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Abstract

This work presents the development of a three-dimensional lattice material model

for wood and its application to timber joints including the potential strengthening

benefit of second order effects. A lattice of discrete elements was used to capture

the heterogeneity and fracture behaviour and the model results compared to tested

Sitka spruce (Picea sitchensis) specimens. Despite the general applicability of lattice

models to timber, they are computationally demanding, due to the nonlinear solution

and large number of degrees of freedom required. Ways to reduce the computational

costs are investigated.

Timber joints fail due to plastic deformation of the steel fastener(s), embedment,

or brittle fracture of the timber. Lattice models, contrary to other modelling

approaches such as continuum finite elements, have the advantage to take into

account brittle fracture, crack development and material heterogeneity by assigning

certain strength and stiffness properties to individual elements. Furthermore, plastic

hardening is considered to simulate timber embedment.

The lattice is an arrangement of longitudinal, lateral and diagonal link elements

with a tri-linear load-displacement relation. The lattice is used in areas with high

stress gradients and normal continuum elements are used elsewhere. Heterogeneity

was accounted for by creating an artificial growth ring structure and density profile

upon which the mean strength and stiffness properties were adjusted.

Solution algorithms, such as Newton-Raphson, encounter problems with discrete

elements for which ’snap-back’ in the global load-displacement curves would occur.

Thus, a specialised solution algorithm, developed by Jirasek and Bazant, was adopted

to create a bespoke FE code in MATLAB that can handle the jagged behaviour of

the load displacement response, and extended to account for plastic deformation.

The model’s input parameters were calibrated by determining the elastic stiffness

ii



from literature values and adjusting the strength, post-yield and heterogeneity

parameters of lattice elements to match the load-displacement from laboratory tests

under various loading conditions.

Although problems with the modified solution algorithm were encountered, results

of the model show the potential of lattice models to be used as a tool to predict

load-displacement curves and fracture patterns of timber specimens.
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1 Introduction

1.1 General

Joints often represent the weakest link in timber structures. Various modelling

approaches have been suggested to predict the load displacement and failure

behaviour of an entire joint which is made of various components. The main

challenge in these models is the application of an accurate material model for

timber. In the most general case of a timber joint, a complex 3D stress state,

fracture mechanical aspects and plastic deformation, need to be addressed.

This research aims to develop a 3D material model that takes into account the

plastic hardening and quasi-brittle behaviour of timber. Wood, as a natural

material, makes great demands on the modelling technique. Anisotropy, material

heterogeneity on several length scales, and apparent plastic deformation need to be

considered and complicate any analysis technique. In this research, lattice models

shall be used to meet these requirements. These consist of single bar elements that

can reflect distinct material features on a small scale.

A special solution algorithm, more suitable for lattice structures, by

Jirasek & Bazant (1995) was extended to account for plastic hardening behaviour.

A 3D lattice arrangement was devised in order to model timber. These lattices are

able to predict nonlinear material and fracture behaviour while the heterogeneous

character of the material can be easily implemented. With the incorporation of

other element types such as solid, contact and beam elements, the lattice can be used

in a 3D joint model. These new elements required another extension to the methods

described in Jirasek & Bazant (1995) in order to incorporate geometric nonlinearity.

Commonly, models for timber joints address only specific arrangements. For

example, either ductile joint behaviour is assumed: timber is allowed to deform

plastically and no fracture process is considered. This is the assumption made in
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1.1 General

the widespread European Yield Model (EYM). The potential failure modes for

a single shear dowel-type joint are shown in Fig. 1.1. On the other hand simpler

models with simple stress states are used when brittle failure is considered and

fracture mechanical models are used.

The model described in this thesis shall be used for both joint behaviours. Although

only mode c) in a single shear joint (embedment failure in both timber members,

Fig. 1.1) is presented here, the model itself could be extended to account for plastic

fastener deformation relatively easily.

Generally, the work presented here can be divided into four main parts. Firstly,

a simple 2D finite element FE model is used to predict geometric nonlinear

joint behaviour for single shear bolted joints. A novel solution technique and

other optimisations are used in order to minimise the computational effort of

the numerical model, chapter 4. Secondly, a material model is developed in the

framework of lattice structures, chapter 5. Thirdly, the model is calibrated and

validated by tested specimens under simple stress states. As a final step, the model

is used in an attempt to predict the load-displacement and failure behaviour of a

bolted single shear timber joint. For this, the principle idea of geometric nonlinear

beam elements that represent bolt deformation in the simpler 2D model is reused,

chapter 6.

t1 t2

a) b) c) d) e) f)

Figure 1.1: Failure modes of single shear timber joints according to the European
Yield Model (BS EN 1995-1-1, 2004).
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1.2 Wood Modelling

Figure 1.2: Various scales of wood morphology, for key see reference, courtesy of
Harrington (2002) (original in colour).

1.2 Wood Modelling

The modelling of fibrous materials such as wood involves a vast number of

complexities. The very nature of the material makes it hard to develop appropriate

material models. Plastic deformation and fracture governing failure results

from inherent flaws in the material on several different size scales. Due to its

naturally grown structure anisotropy and morphology of wood (such as the growth

ring structure, knots, grain deviation and other variable defects in the material)

have to be considered in a model to predict realistically yield and fracture behaviour.

Fig. 1.2 presents graphically the different length scales that are involved in

describing timber behaviour. Wood has varying strength and stiffness properties

over all these different scales. The inherent differences range between species, trees

within a species and even within trees down to the growth rings and beyond. This

complicates the development of a material model for timber.

Numerical methods, such as the continuum finite element method, have been used
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1.3 Lattice Model

to take the orthotropic and nonlinear, plastic behaviour into account. Failure

analysis can be applied to these models but is limited to the averaging effect

inherent in continuum models. The material is viewed as a continuous stress state

and, therefore, high peak stresses, that occur in material flaws, can not accurately

be accounted for.

On the other hand, fracture mechanics accounts for high peak stresses at crack tips

that result from either already existing inherent flaws of the material or intentional

notches. The methods developed around fracture mechanics FM are useful tools to

predict failure loads and crack development in brittle material. However, despite

the fact that nonlinear effects such as plastic deformation in the vicinity of a crack

tip can be taken into account, the technique stands and falls with appropriately

measured fracture parameters and a realistic fracture mechanical model.

Other, harder to predict, effects in failure analysis, such as material heterogeneity,

crack bridging and crack paths hitting inclusions, can best be described with lattice

models. Distinct elements represent material features on a certain length scale.

Material heterogeneity can easily be implemented by assigning varying material

properties to individual lattice elements.

However, the practicality of numerical models greatly depends on the required

processing speed and memory capacity. Often, analytical solutions applied to more

simple models reach a sufficient solution while numerical models, applied to a more

complex geometry, simply become too expensive in terms of computation time.

Especially, lattice models require a high number of Degrees of Freedom (DoFs) to

represent the detailed morphological features. In case of a model that accounts for

a complex 3D stress state, the required computation time quickly reaches the limits

imposed by standard computers.

1.3 Lattice Model

Morphological lattice models to simulate failure in heterogeneous quasi-brittle

material can be used and solved with various techniques. The simplest technique,

that is commonly used in lattice fracture models, is based on the sequential removal

of broken elements due to exceeded strength properties. Then, with the application

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 1-4



1.3 Lattice Model

of a new displacement step, the softer system (due to several removed springs) is

recalculated and a new equilibrium found. The method will be described in more

detail in the Literature Review, subsection 3.3.4.

While this technique is simple to apply and bulk softening of the structure can be

predicted, plastic deformation and softening behaviour of individual links (cohesive

crack relation) are not incorporated. This can only be accomplished by the use

of an iterative incremental method. For this, traditional iterative techniques such

as the Newton-Raphson algorithms (with specialised load or displacement control)

are required to solve for the nonlinear solution. The problem with such techniques

is that mechanical response such as ‘snap-back’, where a decrement in load and

displacement is required, can not be handled very well. Points of instability in the

load displacement curve (global stiffness matrix is singular due to negative values

as a result of the link’s softening branch) represent another problem for numerical

techniques. This complicates a solution algorithm for lattice models that accounts

for plasticity.

A solution to these issues can be found in Jirasek & Bazant (1995) who developed

an efficient specialised solution algorithm called the ’Step-Size-Control Algorithm’

(SSC). In essence, the technique treats each change of stiffness in individual links

as single linear steps. The overall load displacement curve of a lattice system

consists of load-steps in which only one single element changes its stiffness. Thus,

no additional iterations are necessary and ‘snap-back’ is accounted for. This might

seem, at first, to be more complex than traditional methods, but the algorithm

should perform, according to Jirasek & Bazant, more robustly and more efficiently

on large systems.

Furthermore, a technique called the ‘Method of Inelastic Forces’ (MIF) has been

used by Jirasek & Bazant that treats stiffness changes of individual lattice elements

with additional external forces. An ‘inelastic force’ is calculated that represents the

force which is required to be applied to the system in order to simulate the system

with the changed stiffness due to the broken or changed link element. With this, it

is unnecessary to resolve the global stiffness matrix when springs are experiencing

stiffness change. The initial solution can be used with these new external forces

applied. The calculation of these forces is still time consuming, but the time to solve

a global stiffness matrix of a large lattice system is much greater. Furthermore, the

inelastic force needs only to be applied to the changed links whose number in most
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1.4 Application to Timber Joints

lattice models is rather small. Hence this method shows its usefulness, especially

for large systems for which a large global stiffness matrix would need to be solved

otherwise (with a relatively small number of changed link elements).

1.4 Application to Timber Joints

As an example of the applicability of the developed lattice model, a timber joint

shall be used.

Joints, the connection of two or more timber members, come in various forms.

There are a vast number of different arrangements of joints with mechanical

fasteners. The list includes connections with dowel-type fasteners such as glued-in

bolts, bolts with washers, head and nut, metal dowels, nails or similar joints with

shear plates, punched metal plates, toothed-plates. The focus of this research is on

dowel-type joints in particular bolted joints.

Joints represent a distinct obstacle for the force flow in the overall structure. Load

is transmitted through a bottle neck of one ore more fasteners which consist of, in

most cases, much stiffer and more ductile steel. Furthermore, the hole drilled for

the fastener leads to stress concentration and thus drives cracking. Usually, joints

mark the weakest link in the mechanical response of the whole timber structure.

Consequently, joints receive large attention in timber research.

Joints loaded perpendicular, as well as parallel to the grain, lead to tensile stresses

in the timber member. In case of a joint loaded in the perpendicular to the grain

direction tensile forces develop in the radial and tangential direction simply due

to the loading direction of the fastener. For the parallel case radial and tangential

tensile stresses develop as a result of the fastener acting like a wedge that tries to

split open the timber member. Additionally, shear stresses develop as parts of the

timber member in front of the fastener gets displaced. The actual contribution of

both effects on joint failure, depend on the friction between fastener and timber

contact.

To prevent brittle failure, and thus a sudden loss of structural resistance, minimum

edge and end distances for joints are required as outlined in BS EN 1995-1-1 (2004).
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1.4 Application to Timber Joints

But even with these limit values adhered, fracture might still occur as shown by

Schmid et al. (2002) and Daudeville et al. (1999). In order to create a joint that

exhibits a more ductile behaviour, engineers use slender fasteners where one or

more plastic hinges can form, and thus the greater part of deformation takes place

in the metal fastener.

The aim of this research is to investigate the possible use of lattice models for

timber joints. Furthermore, the geometric nonlinear effects, that result from a

deformed and/or rotated fastener, shall be included. In such cases axial forces and

a rotational constraint develop from the fixation of head, nut and washer (described

in more detail in the following subsection 1.4.1). Additionally, the length of timber

embedment alongside the fastener changes due to these effects.

Future research might involve a larger parameter study with these lattice models.

Joint parameters such as end and edge distances, fastener diameter and different

wood parameters can be varied to investigate the different failure mechanisms and

loads. Secondly, the model can be used in various applications to investigate the

simultaneous plastic and brittle timber behaviour. These can range from single

systems such as notched beams or torsion beams to further combined systems such

as multiple joints with different timber and bolt arrangements.

Ultimately, the goal of these models is to represent an alternative to continuum and

fracture mechanical models for predicting timber behaviour. After their validity

has been demonstrated, they can reduce costly experimental investigations of

timber structures. Lattice models are able to deliver a larger spectrum of possible

tests based on varying wood morphology. Therefore, lattice models are a type of

Monte Carlo method where after several model runs, certain fractile values of e.g.

strength, stiffness, maximum deformation etc. can be evaluated.

1.4.1 Neglected Effects

In the European code for timber design (BS EN 1995-1-1, 2004) the ultimate

strength of a timber joint is calculated according to the European Yield Model

developed by Johansen (1949). Conservatively, geometric nonlinear effects used to

be neglected. These include the tensioning of a fastener (called ‘rope effect’) due

to the end-fixity and the rotational constrain provided by washer, head and nut or
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1.5 Problem Outline

a) b)

Mrot

Mrot

Frope

Frope

a) b)

Mrot

Mrot

Frope

Frope

Figure 1.3: Geometric nonlinear effects in a single shear bolted joint, a) rotational
constraint due to washer and b) axial tension acting on fastener (rope effect).

nail head (Fig. 1.3).

This occurs while the timber members displace and thus the fastener or parts of

it start to rotate in a single or multiple shear joint. The washers or the nail head

are pulled into the side member and therefore increase the joint’s resistance. These

strengthening effects are a function of: the displacement of the timber members,

different joint parameters such as timber thickness, fastener diameter, withdrawal

strength (e.g. nailed connection) and embedment strength underneath the washer

(e.g. bolted connections).

BS EN 1995-1-1 (2004) incorporates these strengthening effects with a term added

to the original Johansen’s equation. This term is based on the withdrawal strength

of a fastener and thus accounts only for the rope effect at the limit state. Other

effects, such as the rotational constraint provided by a washer or nail head, are

still neglected. The term was derived analytically and is not really founded on an

extensively researched mechanical basis. Furthermore, the rotational constraint

facilitates the development of a plastic hinge in the fastener and thus leads to a

shift of failure mode from brittle to more ductile.

1.5 Problem Outline

The resulting stress state around the fastener of a single shear joint can not be

represented assuming ‘in plane’ stress or strain. Lateral strain and stress vary
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over the depth of the joint due to the inclined embedment of the rotated fastener

shank. Thus, the appropriate solution is a full three dimensional model. This adds

significantly to the model’s complexity and the computational demand. Lattice

models may be used to capture the quasi-brittle fracture process and to account for

the morphology of wood.

In most previous research papers, these types of models mainly consisted solely

of perfectly brittle elements, i.e. no ductility of the single elements or plastic

behaviour was taken into account. In this case a simple solution algorithm could

be used which is described in more detail in the Literature Review, chapter 3.

To account for plasticity, as observed in timber under compression, elements can

be defined with a tri-linear load-displacement curve: an initial stiffness, a softening

branch under tension and a reduced stiffness under compression. However, these

models require a general incremental solution method such as the Newton Raphson

algorithm with certain load or displacement control techniques (e.g. the arc length

method). They have, to the author’s knowledge not been attempted yet for timber.

In this project the SSC algorithm has been used and extended to work with a

tri-linear load displacement definition for link elements.

1.6 Scope and Limitations

After the lattice model has been calibrated against test data, it is possible to predict

plastic and brittle material behaviour for arbitrary 3D stress states. It would have

been difficult to implement such a lattice model into an already existing commercial

FE package. Therefore, a bespoke FE software to generate and calculate such a

lattice has been written in MATLAB (The MathWorks, Inc., 2007). The thesis

focusses mainly on the development of this software, LAT3D, with its implemented

solution algorithm and the different element types that are required in the final

joint model.

The program is capable of simulating 2D and 3D lattice/solid models. Both are

used in the calibration routine. While the program is structured so that it can solve

several problems and rearrange the geometry of the models freely it has specifically

elements such as 3D beam and contact elements implemented to solve the problem
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1.6 Scope and Limitations

of a single shear bolted timber joint.

Problems arose when larger lattice models have been calculated with the proposed

program LAT3D. A high number of links that switch to the plastic state lead to

a slowing down of the solution algorithm. Furthermore in certain stress states the

solution algorithm collapsed and lead to an erroneous load step. The encountered

problems are described in the discussion chapter 7.
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2 Methodology

2.1 General

This chapter introduces the general methodology of the project. The objective of

this research is to predict nonlinear timber joint behaviour by the use of FE models.

The research can be divided into three distinct major parts: firstly a preliminary

2D model that investigates the material and geometric nonlinear behaviour of a

single shear joint using a beam on elastic-plastic foundation model, secondly a

3D lattice material model for timber that predicts the brittle nonlinear material

behaviour and thirdly the combination of both a 3D model of a single shear timber

joint with a lattice that represents nonlinear timber embedment combined with 3D

beam elements taking into account geometric nonlinear deformation of the fastener.

The 2D model is a quick approach to investigate the geometric nonlinear behaviour

for a fastener in elastic-perfectly plastic embedment. It is akin to other 2D models

such as Sawata & Yasumura (2003) and Nishiyama & Ando (2003) as described

later in the Literature Review. The commercial FE package ANSYS was used for

this model.

The 3D lattice is a further approach to model 3D material behaviour. Individual

elements that represent material behaviour in certain directions are allowed to

change their stiffness until entire removal, thus enabling it to model fracture

development inside the material. Heterogeneity and wood morphology can be taken

into account by adjusting the parameters which define the load-displacement curve

of individual lattice elements (links).

For the combination of both approaches, the lattice material model is connected

to beam elements which represent a fastener. This can be done via special contact

links in a geometric nonlinear analysis.
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2.2 Model Concept: 2D Beam-Foundation Model

This chapter introduces the chosen approach and the concept of the two models.

2.2 Model Concept: 2D Beam-Foundation Model

The 2D approach is a first attempt in this project to create a model for a single shear

joint based on the ‘beam on elastic-(plastic) foundation’ principle. It takes into

account nonlinear effects such as perfect plastic timber embedment and geometric

nonlinearity. The development of this model along with results is published in

Reichert & Ridley-Ellis (2006). The approach was chosen in order to overcome

some problems with the prediction of joint behaviour. Johansen’s failure modes, as

employed in the Eurocode 5 for timber structures BS EN 1995-1-1 (2004), can only

predict a limit state with the assumption of a perfectly plastic material. Certain

aspects are neglected, such as the geometric nonlinear effects, and no influence of

failure modes on the joint stiffness can be obtained from the model. Johansen’s

Yield Model and its derivation is explained in more detail in the Literature Review

(subsection 3.4.1).

Rather than only calculating the limit state of the timber joint, the 2D model

employs a nonlinear FE solution. Although the model can not be used in a simple

way, and does not represent a substitution to the widely used EYM, it gives

insight into the different geometric nonlinear effects of a bolted timber joint and

can be used to investigate these separately. Therefore, it can be used to adjust

certain parameters in the EYM to better incorporate geometric nonlinear effects

(subsection 3.4.2 and chapter 4).

2.3 Model Concept: 3D Lattice

The significant larger portion of the project was dedicated to develop a material

model for timber. In order to accomplish this a bespoke FE code has been written

that enables the user to define model parameters and instruct the program to create

a variety of different geometries. For the following chapters the name LAT3D is

used to refer to this program.

This numerical approach was chosen due to the complex 3D stress state that occurs
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in a deformed timber joint.

The aim was to create a material model that is capable of predicting nonlinear

failure phenomena and accurate load-displacement responses of timber structures.

According to recent developments in timber research, lattice models produce

reasonable results and can be used instead of continuum material models. The

main advantage is that instead of averaging stresses in a continuum model, forces

and the resulting failure are calculated at individual elements which can represent

material features on the meso scale. Additionally, variability can be incorporated

by assigning different properties to these elements.

The 3D lattice in this investigation consists of different nonlinear springs that

model timber behaviour. The springs are able to represent the heterogeneous

character of timber by assigned (to single elements) mean stiffness and strength

values along with their coefficients of variation. The morphological structure on the

scale of growth rings is implemented by adjusting these mean values according to

the position of the elements in a randomly created ring structure. Density profiles

are used to map certain strength and stiffness variability on the lattice.

In a final step, both models (beam-foundation and lattice) are combined. Geometric

nonlinear beam elements representing a fastener are implemented in the lattice

model by means of contact links. These elements exhibit a penalty stiffness when

contact between the predicted bolt line and lattice surface nodes is made and are

close to zero when there is no contact.

Consecutive update of the nodal displacements along with stiffness update of the

beam elements in each load step accounts for geometric nonlinearity.
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3 Literature Review

3.1 General

This chapter gives an overview on the relevant aspects of wood morphology and its

influence on modelling approaches, further it shows possible material models for

timber and looks into more detail on previous joint models.

Wood as a building material has a long tradition. Despite its common use, ranging

from residential buildings in from of stud walls, flooring systems and pertinently

roofs to wide spanning structures such as bridges, sports halls, domes etc., the

matter of accurately predicting the mechanical response of timber still attracts

large research interest.

Based on the fact that wood in its raw from is a naturally grown material, it is

evident that this very useful material has certain advantages and disadvantages

when used as a load carrying member in other structural systems.

Foremost on the list of advantages of using wood are the ecological and economical

aspects. Producing a structure made of timber requires much less energy when

compared to concrete and steel. Due to the positive CO2 balance, wood has the

potential to mitigate the effects of global warming, since the tree in its time of growth

stores a substantial amount of atmospheric carbon e.g. (Canadian Wood Council,

2008). It is further a sustainable building material since it can be reproduced on a

large scale and is accessible in most parts of the world.

From a mechanical aspect, a significant advantage for timber, compared to other

common construction materials, is the high ratio of load carrying capacity over

self-weight, for stresses parallel to the grain. As well as house construction,

this enables wood to be used in wide spanning structures. Besides this, timber

structures have a beneficial effect on the dynamic response due to the relative high
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3.1 General

damping ratio, which is due, in part, to friction and impact damping.

Wood is also a material that is very workable without having to use heavy machinery

as it is the case e.g. for steel and concrete. On the other hand, it is not so easily

joined. Despite much research development in gluing and even ’welding’ timber,

most modern timber joints consist of metal fasteners. Bolts, nails, staples and

special connector types are commonly used since they can be easily manufactured.

Furthermore, these types of fasteners facilitate the assembling of a joint. On the

contrary, glueing timber requires a conditioned environment and often long curing

times. Further, traditional carpentry joints are complicated and expensive to form.

On the side of disadvantages, wood’s sensitivity to temperature and moisture

which have further an influence on its mechanical properties must be mentioned

(Smith et al., 2003, p.33). Research by Rammer & Winistorfer (2001) shows that

moisture content influences the dowel-bearing strength. This has been confirmed

by Harada et al. (2005) while testing full timber joints. It is clear that humidity

has to be considered as an influencing factor when timber structures are designed.

However, in most studies this parameter is neglected by keeping the moisture

content of test samples at a fixed value.

Other influences that are damaging the material are weathering effects such as

Ultraviolet light, rain as well as insects and fungi. Treatment of timber when used

in critical environments is therefore required.

Due to wood’s natural growth pattern, it is a heterogeneous material with distinct

axis-dependent material properties. The relative low tensile strength of wood in

the radial and tangential direction, in comparison to its longitudinal strength,

represents a major weak point. This is not as crucial for flexural members as it is

for joints and notches, where stress concentration leads to high tensile stresses and

therefore cracks can easily propagate.

In conclusion, wood needs special attention when structures are being designed. It

has its drawbacks and challenges. But most problems can be overcome when the

material is used with caution and structures are designed by timber experienced

engineers. Joints, being often the weakest point in the entire structure, usually

govern the size of structural members. Therefore special consideration must be

taken in this regard.
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3.2 Wood Anatomy

In order to have a clear understanding of bulk timber behaviour, a closer look on

the micro structural anatomy is necessary. This section gives a brief overview of

wood characteristics that influence its mechanical behaviour.

Wood is an inhomogeneous material. It is a fibre based composite consisting of

cells that are roughly 3 − 5 mm in length for softwoods (Smith et al., 2003, p.15).

These tube-like, often hexagonal shaped cells are added in the tree’s lifetime every

year as a new layer in the cambium. This outer layer of the tree along with the

sapwood are the only ‘living’ part of the trunk and transport water and food. The

width of the new formed annual growth ring can range widely depending on the

species and as well within one species.

The main influence of variation in this layer is the environment in which the tree is

grown (Park & Spiecker, 2005). This is most evident when looked at trees in very

different climates. In temperate regions especially for softwoods a pattern of dense

(latewood) and less dense (earlywood) wood can be found as a result of changing

summer-winter seasons. The two parts vary according to the amount and time of

growth that occurred. This is consequently less distinct for tropical trees, where

the climate is relatively constant throughout the year.

The density variation in softwoods (conifers) is a result of the growth of thin

walled earlywood cells and thicker latewood cells. The cells, called tracheids, are

responsible for the transport of water and food for growth. The tree creates thin

cells for good ‘conductivity’ in spring time, while in summertime the growing of

supporting cells is more important and thus denser cells are created. Winter again,

is a time when growth stops completely (Thibaut et al., 2001). For temperate

softwoods, a steep increase in density can be seen towards the latewood region and

a sharp change from latewood to earlywood corresponding to winter.

On the contrary to softwoods, hardwoods (broadleaves) have special cells to

transport water. These are, depending on the species, more prominent in the

earlywood area, and are called vessels. However, this research concentrates on the
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modelling of softwoods.

3.2.1 Microstructural Influences

While the tracheids make 90-95% of the volume, softwoods consist of a few other cell

types that fulfil various tasks. Among them are ray tracheids and ray parenchyma

for transportation of water radially. Some researchers link these radially aligned cells

to the different behaviour of radial and tangentially stressed timber. Additionally,

resin canals exist which are tubular spaces for transporting resin. These, have no

significant influence on the mechanical behaviour, (Smith et al., 2003, p.15).

Each tracheid cell consists of a wall which in turn has several layers. The most

influential on mechanical properties is the S2 middle layer with around 30-150

lamellae (Smith et al., 2003, p.13). The orientation of microfibrils, of which the wall

is made, characterises this layer. Consequently, much research in micro structure

of wood has been conducted to measure the angle of these fibrils (MFA)and

relate these to the meso- and macro-scale structural behaviour of wood (Fig. 3.1).

Furthermore, by selecting trees by their microfibril structure potentially better

performing timber can be bred for.

Numerous micromechanical models can be found in the scientific literature.

However, research by Ping & Huawu (2004), shows that even on the small scale of a

single cell, microfibrils require a complex model taking into account the anisotropy

of cell walls, as a result of the different lamellae, to accurately predict the mechanical

behaviour of cells.

3.2.2 Anisotropic Behaviour

Wood’s most important characteristic, that has a major impact on timber design,

is its anisotropy. Due to the alignment of the long tubular cells, especially in

softwoods, in roughly circular rings around the pith, the material exhibits different

mechanical responses in the three main axes (Fig. 3.3). This can be described as

cylindrical orthotropy. (L) depicts the longitudinal direction in height, (R) is the

radial axis perpendicular to the tree’s central axis and (T) depicts the direction

tangential to the growth rings.
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Secondary wall:

Inner layer (S3)

Primary wall
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Figure 3.1: Single wood cell and its components, courtesy of Holmberg et al.
(1998).

In hardwoods, on the other hand, one has to differentiate between ring-porous

wood (vessels are orientated in a radial alignment) and diffuse-porous wood (pores

are evenly distributed over the ring). The latter, therefore exhibits less transversely

anisotropic behaviour. A good example for ring-porous and diffuse-porous timber

are white ash and yellow birch (Smith et al., 2003, p.16). Different micro structure

between soft and hardwoods can be seen in Fig. 3.2.
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Earlywood

EarlywoodLatewood

Latewood

(a)
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Earlywood

EarlywoodLatewood

Latewood

(b)

Figure 3.2: Cell structure, a) softwood and b) hardwood, courtesy of Thibaut et al.
(2001).

Sitka Spruce (Picea sitchensis)is the most important commercial species in the UK

accounting for some 47% (9.0 million green tonnes) of the round wood harvested

(Forestry Commission, 2008). It has been used throughout the experimental part

of this research.
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Figure 3.3: Anisotropy of wood, courtesy of Thibaut et al. (2001).

From the engineering perspective, timber stressed parallel to the grain (longitudinal

direction) provides most interest. This is, first, the strongest axis and second, the

direction it is most commonly stressed as in e.g. beams and columns. This leads to

the often used machine grading system for timber in which sawn timber is loaded

in three point bending and the elastic modulus (MoE) is determined and modulus

of rupture (MoR) inferred (MoE and MoR are defined in BS EN 408 (1995)).

The relative weak axes perpendicular to the grain represents the weakest link in

timber design. Tensile stresses in these directions lead to delamination and cracking

of single cells, as will be discussed in section 3.3.

For practical applications (e.g. in a continuum model for timber) it is often assumed

that the specimen is cut far away from the pith and therefore the radial alignment

can be neglected. The cylindrical orthotropy becomes normal orthotropy. This will

be explained further in section 3.3.

3.2.3 Macrostructural Influences

Other influences on timber properties is spiral grain which results from the cell

growth not being perfectly aligned in the longitudinal direction of the tree. Further,

the general grain deviation (slope of grain) of cut logs is also affected by the cut not

being properly aligned to the axis of the tree either. A deviation of 10◦ can have a
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decrease in MoR of about 40% (USDA, 1999). This has also a significant influence

on the elastic stiffness, as shown by Gong (1990) presented in Smith et al. (2003).

Cracks usually follow this grain angle. The 3D lattice model in this dissertation

assumes perfectly aligned cells.

The natural spiral grain is measured away from perturbations such as knots

and defects which influence the grain growth. Knots, therefore introduce certain

eccentricities to the force flow and causes stresses to concentrate. Thus, they

generally have a negative effect on strength properties. Size of the knots is an

important parameter to characterise the potential effect and contribute to the

observed size effect of timber. For example, Thibaut et al. (2001) state that by the

presence of knots above 3 mm diameter the bending strength of boards is reduced

by a factor of 2 (this should depend as well on the dimensions of the tested board).

Most research studies on material models for timber (as does this) try to eliminate

these influences by testing only clear wood specimens or try to ensure that knots

are not in the vicinity of the observed mechanical timber behaviour.

An investigation of the effect of knots in beam specimens can be found in

Nardin et al. (2000). They devised a fictitious crack model (explained in

subsection 3.3.2) to predict load-displacement curves of timber beams. Nardin

uses nonlinear springs that exhibit a negative stiffness to model softening fracture

behaviour. These springs are calibrated against measured values obtained from

material tests performed on wood that was taken from the vicinity of knots. Good

agreement was found among tested beam specimens and FE model predictions.

3.2.4 Growth Ring Structure

For this research, local density variation on the level of growth rings is used in the

FE lattice model to account for strength and stiffness variation. The influence of

these density variations shall be explained in more detail here.

For bulk material behaviour the literature shows a certain relation of density with

MoR and MoE (e.g. Smith et al., 2003, p. 29). This is less the case for shear moduli

which does not correlate to the MoE as shown by Khokhar et al. (2008).

Many experimentally derived strength properties such as the compressive
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strength perpendicular to the grain, dowel bearing strength etc. in Eurocode 5

(BS EN 1995-1-1, 2004) are based on the density of timber. Although density is,

per se, a poor indicator of stiffness and strength, the approach to use density as

the main driving factor of variation was also chosen in this research due to the

straightforwardness of measuring this property.

Despite this assumed correlation of bulk density, bulk stiffness and strength

properties this does not account for the variation in one test specimen. This

is mainly, as described above, due to certain micro- and meso- scale structural

features such as variation in knots, defects, latewood and earlywood and varying

cell structure, including the MFA.

Lin et al. (2007) studied the effects of different ring characteristics such as ring

width, ring density and the proportions of earlywood and latewood on compressive

strength and the dynamic modulus of elasticity (DMoE). They showed that there

is a strong correlation among ring width, ring density and compressive strength.

However, the proportions of earlywood and latewood need to be considered as well.

Additionally, an overall strong positive relation among DMoE and strength can be

observed.

While strength and stiffness properties perpendicular to the grain are largely

affected by the density, this is less the case for longitudinal elasticity which depends

strongly on the microfibril angle, (Smith et al., 2003, p.45).

Although, density is only one factor that determines strength and stiffness

properties of wood there is a clear basis to relate these properties. It is attempted

in this research to correlate the variation observed in density with the variation of

strength and stiffness parameters of lattice link elements in the FE model. This is

at least a valid approach to account for the observed variation among specimens.

Thibaut et al. (2001) states as a rough estimate, a general factor of 2-4 for strength

and stiffness difference between latewood and earlywood. Fournier et al. (2007) in

their 2D lattice model use roughly similar factors (strength ratio EW/LW: 1.53 in

L and 3.33 in R stiffness ratio: 2.24 in L and R and shear) based on the density

difference. No stiffness difference in shear is assumed.
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3.3 Material Models for Wood

Timber is an inelastic material, hence structural models face two main challenges:

First there is the ‘plastic’ deformation capability of wood under compression. At

the small scale of wood cells, the walls crush and buckle locally, Fig. 3.4. In case of

dowel-type timber joints, wood in the vicinity of the fastener is deformed plastically

(depending on the specimen dimensions) in the parallel and perpendicular to

the grain direction. Important to note is the difference of fibre buckling and cell

wall crushing which leads to significantly different behaviour in the lateral and

longitudinal direction. This has been modelled sufficiently with elastic-plastic

continuum FE models, which will be discussed in the first part of this section.

R L

T a) b) c)

Figure 3.4: Schematic of failure in group of cells, b) compressive failure in the
RT-plane and c) in the LT-plane (original in colour).

Secondly, wood exhibits quasi brittle behaviour in tension. This occurs, on the

micro scale, as either a separation of cell walls perpendicular to the crack surface, a

peeling off of cell walls in the crack plane or a separation of individual cells in the

longitudinal direction and peeling as shown in Fig. 3.5.

These cracks can occur rapidly and lead to brittle failure. However, foremost

fibre branching, cracks hitting an inclusion and partly plastic deformation at the

crack tip lead to a decrease in fracture energy, and thus creating nonlinear fracture

phenomena. Several linear and nonlinear fracture mechanical approaches have been

applied to wood and shall be discussed in the second part of this section.

An electron microscope image taken of a tested Sitka spruce (Picea sitchensis)

specimen with a tensile failure in the longitudinal direction can be seen in Fig. 3.6.
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a) b) c)

R L

T

Figure 3.5: Schematic of failure in group of cells, a) tensile fracture running in
the LR plane partly through cells, b) shear fracture in the LR plane and c) tensile
failure in L combined with shear in the LR plane (original in colour).

A recent literature overview on different finite element material models for wood can

be found in Mackerle (2005). Research can be subdivided into several categories. It

is attempted here to split this large field into elastic and plastic continuum models

that use the FE method, fracture mechanical approaches (partly using analytical

and numerical FE techniques), fictitious crack and lattice models. The following

subsections give first descriptions of the general concepts of modelling techniques

and then present recent examples.

3.3.1 Continuum Models

Elastic Continuum Model

In continuum mechanics, the relationship between stresses σij and strains ǫkl can

be mathematically described for an anisotropic material with the 4th order stiffness

tensor Cijkl as

σij = Cijklǫkl (3.1)

The inverse of Cijkl is the more commonly used compliance tensor Sijkl.

Due to symmetry only 21 are independent parameters. With the assumption of

shear stresses not causing any normal strains the matrix can be reduced again to
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Figure 3.6: Tensile failure of tested Sitka spruce (Picea sitchensis) specimen, the
boundary between early and latewood is clearly visible in the fracture path, (above).
Magnified section, (below), shows tensile along with shear failure.
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only 9 independent parameters. This can be formulated in ‘Voigt’ notation1 as




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. (3.2)

For this study the longitudinal direction is assigned to index X, the radial to index

Y and tangential to index Z.

In case of 3D orthotropy, the 9 independent parameters become

s11 = 1
Exx

s22 = 1
Eyy

s33 = 1
Ezz

s44 = 1
Gyz

s55 = 1
Gzx

s66 = 1
Gyx

s12 = − νxy

Exx
s13 = − νxz

Exx
s23 = − νyz

Eyy
,

(3.3)

where νyx stands for the Poisson coefficient in case of load applied in the Y -direction

and displacement in the X-direction. Due to symmetry the 3 Poisson coefficients

are

νyx = Eyy
νxy

Exx
νzx = Ezz

νxz

Exx
νzy = Ezz

νyz

Eyy
. (3.4)

When growth rings are neglected, this orthotropic character of timber reduces to

cross-anisotropy (also called transverse isotropy). This will be exploited in the

here described lattice model LAT3D (chapter 5). It is assumed that the general

anisotropy of timber is an effect that results from the included stiffness and strength

variation at the growth ring level. Therefore, on the lattice mapped structural

variation is meant to reflect the orthotropic mechanical behaviour.

With this assumption of transverse isotropy, the elasticity matrix reduces again to

5 independent parameters (Exx, Ezz = Eyy, Gzx = Gyx, νxz = νxy and νyz or Gyz)

s11 = 1
Exx

s22 = 1
Eyy

s33 = 1
Eyy

s44 = 1
Gyz

s55 = 1
Gzx

s66 = 1
Gyx

s12 = − νxy

Exx
s13 = − νxy

Exx
s23 = − νyz

Eyy
.

(3.5)

1‘Voigt’ notation reduces the 2nd order stress and strain tensors and 4th order stiffness tensor to
two vectors and one matrix.
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Either, νyz or Gyz is an independent parameter. They are related with

νyz =
Eyy

2Gyz

− 1. (3.6)

Besides traditional mechanical tests such as static tension and compression tests,

mechanical properties can be determined with more unusual test procedures. A

thesis on the determination of elastic constants of timber can be found in Grimsel

(1999). This author uses a modal analysis of flexural specimens to obtain the

complete elasticity matrix. Furthermore, he investigated the rheological behaviour

of wood and compared an FE analysis for drying timber boards with experiments.

Plastic Continuum Model

Plastic continuum models for more commonly used engineering material as e.g.

steel have been researched since the 1950s. Steel’s micro structural components

can experience a substantial amount of reworking, hence it exhibits large plastic

capacity where energy is dissipated. To account for this potential in mechanical

models, one can assume elastic-perfectly plastic material behaviour.

A definition has to be formulated that distinguishes between the elastic and plastic

part of the strain state. This is called a flow condition. Commonly a yield stress is

used that defines the stress and strain at which for further strain increments only

plastic work is done and no further elastic strain occurs.

In 3D plasticity the latter definition becomes a surface in the three dimensional

principal stress state. A simple and commonly used form is the Von Mises yield

criterion: in case of an isotropic material the yield surface is a infinite cylinder

with its axis inclined at equal angles to the principal axes. This implies that for

an hydrostatic stress state (σxx = σyy = σzz) no yielding occurs. Research by

Bridgeman (1952) confirmed that this is applicable to metals.

The therefore used Von Mises stress criterion can be calculated as follows

F 2
y =

1

2

[

(σxx − σyy)
2 + (σyy − σzz)

2 + (σxx − σzz)
2
]

+ 3
(

σ2
xy + σ2

xz + σ2
yz

)

. (3.7)

Stresses inside this cylinder are elastic. With the restriction of no elastic strains

are permitted outside this surface elastic stresses only develop at the maximum on
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the yield surface. Plastic strains are allowed to develop perpendicular to this surface.

An incremental solution algorithm needs to be used. Since the amount of plastic

strain in one incremental step is initially unknown, a solution is first sought with the

assumption of no plastic straining and then iterations are performed to determine

the plastic strain increment as a vector perpendicular to the yield surface. While

respecting that the flow condition is met (Fy = 0) this vector needs consecutively

updating and thus with a new iteration moves closer to the actual stress state at

the specific increment.

Additionally to the assumption of elastic-perfectly plastic material behaviour a

hardening rule can be assigned, which defines the proportional inflation of the yield

surface. Thus, it is possible to mimic a non perfectly plastic material as e.g. timber.

These constitutive equations for plasticity in isotropic materials can be extended

to account for anisotropy. Instead of a regular yield surface the yield condition is

formulated according to Shih & Lee (1978) (as presented in Smith et al. (2003)) as

Fy = (σij, αij, Aijkl, k) = 0. (3.8)

where σij are the 2nd order stress tensor, Aijkl is the 4th order strength tensor that

defines the shape and αij the origin of the yield surface. k represents the reference

yield surface.

When hardening for anisotropic material is considered, it is distinguished between

proportional and non-proportional hardening. This describes the development of

the yield surface in the specific material axis.

If strength degradation is to be considered, the yield surface shrinks according to a

softening instead of a hardening rule. This has been used in material model as e.g.

in Grosse & Rautenstrauch (2004).

Strength Criteria

Strength criteria can be used to determine the failure location and load in continuum

models. The reader is referred to the general formulation in Tsai & Wu (1971).

There are numerous versions of this criteria in simplified form. However as stated
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in (Smith et al., 2003, p.53), strength criteria can merely indicate the location of

failure, rather than absolute failure loads. Strength criteria would not be applicable

to areas with high stress gradients, since in continuum models stresses are averaged.

Further, variability of strength properties across growth rings are not accounted

for.

Different strength criteria for anisotropic material can be found in

Cazacu & Cristescu (1999), Cazacu et al. (1999), Arramon et al. (2000),

Aicher & Kloeck (2001) and others. An extensive bibliography on proposed

failure criteria for composite material can be found in Paris (2001).

Examples of Continuum Models

An example for the application of a simplified continuum FE model for timber

can be found in Tabiei & Wu (2000). In this model, the authors apply a simple

rule of changing the elastic modulus Eij in the resulting stiffness matrix. An

effective elasticity matrix is calculated for the nonlinear case that keeps the

matrix symmetric. Tabiei & Wu used power functions, fitted to test data,

that simulate the stiffness change. No 3D yield stress had to be formulated.

The stiffness change results from simply updating the various E−moduli in

an incremental manner. Although for this model the 3D stress state is not

calculated iteratively, as described before, for simple stress situations the model

delivers good predictions. The authors accounted as well for the effect of strain rate.

Zhu et al. (2005) modelled OSB with a simple nonlinear constituive material model

that takes into account proportional strain hardening under compression. Piecewise

linear stress-strain curves that resembled a parabolic curve after the initial yield

stress and the ultimate stress serve as an input to the material model. Very good

agreement was found among model and tests. Failure was detected when plastic

compressive strain reached a certain value. A linear stress-strain relation in tension

is assumed and failure determined when the Tsai-Hill criterion is met. However,

strain softening was not included in the model.

A more complex 2D orthotropic constitutive plasticity model has been presented by

Mackenzie-Helnwein et al. (2003). The authors extend the common single Tsai-Wu

strength criteria, which represents an ellipsoid in the 2D principale stress space
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Tsai & Wu (1971) to four surfaces. They undertook a comprehensive experimental

study with bi-axial loaded specimens for which strain measurements could be taken

via a 3D Electronic Speckle Pattern Interferometer. Failure could be correctly

determined and the post failure behaviour based on the four different surfaces could

be predicted well.

Schmidt & Kaliske (2006) based on the previous model extend the idea to three

dimensions. The model includes 7 yield surfaces of which at most 4 can be active.

Since no experimental tri-axial loading data was available for this research the

model was compared and verified with previous material models.

3.3.2 Fracture Mechanics (FM)

The main drawback for traditional continuum mechanics is that stresses are

calculated in an averaging sense over the domain of a continuous medium. This

may be applicable to problems where the material, under ordinary loading

conditions, exhibits large plastic deformation. However, the assumption of

continuous stresses breaks down at points were stress singularities can occur (e.g.

cracks). Wood due to its weak cellular bonding strength and its natural inherent

flaws exhibits stress concentration with little plastic deformation under tension and

thus brittle failure in form of fracture can occur.

This field of study, named Fracture mechanics (FM) started in the early 20th

century and has been developed to incorporate a variation of different nonlinear

fracture phenomena since(NLFM). An example is steel, where the ability to

deform plastically in the vicinity of a crack reduces again the stresses at the ideal

singularity and thus decreases the susceptibility to fracture.

