

Page 1

Minimization of Incompletely Specified

Mixed Polarity Reed Muller Functions

using Genetic Algorithm

B. A. AL JASSANI

b.a-aljassani@napier.ac.uk

N. URQUHART

n.urquhart@napier.ac.uk

A.E.A. ALMAINI

a.almaini@napier.ac.uk

Edinburgh Napier University

Edinburgh, UK

Abstract - A New and efficient Genetic Algorithm (GA) based approach is presented to minimise the number of terms of Mixed

Polarity Reed Muller (MPRM) single and multi output incompletely specified Boolean functions. The algorithm determines the

allocation of don’t care terms for the given function resulting in optimal MPRM expansions. For an n-variable function with β

unspecified minterms there are (3n × 2β) distinct MPRM expansions. A minimum MPRM is one with the fewest products. The

algorithm is implemented in C++ and fully tested using standard benchmark examples. For the benchmark examples tested, the

number of terms is reduced, on average, by 49% if “don’t care” terms are included.

Keyword- Mixed Polarity Reed Muller, Incompletely specified Boolean functions, Genetic Algorithm

I. INTRODUCTION

The Mixed Polarity Reed Muller (MPRM) expressions are

one of the canonical AND_ExOR expressions [1] as

shown in (1).

 2
n

-1

 F (xn-1xn-2…x0) = ∑ bi Pi (1)
 i=0

Where represents ExOR logic gate, ∑ is the sum

operator, and Pi are the product terms of the Reed-Muller

function, and i=0,1,2,... 2
n
-1.

For completely specified Boolean functions, bi { 0,1}

and bi= 1 indicates the presence of the corresponding

terms in the expansion.

 Pi =
ki

kx =
1

1

ni

nx
2

2

ni

nx …..
0

0

i

x

Where

kx =

 1 𝑜𝑟 𝑥𝑘 𝑖𝑓 𝑖𝑘 = 0

 1 𝑜𝑟 𝑥𝑘 𝑖𝑓 𝑖𝑘 = 1

𝑥 𝑘 𝑜𝑟 𝑥𝑘 𝑖𝑓 𝑖𝑘 = 2

Where ik refers to the polarity of each varaible of the

functions.

In MPRM, each variable can appear as true,

complemented or both at the same time. There are 3
n
 sets

of MPRM expansions. Each expression can be identified

by a polarity number. The polarity of MPRM expansion

can be represented by replacing each variable by 0, 1, or 2

depending on whether the variable is used in true,

complement or mixed respectively. The polarity will be

the decimal equivalent of the resulting ternary number.

Example (1) The Polarity 7 for the 3 variable function

f (x, y, z) = ∑ (0, 2, 6, 7) is as follow:

In Polarity (021)3 = Polarity (7)10 ,

f (x , y , z) = y z y z x y z x y x y z

Variable x appears in true form; variable y appears in

mixed form while variable z appears in the complement

form.

The problem here is how to find efficient solutions

amongst the very large number of polarities in the MPRM

domains for incompletely specified Boolean functions

without resorting to exhaustive search.

Many authors have considered the problem of finding the

optimal Reed Muller (RM) expansions with the least

number of terms. GREEN [2,3] described the set of 3
n

consistent MPRM canonical forms of an n-variable

switching function and investigated the structures of the

various fixed and mixed polarity transforms. McKENZIE,

et al. [4] presented a non exhaustive techniques to

determine the allocation of don’t care terms for

incompletely specified Boolean functions resulting in

reduced Fixed Polarity Reed Muller (FPRM) expansions.

HABIB[5,6] proposed a new procedure to generate FPRM

for completely and incompletely specified functions. He

also presented another new technique to generate minimal

MPRM expansions for completely and incompletely

specified Boolean functions. The author tested his own

methods with random functions of up to 10 variables.

mailto:b.a-aljassani@napier.ac.uk
mailto:n.urquhart@napier.ac.uk
mailto:a.almaini@napier.ac.uk

Page 2

HELLIWELL and PERKOWSKI [7] attempted to

minimize multi output completely and incompletely

specified Boolean functions to find the minimal MPRM

by using heuristic methods. The algorithm named

“xlinking” is based on a new cube operation that

generalizes known operations of merger, exclusion and

other logic operations and tested his own method with

random functions of up to 19 variables.

