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Abstract - A New and efficient Genetic Algorithm (GA) based approach is presented to minimise the number of terms of Mixed 

Polarity Reed Muller (MPRM) single and multi output incompletely specified Boolean functions. The algorithm determines the 

allocation of don’t care terms for the given function resulting in optimal MPRM expansions. For an n-variable function with β 

unspecified minterms there are (3n × 2β) distinct MPRM expansions. A minimum MPRM is one with the fewest products. The 

algorithm is implemented in C++ and fully tested using standard benchmark examples. For the benchmark examples tested, the 

number of terms is reduced, on average, by  49%  if   “don’t care” terms are included. 
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I. INTRODUCTION 

 

The Mixed Polarity Reed Muller (MPRM) expressions are 

one of the canonical AND_ExOR expressions [1] as 

shown in (1). 

                                                    2
n

-1 

             F (xn-1xn-2…x0 ) =        ∑   bi Pi                                      (1) 
                                                                             i=0   

Where   represents  ExOR logic gate,  ∑ is the sum 

operator, and Pi    are the product terms of the Reed-Muller 

function, and  i=0,1,2,... 2
n
-1. 

  

For completely specified Boolean functions, bi    { 0,1} 

and bi= 1 indicates the presence of the corresponding 

terms in the expansion.  
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 1  𝑜𝑟  𝑥𝑘       𝑖𝑓    𝑖𝑘  = 0

 1 𝑜𝑟  𝑥𝑘        𝑖𝑓    𝑖𝑘  = 1

𝑥 𝑘  𝑜𝑟 𝑥𝑘      𝑖𝑓    𝑖𝑘 = 2

    

 

Where ik  refers to the polarity of each varaible of the 

functions. 

In MPRM, each variable can appear as true, 

complemented or both at the same time. There are 3
n
 sets 

of MPRM expansions. Each expression can be identified 

by a polarity number. The polarity of MPRM expansion 

can be represented by replacing each variable by 0, 1, or 2 

depending on whether the variable is used in true, 

complement or mixed respectively. The polarity will be 

the decimal equivalent of the resulting ternary number. 

 

Example (1)   The Polarity 7 for the 3 variable function  

f (x, y, z) = ∑ (0, 2, 6, 7) is as follow: 

 

In Polarity (021)3 = Polarity (7)10 ,   

f ( x , y , z) = y z  y z   x y z    x y   x y z      

Variable x appears in true form; variable y appears in 

mixed form while variable z appears in the  complement 

form. 

The problem here is how to find efficient solutions 

amongst the very large number of polarities in the MPRM 

domains for incompletely specified Boolean functions 

without resorting to exhaustive search. 

  

Many authors have considered the problem of finding the 

optimal Reed Muller (RM) expansions with the least 

number of terms. GREEN [2,3] described the set of 3
n
 

consistent MPRM canonical forms of an n-variable 

switching function and investigated the structures of the 

various fixed and mixed polarity transforms. McKENZIE, 

et al. [4] presented a non exhaustive techniques to 

determine the allocation of don’t care terms for 

incompletely specified Boolean functions resulting in 

reduced Fixed Polarity Reed Muller (FPRM) expansions.  

 

HABIB[5,6] proposed a new procedure to generate FPRM 

for completely and incompletely specified functions. He 

also presented another new technique to generate minimal 

MPRM expansions for completely and incompletely 

specified Boolean functions. The author tested his own 

methods with random functions of up to 10 variables. 
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HELLIWELL and PERKOWSKI [7] attempted to 

minimize multi output completely and incompletely 

specified Boolean functions to find the minimal MPRM 

by using heuristic methods. The algorithm named 

“xlinking” is based on a new cube operation that 

generalizes known operations of merger, exclusion and 

other logic operations and tested his own method with 

random functions of up to 19 variables.  

 

 WANG and ALMAINI [8] presented a new technique to 

obtain the best polarity of FPRM expressions for large 

multiple output Boolean functions.  

