

Enhanced Event Time-Lining for Digital Forensic

Systems

Colin Symon

Submitted in partial fulfilment of

the requirements of Edinburgh Napier University

for the Degree of

Computer Networks & Distributed Systems (Hons)

School of Computing

November 2009

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 2

Authorship Declaration

I, Colin Symon, confirm that this dissertation and the work presented in it are my own

achievement.

Where I have consulted the published work of others this is always clearly attributed;

Where I have quoted from the work of others the source is always given. With the

exception of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I have

contributed myself;

I have read and understand the penalties associated with Academic Misconduct.

I also confirm that I have obtained informed consent from all people I have involved

in the work in this dissertation following the School's ethical guidelines

Signed:

Date: 23rd November 2009

Matriculation no: 05002526

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 3

Data Protection Declaration

Under the 1998 Data Protection Act, The University cannot disclose your grade to an

unauthorised person. However, other students benefit from studying dissertations

that have their grades attached.

Please sign your name below one of the options below to state your preference.

The University may make this dissertation, with indicative grade, available to others.

The University may make this dissertation available to others, but the grade may not

be disclosed.

The University may not make this dissertation available to others.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 4

Abstract

In a digital forensics investigation, log files can be used as a form of evidence by

reconstructing timelines of the computer system events recorded in log files. Log files

can come from a variety of sources, each of which may make use of proprietary log

file formats (Pasquinucci, 2007). In addition, the large volume of information to be

filtered through can make the job of forensic examination a difficult and time

consuming task.

The aim of this thesis is to explore methods of logging and displaying event

information which is gathered from computer systems, specifically in relation to the

collection, correlation and presentation of log information. By means of a literature

review, it has been found that by correlating and storing log information in a central

log database it should be possible to construct a system which can access this

information and present it in the form of a timeline to the investigator. The important

contribution that visualisation techniques can bring to log analysis applications has

been made by Marty (2008, p.5) by stating that “a picture is worth a thousand log

records”.

A prototype system has been produced which makes use of the latest technologies

to enhance current methods of displaying log data, such as those employed by the

Microsoft Windows Event Viewer. The prototype system, developed using a rapid

prototyping methodology, separates the log management process into collection,

correlation and storage, and presentation. Through use of a standard XML log format

and central storage of log information in a Microsoft SQL Server 2008 database, the

prototype aims to overcome the issue of proprietary log formats and the difficulty in

correlating data obtained from different sources. A log and timeline viewer application

has been developed using C#, Windows Presentation Foundation and .NET

Framework technologies, enabling the digital forensics investigator to filter event

records and visualise timelines of events by means of bar, line and scatter charts.

Through the means of user evaluation it has been found that the prototype system

improves upon the Microsoft Windows Event Viewer from overview and filtering

perspectives. By means of technical experimentation, it has been found that there

are scalability issues with the way in which the prototype system imports log

information contained within XML files, into the database component. The time taken

to import log records, of various sizes, into the database was measured. It was found

that for files larger than 2MB, the time taken was longer than two users, of the seven

who gave feedback on of the system, would be prepared to wait. Further

development into the visualisation of timelines has been suggested as the prototype

system is somewhat limited in its ability to provide details of the links between digital

events.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 5

Table of Contents

Authorship Declaration .. 2

Data Protection Declaration... 3

Abstract ... 4

List of Tables ... 7

List of Figures .. 8

1 Introduction .. 9

1.1 Context ... 9

1.2 Aim and Objectives .. 9

1.3 Structure ... 10

2 Literature/Technology Review .. 11

2.1 Introduction .. 11

2.2 Background to Digital Forensics ... 11

2.3 Investigation Process ... 12

2.4 Log files as a source of evidence ... 12

2.4.1 Unification of logs from different sources (correlation) 13

2.4.2 Time stamping ... 14

2.5 Visualisation of log data ... 14

2.6 Conclusions .. 15

3 Design and Methodology ... 17

3.1 Introduction .. 17

3.2 PACT Analysis ... 17

3.3 Choice of programming language .. 17

3.4 Development method ... 18

3.5 Components ... 18

3.5.1 The Database .. 19

3.5.2 Windows Event Logs ... 20

3.5.3 File Watcher... 21

3.5.4 Process Logger .. 21

3.5.5 Log and Timeline Viewer ... 21

3.6 Testing and Experiment Design ... 22

3.6.1 Functionality Testing .. 22

3.6.2 Technical Testing (impact on system, robustness and scalability)......... 22

3.6.3 Experiment 1 – Time taken to load XML log data into the database 23

3.6.4 Experiment 2 – Time taken to present chart and grid data 23

3.6.5 Experiment 3 – Memory usage .. 23

3.6.6 Experiment 4 – System robustness with incorrect user actions 23

3.6.7 User feedback and evaluation ... 24

3.7 Conclusions .. 24

4 Prototype Implementation .. 25

4.1 Introduction .. 25

4.2 Event Logging Applications .. 25

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 6

4.2.1 Common functions ... 25

4.2.2 Window Event Log Reader .. 25

4.2.3 File Watcher... 28

4.2.4 Process Logger .. 29

4.2.5 Log and Timeline Viewer ... 30

4.3 Conclusions .. 33

5 Testing Execution and Results ... 34

5.1 Introduction .. 34

5.1.1 Initial testing - functionality ... 34

5.1.2 Experiment 1 – Time taken to load XML log data into the database 35

5.1.3 Experiment 2 – Time taken to present chart and grid data 36

5.1.4 Experiment 3 – Memory usage .. 38

5.1.5 Experiment 4 – System robustness with incorrect user actions 39

5.2 Implementation and findings of user feedback ... 40

5.3 Conclusions .. 42

6 Evaluation .. 43

6.1 Introduction .. 43

6.2 Evaluation of technical implementation and user feedback 43

6.2.1 Functionality and Usability ... 43

6.2.2 Performance and Scalability .. 44

6.2.3 Robustness .. 45

6.3 Professional Review ... 45

6.4 Critical analysis of work carried out .. 46

6.4.1 Evaluation of implementation and testing .. 46

6.4.2 Project management .. 47

7 Conclusions and Future Work .. 48

7.1 Introduction .. 48

7.2 Conclusions .. 48

7.3 Future work .. 49

8 References ... 50

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 7

List of Tables

Table 1: Time to load into database results. Full CPU utilisation. 35

Table 2: Impact of threading results. Full CPU utilisation. ... 36

Table 3: Time to load into database results. 50% CPU utilisation. 36

Table 4: Impact of threading results. 50% CPU utilisation. .. 36

Table 5: Appearance of chart and time to present data ... 37

Table 6: Memory usage of viewer application ... 39

Table 7: Memory usage of log gathering applications ... 39

Table 8: Robustness test results ... 40

Table 9: User feedback ratings. Comparing systems. ... 41

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 8

List of Figures

Figure 1: Overview of prototype system .. 19

Figure 2: Database entity relationship diagram ... 20

Figure 3: Reading event log records ... 25

Figure 4: Saving XML code ... 26

Figure 5: Loading progress output code .. 26

Figure 6: Event Reader Application screenshot .. 27

Figure 7: Example system log event record (XML) .. 27

Figure 8: Setting up the FileWatcher code .. 28

Figure 9: Capturing events code ... 28

Figure 10: Example file watcher event record (XML) ... 29

Figure 11: Example process event record (XML) .. 29

Figure 12: Class Diagram of viewer application .. 30

Figure 13: Use of threading code .. 31

Figure 14: Log and Timeline Viewer screenshot ... 31

Figure 15: XAML defining the data grid ... 32

Figure 16: Code defining a ZedGraph Line Chart .. 33

Figure 17: Bar chart - 3 months ... 38

Figure 18: Bar chart - 6 months ... 38

Figure 19: Bar chart - 12 months ... 38

Figure 20: Problems with Red/Green colour scheme (Vischeck, 2009) 44

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 9

1 Introduction

1.1 Context

Digital forensics involves the analysis and interpretation of data gathered from

computer systems which are being investigated. Typically, this involves analysing a

variety of data sources such as files, log data, web browser histories and other

information stored by the computer‟s operating systems and the applications run on

it. Some of this information, such as debug logs, is intended to provide debugging

information whereas other logs are generated solely with the purpose of recording

information which may be of use in the event of a digital investigation (Casey, 2008)

– this would typically be done in a secure corporate environment where a degree of

monitoring is accepted.

Traditionally, the process of gathering this digital evidence has been time-consuming

and without automated techniques investigators have difficulties establishing links

between events, and filtering out data of interest. Even with systems such as the

Microsoft Windows Event Viewer, there is a lack of visualisation technology which

can make identifying patterns and anomalies difficult unless the intrusion time line is

already known.

Digital Forensic Software, such as EnCase (Guidance Software, 2008), provide a

means for the digital investigator to gather potential evidence in an automated and

forensically sound manner. By taking this system further, and with the use of

visualisation technologies such as bar charts, it should be possible to enhance

current systems and provide investigators, as well as other interested parties, with

the facilities required to establish timelines of events and identify unusual activity

without resorting to manually reading through large log files, browser histories and

other digital artifacts.

1.2 Aim and Objectives

The aim of this report is to explore methods of logging and displaying event

information which is gathered from computer systems, specifically in relation to the

collection, correlation and presentation of log information. In order to support this aim

and provide a means of critical evaluation, the following objectives were specified:

 Review current literature and technology relating to digital forensics, log

management and visualisation of log data. Determine the current issues and

suggested solutions in relation to event recording, storage and presentation.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 10

 Design a prototype system which enhances current methods of resolving

difficulties surrounding the collection, correlation, storage and presentation of

log data by implementing features suggested by relevant literature.

 Produce the prototype as per the design and test the system‟s reliability,

impact on the host system and performance.

 Seek user feedback to uncover patterns of opinion and further test the

prototype by assessing users‟ experiences.

1.3 Structure

This thesis has the following structure:

Chapter 1 – Introduction provides background information, puts the work in context

and details the aim and objectives of the project.

Chapter 2 – Literature review investigates and discusses the work of others being

carried out with relation to digital forensics – in particular the digital investigation

process, log management and visualisation of log data.

Chapter 3 – Design of the prototype and justification for design decisions.