Details on several linear and nonlinear FM techniques can be found in standard

literature e.g. Anderson (1991) or for timber Smith et al. (2003), from who part of

the following subsection is taken. In the following a brief introduction to FM and

its application to timber will be given.

A more general overview on different concepts to simulate fracture behaviour can

be found in Smith et al. (2007). The authors look at differences in continuum,

fracture mechanical and lattice approaches.
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Linear Elastic Fracture Mechanics (LEFM)

In cracks high peak stresses occur at the crack tip and are dependent on the shape

of the opening. Inglis (1913) developed first an equation determining the peak stress

occurring in the crack vicinity of an elliptical shaped hole. Under uniaxial tension

for an ideal material the vertical stress is determined by

σy = σ

[

1 + 2

√

a

ρ

]

, (3.9)

where σ is the acting tensile stress far away of the hole, a is the half of the wide

diameter of the ellipse and ρ is the radius of the ‘crack tip’.

While this describes stress concentrations at the vicinity of a hole, no condition

is formulated which allows for cracks to form or further develop. Griffith (1921)

instead formulates the balance of energy of a cracked system. The total energy can

be described as

Π = U + Up + W = U − F + W, (3.10)

where U is the stored strain energy, Up is the potential energy of the load system,

F is the external work of the applied load and W the surface energy associated

with crack formation.

According to Griffith the overall energy of the system must be reduced or unchanged

for a crack to propagate. Thus,

dΠ

dA
=

d

dA
(U − F + W ) = 0 or

d

dA
(F − U) =

dW

dA
(3.11)

By using Inglis’ solution for an elliptical hole with a width of zero in the minor axis,

the strain energy can be calculated as

U =
πσ2a2b

E
, (3.12)

where again σ is the applied stress in a uniaxial tension field, a is the crack length,

b is the plate’s thickness and E is the Young’s modulus. Furthermore, it can be

shown that the external work done by the applied load is twice the internal strain
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energy U .

F = 2U. (3.13)

And finally, the surface energy W is

W = 4abγ, (3.14)

for which γ is the surface energy required to form a new surface and thus a material

constant. 4ab stems from the area of 2 surfaces of length 2a and width b.

Substituting (3.12), (3.13) and (3.14) into (3.11) and solve for stress, results in the

fracture strength σf

σf =

√

2Eγ

πa
(3.15)

This strength value agreed well with measurements taken from glass specimens by

Griffith. However, for other more usable construction materials, which are not as

brittle as glass, the formula needs some modification.

The left hand side of equation (3.11) is generally referred to as the strain energy

release rate G. While the right hand side is the material’s resistance to crack growth.

G =
d

dA
(F − U) (3.16)

Instead of W being calculated with the material’s surface energy it can be formulated

as itself a material constant Gc with a unit of energy per area (e.g. J/m2).

Gc =
dW

dA
(3.17)

It can be stated that a crack progresses when G = Gc.

In many cases this material constant is actually itself dependent on the fracture

length a and is then referred to as the parameter R.

By deriving the energy strain rate G of a crack development for a certain system

and comparing it to the material’s crack resistance Gc, the critical load for crack

propagation can be predicted. For instance the strain energy increment of a system

(Fig. 3.7) can be described in case of displacement control with energy before and
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Figure 3.7: Crack growth under displacement control.

after crack growth as follows,

U1 =
1

2
δP and U2 =

1

2
δ(P + dP ) (3.18)

Thus,

dU = U2 − U1 =
1

2
δ(P + dP ) −

1

2
δP =

1

2
δdP (3.19)

When substituted into (3.16) results to

G =
1

b

[

dF

da
−

dU

da

]

=
1

b

[

δ
dP

da
−

1

2
δ
dP

da

]

=
1

2b
δ
dP

da
. (3.20)

This equation can be expressed with the compliance of the system C being the

reciprocal of the slope of the load-displacement curve. C = δ/P

G =
1

2b
P 2dC

da
. (3.21)

An example shall be given for the application of the former derivation (Smith et al.,

2003, p.74): a cantilever beam that has been used for predicting strength of timber

joints will be described, Fig. 3.8. According to common beam theory the deflection

of a cantilever beam can be expressed as

∆ =
PL3

3EI
, (3.22)

where E refers to the Young’s modulus, I to the moment of inertia, P to the

applied load and L to the beam length.
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For a double cantilever beam the crack opening is twice that of a single one (δ = 2∆).

When length L is replaced with crack length a and for I the proper moment of inertia

is calculated, the former can be rewritten as

δ =
8Pa3

Ebh3
, (3.23)

Thus, the compliance is

C =
8a3

Ebh3
, (3.24)

Further inserting (3.25) into (3.21) results in

G =
12P 2a2

Eb2h3
, (3.25)

This can be extended further to account for anisotropic materials.

P

h

P

b

a

�
L

�P
Figure 3.8: Double cantilever beam specimen.

Since it is often not feasible to formulate the energy balance of the uncracked and

later cracked system, another approach can be applied by using the stress intensity

factor K.

This second concept in fracture mechanics enables to formulate the actual stress in

the vicinity of a crack. By choosing an appropriate stress function with a singularity

at the tip. One has to differentiate for three basic modes of fracture, Fig. 3.9. For

each, a different stress function with a geometry and load dependent parameter K
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is formulated. K is a parameter that defines the strength of the stress singularity, it

is either taken analytically derived (e.g. taken from literature) or can be calculated

from results of a FE package that is able to exhibit similar stress functions, e.g.

with special ‘quarter-node’ elements or appropriate meshing to capture the stress

concentration.

A crack is said to propagate when K ≥ Kc, while Kc can be seen as a measured

material constant.

For a mixed mode cracking, certain failure criteria are used. The most common is

the Wu criterion (Wu, 1967) for a mixed shear and crack opening failure can be

calculated as
KI

KI,C

+

(

KII

KII,C

)2

= 1 (3.26)

Jernkvist (2000) developed a mixed mode fracture criteria based only on fracture

toughness KI,C . Due to the observation that cracks initially aligned across the

fibres almost always develop along the fibre direction, the author extended the

fracture criterion to relate the fracture toughness KI,C and KII,c for cracks oriented

across fibres as well to mode I fracture toughness.

Despite the method’s usefulness for homogeneous material such as steel and glass.

the application to timber is rather limited because of different micro-structural

phenomena that occur in timber due to the heterogeneity of the material. These

phenomena prevent formation of a clear crack tip that is assumed by the stress

intensity factor method.

An examples of the application of LEFM can be found in Snow et al. (2004).

The authors determined energy release rates G and stress intensity factors K

for fracture for mode I and mode II specimens made of LSL. The respective

properties were taken from the literature for pine. Joint tests of pin loaded

timber members (loaded perpendicular to the grain) were then compared to a

numerical analysis for different crack lengths. A J-integral approach was used

to determine the stress intensity factors for different crack lengths from the FE

models. A Wu failure criteria was used to assess the failure load. While the failure

was reasonably well predicted for solid wood, this was not the case for LSL. As

the authors suggest this is due to the actual failure mechanism of the LSL joint

since cracking developed from the extreme fibre at the tension side of the LSL beam.
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Mode I

Mode II

Mode III

Figure 3.9: Schematic of the three fracture modes: tension, in-plane shear and
out-of-plane shear.

Nonlinear Fracture Mechanics (NLFM)

As mentioned in Vasic et al. (2005) linear elastic fracture mechanics has its

limitations and, especially for wood, nonlinear techniques to investigate post peak

stress situations should be applied. The authors give an overview of different

fracture mechanical approaches for the application to wood.

The validity of LEFM rests on the assumption that a plastic zone that develops in

any any material to a certain degree is relative small in comparison to the stress

field that is influenced by the stress singularity,Anderson (1991).

3.3.3 Fictitious Crack Model and Cohesive Zone

A way to account for this plastic zone is the introduction of closing stresses at the

crack tip which close the ideally existing crack. This has been done by Dugdale

(1960) for steel, where the yield stress of the material σY S is applied and thus the
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length of this process zone can be calculated, Fig. 3.10.

In a similar way for concrete, Hillerborg et al. (1976) assume that the maximum

tensile stress (tensile strength) of the material is being transferred at the crack tip.

This stress decreases according to a defined curve (bi-linear, continuous etc.) to

zero along the so called cohesive zone at the front of the crack, Fig. 3.11.

In case of the fictitious crack model nonlinear springs at the crack surface can be

used for the transfer the closing stresses. Usually the cracked surface has to be

known in advance and elements adjacent to the crack surface are linked together

with spring elements. The obvious advantage is that nonlinear fracture phenomena

can be incorporated into the spring’s load-displacement curve.

Examples can be found in Vasic & Smith (2000), Nardin et al. (2000).�
y

xrP

�
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Figure 3.10: Dugdale’s model (after Saouma (1997)).

A continuum damage mechanical model (DM) was used in Daudeville (1999) for a

mode I failure test, where joint elements are used to model the decohesion between

parts of the structure. The joint elements followed a constitutive behaviour in mode

I. A special FE routine was required to pass an instability point that might occur

during the nonlinear load-displacement response of the model. Fracture energy

release rate G could be determined and compared to the previous model.

Holmberg et al. (1998) devised a 2D plastic continuum model based on a
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Figure 3.11: Hillerborg’s model.
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constitutive isotropic material model for foam including a strain hardening rule.

To account for different mechanical behaviour in the wood morphology, the authors

used 5 different material definitions and thus elements for early wood and one for

late wood. Fracture was captured by the use of a fictitious crack model. This

was achieved with special crack elements in between each solid elements which

exhibit a nonlinear stress-displacement curve and acted in tension and shear. The

relation was assumed to be a bi-linear softening curve that was obtained from

experimental measurements. Numerical instability was avoided since no ‘snap back’

was encountered with the used softening crack elements. The model was used to

simulate shear failure (shear box) of small specimens orientated in the the radial

and the tangential direction. Excellent agreement was found among the predicted

and observed failure patterns. While the overall stiffness was slightly overestimated

an accurate prediction of, at least, the shape of the load-displacement curve and

absolute strength could be obtained.

As a further technique, the material point method (MPM) can be used to

incorporate material heterogeneity. The reader is referred to Nairn (2007a) and

Nairn (2007b) as an example for a 2D transverse fracture model.

3.3.4 Lattice Models

Lattice models on the contrary to continuum models consist of distinct elements

that represent the material at a certain length scale. They are a natural choice for

material modelling since structured and random heterogeneity can be incorporated

easily by statistical variation of element stiffness and strength characteristics.

The lattice elements itself can thus represent actual morphological features of the

material.

Similar to fictitious crack models, where in most cases, the crack has to be

defined first and modelled with nonlinear springs, lattice models take the idea

one step further and use a mesh with discrete elements for every part of the structure.

There are different cell arrangements possible for lattice models. Either the

lattice structure consists of a regular or an irregular mesh depending on the way

material variability is incorporated. The models can consist in the simplest form

of lateral and longitudinal bar elements or beam elements connected via diagonals.
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Figure 3.12: Ideal load-displacement response of an elastic perfectly brittle lattice
structure (left) and applied solution method, Algorithm 1, with resulting LDP (red
line) and number of load steps.

Additionally to the diagonal elements, angular springs can be used to model shear

behaviour.

Neither is the pre knowledge of the location of the occurrence of a crack required

nor the actual microstructural failure mechanism. However, lattice models, due

to their sheer size, require a larger amount of computational time and memory space.

Solution Strategies for Discrete Lattice Models (Non-Incremental)

There are several ways to simulate discrete lattice models. One can distinguish

primarily on whether discrete stiffness reduction of elements is used and on the

way this is implemented in the solution algorithm. The Elastic Perfectly Brittle

approach as described in this subsection represents the most simple solution, for

which the element’s stiffness is set to zero after the maximum strength of this

element is reached. The ideal result of this type of analysis is a ‘saw-tooth’ like

load-displacement curve as seen in Fig. 3.12 (left) and the possible solution outcome

by the below described algorithm (right).

To the author’s knowledge there is no commonly accepted name that describes

this specific method and will be therefore referred to as simply Elastic Perfectly

Brittle Lattice method. It only works for systems where stiffness change occurs

due to elements that are deactivated and thus removed from the system. Most

lattice models are solved with this method. Examples can be found in Davids et al.
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(2003), Fournier et al. (2007) and Sedighi-Gilani & Navi (2007) etc. The principal

formulation of this algorithm can be described as seen in Algorithm 1.

Algorithm 1 Elastic Perfectly Brittle Lattice Method (displacement control).

Require: global stiffness K1
1

Require: ui displacements for each step i (particular degree of freedom)
1: load step i = 0
2: repeat
3: i = i + 1
4: iterative Step j = 0
5: repeat
6: j = j + 1
7: solve: [Kj

i ]{∆i} = λj{Fref} for iteration j in load step i
8: displacement control: obtain ui from {∆i} and calculate λj = ui/ui

9: for all l do
10: calculate: resulting load F l in link element l
11: if F l > Sl then
12: remove local [kl] from global [Kj

i ] ⇒ [Kj+1
i ]

13: end if
14: end for
15: until no further link is broken (F l > Sl)
16: {Fi} = λj{Fref}
17: until either [K] becomes singular or {Fi} = 0

A single step i of the algorithm can be represented graphically as seen in Fig. 3.13:

for each load step the structure is solved for a certain displacement ui. If elements

l are exceeding their maximum strength F l > Sl they ’break’ (are removed) and

the new updated stiffness matrix is calculated [Kj+1
i ]. The latter two steps are

repeated until no further link breaks and an admissible solution is found. Finally

the next displacement step ui+1 is applied and the whole process starts again with

the next larger displacement. This is done until the system becomes singular or the

load reaches zero {Fi} = 0.

Obviously, a significant number of steps are required to accurately present sudden

(vertical) drops in the load-displacement plot (LDP).

Most crucial about this algorithm is it is a non-incremental method. Hence, it

is assumed that although stiffness changes occur, the tangent stiffness gradient

is always placed in the graph’s origin at zero load and displacement. Thus, the

method only works assuming there is no ductile behaviour present where plastic
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Figure 3.13: ‘Elastic Perfectly Brittle Lattice’ method.

strain accumulates. For that reason it is not very useful when modelling wood in

joints where a great part of energy is dissipated by deforming timber plastically in

the parallel to the grain direction. Neither would this method be useful to model

contact nonlinearity nor to account for microductility of broken links under tension.

Bazant & Cedolin (1979) object that this type of method is mesh dependent and

will not yield the correct energy consumption upon mesh refinement. A softening

branch has to be included to simulate the dissipation of energy on the element level.

Including a softening branch will still result in a model response that depends on

the mesh-size but the strain softening can be adjusted to fit experimental data or

measured energy release rates (Jirasek & Bazant, 1995).

Another type of non-incremental analysis is mentioned in Rots & Invernizzi

(2004). Although these authors use 2D continuum elements, they employ a special

solution technique which would be as well applicable to lattice models with, for

example, bar elements. The principal idea is that instead of bar elements, entire

continuum elements can experience strain softening. The principle tensile stresses

are calculated for each element. Those for which the principle stresses reach

their strength will experience a sequential reduction in stiffness and strength.

The main advantage is that no incremental-iterative solution technique (such as

Newton-Raphson with arc-length, displacement control etc.) is required and a
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Figure 3.14: Example of a softening stress-strain diagram with the saw-tooth
approximation, softening is divided into 10 steps with positive stiffness.

negative stiffness which might lead to convergence problems is absent. However,

as with lattice models, mesh refinement is a major issue, therefore the softening

curve of an element needs adjustment to the element’s size. The algorithm can be

described as follows (Algorithm 2).

Algorithm 2 Sequential Reduction Method.

Require: global stiffness K0

Require: unit load Fref

1: load step i = 0
2: repeat
3: solve: [Ki]{∆i,ref} = λi{Fref} in load step i
4: extract the element l for which one of the principle stresses is closest to its

maximum strength ft

5: calculate λi so that element l reaches its maximum load
6: reduce local stiffness K l and strength ft of critical element l for all principle

directions according to a saw-tooth tensile softening stress strain curve as seen
in Fig. 3.14

7: update stress and strain status of each element
8: calculate global displacement and load response
9: Fi = λiFref

10: ∆i = λi∆i,ref

11: i = i + 1
12: until either [K] becomes singular or {Fi} = 0

This method can also be applied to discrete lattice models. Despite the robust way

to determine nonlinear fracture, the method is computationally quite expensive

since the number of computational steps amounts to the number of broken elements

multiplied with the number of the divisions in the stress-strain saw-tooth diagram.
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Most important, plastic behaviour for the elements can not be incorporated due to

its non-incremental nature.

Examples of Lattice Models

Early lattice models have been used for predicting fracture behaviour of concrete.

The main difference to timber is the assumed local isotropy of the single lattice

cells. Recent examples can be found in Lilliu & van Mier (2000), Lilliu & van Mier

(2003) and Prado & van Mier (2003). All authors employ in their 2D and 3D

lattice models the simple Elastic Perfectly Brittle Lattice method. An ordered

triangular arrangement of beam elements was used. The heterogeneity of the

material is simulated with different assigned properties for aggregate, matrix and

the interface bond between them. Thus, it is possible to investigate different

aggregate distributions on fracture energy and load-displacement curves.

Berton & Bolander (2006) devised a 3D irregular lattice model for concrete based

on a Voronoi discretisation of the material domain. Although, auxiliary nodes

can be strategically introduced to create material features such as inclusions etc.

in later models, only a homogeneous material was considered. A cohesive crack

model is assumed with a tri-linear stress-displacement relation (tension softening)

for the individual links. One type of links simulates the stress perpendicular to

the facets from the Voronoi tessellation and two link types simulate the two shear

stresses acting on that plane. The nonlinear solution is found by breaking only one

individual link at one computational cycle and degrading the element’s stiffness

with a damage parameter. This is analogous to the before described crack band

model or ‘Sequential Reduction’ method. Negative stiffness of individual links is

therefore avoided.

Another application of a lattice model for concrete can be found in Cusatis et al.

(2006), where for the material nonlinearity a constitutive law is enforced. Thus,

ordinary nonlinear solution algorithms such as the Newton Raphson with line

search or arc-length control can be used.

Lattice models can be easily used to study the size effect in structures. Once a

lattice is calibrated, different sized lattices can be computed and compared to

experimental specimens. Investigations with lattice models for concrete beams
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exhibiting a size effect compared to size effect laws from literature can be found in

Ince et al. (2003), Bazant & Yavari (2005) and Jirasek & Bazant (1995). The latter

paper describes, as mentioned in the introductory chapter 1, a special solution

algorithm called SSC along with a more efficient method to recalculate the global

tangential stiffness matrix (MIF). This will be discussed in detail in section 5.6

Timber, in contrast to concrete is a transverse isotropic material at its meso

structure. Strength and stiffness properties are linked to the main material axes

and thus complicate the model’s behaviour. Examples for 2D lattice models

for timber at the meso scale can be found in Landis et al. (2002), Landis et al.

(2003), Davids et al. (2003), Parrod (2002), Parrod et al. (2002), Vasic (2000) and

Fournier et al. (2007). These authors use simple perfectly brittle lattice elements

and therefore can use the computational inexpensive Elastic Perfectly Brittle Lattice

method as a solution algorithm.

Elastic properties (Young’s, shear- moduli and Poisson coefficients) are assigned to

the elements via an optimisation technique that compares model results of standard

loading situations with elastic values obtained from the literature. Interesting to

note is the way shear and Poisson effects are incorporated into the lattice. The

diagonals of the lattice cell are used to serve for both shear transference and lateral

strain. The contributing stiffness that results from these elements is determined by

a adjustable ‘effective’ angle. Thus, it is possible, according to these authors, to

better fit the elastic properties.

However, with this assumption, the lattice becomes size dependent in terms of

the elastic behaviour. In addition, a pure shear situation cannot be represented

accurately. Forces that act in the lateral lattice elements would be present, this

is discussed in more detail in subsection 6.3.1. The above named authors assume

that these imperfections of the lattice have no significant effect on the model’s bulk

behaviour. The element’s strength properties are found by iteratively comparing

experimental tests with model results. This is as shown in the papers in the case of

tension radial to the grain in good agreement with the experiments.

The perfectly brittle timber lattice model is taken a step further by Fournier et al.

(2007), who incorporated morphological features such as growth rings. The

authors distinguish between certain latewood and earlywood elements and assign

different strength properties. Elastic properties are left undistinguished. Unrealistic
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fracture prediction for certain load cases could be overcome with this incorporated

structured strength variation of elements. Very good agreement between lattice

model and experimental results could be found. However, the study only looked at

the shear and tensile behaviour of timber. The assumption of in plane stresses and

thus the use of a 2D lattice model reduced the computational demand significantly.

Sedighi-Gilani & Navi (2007) developed a 3D lattice model for timber on the

cellular level for perpendicular to the grain mode I fracture. Two types of box-beam

elements were used to represent single cells. Large elements (40 µm x 40 µm) for

early wood cells and smaller ones (40 µm x 20 µm) for late wood cells. A thickness

of 2 and 6 µm was assumed respectively. The lattice represented only a small volume

of the entire cleavage sample. The remaining was modelled using orthotropic linear

solid elastic elements. Shear and lateral resistance between the cells was transferred

via diagonal and lateral springs. All elastic parameters of the lattice elements

were calibrated against values from the literature in an iterative manner similar to

Landis et al. (2002). Strength criteria were only adjusted for lateral and diagonal

springs by comparison between fracture mode I tests conducted by Vasic (2000) and

a trial and error method to obtain best fit. No plastic deformation capability for

links under compression is included. The authors used the FE package ABAQUS

with sequential removal of failed elements, thus in principle they also use the

Elastic Perfectly Brittle Lattice method. Very good agreement was found among

observed and predicted fracture path. It was possible to capture the fibre branching

mechanism well with the assumption of box-beam elements. Furthermore, it could

be demonstrated how small micro cracks develop into larger cracks on the meso scale.

3.4 Joint Modelling

Now having presented various modelling techniques for a timber material model,

these can be applied in the framework of a complete timber joint model.

Research on timber joints compasses numerous issues. An attempt to summarise

the wide field of joint models can be best achieved by structuring the individual

aspects of the models:

Joint types dowel-type (nails, bolts staples etc.), split rings, shear plates

Model type empirical, analytical, numerical
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Model technique continuum models, fracture mechanical model,

morphological lattice models, material and geometric nonlinearity

Loading monotonic, dynamic, load history, strain-rate effects

Joint arrangement single or multiple fastener, single or multiple shear

Environmental influences fire, moisture, fatigue (and other time dependent

effects)

A mathematical model to describe joint behaviour is always limited in some respect.

Commonly a number of individual aspects are considered. This research tries to

look at the geometric nonlinear effects in single shear joints under consideration

of nonlinear material and fracture behaviour. Important properties of a joint to

investigate are the initial stiffness, ultimate load and overall ductility and failure

mode.

Starting with the earliest attempt to quantify the load bearing capacity of timber

joints with the European Yield Model (EYM) this section will present more detailed

joint models on the basis of the before discussed modelling techniques such as

continuum models, fracture mechanical and lattice models.

3.4.1 European Yield Model

Because the use of the European Yield Model to calculate timber joint strength

is so widespread it will be described here in more detail. It was developed

by Johansen (1949) and has entered several design codes since (USA, Canada,

Europe and Australia). Named after the Danish researcher the model is also

known as Johansen’s Yield Model. Its ease of use and applicability to several

joint arrangements, such as multiple shear joints consisting of timber/timber

or timber/steel plate members, increased its popularity. The basic principle,

underlying the model, is the assumed perfectly plastic behaviour for both materials

timber and steel. The model predicts the strength of a joint based on the

equilibrium of moments and forces acting on the fastener at a specific state of the

joint, namely the yield point.

For a single shear joint with a dowel-type fastener, assuming different embedment

strengths for the members, six different failure modes can occur. These are depicted
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in Fig. 3.15. The first three images show failure modes resulting from a rigid

fastener: a) and b) represent timber embedment in one of the two timber members,

c) represents embedment failure in both timber members. The last three images

show a slender dowel which exhibits one (mode d) and e)) or two plastic hinges

developing (mode f)).

t1 t2

a) b) c) d) e) f)

Figure 3.15: Failure modes according to the European Yield Model
(BS EN 1995-1-1, 2004).

Johansen assumes timber and steel behave with perfect plasticity. Hence the

deformed timber acts as a uniform load on the fastener. The equilibrium of forces

and moments, acting at the joint’s shear plane on the fastener, is formulated for

the different failure modes and solved for the characteristic joint capacity Fv,Rk

individually. This can be seen in Fig. 3.16 for mode c). To determine which failure

mode applies for a specific joint arrangement, the minimum value of all calculated

strength values from the 6 modes is taken.

Despite the usefulness of the model, the major assumption is that the timber

shows large plastic deformation. This is only true when minimum edge and end

distances are adhered to and thus a ductile behaviour can be expected, which is

clearly not the case for some joint arrangements. Further, the true failure mode is a

combination of the individual limit states described by Johansen, since neither steel

nor timber does behave as perfectly plastic. Although reliable yield and ultimate

load values can be calculated the model does not allow to obtain a load state

related to a specific joint deformation. Neither ductility nor joint stiffness can be

quantitatively determined.
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Figure 3.16: Example of the derivation of EYM mode c).
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The yield strength of a timber joint as set out in Eurocode 5 (BS EN 1995-1-1, 2004)

is calculated as follows,

Fv,Rk = min
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(3.27)

with

β =
fh,2,k

fh,1,k

(3.28)

where

Unit

β ratio between the embedment strength of the members -

d fastener diameter mm

fh,i,k characteristic embedment strength of timber member i N/mm2

Fax,Rk characteristic axial withdrawal capacity of the fastener N

Fv,Rk characteristic load-carrying capacity per shear plane per

fastener

N

My,Rk characteristic fastener yield moment Nmm

ti timber thickness or penetration depth of timber member i mm

The additions to the original derived equations from Johansen are the account

of geometric nonlinear effects in mode d), e) and f) with the factors of 1.05 and

1.15 respectively for all dowel type fasteners. In addition to that the term +
Fax,Rk

4

(modes c), d), e) and f)), described in more detail in the subsequent section, was

added to account further for geometric nonlinear effects that result from the head

fixity of nailed joints and from the washers in bolted joints.

Blass & Kraemer (2001) describe that, in most joint arrangements, the plastic

hinge does not form completely. Consequently, he adjusted the fastener’s moment
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resistance that is used in the EYM to account for this non perfectly plasticised hinge.

In similar fashion to Johansen, Aune & Patton-Mallory (1986b) derived the same

equations of the EYM with the principle of virtual work. In a subsequent step,

instead of plastic emebedment they included a fourth-root curve to describe the

fastener foundation. With this, they calculated decreased yield loads that result

from the nonuniform load distribution along the fastener shank of about 6%. With

this assumption it should be possible to predict full load-displacement curves.

However, bolt bending is not included. Experimental verification of the EYM can

be found in Aune & Patton-Mallory (1986a).

In numerous subsequent research papers, the EYM has been proven to be valid

with the assumption of no brittle failure occurring in a timber joint and no end

fixity is involved. Examples can be found e.g. in Wilkinson (1993).

3.4.2 Geometric Nonlinear Effects

Ramskill (2002) states that little research has been undertaken into geometric

nonlinear effects in timber joints. Experimental studies by Heine (2001) and

Anderson (2001) revealed a change of failure mode from EYM mode (c) to mode (f)

due to the rotational constrain that results from outer steel plates (steel-timber-steel

joint). Similar effects should also occur for bolted joints with large washers.

Despite the possible strengthening influence of geometric nonlinear effects as

reported for experimental bolted timber joint tests (Heine (2001), Anderson (2001),

Luschnitz (1997)) or for wood plastic composites Balma (1999), the ‘rope effect’ and

rotational constraint resulting from the fastener’s ends were commonly neglected in

joint models and in EYM implementations in the codes.

As mentioned in the previous section two types of geometric nonlinear effects are

accounted for. The strengthening effect due to

• an inclined part of the fastener in mode d), e) and f), (applicable to any dowel

type fastener)

• the end fixity that results from the head (in case of a nailed joint) and nut

and washer (in case of a bolted joint)
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The first strengthening effect is accounted for by an additional factor (1.05 and

1.15 in (BS EN 1995-1-1, 2004)) and the second is accounted for by an added term

which includes the axial withdrawal strength of the fastener (
Fax,Rk

4
).

History of the EYM as implemented in BS EN 1995-1-1 (2004) in the UK

The BS 5268:Part 2 (1991) version used empirically derived values for joint

resistance therefore a distinction was made between the higher strength of bolted

connection when compared to dowelled joints. This code was replaced by BS 5268-2

(1996) which adopted the EYM modified to the permissible stress approach used

in the British standards. In this version only mode e) d) and f) obtained a factor

(=1.1) that accounts for the strengthening effect as a result from an inclined part

of the dowel type fastener.

However, when the draft of the Eurocode DD ENV 1995-1-1 (1994) was introduced,

the additional strengthening effect that results from the end fixity was not

incorporated as it was reasoned that the effect might be lost in service due to

timber shrinkage. Furthermore, the enhancing factors in mode d) and e) were

discarded.

This meant that for British designs where bolted connection were more commonly

applied, the advantage for these connector types could not be used when designed

according to the Eurocode. For this reason a new factor K2b has been introduced

to BS 5268-2 (2002) (a code based on permissible stresses) which accounts for end

fixity in mode c) and increased the joint’s capacity by 33% for bolted joints.

The committee in charge of the Eurocode adopted the idea of the strengthening

effects due to end fixity and added the term
Fax,Rk

4
in BS EN 1995-1-1 (2004) for

mode c), d), e) and f). This additional value is limited again to a certain percentage

of the Johansen part, e.g. 25% in case of a bolted joint. Despite this improvement

of the otherwise more conservative original model, the additional term is only

an empircally determined value and does not consider explicitly the rotational

constraint that also contributes greatly to the additonal joint’s capacity (subsection

1.4.1). Also it is not entirely clear whether splitting could in practice, limit this

strength improvement for some joint designs, even when edge distances are within

the prescribed limits.
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Modelling attempts to take into account the effect of end fixity and the effect

of a partly inclined fastener can be found in Nishiyama & Ando (2003) and

Kamachi & Ando (2006). With the model it is possible to study the effects

separately in more detail, based on a sound mechanical approach. They used nailed

joints for which, being slender fasteners, the ‘rope effect’ has a major influence on

the joint’s strength and secondary stiffness. This is explained in more detail in the

subsequent subsection.

3.4.3 Beam on Elastic(-Plastic) Foundation

A fastener under lateral load embedded in wood can be seen as representing a beam

on an elastic foundation. While the EYM assumes that, at the point of failure, the

reaction force along the fastener is uniformly distributed, it is impossible to relate

any other loading state of the joint to a certain displacement. On the other hand

when an elastic foundation is assumed as in a ‘Winkler’ foundation only the elastic

range can be predicted. Foschi (1974) uses a non-elastic foundation model of the

following form

F = (F0 + K2x) ·

(

1 − e
−K1 · x

F0

)

, (3.29)

where

Unit

F reaction force of foundation N

K1 initial stiffness N/mm

K2 slope of the asymptote N/mm

F0 y-intercept N

x displacement N

The relevant parameters can be obtained from common embedment tests as

outlined, for example in BS EN 383 (2007). Other researchers used this foundation

model to predict single joint behaviour. A finite element analysis can be used to

solve for the unknown displacements of the deformed fastener.

Erki (1991) first used a geometric nonlinear 2D finite element model with an

elastic-plastic foundation model. A plastically deformable fastener was considered.

She further included the effect of end-rotation with a linear rotational spring and
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Figure 3.17: Foundation model (Foschi, 1974)

the withdrawal resistance of the fastener shank with friction forces as fractions

of the embedment. The foundation model was calibrated with test data from

embedment tests and good agreement has been found between these numerical

results and tested bolted, riveted and nailed joints. However, for larger fastener

ends, such as large washers the rotational constraint might be different from the

assumed linear spring.

Similar research was conducted (geometric linear case) for timber joints loaded

perpendicular and parallel to the grain by Sawata & Yasumura (2003). In the case

of nails, where the rope effect plays a more prominent role, Nishiyama & Ando

(2003) performed a geometric nonlinear analyses on similar basis.

In more recent research, Kamachi & Ando (2006) used the Weighted Residual

Method on double shear bolted joints to obtain a polynomial function that describes

the full deflection curve of a fastener. For timber embedment a beam on elastic

foundation was assumed. The initial stiffness of a bolted timber joint until yield can

thus be calculated. Yield loads were then determined on the basis of the principle of

virtual work and the moments that can be determined from the displacement curve.

It is assumed that a secondary stiffness results only from the rope effect in which

the washer pushes against the side members. Rotational constraint was neglected.

Further the authors didn’t consider the case of joints loaded perpendicular to the

grain for which, due to nonlinear timber emebedment, an additional secondary

stiffness would result. However in case of parallel loaded joints in double shear and
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in most failure modes the load-deflection curve could sufficiently be predicted.

3.4.4 Continuum Models

Although the assumption of a beam on an elastic-plastic foundation is a close

enough prediction of the fastener embedment for predicting load-slip curves, it

does not say anything about the real timber behaviour in the vicinity of a fastener.

Furthermore, only an additional fracture or failure criteria that is in most cases

based on a stress analysis, provides information on the point of failure. Friction

between the fastener and the timber is another neglected factor in the foundation

model.

Timber around the contact area of a fastener experiences a rather complex stress

state even for a relative simple joint arrangement, as e.g. a pin loaded plate

(Fig. 3.18). When more complicated situations are considered, e.g. non-uniform

stress distribution along the fastener shank as it would occur for EYM mode (c-f),

a finite element continuum model is the most versatile method. In the following

some examples shall be presented.

Figure 3.18: Stress distribution along the X-axis and Y-axis of a pin loaded plate,
courtesy of Heine (2001).

Chen et al. (2003) presents a simple linear elastic 2D joint model. Joint elements

are used to model the interaction between dowel and timber with a friction angle

φ = 18◦. Using a simple failure criterion based on the tensile stress and strength

perpendicular to the grain and the shear stress and strength it was possible to
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calculate failure loads. The authors compared several numerical analysis for

different end distances and simulated plane timber and fibreglass reinforced joints.

A good overall agreement in terms of the failure load was found among tests and

numerical results.

Patton-Mallory et al. (1998) tested and modelled a pin loaded timber member (in

tension) with different end distances and fastener slenderness. They chose from

different available material models for the timber and the steel pin (LEI linear

elastic isotropic, LEO linear elastic orthotropic, EPP elastic perfectly plastic (pin)

and trilinear wood). However, for the trilinear wood model a simplified nonlinear

material model was implemented. The nonlinear solution is found by an Euler type

method with successive small incremental steps. The authors ran the model for

several different material models and stress-strain curves. As expected the closest

fit to test data was obtained with the EPP model for the steel pin and a specific

trilinear stress-strain model for timber. For slender pins the plastic deformation

had a great influence on the joint behaviour. The analysis was stopped at a

displacement of 0.03in (0.762mm) to keep it within the small deformation theory.

At this point, depending on whether the plastic steel deformation took place, brittle

or ductile failure could accurately be predicted.

Considering that the previous model does not obey the laws of constitutive

modelling in continuum media, Kharouf et al. (2003) used a Hill yield criterion

for biaxial compression including non-proportional hardening. With strain gauges

monitoring the strain close to the fastener contact area good agreement between

strain measurements and strain predictions has been found.

Alam & Ansell (2003) used a Hill yield criterion (subsection 3.3.1) in a 2D joint

model of a multiple timber-steel-timber joint with shot-fired nails. They accurately

predicted plastic hinges forming in the fasteners at the steel plate and plastic

longitudinal strain in the timber. Furthermore, the results agreed with previous

research that the maximum plastic strain occurred farthest away from the loaded

edge. With a fitted logarithm curve on the calculated load-displacement points, the

model agreed reasonably well with tested specimens up to 3.5mm displacement, at

which point some specimens failed.

Moses & Prion (2003, 2004) used a Hill plastic model with work hardening and an

associative flow rule. For failure prediction the authors use a probabilistic strength
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criterion based on the Weibull distribution. With this it is possible to take into

account the size effect that occurs specifically for timber due to the inherent flaws.

Grosse & Rautenstrauch (2004) used a plastic model for timber which is capable of

strength degradation in order to simulate the softening effect of timber under tension.

The authors modelled different connection types for timber-concrete-composite

constructions.

The previous material model (in this case without strength degradation) for timber

was verified with a special photogrammetric measuring procedure to obtain the

deformations and thus strains on the surface of the tested specimens (Franke et al.,

2008).

3.4.5 Brittle Failure

Timber joints can fail in brittle manner for several reasons. In the case of single

joints loaded parallel to the grain, insufficient edge- and end-distances can lead

to sudden failure. But even if those distances are adhered for multiple fastener

connection, the interaction of several fasteners leads to uneven load distribution

and therefore to high perpendicular to the grain stresses. A major factor is the

fastener spacing since lateral stresses accumulate for several fasteners (Jorissen,

1998). Joints loaded perpendicular to the grain exhibit brittle behaviour depending

on the location of the fastener(s) within the depth of the wood member.

For timber joints loaded perpendicular to the grain brittle failure is more evident,

due to the fact that perpendicular to the grain tensile stresses are directly

induced by the fastener(s). To account for this, the design shear force induced

by the fasteners is limited according to BS EN 1995-1-1 (2004). This theoretical

formula is based on an energetic fracture mechanical approach by van der Put

(1990). A further semi-empirical equation for lateral loaded joints based on tests

and the Weibull’s failure theory can be found in the German design standard

DIN 1052:2004-08 (2004) developed by Ehlbeck et al. (1989). The idea has been

extended to also include normal forces acting in the loaded beam and an existing

initial crack by Jensen (2005d).

Reshke et al. (2000) analytically derived a model based on an effective area which
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experiences the tensile and shear stresses as a result of loading perpendicular to the

grain. This fracture plane is assumed to occur at the line of fasteners furthest from

the loaded edge. These authors formulate an equation that takes therefore into

account the location of the fasteners relative to the joint dimension. This equation

can be used to extend the Eurocode 5 (BS EN 1995-1-1, 2004).

In order to minimise splitting in timber joints, practical mechanical solutions have

as well been investigated. Blass et al. (2000) suggests nail plates to reinforce the

timber tensile strength perpendicular and parallel to the grain. Guan & Rodd

(2000) try to minimise splitting with local reinforcement of Densified Veneer

Wood (DVW) and plywood respectively, that exhibits higher resistance to tensile

stresses, attached to the sides of the timber joint member. Schmid (2002) uses

lateral-to-grain self-tapping screws to reinforce the splitting strength for multiple

timber joints.

3.4.6 Multiple Fastener Joints

According to elastic theory, a multiple fastener joint carries less load than the

respective sum of the capacity of its participating single fasteners. The effect is

due to an uneven load distribution among the fasteners and is called ‘row-effect’ or

‘group action effect’. It is however, depending on the ductility of the used fasteners

more or less pronounced. For example for slender nails failing in EYM failure mode

(f) one can assume that no effect takes place (Blass, 1994).

For more rigid fasteners, such as bolts, one has to account for the uneven load

distribution. An extensive literature review on the topic of multiple bolted joints

can be found in Moss (1997).

An elastic model describing this effect in the parallel to the grain direction was

first devised independently by Cramer (1968) and Lantos (1969). Later Wilkinson

(1986) extended the model to include fabrication tolerances and a nonlinear

load-slip curve for individual fasteners.

Based on research by Jorissen (1998) the concept of an effective number of fasteners

in one row has been introduced to BS EN 1995-1-1 (2004) in the following form:
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Fv,ef,RK = nefFv,RK (3.30)

with

Unit

Fv,Rk characteristic load-carrying capacity of each fastener

parallel to the grain

N

Fv,ef,Rk characteristic load-carrying capacity of one row of

fasteners parallel to the grain

N

nef effective number of fasteners in line parallel to the grain -

The effective number of fasteners for bolts, loaded parallel to the grain, can be

calculated according to

nef = min

{

n

n0.9 4

√

a1

13d

(3.31)

where

Unit

a1 spacing between bolts in the grain direction mm

d fastener diameter mm

n number of bolts in the row -

Jorissen (1998) uses Lantos’s linear relation among several fasteners to model

the interaction in a multiple joint. He included random load-slip curves for the

individual fasteners based on Foschi’s foundation equation (3.29). The curves were

capped at the individual fastener’s strength which is determined with the EYM

plus an additional limit strength based on fracture mechanical considerations.

Shear stresses and stresses perpendicular to the grain can then be calculated for

the individual fastener at a presumed failure path along the length of a joint. This

was calculated according to the beam on an elastic foundation principle which is

described in more detail in subsection 3.4.7 for a model by Schmid et al. (2002).

Uniform stresses over the timber thickness was assumed. The stresses can then be

added and the stress accumulation plotted. Since these accumulated stresses can

not exceed the maximum stresses in a single fastener without failing, the load per

fastener needs to be reduced. This was achieved with a computer program which

redistributed the load per fastener iteratively. Good agreement was found among

the 950 multiple joint specimens and this model in terms of the ultimate load.

However, the load-displacement prediction was relative poor (Heine, 2001).
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3.4.7 Fracture Mechanics (FM)

A brief overview on the application of fracture mechanics to timber joints can

be found in Kharouf et al. (1999). Although LEFM can predict failure loads due

to cracks developing in timber, nonlinear phenomena such as the development of

a plastic zone at the crack tip can only be considered with more sophisticated

nonlinear fracture mechanics (NLFM) that takes into account crack closing stresses

in a cohesive zone where the crack is forming.

Subsection 3.3.2 gave already an overview on different FM techniques. Here, several

applications of FM to timber joints shall be presented.

Daudeville et al. (1999) and Daudeville & Yasumura (1996) describe a linear

elastic fracture model for a timber joint consisting of a pin loaded parallel and

perpendicular to the grain. The authors used the crack closure technique with

the calculation of several 2D orthotropic finite element models for different crack

lengths. The mesh was refined at the modelled crack tip. With a given critical

energy release rate for mode I and mode II the applied load can be determined.

The maximum load for several crack lengths gives then the calculated load carrying

capacity. The above named authors found very good agreement among calculated

loads and experimentally determined load carrying capacities for different bolt

diameters. By comparison to the EYM the research shows that for the adhered

edge distance of 3d for the joints loaded perpendicular to the grain, the EYM

predictions are higher than the experimental results, and thus questions the validity

of the EYM. In case of joints loaded parallel to the grain, this was less the case but

the EYM still is slightly overestimating the load carrying capacity. In conclusion,

linear elastic fracture mechanics can be used as a tool to extend the EYM to take

into account brittle failure.

Similarly to Jorissen (1998), Schmid et al. (2002); Schmid (2002) represent a

multiple bolted joint under parallel to the grain loading with two beams on an

elastic foundation as seen in Fig. 3.19. The fastener acts on the single beam

with the elastic foundation K (bottom part if the figure) with vertical force V an

moment M . The displacement of this beam can be analytically solved with the

program Mathematica (as it is done by Schmid). Due to the low length-width ratio,

shear deformation is taken into account. Schmid assumes similarly to Jorissen

M = F/2
h/2

and V = F
7
. Unlike Jorissen, Schmid et al. consider crack growth and
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therefore different fracture loads for the respective crack lengths. Further, he

assumes equal load distribution and linear loading of the fasteners on the timber

member while, according to Jorissen, the unequal loading is exactly the reason

for crack initiation. From the deformation and applied force F , the energy release

rate G can be calculated for different geometry (half beam width h, crack length

x1 and end distance x0) and material properties (E,I,G and A). From the model

and the experimental tests stable crack growth was observed until a crack length of

about 3d. The model can be extended to multiple fasteners although equal load

distribution was assumed.

h

h/2

h

�
z (x) z,w �

z (x)

Fx1 x2

crack

neutral axis

neutral axis

x100x0
x

w1(x)

M

V

K

E, I, G, A

Figure 3.19: Model of a cracked joint as a beam on elastic foundation (original in
colour).

