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Abstract. The ability to detect metamorphic malware has generated
significant research interest over recent years, particularly given its pro-
liferation on mobile devices. Such malware is particularly hard to de-
tect via signature-based intrusion detection systems due to its ability
to change its code over time. This article describes a novel framework
which generates sets of potential mutants and then uses them as training
data to inform the development of improved detection methods (either in
two separate phases or in an adversarial learning setting). We outline a
method to implement the mutant generation step using an evolutionary
algorithm, providing preliminary results that show that the concept is
viable as the first steps towards instantiation of the full framework.
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1 Introduction

Malicious attacks continue posing serious security threats to most information
assets. They also constitute one of the commonly found attack vectors. The
recent 2019 Internet Security Threat Report by Symantec revealed that there
has been an increase in malicious attacks in form of form-jacking attacks, with
approximately 4,800 websites being victims monthly. Ransomware is now tar-
geting enterprises with a 12% rise in the number of infections as compared to
the previous year’s attack incidence.

To prevent detection and elimination of malicious binaries, obfuscation tech-
niques are employed by sophisticated malware creators. These techniques often
involve either packing the malware (also known as malware packing), transform-
ing its static binary code (polymorphism) or transforming the dynamic binary
code of the malware (metamorphism).

Amongst these sophisticated malware families, metamorphic malware is par-
ticularly complex and dangerous, presenting security threats to many endpoint
devices, including desktops, servers, laptops, kiosks or mobile devices with In-
ternet connection. Its danger arises from its ability to transform its program
code between generations using various means, including instruction substitu-
tion (substituting a given instruction sequence with its equivalent); garbage code



insertion (inserting junk code to the original program code); control-flow alter-
ation (distorting the flow of control within the original program code using loops)
and register reordering (reordering the variables in the original program code).

In a bid to curb the impacts of metamorphic malware, several detection
strategies have been adopted: Alam et al. [1] provide a detailed overview, includ-
ing Opcode-Based Analysis (OBA), Control Flow Analysis (CFA) or Information
Flow Analysis (IFA) which differ depending on the type of information being
used in the analysis. We propose an alternative approach via a novel framework
which contains two components: the first component generates a set of potential
mutants of existing malware; the second method trains a detection system to
recognise the new mutants. The two components maybe used sequentially or in
an adversarial setting, that is, the mutant generator can create increasingly more
complex mutants as the detection system gets better at recognising mutants.

In this paper we describe the generic concept of the framework then propose
a method for instantiating the mutant-generating component using an evolution-
ary algorithm [8]. This population based search technique has been successfully
used in code-modification scenarios, e.g. to fix bugs [10] or speed-up code [6], as
well as some previous attempts to evolve mutants of existing malware [2]. The
main contributions of the paper are as follows:

– A review of current metamorphic malware detection techniques.
– A proposal for a novel framework for developing malware detectors capable

of recognising future malware mutations.
– A proof-of-concept that an Evolutionary Algorithm as the mutation engine

component of the framework can be used to generate new mutant samples.

The rest of the paper is structured as follows. Section 2 gives a brief history
of metamorphic malware detection. Section 3 discusses the challenges to existing
detection techniques. In Section 4, evolutionary based malware detection and its
challenges is discussed. Section 5 describes the proposed detection framework. In
Section 6, preliminary experimentation and discussion is presented. A conclusion
is drawn in Section 7.

2 A brief history of metamorphic malware detection

A number of techniques have been developed over the years to combat the threat
of malicious software. The strategies that have been used can be grouped into
three, namely

– Signature based detection;
– Heuristic based detection;
– Malware normalisation and similarity-based detection.

2.1 Signature-based detection

This involves the extraction of unique byte streams which define the malware’s
signature. It involves scanning files in the host machine in order to find a given



malicious signature. The work of [17] was one of the first signature-based malware
detection scheme and has subsequently been referenced by other research works
such as [24]. The authors of [17] proposed a system called Malicious Code Filter
(MCF) which was a static analysis tool used for malware classification. Their
scheme looked for tell-tale signs in malicious code. These signs refer to attributes
of a piece of program code that can be used in determining if a piece of program
code is malicious or not, without the need for expert coding knowledge. Their
system was successful in proving that tell-tale signs are useful in identifying
malicious code.

Several signature-based methods have been used for detecting metamorphic
malware in particular. The authors of [12] used string signatures for metamorphic
malware detection and they achieved a false alarm rate of less than 0.1%. The
work, presented in [26], introduces Aho-Corasick (AC), which is a string match-
ing algorithm for detecting metamorphic malware. [23] employs a static scanner
for detecting metamorphic malware with high detection rate. More signature-
based metamorphic malware detection techniques, such as string scanning with
special cases like wild-cards or mismatches, bookmarks, speedup search algo-
rithms [14], are found in other related work.

Signature-based methods of malware detection provide a fast and easy means
of detecting malware. However, they are often not efficient in detecting advanced
malware, such as malware that employ obfuscation techniques in masking its
code structure. This is because they are only able to recognise specific code
versions. It will therefore be useful if signature-based systems are fed with new
data that represent potential variants.

2.2 Heuristic based detection

A detection technique that involves the analysis of the behaviour, functionality
and characteristics of a suspicious file without relying on a signature is referred to
as heuristic detection. Unlike signature-based detection, its goal is not to discover
a given signature but to detect malicious functionalities like a malware’s payload
or distribution routine. This method employs data mining and machine learn-
ing techniques in detecting malware. These include supervised learning (learning
with a guide), semi-supervised learning (learning with a partial guide) and un-
supervised learning (learning without a guide). Some of these machine learning
techniques include; Decision Trees (DT) [3], Hidden Markov Models (HMM) [25],
and Support Vector Machines (SVM) [20].

