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Abstract
The Parallel Coordinates Plot (PCP) is a popular technique for the exploration of high-dimensional data. In many cases,
researchers apply it as an effective method to analyze and mine data. However, when today’s data volume is getting larger,
visual clutter and data clarity become two of the main challenges in parallel coordinates plot. Although Arc Coordinates Plot
(ACP) is a popular approach to address these challenges, few optimization and improvement have been made on it. In this paper,
we do three main contributions on the state-of-the-art PCP methods. One approach is the improvement of visual method itself.
The other two approaches are mainly on the improvement of perceptual scalability when the scale or the dimensions of the data
turn to be large in some mobile and wireless practical applications. 1) We present an improved visualization method based on
ACP, termed as double arc coordinates plot (DACP). It not only reduces the visual clutter in ACP, but use a dimension-based
bundling method with further optimization to deals with the issues of the conventional parallel coordinates plot (PCP). 2)To
reduce the clutter caused by the order of the axes and reveal patterns that hidden in the data sets, we propose our first dimensional
reordering method, a contribution-based method in DACP, which is based on the singular value decomposition (SVD) algorithm.
The approach computes the importance score of attributes (dimensions) of the data using SVD and visualize the dimensions from
left to right in DACP according the score in SVD. 3) Moreover, a similarity-based method, which is based on the combination of
nonlinear correlation coefficient and SVD algorithm, is proposed as well in the paper. To measure the correlation between two
dimensions and explains how the two dimensions interact with each other, we propose a reordering method based on non-linear
correlation information measurements. We mainly use mutual information to calculate the partial similarity of dimensions in
high-dimensional data visualization, and SVD is used to measure global data. Lastly, we use five case scenarios to evaluate the
effectiveness of DACP, and the results show that our approaches not only do well in visualizing multivariate dataset, but also
effectively alleviate the visual clutter in the conventional PCP, which bring users a better visual experience.

Keywords PCP . Arc-based parallel coordinate plot . Double arc coordinate plot . Visualization . Dimension-based bundling
layout . SVD .Mutual information . Nonlinear correlation coefficient

1 Introduction

Parallel Coordinates Plot (PCP) is a simple but strong geomet-
ric high-dimensional data visualization method [1–3], which
represents N-dimensional data in a 2-Dimensional space with
mathematical rigorousness. This approach has been

extensively adopted for visualizing both high dimensional
dataset and multivariate dataset [4, 5]. Some approaches have
been proposed to improve the legibility of parallel coordinates
plot [6]. As the increasing of the number of axes or scale of
data items, clutter would come out in the layout. Then dimen-
sional reordering in parallel coordinates was proposed to re-
duce the clutter by revealing patterns that hidden in the layout
before [13]. Either reducing the clutter produced by the mul-
tiplicity of overlapping and crossing lines, or enhancing their
patterns. One of these alternatives is to change the shape of the
axes. Rather than using the traditional line segments as the
coordinate axes, the paper used the segments of curve to re-
place them. As we all know, in the same coordinates system,
such as Cartesian coordinates system, the length of arc is lon-
ger than the length of the line segments. So it can visualize
much more data items in the same screen space.

* Zhiyuan Tan
z.tan@napier.ac.uk

1 School of Mathematics, Tianjin University, Tianjin, People’s
Republic of China 300072

2 SIST, ShanghaiTech University, Shanghai, People’s Republic of
China 200120

3 School of Computing, Edinburgh Napier University,
Edinburgh EH10 5DT, UK

https://doi.org/10.1007/s11036-019-01455-9

Published online: 8 January 2020

Mobile Networks and Applications (2020) 25:1376–1391

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-019-01455-9&domain=pdf
http://orcid.org/0000-0001-5420-2554
mailto:z.tan@napier.ac.uk


However, the existing PCP method lacks the ability to vi-
sualize data distribution and also supports a low quality of
displaying effect. Moreover, using PCP becomes challenging
as the number of data items grows larger and quicker. The
visualizing results always cause line occlusion, line ambiguity
and hidden information. Therefore, as the increasing of the
number of axes or scale of data items, clutter would come
out in the layout. Therefore, in this paper, we do three main
contributions on the state-of-the-art PCP methods. One ap-
proach is the improvement of visual method itself. The other
two approaches are mainly on the improvement of perceptual
scalability when the scale or the dimensions of the data turn to
be large in some mobile and wireless practical applications.

Based on the ACP method, we propose an improved visu-
alization method, double arc coordinates plot (DACP) firstly.
We use a pair of axes composed by two back-to-back arc axes
to represent one axis in the conventional PCP. Inside the two
arc axes, we use line segments to connect adjacent pair of axes
to show observation points. Therefore, the data distribution
information on each coordinate axes can be clearly displayed
by the internal link of each pair of axes. Moreover, we propose
a bundling method to optimize the display effect, which is
based on dimensions. Each dimension takes each pair of co-
ordinate axes as the basis and bundles the close lines with
similar tendencies. In addition, we use a layout of filling the
bundled lines with various transparency to know the number
of lines in each bundle. The transparency is computed by the
number of bundled lines, and all bundles are filled according
to their values. Users can learn the amounts of each bundle of
lines from the depth of their colors.

Independent of the orientation, the order of axes affects the
visual patterns greatly. Therefore, we propose two rational
dimension reordering methods to support data visual analytics
in DACP. Firstly, a method to re-order axes (or dimensions) is
developed on the basis of the singular values decomposition
(SVD). The axes are re-organized and visualized as double arc
parallel coordinates from left to right according to their con-
tribution rates, which are calculated by the contribution of
each dimension. This helps to find out the optimal order of
axes in a short time period. Secondly, a similarity-based
reordering method is presented in DACP. This method is in-
spired by Person‘s Correlation Coefficient (PCC), and is a
combination of a Nonlinear Correlation Coefficient (NCC)
and SVD algorithm. The method is not only more rational
than the current PCC method in theory but also significantly
improves the quality of multidimensional visualization in
terms of effectiveness and correctness.