A similar model with the assumption of the pin loaded timber member representing

an elastic beam for joints loaded perpendicular to the grain can be found in Jensen

(2005b) and Jensen (2005c). This has been applied to a moment resisting joint as

well (Jensen, 2005a).

Ballerini & Rizzi (2005) conducted a numerical parametric study of beams loaded

perpendicular to the grain. The numerical models consisted of a set of different

connection arrangements (1 row of 2 fasteners and 2 rows of 1 fastener, different

location of fasteners) with individual cracks that form at each fastener in the row

of fasteners furthest away from the loaded edge. Stress intensity factors from the
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a) b) c) d) e)

Figure 3.20: Different failure modes for multiple timber joints, according to
Mohammad & Quenneville (1999) (Failure net tension added).

LEFM analysis were determined with two FE packages (ANSYS and ABAQUS).

The Wu failure criteria was applied and thus fracture loads for several geometries

and crack lengths determined. Additionally, the author presents a semi empirical

formula which in contrast to the one in BS EN 1995-1-1 (2004) considers the

influence of the connection geometry (e.g. connection height, number of rows etc.)

as laboratory tests strongly suggest. In a case study the numerical analysis was

applied to a connection with 4 rows of 3 dowels (diameter 16 mm) which represents

a more realistic joint arrangement. While the agreement among numerical analysis

and tests was generally not as good as the semi-empirical formula in the parametric

study, a general good agreement was found in the case study.

Other types of failure for multiple joints need to be considered as well. Many

researchers describe possible brittle and ductile failure mechanism. The different

failure modes according to Mohammad & Quenneville (1999) can be seen in Fig. 3.20

and can be summarised as:

(a) Embedment, fasteners compress the surrounding timber without cracking.

(b) Net tension, tensile failure across the whole width of a timber member.

(c) Cleavage, Mode I failure.

(d) Row tear-out, several crack planes with Mode II failure.

(e) Block shear, also known as plug shear, for which a whole block of timber is

shearing off the timber member.

Block shear failure can be typically seen in shear-plate and toothed-plate joints.

In multiple bolted joints all of the above named failures can occur and need to be

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 3-48



3.4 Joint Modelling

considered. Since for fracture mechanical approaches generally a mesh is created

to investigate a certain crack with the presumed stress concentration it is hard for

these models to take into account all possible crack formations.

Lattice models on the contrary have the potential to predict any type of cracking

with no restriction of crack initiation, path or number of cracks and are therefore

an ideal choice for multiple joint models. Mixed mode fracture often governs

crack growth which has to be considered as well in joint models, lattice models

are very suitable since they can easily account for different fracture modes and

their combination based on the simulation of morphological features with discrete

elements.

3.4.8 Lattice Models

Snow (2006) used a 2D lattice to predict timber joint behaviour with a lattice model

for parallel and perpendicular to the grain loading. The pin loaded joints were

made of Eastern white pine (Pinus strobus), LVL (Laminated Veneer Lumber),

PSL (Parallel Strand Lumber) and LSL (Laminated Strand Lumber). These were

compared for their different failure loads and fracture patterns. The lattice model

was used only for a comparison of joint tests made of LVL and pine. Snow used

link elements with perfectly brittle behaviour under tension and a tri-linear plastic

load-displacement curve for lateral and longitudinal links under compression.

The calibration of elastic parameters was accomplished by directly transferring

the E moduli to the respective link element’s stiffness. Strength properties were

determined by simulating simple stress states and iteratively adjusting the link’s

strength parameters.

Although, relative good agreement of absolute failure loads among model and

experiment can be observed this is less the case for the overall joint stiffness.

Furthermore, it is not entirely clear how the solution algorithm used for the lattice

model works. The predicted load-displacement curves of a joint which exhibits

sudden brittle failure differ from the more ductile behaviour of the respective

experimental tests. It is therefore questionable if the lattice spring’s capability of

plastic deformation is correctly taken into account.

A pseudo lattice model for a pin loaded joint is described in Racher & Bocquet
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(2005) and Bleron et al. (2001). The authors use 2D bar elements in lateral and

longitudinal direction with plastic behaviour under compression and perfectly

brittle behaviour for tension perpendicular to the grain. Diagonal elements are

not used, therefore no lateral strain effect can be simulated. However, shear was

modelled using special joint elements in the lateral direction which exhibit perfectly

plastic response after yielding. The pseudo lattice is used only in the close area

around the fastener, the remaining timber was modelled by elastic orthotropic

elements. The model was created with the FE software package CAST3M and used

an ordinary solution algorithm. No ‘snap-back’ was encountered as the joint model

did not fail in brittle manner. Failure was determined by a maximum strain which

was set for the individual elements. Therefore, the nonlinear load-displacement

curve for the entire joint could be predicted for a small deformation. However,

entirely brittle behaviour of joints could not.

In Bocquet (1997), the author extends the idea to a 3D multiple joint model made

of several layers of the before described lattices. Bolts are modelled with beam

elements and the end rotation is taken into account with nonlinear springs.

3.4.9 Empirical Joint Models and Further Experimental Studies

Numerous experimental studies on timber joints can be found in the literature

and shall be presented here in a short list for the sake of completeness. The

experimental results were partly analysed to obtain empirically derived design

equations: among others are Hassan & Mohamedien (1997), Porteous & Kermani

(2005), Anderson (2001), Dodson (2003), Ramskill (2002), Mischler et al. (2000),

Mohammad & Quenneville (2001) and Quenneville & Mohammad (2000).

One recent development in empirical models is the application of neural networks

which make use of a large database of tested dowelled joint specimens. This model

is described in Cointe & Rouger (2004). Almost 1400 joint arrangements were listed

in a database with different parameters such as wood density, angle of loading,

dowel diameter, number of rows and columns etc. Relatively good agreement of

the model with predictions by the EYM was found. The model itself is rather

complicated and can not be used directly as an engineering tool, thus by a multiple

regression 20 terms have been extracted with which the prediction of ultimate loads

was still reasonably accurate. However, it is questionable if an extrapolation can
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be drawn to joints that do not confirm to joint arrangements that are already in

the database.
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4 Beam-Foundation Model

4.1 General

A 2D model was created in order to simulate the behaviour of a bolt in a single

shear joint. It consists of a modelled fastener, washers, head, nut and timber

embedment. Geometric nonlinear effects are accounted for which occur in this joint

arrangement when larger displacements are reached. Load-displacement plots of

individual model elements (timber displacement, axial force in fastener, fastener

rotation) can be obtained and were compared to tested joints.

The FE package ANSYS (SAS IP, Inc., 2007) was used. This package enables the

model to be run in a ‘batch’ mode. For this purpose a text file is created that

contains all necessary information on nodes, element properties, applied loading

and constraints. This file can be transferred to ANSYS which runs the FE analysis.

Several text files can be created with different input parameters (fastener diameter,

timber thickness, washer size, embedment properties etc.) that define the joint

arrangement.

The development of this model along with results is published in

Reichert & Ridley-Ellis (2006). A brief version of this paper is presented

here.

4.2 Model Concept

In the 2D model beam elements are used to represent bolt bending and axial

tension. Nonlinear springs that are linked via contact elements to these beams

represent timber embedment. Vertical springs represent embedment along the

bolt shank, while horizontal ones represent embedment underneath the washer.

They are adjusted to respective experimental embedment tests. A similar study
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for a geometric linear case can be found in Sawata & Yasumura (2003) and for a

geometric nonlinear analysis in Nishiyama & Ando (2003).

The model consists of three main parts: a) nonlinear beam elements that represent

one steel bolt and b) a number of nonlinear springs that represent timber

embedment in the longitudinal and perpendicular to the grain direction. These two

parts are linked together with contact elements. Further, c) washers, head and nut

of the bolt were modelled as a flexibly connected rigid beam that also is able to

come into contact with the embedment springs.

A schematic representation of the model can be seen in Fig. 4.1.

Y
X

Deformed bolt (deformed/ 
displaced springs are not shown)

b) Vertically and horizontally acting 
springs represent timber embedment

Joint displacement is 
applied to green nodes 

t2

a) Bolt is represented by 2D-
beam elements which allow for 
plastic bending

t1

c)

Red nodes are contact elementsThe spring’s ends at the 
left specimen are fixed

Figure 4.1: Schematic of the 2D joint model (original in colour).

In experimental tests, the load-displacement of the abutting timber members was
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measured with displacement transducers (5 mm LVDTs) along with the rotation

of the bolt. Further, it was tried to measure the developing tensile force inside

the bolt that results from the end fixity of the head, nut and washers. This was

achieved by inserting a strain gauge (BTM Bolt Strain Gauge) in the centre of the

bolt. A test was run to investigate the influence of the bending strain acting on the

strain gauge compared to the overall tensile strain and found to be negligible. The

strain gauge was calibrated with a tensile test of the bolt. The nonlinear springs

representing timber embedment were calibrated against embedment tests with

bolts and washers respectively. The Sitka spruce timber (grade C16), that was used

in the experiments, was provided by James Callander & Son Ltd., Falkirk. Before

testing, the battens were left in a controlled environment chamber set to a constant

temperature of 21 ◦C and 65% humidity until they attained constant weight.

The experiment set-up is shown in Fig. 4.2. LVDT displacement transducers were

used to measure the displacement between the two timber members. Further

LVDTs were fixed vertically to obtain measurements of the bolts rotational

movement, as can be seen in the figure. The symmetric single shear joint consisted

of two timber members with a thickness of 50 mm and 120 mm in width. The edge

distance of the bolt was > 7d =130 mm, to ensure that the joint would not fail in a

brittle manner. The loading rate of this quasi static test was chosen to reach the

maximum displacement after 5-10 min.

An overall good agreement was found among experimental tests compared to the

model’s prediction in terms of load-displacement of the timber members, rotation

of the bolt as well as the tensile force in the bolt, Fig. 4.3 and 4.4.

The difference in predicted ultimate loads by the EYM for the draft of

DD ENV 1995-1-1 (1994) and BS EN 1995-1-1 (2004) is the neglected strengthening

effect for mode c), horizontal, dashed lines in Fig. 4.3. The difference of the FE

predicted values to the EYM might be even more pronounced when a non symmetric

joint arrangement is used.

Tests with slender fasteners with an expected ductile failure mode f) have not been

conducted, as it would be not possible to measure the axial force in such a small

bolt with the above described method. However, the model is fully capable of

predicting the formation of a plastic hinge for these slender fasteners. The model

has been merely used to investigate the possibility to use certain FE elements
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load cell

LVDT

LVDT

2 timber 
members

bolt M16

steel plate is off 
center to counter-
act eccentricity

2 LVDTs to 
measure 
bolt rotation

Figure 4.2: Schematic of the laboratory test set-up for the joint tests (original in
colour).
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Figure 4.3: Load-displacement plots of the 2D joint model compared to an
experimental test series with M16 bolts and Sitka spruce timber members (original
in colour).
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Figure 4.4: Load-displacements of 2D joint model compared to experimental test
series, axial tension (black), bolt rotation (green) (original in colour).

for a geometric nonlinear joint model. And furthermore, to obtain an idea of the

reliability of the predicted load displacement plots, the axial force developing inside

the bolt and the rotation of the bolt.
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5 Lattice Model LAT3D

5.1 General

Lattice models derive from the concept of discrete element models. The principal

idea is that one dimensional spring elements can reflect the behaviour of a material

rather than continuum elements. By deactivation or change of the element’s

stiffness, it is possible to model fracture processes and plastic deformation.

Furthermore the material’s morphology can be incorporated. Thus, individual

elements can simulate the actual behaviour of material on the small scale of features

such as growth rings.

This chapter starts with an introduction to the FE method and the derivation of

element types used (section 5.2). The MATLAB environment (section 5.3), with

which the program to calculate the lattice model was developed, is presented briefly.

Furthermore, the chapter addresses issues such as the composition of the lattice

structure (section 5.4) and how the implementation of the wood structure into the

model is accomplished and what assumptions were made in this regard (section 5.5).

It describes in greater detail the development and functions of the FE program

LAT3D that is used to create and compute 3D lattice models. Insight will be given

on the nonlinear solution algorithm and various optimisations that were adopted

to speed up the computation process (section 5.6). Namely, this is an adaptation

of a method proposed by Jirasek & Bazant (1995), the Step-Size-Control (SSC)

algorithm and the Method of Inelastic Forces (MIF). The MIF is extended to

account for inelastic moments, which is necessary for the accounted geometric

nonlinearity of beam elements that were used in a full 3D joint model. Additionally

the SSC was extended to accommodate ductile behaviour for lateral and longitudinal

links, to simulate plastic hardening of real wood under compression (section 5.7).

The link between the lattice and beams that were used to represent the fastener
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in the full 3D joint model is managed by the use of special contact elements for

which the geometry is continuously updated. The same applies for the fastener

beam elements to account for their geometric nonlinearity. These elements will be

discussed in section 5.8 and 5.9.

The chapter finishes with details on the functionality of the program LAT3D and

presents a short example (section 5.10 and 5.11).

5.2 Finite Element Method

This section introduces the finite element method and derives the local stiffness

matrices of elements that are used in the program LAT3D.

The FE method is a numerical approximation technique to simulate physical (or

non-physical) behaviour by obtaining the solution of partial differential equations.

In the case of structural mechanics, the known field variables act on a structure

(domain) are either forces or prescribed displacements. The task is to solve for

the unknown field variables, namely the displacements (and therefore strains

and stresses) inside the structure. Despite its common use in static structural

engineering, the technique is also applied to many other fields ranging from fluid,

soil mechanics to dynamics, electromagnetism etc. or a combination of them.

The principal idea is that partial differential equations are solved approximately for

smaller elements for which a solution is known. By connecting the equations via

nodal values for several elements the problem for a whole domain can be obtained.

As an example, a differential equation for a one dimensional flexural member

along the X-axis with bending about axis (Z) has the form of Mz=EIz
d2v
dx2 . It

describes the relation between the moment M about the z-axis and displacement v

in the y-axis. The solution is known and can be approximated with a second order

polynomial function also called Hermitian shape function.

By the direct stiffness method these functions can directly be translated into a local

stiffness matrix that relates local displacements with forces acting on the element.

For more complex elements or problems where the underlying physical meaning
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such as forces and displacements can not be directly translated into matrix form,

more general methods such as the weighted residual method (Galerkin) or the

minimum potential energy are used.

5.2.1 Variational Form: Minimum Potential Energy Principle

The total potential energy of a system (Fig. 5.1) can be described as

Π = U + Up (5.1)

where U stands for the elastic energy stored in the deformed body and Up for the

potential energy of the applied forces.

X

Y

Z

ContinuumV

f2

f1

t

SurfaceS

Figure 5.1: Schematic of a three dimensional body V , with body forces f and
surface traction t.

The total strain energy U of a continuum is defined as

U =
1

2

∫

V

ǫT σ dV (5.2)

By using the constitutive relationships between stress and strain matrix [C] and the

strain-displacement vector {B} one can rewrite the former equation as

U =
1

2

∫

V

{δ(x, y, z)}T{B}T [C]{B}{δ(x, y, z)}dV (5.3)
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The applied external nodal forces and surface tractions can be written as

Up =

∫

S

{δ(x, y, z)}T t(x, y, z)dS +

nf
∑

i=1

(

dT
i fi

)

(5.4)

where

• δ(x, y, z) is the exact displacement function (displacement vector at position

x, y, z)

• t(x, y, z) is the vector of surface traction (i.e. applied stress)

• fi is the i-th nodal force vector

• di is the i-th nodal displacement

• nf is the number of applied nodal forces

The principle of minimum potential energy can be stated as follows:

Out of all geometric possible displacement functions δ(x, y, z) the one

which minimises the total potential energy, Π, is the displacement

solution that will satisfy equilibrium, and will be the actual

displacement due to the applied forces.

This can be formulated mathematically,

∂Π

∂δ
=

∂(U + Up)

∂δ
= 0 (5.5)

The domain can be discretised into smaller elements, ensuring continuity of

displacement, that the total potential energy of the system is the sum of the

individual energies of each element.

Π =

nel
∑

el=1

Πel (5.6)

The exact displacement function δel(x, y, z) for an individual element is

approximated via a shape function in between nodal displacements.

δel(x, y, z) ≈ N(x, y, z)∆el (5.7)
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Substituting this definition of the displacement function and inserting (5.3) and

(5.4) into (5.1) results in

Πel =
1

2

∫

V el

∆el T N(x, y, z)T [Bel]T [C][Bel]N(x, y, z)∆eldV el...

−

∫

Sel

∆el T N(x, y, z)T t(x, y, z)dSel − ∆el T f el (5.8)

where V el represents the element’s volume and Sel the element’s surface where

tractions are applied.

By minimising the total potential energy for one element according to (5.5) the

above equation results in

∂Πel

∂∆el
=

∫

V el

N(x, y, z)T [Bel]T [C][Bel]N(x, y, z)∆eldV el...

−

∫

Sel

N(x, y, z)T t(x, y, z)dSel − f el = 0 (5.9)

Since ∆el is not a function of the position (x, y, z) it can be taken outside the integral.

The remaining term is called the element stiffness matrix.

[Kel] =

∫

V el

N(x, y, z)T [Bel]T [C][Bel]N(x, y, z)dV el (5.10)

Depending on the definition of the strain-displacement matrix [Bel], N(x, y, z)

vanishes from the above definition of the local stiffness matrix. Thus,

[Kel] =

∫

V el

[Bel]T [C][Bel]dV el (5.11)

After the local element stiffness matrices are created and (if necessary) the DoFs

are rotated to match the global ones, they can be assembled to the global stiffness

matrix [K]. Acting forces and boundary conditions of the structure are applied to

a force vector {F}. In the general case for a linear solution, a set of simultaneous

algebraic equations of the form

[K]{∆} = {F} (5.12)

need to be solved.

Since strain energies can not be negative, and due to the nature of the matrix
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Table 5.1: Different element types used in LAT3D.

element type nodes DoFs dimensions application

bar 2 6 3D lattice
beam 2 10 2D fastener

hexahedral 8 24 3D remaining solid structure

multiplication, single element stiffness matrices are symmetrical and positive

definite. Consequently, the global stiffness matrix [K] is also symmetrical and

positive definite. The solution of linear equations in LAT3D is described in more

detail in subsection 5.2.3.

5.2.2 Derivation of FE Elements

This subsection will present in brief the derivation of the stiffness matrix of the finite

element types which are used in LAT3D. Namely, these are,

Bar Element

The lattice structure is composed of single bar elements. The linear displacement

uel along the element’s length x can be described with the two shape functions N el
1

and N el
2 as a linear interpolation between the two nodal displacements uel

1 and uel
2 .

uel(x) = N el
1 uel

1 + N el
2 uel

2 =
{

N el
1 N el

2

}

{

uel
1

uel
2

}

= {N}{u}el. (5.13)

These linear isoparametric shape functions can be written as

N el
1 = 1 − x

l
= 1 − ξ N el

2 = x
l

= ξ. (5.14)

The graphical representation of these shape functions can be seen in Fig. 5.2.

The axial strain over the element is calculated by

ǫ =
duel

dx
= (uel)′ =

{

dNel
1

dx

dNel
2

dx

}

{

uel
1

uel
2

}

=
1

l

{

−1 1
}

{

uel
1

uel
2

}

= {Bel}{u}el.

(5.15)

where

{Bel} =
1

l

{

−1 1
}

. (5.16)
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�
= 0

�
= 1

1.0

N1( )
N2( )

11 22

l

x

1.0

Figure 5.2: Shape functions and schematic of 1D bar element.

Now the stiffness matrix can be obtained via the variational principle described

above. This leads to the element’s internal strain energy U el

U el =
1

2

∫ x2

x1

ǫEAǫdx =
1

2

∫ 1

0

ǫEAǫldξ, (5.17)

with strain ǫ expanded with the strain-displacement matrix [B] as ǫ = [Bel]uel it

follows that

U el =
1

2

∫ 1

0

{

uel
1 uel

2

} 1

l

{

−1

1

}

EA
1

l

{

−1 1
}

{

uel
1

uel
2

}

ldξ. (5.18)

When the nodal displacements are moved out of the integral the equation can be

solved, thus

U el =
1

2

{

uel
1 uel

2

}

∫ 1

0

EA

l2

[

1 −1

−1 1

]

ldξ

{

uel
1

uel
2

}

(5.19)

in which

[Kel] =

∫ 1

0

EA{Bel}T{Bel}ldξ =

∫ 1

0

EA

l2

[

1 −1

−1 1

]

ldξ. (5.20)

After the local element is assembled it might need to be rotated to the global

coordinates with a rotation matrix. The parameters EA are combined to the
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stiffness value K.

Beam Element

Unlike the bar element, the 2D beam element uses Hermetian cubic shape functions

to ensure C1 continuity of the displacement function (i.e. first derivatives are equal).

With this requirement, it is ensured that displacement v(x) and slope θ(x) of the

beam is continuous. They can be written with respect to ξ as

N el
v,1 = 1

4
(1 − ξ)2(2 + ξ) N el

v,2 = 1
4
(1 + ξ)2(2 − ξ)

N el
θ,1 = 1

8
l(1 − ξ)2(1 + ξ) N el

θ,2 = −1
8
l(1 + ξ)2(1 − ξ).

(5.21)

The four shape functions are plotted in Fig. 5.3.
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Figure 5.3: Shape
function of a 2D
beam element (only
flexural behaviour is
considered). ξ varies
from -1 at node ➀

(x = 0) to 1 at node
➁ (x = l).

The curvature can be described as the second derivative with respect to ξ (with

ξ = 2x
l
− 1 and dx

dξ
= 1

2
l)

κ =
d2v(x)

dx2
=

4

l2
d2vξ

dξ2
=

4

l2
{dN el}

dξ2
{u} = {Bel}{u} = {N el′′}{u}. (5.22)
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5.2 Finite Element Method

The beam element is depicted in Fig. 5.4.

X

Y

%
x,u

y,v

v
v

%
l&

=-1
&
=1

2211

11

11

22

22

Figure 5.4:
Two node
linear
Bernoulli-Euler
element, 2D.

With {Bel} being the second derivative of the shape function {N el′′}:

{Bel
(ξ)} =

{

6 ξ
l2

3ξ−1
l

−6 ξ
l2

3ξ+1
l

}

. (5.23)

Thus follows the stiffness matrix for the beam element (with included stiffness

properties: Young’s modulus E and moment of inertia I) as

[Kel] =

∫ l

0

EI{Bel
(ξ)}

T{Bel
(ξ)}dx =

∫ +1

−1

EI{Bel
(ξ)}

T{Bel
(ξ)}d

1

2
lξ, (5.24)

along with the previously described stiffness matrix for bar elements.

Assuming the beam element can transmit axial forces as well and further that

they are independent of the flexural behaviour (no stress stiffening), the definition

of {Bel} can be superimposed with the strain-displacement matrix for the axial

direction. Thus, the two shape functions and consequently the resulting stiffness

matrix for bar elements from the previous derivation is added.

This element is then extended to a 3D beam with flexure about the Z and Y axis.

Torsion about the X axis is neglected. Thus, the element consists of 5 DoFs for

each node respectively. Torsional rigidity plays only a minor role since, as long as

the joint deformation remains moderate, no eccentric loads (that would result in
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Figure 5.5: Schematic of 8-node hexahedral element.

torsion) will be applied to the bolt. This is true when friction can be neglected.

Hexahedral Element

Hexahedral solid elements are used for the remaining area of the timber model

which experience no plastic deformation and therefore remain elastic. Fig. 5.5

shows the schematic of the 8-node element in its isoparametric form.

The linear shape functions with respect to the nodal definitions can be written as

follows

N el
1 = 1

8
(1 − ξ)(1 − η)(1 − ζ) N el

2 = 1
8
(1 − ξ)(1 + η)(1 − ζ)

N el
3 = 1

8
(1 − ξ)(1 + η)(1 + ζ) N el

4 = 1
8
(1 − ξ)(1 − η)(1 + ζ)

N el
5 = 1

8
(1 + ξ)(1 − η)(1 − ζ) N el

6 = 1
8
(1 + ξ)(1 + η)(1 − ζ)

N el
7 = 1

8
(1 + ξ)(1 + η)(1 + ζ) N el

8 = 1
8
(1 + ξ)(1 − η)(1 + ζ).

(5.25)

To create the strain-displacement matrix [B], the partial derivatives need to be

formulated in respect to the global coordinates, which looks in matrix form as follows









∂Nel
i

∂x
∂Nel

i

∂y
∂Nel

i

∂z









=







∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z















∂Nel
i

∂ξ
∂Nel

i

∂η
∂Nel

i

∂ζ









. (5.26)

The 3x3 matrix is the inverse Jacobian matrix of (x, y, z) with respect to (ξ, η, ζ).
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The isoparametric definition of the element geometry is given by

x = xiN
el
i y = yiN

el
i z = ziN

el
i , (5.27)

where i loops through all 8 nodes with the coordinates (xi, yi, zi).

The Jacobian can now be computed with respect to the above geometry definition

as

J =









xi
∂Nel

i

∂ξ
yi

∂Nel
i

∂ξ
zi

∂Nel
i

∂ξ

xi
∂Nel

i

∂η
yi

∂Nel
i

∂η
zi

∂Nel
i

∂η

xi
∂Nel

i

∂ζ
yi

∂Nel
i

∂ζ
zi

∂Nel
i

∂ζ









(5.28)

Stress-strain matrix [Bel] can be written with the derivatives with respect to each

global dimension as:

[Bel] =























∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂x

∂
∂y

0

0 ∂
∂y

0

0 0 ∂
∂z





























q 0 0

0 q 0

0 0 q






=























qx 0 0

0 qy 0

0 0 qz

qy qz 0

0 qz qy

qz 0 qx























, (5.29)

where
{q} =

{

N el
1 · · · N el

n

}

{qx} =
{

∂Nel
1

∂x
· · · ∂Nel

n

∂x

}

{qy} =
{

∂Nel
1

∂y
· · · ∂Nel

n

∂y

}

{qz} =
{

∂Nel
1

∂z
· · · ∂Nel

n

∂z

}

(5.30)

with these it is possible to calculate matrix [Bel] for a given isoparametric

coordinate. To obtain the element stiffness matrix [Kel] a numerical Gauss

integration needs to be performed.

Stiffness matrix [Kel] can be written in general form as

[Kel] =

∫

V el

[Bel]T [E][Bel]dV el. (5.31)
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5.2 Finite Element Method

The above integration can be replaced by the numerical Gauss integration, that

[Kel] =

p1
∑

i=1

p2
∑

j=1

p3
∑

k=1

wiwjwk[B
el
ijk]

T [E][Bel
ijk]Jijk, (5.32)

where p1, p2 and p3 are the number of Gauss points with weights w and

[Bel
ijk] = [Bel(ξi, ηj, ζk)] Jijk = detJ(ξi, ηj, ζk). (5.33)

5.2.3 Solving Linear Equations

In an ordinary FE solution for every load step the global stiffness matrix needs to

be solved, which is simply the solving of a system of linear equations. This task

can be divided into two different techniques: iterative and direct elimination. The

fundamental difference is that iterative methods, such as the Gauss-Seidel, Jacobi

and Conjugate Gradient Method result a solution vector close to the true solution

with a prespecified error tolerance while the direct methods, such as Gauss and

Cholesky, deliver a true result (in the mathematical sense). The main advantage

of iterative techniques over direct methods is the reduced number of operations.

Iterative techniques gain advantage over the latter when solving matrices with a

high number of DoFs. As far as this research, a direct method was adopted and

will be discussed in further detail in the following paragraph.

The simplest direct way would be to create the inverse of a stiffness matrix to solve

for the unknown displacements. While this may be used for small size problems

and has been used in lattice models such as Parrod (2002) it is clearly not useful

for larger systems as the creation of this inverse matrix results into a fully occupied

matrix. Thus, computation time and storage space of the decomposed matrix would

increase dramatically.

Gauss Elimination

A quicker way of solving a system of linear equations can be performed with the

Gauss elimination. The principal idea is to obtain the upper triangular matrix.

Given the linear system of equations in matrix form [A]{x} = {b} and applying
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forward elimination, the following system

[A]{x} = {b} =







3 2 1

6 6 3

9 10 6






{x} = }b} (5.34)

results in






3 2 1

0 2 1

0 0 1






{x} = {b} . (5.35)

Using backward substitution, thus working from the bottom up, the solution vector

{x} can be obtained.

LU and Cholesky Decomposition

With the Gauss elimination, the matrix [A] can be decomposed into an upper and

lower triangular matrix that [A] = [L][U ]. The upper matrix is the same as the

triangular matrix that was obtained as a result of the previous Gauss elimination

(5.35). The lower one can be created by the factors that were used in the forward

elimination. Thus, the previous example will look as follows:

[L][U ] =







1 0 0

2 1 0

3 2 1













3 2 1

0 2 1

0 0 1






(5.36)

The decomposition process reduces to much smaller computational effort when the

positive definite character of a common global stiffness matrix is considered. The

process is then called Cholesky decomposition. Basically a given positive definite

matrix, can be separated into the lower triangular part [L] and its transposed form

[L]T .

[A] = [L][L]T (5.37)

To solve the set of linear equations [A]{x} = {b} the system becomes:

[A]{x} = [L][L]T{x} = {b} ⇔

{

[L]{y} = {b} (2),

[L]T{x} = {y} (1).
(5.38)
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thus after the Cholesky decomposition, one only needs a quick forward substitution

(1) to obtain {y} and a final backward substitution (2) delivers the desired unknown

vector {x}.

This makes it unnecessary to resolve the whole stiffness matrix [A] again for a

different load vector {b}. Only a forward and backward substitution is needed.

This is crucial for the MIF algorithm in LAT3D : instead of changing the whole global

stiffness matrix only the force vector is adjusted to accommodate stiffness change

of elements in a material nonlinear analysis of a lattice system (subsection 5.6.4).

The specific MATLAB function that operates on a sparse matrix is called ’ldlsparse’.

The function delivers a complete Cholesky decomposition. Full details of the

program code can be found in Gilbert et al. (1994).

5.2.4 Optimal Node Ordering

The order of stiffness relations among nodes in the global stiffness matrix has a

great influence on the speed of solving the matrix. Several different algorithms

can be found in the literature to reorder the matrix and save computation time.

Examples are:

• Cuthill McKee (CM)

• Reverse Cuthill McKee (RCM)

• Approximate Minimum Degree (AMD)

Reverse Cuthill-McKee (RCM) vs. Cuthill-McKee (CM)

The CM algorithm along with its reversed form by Cuthill & McKee (1969) provides

a simple scheme for reordering nodes. A brief comparison of the two schemes on a

test network can be found in (Jennings & McKeown, 1992, p. 144). The results are

presented in Table 5.2 and show the superiority of the RCM over the CM scheme

in terms of storage and number of computational steps for the decomposition.

Approximate Minimum Degree (AMD)

In the program LAT3D the later developed approximate minimum degree ordering

by Amestoy et al. (1996) is actually used, which works better for the Cholseky
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Table 5.2: Comparison of CM vs RCM (Jennings & McKeown, 1992).

hand numbering CM RCM

ring network
Storage requirements 56 61 55
No. of multiplications
for decomp.

102 124 98

triangulated
network

Storage requirements 49 122 101
No. of multiplications
for decomp.

192 385 256

decomposition. A comparison of this ordering scheme vs. the RCM applied to

a practical lattice problem is described below.

Comparison

Fig. 5.6 shows a comparison of the two different nodal ordering schemes. a) shows

the original matrix created from the cleavage model (subsection 6.5.1). It consists

of lattice and solid elements with nearly 10,000 DoFs. Besides the influence on

the speed of the Cholesky decomposition, the nodal ordering has an effect on the

efficiency of the forward and backward substitution. Eventually, the latter is more

crucial for LAT3D, since the matrix is decomposed in most cases once (or only a

few times) during the solution process. The measured times taken can be found in

Table 5.3.

Table 5.3: Comparison of different nodal orderings (on a test computer).

nodal ordering Cholesky decomp. forward/backward subst.
time elapsed [s] time elapsed [s]

none 151.49 4.15
RCM 20.82 3.10
AMD 26.12 0.84

The RCM algorithm produces a matrix with a narrow bandwidth which fills

in almost completely during the Cholesky factorization. The Minimum degree

ordering produces a structure with large loose blocks of zeros. Thus, the latter

ordering requires less time and storage for the factorization.

The graphical representation of the differently ordered matrices from the solid-lattice

model can be seen in Fig. 5.6. Since solid elements are connected to the lattice
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only after the lattice elements are already defined (continuous node numbering),

non-zero elements show up very far from from the diagonal, Fig. 5.6 a). This results

after the Cholesky factorisation into a large number of non-zero elements, thus

requires more computation time and storage.
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(a) [Knon] (b) chol([Knon])

(c) [KRCM ] (d) chol([KRCM ])

(e) [KAMD] (f) chol([KAMD])

Figure 5.6: Effect of different nodal ordering (non, RCM and AMD), differently
ordered stiffness matrices of a sample model with 10,000 DoFs (left) and the
corresponding Cholesky factorisation (right), number of non-zero (nz) elements is
plotted.
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5.2.5 Nonlinear Solution Algorithms

To obtain a more complete structural response of a system, nonlinearities have to

be accounted for. The main origins of nonlinear behaviour in structural analyses

are:

1. Material Nonlinearity

Material changing its stiffness due to plasticity, cracking etc. (e.g. steel that

deforms plastically after yielding)

2. Geometric Nonlinearity

Structural parts that transmit stresses depending on their deformed state (e.g.

rope which is being pulled taut)

3. Contact Nonlinearity

Parts of an elastic structure come into contact with other (un)deformable parts

and therefore transmit additional stresses (e.g. rubber tire in contact with the

ground)

In an FE analysis, bulk nonlinear behaviour results from stiffness change

of individual elements. Commonly the global stiffness matrix has to be

repeatedly solved several times. Consequently the computational demand

increases dramatically. Therefore, additional judgement on side of the engineer is

required to choose if and what type(s) of nonlinear behaviour is to be accounted

for and which solution algorithm is most appropriate.

In the following, a list of different approaches to solve nonlinear FE problems is

presented.

Non-incremental Methods

Non-incremental methods such as the Elastic Perfectly Brittle Lattice method and

the Sequential Reduction method were already discussed in the literature review

and the reader is referred to subsection 3.3.4.

Incremental Methods

For the task to track a nonlinear solution path, two different incremental techniques

can be distinguished: iterative and single-step.
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In a typical nonlinear FE analysis the solution path is taken in small steps for

which the resulting stiffness change is relatively small. Additionally, for iterative

methods, iterations are performed at every load step to converge to a point that is

relatively close to the true solution, i.e. with a negligible small imbalance of outer

and inner forces.

Since a large part of this project has been dedicated to developing a quick and

efficient solution algorithm, an overview of techniques shall be given. The following

list consists of various methods described in more detail in McGuire et al. (2000,

chap 12). In any incremental nonlinear solution algorithm a series of single load

steps is applied while the global stiffness matrix is recalculated at each step.

Mathematically this can be described as

{P} =
n
∑

i=1

{dPi} (5.39)

with n as the number of load steps. Subsequently the displacement response is

{∆} =
n
∑

i=1

{d∆i} (5.40)

The various methods are distinguished by the different linear analyses in between

load steps, in other words if and how iterations are used.

Non-iterative: Euler and Runge-Kutta Method

As the simplest and most efficient algorithm, the non-iterative Euler method can

be employed. The algorithm is depicted in Fig. 5.7 for one load step. For each

load step i the global stiffness matrix [Ki] is reassembled with the local stiffness

matrices [Kel] using the deformed geometry and corresponding element forces at

the displacement {∆i}. However depending strictly on the size of the load steps

the obtained solution path will quickly diverge from the true solution, since errors

accumulate per step.

The method can be further optimised by composing the global tangent stiffness

matrix [Ki] out of two or more tangential stiffness which are determined at certain

sampling points. The number of points m determines the order of the method. A

higher order will result in a better approximation of the true solution. E.g for a
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'

F

[Ki]

{ dFi}

{ d
'

i}

Error

Actual Equilibrium 
Path

Figure 5.7: Euler method.

second order method, the tangential stiffness for the current load step i is taken as

[Ki] = α1[K1] + α2[K2] (5.41)

where [K1] is the stiffness corresponding to the deformation and element forces at

{∆i−1} and [K2] corresponds to the element forces at {∆2} = {∆i−1}+{d∆µ}. The

two α values are used as different weights for the two different tangential stiffness.

Further, {d∆µ} is obtained with an intermediate analysis step:

[K1]{d∆µ} = µ{dFi} with 0 < µ ≤ 1 (5.42)

There are various forms of this method. The most well known is the

Midpoint-Runge-Kutta version with m = 2, α1 = 0, α2 = 1 and µ = 0.5.

The process is depicted in Fig. 5.8.

Iterative: Newton Raphson

The Runge-Kutta, and especially the Euler method, greatly depend on the number

of load steps that are taken. However, as mentioned before, depending on the
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[Ki]=[K2]

{ d
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Figure 5.8: Midpoint-Runge-Kutta method.

complexity of the exact solution, the load-displacement curve obtained with the

Euler method might quickly diverge. Errors accumulate after each load step, thus

the internal forces do not balance the outer applied forces. Even with several

sampling points the error will accumulate without means to control the imbalance.

Thus, the method can be further improved by taking iterative steps in between load

steps. This is done with the Newton-Raphson algorithm. Each load step consists

of several iterations as seen in Fig. 5.9.

The method can be modified in order to reduce the computational costs by reusing

the tangential stiffness matrix in one load step. The method then becomes the

‘Modified Newton-Raphson’ algorithm.

For complex load-displacement behaviour special load step control methods such

as the arc-length can be used. This is especially necessary for lattice models

when dealing with ‘snap-back’, as mentioned in Gonzalez & Llorca (2007) and

Jirasek & Bazant (1995).
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Figure 5.9: Newton-Raphson method.
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5.3 The MATLAB Environment

The software package MATLAB (The MathWorks, Inc., 2007) was chosen as a

development environment for writing the LAT3D program. Technical Computing

with MATLAB provides a very user-friendly programming and debugging interface,

along with a number of built-in functions for performing tasks such as matrix

computations, statistical analysis, function optimisation, plotting graphics and file

handling.

New functions (commonly separate MATLAB files) can be written, each with input

and output parameters of various types. Thus, a complete program consists of

several files as ‘sub’-functions that can be further used in future projects. In the

following, a short listing shall exemplify the function of the very concise MATLAB

code. Among others, the principal variable type that is used within MATLAB is

the n-dimensional matrix, which can be manipulated with very short commands.

5.3.1 Matrix Operations in MATLAB

The function ‘Chessboard2D.m’ shown in Lst. 5.1 creates a square matrix of given

size n with ones and zeros arranged in a checked pattern. The function is needed

in LAT3D for generating a lattice with a nodal pattern of this particular shape

(section 5.4).

After several lines of remarks, MATLAB creates a vector {C} containing a series

from 1 to n (Line 8). After calculating the remainder of {C} mod 2 one obtains a

vector with alternating ones and zeros (Line 9). The vector is then multiplied with

a row of ones of the same size in order to extent {C} to a matrix of n {C}s (Line

10). The matrix [C] is added to its transposed form [C]T (Line 11). And finally the

redundant ‘2s’ need to be eliminated by element wise multiplying the negative of

‘mask’-matrix [C2]. Finally,



















1 0 1 0 · · ·

0 1 0 1

1 0 1 0

0 1 0 1
...

. . .



















(5.43)

is the resulting matrix [C].
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Listing 5.1: Source Code ‘Chessboard2D.m’.

1 function C = Chessboard2D(size)

2 %PURPOSE:

3 % creates chessboard−like patterned matrix

4 %INPUT:

5 % size... size of square output matrix C

6 %OUTPUT:

7 % C... chessboard matrix with ones and zeros

8 C = (1:size);

9 C = mod(C,2);

10 C = ones(size,1)∗C;

11 C = C+¬C’;

12 C 2 = (C==2);

13 C = ¬C 2.∗C;

14 end

The actual code which is implemented in LAT3D is somewhat more complicated,

as the resulting matrix has three dimensions and ‘filling’ rows and columns of zeros

in between the original matrix.

5.3.2 Simplex Algorithm

In subsequent sections of this chapter the Nelder-Mead method, also known as

downhill simplex method, an effective nonlinear optimisation algorithm, was used

to determine parameters by minimising a target function. The algorithm was

developed by Nelder & Mead (1965). It is an already in-built function within the

MATLAB programming language. Since it was used during this project several

times, it shall be explained in more detail here.

For a problem with n-parameters, a (n + 1)-simplex1 is created. Each node of this

simplex represents a solution on the target function at assumed parameters. Thus

(n + 1) sets of n parameters have to be guessed at the beginning. In MATLAB

only one starting point is assumed while the function then estimates the remaining

start nodes automatically.

1generalised triangle in n dimensions: e.g. triangle (2-simplex), tetrahedron (3-simplex) and
pentachoron (4-simplex)
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In this study the algorithm has been used for determining the optimal (possible)

elastic stiffness parameters Kj of the lattice cell elements that suit the bulk elastic

parameters of Sitka spruce best (subsection 6.3). It further contributed to create

a standard density profile for this timber species from density measurements

(subsection 5.5.2). It also could be used to automate the calibration of strength

parameters of the lattice as done in similar research (Vasic, 2000).
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5.4 Lattice Parameters

This section shall explain in more detail the workings of the lattice cells and the

parameters which need to be defined.

The 3D lattice model used in this project consists of six different link types: three

links acting in the longitudinal X, lateral Y and Z direction and three diagonals

acting in shear in the planes Y X, ZX and Y Z (Fig. 5.10). Each of these has

different sets of parameters that define a tri-linear load-displacement relation. The

required values are the initial mean stiffness K 1©,j, mean strength parameters in

tension ST,j and in compression SC,j. Additionally, post yield (PY) parameters

are needed such as, γT,j and γC,j, which define the gradient of the tensile and

compressive softening branch.

By default the values for all tensile parameters and for shear links also in

compression are close to 1 (γT,j > 1, γC,j > 1 for j = XY, Y Z,XZ), thus no

microductility is considered, i.e. perfect microbrittle behaviour. The compression

PY parameter γC,j is set for the longitudinal j = X and lateral j = Y = Z links to

a specific positive value (0 < γC,j ≤< 1), which is adjusted further in the calibration

process (result chapter 6).

While any distribution function can be applied to the randomisation of the

lattice properties, for the program LAT3D a normal distribution for stiffness

parameters and a log-normal distribution for strength parameters was used.

Normal distributions are also used in previous lattice models as described in

Landis et al. (2002) and Davids et al. (2003). Additionally, the log-normal

distribution for strength properties was chosen in order to circumvent the problem

of negative strength values which would occur otherwise.

Fig. 5.11 displays the parameter definitions. The mean strength and stiffness values

for an individual link are later adjusted according to the wood morphology that is

mapped onto the lattice. This is described in more detail in the following section.

The spacing of the lattice grid was chosen based on the existing heterogeneity at the

level of the growth ring structure. Variation in properties is later mapped onto the

lattice of the cell size of 2x1x1 mm (dx x dy x dz). This size results from a balance

between acceptable computational effort for larger lattices and represented detail of
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the growth ring structure. The mean ring width measured from test specimens has

been 5.47 mm, with a COV of 24.8%. Specimens with ring width less than 2 mm

were discarded. This ensures that one growth ring encompasses at least two lattice

cells.

dy

dz

dz

dx

X

Z

Y

Figure 5.10: Cell structure
viewed in the three material
planes (left), one unit cell
consisting of ‘half ’-links (right).
Note: grey nodes are shown for
presentation purpose of the grid,
they are not real nodes with
DoFs (original in colour).
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Figure 5.11:
Parameters defining the
load-displacement relation
of link l with: initial link
stiffness K 1©,l, strength
parameters in tension
ST,l and compression
SC,l and softening branch
defined by γC,j and
γT,j for a link type j in
compression and tension
respectively (above). In
the bottom figure a normal
distribution (solid) and
respectively log-normal
(dashed) distribution
is assigned to the link
parameters. For different
link type j mean values
K 1©,j, ST,j and SC,j

and their coefficients of
variation cv,j need to
be defined (original in
colour).
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5.5 Incorporated Wood Structure

Details of the wood’s morphology was already discussed in the literature review in

chapter 3. The focus of this section is on how the wood morphology is implemented

into the lattice concept.