Explanation of the tests to be carried out, any expected results and the reasons for

performing the tests.

Chapter 4 – Implementation of the prototype. Discussion of how the implementation

progressed, problems encountered and any changes made to the design based on

experiences.

Chapter 5 – Details of how the testing was carried out and the results found.

Chapter 6 – Evaluation of the prototype‟s design post-implementation and discussion

of the test results in relation to the usability, performance and robustness of the

solution.

Chapter 7 – Conclusions and Future Work, reviewing the main findings and results

and discussion of where further work could be carried out.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 11

2 Literature/Technology Review

2.1 Introduction

The purpose of this literature review is to gain an understanding of Digital Forensics

in general in order to establish the context in which event time-lining systems are

used. The review then focuses on how data can be gathered and used in an

investigation through the use of event logging and management tools and then be

presented using time-lining visualisation techniques.

By reviewing how technologies have been developed and issues which have been

identified, it will be possible to design a system which, using the latest standards and

technologies, meets the goal of improving upon the ability of current systems to

gather, correlate and present event information in the form of a timeline.

2.2 Background to Digital Forensics

Many computer security tools have been created which aim to prevent criminals

gaining entry to systems or limiting the damage they can do. Products such as

Firewalls, Anti-Virus and Web-Filtering aim to prevent damage to the systems in the

first place and help to enforce an organisation‟s Information Security Policies. Even

where these security products have not prevented an intrusion, the event records

they hold are often the source of evidence which can form part of a digital forensics

investigation.

There are various definitions of digital forensics in literature. US-CERT provides a

definition in their paper on Computer Forensics:

“Forensics is the process of using scientific knowledge for collecting,

analyzing, and presenting evidence to the courts” (US-CERT, 2008)

This definition of forensics covers the essence of digital forensics – to investigate the

incident, by extracting digital evidence, and present the findings in a way that is

acceptable in a court of law or in a company‟s internal disciplinary hearing.

Just as a police detective pieces together events in order to build up a picture of a

robbery and the events leading up the act, a digital forensic investigator analyses a

variety of pieces of digital evidence and pieces them together to form a timeline. In

digital forensics, evidence might include logs of file access, operating system events,

and firewall activities, copies of emails and records of web access. According to the

Home Office Voluntary Code of Practice (2003), recording of digital events forms part

of legislation, such as the Regulation of Investigatory Powers Act 2000 and the Anti-

Terrorism, Crime & Security Act 2001. The issue of retaining increasing amounts of

information makes the job of the digital investigator ever more challenging as there

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 12

can be millions of pieces of data to extract and filter through in order to gather

relevant evidence. To facilitate the collection and filtering process, digital forensic

investigators typically use software tools which can gather evidence from a number

of sources and present it in a consistent format, such as a timeline.

2.3 Investigation Process

Forensic investigations, in general, consist of five main steps (Marcella & Menendez,

2008, p. 5):

1. Identification - The forensic investigator needs to be able to identify potential

sources of evidence. The Electronic Crime Scene Investigation Guide: A

Guide for First Responders (National Institute of Justice, 2001, pp. 10-11)

suggests a number of potential sources of evidence held on computer

systems; user-created files such as documents and emails, user-protected

files such as compressed and encrypted files and computer-created files such

as a web browser‟s cookies, history files and log files.

2. Collection - At this stage the investigator gathers together the evidence from

the various sources identified at the previous step.

3. Preservation - Copies of digital evidence are made. Marcella and Menendez

(2008, p.6) suggest that this step is carried out to ensure the evidence is

maintained in its original form, to enable the investigator to carry out their work

without damaging the evidence and in the event that something goes wrong

the investigator can return to the original state by making a new copy of the

original evidence.

4. Interpretation – Processing the collected digital artifacts by:

“Determining its integrity, feasibility, usefulness to provide an opinion on

the relevance of the electronic evidence to the case at hand” (Marcella

& Menendez, 2008, p. 6).

5. Communication - This is the final stage of the investigation process. In the

case of a legal inquiry, the investigator may have to explain their findings in a

court of law.

2.4 Log files as a source of evidence

Use of log files enables a digital forensic investigator to trace events. In order to do

this “we need at least to record Who has done What and When” (Pasquinucci, 2007).

It is suggested that “log data is an abundant, freely available resource that is not

current utilised or exploited” (Porter, 2003). Porter (2003) highlights the problem of

identifying unusual activity within audit trails by stating that the average delay in

discovering internal fraud is 18 months. Porter (2003) suggests that correlated log

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 13

data, with technology to identify patterns, can be used to identify potential fraudulent

activity at an early stage.

2.4.1 Unification of logs from different sources (correlation)

Typically in an investigation, logs from many sources will be brought together.

Pasquinucci (2007) suggests that in order to correlate these logs automatically and

efficiently the format of logs imported needs to be the same, with events classified in

the same way and stored in a standard way (such as XML). Pasquinucci (2007)

continues by suggesting that in reality this is difficult to achieve due to the vast array

of log generating software already in use which uses propriety methods of logging

data.

Schuster (2007) describes how the Unix Syslog operates in comparison to the

Microsoft Windows NT and Microsoft Windows Vista formats. Syslog records both the

constant and variable parts of an event record as a line of plain text in a log file.

Windows NT stores the log information in a different way. Schuster (2007) explains

that the constant information is held in a table, separately from the variable data. This

has the advantage over Syslog as removing the constant data from the log file

reduces the overall size of logs. Schuster (2007) suggests that the Microsoft

Windows NT method required the entire log file to be loaded into memory and this

caused a problem for servers with limited resources. Schuster (2007) then goes on to

examine the new XML based format used by Microsoft Windows Vista, suggesting

that the new method is more flexible and uses fewer resources than the techniques

employed by Microsoft Windows NT. Schuster (2007) explains that the new format

will pose difficulties for forensic investigators, stating that “without question the

undocumented, proprietary binary XML format that Microsoft designed will be a major

obstacle” (Schuster, 2007).

In order to overcome the problems caused by proprietary, often undocumented, log

formats, the MITRE Corporation is coordinating work on Common Event Expression

(CEE) which aims to become “the accepted way to describe and communicate

events in log files” (The CEE Board, 2008).

The CEE Board proposes a new framework for event logging – producing standards

for describing, storing and transporting log information. The CEE board argues that

their framework will succeed because it takes in the wider issue of event logging

rather than other frameworks which “only targeted a portion of the larger issue or

were tied to individual vendors” (The CEE Board, 2008).

This standard for logging event data is still in development so other solutions are

required meantime. Forte (2004) highlights the issue of log file correlation and

suggests that unification is required:

“Let us imagine, for example, an architecture in which we have to correlate

events recorded by a website, by a network sniffer and by a proprietary

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 14

application. The website will record the events in w3c format, the network

sniffer in LibPcap format, while the proprietary application might record the

events in a non-standard format. It is clear that unification is necessary here.”

(Forte, 2004).

In the context of log data from Intrusion Detection Systems (IDS), Livnat, Agutter,

Moon, Erbacher and Foresti (2005) discuss how correlation by common attributes

can overcome the problem of occasional false positives while highlighting real issues:

“One approach to resolving these issues is to correlate various alerts by

common attributes. This approach is based on the premise that while a false

positive alert should not exhibit correlation to other alerts, a sustained attack

will likely raise several alerts. Furthermore, real attack activities will most likely

generate multiple alerts of different types.” (Livnat et al., 2005).

In addition to the problem of logging event data in a consistent way there are issues

surrounding the accuracy of timestamps, used to establish the order of events.

2.4.2 Time stamping

In order to correlate the log data for the production of timelines, the timestamp

recorded by logs needs to be recorded in a constant and reliable manner. Gorge

(2007) suggests that NTP (Network Time Protocol) may be used by system

administrators. Forte (2004) has a different view about NTP suggesting that NTP is

vulnerable and that in a distributed system a time stamping appliance can be used to

handle the events. This appliance is synchronised with atomic clocks and provides a

high degree of reliability.

2.5 Visualisation of log data

The issue of presenting log information is a serious one:

“A great deal of time is wasted by analysts trying to interpret massive amounts

of data that is not correlated or meaningful without high levels of patience and

tolerance for error” (Teerlink & Erbacher, 2006).

Teerlink and Erbacher (2006) go on to suggest that tools such as EnCase and Helix

do not currently provide advanced visualisation features in the process of data

correlation and analysis.

Marty (2008, p.5) sums up the need for visualisation of log data, “a picture is worth a

thousand log records”. Marty (2008, p.80) considers that issues can occur during

visualisation where by a trade off has to occur when deciding on how much data to

show. In the case of a histogram, it is suggested that the time resolution is critical for

being able to identify when events were logged, however too many bars become an

issue if the resolution is too high.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 15

Shahar, Goren-Bar, Boaz and Tahan (2005) developed KNAVE-II, a system which

provides a graphical interface with time-lining capabilities for clinical data. Through

their research it was proved that users were able to query the data more quickly and

accurately than using conventional methods such as paper charts or Excel

spreadsheets.

In addition to the issues of how visualisation can benefit a time-lining system over

traditional text based systems, work has been done on how using colour in the

design can improve visualisation by conveying extra information:

“An effective design presents information in an organized manner, making it

easy for the viewer to understand the roles and the relationships between the

elements.” (Stone, 2006, p.1)

Stone (2006) suggests that applying the correct principles, when using colour, is

important in order to draw attention to the important elements and ensure that the

message being presented to the end user is legible.

Shniederman (1996) has a mantra which describes the basic principles a design

should follow for visualising data of “Overview first, zoom and filter, then details-on-

demand”. Shniederman (1996) suggests that the user of a system will first wish to

see an overview of the data, then zoom in on an area of interest, filter out unwanted

data and finally see the required details. He continues by suggesting that dynamic

advanced filtering options allow the user to use OR and AND functions in order to

filter the information as required.

2.6 Conclusions

From this literature review, the process by which digital forensic investigators find

digital evidence, process it and present it in such a way as to establish timelines of

the events surrounding an incident has become clear.

It is clear that automation significantly improves the ability of an investigator to gather

data from a variety of log files and correlate log data from different systems which

have different ways of storing their log data. There are efforts to standardise event

logging, however current systems do not yet implement these standards, so log

correlation is necessary to integrate logs from different systems, XML for instance

can be used to store data in a common way. The issue of time stamping log data is a

serious one and the current method used by many has involved a reliance on NTP.