This paper is organized as follows: we first present previ-
ous works on existing enhancements in PCP and researches
on dimension reordering in high-dimensional data visualiza-
tion (Section 2). Then, we describe the double arc coordinate
method theoretically in the novel coordinates system and de-
scribe the bundling layout based on dimension in our

approach (Section 3). In Section 4, we introduce how the
two dimensions reordering approaches are working. The ex-
perimental evaluation is explored in Section 5. Finally, in
Section6 we draw conclusions and present directions for fu-
ture work.

2 Related works

2.1 Rationale of PCP

Parallel coordinates plot is proposed firstly by Inselberg [2] in
1985, and later in 1990 Wegman [7] applied it in hyper-
dimensional data analysis. Here is the method details: A point
P in a Cartesian system can be mapped into the joining P1(0,
a) toP2(1,ma + b) in the parallel coordinates; two points lying
on the line L in the Cartesian coordinate plane given by L:y =
mx + b can bemapped into two lines in parallel coordinates, as
shown in Fig. 1. And the two lines intersect at a point
M b

1−m ;
1

1−m

� �
, where m ≠ 1. Therefore, a 2-dimensional plane

with parallel axes connected by linear segments can represent
the coordinates of N-dimensional data. According to the the-
ory of duality property [6] between two different coordinates,
the parallel coordinates’ visualization possesses some pleasant
duality properties through the usual representation of
Cartesian orthogonal coordinates.

Although the visualization system displays data without
losing any features, the PCP also suffers from numerous chal-
lenges [8]. We focus on crowed dimensions and Dimension
Layout.

2.2 Improvements on PCP

One of the most important technical challenges with Parallel
Coordinates Plot is Crowed Dimensions. As the volume of
datasets and the number of dimensions are increased, the
edges are cluttered and overlapping lines obscure patterns.
Several enhancements have been proposed to resolve this
problem [9]. The majority of these approaches can be placed
into one of three categories: line-based approaches, axes-
based approaches and external approaches.

2.2.1 Line - based approaches

Line-based approaches represent changing the attributes of
lines to reduce visual clutter, such as changing line colors,
densities or shapes. For example, Huh et al. [10] proposed
an enhanced PCP which has proportionate spacing between
variables. The data points were connected by “near smooth”
curves rather than straight lines; Zhou et al. [11] also exploited
curve lines to form visual bundles for clusters in parallel co-
ordinates to reduce the visual clutter in clustered visualization.
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In our work, we present a bundling layout method based on
dimension bundling close lines with similar tendencies to re-
duce the visual clutter.

2.2.2 Axes – Based approaches

Axes-based approaches extend the axes of parallel coordi-
nates. Claessen et al. [4] developed flexible linked axes to
enable users to define and position coordinate axes freely;
and Tominski [12] proposed Axes-based techniques with ra-
dial arrangements of the axes, termed as TimeWheel and the
MultiComb. This method combined some conventional inter-
action techniques. With the combination between interaction
techniques and PCP, Hauser et al. [13] also designed an angu-
lar brushing technique to select data subsets which exhibit a
data correlation along two axes.These approaches enhanced
the quality of visualization to some extent. But the corre-
sponding extensions for the axes in PCP still focus on the line
segments between two adjacent axes.

To solve this problem, Huang M L et al. [6] proposed arc-
based parallel coordinate plots (ACP) using arc axes rather
than line segments as the coordinate axes to display much
more items in the same screen space. To strengthen the visu-
alization of high dimensional data, some studies on finding
better layouts in PCP have been proposed. For example, Wei
Peng et al. [14] defined visual clutter in parallel coordinates as
the proportion of outliers against the total number of data
points. They tried to use the exhaustive algorithm to find an
optimal axes order that can minimize the clutter in a display;
Mihael Ankerst et al. [15] also defined similarity measures
which determined the partial or global similarity of dimen-
sions. They argued that the reordering based on similarity
could reduce visual clutter and do some help in visual cluster-
ing; Almir Olivette Artero et al. [16] proposed a method based
on similarity to reorder and reduce dimension, called
Similarity-Based Attribute Arrangement (SBAA).

The main method of exploring new layouts is dimension
reordering. Most of recent dimension reordering methods are
established on the basis of Pearson’s Correlation
Coefficient(PCC). However, from the statistics point of view,
PCC is taken as a method for only measuring the linear cor-
relation between two random variables. It is not sufficient to
reorder dimensions in similarity if only depends on the calcu-
lation of PCC.

Most similar to our method, Aritra Dasgupta et al. [17]
developed Pargnostics, a screen-space metrics for parallel co-
ordinates. They calculated for pairs of axes and took into
account the resolution of the display as well as potential axis
inversions. But the probability and joint probability during the
computational process were both denoted as their special axis
histograms, which lacked the support of mathematical theo-
ries. Moreover, it could be seen from the definition of the
mutual information that it did not range in a definite closed
interval as the correlation does, which ranges in [−1,1].

2.2.3 External approaches

External approaches represent involving supports from
methods other than parallel coordinates plot to uncover clut-
ters in crowed PCP. Such as: user preferences, clustering al-
gorithms and other existed visualization techniques. For ex-
ample, Dasgupta et al. [9] proposed a model based on screen-
space metrics, which is a way of automatically optimizing the
results; And Artero et al. [18] developed a frequency and
density plots for PCP; While Yuan et al. [19] combined the
parallel coordinate’s method with scatterplots directly with a
seamless transition between them.

