
Comparative Study on Connected Component Labeling Algorithms
for Embedded Video Processing Systems

R. Walczyk1, A. Armitage2, and T.D. Binnie1

1School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK
2School of Computing, Edinburgh Napier University, Edinburgh, UK

Abstract— The objective of this paper is to carry out a
detailed analysis of the most popular Connected Component
Labeling (CCL) algorithms for binary images. This study
investigates their usability for processing streaming data and
suitability for implementation using Field-Programmable
Gate Array (FPGA) devices. The first part of this paper re-
views popular CCL algorithms. Both capability for real-time
video processing as well as memory requirements are taken
into consideration. The second part of the paper describes an
efficient implementation of the single pass labeling algorithm
using a Virtex-II Pro FPGA. It is verified on the development
board with an infrared camera module as a real-time video
source. The system is capable of processing video stream
with 640 × 480 pixels per frame at a speed of 30 fps limited
by the bandwidth of the video source.

Keywords: Connected Component Labeling, FPGA, Embedded
Systems

1. Introduction
Connected Component Labeling (CCL) is a fundamental

feature of many computer vision systems. It allows the
assignment of unique identifiers (labels) to different, disjoint
connected components. Hence it constitutes a significant
stage in automated surveillance or pattern recognition sys-
tems.

Automated surveillance systems are very complex designs
[1]. A typical real-time video processing embedded system
contains the following stages: firstly, the video source is
processed by one of the background separating algorithms.
In this step the foreground objects (Regions of Interest)
are subtracted from the background model. Results of this
operation are forwarded to the filtering and thresholding
unit where video acquisition noise is removed. By applying
a thresholding filter to the processed data, the image is
binarized, hence the amount of information is significantly
reduced. From now on these groups of pixels refer to the
detected objects, however to allow for tracking or classifica-
tion, this data has to be further processed. CCL algorithms
analyse binary images in order to distinguish disjoint groups
of pixels (objects) and assign them with individual labels.
Labeled objects are further processed to calculate their
features used by tracking algorithms, such as position, width,
height or centre of gravity.

Over the years, a wide variety of different connected
component labeling algorithms have been proposed. They
can be grouped as follows: algorithms processing an image
frame in two consecutive passes through the image; multiple
scan algorithms, where the number of passes depends on the
image complexity; parallel algorithms processing a number
of pixels at a time; contour tracing techniques following the
contour of objects and single pass algorithms processing data
sequentially in one scan through the image. This paper gives
a brief description of these groups together with a detailed
analysis of their suitability for video processing systems. The
major bottleneck for this type of application is the memory
requirement imposed by the resolution of the video source
together with the real-time processing speed, hence detailed
calculations will be provided.

The outline of this paper is as follows: Section 2 intro-
duces the reader to the field of CCL; the most common
algorithms will be presented. Section 3 analyses the memory
requirements and execution time for these algorithms. The
remainder of the paper gives implementation details using
FPGA development platform of the single pass algorithm
which proved to be the most suitable for embedded video
processing systems. It also gives description of how to
improve data administration in order to reduce memory
requirement.

2. Connected Component Labeling Al-
gorithms

Connected component labeling is an operation where
groups of connected pixels (connected component) are clas-
sified as disjoint objects with unique identifiers (labels). This
operation can be described as assigning a unique label l taken
from a set of integral values L ⊂ N, to each connected
component. Thereby an input binary image frame B ∈ Z2,
where all the pixels p ∈ B correspond to the background or
to the foreground objects (Fb = 0 or Ff = 1 respectively),
is transformed into a frame where each pixel is represented
by a decimal value (label) which is the identifier of the
connected component CCk it belongs to. Here 1 ≤ k ≤ K
and K defines the total number of connected components
within the frame. Labeling of B can be written as g : B 7→
N, where g(x, y) is described as:



(a) (b)

Fig. 1: 8-connected neighbourhood scan mask. (a) Forward
scan mask Mf . (b) Backward scan mask Mb.