 

There are other interesting aspects of logic design such as 

multi-valued and multi-levels, especially the graphical 

approach based on Binary Decision Diagram (BDD) and 

RM_BDD as in [9, 10,11]. These, however, are outside 

the scope of this paper. 

 

This paper introduces a new strategy for the optimization 

of incompletely specified Boolean functions resulting in 

minimum MPRM expansions using Genetic Algorithm 

(GA). The GA splits into two different stages to improve 

the performance of the algorithm and to reduce the 

computation time. The first stage conducts a polarity 

search to find the best MPRM expansions with fewer 

terms without considering the “don’t care” terms. In the 

second stage, the “don’t care” terms are used to further 

minimise the expressions. The rest of the paper is 

organized as follows. Section II gives a review of MPRM 

for incompletely specified functions. An algorithm 

utilising a GA to find optimal MPRM among 3
n
 different 

polarities for incompletely specified multi output Boolean 

functions is proposed in Section III. Section IV gives the 

definitions and operation of the GA. Section V shows the 

experimental Results. Conclusions are presented  in 

Section VI. 

 

II. REVIEW  OF  MPRM  EXPANSIONS FOR 

INCOMPLETELY  SPECIFIED   FUNCTIONS 

 

An incompletely specified Boolean function is a function 

with one or more minterms with undefined values. These 

unspecified minterms are known as “don’t care” terms and 

sometimes can help the process of minimization. Any 

n_variable Boolean logic function may be represented in a 

sum of products form as: 

                                        2
n

-1                       2
n

-1 

             F (xn-1xn-2…x0 ) = ∑   ai mi    + ∑   di mi                        (2) 
                                                             i=0                        i=0 

Where mi are the minterms; ai and di {0,1} are 

coefficients which may take the value 0 or 1, ai = 1 

indicates the presence of minterms, and  di = 1 indicates 

the presence of don’t care terms. 

 

When incompletely specified Boolean functions are 

transformed to the RM domain, “don’t care” terms 

transform along with the specified terms and their effect is 

distributed over several terms of the new representation. 

Therefore, it is necessary to find an optimum selection of 

these terms to minimize the number of terms in the 

expressions.  

For incompletely specified functions of the type given in 

(1), bi    { 0,1, DC}. However, when the value of bi is 

undefined, it may take the value 0 or 1 without effecting 

any change to the output of the function. These products Pi 

are unspecified or “don’t care” terms for the given 

function. Then the RM expansion may be denoted an 

incompletely specified RM expansion. 

 

For completely specified Boolean functions of n-input 

variables, there exist 3
n
 MPRM expansions with different 

number of terms. For incompletely specified function, the 

numbers of MPRMs increases exponentially with the 

increase of the number of “don’t care” terms. There are 

(3
n
 × 2

β
) distinct MPRMs for n-variable functions with β 

“don’t care” terms. An expression with the fewest 

products is an optimum expression. 

 

III. A GENETIC ALGORITHM   FOR 

INCOMPLETELY  SPECIFIED  MULTI 

OUTPUT  FUNCTIONS 

 

The previous GA based approach for solving single output 

incompletely specified Boolean functions [12] was found 

to take excessive time when evolving a solution. In order 

to address the performance issues the approach presented 

for solving multi output incompletely specified functions 

is to split the GA developed previously into two 

interrelated stages. The aim is to deduce the optimal 

selection of “don’t care” values to ensure the minimal 

Reed Muller expansion.  

 

The GA-based approach presented by the authors for 

multi output incompletely specified Boolean functions 

utilises two populations. The first to represent the mixed 

polarity and the second to indicate the presence or absence 

of “don’t care” terms. The first population is evolved, the 

genotypes from the final population being used to seed the 

second population which is then evolved to produce a 

final solution. The results show that the algorithm can 

produce good result for small functions with small number 

of don’t care terms. For functions with large number  of 

variables  and “ don’t cares ”,   the   number  of  possible    

solutions    is (3
n
 × 2

β
) requiring excessive CPU time.  To 

overcome this problem, a two stage GA is proposed. The 

proposed GA has two search spaces depending on two 

different variables (n & β). The 1
st
 search space is 3

n
 while 

the other is 2
β
. The GA splits into two stages to cope with 

large functions.  The first stage is to produce the best 

MPRM expansions without including “don’t care” terms. 