This has potential security vulnerabilities which can be overcome by having a secure,

dedicated time stamping device. Once log data has been correlated, it is then

possible to establish links between events and present this information in a timeline.

It has been suggested that visualisation, in particular time-lining, can vastly improve

the efficiency of an investigator when looking through evidence, enabling them to

spot potential issues and anomalies in log data. Users typically see an overview of

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 16

the data before zooming, filtering and finally viewing specific details. The use of

colour in visualisation is important as used correctly it can enhance the user

experience and draw attention to important information. In another domain, it has

been found that a bespoke visualisation tool out-performs paper-based data and

Excel spreadsheets.

It is now possible to take forward the solutions found in the literature review with the

goal of developing a prototype system which improves on existing event logging and

time-lining systems. Specifically it will be possible to overcome log correlation

difficulties by utilising a standard log format in XML, store log information centrally in

a database and present time-lines of event patterns in a visual manner to the user of

the prototype, such as a forensic investigator or system administrator. The issue of

accurate time stamping, although undoubtedly important, will not be taken forward as

it has been considered to be outwith the scope of this thesis which focuses mainly on

the presentation of event information to the user.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 17

3 Design and Methodology

3.1 Introduction

In order to produce a system for enhancing current methods of digital forensic

investigation by standardising the way event information is recorded, by correlating

log information and by improving presentation to the investigator, it is essential to

have an informed and well thought out design. This chapter includes a high level

design of the entire system and its individual components. The work carried out in

Section 2 and the forthcoming People Activities Context Technologies (PACT)

analysis will influence and guide the design decisions taken; these will be discussed

during the design stage and later reflected upon during the evaluation.

By specifying tests for each component, and for the system as a whole, it will be

possible to evaluate the efficiency and effectiveness of the design and of the

implemented system which evolves from it.

3.2 PACT Analysis

In order to establish some principles around the design, it was decided that a PACT

analysis would help with the decisions to be made around the user interface and

monitoring components:

People - The system is likely to be of most use to forensic investigators, IT security

teams and IT managers. It can safely be assumed that these people will have a good

working knowledge of computing systems and the Windows operating system.

Activities - The activities undertaken will be monitoring certain user activities,

collecting the logged data in an organised and quickly searchable way and displaying

this log data in such a way that patterns and anomalies can be identified whilst still

allowing the user to drill down into the details and establish the sequence of events.

Context - The system is to be used in the event of an investigation into activity

carried out on machines. It can also be used as a monitoring device to highlight

potential malicious activity.

Technologies - The system could be run on a variety of machines; laptops in the

field, desktops in an office etc. Monitoring systems need to run on the machines

under investigation. Log data will be stored centrally once imported into the system

(database), this can be accessed from different systems running a user interface.

3.3 Choice of programming language

For the implementation of the system, a choice had to be made as to which

programming language would be used. Given the timescale involved in order to

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 18

complete the project it was clear that the options were Java, which had previously

been studied, or Visual C# 2008 (C#) in conjunction with the .NET framework.

It has been decided that C# will best serve the project as the large quantity of class

libraries available for interacting with the Windows operating system, Microsoft SQL

Server platforms and support for the third party ZedGraph set of classes, for creating

line and bar charts (ZedGraph, 2007), will be of great use for visualising log data. In

theory the learning curve for switching to C# from Java (given previous experience

with Java) will not be too steep as the two languages are similar in their syntax and

operations. Additionally, the use of the Windows Presentation Foundation

development platform means the latest methods can be used for developing the user

interface and binding information to user interface objects.

3.4 Development method

It was decided that a rapid prototyping design and implementation method would be

best suited to the project. According to UsabilityNet (2006), this enables a swift

development phase and provides a demonstration system on which it is possible to

perform both technical and user evaluation. Given the limited time available for

implementation and the requirement of having a system on which to perform

evaluation, rapid prototyping was chosen over paper based prototyping or a more

involved implementation. In addition, such a rapidly developed prototype can be used

as the basis for further development and the creation of a fully functional system.

3.5 Components

The nature of the system, determined from the PACT analysis, suggests that a

modular approach to the design and implementation would be appropriate. A

modular approach will allow the design to be implemented in stages with the aim of

creating a more robust solution, each component being subject to testing before

being included in the overall system. A modular approach will also allow for changes

to be made to individual components (such as the database element), allowing for

more detailed performance evaluation.

From the literature review, it is clear that in order to improve security and keep a

centralised collection of data which can then be analysed, it is necessary to operate

logging applications on client machines to gather the data which is then stored in a

secure manner on a central server (the database). These applications should have a

small memory footprint and will be run in the background so a console based

interface is most appropriate. In order to ensure date and time consistency, all times

will be converted to Coordinated Universal Time (UTC). This overcomes issues of

daylight saving and multiple time zones.

The design, shown in Figure 1, covers each of the components which together make

up the system. Each logging component will store its recorded events in a XML

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 19

format in order to aid in the further processing and storage of the log data. Each XML

log entry will incorporate a SHA-256 hash of the log data contained within the record.

This will allow for checks to be made to ensure there is no data corruption and will

highlight if any data has been modified in the log entry fields. SHA-256 was chosen

over SHA-1 as the National Institute of Standards and Technology (2009) has

indicated that SHA-1 is not sufficiently collision resistant and therefore new

applications should use SHA-2 functions, such as SHA-256.

Logging applications run on

client machines and store

recorded events in XML format

Logs are imported into

and storage centrally in

the MSSQL database

Investigator runs viewer

application which connects

to database to view

correlated log information

Figure 1: Overview of prototype system

3.5.1 The Database

The database component will provide a secure and efficient means of storing the

entire log data collected from client machines. Given the scale of data and the

security requirements, especially to prevent modification of data, it has been decided

that the Microsoft solution of SQL Server 2008 will be used. This will also provide the

means of linking in the data from clients and outputting data to a log viewer and

visualisation component using the database classes and methods provided by the

.NET framework.

In addition to the storage of the log data, the database component will also be

responsible for the correlation and organisation of the data – such as using sort and

searching capabilities, accessed through the Log and Timeline Viewer component.

An entity relationship diagram shown in Figure 2 highlights the relationships between

the sets of data collected and how the data is to be organised within the database

system.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 20

Hub

PK id int

 log_type varchar(20)

 event_time datetime

 machine_name varchar(15)

 user_account varchar(120)

ApplicationLog

PK,FK1 id int

 event_id bigint

 event_data nvarchar(max)

SystemLog

PK,FK1 id char(10)

 event_id bigint

 event_data nvarchar(max)

SecurityLog

PK,FK1 id int

 event_id bigint

 event_data nvarchar(max)

ProcessLog

PK,FK1 id int

 event varchar(7)

 process_name nvarchar(max)

FileLog

PK,FK1 id int

 event varchar(10)

 file_path nvarchar(max)

Figure 2: Database entity relationship diagram

Data types for each attribute have been based on the information to be stored. For

example for storing the machine name a 15 character limit has been set. According

to Microsoft (2009) 15 characters is the maximum length of a machine name. For the

purposes of the prototype the machine name has been used to uniquely identify

computers as in the controlled test environment no two machines will have the same

name. In a larger scale system it could be possible that two or more machines would

have the same name. Therefore a more complex solution would have to be devised

such a hash from a series of variables possibly involving machine name, processor

serial number and the MAC address of the network interface.

3.5.2 Windows Event Logs

Although the Windows Event Log service has been found to have security issues in

previous studies, it can still provide useful information in the event of an investigation.

A module will be dedicated for gathering the event log data and organising it for

storage by the database.

The module will gather event data from the Application, System and Security logs

from client machines of interest to the user of the system. Unlike the other modules

concerned with collecting client machine data, the event log module will use the built

in classes provided with the .NET framework to query the Windows Event Log

service on client machines and gather in the data. As there is little control over the

formatting of the event log data at the time of the client machine writing the logs this

module will tidy the data and organise it, in a XML format, to be consistent with the

other data to be held in the database.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 21

3.5.3 File Watcher

The File Watcher module sits on the client system and logs various directory and file

changes. These include file creation, deletion, renames and changes to file contents.

By making use of the FileSystemWatcher class which is provided as part of the .NET

framework, it will be possible to define specific folders and file types to monitor. A

careful balance will have to be made to ensure malicious activity is logged without

logging too many false positives which would increase the processing required to

filter through log data and increase the storage requirements. For example the

system could be configured to record the creation and deletion of .doc files within “My

Documents” and the creation, deletion, renaming or changes to key system files (.dll,

.cab, .exe) within the C:\Windows folder.

3.5.4 Process Logger

The Process Logger module records the starting and stopping of processes on the

client machine. The process name and process ID are recorded in addition to the

other information which is standard across the modules. The starting and stopping of

the processes are time stamped so it will be possible, when viewing the correlated

log data, to draw conclusions about the processes when in context with information

gathered from the other logs. For example if the winword.exe (Microsoft Word)

process started, then a .doc file was created and the winword.exe process stopped it

would be possible to determine the program used and the username of the person

that created the new .doc file which the File Watcher module logged.

3.5.5 Log and Timeline Viewer

In order to provide a clear and fast interface, the design of the Log and Timeline

Viewer will be organised around three functions; importing and filtering data, log text

viewer and visualisation. An initial sketch was made, shown Appendix 3.1, which will

form the basis of the user interface for the Log and Timeline Viewer application.

The Log and Timeline Viewer component will aid in the correlation of log data from

different sources, an issue discussed in the Section 2.4.1. While data to be logged

has been designed with consistency across the client components, it will be

necessary to do some processing on the data. The user will be able to import the log

data into the database using the functions provided in the Log and Timeline Viewer.

Clearly it will be essential that the original data is not modified when the logs are

parsed and the data inserted into the database in order to ensure the system

provides unaltered results to the investigator and, potentially, to a court of law.

Once the log data is held in the database, the Log and Timeline Viewer will also be

responsible for allowing the digital investigator to browse through and sort the

correlated log data in order to identify and investigate issues which have arisen.