It was the aim of this research to account for some of the strength and stiffness

variation. Since density is the major driving factor of this variation besides several

other properties, density profiles were obtained and characterised. By recreating

random profiles based on the obtained characteristics these can then be mapped

onto the lattice elements. This included changing the mean stiffness values and

strength values according to the position of the respective link in an artificially

created growth ring structure.

With the mapped variation realistic fracture paths can be predicted. These paths

are obviously directed by variation of properties within the growth rings as it can

be observed in tested samples where fracture tends to follow weaker areas.

For simplicity, and as an initial estimate, a one-to-one correlation between the

variation in density and the stiffness and strength properties is assumed. However,

this can further be refined by adjusting a factor in the model input file.

5.5.1 Structure Profiling

As a first step, the meso scale structure of the mechanically tested samples needs

to be characterised. For this purpose scans were taken of the cross-sectional surface

of the test specimens to obtain the growth ring structure (Fig. 5.12). This was

done for both sides (front and back) with an ordinary flatbed scanner. A program

written in MATLAB (‘GrowthRingDetection.m’) served as an interface for the user

to draw three-point circles onto the visible rings in the scans. By averaging the

centre of these circles, each side separately, the assumed pith position was obtained.

The actual averaging process was weighted, where marked 3-point circles with a

larger angle of arc were given greater weights than small angles. Thus, a closer

approximation (several circles assuming one centre) of the existing growth rings

was obtained. The first and last ring (leaping outside of the sample’s cross-section)

that are later required when recreating the full profile filling the box entirely, are
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simply extensions of the previous ring, i.e rings with the same ring width as the

previously last one are added at both ends.

Figure 5.12: Scans of the cross-section of tested specimens were taken and
three-point circles were drawn by the user (blue lines with red markers). After the
averaged centre of the rings was determined (green cross) growth ring circles were
redrawn (coloured lines) (original in colour).

From these rings, and the assumed pith position, several parameters can be

calculated, which then identify the characteristics of a certain ring structure,

Fig. 5.13. First, there is the length of the pith vector starting at the centre of the

sample’s cross-section to the pith position rpith and the angle between this vector

and the Z coordinate axis. Second, the radius rn to each ring n can be obtained.

Further, the ring widths can be calculated by ∆rn = rn − rn−1 and the difference

in width of a ring to its previous one ∆rdiff,n = ∆rn − ∆rn−1. There are two

parameters which put the position of the ring structure into relation to the centre

of the sample’s cross-section. These are ∆rcentre which is the width of the central

ring and rshift which is the normalised position of the sample’s centre in relation to

the central growth ring. The latter is calculated by

rshift =
rshift

∆rcentre

. (5.44)

The last parameter rvar defines the difference in radius of the front side growth

ring to the corresponding ring on the back side of the sample. The parameter is

calculated for each ring and averaged per sample. This accounts for the variation

in rings seen from different sides of the specimen (the saw cut is never perfectly

aligned with the growth rings).
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After having determined the parameters for all tested samples of one test series

(tension, compression, shear and cleavage tests), the average and coefficient of

variation is then calculated. They can serve now as an input for recreating a ring

structure for one model series and are inputted via the model input file in the

section $WOODSTRUCT.

Y

Z

rn+1

rn

rn-1

,
rn+1

-
rn-1

-
rn=

-
rcentre

rvar

rshift

rpith

frontside

backside

.
Figure 5.13: Schematic of the
identified growth ring structure,
with several parameters.

5.5.2 Density Profiling

As a collaborative work between Glasgow University and Napier University,

density profiles were sampled. Although, samples were taken from a different

progeny than the later mechanically tested specimens, the profile is assumed to

be representative for the species Sitka spruce (Picea sitchensis). First, samples

were cut from this species grown at Kershope, Northumbria, UK. They were

felled when 36 years old. Radial density profiles have been measured at a

resolution of 50 microns in the longitudinal direction on 2 mm thick samples

with an Itrax density scanner (Cox Analytical Systems, Sweden) at 0% R.H..

The system was calibrated with a stepped cellulose propionate wedge. All the

experimental measurements were published in McLean (2007). These obtained

density profiles were then normailised over the average density of the sample to

reflect only the variation. The resulting graph of one sample can be seen in Fig. 5.14.
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Figure 5.14: Normalised
density profile of a Sitka
spruce sample, ranging
from pith to bark (blue
line). Fitted curves (red
line) (original in colour).

The transition from late to earlywood can clearly be seen as a sharp drop in density.

This pattern repeats and additionally a tendency of decreasing ring widths can be

observed towards the bark. To characterise the curve in between the peaks a power

function was fitted. Thus, the overall function for several rings n can be described

by

ρ(r) = ρdiff,n

(

r − rn

rn+1 − rn

)ρexp,n+1

+ ρmin,n for rn < r ≤ rn+1, (5.45)

where ρ stands for the normalised density at radius r. rn is the radius at the

peak of growth ring n. ρdiff,n, ρmin,n and ρexp,n are parameters defining the power

function in height, offset and curvature.

A target function of the sum of squared errors between power function and dataset

was established and minimised for several samples with the simplex algorithm,

described in subsection 5.3.2. After this curve fitting, the average values and the

coefficients of variation of the three parameters can be calculated.

It should be noted, that only growth ring sizes that matched the ring widths in

samples that were used in mechanical tests later were taken into account. Thus,

since samples for the mechanical tests were sorted for ring widths not less than

2mm, growth rings in the profile smaller than this were discarded as well.
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5.5.3 Mapping Density Variation

So far, two parameter types were determined: a) a standardised density profile

with its mean parameters and cvs per growth ring and b) the ring parameters taken

from the scans and averaged for each test series (tension, compression, cleavage

and shear tests) along with their cvs. These parameters serve now as an input to

recreate a ring structure that is reflecting the original ones from the test samples

and a density profile that shall be representative for Sitka spruce.

The idea is to change the mean strength ST,l, SC,l and stiffness K0,l values for each

individual link l of the newly created lattice model according to its position in this

artificially generated ring profile. Note: a general variation with a cv,j of 0.2 for

j = X..Y Z is already set without the structured heterogeneity that is applied here.

As seen in Fig. 5.16, rings are generated consisting of a pith and concentric circles

r′n in relation to the Y Z-plane of the model (grey box representing a cross-section

of the lattice). Further, the density profile can be pictured as a three-dimensional

graph with peaks at high densities that form concentric rings. Each link represents a

certain cross-sectional area cut into this topography. This ‘cut-out’ can be calculated

with a double integral over the density function within the area Aj and limits ly,j

and lz,j according to Table 5.4 for link type j. The density variation for link l with

vector Pl(yc, zc) from the origin can be calculated as follows

ρl(xc, yc, zc) =
1

Aj

∫ yc+
1

2
ly,j

yc− 1

2
ly,j

∫ zc+
1

2
lz,j

zc− 1

2
lz,j

ρ(xc, y, z)dzdy. (5.46)

Note, that the profile calculated below this area has to be divided by the same area

to solely obtain the variation in density.

The actual density function ρ(x, y, z) varies along the X axis since the different

radii rvar between front and back side need to be considered. However, the density

function is actually calculated at a specific point xc along the X axis. This is done

by creating radii r′n(x) at position xc as an interpolation between radii rn,back at the

back side and rn,front at the front side, Fig. 5.15. The variation from front to back

is merely a constant shift in radius from front to back side. The back side radii are

simply calculated with the randomly created parameter rvar

rn,back = rn,front + rvar (5.47)
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P Figure 5.15: Interpolation of radii
(green) in between front (red) and back
(blue) side growth rings (original in
colour).

The density function ρ(xc, y, z) is expressed as depending on (xc, y, z), while the

original function depends on r′(xc). However, the function can be easily transformed

via Pythagoras’s theorem:

ρ(xc, y, z) = ρ (r′(xc)) = ρ
(

2

√

y2 + z2, (xc)
)

. (5.48)

Since the density function is discontinuous over the growth rings r′n and r′n+1, the

in-built MATLAB function ‘quad.m’ was used for the integration process. It is based

on the Simpson’s Rule for numerical integration and can cope with any discontinuity.

A description of this function can be found in Gander & Gautschi (2000).

Table 5.4: Cross-sectional area represented by link types.

link type j limit values ly,j limit values lz,j area Aj

X (longitudinal) ±1
2
dz ±1

2
dy dydz

Y (lateral) ±1
2
dz ±dy 2dydz

Z (lateral) ±dz ±1
2
dy 2dydz

XY (diagonal) ±1
2
dz ±1

2
dy dydz

XZ (diagonal) ±1
2
dz ±1

2
dy dydz

Y Z (diagonal) ±1
2
dz ±1

2
dy dydz

Fig. 5.16 shows this whole process for a lateral link l of type j = Y .

After ρl(xc, yc, zc) is determined, which shall serve as a measure of strength and

stiffness variation of link l. The mean strength and stiffness value for this specific
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Figure 5.16: Ring structure with lattice (left) and density profile to be mapped
(right).

link l can be adjusted according to

ST,j,l = [(ρl − 1)λT,j + 1]ST,j

SC,j,l = [(ρl − 1)λC,j + 1]SC,j

Kj,l = [(ρl − 1)λK,j + 1]Kj.

(5.49)

The λj values are parameters, set in the model input file, for further fine tuning the

influence of density variation in the artificial growth ring structure. E.g. set to zero,

no stiffness and strength variation is introduced to the lattice links. Their default

value is set to 1, thus the former equations simplify to

ST,j,l = ρlST,j

SC,j,l = ρlSC,j

Kj,l = ρlKj.

(5.50)

After LAT3D went through all link elements l in a lattice and thus as well all

different link types (j = X,Y, Z,XY,XZ, Y Z), the result looks as seen in Fig. 5.17.

The colour of the lines represents the relative tensile strength value ST,j,l/ST,j for

each link l and link type j. Note, that the figure would look exactly the same

if compressive strength or stiffness values were considered, provided that λj=1

(default). Only the outer surface of this lattice is shown.
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X

Z

Y

Figure 5.17: Structured lattice, showing variation in tensile strength (with
morphology mapped onto lattice and cv,j = 0.2 for j = X..Y Z, blue shows lower
and red higher strength values, original in colour).
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5.6 FE Implementation in LAT3D

As mentioned in the Literature Review (section 3.3.4) no traditional algorithm

(Newton-Raphson, ArcLength-Method etc.) can handle the jagged nature of the

nonlinear solution path very well for lattice models. A new method was found in

(Jirasek & Bazant, 1995). Rather than iterating towards an admissible solution,

the Step-Size-Control (SSC) method treats the overall load-displacement curve as

the sum of single linear steps. In each step only one link changes its stiffness. Thus,

it is possible to overcome the problems that result from the ‘snap-back’ phenomena

and, additionally, plastic deformation can be accounted for. A drawback of the

method is that for large lattice systems the number of load steps amounts to at

least the number of broken/changed links. However, no additional iterations are

needed. In contrast iterative methods such as Newton-Raphson can require an

indefinite number of iterations and might, in certain circumstances, not come to an

admissible solution at all.

Furthermore, using the Method of Inelastic Forces (MIF), these load steps require

significantly less time to compute. In the following subsections the two methods will

be explained in more detail. However, when plastic hardening links are considered,

the SSC algorithm has its problems due to the large number of elements that switch

to the plastic state.

5.6.1 Original Step-Size-Control (SSC) Algorithm

As described previously, the 3D lattice that is used in this thesis (program LAT3D)

consists of single link elements that transfer tensile and compressive loads. The

stress-strain or respectively load-displacement relation of these links consist of a

tri-linear curve. The basic principle, underlying the SSC algorithm, states that

loads are applied to the lattice structure in a manner that only one link changes its

stiffness in one load step. Thus, after each step i the load factor λi,l is calculated

for every link l that is required to bring the respective link into another ‘stiffness

state’ and thus change the respective stiffness. The smallest value is chosen, and

the respective link changes its stiffness.
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In short this is described by,

[Ki]{∆i} = λi{Fref}, (5.51)

where λi is chosen to be λi,l of link l for which the stiffness is changing. This

factor is calculated with the previous strain, the critical strain value ǫcr,l described

in Table 5.5 and the strain increment dǫi,l for link l. (Equation 5.53)

λi,l =
ǫcr,l − ǫi−1,l

dǫi,l

(5.52)

The strain increment of link l in step i can be calculated as







dǫi,l

0

0






=

1

lenl






[Rl]







∆i,l,II,x,ref

∆i,l,II,y,ref

∆i,l,II,z,ref






− [Rl]







∆i,l,I,x,ref

∆i,l,I,y,ref

∆i,l,I,z,ref












, (5.53)

with the obtained nodal reference displacements ∆i,l,ref for link l, with two nodes

I and II and the element rotation matrix [Rl]. The reference displacement is the

displacement ∆i calculated for λi = 1.

The possible stiffness states for a microductile brittle link (bi-linear

load-displacement curve) are: 1© for the initial stiffness, 2© for softening, 4© for

broken and 5© for reloading after ’damage’. The respective load-displacement

relation can be seen in Fig. 5.18.

As a first attempt, one can simply choose in each load step i the minimum positive

λi,l for link l as the load factor λi which brings one of the links into the next

status state. However, due to the negative stiffness for the softening branch in

the load-displacement curve, a negative load step might be required. This is

determined based on whether the strain (while the link is in the softening branch,

status 2©) in one load step is or is not consistent with the assumed status. If

it is not, the respective links have to be switched to unloading (state 3©) and

thus the link’s stiffness changes as well. Since in this case, the change is only

known after the load step, an ‘iteration of status’ must be done. Therefore,

an extra temporary status is assigned (status 5©). This is done when the

strain increment dǫi,l for link l is not consistent with the assumed status in the

softening branch (positive in case of softening, and negative in the case of reloading).
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Figure 5.18: Definition of different link states of link l as described in the original
SSC algorithm (original in colour).

For this temporary status 5© a new stiffness needs to be calculated with the current

strain (Fig. 5.19, dotted lines). However, it could be the case that with the newly

calculated stiffness in the next iteration still some links are not consistent with

their assumed strain increment, thus this step has to be repeated until all links are

consistent. This in turn would require trying all possible combinations of unloading

and softening links, and thus would be very inefficient.

A better solution can be found if one checks the number of consistent and

inconsistent links and base the decision of a positive or negative load step on

whichever number is higher. Thus, the iteration is only taken once. After this

step all links with status 5© are transferred to 3© and a new load step i = i+1 starts.

The original SSC algorithm is summarised in Algorithm 3.

The original example from Jirasek & Bazant (1995) with the detailed calculations

can be found in the Appendix A.1.1 and a modified version with more brittle links

in A.1.3.

Furthermore, it could be the case that during the algorithm several links require

the identical load factor to be transferred into the next status (e.g. λ+
1,i = λ+

2,i for

links 1 and 2). This needs to be considered in a way that therefore several links are
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allowed to change in one step.

Algorithm 3 Step-Size-Control (SSC).

for load step i

1: repeat
2: determine reference displacement ∆i,ref with MIF
3: determine strain increment dǫi,l for all links l:
4: calculate load factor λi,l with critical strain ǫcr,l for all links l:
5: if only positive λi,l then
6: λi = min(λi,l)
7: li = l for which λi,l = λi

8: else
9: λ+

i = min(λi,l > 0)
10: λ−

i = max(λi,l < 0)
11: mask links with status 2© and 5©
12: nconsistent =

∑

dǫi,l= 2© > 0 +
∑

dǫi,l= 5© < 0
13: ninconsistent =

∑

dǫi,l= 2© < 0 +
∑

dǫi,l= 5© > 0
14: if nconsistent > ninconsistent then
15: λi = λ+

i

16: li = l for which λi,l = λ+
i

17: change all links ninconsistent, 2© to 5© and 5© to 2©
18: else
19: λi = λ−

i

20: li = l for which λi,l = λ−
i

21: change all nconsistent, 2© to 5© and 5© to 2©
22: end if
23: recalculate Kl for links l = 5©
24: end if
25: until second iteration or no iteration is required
26: change status and Kl for link l = li
27: {Fi} = {Fi−1} + λi{Fref}
28: {∆i} = {∆i−1} + λi{∆i,ref}
29: ǫi,l = ǫi−1,l + λidǫi,l all links l
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5.6.2 Extension of the SSC Algorithm

The original SSC algorithm, as described in Jirasek & Bazant (1995), treats only

links with a bi-linear load-displacement curve (no stiffness change in compression).

This is extended in LAT3D to accommodate a softening branch in compression as

well. Therefore, new link states are added to the existing method for the respective

stiffness changes. These are simply the negative version of the already described

states (namely − 1©, − 2©, − 3© and − 5©) and are simply the mirrored version of

their positive counterparts (only for a negative strain). Furthermore, an additional

load factor calculated from an ’alternative’ critical strain has to be considered for

links with status ± 1©. This is due to the fact that these links can change to both

states: 2© and - 2© depending on the strain increment and sign of the chosen load

factor. Table 5.5) lists these alternative critical strains for the respective link states.

An example of the workings of this extended SSC algorithm can be found in the

Appendix A.1.2

The algorithm is further extended to take into account a plastic response for links

under compression with the new states − 12©, − 13© and − 15© as seen in Fig. 5.19.

Likewise to their brittle counterparts (− 2©, − 3© and − 5©) the status is changed

for links whose status is inconsistent to the strain increment in case of a positive

load step and for links that are consistent in case of a negative load step. An

additional iteration is also required when the link switches to state - 15© similar to

the other states ± 5© in the previous version. The only difference is that these

plastically compressed links are not considered in the decision whether to take a

positive or negative load step This is due to the fact that the stiffness after the

change remains positive and thus a negative load step is not required. The defined

load-displacement curve with the different link states for the extended version of

the SSC is depicted in Fig. 5.19. An example can be found in the Appendix A.1.4

and in combination with also brittle links in A.1.5.

Furthermore, in case of status ± 5©, ± 3©, − 15© and − 13©, alternative critical strains

are used for situations where unloading links move from tension to compression

and vice versa in one single step. This is depicted for link l in Fig. 5.22. The

critical strain values and the subsequent status change is listed in the lower part

of Table 5.5. A compressed link l switches from softening - 2© to unloading (− 5©
and subsequently − 3©). The alternative critical strain for a link status change in

case of a positive strain increment is ǫT,p,l. In such case the strength parameter
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of the opposite compression or tension side needs to be reduced in order for the

possible loading state to remain inside the defined load-displacement curve. This

can be seen in Fig. 5.22 on the tensile side for ST,l to S ′
T,l. Along with this change,

the softening stiffness KS,l needs to be adjusted to K ′
S,l. This behaviour only

occurs for more complex lattice structures with e.g. diagonals and is therefore not

demonstrated in the Appendix.

Another change made to the original SSC algorithm is the different critical strain

value for links with status ± 5© and − 15©. In the original version, in these

cases, the critical strain value was the current strain ǫl. Thus, the link changes

from e.g. 5© first automatically to 3© with a load factor of 0 (minλi = 0 was

allowed). This led to a problem that the algorithm got stuck when compressed

links with plastic hardening were considered. Therefore, a load factor of 0 was

discarded as a possible factor and the link’s strain therefore changes in every

load step. With this change the critical values for the before mentioned link

states (± 5© and − 15©) has been changed to ǫC,f and ǫT,f respectively. This

should have no effect on the functionality of the algorithm since status ± 5©
and − 15© only occur with a previous state ± 2© and − 12© respectively. The load

factor for these links then will only be chosen when they would switch back to

this state due to the inconsistent or consistent strain increment in the iteration step.

The following list is a summary of all different link states for the extended SSC

algorithm:

• Tension (brittle, γT,j < 0)

1© initial stiffness

2© softening

3© reloading after previous damage

5© extra status for iteration of status

4© broken status

Additionally, in case of softening for a link under compression, the respective

negative states are labelled:

• Compression (brittle, γC,j > 1)

− 1© initial stiffness (compression)
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− 2© softening

− 3© reloading after previous damage

− 5© extra status for iteration of status

Furthermore, links that exhibit plasticity, i.e. have a positive stiffness after the yield

point, obtain the respective negative labels (offset by 10):

• Compression (plasticity, 0 > γC,j ≤ 1)

− 12© softening

− 13© reloading after plasticity

− 15© extra status for iteration of status

These link states are depicted along with the load-displacement relation in Fig. 5.19

for lateral and diagonal links.

A flow chart of the extended algorithm can be found in Fig. 5.20 along with

the detailed decision tree for the case of links that are not consistent with their

assumed status in Fig. 5.21. The whole process is explained in an example in the

Appendix A.1.
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Table 5.5: Critical strain to calculate the required load factor for a respective status
of link l and the following next status, that the link is changed to.

link status critical strain status change to

tension (brittle, γT,j < 0)
1© ǫT,p,l 2©
2© ǫT,f,l 4©
3© ǫT,max,l 2©
5© ǫT,f,l automatically 3©

compression (brittle, γC,j < 0)
− 1© ǫC,p,l − 2©
− 2© ǫC,f,l 4©
− 3© ǫC,max,l − 2©
− 5© ǫC,f,l automatically − 3©

compression (plasticity, γC,j > 0)
− 1© ǫC,p,l − 12©
− 12© ǫC,f,l =≈ ∞ n.a.
− 13© ǫC,max,l − 12©
− 15© ǫC,max,l automatically − 13©

link status alternative critical strain alternative status change

1© ǫC,p,l − 2©
3© ǫC,max,l − 2©
5© ǫC,max,l automatically − 3©

− 1© ǫT,p,l 2©
− 3© ǫT,max,l 2©
− 5© ǫT,max,l automatically 3©

− 13© ǫT,max,l - 12©
− 15© ǫT,max,l automatically 13©
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Figure 5.20: Flow-chart of the extended SSC method as implemented in LAT3D.
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5.6.3 Problems with the Extended SSC Algorithm

For models where a large number of links are transferred to the plastic state − 12©
the computational advantage due to the SSC algorithm minimises. Each time

one brittle link breaks and the strain increment for compressive links changes its

direction an additional load step needs to be taken.

During the solution algorithm after one link breaks and obtains a softening

stiffness, links in the plastic state under compression − 12© are likely to switch back

to reloading and thus a new stiffness needs to be determined (status − 15© and

consequently after the iteration − 13©). Since this includes a lot of links to switch

back in a relatively small load range this would lead to a great number of small

load steps. This can be prevented by installing a load threshold in which links can

change their status.

The SSC algorithm is therefore altered in a way to allow several links (li) to change if

they are in a similar load range λi−λi,l < λThresh. Still, since the minimum λi = λ+
i

or maximum λi = λ−
i respectively is taken, an error accumulates in the calculation

of the global force vector Fi. This error, depending on the threshold load value, is

argued to be minor in comparison to the speed gain in the computation process,

(Fig. 5.23).
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Figure 5.23: Proposed solution to the problem with the SSC algorithm when plastic
hardening links are considered. Example shows exaggerated the LDP of a lattice
structure with two plastic links. Load step i=VI is combined with the next step if
the difference of the load factors for link l = 1 and l = 2 are smaller than λThresh.
Hence, step i=VII. is skipped.
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5.6.4 Method of Inelastic Forces (MIF)

Instead of decomposing the tangent stiffness matrix [Ki] again each load step,

which would be a common procedure in an nonlinear solution algorithm, a more

efficient method was devised by Jirasek & Bazant (1995). Basically, a stiffness

change, that results from elements changing from one status to another, is taken

into account as an additional inelastic force added to the global force vector {Fref}.

Only this additional inelastic force needs to be calculated for each link instead of

the decomposition of the entire stiffness matrix.

Since this method is modified later in section 5.9 to include inelastic moments

from geometric nonlinear beams, Jirasek & Bazant’s original derivation shall be

presented here:

The initial global stiffness matrix of a system with only geometric linear link elements

can be written as

[K1] = [B]T [D1][B], (5.54)

where [B] is the geometric matrix with a number of rows being the number of links

and the same number of columns as there are DoFs. [B] derives from the link

extension-displacement equation {e} = [B]{∆}, with vector {e} being the axial

extension of each link.

The square matrix [D1] contains the initial link stiffness [K1] on the diagonal and

has the size of the number of links.

Similar to the equation before, the tangential stiffness matrix for the current load

step i can be written as

[Ki] = [B]T [Di][B], (5.55)

with all current stiffness contained in [Di] instead of the initial ones.

The overall aim of the method is to solve a system of equations as stated in the

previous subsection (5.51),

[Ki]{∆i} = λi{Fref}, (5.56)

without assembling the actual tangential stiffness matrix Ki and using the solved

initial matrix instead K1. Thus, by adding and subtracting [K1], the following
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equation

([K1] + [Ki] − [K1]){∆i} = λi{Fref}, (5.57)

can be rewritten as

[K1]{∆i} = λi{Fref} − ([Ki] − [K1]){∆i} (5.58)

and substituting [K1] and [Ki] to the right hand side with the former definition

(5.54) and (5.55) leads to

[K1]{∆i} = λi{Fref} − [B]T ([Di] − [D1])[B]{∆i}. (5.59)

It is important to note that ([Di] − [D1]) is a diagonal matrix with nonzeros (on

the diagonal) only for links where stiffness changes occurred. Thus, is is possible

to write much smaller matrices [B̂] and [D̂] by leaving out all the rows in [B] that

correspond to zero columns in ([Di] − [D1]), thus

[B]T ([Di−1] − [D1])[B] = [B̂]T [D̂][B̂]. (5.60)

Equation (5.59) can now be written as

[K1]{∆i} = λi{Fref} − ([B̂]T [D̂][B̂]){∆i}. (5.61)

Since {e} = [B]{∆i} is the vector of all axial link extensions in step i, {ê} =

{B̂}{∆i} is the axial extension of only the changed links. Thus, multiplied with the

stiffness [D̂], the term

{ŝ} = [D̂][B̂]{∆i} (5.62)

can be interpreted as being the actual inelastic force vector of the changed links.

With (5.62), the previous equation (5.61) can be rewritten as

[K1]{∆i} = λi{Fref} − [B̂]T{ŝ}. (5.63)

Since the reference displacement {∆1,ref} (for the initial load step i = 1 and λi = 1)

is calculated by

[K1]{∆1,ref} = {Fref}, (5.64)

and it can be stated that,

[K1][R̂] = −[B̂]T . (5.65)
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It follows by inserting (5.64) and (5.65) into (5.63) that

[K1]{∆i} = [K1]λi{∆1,ref} + [K1][R̂]{ŝ}. (5.66)

Dividing by [K1] leads to

{∆i} = λi{∆1,ref} + [R̂]{ŝ}, (5.67)

Now, the fundamental equation of this method can be obtained by substituting

(5.67) into (5.62) and after rearranging as

([I] − [D̂][B̂][R̂]){ŝ} = [D̂][B̂]{∆1,ref}λi. (5.68)

From this equation (5.68) the inelastic forces {ŝ} can be solved. By substitution

into (5.67) the displacements {∆i} are obtained. Since in this step the actual load

factor λi is not known it is set preliminary to 1. This factor will be determined

only after the SSC algorithm delivers the required factor to change a link from one

status to another. Thus, not the actual displacement vector is calculated, but the

reference displacement ∆i,ref = ∆i with λi = 1 for load step i.

The algorithm can be summarised as:

Algorithm 4 Method of Inelastic Forces (MIF).

Require: initial global stiffness matrix [K1]
Require: {∆1,ref} obtained by solving (5.64)

for load step i

1: construct matrix [B̂] and solve (5.65) to get [R̂]
2: construct the coefficient matrix ([I] − [D̂][B̂][R̂]) and the right hand side

[D̂][B̂]{∆1,ref} from (5.68) and solve for {ŝ}
3: evaluate {∆i,ref = ∆i} with λi = 1 from (5.67)

Further Use of MIF

One key aspect of the MIF methods is that, although Jirasek & Bazant (1995)

assumes that the geometric (strain-displacement) matrix does not change during

the nonlinear solution process, it actually can be modified to incorporate geometric

nonlinearity of link elements. The vector {B} for the respective elements is simply

updated with the new geometry, thus the inelastic forces also represent new
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directions. This will be discussed further in section 5.8 on contact elements, where

this important aspect of the MIF will be exploited.

Although, only link (bar) elements are considered with a relative simple

strain-displacement relation, stiffness change of beam elements can, as well,

be incorporated in the MIF method. The reader is referred to section 5.9 on

geometric nonlinear beam elements in LAT3D.

Computational Considerations

Every link that changes its stiffness is listed in the rows of the [B̂] matrix. Since the

actual vector {B} of one link does not change (as long as no geometric nonlinearity

for these links is considered), every newly changed link is added to an already

existing matrix [B̂] as a new row.

Consequently, matrix [R̂] in equation (5.65) does not change either and only an

extra column is added. Thus for one load step the only three computation steps

that need to be performed are: a) determining for each newly changed link the

additional row in [B̂] (algorithm 4 line 1), b) the additional column in [R̂] (line

2) and c) solving for {ŝ}. Besides these changes, the altered link stiffness is

incorporated in the diagonals of the [D] matrix as (Ki,l − K 1©,l) for link l.

Note, that if a link has already been changed compared to the initial stiffness, then

no new [B̂] row or [R̂] column vector needs to be added and only [D̂] needs to be

changed.

As mentioned in Jirasek & Bazant (1995), this method is superior over other

methods when large lattice systems are considered. Since, then the resolving of

the global stiffness matrix is much more time-consuming than the technique used

here.

5.6.5 Further Optimisation of the MIF Algorithm

One might argue that, as more links change their stiffness in the process of the

nonlinear solution algorithm, the determination of inelastic force vector {ŝ} from

matrix [R̂] with the added column becomes more and more computationally

expensive. However, in the case that this becomes more expensive than to
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decompose the global stiffness matrix altogether, the initial stiffness matrix [K1]

can be replaced with the current tangential stiffness matrix [Ki]. Thus, the matrix

[R̂] is emptied again and the MIF algorithm starts all over. Additionally, for any

changed link, K 1©,l has to be updated to the actual link stiffness Ki,l.

In LAT3D the above described routine was implemented in the following way: Since

only broken links in tension (status 4©) will not change their stiffness again and are

definitely permanent in the nonlinear solution, only these links are eliminated from

matrix [R̂]. Links that are in a plastic state remain in the matrix. An additional

parameter can be set in the model input file which denotes the number of broken

links after which the updated (smaller) global stiffness matrix is decomposed again.

However, when plastic deformation of links is considered, these links will remain

changeable during the entire solution process and can not be removed from the

[R̂] matrix. Furthermore, a great number of changed links (compressive status)

accumulates in a model that experiences large deformation under compression.

This significantly slows down the entire algorithm and will be discussed further in

the results chapter for the compression samples (subsection 6.5.3).
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5.7 Computational Optimisations Employed in

LAT3D

Since ‘plastic’ lattice models still require a significant time to compute (wide-spread

plastic links, large lattices etc.) it was attempted to minimise the computational

effort by the use of the following three different approaches:

• Hybrid model

Using elastic solid elements instead of a lattice, where no plastic or fracture

behaviour is expected to occur.

• Cell structure

The lattice cells are arranged in a particular diagonal checked pattern. This

enables the heterogeneity to be reflected on a small scale but with fewer nodes

and therefore fewer DoFs are used.

• Extended MIF and SSC algorithm

The use of the MIFM and SSC algorithm combined as described in the previous

section.

5.7.1 Hybrid Model - Solid and Lattice Elements

In order to minimise the number of DoFs, larger solid elements are used in areas

of the model where no plastic or brittle behaviour is expected. Thus, 3D linear

transversely isotropic elements are needed to be connected to the lattice. These

elements are generated in a regular shape. Only rectangular blocks with a certain

length, height and width are possible as the preprocessor simply divides the defined

blocks in regular elements. This was sufficient for the modelling of the experimental

specimens which itself were of rectangular shape. However, the program could

be improved with a more general mesh generator if other geometries are to be

considered.

The link between solids and a lattice is accomplished with the penalty element

method. A constraint equation is formulated that links DoFs of the link’s

ends at the lattice block’s surface with the DoFs of the adjacent solid block. The

two different block types along with the connecting process are pictured in Fig. 5.24.
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Figure 5.24: Connection of a lattice block with a solid element block, a) ...grid
of a lattice b) ...with longitudinal and lateral links c) ...added diagonal links d)
...with solid elements and added border nodes (yellow) e) fictitious nodes (green)
with additional quarter and half links f) elements connecting directly solid nodes and
lattice nodes (original in colour).
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The upper part of the figure, a) to c), starts with building up part of the lattice

structure (red lines representing links in the longitudinal X direction, green for

the Y , blue for links in the Z direction and black for the diagonals). The dotted

black lines represent a grid with the spacing of half dx, dy and dz. Lattice nodes

(black) are organised in a checked pattern with node gaps (grey dots) on this

grid (discussed in the subsequent subsection 5.7.2). These gaps are turned into a

functioning node with three DoFs where surfaces of lattice blocks meet (and are

connected) with surfaces of solid blocks, Fig. 5.24d(yellow nodes).

Since one link represents larger material surrounding it, the end nodes of the

surface of a lattice block need to be shifted away from the solid block surface, as

seen in Fig. 5.24d, by half of the spacing in the direction normal to the connecting

surfaces. E.g as in this example: 1
2
dx in the X direction. That equates to a 1

4
for

the longitudinal and lateral link’s length, and 1
2

for the diagonal links. In part e)

one can see the additional shortened links which now connect the lattice node 9©
with the fictitious nodes 9.1© to 9.5© at the interface between the lattice and solid

element zones. These nodes are constrained with the eight solid element nodes ( 1©
to 8©).

The solid elements are constructed with linear shape functions, subsection 5.2.2.

Therefore, link between the solid element nodes and the fictitious node is merely a

linear interpolation of the solid element’s DoFs. The displacement of, for example

node 9.3© can be calculated by the weighted displacement of the solid nodes. This is

accomplished by first determining the node’s relative position to the solid element’s

centre, vector {n} = {nx, ny, nz}
T , Fig. 5.25. Since the solid elements are not

skewed or distorted no further transformation of this vector is necessary. Thus, the

components of this vector can be normalised with respect to the element’s size lx, ly

and lz and then described as parameters for the shape functions:

ξ = nx/lx η = ny/ly ζ = nz/lz (5.69)

With these inserted into the element’s shape functions N1 to N8, (5.25), one obtains

the weights for each of the 8 element nodes. These weights can be used to formulate

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 5-57



5.7 Computational Optimisations Employed in LAT3D

the constraint equation and become in case of the above shown example:
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




+ · · · , (5.70)

with u, v and w being the displacements in the X, Y and Z direction respectively.

As a final step, the additional purely elastic link element is created with mean

stiffness Kj and no further strength properties (stiffness is adjusted to the now

shorter length). This link connects now node 9.3© with node 9©.

In the actual LAT3D program, the nodes ( 9.1© to 9.5©) are fictitious nodes with

no real DoFs in the global stiffness matrix. The element is formulated directly

connecting the lattice ends (node 9©) with the solid element nodes, incorporating

the assigned stiffness Kj, Fig. 5.24f. This avoids increasing the size of the global

stiffness matrix significantly with superfluous DoFs.

½dx

{n}

33

4

6

11

55

88

7

22

99 9.39.3

Figure 5.25: Connection of
lattice link with solid element
nodes, vector {n} starts in
centre of the solid element to the
fictitious node 9.3© (original in
colour).

5.7.2 Lattice Cell Structure

Similar lattice models to the one described here are mentioned in the literature

review, subsection 3.3.4. For example Landis et al. (2002) and Smith et al. (2007)

etc. use 2D lattice models for predicting timber behaviour. These lattice models

consist of cells with diagonals crossing each other. Thus, a cell of rectangular box

shape is created, as seen in Fig. 5.26b (extended to a 3D cell). The structure can
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be optimised by alternating the cells in a checked pattern. This lattice (a) has now

non-crossing diagonals and thus longer lateral and longitudinal links where gaps in

the nodal grid occur (grey nodes). This halves the number of DoFs while the ring

structure can still be mapped on a relative small grid.

dy

dz

dz

dx

X

Z
Y

(a)

dy

dz

dz

dx

X

Z
Y

(b)

Figure 5.26: Comparison of two different lattice arrangements: (a) checked pattern
and (b) rectangular. In case of the a rectangular lattice (b) the number of nodes and
hence DoFs doubles, when the same spacing is assumed (original in colour).
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5.8 Contact Elements

For the timber joint model contact elements are used. These are simply link elements

that exhibit a large stiffness when contact is made, and a negligibly small stiffness

when a gap exists. The respective load-displacement curve can be seen in Fig. 5.27.

Both, the SSC algorithm and the MIF algorithm have to treat these links differently

than ordinary lattice links:

• SSC

In the SSC algorithm, for each iterative step that is taken, the geometry of

the system and thus vector {Bel} is updated. Additionally, the contact links

obtain different status labels ( 6© to 9©). In each load step these links are

considered to be able to change their stiffness state. Thus, load factors λi,l in

load step i are determined for links l and are included in the SSC algorithm.

Like the plastic links the stiffness is never negative and therefore the links do

not influence the decision whether or not a positive or negative load step is

required. After each step, the ǫC,p value of the link is adjusted according to

the updated geometry and the resulting gap distance.

• MIF

The MIF is adjusted by changing the [B] and [D] matrix for each contact link

that alters its status from open to closed or vice versa. Each link has already

a fixed position in the matrices that are used in the MIF, unlike the original

method where newly changed links are added.

5.8.1 Generation of Contact Surfaces

The drilled hole in the member of a timber joint is generated by a cylindrical

cut in the lattice block. This is accomplished by composing a circular mask at

the point when the block data-structure is generated and leaving out all elements

which are masked. At the lattice surfaces the fictitious nodes (grey coloured)

are activated to enable a more continuous surface. However, this would still be

a very ‘steplike’ contact surface between the bolt elements and the lattice. A

smoother contact surface was achieved by subtracting the initial gap between

bolthole and bolt surface rs,l for link l in the contact’s element definition (Fig. 5.28).

Thus, with every update of the geometry, the initial gap is subtracted and contact

is established when the bolt elements touch the lattice node at this specific distance.
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Figure 5.27: Load-displacement relation of contact elements (original in colour).

r
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r s,

r s,

1 2
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r s,
1

r s,
2 +r

Figure 5.28: Contact elements l = 1

and 2 are adjusted to the initially
existing gap. The distances rs,l from bolt
surface to contact-node and bolt radius
r is stored with the contact element’s
information. It is subtracted from the
node-to-node distance in the calculation
of the potential gap later in the SSC
algorithm. Thus, ensuring a smooth
contact surface between lattice and beam
elements (original in colour).
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5.8.2 Geometric Update of Contact Links

After each load step i, all nodal coordinates are updated with the incremental

displacement vector {d∆i} = λi{∆i,ref}. Contact nodes are projections on the

target surface of other elements such as beam elements (bolt) which itself may

change as well. Thus, for each not only the gap distance has to be recalculated but

also the orientation of contact elements.

Different types of elements are considered for the two different contact arrangements:

• Lattice-bolt contact

The lattice node is the actual contact node, while several nodes of the beam

elements (bolt) serve as the target ‘surface’ on which the node is projected

and distance is determined.

⇒ element is depicted in Fig. 5.29a

• Lattice-washer contact

Unlike the lattice-bolt elements, the contact node is projected onto a washer.

This is a circular surface that is defined as an extension from the end node of

the beam elements (taking into account the rotational DoFs) with a diameter

of ∅W .

⇒ element is depicted in Fig. 5.29b

Lattice-Bolt-Contact Elements

This element type is basically a link between contact nodes of the lattice at the

surface and two nodes of the beam on where the contact node can be projected

on, perpendicular to the axis of the bolt. Considering the element l reaching

from contact node to beam element with vector CB,l. The element’s displacement

vector ∆, e.g. as depicted in Fig. 5.29a (between contact node 4© and bolt nodes

2© and 3©), can be written as

{∆} =
{

u 3© v 3© w 3© u 2© v 2© w 2© u 4© v 4© w 4©

}

. (5.71)

The local geometric vector is

{Bel,local} =
{

ξ 0 0 (1 − ξ) 0 0 −1 0 0
}

, (5.72)
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o pqr
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(b)

Figure 5.29: Definition of the gap distance for contact element l: (a) between
contact node and beam elements (bolt) deltaB,l and (b) between contact node and
the washer surface deltaW,l.

The global {Bel} vector can be directly determined with the simplified rotation

vector {Rel}

{Bel} =
{

ξ{Rel} (ξ − 1){Rel} −{Rel}
}

(5.73)

with

{Rel} =
1

δB,l

{

ex,l ey,l ez,l

}

. (5.74)

Thus the global vector {Bel} can be written as

{Bel} =
{

ξ
δB,l

{

ex,l ey,l ez,l

}

ξ−1
δB,l

{

ex,l ey,l ez,l

}

−1
δB,l

{

ex,l ey,l ez,l

} }

.

(5.75)

If, during the solution algorithm SSC and the consecutively updating of the

geometry, the projection of the contact node moves from one element to another

(ξ < 0 or ξ > 1), the next respective element and its nodes are used. The case that

a contact node suddenly moves outside the target surface has not been included.

However, this should not occur for the joint model: the two sides where lattice

nodes could ’slip over’ the ends of the last beam element are a) on one side held

by the definition of the washer surface and b) on the other side (where the load is

applied) they are pushed inwards away from the edge.
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Lattice-Washer-Contact Elements

Similar to the former derivation, an element that models the contact between lattice

nodes and the washer, can be formulated. This element is controlled by the bolt

end node’s displacement and rotation. In the particular example as depicted in

Fig. 5.29b with lattice node 4© and bolt end node 1©, the displacement vector is

{∆} =
{

u 1© v 1© w 1© θx, 1© θy, 1© θz, 1© u 4© v 4© w 4©

}

. (5.76)

Geometric vector

{Bel,local} =
{

1 0 0 0 ez −ey −1 0 0
}

(5.77)

can be transferred to the global coordinates

{Bel} = [Rel]T{Bel,local}. (5.78)

The global contact element’s rotation matrix is updated with the rotation of the

bolt’s end node after each load step,

[Rel] = [R 1©][Rel] (5.79)

with

[R 1©] =







cos(θz) sin(θz) 0

−sin(θz) cos(θz) 0

0 0 1













1 0 0

0 cos(θx) sin(θx)

0 −sin(θx) cos(θx)













cos(θy) 0 −sin(θy)

0 1 0

sin(θy) 0 cos(θy)






.

(5.80)

The angles θx, θy and θz are global rotational DoFs of the bolt’s end node 1©.

5.8.3 Computational Considerations for MIF

The changes made to the original MIF algorithm will be briefly described here.

It is assumed that the beam elements (bolt) and washer are not in contact in the

initial state of the structure. However, a finite small stiffness of 10−5 is applied

to the link between contact node and target surface in order to maintain the

non-singularity of the global stiffness matrix. When contact is made the stiffness is

set to a ‘penalty stiffness’ of 105.