Fig. 2: A typical label collision

g(x, y) =

{
Fb if B(x, y) = Fb,

lk if p(x, y) ∈ CCk.
(1)

Due to the raster scanning nature of the image in digital
systems, in order to label all the pixels within the cluster,
most of the algorithms employ a scan mask Mf which
is shifted pixel by pixel according to the present location
(window filter manner). The scan mask, depicted in Fig-
ure 1(a), is used to check if there are any other pixels in
the neighbourhood that need to be, or are already labeled.
If there are no pixels in the neighbourhood of the pixel
E and E = Fb, then the current value at location (x, y)
stays unchanged. If the pixel E = Ff and all the other
neighbouring pixels are Fb, a new label lk will be assigned.
However, if one of the adjacent pixels was already labeled,
copy this label. When there are more than one pixels labeled
within the neighbourhood of the pixel E, these labels need
to be merged.

The most common problem that the majority of algorithms
struggle with is the ’u’ shaped cluster of pixels, depicted
in Figure 2. Due to the raster scan, there is no momentary
information that pixels p1 and p2 belong to one object. Once
the pixel p3 is encountered, labels from positions C and
D within the scan mask require to be merged. The major
problem caused by the merging step is that all the previously
scanned pixels need to be relabeled with one unique label
per object. This requires at least one more scan through the
image, also an auxiliary memory has to be used to store
all the label ambiguities. Over the years, a wide variety of
different techniques have been proposed in order to deal with
this problem. Further subsections give general description of
the most common labeling algorithms.

(a) (b) (c)

Fig. 3: Equivalence table based labeling. (a) Binary image
input data, the line buffer marked by dotted rectangular box
stores provisional labels from the previous line scan. (b)
Provisional labels assigned simultaneously with input data.
(c) Labeled image frame after the second scan.

2.1 Two Pass (Classical) Algorithm
One of the first publications describing this CCL algo-

rithm was by Rosenfeld and Pflatz [2]. Over the years their
algorithm has been significantly improved. The two pass
algorithm, very often referred to in the literature as the
classical algorithm, is used as a reference point in many
benchmark tests. The key feature of this algorithm is the
constant number of passes (two) through the binary image.
Most of the two pass algorithms share similar features
however they differ in data administration. The general
concept is to assign preliminary labels while new foreground
pixels Ff are appointed during the initial scan, see Figures
3(a) and 3(b). Once label ambiguity is encountered, the lower
label is assigned and the equivalence table (ET) is updated
as can be seen in Table 1(a). At the end of the image
scan the equivalence table needs to be sorted, as depicted
in Table 1(b). During the second scan all the preliminary
labels are overwritten with their equivalences resulting in
Figure 3(c). The initial scan can be described as:

g(x, y) =


Fb if B(x, y) = Fb,

lk+1 if ∀{i, j ∈Ms}g(x− i, y − j) = Fb,

gmin & ET otherwise,
(2a)

and

gmin = min[{g(x− i, y − j)|i, j ∈Ms}], (2b)

where lk+1 indicates an increment of the label lk, Ms =
Mf but the pixel p(x, y) = Ff , ET stands for equivalence
table update and min(·) denotes an operator calculating the
minimum value.

The major drawback of this algorithm is the memory
consumption of the output labeled image - the number
of labels used per image during the initial scan is highly
dependent on the image complexity. An example hardware
implementation of this algorithm was described in [3].



Table 1: Equivalence table

(a) During the initial scan (b) After the second scan

prov. label eq. label prov. label eq. label

1 1 1 1
2 3 2 1
3 1 3 1
4 4 4 4
5 4 5 4
6 - 6 6
7 - 7 7
8 - 8 7

2.2 Multiple Scan Algorithm
In 1981 Haralick introduced an iterative algorithm which

does not require any auxiliary storage for label equivalences
[4]. This technique involves multiple forward and backward
raster scan passes through the image until no label change
occurs. All the label collisions are solved on the local
neighbourhood basis according to the equation (2a), however
ET does not apply here. After the first scan through the
binary image B, all the pixels will be assigned with the
preliminary labels similarly as in the classical algorithm,
however all the label ambiguities will be resolved on the
local neighbourhood basis during the following multiple
forward and backward scans with alternating scan mask
Ms = Mf and Ms = Mb respectively according to:

g(x, y) =

{
Fb if g(x, y) = Fb,

gmin otherwise.
(3)