Visualisation will play a major role in this module as it allows the investigator to, at a

glance, establish the level of log activity and identify anomalies. By using the

ZedGraph classes the system will be able to display graph and pie charts of

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 22

information quickly and support zoom and pan functions so the user can drill deeper

into the results. This is of particular use when drawing histograms. As was

discovered in the literature review, the time resolution is important for allowing the

investigator to pinpoint when events were raised. ZedGraph‟s zoom functionality will

allow the user to zoom into areas of interest and therefore instantly adjust the time

resolution to be as accurate as possible without having to resort to reading the text

log records. While most of the programming can make use of the latest technologies

(C# Windows Presentation Foundation), it will be necessary to make some

adjustment for the ZedGraph element as it has been designed for use with Windows

Forms rather than being a native WPF library. At this stage in the development of the

prototype there were no suitable charting libraries available which used WPF.

Although for the purposes of the prototype the Log Viewer will operate on the same

physical machine as the database for practical and performance reasons, as the data

is held separately, it would be possible for the system to be enhanced in future, for

example by having a web version of the interface.

3.6 Testing and Experiment Design

This section discusses the design of the experiments, both technical and in relation

to user feedback. The results from the experiments are documented in Section 5. To

aid in the evaluation of the system, it is necessary to design testing methods which

will allow conclusions to be made as to how the system functions in relation to the

aim and objectives of the project and how the system responds to the issues found

during the literature review.

3.6.1 Functionality Testing

In order to evaluate all aspects of the system to ensure they are operating as

intended, the console applications will be used to record log data. It should then be

possible to collate and store this data in the database component and view it in the

Log and Timeline Viewer. The information displayed in the Viewer will be checked

against the raw log data to ensure the original data has not been altered (an

essential requirement set out in the design). If these tests are passed, it will show

that the system operates with the functionality proposed at the design stage.

3.6.2 Technical Testing (impact on system, robustness and scalability)

A range of measurements can be taken in order to build a picture of system

performance. The system will be run under a number of test conditions with varying

quantities of data, placing different levels of demand on the system. System

responsiveness will be recorded, by checking the user interface does not freeze

whilst processing log data, as will factors such as memory usage and processing

time. At the evaluation stage the results of this test can be discussed and it can be

established whether or not the system can cope with the demands place upon it and

remain efficient in its use of system (host computer) resources. If the prototype

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 23

application‟s resource usage is too high then it will interfere with the work of the user

operating the computer being monitored.

In order to assess the impact the system has on the host system and how responsive

the application remains when the scale of data processing increases, tests will be

carried out. If the system is robust it will remain responsive and will not crash when

the amount of data processing increases.

3.6.3 Experiment 1 – Time taken to load XML log data into the database

By measuring the time taken to load in log data and CPU utilisation, the impact on

the system can be assessed. By initially testing without using threading and then

repeating the tests using threading techniques it can be seen how the system‟s

responsiveness is affected and if the use of threading improves system robustness.

The test will first be run on the test machine (laptop with 4GB ram, Core 2 Duo

1.66GHz processor, Windows 7 Professional 64bit) and will allow the application to

make full use of the processing power available. The test will then be repeated with

processor maximum state set to 50% (set using the operating system‟s power

management features). This will highlight the performance difference one could

expect between running the system on a reasonably powerful PC and one that is

perhaps older or using a less powerful mobile CPU.

3.6.4 Experiment 2 – Time taken to present chart and grid data

Investigating the time taken for the system to present the visual information, and

assessing the appearance of this information, will help assess how scalable the

system is. If the time taken to draw charts becomes too long then the system‟s

scalability will become an issue. Additionally, if charting information becomes

unreadable as the number of points increases, then the system‟s scalability will come

into question. Marty (2008, p.110) suggests that for bar charts and line graphs a

maximum of 50 points can be reasonably displayed. This test will see if this theory

applies to the graphing solutions implemented within the viewer application.

3.6.5 Experiment 3 – Memory usage

By testing the memory usage of the system, it will be possible to assess whether or

not the system‟s memory usage remains stable and within a level which would

indicate that the system can run on a number of systems which may not have large

amounts of memory available (laptops in the field, tablet PCs etc). It is expected that

memory usage will increase when the system is performing more intensive tasks,

however it should not get so great that the system runs out of RAM memory and

begins paging to disk.

3.6.6 Experiment 4 – System robustness with incorrect user actions

In order to specifically test the system‟s robustness to incorrect user actions a series

of situations will be played out and the results recorded. If the system is able to

recover, with a useful error message and with data integrity remaining untouched in

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 24

addition to the user interface not crashing, then this would indicate that the system

remains robust.

3.6.7 User feedback and evaluation

As discovered during the literature review, it was found by Shahar et al. (2005) that

their system performed better than traditional approaches of looking at patient data.

Following the same theme, each user will be asked to complete a questionnaire

asking them about their preferences between systems for displaying log and timeline

information.

It is expected that users will prefer the prototype implementation as it provides

visualisation features not found in text files or the Microsoft Windows Event Viewer.

In addition to questions specific to visualisation, users will be asked to rate how

useful or otherwise they find specific features of the prototype in order to determine if

the design meets the objective of improving on existing systems. One question in

particular will focus on how long the user would be prepared to wait for log data to be

imported into the database. It is expected that users would be prepared to wait in

excess of 10 minutes, particularly users who have experience of other analysis

systems.

3.7 Conclusions

The prototype solution has been designed to incorporate the features required which

have been identified though the literature review and a PACT analysis. The solution

will be split into a main Log and Timeline Viewer application (importing, filtering and

displaying data) and three smaller console based applications which gather in

Windows Event Logs, process and file information. The console applications record

event information in XML files which are then processed and the information is

imported into a database which centralises all log information.

The following section details how the implementation followed the design and

contains code snippets to further explain how features were developed.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 25

4 Prototype Implementation

4.1 Introduction

The purpose of this section is to give an overview of how the features which were

designed in the previous section were implemented in the prototype, explanation of

features which were changed and added since implementation was commenced and

issues which arose or new ideas arrived at during the development of the prototype.

The goal of the implementation is to provide a framework on which to carry the

technical and user evaluation. By implementing the features which have been

designed, based on the conclusions of the research, it will be possible, through

experimentation and evaluation, to determine whether the prototype system achieves

the goal of this thesis which is to produce a system which enhances current

technologies.

4.2 Event Logging Applications

4.2.1 Common functions

Each of the logging applications were implemented as console applications. By

running as a console application the logger consumes fewer resources than a

graphical application, which could be important on a client system being monitored.

Each of the logging applications stores its log information as an XML file which

shares a common set of XML elements to describe a record, event time, machine

name, username event type and checksum.

The XML element names were chosen based on the “Best Naming Practices” by

W3Schools (2009). The checksum element comprises of a SHA-256 hash of the data

held within the other elements.

4.2.2 Window Event Log Reader

As stated in Section 3.5.2, the event reader application runs on the system under

investigation, gathers in the Windows event logs and converts them into an XML

format reader to be loaded in the database component. The code in Figure 3

demonstrates how a loop was used to read in each event record, accessed by

means of the EventLogEntry class which is provided with the .NET Framework.

Figure 3: Reading event log records

foreach (EventLogEntry entry in aLog.Entries)

 {

 event_data = entry.Message;

...
}

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 26

Whilst implementing the system, it was found that writing to the XML file was slow. As

originally implemented, the XML file was opened, written to and saved every time a

new event was loaded into the system from the event logs held by the operating

system. In order to improve performance a small piece of logic was added, see

Figure 4, which meant the system only had to create, open and save the XML file.

Additionally, as the system takes time to load in the records and write out to the XML

file, a method of informing the user of the system as to progress was created. The

code for this can be seen in Figure 5. This code provides the user with an update

once a second as to the percentage of load records which have been processed so

far. It was found during implementation that updating the progress percentage more

than once a second caused the console window to flicker, whilst updating less often

meant gave the impression to the user that the system was slower than was in fact

the case. The screenshot, shown in Figure 6, depicts a typical user action where the

user has chosen option 1 to read in and convert the machines Application event data

to the XML format used by the prototype. As can been seen in Figure 6, the user has

been given feedback as to the progress being made by means of percentage

completed. Once the process has been completed, the user has been informed of

the file name of the XML file.

Figure 4: Saving XML code

Figure 5: Loading progress output code

if (was.AddSeconds(1.00) < DateTime.Now || count == 1) //update on first

loop then update once a second, stops output flickering

{

percentage = (count *100) / total;

Console.Write(percentage.ToString() + "% ");

was = DateTime.Now;

}

if (count == total)

{

last = true;

}

//write record code

if (last == true)

{

xmlDoc.Save(filename);

}

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 27

Figure 6: Event Reader Application screenshot

The XML file created by the event log reader places each record with a record

element (recorded_event) which contains elements for each piece of data held within

the records (fields in the database). Figure 7 is an example of a XML record as

recorded in the XML file by the system.

Figure 7: Example system log event record (XML)

File names written as the format LogType_year-month-day hh-mm-ss.xml. This

format ensures that each file name is unique and can easily be understood by the

user when they need to find it again for loading into the database component.

It was discovered during the implementation, that the application would crash when

trying to read in the host machine‟s security event log. This was due to the security

restrictions imposed by the Microsoft Windows Vista and Windows 7 operating

systems. By running the application with administrator privileges, this problem was

overcome as the application then had sufficient rights to access the security log

information. Whilst it is not ideal that an application has to run with elevated

privileges, as this may introduce other security problems, this issue demonstrates

that the latest Microsoft Windows operating systems are designed to protect log data

from unauthorised access.

<recorded_event>

<event_time>2009-8-29 20:36:36</event_time>

<machine_name>Dell-7</machine_name>

<user_account>Not Recorded</user_account>

<event_id>1003</event_id>

<event_data>The Windows Search Service started.</event_data>

<checksum>0D-3D-0D-F1-53-47-27-BF-A2-F3-A8-DA-35-B4-D0-CB-F0-50-A6-

B4</checksum>

</recorded_event>

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 28

4.2.3 File Watcher

As described in the design overview, the file watcher application makes use of the

File System Watcher class which comes with the Microsoft .NET framework. The

application was implemented using two classes. The first class describes the file path

to be watched (in this case temporary internet files), creates a new FileWatcher

object (second class) and handles messages to be displayed in the console window.