Therefore, we make a further improvement and propose a
novel axis system in parallel coordinates visualization, termed
as double arc coordinate plots (DACP). Comparing with the
ACP, our method not only retains the integrity of all advan-
tages the ACP has, but also displays the distribution

Fig. 1 a The Cartesian system (b)
The parallel coordinates
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information of data items in each pair of coordinate axes.
Moreover, two efficient methods for dimensions reordering
are proposed. One is contribution-based reordering, based on
SVD algorithm, which can not only provide theoretical sup-
port for the selection of the first dimension, but also visualize
the clear and detailed structure of the dataset with contribution
of each dimension; the other is similarity-based reordering
method, which is based on combination of NCC and SVD
algorithms. Dimensions are reordered in line with the degree
of correlations among dimensions. This method is more ratio-
nal, exact and systemic than the traditional methods. And the
combination of this reordering method and DACP makes vi-
sualization efficiency better than it works with PCP.

3 Double arc coordinate plot model

3.1 Double arc coordinate system

Asmentioned in literature [4], we also involve arcs of circle to
replace the original coordinate axes. The purpose is using a
longer length segment to replace line segment according to the
requirements of displaying more data items, and to remain
better geometric structure of some circular datasets.

To further describe the double arc coordinate system, we
define the origin as point (0,0) to ensure the generality, which
is also the center of the first axis in PCP, marked as point O,
displayed in Figure 2. If we consider the length of each axis is
1, a horizontal line in PCP divides all axis into two equal line
segments vertically, so the distance of axis X1and axis X2 is 3

2;
in addition, we argue that the distance between two axis X1and
X2 is 3

2.
As our PCP system is using arcs to replace lines, as shown

in Fig. 2, a vertical axis is replaced by two arcs, a left arc and a
right arc. Specifically, the left arc is generated by a circle,

which the center point is O1 − 3
4 ; 0

� �
, the radius is

ffiffi
2

p
2 ; While

the right arc is generated by a circle with the center point is

O2
3
4 ; 0
� �

, and the radius is the same as the radius of the left

arc, which is
ffiffi
2

p
2 . So we calculate that the position of upper end

point of axes X1 and X2 are 0; 12
� �

and 3
2 ;

1
2

� �
respectively.

Therefore, the shortest distance between two arc axes is

(32−
ffiffiffi
2

p
), and the longest distance is 1

2.
Based on the calculation formula of the Euclidean distance

between two points of the plane with Cartesian coordinates,
the equations of the left and right arc of the first pair of axis

can be denoted as xþ 3
4

� �2 þ y2 ¼ 1
2 and x− 3

4

� �2 þ y2 ¼ 1
2

respectively. And so on, the equation of the left of i-th pair

of arc-arc-axes can be termed as xþ 3
4−

3
2 i

� �2 þ y2 ¼ 1
2,

where i = 0, 1, 2⋯n, n ∈N; and the right of i-th pair of arc-

axes can be termed as x− 3
4−

3
2 i

� �2 þ y2 ¼ 1
2, where i = 0, 1,

2⋯n, n ∈N.
To correctly transit information to the arcs, we obtain one to

one mapping between the Cartesian coordinates and double
arc coordinates. According to the above assumption, we take
the first pair of arc-axes as our projection example to explain
the mapping of vertices from PCP to DACP. Literature [6] has
mentioned that the extension rate of the axis length from PCP

to ACP is
ffiffiffiffi
2π

p
4 when compares PCP and ACP. So because in

this paper we use the same radius as literature [6], then the

extension rate is
ffiffiffiffi
2π

p
4 as well.

In Polarimetry, we know that for every two points in space
there is a straight line passing through them, and such a line is
unique. Therefore, in our visualization projection, when we
draw a line segment from point O1 to point A, defined as line
O1A, there will be only one intersection A1. And the Point A1

is also the only one point of the arc axis and line O1A.
Likewise, we can define another intersection A2. It is worth
noting that defining the intersection A1 as a projection of the
vertex A from PCP to DACP in a straightforward approach.
However, as there is an extension rate of the axis length from

PCP to DACP, which is
ffiffiffiffi
2π

p
4 , so we project A1 to A1‘in the arc

through utilizing the increment of the arc length. And we give

Fig. 2 The double arc coordinates
system
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details of the computation of increment of the arc length in the
following paragraphs.

To simplify the computational complexity, we study the
projection of vertices in the positive semi-axis OX1 of the
PCP and arc OM1 in Fig. 3. In fact, the result of the negative
semi-axis is the same as the result of the positive semi-axis.
The slope of line O1X1 is 2/3, while the angle of OM1 is
exactly half of the right angle, π/4. The length of the arc is

from
ffiffi
2

p
2 arctan

2
3 to

ffiffiffiffi
2π

p
8 . Its increment is π

4arctan23
. For all vertices

in the positive semi-axis, consider this increment as our ex-
tension rate. In addition, due to the symmetry of the axes in
PCP and DACP, we can refer to this extension rate as the
negative semi-axis. The explanation for this is shown in Fig. 3.

To summarize, there are two steps to build the projection
method when we project the point 3

2 i; y0
� �

in the (i + 1) − th
PCP axis to the left axis of the DACP.