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 5-64



5.8 Contact Elements

Writing the equation (5.58) from the original MIF derivation,

[K1]{∆i} = λi{Fref} − ([Ki] − [K1]){∆i}, (5.81)

for link elements, this can be transferred to

[K1]{∆i} = λi{Fref} −
(

[Bi]
T [Di][Bi] − [B1]

T [D1][B1]
)

{∆i}. (5.82)

Considering now only the contact links similar to the changed links in the original

derivation of MIF and since the initial stiffness [D1] for these is negligible small, the

part −[B1]
T [D1][B1] can be discarded,

[K1]{∆i} = λi{Fref} −
(

[B̂i]
T [D̂i][B̂i]

)

{∆i}. (5.83)

The rest of the derivation of the inelastic forces follows as in the original version

of the MIF, equations (5.61) to (5.68). With this new version, contact elements as

geometric nonlinear bar elements can be taken into account. Therefore, LAT3D

can deal with normal material nonlinear link elements (as derived previously in the

original MIF algorithm) and with the geometric nonlinear bar elements, derived

here, that are used in the contact analysis. In contrast to the material nonlinear

bar elements, the contact link elements simply have already a specified place in the

[B̂] matrix. In this matrix, individual geometric vectors {Bel} and their stiffness

can change as described above.

An example of the contact elements (geometric nonlinear beam elements in contact

with a small lattice structure) can be found in subsection 5.11.4.

With the employed contact definition it is possible to simulate normal contact

behaviour without tangential friction. This slip-stick influences the load transferred

to the bolt hole surface as demonstrated for example in Racher & Bocquet (2005).

However, in the model presented here, this effect was neglected since it would have

led to a more complicated element formulation.
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5.9 Geometric Nonlinear Beam Elements

In order to model a single shear timber joint, 3D Euler-Bernoulli beam elements

were used (derived in subsection 5.2.2). The elements are able to be used in a

geometric nonlinear analysis simply by updating the geometry (nodal coordinates)

in the solution process. Hence, effects such as stress stiffening or buckling were not

considered.

The stiffness change that results from the element’s updated geometry has to be

accommodated in the MIF algorithm as inelastic forces and moments. Thus, to

implement these elements into the framework of the nonlinear solution in LAT3D,

the SSC and the MIF algorithm have to be altered:

• SSC

In the SSC process, for each iterative step that is taken, the geometry of the

system is updated, i.e. the displacement vector and the elements rotation

angle accumulate.

• MIF

To circumvent the need of changing the global stiffness matrix at every

load step, stiffness change due to geometric nonlinearity was implemented

by extending the MIF method to include inelastic moments instead of only

forces. Thus, a force and two moments per node are calculated that represent

the stiffness change due to an altered beam element. Additionally, the vector

{Bel} needs to be changed.

The nonlinear beam elements will be derived in this section. A standard

Euler-Bernoulli with its assumptions is used. Generally, for the extension of the

MIF method the strain-displacement matrix [B] must be allowed to change. The

difference of beams to bar elements is that the element vector {Bel} is a function of

the axial position x (or in case of an isoparametric element of the nondimensional

parameter ξ). Thus, to derive the element stiffness matrix, the following integration

needs to be performed,

[Kel] =

∫ l

0

{Bel}T [Del]{Bel}dx =

∫ 1

−1

{Bel}T [Del]{Bel}
1

2
ldξ. (5.84)

In the original MIF algorithm (subsection 5.6.4), this term (for the global stiffness

[K]) is split to define the vector of inelastic forces after the integration is performed.

However, since this is not possible for {Bel} here, due to the integral, a numerical
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Gauss integration is used which enables the term to be separated. This modification

of the MIF method shall be described in the following.

5.9.1 Computational Consideration for MIF

The MIF algorithm needs to be changed in a way that it incorporates global stiffness

changes that result from an updated geometry, i.e. [Bi] differs from [B1]. Thus,

equation (5.58) from subsection 5.6.4,

[K1]{∆i} = λi{Fref} − ([Ki] − [K1]) {∆i}, (5.85)

is modified, according to the general element independent derivation of [K] to

[K1]{∆i} = λi{Fref} −

∫

(

[Bi]
T [Di][Bi] − [B1]

T [D1][B1]
)

dV {∆i}. (5.86)

Since, in the case of geometric nonlinear beam elements, [Bi] is not the same as

[B1] (unlike in the original derivation of the MIF algorithm), they are compiled

to the modified [B̂] matrix. This, is a collection of rows from both the initial

state ‘1’ and from the current state i. Consequently, [D̂] contains separated

the negative stiffness value from the state ‘1’ and the positive value from state

i in individual rows. Thus, the [B̂] matrix has as many columns as there

are DoFs and double as many rows as there are stiffness values. In the case of

one 2-node 3D beam element with 2x5 DoFs (no torsion considered) these are 6 rows.

Again both matrices, [B̂] and [D̂] contain only the geometric nonlinear beam

elements. In the case of the joint model this is a small number of elements for

which the inelastic forces and moments need to be determined.

A more complicated solution of the integral is necessary since vector {B} for beam

elements is dependent on the position along local axis X. One can write generally:

[K1]{∆i} = λi{Fref} −

∫

[B̂]T [D̂][B̂]dV {∆i}. (5.87)

According to (5.84) since the strain-displacement matrix [Bel] is a function of ξ for
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the beam elements, it follows

[K1]{∆i} = λi{Fref} −

∫ 1

−1

[B̂(ξ)]
T [D̂][B̂(ξ)]

1

2
ldξ{∆i}. (5.88)

According to the Gaussian quadrature rule, an integral can be

approximated by
∫ 1

−1

f(ξ)dξ ≈
n
∑

j=1

wjf(ξj), (5.89)

which results into the exact solution when f(x) is a polynomial function.

In the case of a first order polynomial (as in vector {Bel}) n = 2 with

weights wj = {1, 1} at points ξj = {− 1√
3
, 1√

3
}.

With this quadrature rule, the above equation can be rewritten as (note, the [D̂]

matrix is internally multiplied with 1
2
l)

[K1]{∆i} = λi{Fref} −

2
∑

j=1

(

[B̂(ξj)]
T [D̂][B̂(ξj)]

)

{∆i}. (5.90)

Hence, the new definition for the inelastic forces and moments {ŝ} with respect to

ξ similar to the original MIF (5.62) is,

2
∑

j=1

{ŝ(ξj)} =
2
∑

j=1

(

[D̂][B̂(ξj)]
)

{∆i}. (5.91)

Consequently, the [R] matrix with respect to ξ, set to the two Gauss points, can be

determined with

[K1]
2
∑

j=1

[R̂(ξj)] = −
2
∑

j=1

[B̂(ξj)]
T . (5.92)

Thus the displacement can be written as,

{∆i} = λi{∆1,ref} +
2
∑

j=1

(

[R̂(ξj)]{ŝ(ξj)}
)

. (5.93)

Similar to the original MIF, the main equation can be written when (5.93) is
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substituted into (5.91) as

(

[I] −
2
∑

j=1

(

[D̂][B̂(ξj)][R̂(ξj)]
)

)

2
∑

j=1

{ŝ(ξj)} =
2
∑

j=1

(

[D̂][B̂(ξj)]
)

{∆1,ref}λi. (5.94)

The now used method to determine ∆i can be described as seen in Algorithm 5:

Algorithm 5 Method of Inelastic Forces and Moments (MIFM).

Require: initial global stiffness matrix K1

Require: {∆1,ref} obtained by solving (5.64)
for load step i

1: construct matrix [B̂(ξj)] and solve (5.92) to get
∑2

j=1[R̂(ξj)]

2: construct the coefficient matrix [I]−
∑2

j=1

(

[D̂][B̂(ξj)][R̂(ξj)]
)

and the right hand

side
∑2

j=1

(

[D̂][B̂(ξj)]
)

{∆1,ref} from (5.94) and solve for
∑2

j=1{ŝ(ξj)}

3: evaluate {∆i,ref} = {∆i} with λi = 1 from (5.93)

Again, since λi is determined in the SSC algorithm, thus is preliminary set to 1

in the MIF and only the reference displacement vector for step i is obtained {∆i,ref}.

The geometry is updated in each step. This is depicted in Fig. 5.30a for

the geometric nonlinear beam elements. All displacements and rotations are

accumulated, i.e. they are added in each step to the ones from the previous step.

However, despite the accumulated nodal rotations dθz, 1©,i and dθz, 2©,i, in respect

to the element’s new stiffness, the element is assumed to be straight again in the

following load step. The new rotation angle θz,el,i+1 is calculated from the local

displacements of nodes 1© and 2© .

The forces are updated in a similar manner as depicted in Fig. 5.30b.

An example of the geometric nonlinear elements can be found in subsection 5.11.3.
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Figure 5.30: Schematic of the updating process of a geometric nonlinear beam
element: updating of (a) displacements and (b) forces.
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5.10 Functionality and Handling of LAT3D

The software LAT3D (FE preprocessor, main FE calculation) and PLOT3D

(post processor) plus several additional functions were programmed in MATLAB

(The MathWorks, Inc., 2007). The complete source code listings can be found in a

CD that is attached to this document. MATLAB also allows to create executable

files which do not require the actual programming and debugging environment.

Thus ordinary PCs could be used to run computations of the models on several

machines.

LAT3D as the main part of the program consists of the following major parts:

a) Model input file ‘.lat’

The model input file represents a user interface in which one can operate on

parameters that define the lattice model.

⇒ subsection 5.10.1

b) Preprocessor

The Preprocessor fulfils the following main tasks:

• generating the growth ring structure

• writing node and element information (node position, element’s stiffness

and strength parameters) into a database

• creating local element stiffness matrices

• composing the global stiffness matrix

⇒ subsection 5.10.2

c) Main routine

A specialised solution algorithm was developed to solve efficiently for a nonlinear

solution. It takes into account the material nonlinearity of link elements and the

geometric nonlinearity of beam and contact elements (3D model with fastener).

⇒ section 5.6
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d) Post processor

The program PLOT3D was written to enable the user to view either the

load-displacement plots or the deformed lattice with additional stress, strain

or fracture information of the lattice.

⇒ subsection 5.10.3

This is depicted as well in Fig. 5.31.

LAT3D {LAT3D.exe}

d) Postprocessor

a) Model Input file

c) Main routine

b) Preprocessor

Plot3D {PLOT3D.exe}

4 - LDP plot(multiple)

1 - Matlab figure

3 - LDP plot(single)

2 - 3D Rendering

a) Read parameters from 
Model Input file

b) Create element database 
(nodes, elements and boundary conditions)

+ assemble global stiffness matrix

c) Nonlinear solution algorithm
(SSC and MIF)

+  write output files

• $PARAMETERS: 
General lattice properties

• $WOODSTRUCT
Wood structure

• $MODEL_GEOMETRY + $BC
Geometry, boundary conditions

• $OUTPUT + $COLOUR
Parameters for 
postprocessor

Figure 5.31: Overview of LAT3D’s functionality.

The basic structure is either a 2D plane or 3D block which can be defined in the

model input file. Fig. 5.32 shows this block with its respective surface, edge and

corner indices.

5.10.1 Model Input File

The model input file is used as an interface with which the user can specify the lattice

models. It serves as a list which sets all relevant parameters that are needed to create

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 5-72



5.10 Functionality and Handling of LAT3D

X

Y

Z

1

11

22

33

4

55

66

77

88

22

33

4

55

66

77

88

9

1010

1111

1212

1
2

3

4

5

6

Figure 5.32: Definition of basic model structure. 3D block with respective indices
for surfaces, edges and corners.

the lattice model and describes the model geometry and boundary conditions. The

listing consists of four distinct parts which are marked in the text file with a ‘$’-sign:

1. $PARAMETERS

• Mean strength, PY and stiffness values plus their coefficient of variation

• FE control parameters (number of runs, etc.)

⇒ further details in section 5.4

2. $WOODSTRUCT

• Parameters defining the standardised density profile

• Parameters defining the growth ring structure

⇒ further details in section 5.5

3. $MODEL GEOMETRY and $BC

• Commands, to create blocks of lattices, solid and beam (bolt) elements

• Commands, to create notches, holes etc. in lattice blocks

• Commands, to connect surfaces of lattice blocks with the bolt/washer

element

• Boundary conditions applied to block surfaces, edges and corners

4. $OUTPUT and $COLOUR
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• Parameters controlling the output type, frequency of save steps, plot steps

etc.

• Control parameters describing the appearance of the output figures

• Parameters defining the colours for individual element types, symbols etc.

If one parameter is not set, a default value is chosen by the program. To automate

the computation for multiple models, several model input files (‘.lat’) can be

started in a type of ‘batch’ mode. The program LAT3D first looks up the text file

‘MODEL.txt’ in which all model input files are listed that are to be executed. It

then starts with the first and completes each consecutively.

A complete list of commands and available parameters can be found in the

Appendix A.3 along with the model input files that are used in the result chapter 6.

5.10.2 Preprocessor

The preprocessor first generates randomly an ‘artificial’ growth ring structure based

on parameters set in the section ‘$WOODSTRUCT’ in the model input file. It

then creates, according to the commands in ‘$MODEL GEOMETRY’, the nodes

and element structures. The parameters that define the load-displacement curve of

an individual link are set by mean values and coefficients of variation outlined in

‘$PARAMETERS’. Finally it composes the global stiffness matrix by filling in the

local stiffness matrices of the individual elements.

5.10.3 Post Processor

The last part of the model input file consists of parameters that define the post

processor’s functions. Two different types of output files are created and saved

while the model is being computed in the main routine:

• Load-Displacement-Plot file ‘.ldp’

The load-displacement curve is saved after each load step into the file

‘<modelname>.ldp’.

• Model Output file ‘.out’

The model data file consists of all relevant variables to plot later the
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resulting deformed geometry, stress state, fractured model etc. (node vector,

displacement vector, element stresses, element status etc.). One file contains

one particular state of the model at a certain load step. It is saved every x-th

load step, while x can be set as a parameter in the model input file. The ‘.out’

file name holds the model input file name, the count number of the saved step

and the count number of runs (e.g. ‘MODEL(Test.lat) CO-1 SC-1.out’).

The user has three options to view results with the program ‘PLOT3D.exe’:

1. Rendered output

Several ‘.obj’ files are created. They contain the graphical representation of

the lattice model. Every element (links, solids, contact elements and boundary

conditions each in separate files) is presented as a geometric shape made of

several surfaces. These surfaces with assigned colour and opacity can be

viewed with a rendering program. For this project, the program Bryce3D

(DAZ Production, Inc., 2004) was used, but any other commercial or public

domain rendering software would be sufficient. It further can show the broken

links as shaded surfaces in the lattice cells. This feature was particularly

designed to depict the fracture path in a three dimensional lattice which would

be otherwise hard to picture. The ‘.obj’ file name holds: the type of elements

that it contains, the model input file name, the count number of runs, the count

number of the saved step and an number which is the internal load step at

which the output file was saved (e.g. ‘BC(Test.lat) CO-1 SC-1 (LS-100).obj’.

LAT3D ⇒ Model Output file ‘.out’ ⇒ PLOT3D ⇒ Object file ‘.obj’ ⇒

Rendering Software ⇒ picture file e.g. ‘.jpg’

Further details follow in subsection 5.11.2.

2. MATLAB figure window

The general lattice and solid element lines can also be displayed in a MATLAB

figure window.

LAT3D ⇒ Model Output file ‘.out’ ⇒ PLOT3D ⇒ MATLAB figure ‘.fig’

3. Load-Displacement plot ‘.ldp’

The resulting load-displacement curve can be plotted in a MATLAB figure.

LAT3D ⇒ Model LDP file ‘.ldp’ ⇒ PLOT3D ⇒ MATLAB figure ‘.fig’
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Listing 5.2: Model input file (output parameters, shortened).

1 $OUTPUT

2 SaveSteps = 1000

3 ShowSurfaceLines = true

4 ShowAllLines = true

5 ShowBrokenLines = 1,1,1,1,1,1,1,1,1

6 ShowNormalForceStrain = 1

7 Scale = 1

8 ScaleBCs = 2

9 ScaleForce = 0.01

10 CircleDiv = 48

11 OBJFrameGridSize = 3.0

12 OutSave = true

13

14 PlotCount = 1

15 PlotStep = 3

16 PlotType = 1

17 PlotOBJs = 1,2,3,4,5,6,7

18

19 OBJlinewidth = 0.05

20 OBJlinediv = 6

21 OBJframe = −20, 40, −20, 40, −20, 40

22 OBJpath = pwd

23 OBJfile = ’ObjectFiles\OBJ’

24 .

25 .

26 OUTpath =pwd

27 OUTfile = ’ModelData\MODEL’

28 LDPsave = true

29 LDPpath = pwd

30 LDPfile = ’LDP\LDP’

31 $END
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5.11 Examples and Visualisation

5.11.1 Modification of LDP curve

Since, the laboratory tests deliver a LDP with constantly increasing displacement

(i.e. no ’snap-back’, due to displacement control), the resulting curves from the

model output were modified in order to produce comparable plots.

This process is depicted in Fig. 5.33 where the original output of the model (green

dashed line) is modified to show an increasing displacement (red line).

F

�
Figure 5.33: Modification of model LDP output.

5.11.2 3D Visualisation

The graphical representation of the model output, due to the large number of

depicted elements, can be accomplished, as described in subsection 5.10.3, with a

3D render program (e.g. Bryce3D). The post processor of LAT3D makes use of the

Wavefront file format ‘.obj’ (Wavefront Technologies, 1984) which defines triangular

or quadrangular surfaces and can be read generally by numerous graphics software.

Raytracing software such as Bryce3D (DAZ Production, Inc., 2004) calculates the

colour of each pixel in a virtual screen by tracing the imagined ‘ray’ from the viewer

to the various objects. The used file format makes it a quick and easy way to create

meaningful graphics.

An example listing can be found in Lst. 5.3. This short ‘obj.’ file creates a cube

with 8 nodes (voxels ‘v’)and 6 surfaces (’f’) and using material ‘BLUE ’ that is
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defined in the material file ‘MAT.mtl ’.

Listing 5.3: Output file for 3D render program ‘.obj’.

1 mtllib MAT.mtl

2 usemtl BLUE

3 v 0.000000 2.000000 2.000000

4 v 0.000000 0.000000 2.000000

5 v 2.000000 0.000000 2.000000

6 v 2.000000 2.000000 2.000000

7 v 0.000000 2.000000 0.000000

8 v 0.000000 0.000000 0.000000

9 v 2.000000 0.000000 0.000000

10 v 2.000000 2.000000 0.000000

11

12 f 1 2 3 4

13 f 8 7 6 5

14 f 4 3 7 8

15 f 5 1 4 8

16 f 5 6 2 1

17 f 2 6 7 3

LAT3D creates several ‘.obj’ files for various layers with different element

types: boundary conditions ‘BC[...].obj’, frame of the coordinate system

‘BOX[...].obj’, solid surface elements ‘SOLID[...].obj’, lattice elements ‘LAT[...].obj’,

‘LATBROKE[...].obj’, ‘OBJ[...].obj’ and ‘VIS[...].obj’. Each ‘.obj’ file requires a

definition of the used colours. This information is stored in a separate file (‘.mat’

file) and included in the actual ‘.obj’ file (‘mtllib file’). For each element the chosen

colour is picked with ‘usemtl colour ’ and coordinates are defined (‘v x,y,z ’). The

surface is defined with ‘f r1,r2,r3,r4 ’.

The fracture pattern is depicted as coloured surfaces on the lattice cells. Pink

for broken links under tension/compression (status 4©) and purple for links in

compression (status - 12©).

The boundary conditions are represented in the form of geometric cones, (for ‘fixed’

in the direction of the cone’s longitudinal axis) and arrows for forces acting in the

respective direction. The contact elements are depicted as blue (open) and red

(closed) nodes while the target surfaces are a green circular area (washer) or line
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(bolt), respectively.

5.11.3 3D Bolt Example

A brief example shall show the validity of the 3D geometric nonlinear beam

elements. Fig. 5.34 shows the load-displacement plots of a geometric nonlinear

cantilever beam (�=10 mm, ESteel=210 kN/mm2). The beam is loaded with

F =30 kN at a lever arm of l=100 mm and divided into 5 elements. The plot

depicts the tip displacement in direction of X (applied loading) and Z (beam

axis). For a comparison, the green curve represents the same model solved with

the program MASTAN2 v1.0 (presented in McGuire et al. (2000)) which included

stress stiffening. This lead to a slight deviation from the calculated LAT3D curve.

The load is applied in 10 consecutive linear steps (Euler method as described in

subsection 5.2.5). The displaced and initial rendered model output can be seen

in Fig. 5.35. Each element is represented as a cylinder on a straight line between

nodes with top and bottom circles that are rotated to match the respective nodal

rotation.

5.11.4 2D Bolt-Lattice-Contact Example

The following example demonstrates the use of geometric nonlinear beam elements

getting in contact with a small 2D lattice structure. The beam elements represent

a bolt with a certain diameter, which is fixed and free to rotate at one end and

has a force applied at the other unconstrained end. All DoFs in the Y direction

are fixed for this 2D example. The parameters for the lattice and bolt elements are

arbitrarily chosen and don’t reflect any true lattice timber behaviour. The example

shall only serve to show the functionality of certain element types and the working

of the SSC algorithm. The smoothing of the contact surface is switched off (refer

to Fig. 5.28).

Fig. 5.36 shows the load-displacement response of the described example. The

underlying blue line is the original load-displacement response of the system with

the red line being the modified version. Next to the load-displacement plot are

model depictions placed for different load steps (I.,II., IV., V., VI. and IX.). For the

nonlinear solution the geometry of bolt and contact elements is updated in every
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Figure 5.34: LDP of cantilever example, displacement in X (solid) and Z (dashed)
versus applied load, (original in colour).

Figure 5.35: Rendered output plot of cantilever example with geometric nonlinear
beam elements.
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load step. One or more intermediate steps (blue dots) can be added in between

the normal material nonlinear step (green dots) in which stiffness changes for a link

occur. In these intermediate steps the geometry is still updated, thus geometric

nonlinearity is accounted for in an ‘Euler Method’ type fashion (subsection 5.2.5).

Instead of applying the calculated load step in the SSC algorithm λi,SSC that is

required to bring one link into the next status, an increasing fraction of this factor

in an intermediate step j is consecutively applied, λi. This is calculated according

to

λi =
j

jmax

λi,SSC (5.95)

As λi,SSC gets smaller during these intermediate steps, since it is determined again

in each intermediate step, factor j
jmax

gets bigger. Thus, the intermediate steps

are placed exactly evenly distributed on the line between on main load step, as

can be seen in the load-displacement curve of the example. This is different to the

previous described example where no material nonlinearity is considered and the

consecutively applied load factor is simply the same ratio.

In the example here, one additional intermediate step is chosen (jmax = 2).

Table 5.6 describes the status changes of the different link elements.

Table 5.6: Link status changes for 2D bolt-lattice-contact example.

main load step i status change

I. initial state
II. 1. contact link closes
III. 1. diagonal link changes to softening
IV. 1. diagonal link changes to broken
V. 2. contact link closes
VI. 3. contact link closes
VII. 1. lateral link changes to softening (compression, 0 > γC < 1)
VIII. 2. diagonal link changes to softening
IX. 2. diagonal link changes to broken
X. 2. lateral link changes to softening (compression, 0 > γC < 1)
XI. 3. lateral link changes to softening (compression, 0 > γC < 1)
XII. maximum set displacement (0.75mm) is reached
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5.12 Summary

5.12 Summary

In this chapter the various elements that are used in LAT3D program along with

the specialised FE routines were presented. All relevant parameters that define

lattice models were listed and the mapping of structured and unstructured variation

of these parameters on the lattice was described. Furthermore, the functionality

of the program and its elements was shown with several examples. The following

chapter uses the before described program to calibrate the lattice model and presents

comparisons to experimental laboratory tests.
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6 Results

6.1 General

This chapter introduces a possible calibration routine for the lattice model. Four

different types of parameters have to be determined in order for LAT3D to create

the tri-linear load-displacement relation of the individual link elements:

• elastic parameters

mean stiffness Kj and cv,j

• strength and PY parameters

mean strength Sj, γj and cv,j

for j = X, Y = Z, Y X = ZX, Y Z

and in order to adjust the mean strength and stiffness values of individual links:

• wood morphology parameters (structure)

mean parameters mean(α, rpith, rshift, ∆r, rvar) and cvs

• wood morphology parameters (normalised density)

mean parameters mean(ρmin, ρdiff , ρexp) and cvs

For the determination of these input parameters of the 3D lattice models, 6 test

series were conducted with small Sitka spruce (Picea sitchensis) samples. These

are listed with the respective label in Table 6.1 with the additional joint test.

An additional letter in the label, A or F indicates the origin of the timber (Forest

Ae and Fingland respectively).

Since the calibration of the lattice strength parameters is an iterative process, only

the first results of this approach are presented here. Reichert & Ridley-Ellis (2008)

describe the model and the calibration routine in general and present a preliminary
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6.2 Calibration

Table 6.1: Test series with respective labels.

label load type direction of load

T-R/T-no mode I fracture test, tension radial and tangential
S-RL/TL-no shear RL and TL plane

T-L-no tensile longitudinal
C-L-no compression longitudinal
C-R-no compression radial
C-T-no compression tangential

J-M10-no joint test with bolt M10 [-]

result.

However, even after several iterations the model can not be adjusted to a completely

arbitrary set of parameters due to the constraints of the lattice cell structure. This

limits the match between test results and FE model. A further constraint is the

cell size which determines the possible modelled maximum stress concentration at

a crack tip.

From each test specimen, parameters that determine the characteristics of the

growth ring structure were measured. These influence the variation of the link’s

strength and stiffness parameters by mapping an artificial growth ring structure

and density profile onto the lattice model, as described in section 5.5.

Measurements of moisture and density were in accordance with the oven dry

method (BS EN 13183-1, 2002). A complete list of moisture content and density

values of all tested samples can be found in the Appendix A.2.

The model input files for each tests series with the parameters used can be found

in the Appendix A.4.

6.2 Calibration

The lattice model’s parameters are calibrated against test data. This is performed

in several steps. Different tests on small clear timber specimens were undertaken to

replicate relatively simple stress states. A cleavage test and a simplified shear test

were carried out instead of an actual tension perpendicular to the grain test and
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a standard shear test, which would have required special fixings for the test machine.

The 6 different test series are: a compression test and tension test parallel to

the grain, a compression test and cleavage test perpendicular to the grain and a

simplified shear test in the longitudinal direction. For each test series the respective

element types ( j = X,Y = Z, Y X = ZX, Y Z) can be calibrated.

From the test samples several different parameters were determined, regarding

the geometry and boundary conditions, elastic and strength properties and the

parameters defining the wood morphology:

• Geometry and Boundary Conditions

Geometric parameters and boundary conditions were in accordance with the

experimental tests.

• Elastic Parameters

The longitudinal tensile E-modulus (MoE) was obtained from a tensile test.

The remaining elastic properties and Poisson ratios were calculated from ratios

for Sitka spruce (Picea sitchensis) published by the USDA (1999).

• Growth Ring Structure Parameters

Characteristic parameters that define the growth ring structure of the

specimens (such as ring widths, pith position, growth ring shift between back

and front side of the specimen) were determined via scanned images of the

specimen’s cross-section. These parameters serve as an input to recreate an

artificial growth ring structure (subsection 5.5.1).

Further parameters were derived indirectly:

• Density Profile

It is assumed that the variation of strength and elastic properties vary

according to the density profile of the specimen, thus parameters of a density

profile were taken from different Sitka spruce samples. These parameters serve

as an input to recreate a density profile for the model (subsection 5.5.2).

• Strength Parameters

Values were determined by means of trial and error of comparing

load-displacement plots resulting from the lattice models to the respective

experimental test series.
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Each parameter consists of a mean value µ and its coefficient of variation cv.

The different kind of input parameters along with the calibration routine are

summarised in Fig. 6.1.
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Figure 6.1: Schematic of the calibration routine.

In the following sections the determined elastic, strength, PY and wood morphology

parameters are presented.

6.3 Elastic Parameters

The aim is to determine elastic parameters of the lattice based on given E-moduli.

This can be accomplished by comparing one lattice cell to the equivalent elastic

continuum volume. Therefore, the elastic lattice parameters Kj can be directly

determined from a given set of elastic moduli and Poisson’s ratios. The method

can be formulated according to Ostoja-Starzewski (2002) as follows:

The stiffness Kj is determined by equating the strain energy U of a lattice with the

strain energy of the equivalent continuum of the same volume as,

Ucell = Ucontinuum. (6.1)

These strain energies can be determined in case of a single lattice cell with ‘half’
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dy

dz

dz

dx

X

Z

Y

Figure 6.2: Single lattice cell with ‘half ’ links.

links as shown in Fig. 6.2.

Ucell =
1

2

Nb
∑

b

(F ·u)(b), Ucontinuum =
1

2

∫

V

σǫdV, (6.2)

with F being the force and u the displacement of b-th link element, further σ is the

stress field and ǫ the respective strain occurring in the reference volume V .

These equations can be further arranged as:

Ucell =
1

2

Nb
∑

b

(Ku ·u)(b), Ucontinuum =
1

2
ǫCǫ, (6.3)

where K is the link’s stiffness and C the 4th-order stiffness tensor.

A subsequent step, assuming linear strain fields, involves equating both strain

energies (Ucontinuum = Ulattice) and connecting displacement u with strain ǫ, thus

deriving stiffness tensor C.

Cijkl =
1

V

Nb
∑

b

l(b)
2

·K(b) ·n
(b)
i ·n

(b)
j ·n

(b)
k ·n

(b)
l i, j, k, l = x, y and z, (6.4)

with length l(b) and unit vector n(b) of link element b. V represents the volume of
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6.3 Elastic Parameters

the unit cell repeating in space (V = 2 · dx · dy · dz). The resulting stiffness tensor of

size 3x3x3x3 can be reduced into Voigt notation with Cij of size 6x6. By calculating

the inverse of C, the elastic parameters E and Poisson’s ratios can be determined.

C−1 =























1
Exx

− νyx

Eyy
− νzx

Ezz
0 0 0

− νxy

Exx

1
Eyy

− νzy

Ezz
0 0 0

− νxz

Exx
− νyz

Eyy

1
Ezz

0 0 0

0 0 1
Gyz

0 0

0 0 0 1
Gzx

0

0 0 0 0 1
Gyx























(6.5)

For the shown lattice cell, both, the effects of transverse strain and shear strain

are combined in the diagonals of the respective plane. This restricts the lattice

from representing any arbitrary orthotropy. Due to this, a routine was written that

optimises the K values to match as closely as possible the elastic properties to a

target function. A discussion follows this section on how a different method could

be used to adjust the lattice’s elastic properties more freely and thus match the

given elastic properties better.

The longitudinal modulus of elasticity (E∗) is determined via a tensile test, which

is described in more detail in subsection 6.5.4. For expediency the remaining elastic

properties (E∗
j ) are set according to the ratios for Sitka spruce that were obtained

from the Wood Handbook (USDA, 1999).

Table 6.2 shows the ratios of elastic moduli to the longitudinal stiffness Exx and

Poisson coefficients obtained from the Wood Handbook. Furthermore, the resulting

elastic moduli are listed based on the mean value Exx=9792 N/mm2 as measured

in the tension tests.

Due to symmetry and the assumed transverse elasticity the following elastic

parameters are equalised (mean values are taken):

E∗
yy = E∗

zz, E∗
zx = E∗

yx, ν∗
xz = ν∗

xy, ν∗
zy = ν∗

yz and ν∗
zx = ν∗

yx. (6.6)

The following table shows the target elastic properties along with the optimised

values.
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Table 6.2: Resulting elasticity parameters.

ratio resulting E moduli
[N/mm2]

Eyy/Exx 0.043 421
Ezz/Exx 0.078 764

Eyx/Exx 0.061 597
Ezx/Exx 0.064 626
Eyz/Exx 0.003 29

[-]

νxz 0.372
νxy 0.467
νzy 0.435
νyz 0.245
νyx 0.04
νzx 0.025

parameter target value* result

[N/mm2] [N/mm2]

Exx 9792 9608

Eyy = Ezz 592 681

Ezx = Eyx 612 557

Eyz - 325

[-] [-]

νxz = νxy 0.42 0.49

νzy = νyz 0.34 0.37

νyx = νzx - 0.035

The resulting K values are presented in Table 6.3.

The target function can be formulated with the target values (E∗, ν∗, from the

Wood Handbook and the measured longitudinal E-modulus) and the determined
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Table 6.3: Resulting stiffness parameters.

parameter result
[N/mm]

K 1©,1 1424
K 1©,2 = K 1©,3 357
K 1©,4 = K 1©,6 1392

K 1©,8 1298

values (E, ν, from the above described method) as,

Φ2 =
1

6

[

(

E∗
xx − Exx

E∗
xx

)2

+

(

E∗
yy − Eyy

E∗
yy

)2

+

(

E∗
yx − Eyx

E∗
yx

)2

+ ...

(

E∗
zx − Ezx

E∗
zx

)2

+

(

ν∗
zy − νzy

ν∗
zy

)2

+

(

ν∗
xz − νxz

ν∗
xz

)2
]

(6.7)

The simplex algorithm, as described in subsection 5.3.2 was used to optimise the

target function. The goodness of fit as a result of the optimisation routine was

calculated to be Φ = 0.0635.

Note: the determined Kj values are used as the mean stiffness parameters in the

lattice model Kj. When a lattice block (cv = 0) with these parameters is linked

with solid elements set to the resulting elastic parameters and Poisson coefficients

(Exx...Eyz and νx,y...νy,z, Table 6.2, right column) the lattice should behave exactly

the same in terms of elastic deformation. This is true, provided that the solid block

has an averaging effect on the lattice i.e. the mesh size is not smaller than the

unit cell size of the lattice. Still, as soon as there is structured variation applied to

the lattice elements (model input file: $WOODSTRUCT, enable=true), the blocks

will behave slightly differently. This should not have a significant impact on the

bulk hybrid structure since only minor stresses are expected to occur in the solid

element region.

6.3.1 Alternative: Indirect Approach

Another way to calibrate the elastic properties of the lattice unlike the direct

method described in the previous section can be found in Davids et al. (2003).

The authors use a 2D lattice similar to the 3D version shown in Fig. 5.26. There,
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the elastic parameters are determined indirectly by simulating a lattice of fixed

size (6x4 cells) under single loading conditions (compression in X and Y , and

shear in XY ). A deformation is applied in the elastic range for the three different

loading conditions (longitudinal, radial/tangential and shear). The bulk elastic

properties are determined for the respective lattice models from the calculated load

and deformation. Along with a target function and optimisation routine (simplex

algorithm in subsection 5.3.2) similar to the one described in the previous section.

The elastic parameters K are then optimised to the best fit.

The main difference of the used lattices here in this thesis to the 2D lattices

described in Davids et al.’s paper is the implementation of the diagonal elements.

In this paper, the angle under which the elements act between the node of one cell

to the neighbouring cell can be adjusted freely and is left as an additional parameter

in the optimisation routine. However, while this improves the goodness of fit the

whole lattice is now size dependent. With this freely adjusted angle an element has

been created whose stiffness contributions in X and Y are not according to the

alignment of the connected nodes. Hence, an eccentric force is introduced to the

lattice which is taken on by the lateral and longitudinal elements, Fig. 6.3. The

result is a system which can’t represent, for example, a state of pure shear nor a

uniform transverse strain. The lattice system, further, becomes size dependent in

the elastic range.

Davids et al. dismiss these differences between a lattice structure and the equivalent

system of continuum elements since in their work only lattice elements are used.

The bulk elastic behaviour is then predicted correctly for a certain given size in

their calibration routine. For the program LAT3D here, where a hybrid form of

3D elastic continuum elements in combination with a lattice are used, it was tried

to create comparable element behaviour. Hence, the above described method of

equating both strain energies (lattice and continuum) is used, with the resulting

inability to represent arbitrary orthotropic elasticity.
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α

Figure 6.3: Eccentricity as a result from the stiffness contributions (X and Y) of
the diagonals which are not the same ratio as if the diagonals are aligned to their
attached nodes.
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6.4 Wood Morphology Parameters

A detailed description on how the wood morphology is characterised and mapped

onto the lattice model is explained in section 5.5.

The method to determine the parameters that characterise the ring structure is

described in subsection 5.5.1. The resulting mean values and their coefficient of

variation are listed in the following tables for each test series, Table 6.4.

It is assumed that all wood morphology parameters are normally distributed except

for ρexp. For this parameter a log-normal distribution is assumed since a negative

value, which might occur for a normal distribution, would result in an unrealistic

shape of the density profile.

Table 6.4: Resulting parameters for the growth ring characterisation.

test series α rpith rshift ∆rcentre

mean
∆rdiff

mean
rvar

[rad] [mm] [-] [mm] [mm] [mm]

T-R/T mean 3.865 39.507 0.408 5.884 -0.072 -0.007
stdev 0.320 8.495 0.293 1.629 0.274 1.917

(20 samples) cov 0.083 0.215 0.719 0.277 -3.803 -283.0

S-RL/TL) mean 1.815 33.168 0.609 6.313 -0.031 -0.119
stdev 0.634 8.166 0.300 1.214 0.156 0.909

(17 samples) cov 0.349 0.246 0.493 0.192 -5.031 -7.641

C-L mean 2.885 50.990 0.421 5.170 -0.096 0.204
stdev 2.047 14.269 0.294 1.265 0.189 1.275

(20 samples) cov 0.710 0.280 0.699 0.245 -1.975 6.242

C-R mean 7.788 54.761 0.528 5.247 -0.120 0.319
stdev 0.370 12.574 0.328 1.081 0.146 0.750

(10 samples) cov 0.048 0.230 0.621 0.206 -1.224 2.345

C-T mean 3.131 49.493 0.503 5.125 -0.049 0.229
stdev 0.444 8.539 0.283 1.183 0.137 0.553

(10 samples) cov 0.142 0.173 0.562 0.231 -2.796 2.412

J-M10 mean 2.907 48.809 0.540 5.881 -0.138 0.361
stdev 0.918 15.010 0.301 1.242 0.220 2.672

(10 samples) cov 0.316 0.308 0.560 0.211 -1.599 7.402

The normalised density profile characterisation was obtained from 7 radial
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specimens from pith to bark. After the curve fitting of a power function, as

described in subsection 5.5.2, the mean values and their coefficients of variation

were determined as shown in Table 6.5.

Table 6.5: Resulting parameters for the density profile characterisation.

ρmin ρdiff ρexp

[-] [-] [-]

mean 0.717 0.982 1.958
(7 samples) stdev 0.105 0.207 1.985

cov 0.146 0.211 1.014
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6.5 Strength and Post-Yield Parameters

A set of 6 different test series were conducted in order to obtain their

load-displacement curves. The failure behaviour was then qualitatively assessed.

Equivalent lattice models were constructed and could then be compared to the test

results in terms of fracture behaviour and load-displacement.

For the experimental test set-up, small clear specimens were cut from Sitka spruce

(Picea sitchensis) battens. The timber originated from two sites in the south of

Scotland, Forest of Ae (A) and Fingland (F) with an age of 53 and 34 years,

respectively. Although an overall difference in MoE and MoR was measured for

these two sites both, were equally used in the calibration routine of the lattice

model. All specimens were left in an environment controlled laboratory set to a

constant temperature of 21 ◦C and 65% humidity until they attained constant

weight.

The testing machine used was a Zwick Roell Z050 with a load cell of 50kN or 1kN,

depending on the force range.

All test series were displacement controlled. Further, it was tried to reach the

maximum displacement after 5 − 10 min, therefore different test speeds were

chosen. Table 6.6 shows the different speeds and pre loads used.

test series test speed pre-load
[mm/min] [N]

T-R 1 2
T-L 0.2 10

S-LR/LT 0.1 10
C-L 1 1000
C-R 1 400
C-T 1 400

J-M10 2 100

Table 6.6: Test speed and pre-load.

In the next subsections the following results (laboratory set-up, experimental and

model results of the respective test series with preliminary input parameters) will

be presented:
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• test set-up with fixing

• image of failed specimen

• FE lattice/solid model abstraction with boundary conditions

• model output figure

• load-displacement plots (LDPs) of lattice models compared to laboratory tests

Except for compression tests parallel and perpendicular to the grain, the Smax was

determined as the maximum load of the LDPs. Initial stiffness was measured with

the LDP points at 10 and 40% of Smax.

The set input values for the link parameters are listed in Table 6.8. Note: due

to symmetry of the diagonals the following mean stiffness and strength parameters

are the same: K 1©,4 = K 1©,5, K 1©,6 = K 1©,7, K 1©,8 = K 1©,9, ST/C,4 = ST/C,5,

ST/C,6 = ST/C,7 and ST/C,8 = ST/C,9. Furthermore, due to the assumed transverse

isotropy K 1©,2 = K 1©,3, K 1©,4 = K 1©,6 and ST/C,4 = ST/C,6. The same applies to

the respective coefficients of variation cv,j.
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Table 6.7: Preliminary input parameters for the following lattice models.

parameter value unit

elastic parameters

elasticity parameters Ej ⇒ Table 6.2
stiffness parameters Kj ⇒ Table 6.3

strength and PY parameters

ST,1 100 [N]
SC,1 12 [N]
ST,2 7 [N]
SC,2 4 [N]

ST,4=SC,4 20 [N]
ST,8=SC,8 7 [N]

γT,1 1.01 [-]
γC,1 0.01 [-]
γT,2 1.01 [-]
γC,2 0.01 [-]

γT,4=γC,4 1.01 [-]
γT,8=γC,8 1.01 [-]

wood morphology

cv,l 0.2 [-]
λT,l 2 [-]
λC,l 2 [-]
λK,l 2 [-]

for l=1..9
growth ring parameters ⇒ Table 6.4
wood density profile ⇒ Table 6.5
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6.5.1 Perp. to the Grain Tension, Fracture Mode I (T-R/T)

The test specimens were small clears with the dimensions: 70x60x20 mm. A notch

was cut to a previously drilled hole of 4 mm diameter. The round surface of this

hole creates a consistent point of crack initiation among the test specimens. As

long as the cleavage model represents this hole comparably in the respective lattice

structure, it should be possible to calibrate the strength parameters to the tested

specimens.

Two holes with a diameter of 8 mm provided a fixity for the test rig which was

mounted onto the Zwick test machine. One displacement transducer was mounted

on the notch side which measured the relative movement of both displacing parts

of the specimen. Load from a 50 kN load cell along with the measurement from

one displacement transducer was recorded. The test was stopped after 5 mm

displacement.

Fig. 6.4 shows the schematic of the test set up with the two fixing clamps and one

displacement transducer mounted on the side of the specimen, Fig. 6.5 a failed

specimen and Fig. 6.6 depicts the respective FE model abstraction with applied

forces and constraints. The rendered output figure is shown in Fig. 6.8. LDPs of

model output and test were compared in Fig. 6.9.

Relative good agreement was found in terms of maximum load and fracture pattern.

The large influence of growth ring structure on the fracture path can be clearly

seen. Stiffness predictions did not match the actual LDP so well, this is due

to the fact that the perpendicular to the grain E-modulus as obtained from the

Wood Handbook did not match the measured stiffness. However, a lower modulus

would not be possible in the elastic calibration routine without also changing the

longitudinal or shear parameter.

Fig. 6.9 shows a comparison of the load-displacement plot from the tested specimens

to the respective plot from the FE model.
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Figure 6.4: Schematic of cleavage test T-R/T, fixation in the test rig and
displacement measurement (original in colour).
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Figure 6.5: Tested specimen T-R/T (original in colour).
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Figure 6.6: Schematic of cleavage model (original in colour).
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Figure 6.7: T-R/T fracture pattern following the growth ring structure (original
in colour).

Figure 6.8: Rendered output of T-R/T series, broken links and strength ratio is
depicted on links (original in colour).
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Figure 6.9: Comparison of load-displacement among test and model for T-R/T
series (original in colour).
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6.5.2 Parallel to the Grain Shear (S-RL/TL)

Test specimens measured 140x22x6 mm. Two notches of 12 mm were cut for

the initiation of the crack. These specimen dimensions were in accordance with

specimens tested in Fournier et al. (2007) with the modification to fit a 2x4 mm

grid. The specimen was fixed in the testing machine via a vice-type grip at the right

hand and left hand side (Zwick Z050 equipment 2.5 kN). Relative displacement

was measured at a distance of 48 mm with an improvised extensometer as seen in

Fig. 6.10. Load was measured with a 1 kN load cell. The test was stopped after

1 mm displacement.