 WANG and ALMAINI [8] presented a new technique to

obtain the best polarity of FPRM expressions for large

multiple output Boolean functions.

There are other interesting aspects of logic design such as

multi-valued and multi-levels, especially the graphical

approach based on Binary Decision Diagram (BDD) and

RM_BDD as in [9, 10,11]. These, however, are outside

the scope of this paper.

This paper introduces a new strategy for the optimization

of incompletely specified Boolean functions resulting in

minimum MPRM expansions using Genetic Algorithm

(GA). The GA splits into two different stages to improve

the performance of the algorithm and to reduce the

computation time. The first stage conducts a polarity

search to find the best MPRM expansions with fewer

terms without considering the “don’t care” terms. In the

second stage, the “don’t care” terms are used to further

minimise the expressions. The rest of the paper is

organized as follows. Section II gives a review of MPRM

for incompletely specified functions. An algorithm

utilising a GA to find optimal MPRM among 3
n
 different

polarities for incompletely specified multi output Boolean

functions is proposed in Section III. Section IV gives the

definitions and operation of the GA. Section V shows the

experimental Results. Conclusions are presented in

Section VI.

II. REVIEW OF MPRM EXPANSIONS FOR

INCOMPLETELY SPECIFIED FUNCTIONS

An incompletely specified Boolean function is a function

with one or more minterms with undefined values. These

unspecified minterms are known as “don’t care” terms and

sometimes can help the process of minimization. Any

n_variable Boolean logic function may be represented in a

sum of products form as:

 2
n

-1 2
n

-1

 F (xn-1xn-2…x0) = ∑ ai mi + ∑ di mi (2)
 i=0 i=0

Where mi are the minterms; ai and di {0,1} are

coefficients which may take the value 0 or 1, ai = 1

indicates the presence of minterms, and di = 1 indicates

the presence of don’t care terms.

When incompletely specified Boolean functions are

transformed to the RM domain, “don’t care” terms

transform along with the specified terms and their effect is

distributed over several terms of the new representation.

Therefore, it is necessary to find an optimum selection of

these terms to minimize the number of terms in the

expressions.

For incompletely specified functions of the type given in

(1), bi { 0,1, DC}. However, when the value of bi is

undefined, it may take the value 0 or 1 without effecting

any change to the output of the function. These products Pi

are unspecified or “don’t care” terms for the given

function. Then the RM expansion may be denoted an

incompletely specified RM expansion.

For completely specified Boolean functions of n-input

variables, there exist 3
n
 MPRM expansions with different

number of terms. For incompletely specified function, the

numbers of MPRMs increases exponentially with the

increase of the number of “don’t care” terms. There are

(3
n
 × 2

β
) distinct MPRMs for n-variable functions with β

“don’t care” terms. An expression with the fewest

products is an optimum expression.

III. A GENETIC ALGORITHM FOR

INCOMPLETELY SPECIFIED MULTI

OUTPUT FUNCTIONS

The previous GA based approach for solving single output

incompletely specified Boolean functions [12] was found

to take excessive time when evolving a solution. In order

to address the performance issues the approach presented

for solving multi output incompletely specified functions

is to split the GA developed previously into two

interrelated stages. The aim is to deduce the optimal

selection of “don’t care” values to ensure the minimal

Reed Muller expansion.

The GA-based approach presented by the authors for

multi output incompletely specified Boolean functions

utilises two populations. The first to represent the mixed

polarity and the second to indicate the presence or absence

of “don’t care” terms. The first population is evolved, the

genotypes from the final population being used to seed the

second population which is then evolved to produce a

final solution. The results show that the algorithm can

produce good result for small functions with small number

of don’t care terms. For functions with large number of

variables and “ don’t cares ”, the number of possible

solutions is (3
n
 × 2

β
) requiring excessive CPU time. To

overcome this problem, a two stage GA is proposed. The

proposed GA has two search spaces depending on two

different variables (n & β). The 1
st
 search space is 3

n
 while

the other is 2
β
. The GA splits into two stages to cope with

large functions. The first stage is to produce the best

MPRM expansions without including “don’t care” terms.

The number of individuals resulting from the first stage

equals to the population size which is one of the GA

parameters entered by the user to run the algorithm. The

aim of this stage is to minimise the search space saving

computation time. The second stage will use the resulting

best individuals from the first stage with different

collections of “don’t care” terms to further simplify the

expressions. The pseudo code of the proposed GA is

shown in Fig.1.