The main formula is below:

F : 3
2 i; y0
� �

→ cosθffiffi
2

p þ 3
2 i−

3
4 ;

sinθffiffi
2

p
� �

;where θ ¼ πarctan 4
3y0ð Þ

4arctan23
:

In the first step, we use the following nonlinear system to
obtain the coordinates of the intersection between the line and
the arc.

y−y0 ¼
4

3
y0 x−

3

2
i

� �

xþ 3

4
−
3

2
i

� �2

þ y2 ¼ 1

2

8>><
>>:

ð1Þ

The A1
3
ffiffi
2

p

2
ffiffiffiffiffiffiffiffiffiffiffi
16y20þ9

p þ 3
2 i−

3
4 ;

2
ffiffiffiffiffi
2y0

pffiffiffiffiffiffiffiffiffiffiffi
16y20þ9

p
� �

coordinates can be

obtained from the above system.
In the second step, we use the extension rate π

4arctan23
as our

extension factor, and multiplies the arc length which starts
from the point 3

2 i; 0
� �

by the horizontal axis and ends with
the intersection coordinates. We can receive the final projec-
tion vertices of the original point 3

2 i; y0
� �

. To get the final

coordinates, we must associate the arc length with the coordi-
nate system. And we can have the following system:

y0cotθ ¼ x0 þ 3

4
−
3

2
i

xþ 3

4
−
3

2
i

� �2

þ y2 ¼ 1

2

8>><
>>:

ð2Þ

Finally, we get the result of projection cosθffiffi
2

p þ 3
2 i−

3
4 ;

sinθffiffi
2

p
� �

,

where θ ¼ πarctan 4
3y0ð Þ

4arctan23
.

Because the left axis and the right axis of the pair of double-
arc coordinates are on X1X1

‘symmetry. So for simplicity, we
give the conclusion for the right axis directly as follow:

The following function projects point 3
2 i; y0
� �

in the (i + 1)
− th PCP axis to the right axis of the DACP:

F: 3
2 i; y0
� �

→ − cosθffiffi
2

p þ 3
2 i−

3
4 ;

sinθffiffi
2

p
� �

, where θ ¼ πarctan 4
3y0ð Þ

4arctan23
.

3.2 Dimension-based bundling layout

3.2.1 Bundling layout

While dealing with large volume datasets, the conventional
PCP inevitably generates over-plotting. Overlapping lines be-
tween two adjacent axes greatly reduce the visualization ef-
fect. We address this problem by using dimension-based bun-
dling layout.

Bundling layout is an effective method for reducing the
visual clutter caused by dense edges in parallel coordinates.
Specifically, in our paper, we consider two neighboring pair of
arc axes X1 and X2 and the area between them. We place a
virtual binding axis on the right side of X1 and place a virtual
bundling axis on the left side of X2, denoted as X1’ and X2’,
refer to Fig. 1. The distance between a data axis and its binding
axis is set to a parameter, and we keep it fixed to 10% of the
radius, √2/20, for all screenshots in this paper.

Fig. 3 The rationale of double arc
coordinates plane
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As we can see from Fig. 1, the area between two axes is
segmented into three different parts, which contains B1B1

’,
B1

’ C1
’ and C1

’ C1. We also divide arc axis into three sections
at equal length, each color represents a part of axis. And there
is a cooresponding part on the bundling axis,which is marked
by the same color.

To geometrically represent the bundling axis coordinates,
we recall the coordinates calculation on DACP axes from the

previous section. They are cosθffiffi
2

p þ 3
2 i−

3
4 ;

sinθffiffi
2

p
� �

and

− cosθffiffi
2

p þ 3
2 iþ 3

4 ;
sinθffiffi
2

p
� �

, where θ ¼ πarctan 4
3y0ð Þ

4arctan23
. Therefore, on

the bundling axis, the coordinates can be computed with a
different θ'.

Specifically, for the upper part, marked 1, when θ∈ π
12 ;

π
4

� �
,

F: θ
0 ¼ θ− π

12

� �� 1
5 þ 3π

20. For the middle part, marked 2, when

θ∈ − π
12 ;

π
12

� �
, F: θ

0 ¼ θþ π
12

� �� 1
5−

π
60. For the third part,

marked 3, when θ∈ − π
4 ;

π
12

� �
, F; θ

0 ¼ θþ π
4

� �� 1
5−

11π
60 .

And now the observation point (B1,C1) in Fig. 4 can be
represented by three segments with more details rather than
a straight line only.

3.2.2 Further optimization for bundling layout

The bundling layout has reduced the visual clutter by making
the close line closer between adjacent pair of axes, but it ac-
tually increases the amounts of over-plotting within a bundle.
To solve this problem, we optimize the bundling layout by
filling the bundles with different color transparency.

For each bundle starts from the same part of the left axes,
we count the number of lines and store it in matrix Z. Zi, j(i, j ∈
1, 2, 3) represents the number of lines which runs from the i-th
part to the j-th part. The transparency of each bundle is defined
as following formula:

αi; j ¼ Zi; j

∑
3

k¼1
Zi;k

Therefore, if the number of the lines is larger, the transpar-
ency level of the bundling is higher, and if the number of lines
are smaller, the transparency level of the bundling is lower.
For instance, as shown in Fig. 5. There are 100 items start
from the upper part of the left pair of axes. There are 20 items
end in the first part of the right pair of axes, 50 end in the
second and 30 end in the third. And the transparency of the
first bundle is 0.2, the second is 0.5, and 0.3 for the third
bundle. We can see that there is no over-plotting of lines any-
more. The visualization becomes clearer. Meanwhile, we can
still know the distribution of data on the axes from the middle
part of each pair of axes.

4 Axes re-ordering methods

Due to the clutter problems caused by the order of the axes, we
propose axes re-ordering methods in our paper to reveal pat-
terns which are hidden in the datasets. This method is to com-
pute the importance score of attributes (dimensions) of the
data using SVD and visualize the dimensions from left to right
in DACP according the score in SVD, and we named as
contribution-based method in DACP. In addition, to measure
the correlation between two dimensions and explains how the
two dimensions interact with each other, we propose another
reordering method based on non-linear correlation informa-
tion measurements, which is using mutual information to cal-
culate the partial similarity of dimensions in high-dimensional
data visualization.