The number of individuals resulting from the first stage 

equals to the population size which is one of the GA 

parameters entered by the user to run the algorithm. The  

aim of this stage is to minimise the search space saving 

computation time. The second stage will use the resulting 

best individuals from the first stage with different 

collections of “don’t care” terms to further simplify the 

expressions. The pseudo code of the proposed GA is 

shown in Fig.1. 

IV DEFINITIONS 

A. Population 

The GA algorithm starts with a set of solutions called 
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GEN_NO.  Number of generations 

Pop_size     size of the populations 

tnsize         Tournament size 

Begin (  ) 

{ 

   Input GA-parameter  

   Read the given function in Boolean domain 

   Randomly initialize the population for the polarity            

   Randomly initialize the population for the don’t care  

Loop for (GEN_NO/3)                

    { 

   Select one parent from the polarity population . 

   Select another parent from the polarity population .  

   Make Single Point Crossover to produce Child1. 

   Make Uniform Mutation on the Child1. 

   Fitness to find number of terms for the Child1  

   without including “don’t care” terms. 

   If ((Child1_fit < fitness of parents)  And  

                                   (Child1_fit < >any current fitness)) . 

           Do Replacement.  

    } 

If there is a don’t care terms for the input function  

   { 

Loop for  (2*GEN_NO/3) 

       { 

     Select parent from the “don’t care” population.  

     Select another parent from the “don’t care” population.  

     Make Single Point Crossover to produce Child2. 

     Make Uniform Mutation on the Child2. 

     Select one parent from the polarity population. 

     Make Uniform Mutation on it to produce Child1. 

     Fitness to find number of terms for Child1 including  

     the selected don’t care terms specified in Child2. 

    If (Resulted fitness < fitness of parents) 

          Do Replacement for the Child1. 

          Do Replacement for the Child2.  

      } 

   } 

}  
                     

                             Figure 1.  Pseudo code of GA 

population. Each feasible solution in population is called 

individual. Each individual is a sequence of genes. The 

proposed algorithm contains two populations each with 

their own representation. The first population is 

represented using ternary numbers to hold the polarity 

number of the MPRM. The size of the polarity population 

equals n-bits for n-variable functions. The second 

population is represented using binary numbers to indicate 

the presence or absence of “don’t care” terms. The size of 

the population for the “don’t care” equals to the total 

number of “don’t care” terms for all outputs for the given 

functions.  

  

Example (2): Consider a 5-variable function with 3 

outputs and 5 “don’t care” terms for each output . The 

individuals in both populations will be as shown in Figure 

(2) 

 

Bits (0 – 4) in Fig. (2a) contain ternary number to indicate 

polarity number (12112)3= (149)10    

Bits(0 – 14) in Fig. (2b) contain binary number to indicate 

the existence of “don’t care” terms. This individual 

indicates the existence of  two “don’t care” terms for the 

first output, three “don’t care” terms for the 2
nd

  output, 

and  one “don’t care” term for the 3
rd

 one.              

B. Fitness Function 

Fitness function is implemented to convert the specified 

Boolean function to the RM domain and computes the 

number of terms for the polarity specified in the polarity 

population. Initially it computes the fitness of all the 

chromosomes and then it computes the fitness for the new 

offspring of each evaluation. The fitness function is 

implemented by using a new algorithm based on tabular 

techniques in [12]. 

As outlined above, the proposed GA has two stages and 

therefore two fitness functions: The 1
st
 fitness function 

uses the method in [12] to convert the specified Boolean 

function to the RM domain and find the number of terms 

for the polarity represented by the polarity population 

without considering the “don’t care” terms. The 2
nd

 fitness 

function uses the same method in [12] to calculate the 

number of terms for the individual being evaluated.  Each 

new member of the population is based upon individuals 

selected from the first stage population being combined 

with the second stage population.  