Fig. 6.11 shows a failed specimen and Fig. 6.12 depicts the respective FE model

abstraction with applied forces and constraints. The rendered output figure is

shown in Fig. 6.13. LDPs of model output and test were compared in Fig. 6.14.

Predicted maximum loads were slightly lower than the laboratory measurements.

However, a higher parameter for the diagonal lattice elements would conflict with

a relative low value for lateral links, which is required in the T-R/T and C-R/T

test series. A straight fracture line observed in the specimens can also be seen in

the rendered output figure. As with the T-R/T tests, stiffness predictions did not

match the actual LDP well.

140

22

6

12

12

LVDT

LVDT

fixation for LVDTs

Figure 6.10: Schematic of shear model S-RL/TL, fixation in the test rig and
displacement measurement (original in colour).
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Figure 6.11: Tested specimen S-RL/TL (original in colour).
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Figure 6.12: Schematic of shear model (original in colour).
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Figure 6.13: Rendered output of S-RL/TL series, broken links and strength ratio
is depicted on links (original in colour).
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Figure 6.14: Comparison of load-displacement among test and model for
S-RL/TL series (original in colour).
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6.5.3 Parallel and Perpendicular to the Grain Compression (C-L,

C-R and C-T)

Compression tests parallel and perpendicular to the grain were conducted. While

the grain orientation for specimens loaded in the longitudinal direction (C-L) did

not matter, tests perpendicular to the grain were distinguished between the radial

and tangential loading direction. This can also be seen in the different orientation

angle α in Table 6.4 for both series (C-R and C-T).

The dimensions of the specimens was chosen in accordance with BS 373 (1957),

20x20x60 mm for C-L and 20x20x20 mm for C-R and C-T respectively. Load

was measured with a 50 kN load cell. The movement of the test machine head was

taken as the measured displacement. The test was stopped after 5 mm displacement.

Due to the fact that the SSC algorithm with included plastic hardening links takes

a very long time to compute, only half of the compression specimens of the C-R/T

series and a quarter of the C-L series was modelled. Therefore, the obtained

load in the LDP was multiplied with a factor of 2 and 4 respectively, in order to

make the LDPs of the model and laboratory tests comparable. Note: the actual

tested specimen is in fact not equal to the half and quarter model size, due to

the mapped growth ring structure. The eventual difference that results from the

smaller model size on the output LDPs was neglected in the comparison to test data.

Fig. 6.16 shows the test arrangement. Examples of failed specimens can be seen in

Fig. 6.17 and Fig. 6.19. Fig. 6.18 depicts the respective FE model abstraction with

applied forces and constraints. The rendered output figures are shown in Fig. 6.20

and Fig. 6.21. LDPs of model output and test were compared in Fig. 6.22, Fig. 6.23

and Fig. 6.24.

Maximum load, initial and secondary stiffness was determined by fitting a certain

bi-linear curve to the LDP according to Fig. 6.15. The initial stiffness K, similar

to the other test series, was determined at 10 and 40% of Smax. Maximum load

for series C-R/T was measured in the same way as the other test series. Smax for

series C-L is measured at the intersection point of line K2 with the Y-axis.

While relative good agreement among fracture patterns can be found this was

less the case in terms of maximum load. Especially for series C-T where a large
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Figure 6.15: Schematic of the determination of maximum load a) for test series
C-L and b) for C-R/T respectively (original in colour).

variation in ultimate strength is observed in the model this is much less the case

in the tested specimens. Although a general higher strength for the tangentially

loaded specimens than perpendicular ones is predicted (as seen also in tests), the

model fails to predict the more uniform maximum strength in the C-T specimens.
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Figure 6.16: Schematic of compression tests (longitudinal and radial/tangential to
the grain) (original in colour).

Figure 6.17: Tested specimen C-L (original in colour).
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Figure 6.18: Schematic of compression models (longitudinal and radial/tangential
to the grain) (original in colour).
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Figure 6.19: Tested specimen C-R/T (original in colour).

Figure 6.20: Rendered output of C-L series, broken links and strength ratio is
depicted on links (original in colour).
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Figure 6.21: Rendered output of C-R and C-T series, broken links and strength
ratio is depicted on links (original in colour).
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Figure 6.22: Comparison of load-displacement among test and model for C-L
series (original in colour).
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Figure 6.23: Comparison of load-displacement among test and model for C-R
series (original in colour).
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Figure 6.24: Comparison of load-displacement among test and model for C-T
series (original in colour).

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 6-30



6.5 Strength and Post-Yield Parameters

6.5.4 Parallel Tension (T-L)

Tension tests parallel to the grain were conducted with dimensions based on tests

by Fournier et al. (2007) but with a slightly different cross section of 4 by 6 mm to

match a grid size of 2x2 mm. The sizes can be seen in Fig. 6.26. The specimen was

fixed in the testing machine similar to the shear tests. Relative displacement was

measured at a distance of 70 mm with the improvised extensometer made of two

displacement transducers, as seen in Fig. 6.26.

All test specimens broke in a sudden brittle manner within the 70 mm gauge

length. The respective model simulations behaved slightly differently, which will

be explained in more detail in chapter 7. Some lattice models still transmitted

load after a sudden failure due to some unbroken diagonal elements. However,

the LDP curve of the model output was cut off after a sudden drop in load of > 30%.

Figure 6.25: Tested specimen T-L (original in colour).
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Figure 6.26: Schematic of tension model, fixation in the test rig (original in
colour).

26

4

R = 300

6

70

48 1111

Figure 6.27: Schematic of tension model (longitudinal) (original in colour).
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Figure 6.28: Rendered output of T-L series, broken links and strength ratio is
depicted on links (original in colour).
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Figure 6.29: Comparison of load-displacement among test and model for T-L
series (original in colour).
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6.5.5 Ductile Calibration

In a subsequent step the parameters have been adjusted to exhibit more microductile

softening to better fit the model LDPs to the ones obtained from the laboratory

test specimens. Problems were encountered with the 3D model with considered

micro-ductility. The solution algorithm stopped at maximum load indicating that

a singularity point was encountered due to negative stiffness values of softening

links. This is discussed further in section 7.2. Therefore, only a 2D model of the

T-R/T series is presented here with varying micro-ductility parameters. Wood

morphology is implemented in the 2D model, which consists of one lattice layer,

in a similar way as it was done for the 3D case. The model schematic is the 2D

equivalent of Fig. 6.6 with plane stress elements and a plane lattice of unit thickness.

Note: For the 2D model, different elastic stiffness parameters were determined from

the given target elastic moduli similar to subsection 6.3. The resulting fit parameter

is 0.1662 with resulting elastic moduli Exx =10337 N/mm2, Eyy =696 N/mm2,

Gzx =350 N/mm2, νxz = 0.495 and νyx = 0.034.

For illustration purpose, the unmodified LDPs are drawn as green dashed lines

in Fig. 6.30. One can observe that with increasing micro-ductility, an increase in

strength, variation of maximum load and overall ductility can be seen. Furthermore,

the ‘snap-back’ and jagged character becomes smoothed.
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Table 6.8: Input parameters for the ductile 2D lattice models, T-R/T series.

parameter value unit

elastic parameters

elasticity parameters Ej ⇒ see above
K 1©,1 2234 [N/mm]
K 1©,2 620 [N/mm]
K 1©,4 875 [N/mm]

strength and PY parameters

ST,1 100 [N]
SC,1 12 [N]
ST,2 7 [N]
SC,2 4 [N]

ST,4=SC,4 20 [N]

γT,1 1.01 [-]
γC,1 0.01 [-]
γT,2 1.5, 2, 3, 5 [-]
γC,2 0.01 [-]

γT,4=γC,4 1.5, 2, 3, 5 [-]

wood morphology

cv,l 0.2 [-]
λT,1..9 1 [-]
λC,1..9 1 [-]
λK,1..9 1 [-]

growth ring parameters ⇒ Table 6.4
wood density profile ⇒ Table 6.5
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Figure 6.30: Comparison of load-displacement among test and model for the
ductile T-R/T series with γT,{2,4}=1.5, 2, 3 and 5 (original in colour).
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6.6 Joint Model (J-M10)

The timber joint model uses all of the aspects of LAT3D described in the previous

chapter. These are namely geometric nonlinear beam elements (section 5.9), solid

elements (subsection 5.2.2), material nonlinear lattice elements (section 5.4), their

combination in a hybrid model (subsection 5.7.1) and elements for bolt-lattice and

washer-lattice contact (section 5.8). Problems with the SSC algorithm led to a

long time to solve the nonlinear solution for large lattices as used in this model.

Furthermore, the algorithm stopped due to wrong load factor decision before the

maximum displacement or singularity of the stiffness matrix was actually reached.

Therefore, only a limited model output is presented here.

6.6.1 Structure Composition

For the full 3D joint model, only one half is actually modelled, making use of

the symmetric arrangement of two timber members. Therefore the displacement,

measured from bolt to the timber model edge, is multiplied by two. The symmetry

was chosen in order to minimise the computational effort, although in practice the

model could consist of two timber members. The bolt (nonlinear beam elements)

is fixed at the symmetry line and free to rotate at the point where the loading is

applied. The washer, simulated with special contact elements (subsection 5.8.2), is

attached to the bolt element’s node at the outer surface. The timber part consists

of several blocks of solid elements and one lattice block, with ‘notches’ at the sides

that are filled again with solid elements, in order to minimise the number of DoFs.

Fig. 6.31 shows the schematic of the overall arrangement of the different elements

types and blocks.

It was tried to achieve a brittle failure with a decreased edge distance (loaded edge)

of 4d instead of 7d as required by BS EN 1995-1-1 (2004).

6.6.2 Results

An example of the rendered output of a 3D joint model is given in Fig. 6.32. The

plot represents the initial state without any load being applied, thus no contact

element is closed.
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Figure 6.31: Schematic of 3D joint model. (original in colour)

Figure 6.32: Rendered representation of 3D initial joint model (original in colour).
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Fig. 6.33 shows the deformed state of a joint model with active contact nodes

and broken links at the bolt’s far side and underneath the washer and Fig. 6.34

shows the broken links as shaded rectangles in the respective plane (purple for

compression and pink for tension).

Figure 6.33: Rendered representation of deformed 3D joint model (original in
colour).

Figure 6.34: Rendered representation of deformed 3D joint model with broken links
highlighted (original in colour).

The load displacement plots for the J-M10 series is presented in Fig. 6.35. As

one can see the specimens failed at relative large displacements of around 15 mm.

The model prediction stopped at a displacement of 0.25 mm. This was due to the

problem encountered with the modified SSC algorithm for which the LDP jumped
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to a negative displacement value and is discussed further in chapter 7.
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Figure 6.35: Comparison of load-displacement among test and 3D model
(γT,{2,4}=1) for J-M10 series (left) and zoomed (right) (original in colour).

Due to very long calculation times (roughly one week) it was not possible to obtain

several solutions for the 3D joint model. Instead the 2D version of the joint model

is presented in Fig. 6.36 with the same resulting error in the SSC solution algorithm

as in the 3D counterpart but after a larger plastic deformation. Since the 2D model

represents one unit thickness, the LDP is multiplied with the width of 20 mm as

can be seen in Fig. 6.36. The bolt has a finite length and rotationally constrained

at both ends. Thus, only the two dimensional function of the joint is modelled.

Although, thus only a limited comparison between model and test series can be

made, the graphs show similar load levels up to the yield point. It was not possible

to obtain the bulk joint stiffness from the tests due to the initial friction as a result

from the hand tightened nut which lead to a significant nonlinear behaviour in the

beginning of the load displacement curve (This frictional effect was minimised in

the test series for the 2D elastic-plastic beam model in chapter 4 with graphite

powder). However, when only the initial curve of the LDPs are compared the

model’s stiffness prediction is around three to four times higher (3D model) than

measured stiffness from the test series. The neglected effect of a rotating bolt and

thus an uneven load distribution along the fastener shank would in fact lead to

higher stiffness predictions. In case of the 3D model this difference in stiffness is of

a factor of around two.
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Figure 6.36: Comparison of modified LDP between test and 2D model (γT,{2,4}=2)
for J-M10 series (original in colour).

Fig. 6.37 shows the LDP of one 2D joint model with the erroneous load step encircled.

Fig. 6.38 depicts the deformed 2D joint model with two cracks developing from the

bolt contact towards the loaded edge.

Fig. 6.39 shows an example of a failed tested specimen. A crack developing from

the bolt-timber interface towards the loaded edge can be seen. All of the specimens

in group A failed by splitting (cleavage) while 2 specimens in group F exhibited

row-tear out failure.

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 6-41



6.6 Joint Model (J-M10)

0 0.1 0.2 0.3
0

50

100

150

200

250

Displacement [mm]

Lo
ad

 [N
]

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

Displacement [mm]

L
oa

d 
[N

]

Figure 6.37: Unmodified LDP of single 2D model (unit thickness), γT,{2,4}=1 (left)
and γT,{2,4}=2 (right) from JM10 series, erroneous load step is encircled (original
in colour).

Figure 6.38: Rendered representation of cracked 2D J-M10 model, γT,{2,4}=1
(original in colour).
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Figure 6.39: Tested specimen J-M10, (original in colour).
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7 Discussion and Conclusions

7.1 General

This chapter presents some discussion and conclusions on the results from the FE

model compared to the laboratory tests of the respective test series. An analysis of

the lattice model and the general applicability of the modelling technique will be

discussed.

In the previous chapters the various modelling approaches leading up to the final

lattice model for joints were described. Underlying nonlinear solution techniques

such as the SSC algorithm and their extension and implementation in the program

LAT3D were shown, including the modified MIF algorithm which makes the

recalculation of the global stiffness matrix unnecessary. Several other methods to

increase the computational speed and means to reduce the required memory space

were introduced (such as the use of solid elements in areas of lower stress gradients

and a special lattice cell arrangement).

The results of several test series compared to their respective lattice models were

presented in the previous chapter. While the match among test and model require

further fine-tuning of the model parameters, it can be stated that in principle 3D

lattice models are capable of predicting timber behaviour in terms of ultimate load

and fracture path, albeit with the requirement for considerable computational effort.

7.2 Computational Issues

The MIF reduces significantly the computational effort. It is unnecessary to solve

the global stiffness matrix for each load step. This method can be applied to any

solution algorithm that solves a lattice consisting of 1D elements (beams or bars).

Furthermore, geometric nonlinearity of beam elements which were used to represent
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bolt deformation in the joint model can be implemented and accounted for in the

MIF. However, computational time saved with the MIF can only be achieved if a

smaller amount of links need to be changed as it is the case for cracking of timber.

When a large amount of plastic links accumulate the efficiency of the MIF decreases.

The SSC algorithm works well with brittle link elements. The number of load steps

does usually not exceed the number of broken links. This was already demonstrated

in Jirasek & Bazant (1995). However, when links with plastic hardening are

considered, as it is the case in this dissertation, the algorithm has several problems:

• Complex stress state

Switching from tension to compression or vice versa (see Fig. 5.22 due to

complex stress states (diagonals and lateral links with brittle and ductile

behaviour, respectively) ⇒ the algorithm takes a wrong decision on the

subsequent load factor and either stops or ends at a negative overall

displacement.

• Number of plastic links

A large number of plastic links increases the number of load steps (see

subsection 5.6.3).

• Singularity points

Close-to-singularity points right after the maximum load is reached might arise

due to the negative stiffness values which are introduced for the link’s softening

branch.

7.2.1 Complex Stress State

Problems occurred with the solution algorithm when plastic hardening is considered.

Certain stress situations brought the algorithm to a stop (singular global stiffness

matrix) or the load factor lead to a negative loading which would not be permissible

as seen in the 2D and 3D joint models. This could be a result of the solution

algorithm that bases the decision, of whether a negative or positive load step in an

load step is chosen, on the number of links for which their assumed status consistent

or inconsistent with their strain increment (appendix section A.1). Based on the

fact that plastic links have still a positive stiffness these links are excluded from

this counting. However, it might be the case that even a very low stiffness from the

plastic links would require a negative load step and therefore the wrong decision is
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made.

7.2.2 Number of Plastic Links

Furthermore, the general issue is that when a number of lattice links are in the

plastic compressed state(− 12©) and other links in state 2© require a negative load

step all plastically compressed links switch back to status − 13©. In the next step

all the previously compressed links require a different load step to reach again their

plastic status − 12© (at maximum compressive strain ǫC,max) since different stiffness

for the links were determined. That would mean that each plastic link needs one load

step to get back to its plastic hardening state. It was tried to compensate for this

large amount of additional load steps by introducing a threshold load factor λTresh

in order to collect all these close load factors of these links in one step, as described

in subsection 5.6.3. However, with this method used, an error accumulates due

to improperly used load factors. Furthermore, still a huge number of links switch

back and forth for each single link that breaks, especially in a pure compression

case (e.g. test series C-L, C-R and C-T). The number of required load steps when

compared to models with purely micro-ductile or brittle links increased dramatically.

7.2.3 Singularity Points

When micro-ductility is considered. Links with a negative stiffness alongside with

links having a similar positive stiffness can create a singularity in the global stiffness

matrix. This issue and a proposed solution was discussed by Rots & Invernizzi

(2004) and is mentioned in subsection 3.3.4. The problem was encountered for the

3D micro-ductile models. Therefore only a representative 2D cleavage model was

shown in the previous chapter.

7.3 Problems with General Lattice Structure

As mentioned in subsection 6.3, a lattice cell with diagonal elements (that model

shear resistance and lateral strain) can not represent an arbitrary orthotropic

stress state. The resulting K parameters are constrained and therefore can not

be adjusted freely. Since wood exhibits a distinct orthoptropy, with a strong
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longitudinal axis compared to its perpendicular to the grain axes, the lattice is very

limited in its application.

Furthermore, the Young’s modulus ratios that were used from the USDA (1999)

resulted in higher elastic properties than what was measured in the laboratory

tests on the actual specimens. However, a lower value could not be achieved with

the lattice model either due to the before described reason. Therefore in terms of

elastic properties the comparison between test and model delivers quite different

results.

The proposed solution is to use angular springs in order to differentiate between

shear effects and lateral strain, but was not implemented. It is the author’s

assumption that these angular springs and consequently additional DoFs, strength

and stiffness parameters would make a significant difference in the calibration

routine. As mentioned in section 6.3 this would release the constraints, imposed by

the used lattice cell structure, to simulate only limited orthotropic elastic behaviour.

Similarly, the model’s strength parameters can not be adjusted freely. Diagonal

and longitudinal elements are interdependent. This can be observed, for example,

in the tension tests T-L where a large number of lateral links switch to plastic

hardening due to the effect of lateral strain. Therefore, the diagonal links break as

well, although it would be expected that these only break when cracking occurred

in the lateral direction (which is not observed in the tested specimens).

In the same way, diagonal and lateral links are interdependent. This can be seen for

the cleavage and compression model. The latter model would require lower strength

parameters to better fit the test data, however, on the contrary, the cleavage model

requires higher parameters in order to better match the laboratory data.

Therefore, the different interests to optimise the match among model and experiment

for different parameters are in conflict with each other. Angular springs or beam

elements would, in this case, also be an advisable solution.
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7.3.1 Problem of Different E-Modulus in Compression and

Tension Tests

The elastic properties measured in the compression tests did not agree at all with

the reported literature values. Bodig & Jayne (1993) report a Young’s modulus of

10 GPa (compared to laboratory tests E|| =2.4 GPa) in the longitudinal direction

and around 1.25 GPa (compared to laboratory tests E⊥ =.16 GPa) perpendicular

to the grain for Sitka spruce. So far it is not clear where this difference in stiffness

originates since the tensile test delivered an expectable Young’s modulus (as well

documented in the Wood Handbook, USDA (1999)).

Since the elastic parameters for the lattice Kj were determined with the ratios

(
Ej

Exx
) obtained from USDA (1999) also, the results in terms of stiffness from the

lattice model don’t agree well with the experimental test series. This would have

not been the case if the test series had delivered LDPs that match better the values

taken from the literature.

7.4 Conclusions

Lattice models seem to be a reasonable approach to model fracture behaviour.

Examples for timber can be found, as mentioned in the literature review, in

Landis et al. (2002), Landis et al. (2003), Davids et al. (2003), Parrod (2002),

Parrod et al. (2002), Vasic (2000) and Fournier et al. (2007). However, neither

plastic hardening nor microductility for timber under compression was considered

in these models. To take into account the effect should enhance the model’s

capabilities significantly and would enable the models to predict realistically

compression in the lateral and longitudinal direction as shown in this thesis.

Taking into account these effects required a more general solution algorithm thus the

SSC developed by Jirasek & Bazant (1995) was modified. With this modification,

problems arose especially when more complex stress states are considered as e.g. in

the joint model series J-M10.

Comparisons between experiments and lattice models (modified SSC) show that

realistic predictions can be made in terms of the fracture path. Heterogeneity was

implemented by creating an artificial growth ring structure. This has a significant
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influence on the fracture path which can be observed in the model as well as in

tests (e.g cleavage model in Fig. 6.5 and 6.7). The requirement to include the

structured heterogeneity of timber was stressed already by Fournier et al. (2007).

The implementation as done here in this research with an adjusted mean strength

and stiffness parameter according to the link’s position in an artificial growth ring

structure seems to deliver reasonable predictions. However, it has to be made sure

that the grid size is under the observed variation in between one growth ring.

The use of solid elements in parts of low stresses and no plastic or brittle

deformation seems a good solution to the problem of the large number of required

DoFs otherwise. Although it is not possible for the solid elements to represent any

heterogeneous elasticity, this should not affect the bulk elastic behaviour of the

entire model.

Problems with the SSC algorithm with included plastic hardening links might need

reworking or a different solution method might be used altogether such as the one

described in subsection 3.3.4. Combined with the other used techniques to minimise

the computational effort the program LAT3D could be used efficiently.
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8 Outlook

In the following, a brief outlook is given on the future use of the program LAT3D

and its suggested improvements.

8.1 Lattice Model

From the results and the limited success of the model to match experimental results,

it is obvious that the model needs further adjustment in terms of the calibrated

parameters. However, the main reason remains the incapabilities of the used lattice

cell structure to represent general orthotropy in terms of elastic and strength

properties. A more appropriate lattice structure should be adopted. A solution

could be angular springs or beam elements, with additional strength and stiffness

parameters, that uncouple the shear behaviour from lateral and longitudinal strain.

Still, the actual match between test results and model would have been better if

the measured LDPs from the compression tests had resembled better the literature

values.

Other possibilities to change the lattice structure include to organise the elements

in a hexagonal arrangement as seen in Fig. 8.1. Fewer links per cell are required

and therefore the calibration would be more efficient (given that angular springs

are also used). The diagonals are aligned in a non-symmetric way to create the

hexagonal pattern in the Y Z plane (cross-sectional plane). This arrangement,

although it has no lateral links, could reflects better the cellular structure of wood

in the cross sectional plane. Only one type of elements (diagonals) breaks when

cells are separated.

The optimisation method (trial&error) to calibrate the strength parameters could

be improved by the use of multi objective techniques (simplex algorithm, genetic

algorithm etc.) that mathematically solve the problem to find an optimal fit of
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dx
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Figure 8.1: Lattice cell structure for 3D hexagonal arrangement. Note: coordinate
planes do not coincide with material planes.

model results to the experimental data. However, this would require much larger

computational capacities.

The program LAT3D could serve as a framework in which these extensions can

be built into. MATLAB is a versatile tool and commonly used in academia and

is easy to learn. Therefore, the program LAT3D itself can be extended rather simply.

Regarding the problems with the SSC algorithm and the use of plastic hardening

links, it will be necessary to improve on the flaws in the method or implement a

different solution strategy altogether, as mentioned in the previous chapter.

With these improvements it should be possible to perform extended parameter

studies with the LAT3D model. It could then serve as a tool for researchers to

investigate different joint arrangements than the symmetric single shear joint and

other timber structures.
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A Appendix

The Appendix contains the following sections:

• examples of the SSC algorithm

• density and moisture measurement of test specimens

• a list of model input file commands, along with their parameters and function

• listings of the model input files, that were used in the result chapter

• a list of written MATLAB programs

• WCTE2006 paper

• WCTE2008 paper
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A.1 Examples of the SSC Algorithm

A.1 Examples of the SSC Algorithm

Here, 5 examples to illustrate the working of the SSC algorithm in simple one

dimensional models shall be presented. These are

• the original example as presented in Jirasek & Bazant (1995)

• a modified version with compressed links instead of tensioned

• a modified version with brittle links (snap-back)

• an example with included plastic deformation

• an example with included plastic deformation and brittle links

The examples are depicted in the respective following figures (Fig. A.1, A.2, A.3,

A.4 and A.5). The geometry of the structure is shown at the bottom left. The

applied force is marked with a red triangle and the fixed displacement with a green

one. The length of the link elements is set to a unit length of 1 mm. Therefore,

strain equals absolute displacement for the respective link.

Note: in the output of the deformed structure a magnification factor of 1/10 is

applied to the calculated displacements in order to fit the deformation into the figure.

The solution algorithm is summarised in tables for each load step i and, if required

for this respective step, with the additional iteration (right aligned).

Note: since no variation in stiffness and strength properties is applied to the lattice

elements, the input parameters represent the actual link parameters.

A.1.1 Original Example

The following example demonstrates the original SSC algorithm as presented in

Jirasek & Bazant (1995). The structure, as can be seen in Fig. A.1, consists of

4 link elements connecting 3 DoFs and is loaded with a force applied at DoF 3

({Fref} = {0, 0, 1}T ) and is constrained at DoF 1.

The set input parameters for the 4 link elements are:
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parameter value unit

K 1©,l 1 [N/mm]

γT,l 3 [-]

for l = 1..4

ST,1 1 [N]

ST,2 2.5 [N]

ST,3 1.25 [N]

ST,4 2 [N]

thus follows:

Ks,T,l -0.5 [N/(mm/mm)]

for l = 1..4

ǫp,T,1 1 [-]

ǫp,T,2 2.5 [-]

ǫp,T,3 1.25 [-]

ǫp,T,4 2 [-]

ǫf,T,1 3 [-]

ǫf,T,2 7.5 [-]

ǫf,T,3 3.75 [-]

ǫf,T,4 6 [-]

As an initial value the state of all links is 1©. The reference load vector {Fref} =

{0, 0, 1}T is used to determine with the current global stiffness matrix [Ki] the

displacement vector {∆i,ref}. Internally this is achieved with the MIF (subsection

5.6.4). The strain increment dǫi,l for each link l and load step i is extracted from the

displacement vector. Since, in this example, the length of the elements is 1 mm

and movement occurs only in one dimension, strain is simply the difference in

displacement of the respective DoFs. The load factor λi,l for link l is determined

according to,

λi,l =
ǫcr,l − ǫi−1,l

dǫi,l

(A.1)

where ǫcr,l is the respective critical strain (depends on the present status, Table 5.5)

and dǫi,l is the strain increment.

For the actual load step the minimum positive load factor is chosen unless negative

factors exist. In the latter case the algorithm looks for links (with status 2© and

5©) for which their strain increment is consistent with their assumed status (i.e.
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2© with positive dǫi,l and 5© with negative dǫi,l) and for which this is not the case.

If more inconsistent than consistent links are present then the negative load factor

(λi = min(λ+
i,l)) is chosen, otherwise a positive one (λi = max(λ−

i,l)).

In case of a positive load factor inconsistent links are transferred ( 2© to 5© and

vice versa). This happens in the same way for consistent links if a negative load

factor is chosen.

With the changed stiffness due to the status 5© (‘unloading’) a new stiffness

matrix needs to be solved for a new reference displacement vector {∆i,ref} and

subsequently new strain increments once more in an additional iterative step. The

previously described decision on whether a positive or negative load is taken is

repeated and with the changed stiffness matrix a final decision on the load factor is

made.

The solution algorithm for the example is summarised in the following table.

step i = 1

[K1]{∆1,ref} = {Fref} ⇒ {∆1,ref} = {0, 0.5, 1}T

link l status K1,l f0,l ǫ0,l dǫ1,l ǫcr,l λ1,l new status

1 1© 1 0 0 0.5 1 2 2©

2 1© 1 0 0 0.5 2.5 5 1©
3 1© 1 0 0 0.5 1.25 2.5 1©
4 1© 1 0 0 0.5 2 4 1©

⇒ λ1 = minλ+
1 = 2, chosen link l=1

{F1} = λ1{Fref} = {0, 0, 2}T

{∆1} = λ1{∆1,ref} = {0, 1, 2}T
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step i = 2

[K2]{∆2,ref} = {Fref} ⇒ {∆2,ref} = {0, 2, 2.5}T

link l status K2,l f1,l ǫ1,l dǫ2,l ǫcr,l λ2,l new status

1 2© -0.5 1 1 2 3 1 2©
2 1© 1 1 1 2 2.5 0.75 1©
3 1© 1 1 1 0.5 1.25 0.5 2©

4 1© 1 1 1 0.5 2 2 1©

⇒ λ2 = minλ+
2 = 0.5, chosen link l=3

{F2} = {F1} + λ2{Fref} = {0, 0, 2.5}T

{∆2} = {∆1} + λ2{∆2,ref} = {0, 2, 3.25}T

step i = 3

[K3]{∆3,ref} = {Fref} ⇒ {∆3,ref} = {0, 2, 4}T

link l status K3,l f2,l ǫ2,l dǫ3,l ǫcr,l λ3,l new status

1 2© -0.5 0.5 2 2 3 0.5 2©
2 1© 1 2 2 2 2.5 0.25 2©

3 2© -0.5 1.25 1.25 2 3.75 1.25 2©
4 1© 1 1.25 1.25 2 2 0.375 1©

⇒ λ3 = minλ+
3 = 0.25, chosen link l=2

{F3} = {F2} + λ3{Fref} = {0, 0, 2.75}T

{∆3} = {∆2} + λ3{∆3,ref} = {0, 2.5, 4.25}T
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step i = 4

[K4]{∆4,ref} = {Fref} ⇒ {∆4,ref} = {0,−1, 1}T

link l status K4,l f3,l ǫ3,l dǫ4,l ǫcr,l λ4,l new status

1 2© -0.5 0.25 -1 -1 3 -0.5 2©
2 2© -0.5 2.5 2.5 -1 7.5 -5 2©
3 2© -0.5 1 1.75 2 3.75 1 5©
4 1© 1 1.75 1.75 2 2 0.125 1©

Two links, link l=1 and 2 (negative dǫ4,1 and dǫ4,2) are inconsistent

with assumed status 2© for a positive load step while one link, link

3 (positive dǫ4,3) is consistent with 2©

⇒ neg. load factor maxλ−
4

link 3 changes to 5© with K3 = σ3/ǫ4,3 = 0.571, iteration is

required: step i = 4′

intermediate step i = 4′

[K4′ ]{∆4′,ref} = {Fref} ⇒ {∆4′,ref} = {0,−1, 1}T

link l status K4′,l f3,l ǫ4′,l dǫ4′,l ǫcr,l λ4′,l new status

1 2© -0.5 0.25 2.5 -1 3 -0.5 4©

2 2© -0.5 2.5 2.5 -1 7.5 -5 2©
3 5© 0.571 1 1.75 0.636 1.75 +0 5©
4 1© 1 1.75 1.75 0.636 2 0.393 1©

Now link l=1,2 and 3 (positive dǫ4′,1, dǫ4′,2 and negative dǫ4′,3) are

all inconsistent with assumed status 2©, 2© and 5©

⇒ neg. load factor λ4 = maxλ−
4′ = −0.5, chosen link l=1

link l=3 is transferred from 5© to 3©

{F4} = {F3} + λ4{Fref} = {0, 0, 2.25}T

{∆4} = {δ3} + λ4{∆4,ref} = {0, 3, 4.432}T
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step i = 5

[K5]{∆5,ref} = {Fref} ⇒ {∆5,ref} = {0,−2,−1.364}T

link l status K5,l f4,l ǫ4,l dǫ5,l ǫcr,l λ5,l new status

1 4© 0 0 3 -2 3 - 4©
2 2© -0.5 2.25 3 -2 7.5 -2.25 4©

3 3© 0.571 0.818 1.432 0.636 1.75 0.5 3©
4 1© 1 1.432 1.432 0.636 2 0.893 1©

link l=2 (negative dǫ5,2) is inconsistent with assumed status 2©

⇒ λ5 = maxλ−
5 = −2.25, chosen link l=2

{F5} = {F4} + λ5{Fref} = {0, 0, 0}T

{∆5} = {δ4} + λ5{∆5,ref} = {0, 7.5, 7.5}T
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Figure A.1: Example of SSC algorithm from Jirasek & Bazant (1995), load-strain
plots of individual link elements (top) and model LDP with deformed structure plot
(below), (original in colour)
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A.1.2 Original Example in Compression

The same arrangement as described in Jirasek & Bazant (1995) can be used

in compression. For this, new status definitions are introduced as described in

subsection 5.6.2. The additional states are − 1©, − 2©, − 3© and − 5© with respect

to their tensile counterparts. The set parameters are exactly the same as in the

previous example. Additionally, the compressive strength parameters are the

same as the tensile parameters SC,l = −ST,l and thus follows ǫp,C,l = −ǫp,T,l and

ǫf,C,l = −ǫf,T,l. The structure is constrained at DoF 3 and the applied load vector

is {Fref} = {1, 0, 0}T .

The set input parameters are:

parameter value unit

K 1©,l 1 [N/(mm/mm)]

γT,l 3 [-]

for l = 1..4

SC,1 1 [N]

SC,2 2.5 [N]

SC,3 1.25 [N]

SC,4 2 [N]

thus follows:

Ks,l -0.5 [N/(mm/mm)]

for l = 1..4

ǫp,C,1 1 [-]

ǫp,C,2 2.5 [-]

ǫp,C,3 1.25 [-]

ǫp,C,4 2 [-]

ǫf,C,1 3 [-]

ǫf,C,2 7.5 [-]

ǫf,C,3 3.75 [-]

ǫf,C,4 6 [-]

While the resulting load displacement plot is the same, the individual load-strain

curves for the links are a mirrored image of the previous original example (Fig. A.2).
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Figure A.2: Same example of SSC algorithm from Jirasek & Bazant (1995) but in
compression, load-strain plots of individual link elements (top) and model LDP with
deformed structure plot (below), (original in colour)
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A.1.3 Original Example with Brittle Links (Snap-Back)

When the brittleness of individual link elements is set high (i.e. γT,l ⇒ 1) snap-back

behaviour occurs. This is demonstrated in the following example and depicted in

Fig. A.3.

The set input parameters are:

parameter value unit

K 1©,l 1 [N/(mm/mm)]

γT,l 1.2 [-]

for l = 1..4

ST,1 1 [N]

ST,2 2.5 [N]

ST,3 1.25 [N]

ST,4 2 [N]

thus follows:

Ks,T,l -5 [N/(mm/mm)]

for l = 1..4

ǫp,T,1 1 [-]

ǫp,T,2 2.5 [-]

ǫp,T,3 1.25 [-]

ǫp,T,4 2 [-]

ǫf,T,1 1.2 [-]

ǫf,T,2 3 [-]

ǫf,T,3 1.5 [-]

ǫf,T,4 2.4 [-]

The solution algorithm for the example is summarised in the following tables.
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step i = 1

[K1]{∆1,ref} = {Fref} ⇒ {∆1,ref} = {0, 0.5, 1}T

link l status K1,l f0,l ǫ0,l dǫ1,l ǫcr,l λ1,l new status

1 1© 1 0 0 0.5 1 2 2©

2 1© 1 0 0 0.5 2.5 5 1©
3 1© 1 0 0 0.5 1.25 2.5 1©
4 1© 1 0 0 0.5 2 4 1©

⇒ λ1 = minλ+
1 = 2, chosen link l=1

{F1} = λ1{Fref} = {0, 0, 2}T

{∆1} = λ1{∆1,ref} = {0, 1, 2}T

step i = 2

[K2]{∆2,ref} = {Fref} ⇒ {∆2,ref} = {0,−0.25, 0.25}T

link l status K2,l f1,l ǫ1,l dǫ2,l ǫcr,l λ2,l new status

1 2© -5 1 1 -0.25 1.2 -0.8 4©

2 − 1© 1 1 1 -0.25 -2.5 14 1©
3 1© 1 1 1 0.5 1.25 0.5 − 1©
4 1© 1 1 1 0.5 2 2 1©

Link l=1 (negative dǫ2,1) is inconsistent with assumed status 2©

⇒ neg. load factor λ2 = maxλ−
2 = −0.8, chosen link l=1

{F2} = {F1} + λ2{Fref} = {0, 0, 1.2}T

{∆2} = {∆1} + λ2{∆2,ref} = {0, 1.2, 1.8}T

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 A-12



A.1 Examples of the SSC Algorithm

step i = 3

[K3]{∆3,ref} = {Fref} ⇒ {∆3,ref} = {0, 1, 1.5}T

link l status K3,l f2,l ǫ2,l dǫ3,l ǫcr,l λ3,l new status

1 4© 0 0 1.2 1 n.a. n.a. 4©
2 1© 1 1.2 1.2 1 2.5 1.3 2©

3 1© 1 0.6 0.6 0.5 1.25 1.3 2©

4 1© 1 0.6 0.6 0.5 2 2.8 1©

⇒ λ3 = minλ+
3 = 1.3, chosen link l=2 and 3

{F3} = {F2} + λ3{Fref} = {0, 0, 2.5}T

{∆3} = {∆2} + λ3{∆3,ref} = {0, 2.5, 3.75}T

step i = 4

[K4]{∆4,ref} = {Fref} ⇒ {∆4,ref} = {0,−0.2,−0.45}T

link l status K4,l f3,l ǫ3,l dǫ4,l ǫcr,l λ4,l new status

1 4© 0 0 2.5 -0.2 n.a. n.a. 4©
2 2© -5 2.5 2.5 -0.2 3 -2.5 2©
3 2© -5 1.25 1.25 -0.25 1.5 -1 4©

4 − 1© 1 1.25 1.25 -0.25 -2 13 − 1©

Two links, link l=2 and 3 (negative dǫ4,2 and dǫ4,3) are inconsistent

with assumed status 2© and 2©

⇒ neg. load factor λ4 = maxλ−
4 = −1, chosen link l=3

{F4} = {F3} + λ4{Fref} = {0, 0, 1.5}T

{∆4} = {∆3} + λ4{∆4,ref} = {0, 2.7, 4.2}T
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step i = 5

[K5]{∆5,ref} = {Fref} ⇒ {∆5,ref} = {0,−0.2, 0.8}T

link l status K5,l f4,l ǫ4,l dǫ5,l ǫcr,l λ5,l new status

1 4© 0 0 2.7 -0.2 n.a. n.a. 4©
2 2© -5 1.5 2.7 -0.2 3 -1.5 4©

3 4© 0 0 1.5 1 n.a. n.a. 4©
4 1© 1 1.5 1.5 1 2 0.5 − 1©

Link l=2 (negative dǫ5,2) is inconsistent with assumed status 2©

⇒ neg. load factor λ5 = maxλ−
5 = −1.5, chosen link l=2

{F5} = {F4} + λ5{Fref} = {0, 0, 0}T

{∆5} = {∆4} + λ5{∆5,ref} = {0, 3, 3}T
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Figure A.3: Example of SSC algorithm similar to Jirasek & Bazant (1995) but
with brittle links (γT,l = 1.2), load-strain plots of individual link elements (top) and
model LDP with deformed structure plot (below), (original in colour)

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 A-15



A.1 Examples of the SSC Algorithm

A.1.4 Example with Plastic Compression

When plastic links are considered new links states are introduced (− 12©, − 13© and

− 15©) as pictured in Fig. 5.19.

An example shall demonstrate the behaviour of plastic link elements. The structure

consists of 2 link elements with 3 DoFs and is loaded with a force applied at DoF

3 with {Fref} = {1, 0, 0}T and is constrained at DoF 3. Since the load does not

reach zero the solution algorithm is stopped when the displacement reached a limit

of 5 mm. The LDPs for the individual link elements and the resulting LDP for the

structure can be seen in Fig. A.4.

The set input parameters are:

parameter value unit

K 1©,l 1 [N/(mm/mm)]

γC,l 0.25 [-]

for l = 1..2

SC,1 -1 [N]

SC,2 -0.5 [N]

thus follows:

Ks,C,l 0.25 [N/(mm/mm)]

for l = 1..4

ǫp,C,1 -1 [-]

ǫp,C,2 -0.5 [-]

ǫf,C,1 ≈ ∞ [-]

ǫf,C,2 ≈ ∞ [-]

The solution algorithm for the example is summarised in the following tables.
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step i = 1

[K1]{∆1,ref} = {Fref} ⇒ {∆1,ref} = {2, 1, 0}T

link l status K1,l f0,l ǫ0,l dǫ1,l ǫcr,l λ1,l new status

1 − 1© 1 0 0 -1 -1 1 − 1©
2 − 1© 1 0 0 -1 -0.5 0.5 − 12©

⇒ λ1 = minλ+
1 = 0.5, chosen link l=2

{F1} = λ1{Fref} = {0.5, 0, 0}T

{∆1} = λ1{∆1,ref} = {1, 0.5, 0}T

step i = 2

[K2]{∆2,ref} = {Fref} ⇒ {∆2,ref} = {5, 4, 0}T

link l status K2,l f1,l ǫ1,l dǫ2,l ǫcr,l λ2,l new status

1 − 1© 1 -0.5 -0.5 -1 -1 0.5 − 12©

2 − 12© 0.25 -0.5 -0.5 -4 − ≈ ∞ n.a. − 12©

⇒ λ2 = minλ+
2 = 0.5, chosen link l=1

{F2} = {F1} + λ2{Fref} = {1, 0, 0}T

{∆2} = {∆1} + λ2{∆2,ref} = {3.5, 2.5, 0}T

step i = 3

[K3]{∆3,ref} = {Fref} ⇒ {∆3,ref} = {8, 4, 0}T

link l status K3,l f2,l ǫ2,l dǫ3,l ǫcr,l λ3,l new status

1 − 12© 0.25 -1 -1 -4 − ≈ ∞ n.a. − 12©
2 − 12© 0.25 -1 -2.5 -4 − ≈ ∞ n.a. − 12©

⇒ λ3=0.1875, load factor is limited by maximum

displacement of 5 mm

{F3} = {F2} + λ3{Fref} = {1.1875, 0, 0}T

{∆3} = {∆2} + λ3{∆3,ref} = {5, 3.25, 0}T
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Figure A.4: Example of SSC algorithm including plastic compression, load-strain
plots of individual link elements (top) and model LDP with deformed structure plot
(below), (original in colour)
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A.1.5 Example with Plastic Compression and Brittle Links

An example illustrates the case of combined plastic and brittle link elements. 4

link elements and 3 DoFs are used. The structure is loaded with a force applied

at DoF 3 with {Fref} = {1, 0, 0}T and is constrained at DoF 3. The LDPs for the

individual link elements and the resulting LDP for the structure can be seen in Fig.

A.5. The links 1 and 3 first start to change to plastic hardening and, with link 2

and 4 consecutively braking, will unload (status − 13©) and reload as can be seen in

the figure.