This algorithm was designed for systems with limited
memory resources processing low resolution images. The
performance of this algorithm is related to the size and the
complexity of the binary image, thus it is not recommended
for higher resolution images. Recent implementations im-
proved processing time by introducing local equivalence
tables, however the number of scans through the image frame
is still dependent on the image complexity and is hard to
predict. Hence these algorithms are not suitable for real-time
video processing and will not be taken into consideration in
further discussion. Two separate hardware implementations
were described in [5], [6].

2.3 Parallel Processing Algorithm
Algorithms from this group are highly specified for par-

allel processing platforms and are not suitable for ordi-
nary computer architectures. They often require one logical
processing element per pixel. These algorithms, although
suitable for FPGA implementation, require a large amount
of logic resources. Due to their complexity, the size of
input image has to be limited. More recent implementations
proved to be much less resource consuming, however they
are still too large for ordinary architectures. An FPGA-based
processing platform proposed by Mozef et al. [7] is able to

(a) (b)

(c) (d)

Fig. 4: Contour tracing based labeling. (a) Start tracing the
contour. (b) Label contour pixels until pixel p1 is encoun-
tered again. (c) Keep scanning the image until unlabeled
foreground pixel p2 is reached. (d) Label internal pixels with
contour pixels labels.

process an image frame while the image is loaded however
it employs four XC4025 FPGA chips (32× 32 CLBs each)
and the image size is limited up to 32 × 32 size only. Due
to the parallel processing nature, these algorithms are not
efficient for streaming data video signals.

2.4 Contour Tracing Algorithm
A new variation of CCL was introduced by Chang and

Chen [8], [9]. It is based on the contour tracing technique to
detect contours of the object and also to fill in interior areas.
A single pass through the binary image is sufficient to label
all the objects. It was proved that this algorithm gives better
performance than algorithms based on equivalence tables
and requires less memory. With contour tracing, the label
collision problem does not apply hence there is no need to
scan the image multiple times, however it requires random
access to all the image pixels.

In order to label a binary image frame using the contour
tracing algorithm, an input image has to be stored in the
memory. The image is raster scanned until a foreground
pixel p(x, y) = Ff is encountered. The complete trace of the
contour is performed until the same pixel is reached again.
The contour is labeled with index lk for L ⊂ N, where
3 ≤ k ≤ K and K defines the total number of connected
components within the frame. Once the contour is labeled,
lk is incremented by 1 and the algorithm resumes scanning
step. At this point, one of several pixels can be encountered:

• background pixel (p(x, y) = Fb)
• unlabeled foreground pixel (p(x, y) = Ff )
• already labeled contour pixel (p(x, y) > 1)
• horizontal border pixel (x = Hmax)



(a) (b)

Fig. 5: Single Pass Algorithm. (a) Binary input image.
(b) Memory registers, where values recently changed are
underlined, "-" indicates empty cell, "x" previously as-
signed value, "+" stands for an update.

While background pixels are encountered, the algorithm
keeps scanning the image and no further action is required.
When p(x, y) = Ff , the algorithm starts the contour tracing
procedure as described above for new object. Once the
already labeled pixel p(x, y) = lk from the previously traced
contour is encountered, the algorithm keeps scanning within
the contour pixels while label lk is assigned to all the pixels
p(x, y) = Ff until the second pixel p(x, y) = lk is reached.
When the last pixel in a row is reached (x = Hmax),
the scan continues from the first pixel in the next row
according to raster scan. The conceptual block diagram of
this algorithm is depicted in Figure 4. To avoid tracing
the same contour multiple times, the surrounding pixels are
labeled with additional preoccupied label lk = 2. Details
regarding hardware implementation can be found in [10].