C. Selection 

Tournament selection with a tournament size t is used 

throughout, where t is specified by the user. 

 

D. Crossover 

Crossover is the principle genetic operator. It operates by 

selecting two individuals randomly (tournament selection) 

and  generates  one offspring. The child  inherits  some  of  

 

 

 

 

 

 

 

 

 

 

 

 
               Figure 2. Details of individuals for example (2) 

                    Bit 0                                        Bit 4         

1 2 1 1 2 

(a) polarity individual  

 

Bit 0                                                                                Bit 14 

    1
st
 output    2

nd
 output    3

rd
 output 

1   1 0 0 0 1 0 0 1 1 1 0 0 0 0 

                        (b)  “don’t care “ individual 
 

 

 



  
Page 4 

 
  

the chromosomes from one parent and the rest from the 

other parent. The crossover operation is the action of 

choosing randomly a crossover point and combining two 

different parts from the two parents to form a new 

offspring. This method is called a single point crossover. 

For incompletely specified Boolean functions, the 

crossover will be carried out twice. Once for each 

population. 

 

E. Mutation 

The   mutation  operator  alters  a single  gene  of  the  

individual randomly. It is carried out by selecting one bit 

at random and replacing the value held in the selected bit 

with random ternary number. This type of mutation is 

called uniform mutation. The mutation will also be done 

twice for incompletely specified Boolean functions. 

 

F. Replacement 

Tournament replacement method is used in the proposed 

GA. The algorithm randomly chooses a number of 

individuals (equal to determined tournament size) from 

the population and replaces the loser which has the worse 

fitness with the new offspring generated. For incompletely 

specified functions, the replacement will be done for the 

two populations. To avoid premature convergence, the 

algorithm will not replace the new chromosome if there is 

another individual with the same fitness in the current 

populations. 

 

Example (3) Consider the incompletely specified Boolean 

function with three inputs and two outputs as shown in 

Table I. 

It is clear that this function can be represented using 

polarity population with 3 bit and “don’t care” population 

with 5 bit. The populations are used to represent mixed 

polarity/“don’t care” terms using ternary/binary code 

respectively. 

 

1) Assuming that the user specifies population size= 7. 

Then, 7 individuals to represent polarity are 

initialized randomly using ternary code as detailed in 

Table II. 

2) Another 7 individuals to represent “dont care” 

selection are initialized randomly using binary 

numbers as shown in Table III.     

 
             
           TABLE I.   Truth table for the given Boolean function 

 

          Inputs Outputs 

X1X2X3 Y1 Y2 

000 0 1 

001 1 DC 

010 0 1 

011 DC 0 

100 1 1 

101 DC 0 

110 1 DC 

111 DC 1 

 

 

     TABLE  II.  Initialization of the polarity population 
 

Polarity Population Polarity number 

Bit 2 Bit 1 Bit 0 (Decimal) 

2 1 1 22 

0 1 1 4 

1 2 0 15 

1 2 2 17 

1 0 2 11 

2 1 0 21 

1 2 1 16 

            
          TABLE III.  Initialization of the “don’t care” population 

 

 

Consequently, we have 3
3
 possible polarities and for each 

one of these polarities there are 2
5
 possible collections of   

“ don’t care ”  terms. Hence, there are (3
3
 × 2

5
 = 864) 

possible solutions. There is different truth vector for each 

output for the different ID’s detailed in Table III as 

explained in Table IV. 

 
 

 

 
ID 

“Dont care” population                Information  

Bit 

4 

Bit 

3 

Bit 

2 

Bit 

1 

Bit 

0 

 

1 1 0 1 0 1 The 1
st
 and 3

rd
 don’t 

care for the first output 

exist and the 2
nd

 don’t 

care for the second 

output exists. 

2 0 1 1 1 0 The 2
nd

  and 3
rd

 don’t 

care for the first output 

exist and the 1
st
 don’t 

care for the second 

output exists. 