This initial setting up of the FileWatcher is shown in Figure 8.

Figure 8: Setting up the FileWatcher code

The second class makes use of the FileSystemWatcher to monitor the designated file

path for changes as shown in Figure 9. When a change is detected, the method

which corresponds to the type of change (creation, rename, deletion or change) is

run which in turn runs the WriteXML method which logs the event information to the

XML file which is outputted by the application.

Figure 9: Capturing events code

As with the event reader application, the file watcher application writes out the log

information to a XML file. In this case the XML file is created when the first event is to

be logged. The event is written to the file, saved and closed. When another event is

to be logged, the file is reopened and the new event is appended. This ensures all

public FileWatcher(string path)

{

string directory = path;

FileSystemWatcher WatchFile = new FileSystemWatcher(directory);

WatchFile.Created += new FileSystemEventHandler(FileCreated);

WatchFile.Renamed += new RenamedEventHandler(FileReNamed);

WatchFile.Deleted += new FileSystemEventHandler(FileDeleted);

WatchFile.Changed += new FileSystemEventHandler(FileChanged);

WatchFile.EnableRaisingEvents = true;

WatchFile.IncludeSubdirectories = true;

}

public void FileCreated(object sender, FileSystemEventArgs e)

{

WriteXML(e.ChangeType.ToString(), e.FullPath);

}

...

string username = System.Environment.GetEnvironmentVariable("USERNAME");

//ensures file watcher will watch current users files rather than hard

coded

string path =

"C:\\Users\\"+username+"\\AppData\\Local\\Microsoft\\Windows\\Temporary

Internet Files";

FileWatcher doIt = new FileWatcher(path);

Console.WriteLine("File Watcher is Running");

Console.WriteLine("Path being watched: " + path);

Console.ReadLine();

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 29

the events are logged and saved should the file watcher application quit

unexpectedly (such as if the machine is powered off). The XML schema remains

similar in that each event‟s details are recorded within a recorded_event element, an

example of which is recorded in Figure 10.

Figure 10: Example file watcher event record (XML)

4.2.4 Process Logger

The process logger works in a similar way to the file watcher application in that it is a

console application which monitors activities on the system and logs any events to an

XML log file. In this case, the events to be logged are the starting and stopping of

processes on the system being monitored. The code for monitoring the processes

loops once a second in order to identify any processes which have started or stopped

since the last loop was run through. As with file watcher application, a separate

WriteXML method is used to write each event out to an XML file which is named with

the date and time, in UTC format.

Originally, the intention had been to identify and record the account name which

started or stopped a process. During implementation it was found that, although

technically achievable using Windows Management Instrumentation (WMI), this

method was too slow which could cause the loop to take more than a second to finish

and thus potentially result in new process events not being logged correctly. A

compromise was found by logging the account name of the user logged into the

system at the time of the processes events being logged.

An example event record for showing logged process information is shown in Figure

11.

Figure 11: Example process event record (XML)

<recorded_event>

<event_time>2009-11-20 17:30:03</event_time>

<machine_name>DELL-7</machine_name>

<user_account>DELL-7\Colin</user_account>

<event>started</event>

<process_name>firefox</process_name>

<checksum>96-2F-6B-F8-59-16-B5-E0-25-66-FA-5A-28-CF-04-AD-19-21-EC-

8D-28-C9-11-32-F6-A9-7B-E5-94-7E-4A-EA</checksum>

</recorded_event>

<recorded_event>

<event_time>2009-11-20 17:37:32</event_time>

<machine_name>DELL-7</machine_name>

<user_account>DELL-7\Colin</user_account>

<event>Created</event>

<file_path>C:\testfiles\New Text Document.txt</file_path>

<checksum>9C-5F-D9-59-94-5D-E6-CE-16-F1-BB-B9-8E-A5-73-2A-B9-83-D3-

F9-44-02-8B-36-70-FB-06-F0-7D-89-5F-70</checksum>

</recorded_event>

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 30

4.2.5 Log and Timeline Viewer

The Log and Timeline Viewer is the main interface of the system allowing the

investigator to import records, filter and display event data in order to understand the

sequencing of events. The user interface was designed around three tabs;

dashboard, load logs and explore data. As this component of the prototype was

developed using the latest programming methods, the user interface design and the

code behind are kept separate. The user interface is implemented in Extensible

Application Markup Language (XAML) which, according to Microsoft (2008),

simplifies the creation of UI elements and separates the UI from the run time code.

The more traditional C# code behind handles all the user interaction events,

connections to the database and so on. This solution has similarities with webpage

design where by the styling is defined in a Cascading Style Sheet and the content is

stored in HTML. The dashboard tab provides the user with an overall view of the

system‟s contents, with a pie chart used to represent the proportion of log records

held within the database. Figure 12 depicts the four main classes and the methods

contained within them. Detailed code listings for these classes are presented in

Appendix 3.2.4.

Figure 12: Class Diagram of viewer application

The load logs tab provides a means for the user to load the XML files created by the

console applications on machines under investigation into the database. Given the

time taken to load in log files, threading was used to ensure the user interface thread

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 31

did not become unresponsive whilst loading in log data. The code in Figure 13

demonstrates how this was achieved.

Figure 13: Use of threading code

The explore data tab includes the filtering, log text viewer and visualisation discussed

in the design. Figure 14 is a screenshot of the log and timeline viewer with the

explore data tab open.

Figure 14: Log and Timeline Viewer screenshot

private void loadApplicationLogButton_Click(object sender, RoutedEventArgs

e)

 {

 loadApplicationLogButton.Visibility = Visibility.Hidden;

 string latest = loadApplicationLogTextBox.Text;

 Thread thread_run = new Thread(delegate()

 {

 loadXMLLog(latest, "applicationlog");

 });

 thread_run.IsBackground = true;

 thread_run.Start();

 }

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 32

The system takes in the filtering options set by the user then runs two SQL queries

on the MSSQL database (one for the data grid and another for the visualisation) and

subsequently produces the results below the filtering settings.

The data grid element makes use of WPFs data binding support. This means that as

the user runs queries on the database (through the filtering options) the results are

stored in a data table which is bound to the data grid user interface element. This is

an efficient way of programming as WPF handles adding each row of data into the

grid and is very quick to update when a new query is run. The XAML code for

defining the data grid and its attributes is shown in Figure 15.

Figure 15: XAML defining the data grid

As described in Section 3.5.5, the visualisation is provided by the ZedGraph library.

Bar, line and scatter charts are supported by ZedGraph and have been implemented

in the prototype. This support for multiple chart types makes it possible to allow the

user of the system to select their preferred chart type and when using the line chart

option, to compare multiple query results on one chart. During the implementation it

was found that ZedGraph could support colouring points/bars on a chart based on

their value. By adding in a “red level” option to the filtering settings, it was possible to

add a feature which colours charts red where points are above the set limit selected

by the user. Adding this feature brings the prototype into line with the principles of

using colour in visualisations described by Stone (2006). Figure 16 shows the C#

code used to create a line chart with traffic light colours for points. During the

implementation stage, Microsoft released an updated version on the WPF Toolkit

which provided additional libraries for use with WPF which included chart controls. It

was considered that switching from ZedGraph to the WPF Toolkit for the visualisation

was unfeasible given the research which would be required into the operation of the

WPF chart controls and the limited time available for the project.

<dg:DataGrid Margin="6,157,6,296" Name="logDataGrid"

ItemsSource="{Binding}" AutoGenerateColumns="True" IsReadOnly="True"

VerticalGridLinesBrush="LightGray" HorizontalGridLinesBrush="LightGray"

IsEnabled="True" IsHitTestVisible="True" HeadersVisibility="Column"

GridLinesVisibility="Horizontal" AlternationCount="0"

Background="#FFF0F0F0" RowBackground="White"

AlternatingRowBackground="WhiteSmoke" IsTextSearchEnabled="True" />

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 33

Figure 16: Code defining a ZedGraph Line Chart

4.3 Conclusions

The system has been implemented as per the design. This has involved creating the

three console applications which collect Windows Event Log, file and process event

data. In addition the implementation has involved the setting up of a MSSQL

database to bring together event records from different sources and constructing the

main viewer application which enables the end user of the system to interact with the

stored information and view timelines of events in a graphical manner. During

implementation an additional feature, suggested by the literature, where colour is

used to highlight high levels in the charts, has been added. The prototype, produced

by following a rapid prototyping design and implementation technique, was now

capable of being used as a framework on which to carry out technical testing and

user feedback evaluation.

LineItem myItem;

 if (reset == false)

 {

 myItem = myPane.AddCurve(whichLog + " " + filter, list,

System.Drawing.Color.Orange);

 }

 else

 {

 myItem = myPane.AddCurve(whichLog + " " + filter, list,

System.Drawing.Color.Blue);

 }

 //colour items based on value

 System.Drawing.Color[] colors = { System.Drawing.Color.Green,

System.Drawing.Color.Yellow, System.Drawing.Color.Red };

 myItem.Symbol.Fill = new Fill(colors);

 myItem.Symbol.Fill.Type = FillType.GradientByY;

 myItem.Symbol.Fill.RangeMin = 0;

 myItem.Symbol.Fill.RangeMax = Int32.Parse(redLevel);

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 34

5 Testing Execution and Results

5.1 Introduction

Both technical and user testing was carried out on the prototype system as per the

design in Section 3.6. The first part of this section, details the technical testing which

was carried out in order to assess the performance and robustness of the system.

The following part, 5.2, discusses how the user testing was implemented. By

performing testing and experimentation on the system, it was then possible to

evaluate the system as discussed in Section 6, from both technical and user

perspectives as per the goals of the thesis which include evaluating the prototype in

order to establish the extent to which the features implemented in the prototype

improve upon current methods.

A set of test data was created and, to minimise the effect of outside factors, all

unrelated applications and services were switched off on the test machine (where

possible). Each experiment was carried out three times and the average (mean)

result recorded. When carrying out the experiments it was found that the results from

each test run were very similar, therefore it was decided that three runs were

sufficient. The Performance Monitor management tool built into Windows 7 was used

to measure memory usage and CPU utilisation for the processes being tested.