2.5 Single Pass Algorithm
Single pass algorithms are relatively new [11]. They were

developed specifically for labeling connected component
in streaming data systems [12], [13]. The labeling step is
performed in a single scan while data is streamed to the
system. This ensures real-time processing speed. Also there
is no need for buffering the input image frame; this results
in lower memory requirements. The most significant feature
of this algorithm however is that it can extract most of the
features of interest (position, size, etc.) for all the objects
during the scanning step, so there is no need to store a
labeled image frame. This significantly reduces the memory
requirements. This data is kept in a separate data array.
Although results of the single pass labeling are sufficient for
most object counting and pattern recognition systems, this
algorithm is not suitable for applications where a labeled
object mask is required.

In order to label connected component in a single pass,
the image has to be scanned in a raster scan. A general
illustration of the algorithm operation is depicted in Figure 5.
As can be seen, there are three separate memory modules in
use:

• Row Buffer (BUF) - keeps labels assigned in the pre-
vious row;

• Lookup Table (LOOKUP) - gives pointers to label equiv-
alences;

• Data Table (DATA) - gathers extracted features of
interest.

All of these memory modules must be true dual port
where both read and write operations are possible at the time
of a single pixel scan. The system needs to be pipelined
where data read from the BUF points to the label in the
LOOKUP, which gives an address to the DATA. The labeling
step is similar to the classical algorithm with the difference
that labels are not stored in the auxiliary memory, whereas
an object’s features of interest are calculated and updated
simultaneously with the image scan.

According to Figure 5, the pixel p1 has no direct neigh-
bours, it is assigned with a new label. This label is written
into the BUF memory (update), simultaneously LOOKUP
is updated so that the label points to itself. The DATA will be
updated with the coordinates of this location. This procedure
repeats for pixels p2 and p3. However, once the pixel p4 is
encountered, labels 1 and 2 need to be merged. The LOOKUP
at position 2 is updated with label 1 so each time a pixel
labeled with 2 is encountered, the LOOKUP will be pointing
to the label 1 in the DATA memory. Simultaneously, features
of interest for both labels 1 and 2 are merged, for this
particular situation bottom-right corner of label 2 are copied
into the DATA(1); location 2 in DATA and it will not be
used again.

3. Performance Analysis
After general overview of most common labeling al-

gorithms, this section analyses their processing time and
memory requirements. For the memory analysis, algorithms
are expected to extract and store at least information about
an object’s position and size (top-left and bottom-right
coordinates of the smallest rectangle containing the detected
object).

3.1 Processing Time
Time constraints for real-time video processing systems

are very strict. The processing time has to be constant for
each video frame and it should not exceed frame rate of the
source.

Classical Algorithm

The classical algorithm requires two scans through the
image. During the first scan preliminary labels are assigned,
label ambiguities are stored in the equivalence table. The
table needs to be pre-processed before the second scan. For
embedded systems processing video in real-time, all the label
ambiguities from the equivalence table can be sorted during
the horizontal or vertical blanking periods.



Contour Tracing Algorithm
The contour tracing algorithm in its original form requires

only one scan through the binary image. However, to trace
contours, irregular memory access patterns are required
hence there is a need for an initial image scan to buffer the
input frame. The algorithm introduced by Chang and Chen
[8] is not suitable for hardware implementation, however it
can be used within an embedded system with minor changes
[10]. This variation of the algorithm requires two scans
through the image with a little overhead, it meets real-time
performance.

Single Pass Algorithm
The single pass algorithm was developed to process

streaming data. It is capable of labeling all the objects within
a binary image frame in a single image scan. This gives the
best performance of all the algorithms described here.

3.2 Memory Requirements
For embedded systems processing video streams, memory

requirements are of great importance. This subsection gives
calculations of the amount of memory required in order to
label a binary image frame with R rows and C columns.