To be more specific in mathematics, we consider a set of
multidimensional data D with n dimensions (variables) and m
items for each dimension. Some cases require measuring the
statistical characters between the two dimensions X and Y,
whereX = (x1, x2,⋯, xm)

T, Y = (y1, y2,⋯, ym)
T.

4.1 Contribution-based re-ordering

Singular value decomposition(SVD) is the decomposition of a
real matrix. It is a generalization of matrix to an m*n matrix by
the extension of the polar decomposition. It has become a pop-
ular tool for revealing interesting and attractive algebraicFig. 4: Dimension-based bundling layout.

Fig. 5: Transparency-based filling on DACP.
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properties in matrix computation. SVD also plays a prominent
role regarding to conveying important geometrical and theoreti-
cal insights about transformations. In this paper, we use SVD to
measure the contribution of each dimension to the dataset.

The followings are the computation details and properties of
SVD. Given a matrix D with dimension m by n . The SVD of
matrix D, is UΣV∗ [15]: where V∗is the conjugate transpose of
V; U is a matrix with dimension m by m; V∗ is a matrix with
dimension n by n; Σis an m × n rectangular diagonal matrix
with nonnegative real numbers (singular values of D), which
aims for decreasing magnitude on the diagonal. There are many
properties for SVDmatrics, For example, the singular values of
a matrix D are equal to the square roots of the eigenvalues λ1,
λ2,…λm of the matrixDTD. In this paper, we are impressed by
a property that the first r columns of the matrices U and V form
the orthonormal basis for the space spanned by columns and
rows of D. As literature [17] mentioned, characteristic modes
can be defined to reconstruct the gene expression patterns by
this property. Therefore, we conclude the following property in
perspective of the numerical properties for matrix:

Property: The entries of the first column of V in the singular
value decomposition, which are denoted as v1j, j = 1, 2, …, n,
show the contributions of columns ofD to the space spanned by
them, i. e. span{d1, d2,⋯, dn},di is the ith column of D.

And based on the above property, we propose a
contribution-based reordering method. This method uses the
entries of the column and uses DACP to visualize the dimen-
sions of the dataset from left to right. On the other hand,
considering the representation requirement of data value, this
reordering method can provide us effective and clear visuali-
zation structure, it also helps us take deeper insight into the
dataset. In addition, this method also brings us the idea of the
determination of the first dimension with the most contribu-
tion. We introduce the details in section 4.2.

4.2 Similarity-based re-ordering

Measuring the correlation between two dimensions (variables/
attributes) is a statistical technique. This technique not only
represents the magnitude relationship between two dimen-
sions, but also explains how the two dimensions interact with
each other. In this section, we propose a reordering method
based on non-linear correlation information measurements.
Specifically, because mutual information measures how much
one variable related with another, and can be thought of as a
generalized correlation analogous to linear correlation coeffi-
cient. It is always sensitive to any variable relationships, not
has an effect on linear correlation only. So we use it to analyze
nonlinear correlation in DACP.

Statistically, suppose there is a two-dimensional dataset, x
indicates the independent variable, y indicates the dependent
variable, then the dataset can be represented as a collection
{(xi, yi)|i = 1, 2, 3,. .., n}, where n indicates that there are n pairs

data, xi indicates that the ith data of independent variable x, yi
indicates the ith data of the dependent variable y, and you can
use y = a + b x to represent the linear regression model if x and
y are liner related, if x and y are mainly the nonlinear relation-
ship, in this paper, we choose mutual information measures to
analyze nonlinear corrlelation. And based on the theory of mu-
tual information [20] and information redundancy [21],
Nonlinear correlation coefficient is able to measure nonlinear
relationship. In other words, this method can measure any rela-
tionships, not only be sensitive to the linear dependence [22].
Some researchers did further studies on its effects of statistical
distribution and set it to a closed interval range [0,1], corre-
sponding to the literatures [22, 23]. In this paper, refer to the
literature [15], we mainly use NCC to calculate the partial sim-
ilarity of dimensions in high-dimensional data visualization,

The detailed of NCC is introduced in the following
paragraphs.

Mutual information is a critical element in NCC computa-
tion, it is denoted as:

I X;Yð Þ ¼ H Xð Þ þ H Yð Þ−H X;Yð Þ ð4Þ

Where H(X)is the information entropy of variable X; H(Y)
is the information entropy of variable Y.

H Xð Þ ¼ − ∑
m

i¼1
pilnpi

H Yð Þ ¼ − ∑
m

j¼1
p jlnp j

H(X; Y)is the joint entropy of the variables X and Y.

H X;Yð Þ ¼ − ∑
m

i¼1
∑
m

j¼1
pijlnpij ]

Where
pi is the probability distribution that random variable

X takes the value xi, and pij is the joint probability
distribution p(X = xi, Y = yi) of the discrete random var-
iables X and Y.

Then, the revised value of joint entropy of variables X and
Y is as formula (5) mentioned.