IV DEFINITIONS

A. Population

The GA algorithm starts with a set of solutions called

Page 3

GEN_NO. Number of generations

Pop_size size of the populations

tnsize Tournament size

Begin ()

{

 Input GA-parameter

 Read the given function in Boolean domain

 Randomly initialize the population for the polarity

 Randomly initialize the population for the don’t care

Loop for (GEN_NO/3)

 {

 Select one parent from the polarity population .

 Select another parent from the polarity population .

 Make Single Point Crossover to produce Child1.

 Make Uniform Mutation on the Child1.

 Fitness to find number of terms for the Child1

 without including “don’t care” terms.

 If ((Child1_fit < fitness of parents) And

 (Child1_fit < >any current fitness)) .

 Do Replacement.

 }

If there is a don’t care terms for the input function

 {

Loop for (2*GEN_NO/3)

 {

 Select parent from the “don’t care” population.

 Select another parent from the “don’t care” population.

 Make Single Point Crossover to produce Child2.

 Make Uniform Mutation on the Child2.

 Select one parent from the polarity population.

 Make Uniform Mutation on it to produce Child1.

 Fitness to find number of terms for Child1 including

 the selected don’t care terms specified in Child2.

 If (Resulted fitness < fitness of parents)

 Do Replacement for the Child1.

 Do Replacement for the Child2.

 }

 }

}

 Figure 1. Pseudo code of GA

population. Each feasible solution in population is called

individual. Each individual is a sequence of genes. The

proposed algorithm contains two populations each with

their own representation. The first population is

represented using ternary numbers to hold the polarity

number of the MPRM. The size of the polarity population

equals n-bits for n-variable functions. The second

population is represented using binary numbers to indicate

the presence or absence of “don’t care” terms. The size of

the population for the “don’t care” equals to the total

number of “don’t care” terms for all outputs for the given

functions.

Example (2): Consider a 5-variable function with 3

outputs and 5 “don’t care” terms for each output . The

individuals in both populations will be as shown in Figure

(2)

Bits (0 – 4) in Fig. (2a) contain ternary number to indicate

polarity number (12112)3= (149)10

Bits(0 – 14) in Fig. (2b) contain binary number to indicate

the existence of “don’t care” terms. This individual

indicates the existence of two “don’t care” terms for the

first output, three “don’t care” terms for the 2
nd

 output,

and one “don’t care” term for the 3
rd

 one.

B. Fitness Function

Fitness function is implemented to convert the specified

Boolean function to the RM domain and computes the

number of terms for the polarity specified in the polarity

population. Initially it computes the fitness of all the

chromosomes and then it computes the fitness for the new

offspring of each evaluation. The fitness function is

implemented by using a new algorithm based on tabular

techniques in [12].

As outlined above, the proposed GA has two stages and

therefore two fitness functions: The 1
st
 fitness function

uses the method in [12] to convert the specified Boolean

function to the RM domain and find the number of terms

for the polarity represented by the polarity population

without considering the “don’t care” terms. The 2
nd

 fitness

function uses the same method in [12] to calculate the

number of terms for the individual being evaluated. Each

new member of the population is based upon individuals

selected from the first stage population being combined

with the second stage population.

C. Selection

Tournament selection with a tournament size t is used

throughout, where t is specified by the user.

D. Crossover

Crossover is the principle genetic operator. It operates by

selecting two individuals randomly (tournament selection)

and generates one offspring. The child inherits some of

 Figure 2. Details of individuals for example (2)

 Bit 0 Bit 4

1 2 1 1 2

(a) polarity individual

Bit 0 Bit 14

 1
st
 output 2

nd
 output 3

rd
 output

1 1 0 0 0 1 0 0 1 1 1 0 0 0 0

 (b) “don’t care “ individual

Page 4

the chromosomes from one parent and the rest from the

other parent. The crossover operation is the action of

choosing randomly a crossover point and combining two

different parts from the two parents to form a new

offspring. This method is called a single point crossover.

For incompletely specified Boolean functions, the

crossover will be carried out twice. Once for each

population.

E. Mutation

The mutation operator alters a single gene of the

individual randomly. It is carried out by selecting one bit

at random and replacing the value held in the selected bit

with random ternary number. This type of mutation is

called uniform mutation. The mutation will also be done

twice for incompletely specified Boolean functions.