3 0 1 1 0 1 The 2
nd

  and 3
rd

 don’t 

care for the first output 

exist and the 2
nd

  don’t 

care for the second 

output exists 

4 1 0 0 1 0 The 1
st
 don’t care for 

the first output exists 

and the 1
st
 don’t care 

for the second output 

exists. 

5 1 1 1 0 1 All the don’t care for 

the first output exist 

and the 2
nd

  don’t care 

for the second output 

exists. 

6 1 1 0 1 1 The 1
st
   and 2

nd
  don’t 

care for the first output 

exist and all the don’t 

care terms for the 

second output exist. 

7 0 0 0 1 0 Only the 1
st
 don’t care 

term for the second 

output exists. 



  
Page 5 

 
  

                   TABLE IV Truth vector for each output 
 

ID 

 

Truth vector of 

the 1
st
 output for 

the given function 

Truth vector of the 2
nd

 

output for the given 

function 

1 01011011 10101011 

2 01001111 11101001 

3 01001111 10101011 

4 01011010 11101001 

5 01011111 10101011 

6 01011110 11101011 

7 01001010 11101001 

 

3) GA splits into two stages to improve its performance. 

The  GA  selects  two  parents  from  the  populations  

using tournament  selection.  The crossover is then  

applied to produce new child which has a mutation 

applied. Finally, it replaces one of the individuals in 

the population with the new child if the number of 

terms for the child is less than the number of terms for 

the parents. This evolution loop of the GA is the same 

for both stages. The only difference is the fitness 

function. 

 

4) In the first stage, the algorithm will run for one third 

of the number of generations determined by the user. 

It will find the number of terms for each individual 

from the polarity population without considering the 

“don’t care” terms. The GA will produce the best 

individuals with less number of terms as specified by 

the user, 7 in this example. The fitness function uses 

the method in [12] for converting the function from 

the Boolean domain to RM domain. When GA is 

running, the best seven individuals are produced as 

shown in Table V. 

 

5) In the second stage, the algorithm will run for two 

third of the number of generations determined by the 

user. It will add the selected “don’t care” terms to the 

truth table for the given function as explained in 

Table IV according to the individuals from the “don’t 

care” population in Table III. Then convert the 

function from the Boolean domain into RM domain 

and calculate the number of terms for the 

incompletely specified Boolean function for each 

output considering the sharing between these outputs.  

 
TABLE V.  Best individuals produced from the first stage of the   

                                            proposed GA 

Polarity number in ternary code Number of 

terms 

0 1 2 6 

1 0 1 5 

2 1 2 6 

1 2 0 7 

1 2 1 6 

0 1 0 7 

0 0 1 7 

 

V. EXPERIMENTAL RESULTS 

The program was applied to several MCNC and 

LGSynth93 benchmark functions [13, 14].The algorithm 

was executed on a personal computer with an Intel CPU 

running at 2.4 GHz and 2 GB RAM under Window XP, 

professional. The algorithms are implemented using C++.  

The results of multi stage GA are given in Table VI. Each 

result from GA is taken after running the GA algorithm 

ten times.  T denotes to the number of terms for the given 

benchmark.  Number of “don’t care “ terms are given in 

N.DC. M. terms gives the minimum number of terms with 

and without including the “don’t care” terms. S denotes 

percentage saving. Avg./STD denotes to average number 

of terms for the ten runs of the proposed GA / Standard 

deviation. STD tells how closely a set of results is 

clustered around the average of the results. If all the 

results during 10 runs of the GA are the same, STD equals 

0. 

The  average  saving  in  the  number of   terms for multi 

stage GA is  49 % for MPRM using “don’t care” 

compared with MPRM without using “don’t care” terms. 

Although some authors [4,5,6,7] have implemented 

algorithms for minimization of MPRM for incompletely 

specified Boolean function, no benchmark results have 

been published that could be compared to the result in this 

paper. 