The set input parameters are:

parameter value unit

K 1©,l 1 [N/(mm/mm)]

γC,1 0.25 [-]

γC,2 1.2 [-]

γC,3 0.25 [-]

γC,4 1.2 [-]

SC,1 -0.05 [N]

SC,2 -0.4 [N]

SC,3 -0.15 [N]

SC,4 -0.25 [N]

thus follows:

Ks,C,1 0.25 [N/(mm/mm)]

Ks,C,2 -0.5 [N/(mm/mm)]

Ks,C,3 0.25 [N/(mm/mm)]

Ks,C,4 -0.5 [N/(mm/mm)]

ǫp,C,1 -0.05 [-]

ǫp,C,2 -0.4 [-]

ǫp,C,3 -0.15 [-]

ǫp,C,4 -0.25 [-]

ǫf,C,1 ≈ ∞ [-]

ǫf,C,2 -0.48 [-]

ǫf,C,3 ≈ ∞ [-]

ǫf,C,4 -0.3 [-]

The solution algorithm for the example is summarised in the following tables.
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step i = 1

[K1]{∆1,ref} = {Fref} ⇒ {∆1,ref} = {1, 0.5, 0}T

link l status K1,l f0,l ǫ0,l dǫ1,l ǫcr,l λ1,l new status

1 − 1© 1 0 0 -0.5 -0.05 0.1 − 12©

2 − 1© 1 0 0 -0.5 -0.4 0.8 − 1©
3 − 1© 1 0 0 -0.5 -0.15 0.3 − 1©
4 − 1© 1 0 0 -0.5 -0.25 0.5 − 1©

⇒ λ1 = minλ+
1 = 0.1, chosen link l=1

{F1} = λ1{Fref} = {0.1, 0, 0}T

{∆1} = λ1{∆1,ref} = {0.1, 0.05, 0}T

step i = 2

[K2]{∆2,ref} = {Fref} ⇒ {∆2,ref} = {1.3, 0.5, 0}T

link l status K2,l f1,l ǫ1,l dǫ2,l ǫcr,l λ2,l new status

1 − 12© 0.25 -0.05 -0.05 -0.8 − ≈ ∞ n.a. − 12©
2 − 1© 1 -0.05 -0.05 -0.8 -0.4 0.438 − 1©
3 − 1© 1 -0.05 -0.05 -0.5 -0.15 0.2 − 12©

4 − 1© 1 -0.05 -0.05 -0.5 -0.25 0.4 − 1©

⇒ λ2 = minλ+
2 = 0.2, chosen link l=3

{F2} = {F1} + λ2{Fref} = {0.3, 0, 0}T

{∆2} = {∆1} + λ2{∆2,ref} = {0.36, 0.15, 0}T

step i = 3

[K3]{∆3,ref} = {Fref} ⇒ {∆3,ref} = {1.6, 0.8, 0}T

link l status K3,l f2,l ǫ2,l dǫ3,l ǫcr,l λ3,l new status

1 − 12© 0.25 -0.09 -0.21 -0.8 − ≈ ∞ n.a. − 12©
2 − 1© 1 -0.21 -0.21 -0.8 -0.4 0.238 − 1©
3 − 12© 0.25 -0.15 -0.15 -0.8 − ≈ ∞ n.a. − 1©
4 − 1© 1 -0.15 -0.15 -0.8 -0.25 0.125 − 2©

⇒ λ3 = minλ+
3 = 0.125, chosen link l=4

{F3} = {F2} + λ3{Fref} = {0.425, 0, 0}T

{∆3} = {∆2} + λ3{∆3,ref} = {0.56, 0.25, 0}T
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step i = 4

[K4]{∆4,ref} = {Fref} ⇒ {∆4,ref} = {0.589,−0.211, 0}T

link l status K4,l f3,l ǫ3,l dǫ4,l ǫcr,l λ4,l new status

1 − 12© 0.25 -0.115 -0.31 -0.8 − ≈ ∞ n.a. − 15©
2 − 1© 1 -0.31 -0.31 -0.8 -0.4 0.113 − 1©
3 − 12© 0.25 -0.175 -0.25 0.211 − ≈ ∞ n.a. − 12©
4 − 2© -5 -0.25 -0.25 0.211 -0.3 -0.238 − 2©

Link l=4 (positive dǫ4,4) is inconsistent with assumed status − 2©
⇒ neg. load factor maxλ−

4

Since link l=1 (negative dǫ4,1) is consistent with assumed status

− 12© and a negative load step is chosen the link changes from − 12©
to − 15© with K1 = σ1/ǫ4,1 = 0.371, iteration is required: step i = 4′

step i = 4′

[K4′ ]{∆4′,ref} = {Fref} ⇒ {∆4′,ref} = (0.519,−0.211, 0)

link l status K4′,l f3,l ǫ3,l dǫ4′,l ǫcr,l λ4′,l new status

1 − 15© 0.371 -0.115 -0.31 -0.729 − ≈ ∞ n.a. − 13©
2 − 1© 1 -0.31 -0.31 -0.729 -0.4 0.123 − 1©
3 − 12© 0.25 -0.175 -0.25 0.211 − ≈ ∞ n.a. − 12©
4 − 2© -5 -0.25 -0.25 0.211 -0.3 -0.238 4©

Link l=4 (positive dǫ4′,4) is still inconsistent with assumed status − 2©

⇒ neg. load factor λ4 = maxλ−
4 = −0.238, chosen link l=4

Link l=1 is transferred from − 15© to − 13©

{F4} = {F3} + λ4{Fref} = {0.188, 0, 0}T

{∆4} = {∆3} + λ4{∆4,ref} = {0.4368, 0.3, 0}T
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step i = 5

[K5]{∆5,ref} = {Fref} ⇒ {∆5,ref} = {4.729, 4, 0}T

link l status K5,l f4,l ǫ4,l dǫ5,l ǫcr,l λ5,l new status

1 − 13© 0.371 -0.051 -0.137 -0.729 -0.31 0.238 − 12©

2 − 1© 1 -0.137 -0.137 -0.729 -0.4 0.361 − 1©
3 − 12© 0.25 -0.188 -0.3 -4 − ≈ ∞ n.a. − 12©
4 4© 0 0 -0.3 -4 n.a. n.a. 4©

⇒ λ5 = minλ+
5 = 0.238, chosen link l=1

{F5} = {F4} + λ5{Fref} = {0.425, 0, 0}T

{∆5} = {∆4} + λ5{∆5,ref} = {1.56, 1.25, 0}T

step i = 6

[K6]{∆6,ref} = {Fref} ⇒ {∆6,ref} = {4.8, 4, 0}T

link l status K6,l f5,l ǫ5,l dǫ6,l ǫcr,l λ6,l new status

1 − 12© 0.25 -0.115 -0.31 -0.8 − ≈ ∞ n.a − 12©
2 − 1© 1 -0.31 -0.31 -0.8 -0.4 0.113 − 2©

3 − 12© 0.25 -0.425 -1.25 -4 − ≈ ∞ n.a. − 12©
4 4© 0 0 -1.25 -4 n.a. n.a. 4©

⇒ λ6 = minλ+
6 = 0.113, chosen link l=2

{F6} = {F5} + λ6{Fref} = {0.538, 0, 0}T

{∆6} = {∆5} + λ6{∆6,ref} = {2.1, 1.7, 0}T
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step i = 7

[K7]{∆7,ref} = {Fref} ⇒ {∆7,ref} = {3.79, 4, 0}T

link l status K7,l f6,l ǫ6,l dǫ7,l ǫcr,l λ7,l new status

1 − 12© 0.25 -0.138 -0.4 0.211 − ≈ ∞ n.a − 12©
2 − 2© -5 -0.4 -0.4 0.211 -0.48 -0.38 − 2©
3 − 12© 0.25 -0.538 -1.7 -4 − ≈ ∞ n.a. − 15©
4 4© 0 0 -1.7 -4 n.a. n.a. 4©

Link l=2 (positive dǫ7,2) is inconsistent with assumed status - 2©

⇒ neg. load factor maxλ−
4

Since link l=3 (negative dǫ7,3) is consistent with assumed status

− 12© and a negative load step is chosen the link changes from − 12©
to − 15© with K1 = σ1/ǫ4,1 = 0.316, iteration is required: step i = 7′

step i = 7′

[K7′ ]{∆7′,ref} = {Fref} ⇒ {∆7′,ref} = {2.952, 3.163, 0}T

link l status K7′,l f6,l ǫ6,l dǫ7′,l ǫcr,l λ7′,l new status

1 − 12© 0.25 -0.138 -0.4 0.211 − ≈ ∞ n.a − 12©
2 − 2© -5 -0.4 -0.4 0.211 -0.48 -0.38 4©

3 − 15© 0.316 -0.538 -1.7 -3.163 − ≈ ∞ n.a. − 13©
4 4© 0 0 -1.7 -3.163 n.a. n.a. 4©

Link l=2 (positive dǫ7′,2) is still inconsistent with assumed status − 2©

⇒ neg. load factor λ7 = maxλ−
7′ = −0.48, chosen link l=2

Link l=3 is transferred from − 15© to − 13©

{F7} = {F6} + λ7{Fref} = {0.158, 0, 0}T

{∆7} = {∆6} + λ7{∆7,ref} = {0.978, 0.498, 0}T
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A.1 Examples of the SSC Algorithm

step i = 8

[K8]{∆8,ref} = {Fref} ⇒ {∆8,ref} = {7.163, 3.163, 0}T

link l status K8,l f7,l ǫ7,l dǫ8,l ǫcr,l λ8,l new status

1 − 12© 0.25 -0.138 -0.48 -4 − ≈ ∞ n.a − 12©
2 4© 0 0 -0.48 -4 n.a. n.a 4©
3 − 13© 0.316 -0.538 -0.498 -3.163 -1,7 0.38 − 12©

4 4© 0 0 -0.498 -3.163 n.a. n.a. 4©

⇒ λ8 = minλ+
8 = 0.113, chosen link l=3

{F8} = {F7} + λ8{Fref} = {0.538, 0, 0}T

{∆8} = {∆7} + λ8{∆8,ref} = {3.7, 1.7, 0}T

step i = 9

[K9]{∆9,ref} = {Fref} ⇒ {∆9,ref} = {8, 4, 0}T

link l status K9,l f8,l ǫ8,l dǫ9,l ǫcr,l λ9,l new status

1 − 12© 0.25 -0.538 -2 -4 − ≈ ∞ n.a − 12©
2 4© 0 0 -2 -4 n.a. n.a 4©
3 − 12© 0.25 -0.538 -1.7 -4 − ≈ ∞ 0.38 − 12©
4 4© 0 0 -1.7 -4 n.a. n.a. 4©

⇒ λ9=0.163 load factor is limited by maximum displacement of 5mm

{F9} = {F8} + λ9{Fref} = {0.7, 0, 0}T

{∆9} = {∆8} + λ9{∆9,ref} = {5, 2.35, 0}T
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A.1 Examples of the SSC Algorithm
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Figure A.5: Example of SSC algorithm including plastic compression and brittle
links, load-strain plots of individual link elements (top) and model LDP with
deformed structure plot (below), (original in colour)
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A.2 Density and Moisture Measurements of Tested Specimens

A.2 Density and Moisture Measurements of Tested

Specimens

Density and moisture content measurements are listed in Table A.1.

Table A.1: Density and moisture content of tested samples.

specimen density ρ [kg/m3] moisture content MC [%]

T-R/T-01-A 331 14.2

T-R/T-02-A 297 14.5

T-R/T-03-A 401 14.0

T-R/T-04-A 292 14.5

T-R/T-05-A 425 14.2

T-R/T-06-A 405 14.2

T-R/T-09-A 297 14.6

T-R/T-10-A 397 14.2

T-R/T-11-A 377 14.1

T-R/T-12-A 411 13.7

T-R/T-13-A 291 14.2

T-R/T-02-F 366 15.1

T-R/T-03-F 339 15.0

T-R/T-04-F 327 14.8

T-R/T-05-F 339 14.6

T-R/T-06-F 357 14.8

T-R/T-07-F 324 15.0

T-R/T-08-F 335 14.8

T-R/T-09-F 335 14.9

T-R/T-10-F 329 14.9

T-R/T-11-F 337 14.9

T-R/T-12-F 349 14.9

C-L-01-A 298 15.5

C-L-02-A 285 15.5

C-L-03-A 310 15.3
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A.2 Density and Moisture Measurements of Tested Specimens

specimen density ρ [kg/m3] moisture content MC [%]

C-L-04-A 292 15.1

C-L-05-A 311 14.9

C-L-06-A 291 15.1

C-L-07-A 303 15.0

C-L-08-A 299 14.7

C-L-09-A 297 15.2

C-L-10-A 324 15.1

C-L-12-A 309 13.1

C-L-01-F 303 15.4

C-L-02-F 312 15.4

C-L-04-F 326 15.6

C-L-05-F 317 15.2

C-L-06-F 284 15.4

C-L-07-F 311 15.5

C-L-08-F 318 15.4

C-L-09-F 343 15.6

C-L-10-F 299 15.5

C-L-11-F 296 15.4

C-R-01-A 308 14.8

C-R-02-A 327 14.3

C-R-03-A 326 14.5

C-R-04-A 312 14.5

C-R-05-A 316 13.9

C-T-06-A 318 14.3

C-T-07-A 306 14.4

C-T-08-A 313 14.3

C-T-09-A 321 14.2

C-T-10-A 315 13.8

C-R-01-F 299 14.1

C-R-02-F 314 13.9
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A.2 Density and Moisture Measurements of Tested Specimens

specimen density ρ [kg/m3] moisture content MC [%]

C-R-03-F 299 14.1

C-R-04-F 298 14.4

C-R-05-F 289 14.2

C-T-06-F 292 13.8

C-T-07-F 296 14.1

C-T-08-F 294 14.0

C-T-09-F 330 14.3

C-T-10-F 317 14.0

S-RL/TL-21-A 350 12.9

S-RL/TL-22-A 343 12.7

S-RL/TL-23-A 331 13.0

S-RL/TL-24-A 376 13.3

S-RL/TL-25-A 343 13.1

S-RL/TL-26-A 434 12.3

S-RL/TL-27-A 334 11.7

S-RL/TL-28-A 336 12.6

S-RL/TL-29-A 443 12.7

S-RL/TL-30-A 424 12.3

S-RL/TL-01-1-F 315 13.7

S-RL/TL-02-1-F 326 14.2

S-RL/TL-03-1-F 310 13.7

S-RL/TL-04-1-F 356 14.8

S-RL/TL-05-1-F 316 14.5

S-RL/TL-06-1-F 321 14.3

S-RL/TL-07-1-F 342 13.9

S-RL/TL-08-1-F 343 13.5

S-RL/TL-09-1-F 314 13.9

S-RL/TL-10-1-F 340 14.1

T-L-01-A 408 12.6

T-L-02-A 433 14.0
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A.2 Density and Moisture Measurements of Tested Specimens

specimen density ρ [kg/m3] moisture content MC [%]

T-L-03-A 367 12.6

T-L-04-A 368 13.4

T-L-05-A 411 14.0

T-L-06-A 435 13.2

T-L-07-A 371 13.6

T-L-08-A 381 13.5

T-L-09-A 396 13.7

T-L-10-A 390 13.5

T-L-11-A 405 13.3

T-L-12-A 381 13.7

T-L-01-F 356 13.8

T-L-02-F 380 13.7

T-L-03-F 266 13.6

T-L-04-F 368 13.7

T-L-05-F 386 13.9

T-L-06-F 390 13.9

T-L-07-F 358 13.9

T-L-08-F 292 13.8

T-L-09-F 303 14.0

T-L-10-F 373 14.2

T-L-11-F 288 13.5

T-L-12-F 340 14.4

J-M10-01-A(1) 338 12.8

J-M10-01-A(2) 342 12.8

J-M10-02-A(1) 350 13.4

J-M10-02-A(2) 364 13.1

J-M10-03-A(1) 328 12.6

J-M10-03-A(2) 346 13.2

J-M10-04-A(1) 352 13.2

J-M10-04-A(2) 331 12.5

J-M10-05-A(1) 331 12.5
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A.2 Density and Moisture Measurements of Tested Specimens

specimen density ρ [kg/m3] moisture content MC [%]

J-M10-05-A(2) 346 12.5

J-M10-01-F(1) 302 12.4

J-M10-01-F(2) 295 12.5

J-M10-02-F(1)

J-M10-02-F(2) 388 12.6

J-M10-03-F(1) 314 12.0

J-M10-03-F(2) 315 12.0

J-M10-04-F(1) 295 12.3

J-M10-04-F(2) 300 12.4

J-M10-05-F(1) 264 12.2

J-M10-05-F(2) 273 11.4
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A.3 Model Input File Commands

A.3 Model Input File Commands

The following table lists the names of the commands and parameters that are used

in the model input file and their function.
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Table A.2: List of model input file commands.

command parameters function

$PARAMETERS general input parameters

MaxLoadSteps value set maximum load steps

MaxCount value set number of model runs

MaxLoad value set maximum load

MaxDisp value set maximum displacement

LoadThreshold value set threshold value which determines when zero load is

reached

MATnonlinear true/false include material nonlinearity

GEOnonlinear true/false include geometric nonlinearity (beams)

CONnonlinear true/false include contact nonlinearity

NonlinearSteps value set number of intermediate steps in geometric nonlinear

analysis

RenewKfrequency value number of broken links when global stiffness matrix will

be renewed (refer to subsection 5.6.5)

LDL true/false determines whether MATLAB cholesky decomposition

or special LDL decomposition is used

SSCThreshold value threshold value for the SSC algorithm (grouping link

changes, refer to subsection 5.6.3)
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command parameters function

SmoothContact true/false enables smooth contact

TKfix value additional small stiffness overlayed on lattice model

l(index) value cell lengths

E(index) value solid elements E-moduli

ny((index1),(index2)) value Poisson coefficients

K(index) value lattice mean stiffness parameter, direction j=index

K 1©,j

St(index) value lattice mean tensile strength parameter, direction

j=index ST,j

Sc(index) value lattice mean compressive strength parameter, direction

j=index SC,j

Yft(index) value lattice tensile PY parameter, direction j=index γT,j

Yfc(index) value lattice compressive PY parameter, direction j=index

γC,j

COV(index) value coefficient of variation for stiffness and strength

parameters, direction j=index cv,j

$WOODSTRUCT wood structure parameters

Enable true/false enable wood structure

Frame sx, ex, sy, ey, sz, ez reference frame around lattice to where rings are created

AlphaMean value parameter α
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command parameters function

AlphaCOV value parameter cv of α

R PithMean value parameter rpith

R PithCOV value parameter cv of rpith

R ShiftMean value parameter rshift

R ShiftCOV value parameter cv of rshift

DR CentreMean value parameter ∆rcentre

DR CentreCOV value parameter cv of ∆rcentre

DR DiffMean value parameter ∆rdiff

DR DiffCOV value parameter cv of ∆rdiff

DR VarMean value parameter ∆rvar

DR VarCOV value parameter cv of ∆rdiff

NormMinMean value parameter ρmin

NormMinCOV value parameter cv of ρmin

NormDiffMean value parameter ρdiff

NormDiffCOV value parameter cv of ρdiff

NormExpMean value parameter ρexp

NormExpCOV value parameter cv of ρexp

WoodStructLinksT λT,1, λT,2, λT,3 ... adjustment parameter, subsection 5.5.3

WoodStructLinksC λC,1, λC,2, λC,3 ... adjustment parameter, subsection 5.5.3

WoodStructLinksK λK,1, λK,2, λK,3 ... adjustment parameter, subsection 5.5.3
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command parameters function

$MODEL model geometry parameters

BlockCreate BlocNo, sx, ex, sy, ey, sz, ez,

noelx, noely, noelz, BlocType,

{WoodStructNo}

creates lattice or solid blocks of BlocType

BlockConnect BlocNo(Master), BlocNo(Slave),

FaceNo(Master), FaceNo(Slave)

connects lattice/solid and solid blocks

BoltCreate BoltBlocNo, x, y, z, radius,

length, div

creates bolt elements, coordinates define the centre of

bolt, bolt is in Z-direction

HoleSurfaceCreate BlocNo, x, y, radius,

surfacewidth, UserSurfaceNo

creates cylindrical hole in latticeand extracts surface

nodes into an extra user surface UserSurfaceNo

HoleBoltConnect BlocNo, UserSurfaceNo,

BoltBlocNo

connects bolt with created extra surface nodes

WasherSurfaceCreate BlocNo, x, y, z, FaceNo, radius,

UserSurfaceNo

extracts surface node numbers into extra user surface

UserSurfaceNo

WasherBoltConnect BlocNo, UserSurfaceNo,

BoltBlocNo, StartEnd, radius

connects bolt with washer surface at one of the ends

NotchSurfaceCreate BlocNo, sc1, ec1, sc2, ec2, face,

UserSurface1, UserSurfaceNo2,

...

creates notch in lattice

SurfaceCreate BlocNo, FaceNo, sx, ex, sy, ey,

sz, ez, UserSurfaceNo

extracts surface node numbers into user surface

UserSurfaceNo
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command parameters function

$BC boundary conditions and load

BC GetDispHigh BlocNo, face, dof node where model displacement is determined

(BC GetDispHigh-BC GetDisplow)

BC GetDispLow BlocNo, face, dof node where model displacement is determined

BC Zero Block BlocNo, dx, dy, dz sets respective DoFs (dx,dy,dz ) of a block to zero

BC Zero Face BlocNo, FaceNo, dx, dy, dz sets respective DoFs (dx,dy,dz ) of a surface to zero

BC Zero Corner BlocNo, CornerNo, dx, dy, dz sets respective DoFs (dx,dy,dz ) of a corner a surface to

zero

BC Zero Edge BlocNo, EdgeNo, dx, dy, dz sets respective DoFs (dx,dy,dz ) of an edge a surface to

zero

F Add Face EQL BlocNo, FaceNo, dx, dy, dz,

ForceVal, ForceNo

adds load to a surface (equally distributed)

F Add Face UDL BlocNo, FaceNo, dx, dy, dz,

StressVal, ForceNo

adds a uniform distributed load to surface

BC Zero Block Rot BlocNo, dx, dy, dz sets respective rotational DoFs (drx,dry,drz ) of a block

to zero

BC Zero Face Rot BlocNo, FaceNo, dx, dy, dz sets respective rotational DoFs (drx,dry,drz ) of a surface

to zero

BC Zero Corner Rot BlocNo, CornerNo, dx, dy, dz sets respective rotational DoFs (drx,dry,drz ) of a corner

a surface to zero
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command parameters function

BC Zero Edge Rot BlocNo, EdgeNo, dx, dy, dz sets respective rotational DoFs (drx,dry,drz ) of an edge

a surface to zero

Const Face Dof BlocNo, FaceNo, dx, dy, dz constrains DoFs of one surface

$OUTPUT output parameters for postprocessor PLOT3D

FigPlot true/false determines whether MATLAB figure is plotted

PlotSteps value frequency of MATLAB figure plots

SaveSteps value frequency of model save files

NewMaxDisp true/false determines whether new maximum displacement must

first be reached before new figure is plotted

ShowNodes true/false determines whether nodes are shown

ShowSurfaceLines true/false determines whether surface lines are shown

ShowAllLines true/false determines whether rest of lattice lines are shown

ShowNormalForceStrain value 1...force plot, 2...strain plot, 3...strength plot

Scale value scale factor

ShowBCs true/false show boundary conditions

ShowBCsZ true/false show boundary conditions in Z

ShowLines s1, s2, s3, s4, s5, s6, s7, s8, s9 determines whether normal links in respective directions

are plotted

ShowBrokenLines s1, s2, s3, s4, s5, s6, s7, s8, s9 determines whether broken links in respective directions

are plotted
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command parameters function

ShowCompLines s1, s2, s3, s4, s5, s6, s7, s8, s9 determines whether compressed links in respective

directions are plotted

ScaleBCs value scale factor of BC symbols

ScaleForce value scale factor of loading symbols

CircleDiv value ratio of the linear representation of a circle

OBJFrameGridSize value size of the grid [mm]

OutSave true/false determines whether model output files are saved

OBJLineWidth value width of lines in OBJ output

OBJLineDiv value ratio of the linear representation of a cyinder in OBJ

output

OBJFrame sx, ex, sy, ey, sz, ez size of the box plotted around model in OBJ output

PlotCount value number of figure plot

PlotCountAVGStart value model start number for average plot

PlotCountAVGEnd value model end number for average plot

PlotStep value plot step of one model

PlotType value type of plot: 1... MATLAB figure, 2... OBJ plot, 3...

LDP plot 4... LDP average plot

PlotOBJs value type of OBJ layer to plot

OBJPath string pathname of OBJ plot figure, layer OBJ

OBJFile string filename of OBJ plot figure, layer OBJ
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command parameters function

OBJBCpath string pathname of OBJ plot figure, layer BC

OBJBCfile string filename of OBJ plot figure, layer BC

OBJLATpath string pathname of OBJ plot figure, layer LAT

OBJLATfile string filename of OBJ plot figure, layer LAT

OBJLATBROKEpath string pathname of OBJ plot figure, layer LATBROKE

OBJLATBROKEfile string filename of OBJ plot figure, layer LATBROKE

OBJSOLIDpath string pathname of OBJ plot figure, layer SOLID

OBJSOLIDfile string filename of OBJ plot figure, layer SOLID

OBJVISpath string pathname of OBJ plot figure, layer VIS

OBJVISfile string filename of OBJ plot figure, layer VIS

OBJBOXpath string pathname of OBJ plot figure, layer BOX

OBJBOXfile string filename of OBJ plot figure, layer BOX

OBJMATpath string pathname of OBJ plot figure, layer MAT

OBJMATfile string filename of OBJ plot figure, layer MAT

OUTPath string pathname of OUT file

OUTFile string filename of OUT file

LDPPlot true/false LDP plot on/off

LDPSave true/false LDP saved in file on/off

LDPPath string pathname of LDP file

LDPFile string filename of LDP file
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command parameters function

PWD for pathname can be used to obtain the Present Working Directory

$COLOUR element colour definition

VIS Nontransparent value minimum number of tensile links which need to be

broken before shaded surface is plotted in VIS file

VIS Nontransparent c value minimum number of compressive links which need to be

broken before shaded surface is plotted in VIS file

Bolt r,g,b,o sets colour (r,g,b) and opacity for bolt elements

Surface r,g,b,o sets colour (r,g,b) and opacity for a general surface

LinkBroken r,g,b,o sets colour (r,g,b) and opacity for broken link elements

LinkComp r,g,b,o sets colour (r,g,b) and opacity for compressed link

elements

BC r,g,b,o sets colour (r,g,b) and opacity for boundary conditions

Load r,g,b,o sets colour (r,g,b) and opacity for loading arrows

SolidElem r,g,b,o sets colour (r,g,b) and opacity for solid elements

PlaneElem r,g,b,o sets colour (r,g,b) and opacity for plane elements

LatSurface r,g,b,o sets colour (r,g,b) and opacity for lattice surface

elements

OBJframe r,g,b,o sets colour (r,g,b) and opacity for OBJ frame box

OBJframetr r,g,b,o sets colour (r,g,b) and opacity for OBJ frame box grid

lines
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command parameters function

Celltransp1 c r,g,b,o sets colour (r,g,b) and opacity for shaded surface that is

plotted in VIS file when one link is in compression etc.

Celltransp1 t r,g,b,o sets colour (r,g,b) and opacity for shaded surface that is

plotted in VIS file when one link is broken etc.

Master r,g,b,o sets colour (r,g,b) and opacity for master contact

elements

ContactActive r,g,b,o sets colour (r,g,b) and opacity for active contact node

ContactInActive r,g,b,o sets colour (r,g,b) and opacity for inactive contact node
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A.4 Model Input Files of Test Series

A.4 Model Input Files of Test Series

Listing A.1: Model input file T-R.

1 $PARAMETERS

2 MaxLoadSteps = 10000

3 MaxCount = 10

4 MaxLoad = 10000

5 MaxDisp = 5

6 LoadThreshold = 0.01

7 MATnonlinear = true

8 LDL = false

9 RENEW K freq = 100

10 SSCThreshold = 0.1

11

12 Beam = false

13 TKfix = true

14 l(1) = 2

15 l(2) = 1

16 l(3) = 1

17

18 ElasticityMode=3

19 E(1) = 9608

20 E(2) = 681

21 E(4) = 557

22 E(8) = 325

23

24 ny(1,3) = 0.4862

25 ny(1,2) = 0.4862

26 ny(3,2) = 0.3719

27 ny(2,3) = 0.3719

28 ny(2,1) = 0.0345

29 ny(3,1) = 0.0345

30

31 EngStrain = 1

32

33 COV(1) = 0.2

34 COV(2) = 0.2

35 COV(4) = 0.2

36 COV(8) = 0.2

37

38

39 K(1) = 1423.5
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40 K(2) = 357.3

41 K(4) = 1392.2

42 K(8) = 1297.9

43

44 COV(1) = 0.2

45 COV(2) = 0.2

46 COV(4) = 0.2

47 COV(8) = 0.2

48

49 K(1) = 1423.5

50 K(2) = 357.3

51 K(4) = 1392.2

52 K(8) = 1297.9

53

54 St(1) = 100

55 Yft(1) = 1.01

56 Sc(1) = 12

57 Yfc(1) = 0.01

58

59 St(2) = 7

60 Yft(2) = 1.01

61 Sc(2) = 4

62 Yfc(2) = 0.01

63

64 St(4) = 20

65 Yft(4) = 1.01

66 Sc(4) = 20

67 Yfc(4) = 1.01

68

69 St(8) = 7

70 Yft(8) = 1.01

71 Sc(8) = 7

72 Yfc(8) = 1.01

73 $END

74

75 $WOODSTRUCT

76 Enable = true

77 Frame = −5, 75, −35, 35, −5, 25, 1

78

79 AlphaMean = 3.865

80 AlphaCOV = 0.083

81 R PithMean = 39.507

82 R PithCOV = 0.215

83 R ShiftMean = 0.408
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84 R ShiftCOV = 0.719

85 DR CentreMean = 5.884

86 DR CentreCOV = 0.277

87 DR DiffMean = −0.072

88 DR DiffCOV = −3.803

89 DR VarMean = −0.007

90 DR VarCOV = −283.014

91

92 NormMinMean = 0.717

93 NormMinCOV = 0.146

94 NormDiffMean = 0.982

95 NormDiffCOV = 0.211

96 NormExpMean = 1.958

97 NormExpCOV = 1.014

98

99 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

100 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

101 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

102 $END

103

104

105 $MODEL GEOMETRY

106 %solid elements

107 BlockCreate 3, 0, 32, 6.5, 11, 0, 20, 4, 1, 4, 1

108 BlockCreate 2, 0, 32, −11,−6.5, 0, 20, 4, 1, 4, 1

109

110 BlockCreate 5, 0, 48, 11, 30, 0, 20, 6, 2, 4, 1

111 BlockCreate 4, 0, 48, −30, −11, 0, 20, 6, 2, 4, 1

112

113 BlockCreate 7, 32, 48, 2, 11, 0, 20, 2, 2, 4, 1

114 BlockCreate 6, 32, 48, −11, −2, 0, 20, 2, 2, 4, 1

115

116 BlockCreate 9, 48, 70, 2, 30, 0, 20, 2, 3, 4, 1

117 BlockCreate 8, 48, 70, −30, −2, 0, 20, 2, 3, 4, 1

118

119 BlockConnect 3,1,3,4

120 BlockConnect 2,1,4,3

121

122 BlockConnect 7,1,1,2

123 BlockConnect 6,1,1,2

124

125 BlockConnect 5,3,3,4

126 BlockConnect 4,2,4,3

127
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128 BlockConnect 5,7,3,4

129 BlockConnect 4,6,4,3

130

131 BlockConnect 9,5,1,2

132 BlockConnect 9,7,1,2

133

134 BlockConnect 8,4,1,2

135 BlockConnect 8,6,1,2

136

137 NotchSurfaceCreate 1, 12, 16, 5, 8, 0, 21, 7, 0, 8, 9, 0,0

138

139 BlockCreate 1, 1, 31, −6, 6, 0.5, 19.5, 15, 12, 19, 4, 1

140

141 SurfaceCreate 1,2, 20, 36, 0, 6, 0, 20, 20

142 $END

143

144

145 $BC

146 BC GetDispHigh 9,2,2

147 BC GetDispLow 8,2,2

148

149 BC zero corner 8,1,1,1,1

150 BC zero face 8,1,0,1,0

151 BC zero edge 8,4,1,1,0

152

153 BC zero edge 9,2,1,0,0

154

155 F add face udl 9,1,0,1,0,1,1

156 Const face dof 9,1,0,1,0

157 $END

158

159

160 $OUTPUT

161 [...]

162 $END

163

164

165 $COLOUR

166 [...]

167 $END

Listing A.2: Model input file T-L.
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1 $PARAMETERS

2 MaxLoadSteps = 15000

3 MaxCount = 5

4 MaxLoad = 15000

5 MaxDisp = 1

6 LoadThreshold = 0.01

7 MATnonlinear = true

8 LDL = false

9 RENEW K freq = 100

10 SSCThreshold = 0.1

11

12 Beam = false

13 TKfix = true

14 l(1) = 2

15 l(2) = 1

16 l(3) = 1

17

18 %elastic parameters for solid block

19 ElasticityMode=3

20 E(1) = 9608

21 E(2) = 681

22 E(4) = 557

23 E(8) = 325

24

25 ny(1,3) = 0.4862

26 ny(1,2) = 0.4862

27 ny(3,2) = 0.3719

28 ny(2,3) = 0.3719

29 ny(2,1) = 0.0345

30 ny(3,1) = 0.0345

31

32 EngStrain = 1

33

34 K(1) = 1423.5

35 K(2) = 357.3

36 K(4) = 1392.2

37 K(8) = 1297.9

38

39 COV(1) = 0.2

40 COV(2) = 0.2

41 COV(4) = 0.2

42 COV(8) = 0.2

43

44 St(1) = 100
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45 Yft(1) = 1.01

46 Sc(1) = 12

47 Yfc(1) = 0.01

48

49 St(2) = 7

50 Yft(2) = 1.01

51 Sc(2) = 4

52 Yfc(2) = 0.01

53

54 St(4) = 20

55 Yft(4) = 1.01

56 Sc(4) = 20

57 Yfc(4) = 1.01

58

59 St(8) = 7

60 Yft(8) = 1.01

61 Sc(8) = 7

62 Yfc(8) = 1.01

63 $END

64

65

66 $WOODSTRUCT

67 Enable = true

68 Frame = −5, 75, −15, 21, −5, 9, 1

69

70 %WoodStruct parameters taken from SLO − (TL pix were too small)

71 AlphaMean = 1.815

72 AlphaCOV = 0.349

73 R PithMean = 33.168

74 R PithCOV = 0.246

75 R ShiftMean = 0.609

76 R ShiftCOV = 0.493

77 DR CentreMean = 6.313

78 DR CentreCOV = 0.192

79 DR DiffMean = −0.031

80 DR DiffCOV = −5.031

81 DR VarMean = −0.119

82 DR VarCOV = −7.641

83

84 NormMinMean = 0.717

85 NormMinCOV = 0.146

86 NormDiffMean = 0.982

87 NormDiffCOV = 0.211

88 NormExpMean = 1.958
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89 NormExpCOV = 1.014

90

91 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

92 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

93 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

94 $END

95

96

97 $MODEL GEOMETRY

98 %solid elements

99 BlockCreate 2, 0 , 11, 0, 6, 0, 4, 2, 1, 1, 1

100 BlockCreate 3, 59, 70, 0, 6, 0, 4, 2, 1, 1, 1

101

102 BlockConnect 2,1,2,1

103 BlockConnect 3,1,1,2

104

105 BlockCreate 1, 12, 58, 0.5, 5.5, 0.5, 3.5, 23, 5, 3, 4, 1

106 $END

107

108

109 $BC

110 BC GetDispHigh 3,2,1

111 BC GetDispLow 2,1,1

112

113 BC zero corner 2,1,1,1,1

114 BC zero face 2,1,1,0,0

115 BC zero edge 2,4,1,1,0

116

117 BC zero edge 2,1,1,0,1

118

119 BC zero edge 3,8,0,1,0

120 BC zero edge 3,5,0,0,1

121

122 F add face udl 3,2,1,0,0,1,1

123 Const face dof 3,2,1,0,0

124 $END

125

126

127 $OUTPUT

128 [...]

129 $END

130

131

132 $COLOUR
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133 [...]

134 $END

Listing A.3: Model input file S-LR/LT.

1 $PARAMETERS

2 MaxLoadSteps = 10000

3 MaxCount = 10

4 MaxLoad = 10000

5 MaxDisp = 1

6 LoadThreshold = 0.01

7 MATnonlinear = true

8 RENEW K freq = 100

9 SSCThreshold = 0.1

10 LDL = false

11 Beam = false

12 TKfix = true

13 l(1) = 2

14 l(2) = 1

15 l(3) = 1

16

17 ElasticityMode=3

18 E(1) = 9608

19 E(2) = 681

20 E(4) = 557

21 E(8) = 325

22

23 ny(1,3) = 0.4862

24 ny(1,2) = 0.4862

25 ny(3,2) = 0.3719

26 ny(2,3) = 0.3719

27 ny(2,1) = 0.0345

28 ny(3,1) = 0.0345

29

30 EngStrain = 1

31

32 COV(1) = 0.2

33 COV(2) = 0.2

34 COV(4) = 0.2

35 COV(8) = 0.2

36

37 K(1) = 1423.5

38 K(2) = 357.3
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39 K(4) = 1392.2

40 K(8) = 1297.9

41

42 St(1) = 100

43 Yft(1) = 1.01

44 Sc(1) = 12

45 Yfc(1) = 0.01

46

47 St(2) = 7

48 Yft(2) = 1.01

49 Sc(2) = 4

50 Yfc(2) = 0.01

51

52 St(4) = 20

53 Yft(4) = 1.01

54 Sc(4) = 20

55 Yfc(4) = 1.01

56

57 St(8) = 7

58 Yft(8) = 1.01

59 Sc(8) = 7

60 Yfc(8) = 1.01

61 $END

62

63

64 $WOODSTRUCT

65 Enable = true

66 Frame = −5, 53, −5, 27, −5, 11, 1

67

68 AlphaMean = 1.815

69 AlphaCOV = 0.349

70 R PithMean = 33.168

71 R PithCOV = 0.246

72 R ShiftMean = 0.609

73 R ShiftCOV = 0.493

74 DR CentreMean = 6.313

75 DR CentreCOV = 0.192

76 DR DiffMean = −0.031

77 DR DiffCOV = −5.031

78 DR VarMean = −0.119

79 DR VarCOV = −7.641

80

81 NormMinMean = 0.717

82 NormMinCOV = 0.146
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83 NormDiffMean = 0.982

84 NormDiffCOV = 0.211

85 NormExpMean = 1.958

86 NormExpCOV = 1.014

87

88 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

89 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

90 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

91 $END

92

93

94 $MODEL GEOMETRY

95 %solid elements

96 BlockCreate 8, 0 , 4, 0, 22, 0, 6, 1, 1, 2, 1

97 BlockCreate 9, 44, 48, 0, 22, 0, 6, 1, 1, 2, 1

98

99 BlockCreate 3, 14, 37, 17, 22, 0, 6, 5, 2, 2, 1

100 BlockCreate 2, 11, 34, 0, 5, 0, 6, 5, 2, 2, 1

101

102 BlockCreate 6, 4 , 11, 12.5, 22, 0, 6, 2, 3, 2, 1

103 BlockCreate 4, 4 , 11, 0, 12.5, 0, 6, 2, 5, 2, 1

104

105 BlockCreate 5, 37, 44, 9.5, 22, 0, 6, 2, 5, 2, 1

106 BlockCreate 7, 37, 44, 0, 9.5, 0, 6, 2, 3, 2, 1

107

108 BlockConnect 4,1,2,1

109 BlockConnect 5,1,1,2

110

111 BlockConnect 3,1,3,4

112 BlockConnect 2,1,4,3

113

114 BlockConnect 4,2,2,1

115 BlockConnect 5,3,1,2

116

117 BlockConnect 6,4,3,4

118 BlockConnect 7,5,4,3

119

120 BlockConnect 8,6,2,1

121 BlockConnect 8,4,2,1

122

123 BlockConnect 9,5,1,2

124 BlockConnect 9,7,1,2

125

126 NOTCHSURFACECREATE 1, 0, 1, 4, 12, 0, 6, 0, 7, 8, 0, 0, 0
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127 NOTCHSURFACECREATE 1, 12, 13, 0, 8, 0, 6, 9, 0, 0, 10, 0, 0

128

129 BlockCreate 1, 12, 36, 5.5, 16.5, 0.5, 5.5, 12, 11, 5, 4, 1

130 $END

131

132

133 $BC

134 BC GetDispHigh 9,2,1

135 BC GetDispLow 8,1,1

136

137 BC zero corner 8,1,1,1,1

138 BC zero face 8,1,1,0,0

139 BC zero edge 8,1,1,0,1

140 BC zero edge 8,4,1,1,0

141

142 BC zero edge 9,5,0,0,1

143 BC zero edge 9,8,0,1,0

144

145 F add face udl 9,2,1,0,0,1,1

146 Const face dof 9,2,1,0,0

147 F add face udl 9,2,1,0,0,1,2

148 Const face dof 9,2,1,0,0

149 $END

150

151

152 $OUTPUT

153 [...]

154 $END

155

156 $COLOUR

157 [...]

158 $END

Listing A.4: Model input file C-L.

1 $PARAMETERS

2 MaxLoadSteps = 15000

3 MaxCount = 5

4 MaxLoad = 10000

5 MaxDisp = 5

6 LoadThreshold = 0.01

7 SSCThreshold = 1

8 MATnonlinear = true
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9 RENEW K freq = 100

10

11 LDL = false

12 Beam = false

13 TKfix = true

14 l(1) = 2

15 l(2) = 1

16 l(3) = 1

17

18 ElasticityMode=3

19 E(1) = 9608

20 E(2) = 681

21 E(4) = 557

22 E(8) = 325

23

24 ny(1,3) = 0.4862

25 ny(1,2) = 0.4862

26 ny(3,2) = 0.3719

27 ny(2,3) = 0.3719

28 ny(2,1) = 0.0345

29 ny(3,1) = 0.0345

30

31 EngStrain = 1

32

33 COV(1) = 0.2

34 COV(2) = 0.2

35 COV(4) = 0.2

36 COV(8) = 0.2

37

38 K(1) = 1423.5

39 K(2) = 357.3

40 K(4) = 1392.2

41 K(8) = 1297.9

42

43 St(1) = 100

44 Yft(1) = 1.01

45 Sc(1) = 12

46 Yfc(1) = 0.01

47

48 St(2) = 7

49 Yft(2) = 1.01

50 Sc(2) = 4

51 Yfc(2) = 0.01

52
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53 St(4) = 20

54 Yft(4) = 1.01

55 Sc(4) = 20

56 Yfc(4) = 1.01

57

58 St(8) = 7

59 Yft(8) = 1.01

60 Sc(8) = 7

61 Yfc(8) = 1.01

62 $END

63

64

65 $WOODSTRUCT

66 Enable = true

67 Frame = −5, 65, −5, 25, −5, 25, 1

68

69 AlphaMean = 2.885

70 AlphaCOV = 0.71

71 R PithMean = 50.990

72 R PithCOV = 0.280

73 R ShiftMean = 0.421

74 R ShiftCOV = 0.699

75 DR CentreMean = 5.170

76 DR CentreCOV = 0.245

77 DR DiffMean = −0.096

78 DR DiffCOV = −1.975

79 DR VarMean = 0.204

80 DR VarCOV = 6.242

81

82 NormMinMean = 0.717

83 NormMinCOV = 0.146

84 NormDiffMean = 0.982

85 NormDiffCOV = 0.211

86 NormExpMean = 1.958

87 NormExpCOV = 1.014

88

89 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

90 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

91 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

92 $END

93

94

95 $MODEL GEOMETRY

96 BlockCreate 1, 1, 59, 0.5, 19.5, 0.5, 4.5, 29, 19, 4, 4, 1

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 A-54



A.4 Model Input Files of Test Series

97 $END

98

99

100 $BC

101 BC GetDispHigh 1,2,1

102 BC GetDispLow 1,1,1

103

104 BC zero corner 1,1,1,1,1

105 BC zero face 1,1,1,0,0

106 BC zero edge 1,4,1,1,0

107

108 BC zero edge 1,1,1,0,1

109

110 F add face udl 1,2,1,0,0,−1,1

111 Const face dof 1,2,1,0,0

112 $END

113

114

115 $OUTPUT

116 [...]

117 $END

118

119

120 $COLOUR

121 [...]

122 $END

Listing A.5: Model input file C-R.