F. Replacement

Tournament replacement method is used in the proposed

GA. The algorithm randomly chooses a number of

individuals (equal to determined tournament size) from

the population and replaces the loser which has the worse

fitness with the new offspring generated. For incompletely

specified functions, the replacement will be done for the

two populations. To avoid premature convergence, the

algorithm will not replace the new chromosome if there is

another individual with the same fitness in the current

populations.

Example (3) Consider the incompletely specified Boolean

function with three inputs and two outputs as shown in

Table I.

It is clear that this function can be represented using

polarity population with 3 bit and “don’t care” population

with 5 bit. The populations are used to represent mixed

polarity/“don’t care” terms using ternary/binary code

respectively.

1) Assuming that the user specifies population size= 7.

Then, 7 individuals to represent polarity are

initialized randomly using ternary code as detailed in

Table II.

2) Another 7 individuals to represent “dont care”

selection are initialized randomly using binary

numbers as shown in Table III.

 TABLE I. Truth table for the given Boolean function

 Inputs Outputs

X1X2X3 Y1 Y2

000 0 1

001 1 DC

010 0 1

011 DC 0

100 1 1

101 DC 0

110 1 DC

111 DC 1

 TABLE II. Initialization of the polarity population

Polarity Population Polarity number

Bit 2 Bit 1 Bit 0 (Decimal)

2 1 1 22

0 1 1 4

1 2 0 15

1 2 2 17

1 0 2 11

2 1 0 21

1 2 1 16

 TABLE III. Initialization of the “don’t care” population

Consequently, we have 3
3
 possible polarities and for each

one of these polarities there are 2
5
 possible collections of

“ don’t care ” terms. Hence, there are (3
3
 × 2

5
 = 864)

possible solutions. There is different truth vector for each

output for the different ID’s detailed in Table III as

explained in Table IV.

ID

“Dont care” population Information

Bit

4

Bit

3

Bit

2

Bit

1

Bit

0

1 1 0 1 0 1 The 1
st
 and 3

rd
 don’t

care for the first output

exist and the 2
nd

 don’t

care for the second

output exists.

2 0 1 1 1 0 The 2
nd

 and 3
rd

 don’t

care for the first output

exist and the 1
st
 don’t

care for the second

output exists.

3 0 1 1 0 1 The 2
nd

 and 3
rd

 don’t

care for the first output

exist and the 2
nd

 don’t

care for the second

output exists

4 1 0 0 1 0 The 1
st
 don’t care for

the first output exists

and the 1
st
 don’t care

for the second output

exists.

5 1 1 1 0 1 All the don’t care for

the first output exist

and the 2
nd

 don’t care

for the second output

exists.

6 1 1 0 1 1 The 1
st
 and 2

nd
 don’t

care for the first output

exist and all the don’t

care terms for the

second output exist.

7 0 0 0 1 0 Only the 1
st
 don’t care

term for the second

output exists.

Page 5

 TABLE IV Truth vector for each output

ID

Truth vector of

the 1
st
 output for

the given function

Truth vector of the 2
nd

output for the given

function

1 01011011 10101011

2 01001111 11101001

3 01001111 10101011

4 01011010 11101001

5 01011111 10101011

6 01011110 11101011

7 01001010 11101001

3) GA splits into two stages to improve its performance.

The GA selects two parents from the populations

using tournament selection. The crossover is then

applied to produce new child which has a mutation

applied. Finally, it replaces one of the individuals in

the population with the new child if the number of

terms for the child is less than the number of terms for

the parents. This evolution loop of the GA is the same

for both stages. The only difference is the fitness

function.

4) In the first stage, the algorithm will run for one third

of the number of generations determined by the user.

It will find the number of terms for each individual

from the polarity population without considering the

“don’t care” terms. The GA will produce the best

individuals with less number of terms as specified by

the user, 7 in this example. The fitness function uses

the method in [12] for converting the function from

the Boolean domain to RM domain. When GA is

running, the best seven individuals are produced as

shown in Table V.

5) In the second stage, the algorithm will run for two

third of the number of generations determined by the

user. It will add the selected “don’t care” terms to the

truth table for the given function as explained in

Table IV according to the individuals from the “don’t

care” population in Table III. Then convert the

function from the Boolean domain into RM domain

and calculate the number of terms for the

incompletely specified Boolean function for each

output considering the sharing between these outputs.