Assuming that every connected component encounters one
label collision, the total amount of required memory for three
different image sizes: 320× 240, 640× 480 and 1024× 768
with CCmax = 255 objects per image was calculated and
compared with other algorithms. This can be found in Table
2; Figure 6 gives a graphical representation.

Classical Algorithm
It is difficult to estimate the exact amount of memory

required by the classical algorithm due to the fact it depends
on the image complexity (number of label collisions). It can
be calculated according to:

memtotal = dlog2(CCmax + CCcol + 1)e · (R× C)+
+ memET + memFE ,

(4a)

where

memET = dlog2(CCmax + CCcol)e · (CCmax + CCcol),
(4b)

and

memFE = (2 · dlog2(R)e+ 2 · dlog2(C)e) · (CCmax),
(4c)

where CCmax defines the maximum number of connected
components, CCcol number of label collisions, d·e is an
operator rounding · to the nearest upper integer and the +1
comes from the fact that 0 is a preoccupied label. Equations
(4b) and (4c) calculate the amount of the memory required
by the equivalence table and by the extracted features of
interest respectively.

Contour Tracing Algorithm

As opposed to algorithms based on the equivalence table,
the amount of memory is constant for a specified number of
objects. It varies in direct proportion to the image resolution
and it can be calculated according to:

memtotal = dlog2(CCmax + 3)e · (R× C) + memFE ,
(5)

where +3 comes from the fact that labels 0, 1 and 2
are already preoccupied by background, foreground and
reserved pixels respectively. Comparing equations (4a) with
(5), assuming that there is one label collision per connected
component (CCmax = CCcol), algorithms based on the
classical approach require one more bit per pixel which
results in additional (R×C) bits of data. Moreover, memory
requirement for contour tracing based algorithms can be
significantly reduced. The major advantage of the contour
tracing algorithms is that features of interest can be extracted
during the contour tracing step. Due to this fact, only two
bits per pixel are sufficient in order to separate all the objects
and extract their features of interest. Memory requirement
for this approach can be calculated according to:

mem_2bittotal = 2 · (R× C) + memFE . (6)

This approach significantly reduces the amount of the
required memory. It is proportional to the image size only,
so for the same frame size mem_2bittotal will be constant
for even very complex images. For further analysis, the
2bit variation will be taken into consideration. According
to [10], implementation of contour tracing based algorithm
is more complex and causes increase in hardware complexity
compared to classical algorithms.

Single Pass Algorithm

Systems based on the single pass algorithms differ in
data management from other labeling algorithms. Since they
operate on the streaming data, there is no need to buffer
an input image. As was mentioned in Section 2.5, they
require three memory modules: BUF, LOOKUP and DATA.
The algorithm also uses small amount of operating memory
for label merging and data handling however this is small
enough to be ignored. The total memory requirement can be
calculated as follows:

memtotal = memBUF + memLOOKUP + memDATA,

(7a)

where

memBUF = dlog2(CCmax + CCcol + 1)e · C, (7b)
memLOOKUP = memBUF , (7c)



Table 2: Memory requirements for labeling algorithms with
CCmax = 255 objects per image

Resolution Classical Contour Single Pass
[pixels] [K bits] [K bits] [K bits]

320× 240 1 280 158 12
640× 480 3 355 619 18
1024× 768 7 668 1 578 24

Fig. 6: Memory requirements for labeling algorithms with
CCmax = 255 objects per image

and

memDATA = (2 · dlog2(R)e+ 2 · dlog2(C)e)·
· (CCmax + CCcol).

(7d)

Memory requirements for the algorithm described in [11]
can be further reduced by improving data administration.
This will be discussed in the following section.