5.1.1 Initial testing - functionality

The initial testing was based around answering 3 questions:

 Can the console application read events logs, capture file and process activity

and store this information in XML format?

 Can this data be imported into the database and viewed within the viewer

program both as log data within a data grid and visualised using the ZedGraph

system?

 Does the system alter the log data in any way (except changing formatting)?

Having tested each of the console applications, it was found that there were some

issues with the processing logging application being unable to monitor process

activity and write captured events to the XML log file. After some further investigation

of the exceptions being thrown by the application, it was discovered that the

Windows Account Control features of the host operating system (Microsoft Windows

7 Professional Edition) were preventing the processing logging application from being

able to monitor processes. This was resolved by setting the console application to

run with administrator privileges.

After the initial problems were overcome, it was found that the console applications

read the event logs and captured the file and process activity as required.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 35

Once it was confirmed that the console applications were able to function as

required, the main application (Log and Timeline Viewer) was opened. It was found

that it was possible to load the XML log data correctly into the system and that the

log information was viewable in the data grid and as charts as per the design.

Having loaded XML log data into the database, SQL queries were run on the

database to pull out all the records. The data in these records was compared to the

data held within the XML logs. It was found that the data was not modified (apart

from formatting). It was important that this was the case as it is fundamental to all

event logging and digital forensic tools.

5.1.2 Experiment 1 – Time taken to load XML log data into the database

This experiment was repeated three times with the CPU state set to 100%. The

figures produced were then averaged (mean). The experiment was then repeated

with threading switch off in order to observe the program‟s behaviour when the

loading in of the log ran in the same thread as the user interface. The results are

shown in Table 1 and Table 2. The experiment was run 3 times again with the

maximum CPU utilisation set to 50%. The results with the CPU set at 50%, both with

and without threading, are shown in Table 3 and Table 4.

From the results, it is clear that size of the log file has a considerable impact on

system performance. As the file size increases above 2MB the system takes a

considerable time to load in the data. Additionally, if threading is not used then the

user interface becomes unresponsive with load files over 1MB in size. It would

appear to a user that the application had crashed.

Size of

XML file

Time to load

into database

(seconds)

Average CPU

Utilisation (% of

available)

Peak CPU Utilisation

(% of available)

10KB 0.1 20.2 32.7

100KB 0.3 25.9 31.6

1MB 3.8 32.1 46.2

2MB 11.7 40.4 73.2

10MB 235.3 87.2 99.5

20MB 924.7 95.1 100.0

Table 1: Time to load into database results. Full CPU utilisation.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 36

Size of XML

file

Crashed without

threading?

Crashed with threading?

10KB No No

100KB No No

1MB No No

2MB Yes No

10MB Yes No

20MB Yes No

Table 2: Impact of threading results. Full CPU utilisation.

Size of XML file Time to load into

database (seconds)

Average CPU

Utilisation (% of

available)

Peak CPU

Utilisation (% of

available)

10KB 0.2 29.2 31.1

100KB 0.5 32.5 38.4

1MB 4.5 60.4 72.8

2MB 15.5 81.1 87.5

10MB 336.5 91.1 99.7

20MB 1355.2 96.2 100.0

Table 3: Time to load into database results. 50% CPU utilisation.

Size of XML file Crashed without threading? Crashed with threading?

10KB No No

100KB No No

1MB Yes No

2MB Yes No

10MB Yes No

20MB Yes No

Table 4: Impact of threading results. 50% CPU utilisation.

5.1.3 Experiment 2 – Time taken to present chart and grid data

As previously discussed, by measuring the time taken for the viewer application to

display results to the user, it can be established whether or not the system performs

quickly enough when the scale of log information increases. In addition, it can be

seen whether or not the appearance of the visualisation feature remains acceptable

as the period of log information increases.

The test data for this experiment consisted of log data gathered from three typical

machines over a three month period. The data was duplicated, and timestamps

adjusted, to represent data over a longer period. The log data representing two years

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 37

was held in the database for all the parts of the experiment and the filtering options

used to select the date period required.

As with the previous experiment, the average time taken was recorded and can be

seen in Table 5. Figure 17, Figure 18 and Figure 19 show how the appearance of a

timeline displayed as a bar chart changes as the time frame increases. As can be

seen from the results, the visualisation element becomes more difficult to read when

six months of data is presented. When a year‟s worth of data is presented in a chart it

becomes too compacted and it is not possible to read individual points without

making use of the zoom facility.

Whilst the charting element shows an increase in time to display results, it is the data

grid which shows the most significant increase as the amount of log data increases

and could indicate that the system would not be scalable in this respect.

Date Period Chart Type Appearance

(clear/passable/poor)

Time taken

to present

chart (ms)

Time taken

to present

grid (ms)

1 Week Bar Clear 29 14

Line Clear 29 9

Scatter Clear 29 12

2 Weeks Bar Clear 30 16

Line Clear 31 15

Scatter Clear 32 17

1 Month Bar Clear 50 27

Line Clear 41 29

Scatter Clear 40 31

3 Months Bar Clear 64 67

Line Clear 63 70

Scatter Clear 61 69

6 Months Bar Passable 91 160

Line Passable 88 165

Scatter Clear 76 164

1 Year Bar Poor 135 621

Line Poor 130 619

Scatter Poor 119 631

2 Years Bar Poor 214 1121

Line Poor 212 1122

Scatter Poor 201 1125

Table 5: Appearance of chart and time to present data

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 38

Figure 17: Bar chart - 3 months

Figure 18: Bar chart - 6 months

Figure 19: Bar chart - 12 months

5.1.4 Experiment 3 – Memory usage

By testing the memory usage of the system, it was possible to determine the likely

impact the components would have on their host system. The testing of the viewer

application involved monitoring the peak memory usage of the process while a

number of typical operations were carried out. The results are displayed in Table 6.

In order to test the memory usage of the console applications, it was necessary to

run the application in the kind of environment in which they are expected to run. The

results of the experiments into the memory usage of the console applications are

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 39

displayed in Table 7. The Event Log Reader was tested whilst it was loading in

application log data and writing out the log data to an XML file. In order to test the

memory usage of the File Watcher application, an additional test application was

created. The test application created a new file once a second for a total of a minute

into a directory. The File Watcher was set to monitor this directory and log all the

events. The Process Logger application was tested over a 10 minute period whereby

a selection of processes were started and stopped.

Condition Peak Memory Usage (working set,

MB)

Application loaded with 20000 records 104

Filtered logs with 6 months data graphed 132

Filtered logs with 12 months data graphed 143

Loading in 1MB log 166

Table 6: Memory usage of viewer application

Application Peak Memory Usage (working set,

MB)

Event Log Reader 30

File Watcher 16

Process Logger 19

Table 7: Memory usage of log gathering applications

From the results, it can be determined that the viewer application requires

significantly more memory than the logging applications. This is to be expected as

the viewer had a graphical user interface and carries out more intensive processing

than the console applications which are restricted to a pre-defined function. It can be

seen that the console applications do not require a large amount of memory to

operate which would suggest that, if run in the background, the user of a system

being monitored would not be aware of the logging taking place. Whilst a memory

usage of 19-20 MB would not be acceptable for a very lightweight system (PDA or

mobile phone) the application could run on low powered portable machines such as

tablet PCs and net books.

5.1.5 Experiment 4 – System robustness with incorrect user actions

The purpose of this experiment was to determine if the viewer application could cope

with incorrect user actions. The system was subjected to a number of incorrect

actions which are detailed with the results in Table 8. From the results it can be seen

that the viewer application can cope with incorrect user actions relating to the filtering

and display of the log data held within the database. It can also be concluded that

there are issues surrounding the way in which the user loads log data into the system

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 40

– with the potential for duplicate or incomplete log data to be entered into the

database.

Scenario Result

User tries to select date range out with

the range of data held by the system

If using date selector user cannot select

wrong date. If manually entered system

remains stable. PASS.

User enters advanced query with

incorrect syntax

User is presented with a warning

message. Data stored remains

unaffected. PASS.

User tries to load a process log file

using the application log load function

User is presented with an error

message. System remains stable.

PASS.

User loads in the same log file twice Data is stored twice in the database. No

error message is displayed. FAIL.

User closes application while loading in

log data from XML file

System closes with no warning

message. Only part of the log file data is

stored in the database. FAIL.

Table 8: Robustness test results

5.2 Implementation and findings of user feedback

A questionnaire was devised to record user opinion on the design and functionality of

the prototype system as a whole and establish the users‟ views on how the prototype

Log and Timeline Viewer compares to other methods of storing and displaying log

information.

To ensure consistency between feedback sessions, each user was given a brief

demonstration of how each aspect of the prototype system could be operated before

being given the opportunity to use the system themselves, whilst answering the

questions set in the questionnaire. A total of seven users took part in the user testing,

each with a background in IT, but with different levels of experience in the use of log

management and digital forensic systems.

The questionnaire was split into two sections. The first was concerned solely with the

operation of the prototype system. The second section, with the aid of a support

sheet, was aimed at providing a means of comparing the prototype system with text

files and the Microsoft Windows Event Viewer. In addition, the second section asked

more general questions as to whether or not colour improved a user‟s ability to spot

anomalies in bar chart data and which type of chart best displayed data over a 24

hour period.

The main results from the user feedback responses are documented below. For a

complete set of responses and a copy of the support sheet please see Appendices

2.1 and 2.2 respectively.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 41

The first two questions asked users to indicate how easy they found it to familiarise

themselves with the prototype system and how easy they found it to load XML data

into the database respectively. Six out of seven users indicated that they found it

easy to familiarise themselves with the system, the seventh user described it as

neither easy nor hard. All those taking part in the feedback sessions indicated that

they found loading in the XML data to be easy.

There was a more mixed response in relation to the question as to how useful users

found the dashboard; however no users chose to describe either feature as useless.

Six out of seven users described the advanced query option as being useful. The

seventh user chose to describe the feature as neither useful nor useless.

The final question in the first section asked users to select how long they would be

prepared to wait for a large amount of log data to be loaded into the database. The

answers given to this question were wide ranging. Two users said they would wait

less than five minutes, two said they would wait five to ten minutes and the remaining

users said they would wait more than ten minutes. In addition to answering the

question specifically two users commented that providing the user with more

feedback on the process, such as via a progress bar, would be beneficial.