Hr X; Yð Þ ¼ − ∑
b

i¼1
∑
b

j¼1

nij
m
logb

nij
m

ð5Þ

Where: the sample pairs {(x1, yi)}1 ≤ i ≤m are placed in the
b × b rank grids;

nij is the number of samples distributed in the ijth rank grid.
In addition, In literature [21], Wang et al. proposed using

formula (6) for NCC:

NCC X;Yð Þ ¼ Hr Xð Þ þ Hr Yð Þ−Hr X; Yð Þ

¼ 2þ ∑
b

i¼1
∑
b

j¼1

nij
m
logb

nij
m

ð6Þ
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Considering the similarity between the problem of dimen-
sion reordering and Traveling Salesman problem (TSP), heu-
ristic algorithms had been proposed to overcome exhaustive
time. The methods include: genetic algorithms, colony opti-
mization and nearest neighbor heuristic method, etc. [15, 16].
Specifically, In the method Similarity-Based Attribute
Arrangement (SBAA), proposed process by A.O.Artero
et al. [16]: Once algorithms are applying on a similarity matrix
S for searching the largest values of sij, the two values i and j
are considered to be the initial dimension “ij” in the new
position of an parallel coordinate arrangement. And then, the
algorithm will searches rows and columns of S to compute the
similarity and position in the right of it. This method seems
reasonable as they reorder the dimensions in line by their
similarities. However, there are some dimensions that always
get more attentions among the whole visual structures. And
their special visual effects cannot be ignored. For example, in
DACP system, the first and the last dimensions are more at-
tractive comparing with other axes.

Therefore, differentiate from other proposed methods, we
introduce a new dimension reordering algorithm [24] based on
NCC and SVD algorithms. As we defined in literature [24],
the similarity matrix s is a symmetric matrix which is shown
as below:

s ¼
s11 s12 ⋯ s1n
s21 s22 ⋯ s2n
⋯ ⋯ ⋯ ⋯
sn1 sn2 ⋯ snn

2
664

3
775

where

sij = sji (i ≠ j) which we calculate by NCC formula.

sii (i = 1, 2, ⋯,
n)

(we also can denote them as v1i) refers to the
contribution value of the i-th dimension to-
wards the whole data values, and we calculate
it by SVD algorithm.

According to the similaritymatrix s, we reorder dimensions
of matrix D and visualize it with different visualization
methods. The followings are the steps of Similarity-based
Reordering Algorithm, which have been also illustrated in
literature [24].

(c) Random dataset represented in DACP. 

(a) Random dataset represented in PCP. 

(b) Random dataset represented in ACP. 

Fig. 7: Random dataset represented in three different visualization
systems.

Fig. 6: Random data represented in two different coordinate systems.
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Step 1. Form the matrix D of the data sets.
Step 2. Calculate the singular value decomposition of matrix

D, and get the contribution factors Sii, 1,2, ….. n .
Step 3. Compute the other elements Sii of similarity matrix s,

using our nonlinear correlation coefficient method, be-
sides Sii, i n 1,2…..n, which have calculated in step2.

Step 4. Choose the largest value of Sii, i n 1,2…..n, as the
extreme left attribute to start display the data sets.
We denote this attribute SII, where I belongs to
{1,2…..n},

Step 5. Get the largest value SII from {SII,I < i}`. Therefore, the
rith attribute is appended to the lth attribute. We get the
first two elements of neighbouring sequence NS{I,r1}.

Step 6. Repeat step5 using the r1th attribute as the left
neighbouring attribute from {Sr1i,r1 < i}, until
inserting all attributes into the NS .Our strategy is
not only to provide users the dimension similarities
between each pair of them, it also expresses some

characteristics or patterns of each dimension itself.
In the computation process of the NCC, we use b ×
b rank grids according to the empirical formula,
which is mentioned in [25], where:

b ¼ 1:87� m−1ð Þ2=5 ð7Þ

In the experiment section, we will apply this reordering
method to our novel visualization method and show that
how it works well with our approach and improves the visual
readability greatly.

5 Application

We present case scenarios to demonstrate how DACP is
effectively used to help experts understand multivariate

(a) Iris dataset visualized in ACP. 

(b) Iris dataset visualized in DACP. 

Fig. 8: Iris dataset visualized in
ACP and DACP respectively
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data and the effectiveness of our new dimension
reordering methods. We test several different datasets
in this section. Firstly, to illustrate the advantages of
DACP comparing with ACP, we use Random dataset;
Then to show dimension-based layout in DACP visual-
ization, Iris dataset and Occupancy detection dataset are
applied; Lastly, KDD Cup 1999 and Glass Identification
dataset are used to test contribution-based and
similarity-based reordering methods.

5.1 The comparison between DACP and ACP

We choose random datasets to display the comparisons. This
dataset is about 100 data items with one attribute randomly,
ranging from −0.5 to 0.5, and we visualize them in parallel
coordinate plane. We project these data items by a mapping
approach to a pair of axe in the double arc parallel coordinates
plan. And it is clear to find that the density of the points in the
double arc parallel coordinate plan is different from that is in

(a) Iris dataset visualized with dimension-based bundling layout 

(b) Iris dataset visualized with transparency-based bundling layout. 

Fig. 9: Iris dataset visualized with dimension-based bundling layout on DACP.
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the traditional parallel coordinate plan. Considering the infor-
mation readability, the illustration of points by ellipse graph is
sparser than the same illustration by PCP, see Fig. 6. In addi-
tion, the ellipse graph is also able to display the geometric
property of the data.

Then, we use another 100 data items with three attributes
randomly, also ranging from −0.5 to 0.5, and we visualize
them by using PCP, ACP and our DACP, shown in Fig. 7.
(a)Random dataset represented in PCP.

From the comparison, we can see that our double arc axes
are not affecting the quality of visualization, they can provide
the same visualization quality on datasets as the traditional
vertical-line provided. Moreover, our double arc parallel

coordinate method enlarges the mean density of points in the
geometry and the distribution of items is displayed in the
middle of each pair of axes. All these features improve the
readability of visualization. (a)Random dataset represented in
ACP. (b) Random dataset represented in DACP.