3.3 Summary
The three most common algorithms for CCL were dis-

cussed. All of them meet real-time video processing criteria,
however according to Table 2, there are large variations
in memory requirement. The two pass (classical) algorithm
requires the greatest amount of memory. Also, the memory
demand grows with increasing image resolution much faster
than other algorithms so will be of less interest for high
resolution video signals. The contour tracing algorithm had
much better performance. One of its key features is that
its memory requirements do not increase with growing
number of objects per image; it is proportional only to the
image size. The last algorithm gives the best results. It can
extract features in only one scan through the image and
has much lower memory requirements. For the particular
implementation with 640×480 pixels and up to 255 objects
per scene, it utilizes almost 35 times less memory than the
contour tracing algorithm and over 188 times less than the
classical algorithm. For real-time video processing systems
with limited memory resources, it is the best choice.

4. Hardware Implementation and verifi-
cation

This section gives a general description of the single pass
connected component algorithm together with its VHDL

Fig. 7: A block diagram of the processing platform

implementation details using XUP V2P Development Board.
The real-time video source is provided by a thermal infrared
camera. Results of the processing are sent to the host PC via
BlueSMiRF Gold Bluetooth wireless transmission module.
They are also displayed as bounding boxes on the monitor
display for visual verification. A general overview block
diagram of the processing system is depicted in Figure 7;
a detailed description can be found in [14]. The labeling
module was designed as a fully customizable generic module
that can be easily included into the project. It was fully
tested using embedded and external logic analysers. For
development test purposes a variety of static images stored
in the Block RAM memory were used.

4.1 Development Platform
This subsection gives an overview of the system process-

ing platform. A XUP Virtex-II Pro Development System
was used for the processing unit. This is a well equipped
FPGA development board with a powerful FPGA chip and
a wide range of peripherals. The Virtex-II Pro (XC2VP30)
FPGA chip from Xilinx was used as a base of this board. It
features 30,816 Logic Cells, 18 × 18-bit multiplier blocks,
two PowerPC processor cores and 2,448 K bits of block
RAM (136 blocks). The video source was provided by the
FLIR Systems Thermacam PM595. The analog video signal
was digitised by the VDEC1 Video Decoder Board with
ADV7183B Video Decoder chip from Analog Devices into
the ITU-R BT.656 format which is decoded and provided as
a source into the labeling unit.

4.2 Algorithm Implementation
A detailed description of the single pass algorithm can

be found in [11] and it will be used as a reference point in
further analysis.

The major problem for all labeling algorithms are label
collisions. A typical label collision was depicted in Figure 5



Table 3: Resource utilisation of the single pass algorithm
implementation using XC2VP30 FPGA

Resource in use total [%]

Slice Flip Flops 166 27,392 0,61
4 input LUTs 434 27,392 1,58
Occupied Slices 230 13,696 1,68
Block RAMs 4 136 2,94

and described in Section 2.5. Since the single pass algorithm
operates on streaming data, once label collision is encoun-
tered, a straightforward solution would be the immediate
update of the LOOKUP. However, in a single line more than
one label collision can occur and this will not solve the
problem (labels will be pointing to the wrong equivalences).
To handle this task, all the consecutive label collisions are
stored on the stack and are resolved during the horizontal
blanking period in reverse order. This procedure ensures that
the LOOKUP table is always up to date and gives pointers to
the correct label equivalences. Once labels are merged, the
label with higher index is assigned with its equivalence in the
LOOKUP, the DATA is cleared at this address and this index
is never used again. This approach can cause significant
waste of the memory resources; the number of empty entries
in the DATA table will grow in direct proportion to the image
complexity. The proposed solution is to push the higher
index after the merger into the FIFO so that it could be
reused for new objects. To ensure this index will not be
used in the row of the merger, it is also set as a flag. Once
a new object is encountered and the FIFO is not empty,
the current label index is assigned with the value read from
the FIFO. However for this label the LOOKUP will not be
updated immediately as it takes place for labels assigned
from the label counter. The label and its pointer (here the
same value) need to be pushed into the merger stack, the
LOOKUP will be updated during the horizontal blanking
period. This lets spare indices be used in the next line after
the merger occurred.