The first set of questions in the second section asked the user to rate from a scale of

one to three, different systems, in order of preference with three being best. The

questions, and ratings given by users and added together, are displayed in Table 9.

From the results it can clearly be seen that the prototype system was considered to

be better that text files or the Microsoft Windows Event Viewer for getting an

overview of log data and how filtering the data. The Microsoft Windows Event Viewer

fared better with regard to viewing detailed log information. Possible reasons for this

are discussed in the forthcoming Evaluation Section, 6.2.1.

Question Text File Event Viewer Prototype

Indicate your preference regarding

getting an overview of event data.

7 14 21

Indicate your preference regarding

filtering log data.

7 16 19

Indicate your preference for

viewing detailed log data.

10 19 13

Table 9: User feedback ratings. Comparing systems.

When asked to decide on whether the use of a traffic light colour scheme on a bar

chart improved their ability to spot anomalies there was a clear trend in responses.

Six out of seven uses preferred the graph with colour. The remaining user found it

difficult to distinguish between the colours used on chart and so chose not to answer

the question. The difficulties experienced by this user are further explored in the

Evaluation Section, 6.2.1.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 42

The last question asked of users, before being given an opportunity to give general

comments, asked them to indicate their preference of graph type based on a one to

three rating with three being the best. The data shown in the charts was of user login

data over a 24 hour period, similar in nature to the log data displayed by the

prototype system. The results were very clear, in that the responses were identical.

The bar chart was the most preferred option, followed by a line chart, with the pie

chart being the least preferred option.

5.3 Conclusions

Testing has been carried out from both technical and user perspectives. It has been

found that the prototype supports the functions required of it and remains responsive

through the use of threading techniques. By means of technical testing, an issue has

been identified with the time taken to import log information from the XML files into

the database. User feedback on the issue of the time taken to load log data into the

database has shown a mixed response as to how long users would be prepared to

wait. It has been found that all those who took part in the user testing preferred the

prototype for getting an overview of log data and the majority preferred it for filtering

log records.

The following section contains an evaluation of the technical and user feedback and

how the results from this section relate to the aim of improving upon current methods

of collection, correlating and presenting event information in the form of a timeline.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 43

6 Evaluation

6.1 Introduction

This evaluation will cover the solution produced, from both a technical (through

discussion of the test results) and non technical (analysis of the user feedback)

perspective. Through analysis of the test results and user feedback it will be seen

how the prototype system performs, culminating in the opinions of a security

professional, Sonya Buczyn, IT Security Officer at East Lothian Council. There will

also be discussion of how the project was managed.

6.2 Evaluation of technical implementation and user feedback

6.2.1 Functionality and Usability

Going back to the conclusions of the literature review and PACT analysis carried out

at the beginning of the design stage, it was determined that the system would be

targeted at those with a good knowledge of computing. The system would need to

provide a means of gathering, filtering and displaying log data in the form of a

timeline.

These basic features were implemented as intended. The user can gather in log data

from the Windows event logs and log process and file activity on a target machine.

This log data can then be imported into the central storage facility (database) and

then be filtered to output the detailed information required and charted in the form of

a timeline.

The results from the user feedback clearly indicate that the prototype system

successfully achieved the aim of improving upon existing methods from overview and

filtering perspectives. By following principles of overview, filter and zoom with

advanced querying functions such as AND OR as suggested by Shniederman

(1996), it has been found that users prefer the prototype for an overview and filtering

of data. From the comments made by users, the prototype in its current format was

not preferred over the Microsoft Windows Event Viewer for viewing detailed log

results. Had the prototype system included the ability for users to view more detailed

information about log entry, such as Process ID (PID), and enabled the user to view

the record individually rather than in a data grid which requires horizontal scrolling,

the system would have performed better.

Whilst it was generally found that introducing colour to charts to highlight high and

low points was found to be beneficial, as suggested by Stone (2006), an unexpected

difficulty was found. The use of a traffic light style colour scheme of red, amber and

green meant that the user with colour blindness found distinguishing between the red

and green colours quite difficult. In Figure 20 the chart on the left is an example chart

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 44

from the prototype. The image on the right simulates how the chart would appear to

someone with deuteranopia, a form of colour blindness (Encyclopaedia Britannica,

2009). You will see that the difference between the colours of high and low values is

noticeably reduced.

Figure 20: Problems with Red/Green colour scheme (Vischeck, 2009)

A future release of the prototype would have to take this into consideration and

change, or at least provide the user with an option to change, the colours or tones

used in order to ensure it could better be operated by those with this colour blindness

condition.

The time-lining charts could be improved upon by utilising a charting system which

would not only enable the user to zoom, as in the prototype, but also adjust the time

resolution which was an issue identified during the literature review. In its current

state, the prototype is inflexible in that the number of events recorded is grouped by

day and cannot be changed.

An additional function which would have to be implemented in a future version of the

solution would be checking of the SHA-256 hash which is recorded with each log

entry in the XML files. As it stands, the prototype event reader, process logger and

file watcher console applications create the SHA-256 hash. However to complete this

feature, the hash would have to be tested when the data is read into the database.

The design has provision for this feature so it could be added in a future release. In

addition to using hash functions on the log data, the use of encryption would further

enhance the data logging and store aspects of the system, ensuring that the log data

held could not be accessed by unauthorised individuals although such a feature

would almost certainly come at the expense of system performance as encryption

would increase the processing overhead.

6.2.2 Performance and Scalability

The scalability of any log storage and filtering system is clearly important. In a

criminal investigation, log information could be gathered from thousands of computer

systems in order to build a case. From the results of the technical tests in Section

3.6.4 it is clear that as far as filtering the log information is concerned, the prototype

system can remain stable and produce results in an acceptable time frame when

viewing data over a period of months.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 45

From the perspective of loading in the log data from XML files, the prototype does not

prove to be scalable. In Section 3.6.3 it has been shown through testing that the

performance of the system when loading in a relatively small log (up to 2MB) is very

good, however as the log size increases the performance suffers considerably – thus

proving that the current method is not sufficiently scalable. It is clear that loading in

logs is a major bottleneck in the system. Interestingly from the user feedback, as

discussed in Section 3.6.7, it can be concluded opinion is divided upon users as to

how long is an acceptable length of time for the system to import the log data into the

database. However it is clear that there would become a point where the system in

its current state would become unusable due to the length of time taken to load in

logs.

A possible solution to the problem of the time taken to load in the logs could be to

update the database automatically whenever a new event occurs. In the case of a

workplace where the storage of log information could be centralised it would be

possible to develop further the logging applications, which run on the client

machines, in order to have them automatically send log entries to the central

database as each event occurs. This would negate the need to load in vast quantities

of log data into the database whenever an investigation took place. However, this

method could not be relied upon due to the possibility of an attacker disconnecting

the equipment from the network, or indeed would not be of use to an outside agency

(such as the police) that may be gathering data from machines across networks.

6.2.3 Robustness

From the results of Experiments 1 and 4 it is clear that the prototype system does not

perform as intended under certain situations. This can be excused to a degree given

that the solution is intended as a prototype to demonstrate concepts and is not

intended to be ready for use within a normal working environment. From the results

of Experiment 1, Section 5.1.2, it can clearly be seen how the use of multithreading

techniques is essential in order to that the program appears active to the user. From

Experiment 4, see Section 5.1.5, it can be seen where further development would be

necessary in order for the viewer application to handle situations where a user

mistakenly loads in the same log data twice or closes the application whilst importing

log data. These issues could be overcome by additional error checking and

preventing the application being closed whilst data processing. In other respects the

robustness of the solution appears to be satisfactory, handling unusual user

interactions correctly and preserving the data held within the database.

6.3 Professional Review

In order to determine how the prototype system compared to existing systems in use

within an IT Security environment and where such a system would fit into a security

professional toolkit, the opinions of Sonya Buczyn, IT Security Officer at East Lothian

Council were sought. Her role involves giving guidance to users on various aspects

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 46

of IT security, developing policy for protecting systems and investigation in the event

of an attack.

As part of the session with Mrs Buczyn she completed the same questionnaire as

other users taking part in the user testing of the prototype. This led to an interesting

answer to one of the questions. When answering the question as to how long the

user would wait for log information to be imported into the database Mrs Buczyn

agreed that speed was not too important, given that a large amount of information

was involved and that the other tools she used in her investigations also took time to

gather in event data. This answer fits in with the expectation, previously explored,

that users with experience of event logging systems are more likely to be prepared to

wait in excess of ten minutes for the system to import log information. In addition to

the question on time, questions were asked as to how a system, such as the

prototype, could fit into an investigation. The view of Mrs Buczyn was that the

prototype could certainly be of use as an addition to the use of EnCase:

“As you know we use EnCase here for any internal investigations which can

be pretty complex and take a long time to search for evidence. I can certainly

see a place for using your application alongside encase as this would give a

really quick method for searching for specific events. Your app would be a

great addition to my investigation „toolkit‟”. (Buczyn, Appendix 2.3, 2009).

In addition it was stated that the prototype‟s design meant that the system was easy

to use and the log information presented was “very clear”.

As part of the discussion with Mrs Buczyn she revealed that with upcoming codes of

conduct for UK councils the subject of event logging was an active topic. As such she

had been looking at commercial event logging solutions for managing event

information and was impressed with the prototype system:

“I‟ve seen a couple of logging applications recently and based on what I saw

of your app today, yours compares favourably with the commercial ones for

the actual core logging and searching process” (Buczyn, Appendix 2.3, 2009).

6.4 Critical analysis of work carried out

Looking back at how the project has been managed and the prototype implemented

and tested it is possible to identify a number of areas where work could have been

carried out in a more efficient and robust manner.

6.4.1 Evaluation of implementation and testing

Several issues have been identified in relation to how the prototype system was

implemented and tested. Although an overview design was formulated the technical

implementation was not sufficiently planned out before coding began. This resulted in

more time being spent on the implementation than might have been required as

potential issues could have been identified before commencing the application

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 47

development. It would have been better to document the program structure by means

of Unified Modelling Language (UML) diagrams in advance as this would have both

served as a template for the construction of the prototype and served as

documentation of the implementation for future reference. The use of WPF and the

.NET framework enabled rapid development of the prototype for Microsoft Windows

Platforms. Unfortunately, these programming technologies do not prove to be

compatible with other platforms, especially Unix which is used to a large extent in

industry.