TABLE V. Best individuals produced from the first stage of the

 proposed GA

Polarity number in ternary code Number of

terms

0 1 2 6

1 0 1 5

2 1 2 6

1 2 0 7

1 2 1 6

0 1 0 7

0 0 1 7

V. EXPERIMENTAL RESULTS

The program was applied to several MCNC and

LGSynth93 benchmark functions [13, 14].The algorithm

was executed on a personal computer with an Intel CPU

running at 2.4 GHz and 2 GB RAM under Window XP,

professional. The algorithms are implemented using C++.

The results of multi stage GA are given in Table VI. Each

result from GA is taken after running the GA algorithm

ten times. T denotes to the number of terms for the given

benchmark. Number of “don’t care “ terms are given in

N.DC. M. terms gives the minimum number of terms with

and without including the “don’t care” terms. S denotes

percentage saving. Avg./STD denotes to average number

of terms for the ten runs of the proposed GA / Standard

deviation. STD tells how closely a set of results is

clustered around the average of the results. If all the

results during 10 runs of the GA are the same, STD equals

0.

The average saving in the number of terms for multi

stage GA is 49 % for MPRM using “don’t care”

compared with MPRM without using “don’t care” terms.

Although some authors [4,5,6,7] have implemented

algorithms for minimization of MPRM for incompletely

specified Boolean function, no benchmark results have

been published that could be compared to the result in this

paper.

By testing a number of examples using single and multi

stage GA, it was found that both algorithms have similar

results but the time required for the GA with two stages is

much less as compared with one stage GA as shown in

Table VII. For example, the multi stage GA took 2

seconds to find the optimal polarity for the benchmark

example life compared to 16 hours using single stage GA.

The other difference between the results of these two

algorithms is the standard deviation. The standard

deviation and average for the result of the single stage GA

are much higher than multi stage GA especially when the

function has large “don’t care” terms.

TABLE VI. Benchmark results for the multi stage GA

Name I/O T N.

DC

M.

Terms

 / Time

(without

DC)

M. Terms /

Time

(with DC)

S

%

Avg./

STD

Xor5 5/1 16 16 6/<1 sec. 1 /<1 sec. 83 1/ 0

Rd53 5/3 31 54 20 <1 sec. 6 /1 min. 70 10.1/1.3

Rd73 7/3 127 63 63 <1 sec. 63 / 2 sec. 0 63 / 0

Squar5 5/8 29 32 26/<1 sec. 23 /1 sec. 11 24 /1.1

Sym10 10/1 837 187 306/1 sec. 64 / 1 min. 92 86/ 16.7

9sym 9/1 420 92 173/1 sec. 34 / 40 sec. 72 52 /8.9

life 10/1 140 372 84 1sec. 40 / 2 sec. 52 44/8 .2

clip 9/5 496 80 182/8 sec. 182 /8 sec. 0 182 / 0

newtag 8/1 234 22 6/1 sec. 1 / 16 sec. 66 2 / 0.5

Page 6

 VI. CONCLUSIONS

The process of optimization of the MPRM for

incompletely specified multi output functions is

computationally hard problem, because of the large search

space which increases with increasing number of variables

and “don’t care” terms. The problem is further

complicated when different outputs have different “don’t

care” terms. The proposed GA splits into two stages. The

first stage produces best individuals without including

“don’t care” terms. The second stage deduces the optimal

selection for the “don’t care” terms which minimize the

number of terms for the individuals produced in the first

stage.

From the results shown for the GA with single and multi

stage, it is clear that multi stage GA is more efficient in

terms of time and average of results especially for large

number of variables and don’t cares. In reality, most

functions have a significant number of “don’t care” terms

(reach 1000 or more), then there are 2
1000

different

representations for don’t care terms. Therefore, it is

recommended using the multi stage GA to reduce the time

taken and to produce good results no matter how large the

number of “don’t care” terms.

The multi stage GA algorithm for incompletely specified

functions was tested with benchmark functions and the

tests show better results (average saving 49%) are

achieved when “don’t care” terms are taken into account

in the attempted examples.

TABLE VII. Comparison between Single and Multi stage GA

REFERENCES

[1] T. Sasao, “ Logic synthesis and optimization ” , Kluwar

Academic Publishers, Boston/London/Dordrecht, 1993 , ISBN: 0-

7923-9308-2.

