M.) images 
161

of J774.A1 cells treated with complete medium only,

20nm PBs and 200nm PBs (50µg.ml-1) at two hours.  

Figure 4.8e: Scanning electron microscopy (S.E.M.) images

162

of J774.A1 cells treated with complete medium only, 
organic QDs, COOH QDs and NH2 (PEG) QDs (40nM) 

at 24 hours.  

Figure 4.8f: Scanning electron microscopy (S.E.M.) images
163

          of J774.A1 cells treated with complete medium only 

          20nm PBs and 200nm PBs (50µg.ml-1) at 24 hours.  
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4. Chapter Four (continued):
Table 4.4a:  Changes in the mean zeta potential (mV) of 

165

                     organic, COOH and NH2 (PEG) QDs (40nM), 

          as well as both 20nm and 200nmPBs (50µg.ml-1) 

                     at pH 4.0 in the presence of 10% FCS.

Table 4.4b: Changes in the mean zeta potential (mV) of 

166

         organic, COOH and NH2 (PEG) QDs (40nM), 

         as well as both 20nm and 200nmPBs (50µg.ml-1) 

         at pH 4.0 in the absence of 10% FCS.
5. Chapter Five:
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‘Quantum dot cytotoxicity in vitro: A comparison of the cytotoxic effects of different quantum dot surface coatings and their chemical components’
Figure 5.1a: MTT absorbance of J774.A1 cells treated

180

with either complete medium only or 

20nm PBs (50µg.ml-1) in the presence of 
10% FCS at two hours.  
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5. Chapter Five (continued):
Figure 5.1b: MTT absorbance of J774.A1 cells treated 

181

with either complete medium only or 

20nm PBs (50µg.ml-1) in the absence of 
10% FCS at two hours.

Figure 5.2a: The effects of organic, COOH and NH2 (PEG) QDs 
182

(20, 40 and 80nM) on the metabolic activity 
(MTT assay) of J774.A1 cells at two hours.  

Figure 5.2b: The effects of organic, COOH and NH2 (PEG) QDs 
183

(20, 40 and 80nM) on the metabolic activity 

(MTT assay) of J774.A1 cells at four hours. 

Figure 5.2c: The effects of organic, COOH and NH2 (PEG) QDs 
184

(20, 40 and 80nM) on the metabolic activity 

(MTT assay) of J774.A1 cells at 24 hours.

Figure 5.2d: The effects of organic, COOH and NH2 (PEG) QDs 
185

(20, 40 and 80nM) on the metabolic activity 

(MTT assay) of J774.A1 cells at 48 hours.

Figure 5.3a: Percentage LDH release from J774.A1 cells 

186

treated with organic, COOH and NH2 (PEG) QDs 

(20, 40 and 80nM) at two hours.
Figure 5.3b: Percentage LDH release from J774.A1 cells 

187

treated with organic, COOH and NH2 (PEG) QDs 
(20, 40 and 80nM) at four hours.
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5. Chapter Five (continued):
Figure 5.3c: Percentage LDH release from J774.A1 cells 

187

treated with organic, COOH and NH2 (PEG) QDs 
(20, 40 and 80nM) at 24 hours.  

Figure 5.3d: Percentage LDH release from J774.A1 cells 

188

treated with organic, COOH and NH2 (PEG) QDs 
(20,40 and 80nM) at 48 hours.  
Figure 5.4a: The effects of 20nm PBs (12.5-100µg.ml-1) 

189

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of 
J774.A1 cells at two hours.  

Figure 5.4b: The effects of 20nm PBs (12.5-100µg.ml-1) 

190

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of 
J774.A1 cells at four hours.  

Figure 5.4c: The effects of 20nm PBs (12.5-100µg.ml-1) 

191

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of 
J774.A1 cells at 24 hours.

Figure 5.4d: The effects of 20nm PBs (12.5-100µg.ml-1) 

192

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of 
J774.A1 cells at 48 hours.  

Figure 5.5a: Percentage LDH release from J774.A1 cells treated 
193

with 20nm PBs (12.5-100µg.ml-1) either in the 

presence or absence of 10% FCS at two hours.
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5. Chapter Five (continued):
Figure 5.5b: Percentage LDH release from J774.A1 cells treated 
194

with 20nm PBs (12.5-100µg.ml-1) either in the 

presence or absence of 10% FCS at four hours.
Figure 5.5c: Percentage LDH release from J774.A1 cells treated 
194

with 20nm PBs (12.5-100µg.ml-1) either in the 

presence or absence of 10% FCS at 24 hours.  
Figure 5.5d: Percentage LDH release from J774.A1 cells 

195

treated with 20nm PBs (12.5-100µg.ml-1) either 

in the presence or absence of 10% FCS at 

48 hours.