4.3 Results

The system was developed and tested in Matlab then im-
plemented in the FPGA. The hardware implementation was a
non trivial task due to the highly pipelined architecture. The
labeling unit was designed to be a self contained IP block,
fully customizable by generic parameters, with clock, reset,
pixel data and horizontal/vertical counter inputs. There are
four vector data outputs from the module giving coordinates
of the bounding box (top-left and bottom-right points) for
each object once it is detected. The implementation details
can be found in the Table 3. Due to the very low resource
utilisation the single pass labeling algorithm can be imple-
mented within much smaller, lower cost FPGA devices.

5. Conclusions
This paper gives a general description of the most com-

mon labeling algorithms. A detailed analysis of these algo-
rithms was provided in order to choose the most suitable for
labeling and feature extraction from real-time video streams.
The single pass CCL algorithm proved to have the best
capabilities. This algorithm was developed for processing
streaming data, there is no need to buffer an input image
frame. Additionally, labeled objects do not have to be stored
in an auxiliary memory in order to extract their features of
interest - they can be extracted while data is processed. This
guarantees very low memory utilisation. Memory require-
ments for the single pass CCL can be further reduced as
described above. The successful hardware implementation
of the labeling unit features very low resource utilisation
making it optimum choice for low cost embedded video
processing platforms.

References
[1] F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall,

“An embedded real-time surveillance system: Implementation and
evaluation,” J. Signal Process. Syst., vol. 52, no. 1, pp. 75–94, 2008.

[2] A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture
processing,” J. ACM, vol. 13, no. 4, pp. 471–494, 1966.

[3] M. Jablonski and M. Gorgon, “Handel-C implementation of classical
component labelling algorithm,” in Digital System Design, 2004. DSD
2004. Euromicro Symposium on, pp. 387–393.

[4] R. Haralick, “Some neighborhood operations,” Real Time/Parallel
Computing Image Analysis, pp. 11–35, 1981.

[5] D. Crookes and K. Benkrid, “FPGA implementation of image com-
ponent labelling,” Reconfigurable Technology: FPGAs for Computing
and Applications, 1999.

[6] K. Appiah and A. Hunter, “A single-chip FPGA implementation of
real-time adaptive background model,” in 2005 IEEE International
Conference on Field-Programmable Technology, 2005. Proceedings,
2005, pp. 95–102.

[7] E. Mozef, S. Weber, J. Jaber, and G. Prieur, “Parallel architecture
dedicated to image component labeling in O (n Log n): FPGA
implementation,” in Proceedings of SPIE, vol. 2784, 1996, p. 120.

[8] F. Chang and J. Chen, “C., A Component-Labelling Algorithm Using
Contour Tracing Technique,” in IEEE Proc. 7th International Confer-
ence on Document Analysis and Recognition (ICIDAR 2003), 0-7695-
1960-1/03, 2003.

[9] F. Chang, C. Chen, and C. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Computer Vision and
Image Understanding, vol. 93, no. 2, pp. 206–220, 2004.

[10] H. Hedberg, F. Kristensen, and V. Owall, “Implementation of a
labeling algorithm based on contour tracing with feature extraction,” in
IEEE International Symposium on Circuits and Systems, 2007. ISCAS
2007, 2007, pp. 1101–1104.

[11] D. Bailey and C. Johnston, “Single pass connected components
analysis,” in Image and Vision Computing New Zealand, 2008, pp.
282–287.

[12] C. Johnston and D. Bailey, “FPGA implementation of a single
pass connected components algorithm,” Electronic Design, Test and
Applications, pp. 228–231, 2008.

[13] J. Trein, A. Schwarzbacher, B. Hoppe, K. H. Noffz, and T. Trenschel,
“Development of a FPGA Based Real-Time Blob Analysis Circuit,” in
Irish Systems and Signals Conference, 2007. Derry, N. Ireland, 2007,
pp. 121–126.

[14] R. Walczyk, A. Armitage, and T. Binnie, “An Embedded Real-Time
Pedestrian Detection System Using an Infrared Camera,” in IET Irish
Signals and Systems Conference, 2009. IET ISSC 2009.