5.2 The dimension-based layout in DACP

In this section, we utilize Iris dataset and Occupancy
Detection dataset to demonstrate the effectiveness of our
dimension-based bundling layout in DACP in low-density
and high-density datasets respectively. Both datasets come
from “UCI Machine Learning Repository” [26].

(a) Occupancy Detection dataset (low-temperature items) visualization. 

(b) Occupancy Detection dataset (middle-temperature items) visualization. 

(c) Occupancy Detection dataset (high-temperature items) visualization. 

(d) Occupancy Detection dataset (all items) visualization. 

Fig. 10: OD dataset visualized with dimension-based bundling layout on DACP.

Fig. 11: OD dataset visualized
with transparency-based bundling
layout on DACP.
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5.2.1 Iris dataset

The Iris dataset contains three varieties of Iris, each of them has
50 items, totally 150 items in this dataset. Every item has 4
features, we define the fifth feature as their variety, set 1 for
Iris setosa, 2 for Iris Versicolour and 3 for Iris virginica. The
visualizations are shown in Fig. 8 and Fig. 9. Fig. 8 shows the
visualization with ACP and DACP respectively. Both of them
represent dataset correctly.We can notice that the three clusters in
the dataset are clearly represented in the new system aswell. So it
is to be concluded that our DACP method is able to perform the
same as ACP when it comes to this common dataset. (a) Iris
dataset visualized in ACP. (b) Iris dataset visualized in DACP.

In Fig. 9, we use our dimension-based bundling layout to
visualize the dataset, it is clear in Fig. 9(a) that the lines with
similar tendency have been bundled and over-plotting have
been alleviated. In Fig. 9(b), the bundled lines are filled with
different transparency. The over-plotting does not exist any-
more and it is easy for us to observe the tendency in dataset. In
addition, we can still know the position of observation points
in every pair of axes due to our DACPmethod. This approach
greatly reduces the visual clutter. (a) Iris dataset visualized
with dimension-based bundling layout(b) Iris dataset visual-
ized with transparency-based bundling layout.

5.2.2 Occupancy detection dataset

The Occupancy Detection dataset contains some environmental
records in a room and also the data about whether the room is
occupied or not. There are totally 20,560 items in this dataset,
each of them has 7 features. First feature is the date of records, it
is useless in our experiment, so we move it out from the dataset.
Other features are temperature, relative humidity, light, CO2,
humidity ratio and occupancy (0 for not occupied and 1 for
occupied status). We use these features to analyze the relation-
ship between environmental records and occupancy of the room.

To better analyze the dataset, we use temperature as classi-
fication. We divide temperature records into three parts, low,
middle and high. In Fig. 10, we visualize each part of dataset
and display them in Fig. 10(a), (b) and (c) respectively, their
combination is shown in Fig. 10(d) as well. From these fig-
ures, we can see that when temperature is relatively high,
relative humidity and CO2 are relatively low, because there
are no data on the top of these axes. However, these records
increase as temperature declines. Also, there is usually no
person in the room when temperature is high while humidity
ratio is low, nevertheless, if humidity ratio increases to a mid-
dle level, sometimes the roomwill be occupied. Fig. 11 shows
the visualization of dataset by using transparency-based bun-
dling layout. It is obvious that people are more likely to occu-
py the room when temperature is neither too high nor too low.
(a) Occupancy Detection dataset (low-temperature items) vi-
sualization. (b) Occupancy Detection dataset (middle-
temperature items) visualization. (c) Occupancy Detection
dataset (high-temperature items) visualization. (d)
Occupancy Detection dataset (all items) visualization.

5.3 Contribution-based reordering visualization

This section we aim to demonstrate the effectiveness of our
contribution-based method. We choose two datasets to dem-
onstrate. One dataset is selected from KDD Cup 1999 [27],
and the other is Glass Identification dataset.

Firstly, as for the KDD cup 1999 dataset, it contains 1034
data items with 42 attributes, and also includes labels marked
as “normal” and “abnormal”. We apply contribution-based
reordering method to process the 42 attributes, and use this
method as a dimension reduction process for dataset visuali-
zation. In this step, to retain as much data characteristics as we
can, we set the contribution rate as one of the simplest tech-
niques. And eight attributes are got to retain the 98.6% of the
whole datasets. The visualization result is shown in Fig. 12. It

Fig. 12: Contribution-based
reordering of KDD 1999 dataset
in DACP
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is easily to discover that two abnormal events are existed in
the dataset: one is called “Smurf” represented by red lines; and
the other is “Neptune represented by blue lines. It is also to be
noticed that some of the polylines among the attributes”
srv_count” and “count” are strange. A big fluctuation is
existed between the normal and abnormal polylines, and this
provides us the pattern of attacks in the datasets.

Secondly, the Glass Identification dataset has 214 values
and eleven dimensions. It is used to test our contribution-
based reordering method. We compute the contribution of
the dimensions by the property mentioned in Section 4.
Refer to Fig. 13, the first dimension”Id” has the largest con-
tribution factor 0.8723 (other contribution factors are listed as
the diagonal elements in a matrix s of the next section).
Dataset in line with their contribution to the values is visual-
ized by DACP. From the data characteristic point of view, this
visualization provides a clear description of the contribution
order for all dimensions, which is from the highest rate to the
lowest rate.

5.4 Similarity-based reordering visualization

This section describes the effectiveness of similarity-based
reordering method. We mainly test this method on the Glass
identification dataset to arrange dimensions.