1 $PARAMETERS

2 MaxLoadSteps = 15000

3 MaxCount = 5

4 MaxLoad = 10000

5 MaxDisp = 3

6 RENEW K freq = 100

7 LoadThreshold = 0.01

8 SSCThreshold = 1

9

10 MATnonlinear = true

11 LDL = false

12 Beam = false

13 TKfix = true

14 l(1) = 2
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15 l(2) = 1

16 l(3) = 1

17

18 ElasticityMode=3

19 E(1) = 9608

20 E(2) = 681

21 E(4) = 557

22 E(8) = 325

23

24 ny(1,3) = 0.4862

25 ny(1,2) = 0.4862

26 ny(3,2) = 0.3719

27 ny(2,3) = 0.3719

28 ny(2,1) = 0.0345

29 ny(3,1) = 0.0345

30

31 EngStrain = 1

32

33 COV(1) = 0.2

34 COV(2) = 0.2

35 COV(4) = 0.2

36 COV(8) = 0.2

37

38 K(1) = 1423.5

39 K(2) = 357.3

40 K(4) = 1392.2

41 K(8) = 1297.9

42

43 St(1) = 100

44 Yft(1) = 1.01

45 Sc(1) = 12

46 Yfc(1) = 0.01

47

48 St(2) = 7

49 Yft(2) = 1.01

50 Sc(2) = 4

51 Yfc(2) = 0.01

52

53 St(4) = 20

54 Yft(4) = 1.01

55 Sc(4) = 20

56 Yfc(4) = 1.01

57

58 St(8) = 7
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59 Yft(8) = 1.01

60 Sc(8) = 7

61 Yfc(8) = 1.01

62 $END

63

64

65 $WOODSTRUCT

66 Enable = true

67 Frame = −5, 25, −5, 25, −5, 25, 1

68

69 AlphaMean = 7.788

70 AlphaCOV = 0.048

71 R PithMean = 54.761

72 R PithCOV = 0.23

73 R ShiftMean = 0.528

74 R ShiftCOV = 0.621

75 DR CentreMean = 5.247

76 DR CentreCOV = 0.206

77 DR DiffMean = −0.120

78 DR DiffCOV = −1.224

79 DR VarMean = 0.319

80 DR VarCOV = 2.354

81

82 NormMinMean = 0.717

83 NormMinCOV = 0.146

84 NormDiffMean = 0.982

85 NormDiffCOV = 0.211

86 NormExpMean = 1.958

87 NormExpCOV = 1.014

88

89 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

90 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

91 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

92 $END

93

94

95 $MODEL GEOMETRY

96 BlockCreate 1, 1, 19, 0.5, 19.5, 0.5, 9.5, 9, 19, 9, 4, 1

97 $END

98

99

100 $BC

101 BC GetDispHigh 1,4,2

102 BC GetDispLow 1,3,2
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103

104 BC zero corner 1,1,1,1,1

105 BC zero face 1,3,0,1,0

106 BC zero edge 1,4,1,1,0

107

108 BC zero edge 1,9,0,1,1

109

110 F add face udl 1,4,0,1,0,−1,1

111 Const face dof 1,4,0,1,0

112 $END

113

114

115 $OUTPUT

116 [...]

117 $END

118

119

120 $COLOUR

121 [...]

122 $END

Listing A.6: Model input file C-T.

1 $PARAMETERS

2 MaxLoadSteps = 15000

3 MaxCount = 5

4 MaxLoad = 10000

5 MaxDisp = 3

6 LoadThreshold = 0.01

7 SSCThreshold = 1

8

9 MATnonlinear = true

10 LDL = false

11 RENEW K freq = 100

12 Beam = false

13 TKfix = true

14 l(1) = 2

15 l(2) = 1

16 l(3) = 1

17

18 ElasticityMode=3

19 E(1) = 9608

20 E(2) = 681
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21 E(4) = 557

22 E(8) = 325

23

24 ny(1,3) = 0.4862

25 ny(1,2) = 0.4862

26 ny(3,2) = 0.3719

27 ny(2,3) = 0.3719

28 ny(2,1) = 0.0345

29 ny(3,1) = 0.0345

30

31 EngStrain = 1

32

33 COV(1) = 0.2

34 COV(2) = 0.2

35 COV(4) = 0.2

36 COV(8) = 0.2

37

38 K(1) = 1423.5

39 K(2) = 357.3

40 K(4) = 1392.2

41 K(8) = 1297.9

42

43 St(1) = 100

44 Yft(1) = 1.01

45 Sc(1) = 12

46 Yfc(1) = 0.01

47

48 St(2) = 7

49 Yft(2) = 1.01

50 Sc(2) = 4

51 Yfc(2) = 0.01

52

53 St(4) = 20

54 Yft(4) = 1.01

55 Sc(4) = 20

56 Yfc(4) = 1.01

57

58 St(8) = 7

59 Yft(8) = 1.01

60 Sc(8) = 7

61 Yfc(8) = 1.01

62 $END

63

64
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65 $WOODSTRUCT

66 Enable = true

67 Frame = −5, 25, −5, 25, −5, 25, 1

68

69 AlphaMean = 3.131

70 AlphaCOV = 0.142

71 R PithMean = 49.493

72 R PithCOV = 0.173

73 R ShiftMean = 0.503

74 R ShiftCOV = 0.562

75 DR CentreMean = 5.125

76 DR CentreCOV = 0.231

77 DR DiffMean = −0.049

78 DR DiffCOV = −2.796

79 DR VarMean = 0.229

80 DR VarCOV = 2.412

81

82 NormMinMean = 0.717

83 NormMinCOV = 0.146

84 NormDiffMean = 0.982

85 NormDiffCOV = 0.211

86 NormExpMean = 1.958

87 NormExpCOV = 1.014

88

89 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

90 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

91 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

92 $END

93

94

95 $MODEL GEOMETRY

96 BlockCreate 1, 1, 19, 0.5, 19.5, 0.5, 9.5, 9, 19, 9, 4, 1

97 $END

98

99

100 $BC

101 BC GetDispHigh 1,4,2

102 BC GetDispLow 1,3,2

103

104 BC zero corner 1,1,1,1,1

105 BC zero face 1,3,0,1,0

106 BC zero edge 1,4,1,1,0

107

108 BC zero edge 1,9,0,1,1
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109

110 F add face udl 1,4,0,1,0,−1,1

111 Const face dof 1,4,0,1,0

112 $END

113

114

115 $OUTPUT

116 [...]

117 $END

118

119

120 $COLOUR

121 [...]

122 $END

Listing A.7: Model input file J-M10.

1 $PARAMETERS

2 MaxLoadSteps = 20000

3 MaxCount = 1

4 MaxLoad = 10000

5 MaxDisp = 20

6 LoadThreshold = 0.01

7 MATnonlinear = true

8 CONnonlinear = true

9 GEOnonlinear = true

10 NonlinearSteps = 2

11

12 RENEW K freq = 100

13 LDL = false

14 SSCThreshold = 1

15

16 SmoothContact = true

17 Beam = false

18 TKfix = true

19 l(1) = 2

20 l(2) = 1

21 l(3) = 1

22

23 ElasticityMode=3

24 E(1) = 9608

25 E(2) = 681

26 E(4) = 557
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27 E(8) = 325

28

29 ny(1,3) = 0.4862

30 ny(1,2) = 0.4862

31 ny(3,2) = 0.3719

32 ny(2,3) = 0.3719

33 ny(2,1) = 0.0345

34 ny(3,1) = 0.0345

35

36 EngStrain = 1

37

38 COV(1) = 0.2

39 COV(2) = 0.2

40 COV(4) = 0.2

41 COV(8) = 0.2

42

43 K(1) = 1423.5

44 K(2) = 357.3

45 K(4) = 1392.2

46 K(8) = 1297.9

47

48 St(1) = 100

49 Yft(1) = 1.01

50 Sc(1) = 12

51 Yfc(1) = 0.01

52

53 St(2) = 7

54 Yft(2) = 1.01

55 Sc(2) = 4

56 Yfc(2) = 0.01

57

58 St(4) = 20

59 Yft(4) = 1.01

60 Sc(4) = 20

61 Yfc(4) = 1.01

62

63 St(8) = 7

64 Yft(8) = 1.01

65 Sc(8) = 7

66 Yfc(8) = 1.01

67 $END

68

69

70 $WOODSTRUCT
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71 Enable = true

72 Frame = −5, 85, −35, 35, −5, 25, 1

73

74 AlphaMean = 2.907

75 AlphaCOV = 0.316

76 R PithMean = 48.809

77 R PithCOV = 0.308

78 R ShiftMean = 0.540

79 R ShiftCOV = 0.560

80 DR CentreMean = 5.881

81 DR CentreCOV = 0.211

82 DR DiffMean = −0.138

83 DR DiffCOV = −1.599

84 DR VarMean = 0.361

85 DR VarCOV = 7.402

86

87 NormMinMean = 0.717

88 NormMinCOV = 0.146

89 NormDiffMean = 0.982

90 NormDiffCOV = 0.211

91 NormExpMean = 1.958

92 NormExpCOV = 1.014

93

94 WoodStructLinksT = 2 ,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5

95 WoodStructLinksC = 1.5,1 ,1 ,1.5,1.5,1.5,1.5,1.5,1.5

96 WoodStructLinksK = 2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2

97 $END

98

99

100 $MODEL GEOMETRY

101 %solid elements

102 BlockCreate 2, 50, 80, 7.5, 17.5, 0, 20, 3, 2, 4, 1

103 BlockCreate 3, 50, 80,−17.5, −7.5, 0, 20, 3, 2, 4, 1

104

105 BlockCreate 4, 0, 80, 17.5, 30, 0, 20, 8, 2, 4, 1

106 BlockCreate 5, 0, 80, −30,−17.5, 0, 20, 8, 2, 4, 1

107

108 BlockCreate 6, 20, 50, 7.5, 17.5, 0, 15, 3, 2, 3, 1

109 BlockCreate 7, 20, 50,−17.5, −7.5, 0, 15, 3, 2, 3, 1

110

111 BlockCreate 8, 0, 20, 7.5, 17.5, 0, 20, 2, 2, 4, 1

112 BlockCreate 9, 0, 20,−17.5, −7.5, 0, 20, 2, 2, 4, 1

113

114 BlockCreate 10, 0, 20, −7.5, 7.5, 0, 20, 2, 2, 4, 1
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115

116 %connect LATTICE with SOLIDS

117 %in Y

118 BlockConnect 2,1,3,11

119 BlockConnect 3,1,4,13

120

121 BlockConnect 4,1,3,4

122 BlockConnect 5,1,4,3

123

124 BlockConnect 6,1,3,14

125 BlockConnect 7,1,4,16

126

127 %in Z

128 BlockConnect 6,1,6,15

129 BlockConnect 7,1,6,17

130

131 %in X

132 BlockConnect 2,1,1,10

133 BlockConnect 3,1,1,12

134

135 BlockConnect 8,1,2,1

136 BlockConnect 9,1,2,1

137 BlockConnect 10,1,2,1

138

139 %connect SOLIDS

140 %in Y

141 BlockConnect 2,4,4,3

142 BlockConnect 3,5,3,4

143

144 BlockConnect 8,4,4,3

145 BlockConnect 9,5,3,4

146

147 BlockConnect 10,8,4,3

148 BlockConnect 10,9,3,4

149

150 %in X

151 BlockConnect 2,6,1,2

152 BlockConnect 6,8,1,2

153

154 BlockConnect 3,7,1,2

155 BlockConnect 7,9,1,2

156

157 HoleSurfaceCreate 1, 40, 0, 5, 2, 20

158
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159 NotchSurfaceCreate 1, 15, 30, 25, 36, 0, 20, 10, 0, 11, 0, 0, 0

160 NotchSurfaceCreate 1, 15, 30, −1, 10, 0, 20, 12, 0, 0, 13, 0, 0

161

162 NotchSurfaceCreate 1, −1, 15, 25, 36, 0, 15, 0, 0, 14, 0, 0,15

163 NotchSurfaceCreate 1, −1, 15, −1, 10, 0, 15, 0, 0, 0, 16, 0,17

164

165 BlockCreate 1, 21, 79,−17, 17, 0.5, 19.5,29, 34, 19, 4, 1

166 BoltCreate 20, 40, 0, 9.55, 4.99, 20.001, 5

167

168 HoleBoltConnect 20, 20

169

170 WasherSurfaceCreate 1, 40, 0, 0, 6, 15, 40

171 WasherBoltConnect 1, 40, 20, 2, 15

172 $END

173

174

175 $BC

176 BC GetDispHigh 20,5,1

177 BC GetDispLow 10,1,1

178

179 %origin fully fixed

180 BC zero corner 5,1,1,1,1

181

182 %two edges

183 BC zero edge 5,4,1,1,0

184

185 BC zero edge 5,1,1,0,1

186 BC zero edge 4,1,1,0,1

187 BC zero edge 8,1,1,0,1

188 BC zero edge 9,1,1,0,1

189 BC zero edge 10,1,1,0,1

190

191 %in X base of specimen

192 BC zero face 4,1,1,0,0

193 BC zero face 5,1,1,0,0

194 BC zero face 8,1,1,0,0

195 BC zero face 9,1,1,0,0

196 BC zero face 10,1,1,0,0

197

198 %full surface in Z (one side of specimen)

199 BC zero face 1,5,0,0,1

200 BC zero face 2,5,0,0,1

201 BC zero face 3,5,0,0,1

202 BC zero face 4,5,0,0,1

T. Reichert, PhD Thesis, Edinburgh Napier University 2009 A-65



A.4 Model Input Files of Test Series

203 BC zero face 5,5,0,0,1

204 BC zero face 6,5,0,0,1

205 BC zero face 7,5,0,0,1

206 BC zero face 8,5,0,0,1

207 BC zero face 9,5,0,0,1

208 BC zero face 10,5,0,0,1

209

210 %BOLT

211 BC zero face rot 20,5,1,0,1

212 BC zero face rot 20,6,1,0,1

213

214 BC zero face 20,5,0,1,1

215 BC zero face 20,6,0,1,0

216

217 F add face udl 20,5,1,0,0,1,1

218 $END

219

220

221 $OUTPUT

222 [...]

223 $END

224

225

226 $COLOUR

227 [...]

228 $END
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A.5 MATLAB Files

The following table lists all used MATLAB files and their function. These can also

be found on the attached CD.
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Table A.3: List of MATLAB files.

file name function

LAT3D.m main routine

PLOT3D.m output plots

GrowthRingDetection.m draws circles on scanned images of cross sections

Optimise Elastic Parameters.m determines elastic stiffness parameters K from E-moduli

WoodStruct Determination.m obtains density values from data file (lab tests)

subfunctions

BBarcreate coord.m creates strain-displacement vector of bar element

BBeam3D.m creates strain-displacement vector of 3D beam element

BC apply.m applies boundary conditions

Block Create.m defines blocks of elements

Bolt Contact Create.m defines contact elements between bolt and lattice

Bolt Create.m defines bolt beam elements

Calc Load Disp.m determines current load and displacement from

displacement vector

Check Max Disp Load.m defines bolt beam elements

CheckStrain.m checks for incorrect strain

Check Max Disp Load.m checks if maximum load or disp. is reached
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file name function

chessboard.m creates checked matrix

chessboard wide.m creates checked matrix (wide)

Circle.m creates linear approximation of a circle (PLOT3D.m)

Circle Matrix.m creates matrix with circle shape (Block Create.m)

circularc.m creates an arc-circle

Connect Create.m connects two blocks (lattice/solid)

Fadd.m routine to add a force to global force vector

Figs2EPS.m routine to create an ’.eps’ file from a MATLAB figure

Initialise Output Colour.m reads in the colour parameters from model file

Initialise Parameters.m reads in the normal parameters from model file

Interpol.m interpolation function

Intersect circle2line.m determines intersection of a line and a circle

(GrowthRingDetection.m)

Intersect line2line.m determines intersection of two lines

(GrowthRingDetection.m)

kBarcreate angle.m creates local stiffness matrix of a 3D bar element

according to angles

kBarcreate connect.m creates local stiffness matrix of a 3D bar element, used

in connecting blocks

kBarcreate contact.m creates local stiffness matrix of a 3D bar element, used

in contact
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file name function

kBarcreate coord.m creates local stiffness matrix of a 3D bar element

according to coordinates

kBeam3D.m creates local stiffness matrix of a 3D beam element in X

KLinkChange.m routine to change link status and stiffness

kPlane4lin.m creates local stiffness matrix of a 2D planer element

kSolid8lin.m creates local stiffness matrix of a 3D solid element

Lattice Main.m main routine

Lat Hole Surface Create.m creates hole in lattice and determines surface nodes

Lat MeanDiffGet.m determines mean strength value based on the position

of link

Lat Notch Create.m creates notch in lattice and determines surface nodes

Lat Washer Surface Create.m determines surface nodes under washer

LDPlot.m creates load displacement plots

LDPlot Mean.m creates averaged load displacement plots

LDP Info TXT.m extracts LDP from text files (lab tests)

Link Show.m shows link status strain and force

Link Temp create.m creates link element templates (Block Create.m)

LoadDispmodif.m modifies LDP (no ’snap-back’)

LOGNRD get.m creates random log-normal distributed values

lognrndO.m function used by LOGNRD get.m

MIFM Algorithm.m MIF function
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file name function

Model OBJ Create.m creates ’.obj’ output file

Model Plot.m plots model in MATLAB figure

Model Save.m saves ’.out’ output file

NBeam3D.m shape function of 3D beam element

newcol.m adds a new colour definiton

NRD get.m creates random normal distributed values

NRD get neg.m creates random normal distributed values (incl. neg.

values)

OBJPlot Arrow.m ’.obj’ plot, arrows

OBJPlot Cylinder.m ’.obj’ plot, cylinder

OBJPlot Polygon.m ’.obj’ plot, polygon

OBJPlot Polygon Text.m ’.obj’ plot, polygon (including texture)

OBJPlot Sphere.m ’.obj’ plot, sphere

Plot Arrow.m plots in MATLAB figure, arrow

Plot Circle.m plots in MATLAB figure, circle

Plot Circle Fill.m plots in MATLAB figure, filled circle

Plot Cylinder.m plots in MATLAB figure, cylinder

PRead.m reads from model input file, line

Preprocessor.m preprocessor routine

ReadInBlock.m reads from model input file, block
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file name function

ReNew K.m renews global stiffness matrix

Ring 3P.m creates a 3-point circle

Rot Matrix.m creates a rotation matrix

Rot Matrix Angle.m creates a rotation matrix, angles

ROT Matrix Coord.m creates a rotation matrix, coordinates

SSC Algorithm.m SSC algorithm

Surface Create.m determines surface nodes

Time Disp.m displays current time

TKadd.m adds local stiffness matrix to global one

TKadd MPC.m adds multi-point constraints from global stiffness matrix

TKadd MPC Val.m adds multi-point constraints from global stiffness

matrix, value

TKsub.m subtracts local stiffness matrix from global one

TKsub MPC.m subtracts multi-point constraints from global stiffness

matrix

TK Create.m creates global stiffness matrix

Update.m updates all element and nodal information

Washer Contact Create.m defines contact elments between washer and lattice

WoodStruct NormGet.m determine rho value according to the position of a link

element
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file name function

Wood Struct Create.m creates wood strucutre

Write Colour Table.m write colour info in ’.mat’ file
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1. Summary 

Findings are presented of the first stage of an investigation of second-order effects that influence the 
resistance and stiffness of single shear bolted joints.  These effects develop as a result of joint 
deformation and the rotation of all, or part, of the bolt.  A two-dimensional finite element model 
incorporating these effects is introduced and predicted behaviour compared to laboratory test results 
of pre-tensioned M16 single shear joints.  The model is shown to accurately predict the load-slip 
curve, giving better predictions of resistance than the present Eurocode design equations indicating 
potentially underutilised strength reserve.  Furthermore, the model allows the individual 
components of the second order effects to be quantified separately. 

2. Introduction 

Second order effects in bolted timber connections, namely the ‘rope effect’ (axial force in the 
fastener), rotational constraint (due to washer, head and nut) and friction between adjoining timber 
surfaces, represent a significant load resistance reserve over and above that calculated by Johansen 
theory.  Some of these effects have now been incorporated into Eurocode 5 (EN 1995-1-1) design 
equations, but there may still remain better ways to utilise this strength reserve for design.  
Furthermore, their influence on joint slip behaviour has not yet been rigorously researched. 

A two-dimensional finite element model has been used to study these effects and the predictions 
compared to laboratory test results using properties obtained from fastener embedment and washer 
embedment tests.  The investigation represents the preliminary work of a wider study: the model 
and the findings will serve in the development of a complete three-dimensional model of timber 
joints with multiple bolts that is able to account for these second order non-linear effects and their 
interaction with fracture as the limiting factor of joint resistance.  Such a model will be useful, when 
validated and calibrated against laboratory data, to research joint behaviour in more detail without 
the need for extensive testing programmes. 

To take into account these effects, a geometric non-linear analysis (large deformation, contact and 
material non-linearity) has to be performed.  With this the equilibrium forces and moments are 
calculated for the deformed system.  Plasticity in the bolt is also modelled, but shall not be further 
considered in this paper.  Similar models have been presented by Nishiyama and Ando (2003) and 
Sawata and Yasumura (2003).  A geometric nonlinear analysis considering the rope effect and 
rotational constraint in dowel type joints was also performed by Erki (1991). 

3. The Beam and Spring Model 

The commercial package ANSYS was used to create the two dimensional model, which is capable 
of performing geometric as well as material non linear analysis.  The general configuration is shown 
in Fig 1.  The bold lines show the fastener, nut and washer and shaded areas represent the two 
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adjoining timber members, which are actually modelled with timber embedment springs (shown by 
the saw-tooth lines).  The components are: 

a) Fastener 
The fastener is represented by regular beam elements with circular cross section, which allow for 
elastic-plastic bending, axial tension, stress stiffening effects and large deformation analysis.  The 
tension yield strength is determined by tension tests of bolts, but for the results presented here the 
elastic limits were not exceeded and an elastic modulus of 210 kN/mm2 has been assumed. 

b) Washer, head and nut 
The washer, head and nut are modelled with infinitely stiff beam elements which ensure no 
flexure occurs.  This behaviour is assumed for simplicity of model formulation. Although slight 
bending was observed in tests, it is not expected that this will have significant influence on overall 
joint behaviour.  The washer is linked with the bolt shaft in the global Y-direction, allowing it to 
rotate independently to the head and nut.  Therefore the rotational constraint of the fastener results 
from the moment that is applied through the nut to the washer. 

c) Timber embedment for fastener 
The timber embedment for the fastener has been modelled with two pairs of elastic-perfectly 
plastic springs arranged below and above the fastener.  Properties are calculated from the results 
of embedment test data, from which the embedment strength and initial foundation modulus are 
taken.  One of the pairs represents timber deformation in the global Y-direction and the other in 
the global X-direction.  Contact elements have been used to model the interaction between the 
deformed fastener and the timber-embedment spring nodes (filled circles in fig 1).  Therefore it is 
possible to take into account both an oversized bolt hole and a slack washer.   

d) Timber embedment for washer 
The same applies for the embedment underneath the washers.  The behaviour of the springs is 
described by bi-linear load-slip curves according to the compressed area that they are representing 
underneath the washer.  To guarantee that each washer embedment spring moves with the washer, 
they are coupled with the global vertical displacement of the washer. 

The Newton-Raphson method was used to perform the non-linear analysis and the whole model is 
displacement controlled.  A fixed displacement is assigned to the springs’ end nodes on the right 
hand side timber to simulate the overall joint displacement (hollow circles).  For each time step, 
load is calculated from the summation of forces in the vertical springs on the right hand side timber. 

 

Fig 1  Schematic of model configuration  
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The model is set with the following parameters: bolt diameter (d), timber thicknesses (t1 , t2), bolt 
hole oversize, washer inner and outer diameter, possibility of slack washer, bolt preload, together 
with material parameters obtained from: 

a) Fastener embedment tests according to BS EN 383:1993 (embedment strength and foundation 
modulus – values w02 and w04 are used) 

b) Washer embedment tests (embedment yield strength, foundation modulus and post-yield 
hardening gradient) 

Model outputs are obtained in accordance with EN26891:1991 (initial joint stiffness determined 
from the modified initial slip) and EN 26891:1991 (resistance at a displacement of 15 mm). 

4. Laboratory Tests 
For the laboratory tests presented in this paper, M16 (d = 15.6 mm) joints were manufactured with 
an edge-distance of 55 mm (>3d) and an end distance of 128 mm (>7d) to prevent splitting of the 
specimens.  Eccentricity of the applied load was minimized by using notched steel plates joining the 
timbers to the test machine.  It was attempted to minimise friction between the timbers by the use of 
graphite powder on the sliding surfaces.  The timber used was C16 Sitka Spruce. 

An inserted strain gauge was used to measure the axial force in the centre of the bolt, having been 
previously calibrated against know direct tension loads.  Testing the bolt under in bending load 
confirmed that the gauge measurement was negligibly sensitive to flexure of the bolt.  For these 
tests, the faster was preloaded by tightening the bolt to 250 N.  During the tests, the global rotation 
of the bolt was calculated from the measurement of two displacement transducers arranged 
vertically under a rigid lever fixed to the bolt’s end. 
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Fig 2  Laboratory measurements and finite element model prediction (load-slip) 
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Fig 3  Laboratory measurements and finite element model predictions (bolt load and rotation) 
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Fig 2 shows the load-slip relationship for five replicate tests in comparison to mean values from 
Eurocode 5 prediction.  Measurements of bolt axial force and bolt rotation are shown in fig 3.  To 
compensate for variation in exact bolt hole oversize and starting position the test series curves have 
been shifted to the same value of initial slip. 

The results confirm that the improvement made in the published Eurocode 5 to take into account the 
‘rope effect’ compared to the 1994 draft results in better prediction of the joint resistance.  
However, the resistance still appears very conservative.  This stems from the fact that the strength 
reserve is not only caused by the ‘rope effect’ but also by the increasing effective embedment length 
of the fastener, which results from the rotational constraint. 

5. Discussion and Conclusion 
The graphs also show the predictions of the finite model for comparison.  In this case, the model 
does not include calculation of friction between the timbers.  The effect of rotational constraint is 
included which results in a good prediction of the actual load-slip behaviour and joint resistance.  In 
accounting for bolt strength reserve the present code does not consider any influence from unequal 
timber thicknesses. The strength reserve might be even more pronounced for the unsymmetrical 
case.  Better equations might be found to take into account the rotational constraint in the 
calculation of the load carrying capacity of bolted joints. 

In terms of the joint stiffness, in this case, the Eurocode overestimated the real stiffness while the 
model underestimated it.  This could stem from the neglected friction in the model, as the measures 
used to remove friction from the laboratory tests might not have been successful.   

The rotation of the bolt is predicted accurately by the model, with a slightly steeper gradient in the 
pre-yield range than afterwards.  Agreement between the prediction and measurement of axial force 
in the bolt was less good, with the model predicting a lower gradient in the post-yield range than 
observed in the tests.  

The project is supported by the School of the Built Environment, Napier University.  Sponsorship 
from Finnforest UK permitted participation in the World Conference on Timber Engineering.  More 
information about the project is available at http://cte.napier.ac.uk. 
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Summary 
The paper describes the development of a bespoke Finite Element program to model timber with a 
three dimensional lattice of single spring elements. These springs mimic meso-scale timber 
behaviour, namely the crushing and separation of fibre bunches by following a tri-linear load-
displacement curve. Strength and stiffness parameters for longitudinal, lateral and diagonal 
elements are randomised for heterogeneity. To save computing time, two specialised algorithms 
have been implemented to perform a nonlinear analysis faster than an iterative Newton-Raphson 
algorithm. The algorithms have been adopted and extended to suit a 3D lattice model for timber. 
Furthermore lattice elements have only been used in areas where plasticity and fracture is expected, 
with transverse isotropic continuum elements elsewhere. The general calibration procedure of this 
hybrid model to tested timber specimens of Sitka spruce (Picea sitchensis) is described. 

1. Concept Lattice Model 
Lattice models have been used widely for concrete, but have only recently been applied to timber, 
e.g. [1][2][3]. A clear advantage of modelling timber with a lattice is the possibility to predict brittle 
failure without prior knowledge of the failure location and therefore with no need for re-meshing 
the Finite Element (FE) model.  

The basic unit cell in a lattice has to be constructed to be periodically repeating in space (Fig. 1). In 
this lattice, each cell consists of six different types of elements. Longitudinally orientated springs 
transfer load in the X direction (grain direction) and lateral springs in the Y and Z direction. 
Diagonal springs resist shear in the XY, XZ and YZ plane, as well as providing additional X, Y and 
Z components. This can be simplified by the assumption of transverse isotropy, to four independent 
elements by equating the Y and the Z direction. Thus, elements in the XY plane are the same as 

Fig. 1  Lattice structure with longitudinal (red), lateral (green/blue) and diagonal (grey) 
“half” springs in one unit cell (left), load-displacement curve for spring i (top, 
right) and a definition of cv with mean and standard deviation (bottom, right) 
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their respective elements in the XZ plane. A complete nomenclature can be found at the end of this 
paper. 

In order to create a lattice with as few nodes as possible, they have been arranged in a diagonal 
checked pattern. Thus, instead of constructing nodes at each potential junction of springs only every 
second one is used. Each element follows a tri-linear load-displacement curve with limit strength 
and yield strength values respectively under tension and compression, followed by a softening or 
fracture line. 

Material heterogeneity can be implemented by assigning randomised strength (SC,j and ST,j) and 
stiffness (Kj) properties to springs based on a mean value for each spring type j (x, y/z, xy/xz and 
yz) and a coefficient of variation (cv). This coefficient is assumed to be 0.2 since it has only minor 
influence on the bulk model behaviour [2]. The growth rings can be taken into account as structured 
variation of properties in the lattice. This is implemented by mapping generated growth rings on the 
lattice and changing the mean strength and stiffness properties of lattice members according to their 
assumed position within these rings (section 1.2). 

1.1 Nonlinear Solution 

Former lattice models for timber, e.g. [1][2][3], adopted a simple technique to solve for the 
nonlinear solution: After assembling the global stiffness matrix, this system of equations is solved 
for a fixed displacement step. The resulting stress for each element is computed and checked if it 
exceeds its predefined maximum strength. Elements are removed accordingly and the process is 
repeated until no element fails. Then the next displacement is assigned. This algorithm is repeated 
until the final displacement step assigned or the system becomes singular. However, with this 
technique any accumulated elastic work stored in the lattice before breaking occurs is neglected. 
Since the model described in this paper will be used to perform contact and geometric nonlinear 
analysis in the future, the solution algorithm required a more general approach, as for example the 
Newton-Raphson algorithm. 

To further save computation time, a specialised technique [4] has been adopted. Jirásek and Bažant 
call it the “Method of Inelastic Forces” (MIF) and the “Step Size Control” (SSC) algorithm. The 
latter allows for faster computation by following the solution path through single linear steps from 
one element changing its stiffness to the next element changing. Thus, no additional iteration is 
necessary. Further, the MIF treats any change that would occur in the matrix due to a change in the 
element’s stiffness, as an added inelastic force that represents the difference between the system 
with changed stiffness and the elastic one. Thus, only the force vector has to be modified and it is 

not necessary to solve the global stiffness matrix 
again. The interested reader is referred to a more 
detailed description of this algorithm in the 
original paper [4]. For this research, the SSC 
method has been modified to allow for a tri-linear 
load-displacement definition of the spring 
elements as depicted in Fig. 1. 

1.2 Structured Heterogeneity 

Heterogeneity, on the level of the growth ring 
structure, is mapped on a lattice of the cell size  
of 2 x 1 x 1 mm (dx x dy x dz). This size results 
from a balance between acceptable computational 
effort for larger lattices and represented detail of 
the growth ring structure. The mean ring width 
measured from test specimens has been 5.47 mm, 
with a cv of 24.8%. Specimens with ring width less 
than 2 mm were discarded. This ensures that one 
growth ring encompasses at least two lattice cells. 

Several measurements were taken from the tested 
specimens. The cross section of each one (front 
and back) was scanned with an ordinary flatbed Fig. 2 Measured parameters for recreating 

a growth ring structure in the model 
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scanner. A programme was written that enables the user to draw 3-point circles onto the latewood 
of each growth ring in these images. By averaging the centre points of each circle, the assumed 
position of the pith can be determined. With this information the following parameters can be 
obtained from one specimen (Fig. 2): α, rpith, shiftr , mean ∆rdiff and mean rvar. 

Mean values are calculated along with their coefficients of variation from the specimens of one test 
series. This serves then as input parameters to create a random ring structure for the lattice model, 
based on the characteristics of tested specimens.  

1.3 Mapping the Density Profile 

In order to map the ring structure on the lattice, the 
simplest assumption would be to correlate stiffness 
and strength variation directly with density variation 
within a growth ring. Therefore, density 
measurements from Sitka spruce samples were taken 
and have been normalised. The experimental work 
was done by the chemistry department in the 
University of Glasgow, which used an Itrax density 
scanner [7]. Fig. 3 shows a density profile for one 
radial strip, plotted from pith to bark (blue line). Each 
peak represents the end of one growth ring. A good 
approximation of these lines is a fitted power function 
curve (red line) that encompasses one growth ring 
from one peak to the next one. The equation for these 
approximated curves is given in the left box of Fig. 4. 
The right box depicts the resulting curve for this 
equation for three rings. From several of these radial 
specimens mean values of min,iρ , idiff ,ρ , iexp,ρ  and their 
cv can be calculated, serving as further input 
parameters to generate a density profile for the model. 

Each individual full spring encompasses an area of the cross section of dy·dz for longitudinal and 
diagonal springs and 2·dy·dz for lateral springs, as shown in Fig. 4. The average normalised density 
of this area from a randomly generated profile is calculated. Finally, the mean strength and stiffness 
parameters for this particular spring are simply adjusted by multiplying this value with the original 
mean parameters. 

Fig. 4 Density profile mapped on lattice 
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2. Methodology 
As shown in the load-displacement curve definition of one spring i in Fig. 1, three types of mean 
parameters have to be adjusted: firstly, the mean stiffness values K that can be directly (with 
limitations) derived from E-moduli, secondly, the mean strength parameters SC and ST for each 
spring type that will be determined by trial and error, and thirdly, the parameters γT and γC that 
define the softening curve. 

All tested specimens came from one timber species, Sitka spruce (Picea sitchensis). 

Given that the timber behaves transverse isotropic on the small scale that it is modelled, it can be 
assumed that parameters in the Y and Z direction are the same. Thus, in summary, there are four 
independent mean elastic parameters (Kx, Ky = Kz, Kyz, Kxz = Kxy, Kyz), six independent mean 
strength parameters (SC,x, ST,x, SC,y = SC,z, ST,y = ST,z, SCT,xy = SCT,xz, SCT,yz) and two softening stiffness 
parameters in compression (γC,x and γC,y = γC,z). The remaining represent a very steep softening 
curve, thus (γT,x = γT,y = γT,z = γCT,xy= γCT,xz = γCT,yz ≈ −∞). 

While the stiffness parameters can be obtained from given E-moduli, the strength parameters are 
adjusted by means of comparisons between tested small clear specimens under various loading 
conditions and their respective FE models. Fig. 5 demonstrates the methodology of the calibration. 

2.1 Elastic Parameters 

The K values for a lattice can not be adjusted entirely freely to represent full anisotropic or simply 
transverse isotropic behaviour. The geometry imposes certain limitations. These could be overcome 
by introducing angular springs that act in between the existing springs in one unit cell. With this, it 
would be possible to adjust, for example, the elastic stiffness Kx and Kz independently from the 
shear modulus Gxz. 

However, this has not been done for this research as it adds considerably to the computational 
problem. In this model (without angular springs), calculating the possible elastic parameters from 
the independent spring stiffness of a lattice cell can be performed according to [5] and shall be 
presented here briefly. This can be achieved by equating strain energy stored in a unit lattice cell 
and energy stored in the respective continuum of the same volume. 

Fig. 5  Flowchart for the calibration process 
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The strain energy can further be written as: 

 (2) 

The former can be arranged as: 

 (3) 

A subsequent step involves equating both strain energies and connecting displacement u with strain 
ε, thus deriving the stiffness tensor C. At the final stage C can be written as: 

 (4) 

V represents the volume of the unit cell repeating in space (V=2·dx·dy·dz). The resulting stiffness 
tensor Cijkm of the size 3x3x3x3 can be transferred due to symmetry to the more widely used Voigt 
Notation with Cij of the size 6x6. From this, the E-moduli and Poisson coefficients can be directly 
obtained by calculating the inverse C -1. Thus, it is possible to calculate the elastic constants from 
assumed spring stiffness. However, as mentioned before, due to the geometry of the lattice only 
limited elastic moduli can be obtained with certain Ks. Therefore, a program was written that 
optimises the K values to find relatively close E-moduli and Poisson coefficient predictions. 

As input values, the E-modulus in the longitudinal direction was measured from tension test data 
(Ex = 9792 N/mm²). The remaining E-moduli and Poisson ratios were then determined with ratios 
taken from the Wood Handbook [6]. Since it is assumed that the material behaves transverse 
isotropic on the small scale of the lattice cells, several elastic parameters are the same. For these 
instances the mean value is taken as shown in Table 1. 

The best fit was achieved by optimising a target function, which is the sum of squared, normalised 
differences between the calculated elastic parameter and the target parameter (E-modulus, shear-
modulus and Poisson ratio). The optimisation routine resulted in the following parameters. 

Table 1  Determination of elastic parameters 

Elastic 
Continuum 
Parameters 

Target 

[N/mm²], [-] 

Result 

[N/mm²], [-] 

 Lattice 
Stiffness 

Parameters 

Result 

[N/mm] 

Ex 9792 9608  Kx 1423.5 

Ey = Ez 592 681  Ky = Kz 357.3 

Gxy = Gxz 612 557  Kxy = Kxz 1392.2 

Gyz not fitted to 325  Kyz 1297.9 �
xy = �xz 0.43 0.4862    �
yz = �zy 0.34 0.3719    �
yx = �zx not fitted to 0.0345    

fit  �K  0.0635    

Using these resulting K values for the lattice and resulting E, G, ν for solid elements, which adjoin 
the latter, they will both behave in the same way as far as bulk elastic properties are concerned 

2.2 Strength Parameters 

Five different calibration tests have been undertaken to obtain load-displacement data for simple 
stress states: a tensile, shear and cleavage test along with compression tests in the longitudinal and 
lateral direction. These results serve as an input to calibrate the lattice’s strength parameters. 

continuumcell UU =
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The first three of these types of tests shall be presented here. A depiction of the respective test 
specimens and FE models is shown in Fig. 6. The red arrows and green triangles represent the 
applied forces and boundary conditions respectively. 

2.3 Program Output 

As one of the postprocessor’s features, the FE program generates output files in form of 3D 
surfaces. Individual layers of geometric data of the deformed model as e.g. the lattice elements, 
solid elements and boundary conditions can be exported. These surfaces can be visualised with a 
rendering program (e.g. Bryce). To picture the fracture path the FE program generates surfaces (two 
for each plane in the xy, xz and yz-direction due to the shifted cell arrangement) with different 
shades of red according to the amount of broken links that this surface encompasses, see Fig. 7. 
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Fig. 6  Model depiction of three test arrangements (from the top left): cleavage (y/z), shear (xy) 
and tension (x). Note that only part of the specimen is modelled with a lattice, for the 
remainder transverse isotropic elastic solid elements are used (grey area) 
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Fig. 7 Model depiction of a cleavage, shear and tension test, lattice colour represents variation 
in elastic and strength properties, influence of growth ring structure on fracture path for 
model and tests pictured (bottom, left) 
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3. Preliminary Results 
After a preliminary adjustment of the strength parameters ST,x, ST,y/z, SCT,xy/xz, load-displacement 
graphs can be obtained. They are plotted in Fig. 8, along with a box plot of the stiffness and 
maximum load of the model and experimental tests. Similar maximum loads are observed among 
model and experimental results for all three loading conditions and can be fine-tuned further. 

However, predicted and measured stiffness, due to the inherent limitation of the lattice cells to fully 
model the ratios of elastic properties, show less agreement. Furthermore, post peak behaviour in the 
experimental shear tests was more pronounced than the model’s prediction, which after a short 
plastic deformation shows brittle fracture. This probably stems from the wide meshed lattice that is 
used for these relative small shear specimens. Since the model allows adjustment of the softening 
curve of a spring (γT,j), this could serve to be another parameter to adjust for bulk post peak 
behaviour. However, cleavage models, using a denser mesh, showed better agreement in this regard. 

Variation in the system’s properties was in all cases predicted to be smaller than observed ones. As 
an initial assumption for these models, the density was mapped directly without any factor on the 
lattice’s properties. Better model predictions might be obtained by applying a factor to the density 
variation for specific spring types. 

4. Discussion, Conclusions and Acknowledgements 
Lattice models seem to be a reasonable approach to model fracture behaviour. Comparisons 
between experiments and lattice models show that realistic predictions can be made in terms of 
stiffness, maximum load and fracture path. Heterogeneity was implemented by creating an artificial 
growth ring structure. This has a significant influence on the fracture path which can be observed in 
the model as well as in tests (see cleavage model in Fig. 7).

Fig. 8  Load-displacement curves for cleavage, shear and tension tests, box plots show 
variation in K and Smax for model (red) and experiments (blue) 
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However, since it was important to minimise the computational effort various techniques and 
approximations were applied. For example, one major drawback is that the lattice does not perfectly 
represent transverse isotropy (i.e. can not be adjusted freely to any given set of elastic properties). 
The only solution, to use angular springs, leads to even more strength parameters that need to be 
determined and to more computation time. 

The authors acknowledge the experimental work for measuring density samples taken place in the 
Agricultural & Analytical Chemistry Department at the University of Glasgow. Furthermore, they 
want to express their gratitude for the financial support from the Royal Academy of Engineering, 
Edinburgh, which enabled the participation in the WCTE conference. 
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Nomenclature �  angle between Y-axis and vector from lattice centre to pith [rad] �, �, C stress, strain and elasticity tensor  [N/mm², -, N/mm²] 
ρ(r) normalised density at radial distance r  [-] 

idiff ,ρ  difference between max normalised density and min for ring i  [-] 
iexp,ρ  exponent parameter in approximated, normalised density function for ring i [-]  

min,iρ  minimum parameter in approximated, normalised density function for ring i  [-] �
xy Poisson ratio (load applied in X and displacement in Y) [-]  
C,x,i parameters defining compression softening curve for spring i in X  [-] ¡ probability density [-] �, ¢, cv mean value, standard deviation, coefficient of variation (�/¢) [N, N/mm,-] 

dx lattice spacing in X  [mm]   
Ex, Gxy E-modulus in X, shear modulus in XY-plane [N/mm², N/mm²] 
F force in one spring [N] 
i,j,k,m arbitrary variables [-] 
KTest,Kmodel overall stiffness for test and model [N/mm, N/mm] 
Kx mean stiffness parameter in X  [N/mm] 
Kx,i stiffness parameter in X for spring i  [N/mm] 
l(b) length of vector n(b) [mm] 
n(b) normalised vector of spring (b) in unit cell [-] 
Nb number of half springs in one unit cell (18) [-] 
Pc,i vector from pith to spring i [-] 
r, ri, £r i radial distance from pith, radius of ring i, ring width of ring i [mm, mm, mm] £rdiff,i difference between ring width of ring i and ring i-1 [mm] 
rpith  distance from lattice centre to pith  [mm] 

shiftr  parameter defining position of specimen in centre growth ring [-] 
rvar difference between radius of ring i, front and backside [mm] 
SC,x,i individual strength parameter for tension in X for spring i  [N] 
ST,x mean strength parameter for compression in X [N] 
Smax,test/model maximum load for tests and model [N] 
u displacement in one spring [mm] 
U strain energy  [N/mm²] 
V volume of lattice unit cell [mm³] 
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