Figure 5.6a: The effects of 200nm PBs (12.5-100µg.ml-1) 

197

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of 
J774.A1 cells at two hours.
Figure 5.6b: The effects of 200nm PBs (12.5-100µg.ml-1) 

198

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of          

J774.A1 cells at four hours.  

Figure 5.6c: The effects of 200nm PBs (12.5-100µg.ml-1) 

199

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of           

J774.A1 cells at 24 hours.  
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5. Chapter Five (continued):
Figure 5.6d: The effects of 200nm PBs (12.5-100µg.ml-1) 

200

either in the presence or absence of 10% FCS 

on the metabolic activity (MTT assay) of          

J774.A1 cells after 48 hours.

Figure 5.7a: Percentage LDH release from J774.A1 cells 

201

treated with 200nm PBs (12.5-100µg.ml-1) either 

in the presence or absence of 10% FCS at 

two hours.  
Figure 5.7b: Percentage LDH release from J774.A1 cells 

202

treated with 200nm PBs (12.5-100µg.ml-1) either 

in the presence or absence of 10% FCS at 

four hours.
Figure 5.7c: Percentage LDH release from J774.A1 cells 

202

treated with 200nm PBs (12.5-100µg.ml-1) either 

in the presence or absence of 10% FCS at 

24 hours.
Figure 5.7d: Percentage LDH release from J774.A1 cells 

203

treated with 200nm PBs (12.5-100µg.ml-1) either 

in the presence or absence of 10% FCS at 

48 hours.
Figure 5.8a: The effects of QD chemical components; 

206

 organic solvent vehicle mixture (O.S.), ZnS and 
 CdCl2; at 20, 40 and 80nM on the metabolic activity 
 (MTT assay) of  J774.A1 cells at two hours.  
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5. Chapter Five (continued):
Figure 5.8b: The effects of QD chemical components; 

207

 organic solvent vehicle mixture (O.S.), ZnS and
 CdCl2; at 20, 40 and 80nM on the metabolic activity
 (MTT assay) of J774.A1 cells at four hours.

Figure 5.8c: The effects of QD chemical components; 

208

 organic solvent vehicle mixture (O.S.), ZnS and

 CdCl2; at 20, 40 and 80nM on the metabolic activity 

 (MTT assay) of J774.A1 cells at 24 hours. 
Figure 5.8d: The effects of QD chemical components; 

209

 organic solvent vehicle mixture (O.S.), ZnS and 
 CdCl2; at 20, 40 and 80nM on the metabolic 
 activity (MTT assay) of J774.A1 cells at 48 hours.  

Figure 5.9a: Percentage LDH release from J774.A1 cells 

211

 
          following treatment with QD chemical components; 
          organic solvent vehicle mixture (O.S.), ZnS 

                     and CdCl2; at 20, 40 and 80nM at two hours.

Figure 5.9b: Percentage LDH release from J774.A1 cells 

212

following treatment with QD chemical components; 
organic solvent vehicle mixture (O.S.), ZnS 

and CdCl2; at 20, 40 and 80nM at four hours.

Figure 5.9c: Percentage LDH release from J774.A1 cells 

213

following treatment with QD chemical components; 
organic solvent vehicle mixture (O.S.), ZnS 

and CdCl2; at 20, 40 and 80nM at 24 hours.
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5. Chapter Five (continued):
Figure 5.9d: Percentage LDH release from J774.A1 cells 

214

following treatment with QD chemical components; 
organic solvent vehicle mixture (O.S.), ZnS 

and CdCl2; at 20, 40 and 80nM at 48 hours.

Figure 5.10: Light microscopy images of J774.A1 cells treated 
216

with QD chemical components; organic solvent 

vehicle mixture (O.S.), ZnS and CdCl2; at 40nM 
at 2 hours and stained with Romanovski staining 

solution.  

Figure 5.11: Rate of ZnS precipitation in complete medium 

217

over 2 hours. 

6. Chapter Six:
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‘An investigation into the potential for different surface coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro’

Figure 6.1: Example fluorimeter trace reading of J774.A1 

233

        cytosolic Ca2+ following treatment with organic QDs 
                   (40nM), as determined via the use of the fluorescent 
        calcium chelator Fura 2-AM.
Figure 6.2a: GSH.protein-1 levels in J774.A1 cell extracts 

237

after treatment with organic, COOH and 

NH2 (PEG) QDs for two hours.
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6. Chapter Six (continued):
Figure 6.2b: GSH.protein-1 levels in J774.A1 cell extracts 

237

after treatment with organic, COOH and 

NH2 (PEG) QDs for four hours.  