[2] D.H. Green, “Reed-Muller variable-entered vectors and map”, Int.

J. Electronics, Vol. 78, No. 1, 1995, pp. 161-186.

[3] D.H. Green, “Reed-Muller canonical forms with mixed polarity

and their manipulations”, IEE Proceedings, Part E: Computers and
Digital Techniques, Vol. 137, No. 1, 1990, pp. 103-113.

[4] L. McKenzie, A.E.A. Almaini, J.F. Miller, P. Thomson,
“Optimization of Reed-Muller logic functions”, Int. J. Electronics,

Vol. 75, No. 3, 1993, pp. 451-466.

[5] M.K. Habib,“A new approach to generate fixed polarity Reed

Muller expansions for completely and incompletely specified

functions”, INT. J. Electronics, Vol. 89, No. 11, 2002, pp. 845-876.

[6] M.K. Habib, “Efficient and fast algorithm to generate minimal

Reed-Muller Exclusive-OR expansions with mixed polarity for
completely and Incompletely specified function and its computer

implementation”, Computers Elect. Eng., Vol. 19, No. 3, 1993, pp.

193-211.

[7] M. Helliwell , M. Perkowski, “Fast algorithm to minimize multi

output mixed-polarity generalized Reed-Muller forms”, Proc 25th
IEEE/ACM Conf. on Design Automation, Anaheim, CA, 1988, pp.

427-432.

[8] L. Wang, A.E.A. Almaini, “Exact minimisation of large multiple

output FPRM functions”, IEE Proc.-Computer Digital Tech., , Vol.

149, No. 5, Sep. 2002.

[9] A.E.A. Almaini, N. Zhuang , “Variable ordering of BDDs for

multioutput boolean functions usinge evolutionary techniques”.
Fourth IEEE-ICECS’97 conf. , Cairo, EGYPT, December 1997, pp.

1239-1244.

[10] Y. Xia, X. Ye, L. Wang, Z. Zou, A.E.A. ALmaini, “ Novel

 synthesis and optimization of multi - level mixed polarity Reed-

 Muller functions”, J. Computer Science & Technology, Vol.

 20, No. 6, Nov. 2005, pp. 895-900.

[11] P. OH, A.E.A. Almaini, “Decision diagram using 2 variable nodes”

 , WSEAS transactions on circuits and systems, issue 3 , Vol. 6,

 March 2007.

[12] B.A. AL JASSANI, N. Urquhart, A.E.A Almaini, “Optimization
of MPRM functions using tabular techniques and genetic

algorithms”, MEDJEC, Vol. 4, No. 4, 2008, pp.115-125

[13] S. Yang, “Logic Synthesis and optimization benchmarks user

guide.” Technical Report 3, Microelectronics Center of North

Carolina, 1991.

[14] L. Robert , “Logic synthesis and optimization benchmarks

user guide” Technical Report 2, Microelectronics Center of North
Carolina, Dec. 1988.

 Multi Stage GA Single stage GA [12]

Name N.

DC

M.

Term

Time Avg/

STD

M.

Term

Time Avg/

STD

Xor5 16 1 1 sec. 1/ 0 1 1 sec. 1 / 0

Rd53 54 6 1 min. 10.1/

1 .3

6 12.30

min.

11.8/

2.4

Rd73 63 63 2 sec. 63 /

0

63 5 min. 72.8 /

7.1

Squar5 32 23 1 sec. 24
/1.1

23 2 sec. 24.3/
1.36

Sym10 187 64 1 min. 86/

16.7

64 ~ 22

hours

91.5/

28.6

9sym 92 34 40 sec. 52
/8.9

36 ~ 12
hours

56.6/18
.2

life 372 40 2 sec.. 44/

8 .2

48 ~ 16

hours

62/11.6

clip 80 182 8 sec. 182 /
0

188 ~ 6
hours

209/
12.8

Newtag 22 1 16 sec. 2 /

0.5

1 3 min. 4 / 1.2

http://www.engineeringvillage2.org.cn/controller/servlet/Controller?CID=expertSearchCitationFormat&searchWord1=%7bXia%2C+YinShui%7d+WN+AU&database=1&yearselect=yearrange&searchtype=Expert&sort=yr
http://www.engineeringvillage2.org.cn/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYe%2C+Xien%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.cn/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYe%2C+Xien%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.cn/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bZou%2C+Zonggang%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