Testing was separated into technical and user testing. This worked well and

produced interesting results, however improvements could be made. In order to

improve the accuracy of the technical testing a virtual machine could have been

used. This would have allowed for an identical test bed for each experiment, resulting

in test results which are less prone to interference from other processes which may

be running on a machine that is not dedicated for testing. In addition, technical

testing was limited to three runs on the same hardware, for each experiment. A

stronger set of results could have been achieved by testing the prototype on a range

of hardware and software platforms and increasing the number of test runs. For

example, if each test was run 10 times and the highest and lowest values excluded,

then the median result taken, this would likely provide a more accurate result and

further mitigate against any external influences.

The user testing could have been conducted on a larger and more wide ranging set

of users. This may have provided a more conclusive set of results for the questions

which, based on current results, had a mixed set of answers. Users were not

specifically asked how they rated their experience of using event logging systems.

Had this been asked then it would have been possible to correlate experience

against the results, particularly for questions asking users to indicate their preferred

system.

6.4.2 Project management

Appendix 1.3 contains the project plan which was devised ahead of beginning work

on the project. In general the project progressed according to the schedule, however

with the benefit of hindsight it would have been beneficial to allow more time for the

testing and evaluation as this part of the project overran into the time allocated for

checking the report over and making adjustments.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 48

7 Conclusions and Future Work

7.1 Introduction

This chapter reviews the main findings of the project. The main findings from the

technical and user testing are discussed in relation to discoveries made from carrying

out the literature review. The chapter concludes by identifying areas of further

research and development into gathering, storing and displaying log information in

the form of a timeline.

7.2 Conclusions

The aim of this project was to explore and improve upon the methods of recording

and displaying log information in such a way that timelines of events could be

established. In light of the findings of the work of others, a prototype system was

developed which incorporated the ideas and principles gained from a number of

sources in the field of digital forensics, log management and visualisation.

The prototype system was designed and developed in a rapid prototyping fashion.

This made it possible to design, implement and evaluate means of improving upon

existing event recording and presentation methods within the limited time scale of an

honours project. A number of technologies were used in order to realise the goal of

developing the prototype. Through use of WPF and the .NET framework it was

possible to construct a prototype which can operate on the latest Microsoft Windows

platforms, such as Windows Vista and Windows 7.

Through means of a literature review it was found that visualisation could greatly

enhance a user‟s ability to spot abnormalities in log data and make sense of large

quantities of data. In a previous study by Shahar et al. (2005), it was found that

visualisation allowed users to perform tasks more quickly than using traditional

methods alone. Through means of user feedback, a similar result has been found,

with users preferring the prototype solution to the Windows Event Viewer and text

editor methods for viewing log information from overview and filtering perspectives.

The major issue of log correlation and management has been partially overcome by

using a consistent event record format and storing the log information in an SQL

database. Through testing it has been found that this was a good solution for the

need for storage and filtering options. However, prior to being stored in the database,

the design of the prototype system as a whole, involves storing individual logs in a

custom XML format. Whilst the idea of storing logs in an intermediary XML format

was brought about following research into the problems of proprietary formats, it was

found during testing that importing the information in these XML files into the

database was a bottleneck in a system which otherwise gave good performance.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 49

During the implementation of the prototype, an additional feature of using a traffic

light style colouring scheme, as suggested by the research in Section 2.5, was added

to the system. This extra feature proved very useful to the majority of people who

gave feedback on the system. However the introduction of colour introduced a new

issue of accessibility where by the traffic light colour scheme proved to be difficult to

work with for those who are colour blind. This could be addressed by altering the

colours used when charting log information.

7.3 Future work

Much of the focus of this project has been around visualising log data but, due to the

limitations of time, experience and graphing libraries available, it was not possible to

take the charts further than representing totals over a period of days. Future work

could involve enabling the user to zoom in on particular moments in time and have

the charting system automatically adjust the time resolution. This could be taken still

further by producing charts which attempt to link events together.

It was discussed during the literature review that the issue of time stamping event

records was very important. Given the nature of the project it was considered that the

issue of recording time through NTP or through a central system was out with the

scope of the prototype. However, the reliance on accurate time stamps is clearly a

major issue in digital forensics, with time stamping being used to determine the order

in which events happened. Future work could involve building in a central time

stamping and log storage system into the applications developed for the project.

During the implementation of the prototype processes logger a compromise was

made as to how the user account was identified and recorded. By only recording the

user account name logged onto the target system, rather than the account name

which caused the process event, there is potential that event information could be

misleading and an intrusion would be unnoticed. If an alternative to WMI could be

used for identifying the process owner, then the system could be improved upon.

Given the modular approach to design, the system could be expanded to support

different operating systems. It is common knowledge that the technical infrastructure

of most businesses is a heterogeneous mix of platforms. This project has

implemented the ground work by separating the log storage and filtering from the

event gathering systems. Furthermore, the use of XML to store log data in a

consistent format would allow for event gathering applications to be written for other

systems such as Unix, Linux or even for more specialist embedded systems.

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 50

8 References

Casey, D. (2008). Turning log files into a security asset. Network Security, 2008(4),

4-7. Retrieved November 10, 2009, from Science Direct database.

The CEE Board. (2008). Common Event Expression. Retrieved April 2, 2009, from

The CEE website:

http://cee.mitre.org/docs/Common_Event_Expression_White_Paper_June_2008.pdf.

Deuteranopia. (2009). In Encyclopaedia Britannica. Retrieved November 11, 2009,

from Encyclopaedia Britannica Online:

http://www.britannica.com/EBchecked/topic/159679/deuteranopia

Forte, D. (2004). The 'ART' of log correlation: part 1: Tools and techniques for

correlating events and log files. Computer Fraud & Security, 2004(6), 7-11. Retrieved

March 5, 2009, from Science Direct database.

Gorge, M. (2007). Making sense of log management for security purposes - an

approach to best practice log collection, analysis and management. Computer Fraud

& Security, 2007(5), 5-10. Retrieved March 5, 2009, from Science Direct database.

Guidance Software. (2008). EnCase Forensic Features and Functionality. Retrieved

November 10, 2009, from the Guidance Software website:

http://www.guidancesoftware.com/resources-brochures.htm

Home Office. (2003). Retention of communications data under Part 11: Anti-

Terrorism, Crime & Security Act 2001. Voluntary Code of Practice. Retrieved

November 10, 2009, from http://www.opsi.gov.uk/si/si2003/draft/5b.pdf

Livnat, Y., Agutter, J., Moon, S., Erbacher, R. & Foresti, S. (2005). A Visualization

Paradigm for Network Intrusion Detection. Proceedings of the 2005 IEEE. Retrieved

May 16, 2009, from http://www.scientificcommons.org/40527712.

Marcella, A., & Menendez, D. (2008). Cyber Forensics: A Field Manual for

Collecting, Examining and Preserving Evidence of Computer Crimes (2nd ed.).

Auerbach Publications.

Marty, R. (2008). Applied Security Visualization. Indiana: Pearson Education, Inc.

Microsoft. (2008). XAML Overview. Retrieved November 8, 2009, from

http://msdn.microsoft.com/en-us/library/ms752059%28classic%29.aspx

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 51

Microsoft. (2009). Naming conventions in Active Directory for computers, domains,

sites, and OUs. Retrieved November 15, 2009, from

http://support.microsoft.com/kb/909264

National Institute of Justice. (2001). The Electronic Crime Scene Investigation Guide:

A Guide for First Responders. Retrieved November 20, 2009, from

http://www.ncjrs.gov/pdffiles1/nij/187736.pdf

National Institute of Standards and Technology. (2009). Secure Hashing. Retrieved

November 10, 2009, from http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

Pasquinucci, A. (2007). The difficult art of managing logs. Computer Fraud &

Security, 2007(10), 5-7. Retrieved March 5, 2009, from Science Direct database.

Porter, D. (2003). Insider Fraud: Spotting The Wolf In Sheep's Clothing. Computer

Fraud & Security, 2003(4), 12-15. Retrieved November 15, 2009, from Science Direct

database.

Schuster, A. (2007). Introducing the Microsoft Vista event log file format. Digital

Investigation, 4(1), 65-72. Retrieved June 4, 2009, from Science Direct database.

Shahar, Y., Goren-Bar, D., Boaz, D. & Tahan G. (2005). Distributed, intelligent,

interactive visualization and exploration of time-oriented clinical data and their

abstractions, Artificial Intelligence in Medicine, 2006(38), 115-135. Retrieved April 20,

2009, from Science Direct database.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations, Proc. 1996 IEEE Conference on Visual Languages, 336-

343. Retrieved May 30, 2009, from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.9138&rep=rep1&type=p

df

Stone, M (2006). Choosing Colors for Data Visualization. Retrieved June 5, 2009,

from http://www.perceptualedge.com/articles/b-eye/choosing_colors.pdf

Teerlink, S., & Erbacher, R. (2006). Improving the computer forensic analysis

process through visualization. Next-generation cyber forensics, 48(2), 71-75.

Retrieved March 12, 2009 from Communications of the ACM database.

UsabilityNet. (2006). Rapid Prototyping Methods. Retrieved November 20, 2009,

from the UsabilityNet website: http://www.usabilitynet.org/tools/rapid.htm

US-CERT. (2008). Computer Forensics. Retrieved March 10, 2009, from US-CERT:

Publications: http://www.us-cert.gov/reading_room/forensics.pdf

Colin Symon 05002526 November 2009

CNDS Edinburgh Napier University Page 52

Vischeck, (2009), VischeckImage, Retrieved October 25, 2009, from The Vischeck

website: http://vischeck.com/vischeck/vischeckImage.php

W3Schools, (2009). XML Elements. Retrieved June 4, 2009, from The W3Schools

website: http://www.w3schools.com/xml/xml_elements.asp

ZedGraph. (2007). ZedGraphWiki. Retrieved May 8, 2009, from The ZedGraph

website: http://www.zedgraph.org