Figure 6.2c: GSH.protein-1 levels in J774.A1 cell extracts 

238

after treatment with organic, COOH and 

NH2 (PEG) QDs for six hours.  

Figure 6.2d: GSH.protein-1 levels in J774.A1 cell extracts 

238

after treatment with organic, COOH and 

NH2 (PEG) QDs for 24 hours.  

Figure 6.3a:  GSH.protein-1 levels in J774.A1 cell extracts 

240

after treatment with 20nm PBs either in the 

presence or absence of 10% FCS for two hours.  

Figure 6.3b: GSH.protein-1 levels in J774.A1 cell extracts 

240

after treatment with 20nm PBs either in the 

presence or absence of 10% FCS for four hours.  

Figure 6.3c: GSH.protein-1 levels in J774.A1 cell extracts 

241

after treatment with 20nm PBs either in the 

presence or absence of 10% FCS for six hours.
Figure 6.3d: GSH.protein-1 levels in J774.A1 cell extracts 

241

after treatment with 20nm PBs either in the 

presence or absence of 10% FCS for 24 hours.  

Figure 6.4a: GSH.protein-1 content in J774.A1 cell extracts 

243

after treatment with 200nm PBs either in the 

presence or absence of 10% FCS for two hours.
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6. Chapter Six (continued):
Figure 6.4b: GSH.protein-1 content in J774.A1 cell extracts

244

after treatment with 200nm PBs either in the 

presence or absence of 10% FCS for four hours.  

Figure 6.4c: GSH.protein-1 content in J774.A1 cell extracts

245

after treatment with 200nm PBs either in the 

presence or absence of 10% FCS for six hours.

Figure 6.4d: GSH.protein-1 content in J774.A1 cell extracts 

246

after treatment with 200nm PBs either in the 

presence or absence of 10% FCS for 24 hours.

Figure 6.5a: Cytosolic Ca2+ concentration (nM) of J774.A1 cells 
247

following treatment with organic, COOH and 
NH2 (PEG) QDs for 30 minutes.  

Figure 6.5b: Cytosolic Ca2+ concentration (nM) of J774.A1 cells 
248

following treatment with 20nm PBs, 200nm PBs, 

ufCB and CB for 30 minutes.  

Figure 6.6a: Thapsigargan response of J774.A1 cells following 
249

treatment with organic, COOH and NH2 (PEG) QDs 

for 30 minutes.  

Figure 6.6b: Thapsigargan response of J774.A1 cells following 
249

treatment with 20nm PBs, 200nm PBs, ufCB and CB 

for 30 minutes.  
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6. Chapter Six (continued):
Figure 6.7a: Cytosolic Ca2+ concentration of cells treated with 
250

the antioxidant TROLOX (25µM) for 30 minutes 

prior to treatment with organic COOH and 

NH2 (PEG) QDs for an additional 30 minutes.  

Figure 6.7b: Cytosolic Ca2+ concentration of cells treated with 
251

the antioxidant Na-cystelyn (400µM) for 30 minutes 

prior to treatment with organic COOH and 

NH2 (PEG) QDs for an additional 30 minutes. 

Figure 6.8: Stimulation of the pro-inflammatory cytokine TNF- 
252

detected in J774.A1 cell supernatants after treatment 

with organic, COOH and NH2 (PEG) QDs at 24 hours.
Figure 6.9a: Stimulation of the pro-inflammatory cytokine TNF- 
253

detected in J774.A1 cell supernatants after treatment 

with 20nm PBs either in the presence or absence of 

10% FCS at 24 hours.  

Figure 6.9b: Stimulation of the pro-inflammatory cytokine TNF- 
254

detected in J774.A1 cell supernatants after treatment 

with 200nm PBs either in the presence or absence of 

10% FCS at 24 hours.  

APPENDICES

Appendix







        Page
Appendix One: 
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lactate dehydrogenase (LDH) activity in 

     
particulate treated J774.A1 cells 

Appendix Two: 
The ‘Smoluchowski’ Equation
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Appendix Three: 
Standard solutions used for assessment of
301

 

     
reduced glutathione (GSH) levels in 

     
particulate treated J774.A1 cells
Appendix Four: 
Standard solutions used for assessment of 
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oxidised glutathione (GSSG) levels in 
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�Should I mention here about other possible parameters that could affect QD interaction with macrophages?
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