 

By testing a number of examples using single and multi 

stage GA, it was found that both algorithms have similar 

results but the time required for the GA with two stages is 

much less as compared with one stage GA as shown in 

Table VII. For example, the multi stage GA took 2 

seconds to find the optimal polarity for the benchmark 

example life compared to 16 hours using single stage GA. 

The other difference between the results of these two 

algorithms is the standard deviation. The standard 

deviation and average for the result of the single stage GA 

are much higher than multi stage GA especially when the 

function has large “don’t care” terms.   

 
TABLE VI.  Benchmark results for the multi stage GA 

 

Name I/O  T  N. 

DC 

M. 

Terms 

 / Time 

(without 

DC)  

M. Terms / 

Time 

 

(with DC)  

S  

% 

Avg./ 

STD 

Xor5 5/1 16 16 6/<1 sec. 1 /<1 sec. 83 1/ 0 

Rd53 5/3 31 54 20 <1 sec. 6 /1 min. 70 10.1/1.3 

Rd73 7/3 127 63 63 <1 sec. 63 / 2 sec. 0  63 / 0 

Squar5 5/8 29 32 26/<1 sec. 23 /1 sec. 11 24 /1.1 

Sym10 10/1 837 187 306/1 sec. 64 / 1 min. 92 86/ 16.7 

9sym 9/1 420 92 173/1 sec. 34 / 40 sec. 72 52 /8.9 

life 10/1 140 372 84 1sec. 40 / 2 sec. 52 44/8 .2 

clip 9/5 496 80 182/8 sec. 182 /8 sec. 0  182 / 0 

newtag 8/1 234 22 6/1 sec. 1 / 16 sec. 66 2 / 0.5 
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                           VI.   CONCLUSIONS 

The process of optimization of the MPRM for 

incompletely specified multi output functions is 

computationally hard problem, because of the large search 

space which increases with increasing number of variables 

and “don’t care” terms. The problem is further 

complicated when different outputs have different “don’t 

care” terms. The proposed GA splits into two stages. The 

first stage produces best individuals without including 

“don’t care” terms. The second stage deduces the optimal 

selection for the “don’t care” terms which minimize the 

number of terms for the individuals produced in the first 

stage.  

From the results shown for the GA with single and multi 

stage, it is clear that multi stage GA is more efficient in 

terms of time and average of results especially for large 

number of variables and don’t cares. In reality, most 

functions have a significant number of “don’t care” terms 

(reach 1000 or more), then there are 2
1000 

different 

representations for don’t care terms. Therefore, it is 

recommended using the multi stage GA to reduce the time 

taken and to produce good results no matter how large the 

number of “don’t care” terms. 

The multi stage GA algorithm for incompletely specified 

functions was tested with benchmark functions and the 

tests show better results (average saving 49%) are 

achieved when “don’t care” terms are taken into account 

in the attempted examples. 

 
TABLE VII.  Comparison between Single and Multi stage GA 
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  Multi Stage GA Single stage GA [12] 

Name N. 

DC 

M. 

Term 

Time Avg/ 

STD 

M. 

Term 

Time Avg/ 

STD 

Xor5 16 1  1 sec. 1/ 0 1 1 sec. 1 / 0 

Rd53 54 6 1 min. 10.1/ 

1 .3 

6 12.30 

min. 

11.8/ 

2.4 

Rd73 63 63  2 sec. 63 / 

0 

63 5 min. 72.8 / 

7.1 

Squar5 32 23  1 sec. 24 
/1.1 

23 2 sec. 24.3/ 
1.36 

Sym10 187 64 1 min. 86/ 

16.7 

64 ~ 22 

hours 

91.5/ 

28.6 

9sym 92 34  40 sec. 52 
/8.9 

36 ~ 12 
hours 

56.6/18
.2 

life 372 40  2 sec.. 44/ 

8 .2 

48 ~ 16 

hours 

62/11.6 

clip 80 182  8 sec. 182 / 
0 

188 ~ 6  
hours 

209/ 
12.8 

Newtag 22 1  16 sec. 2 / 

0.5 

1 3 min. 4 / 1.2 
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