Firstly, we visualize the reordered dataset with the conven-
tional PCP and our DACP visualization methods. And then
compare their visualization efficiency. As literature [28] men-
tioned, the relationship between the crossing angle among the
polylines and the cognitive load is inversely proportional, but the
relationship between the cognitive load and visualization effi-
ciency is proportional. Therefore, to illustrate the benefits of our
method from the readability and understandability, we calculate
the mean angles among the polylines between two neighboring
dimensions. The calculation formula is described below:

mean angle ¼ total angle

total angle crossing
ð8Þ

According to the theory in Section 4, the similaritymatrix S
of Glass dataset is calculated as below:

S ¼

0:8723 0:0023 0:0575 0:0709 0:0575 0:0064 0:0229 0:0064 0:4041 0:0926 0:5268
0:0023 0:0099 0:0184 0:0021 0:0983 0:1573 0:0575 0:2158 0:3402 0:0935 0:1002
0:0575 0:0184 0:0887 0:0074 0:0017 0:0788 0:1925 0:0337 0:3935 0:1098 0:1994
0:0709 0:0021 0:0074 0:0150 0:0755 0:0217 0:0117 0:0669 0:4108 0:0906 0:2618
0:0575 0:0983 0:0017 0:0755 0:0101 0:0184 0:0041 0:0338 0:4062 0:0883 0:1778
0:0064 0:1573 0:0788 0:0217 0:0184 0:4762 0:0124 0:0281 0:3629 0:0920 0:0997
0:0229 0:0575 0:1925 0:0117 0:0041 0:0124 0:0033 0:1034 0:3536 0:0881 0:1406
0:0064 0:2158 0:0337 0:0669 0:0338 0:0281 0:1034 0:0590 0:332 0:0913 0:1359
0:4041 0:3402 0:3935 0:4108 0:4062 0:3629 0:3536 0:3329 0:0018 0:4145 0:5575
0:0926 0:0935 0:1098 0:0906 0:0883 0:0920 0:0881 0:0913 0:4145 0:0004 0:2160
0:5268 0:1002 0:1994 0:2618 0:1778 0:0997 0:1406 0:1359 0:5575 0:2160 0:0232

2
66666666666666664

3
77777777777777775

Fig. 13 Contribution-based
reordering of Glass Identification
dataset in DACP
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Based on the Similarity-based Reordering Algorithm [24],
we first position the first dimension” Id number” as it plays a
significant role to the whole dataset. Then we focus on finding
out the most similar dimension with this one from the unor-
dered dimensions. The target dimension must hold the largest

similarity value to this dimension: S1,11 = 0.5268. In this case,
the 11-th dimensions must be the strongest correlation with the
1st dimension. So we make the 11th dimension to be appended
to the 1st one. Repeat the above processes until we put all the
dimensions in order, which is 1→ 11→ 9→ 10→ 3→ 7→

Table 1 The comparison of mean angles of Glass dataset visualization in PCP and DACP

Id-
Type

Type-
Ba

Ba-Fe Fe-Na Na-K K-Ca Ca-RI Ri-Si Si-Mg Mg-Al Overall

PCP – 6.523° 13.249° 6.351° 2.49° 3.192° 0.263° 0.057°2.051° 2.051° 3.641° 2.7731°

DACP – 9.524° 19.023° 8.911° 3.415° 4.476° 0.363° 0.078° 2.707° 2.707°4.926° 3.8332°

(a) Visualization with conventional PCP 

(b) Visualization with DACP 

Fig. 14 Dimension reordering
visualization of Glass dataset
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8→ 2→ 6→ 4→ 5. Related to the original dataset, the
reordering dimensions order by our DAPC is: Id number→
Type→Ba→Fe→Na→K→Ca→RI→ Si→Mg→Al.

Figure 14 (a) and (b) show the reordering results in con-
ventional PCP and DACP respectively. (a) Visualization with
conventional PCP (b) Visualization with DACP

Comparing Fig. 14(b) with Fig. 13, we discover that the
visualization structure between the second attribute “Type”
and the third attribute” Ba” is much clearer with our
similarity-based reordering method.

To evaluate the improvement of visualization efficiency,
we calculate mean angles between every two neighboring
axes in conventional PCP and DACP, and displayed the re-
sults in Table 1. From Table 1, we can find that all the mean
angles become larger in DACP than in PCP. For instance, the
mean angle between attributes “Ba” and “Fe” gets to 19.023°,
which is 5.774° larger than it in PCP. And the mean angle of
overall polylines produced in PCP is 2.7731°, while the same
mean angle produced by DACP turns to 3.8332°, which is 1.1
times larger than the former.

Therefore, we can conclude that the visual effect of our
visualization method is much better than the traditional ones.

6 Conclusion and future work

In this paper, we present a new method for improving the par-
allel axes in coordinate’s plane theoretically. Firstly, we propose
DACP, the double arc coordinate plots, which is an arc-based
parallel coordinate visualization method. Due to the length of
an arc is longer than a line segment, the density of data
displayed on each axes can be reduced. Besides this, because
there are two arc axes for each pair of axes, the distribution of
items can also be displayed in the middle of each pair of axes.
So the visualization effect of the parallel coordinate plots is
improved. Furthermore, we propose a dimension-based bun-
dling layout to reduce the visual clutter and also fill the bundled
lines with different transparency to optimize the bundlingmeth-
od further. Secondly, we propose contribution-based and
similarity-based dimension re-ordering methods to find optimal
dimension order to display dataset in DACP. Lastly, our evalu-
ation, including five case scenarios, demonstrated the effective-
ness and rationale of using our approaches to understand and
discover more information from the datasets.

For future work, new ways of strengthening dimension-
based bundling layout is our next task. We plan to optimize
the classification of data items by using some cluster method
rather than artificial approach. Moreover, we consider to apply
interaction techniques on our approach for improving this vi-
sualization system.
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