Machine learning based malware detection is data driven: it discovers rela-
tionships between the underlying structure of data, collected either before or
after the execution of the malware and its classification as malicious or non-
malicious. Data, collected prior to the execution of the malware, includes infor-
mation about the file derived from it without running. These include its code
characteristics and its file format among others. On the other hand, data col-
lected after the malware executes derives from the artefacts left behind by the
executed malicious code. These include behavioural descriptions of the malicious
code such as process related activities, registry related activities among others.



In unsupervised machine learning, the aim is to obtain previously unknown
structural descriptions of data without a guide, for instance pre-existing labels.
This can be done in a number of ways, in which clustering analysis is commonly
involved and helps segmenting a dataset. Unsupervised learning based malware
detection does not require the datasets used to be labelled as either clean or
malicious. This makes unsupervised learning useful to cybersecurity experts as
a wide variety of unlabelled datasets are readily available.

In supervised machine learning the data has to be labelled as either mali-
cious or clean. This helps the model in determining the labels for new instances.
Supervised learning models have to be trained with sufficient data. The trained
model is then fed with new samples for prediction. The model needs to be ap-
propriately trained with enough data for better predictions. A pioneering work
in heuristic based malware detection is that of [22] which uses Näıve Bayes (NB)
in automatically identifying malicious patterns in malware. Their NB approach,
calculated from the programs feature set, the probability that the program is
malicious. Their heuristic based approach was better than other previously em-
ployed signature-based approaches, in terms of detection accuracy. Since then, a
number of research works, such as [21], have used heuristic methods for malware
detection.

In metamorphic malware detection, heuristic based methods such as DT,
HMM and SVM have been used. For instance, a combination of statistical chi-
squared test and HMM is used by [25] in detecting metamorphic viruses. [3] also
uses a statistical-based classifier that employs a DT in metamorphic malware
detection. A single class SVM is used by [20] in Android based metamorphic
malware classification. These works led to increased metamorphic malware de-
tection rate.

2.3 Malware normalisation and similarity-based detection

An attempt to transform metamorphic malware to its original form is termed
malware normalisation. The level of code obfuscation determines the effort that
will be put into normalising the metamorphic malware. This technique was first
introduced by Periot [19] whose approach took advantage of various code opti-
misation strategies in enhancing the detection of malware. [29] also uses term
rewriting as a means of normalising metamorphic malicious code. The various
mutations of the metamorphic malware are modelled as rewrite rules which are
then changed to form a rule set for normalising the metamorphic malware. This
approach was applied to the metamorphic engines rule set and was used in the
normalisation of variants produced from the mutation engine. A comprehensive
list of techniques for code normalisation is given in [5].

In addition, similarity-based approaches, for instance structural entropy and
compression-based techniques, were applied in [4] and [16] to detect metamorphic
malware. While structural entropy involves the examination of the raw bytes of
the mutated file, compression-based detection involves the use of compression
ratios of the mutated file in a bid to create sequences that represent the file. In
the work of [4], structural entropy was used for metamorphic malware detection.



Their approach involved segmenting the binaries and then finding the similarity
between their segments. The authors in [16] used a compression based technique
in detecting metamorphic malware. Their approach used compression ratios in
defining the files. Then, they compared the file sequences against one another
and then used a scoring system to classify the files as either malicious or clean.

3 Limitations of current solutions to metamorphic
malware detection

Metamorphic malware is a class of highly sophisticated malicious software that
commonly involves complex transformations of its code during each propagation.
Due to sophisticated means by which metamorphic malware can change its code,
many existing detection approaches perform poorly. Signature-based detection
approaches, for instance, are not efficient when faced with novel metamorphic
malware. They are not only very time-consuming since they require new signa-
tures to be compared against large databases of malicious signatures, but are
also required to periodically update their databases. Moreover, signature-based
approaches are often reactive and therefore cannot detect new attacks.

The file scanning process in heuristic based detection is usually only based
on the attack name/label leading to limited information derived. This method
sometimes uses statistics for its predictive analysis, which is prone to diagnostic
errors emanating from the initial learning process being corrupted. If the algo-
rithm is not trained appropriately, the resulting predictions may be inaccurate.

Most malware normalisation and similarity-based approaches still cannot de-
tect advanced metamorphic malware with complex levels of obfuscation. Conse-
quently, low detection rates are derived when they are used on such malware. In
the case of malware normalisation using control flow graphs, the normalisation
process can be hampered by code streams that cannot be reached which can
lead to control-flow graph fall-through edges. The complex code streams (such
as those that employ opaque predicates and branch functions) are often difficult
to be detected. Similarity based techniques are often prone to false alarms and
are susceptible to mutations that employ a lot of packing or compression. The
compression ratio is very important in the segmentation phase of compression-
based similarity detection. Consequently, previously compressed code makes this
detection inefficient.

4 Evolutionary based Malware Detection

We propose that the use of an Evolutionary Algorithm to generate new malware
samples in order to create detectors that can recognise potential future variants
of a class of malware will address some of the above issues.

The term EA refers to a class of problem-solving techniques inspired by
Darwin’s theory of evolution [8], in which the quality (fitness) of a population
increases over time due to the pressure caused by natural selection. Given a



quality function that needs to be optimised, a population of randomly generated
potential solutions to the problem is first created. Solutions are selected for
reproduction in a manner which is biased by their fitness; a reproduction operator
generates new offspring from selected solutions by applying processes which mix
information from two or more solutions (crossover) and/or by a mutation process
that makes small, random, changes to solutions. As new fitter solutions replaces
poorer quality ones in the population, the population as a whole becomes fitter
as the process is iterated.

The flexible nature of EA allows it to be applied to any task, that can be
expressed as a function optimisation task. Although a significant amount of
literature focuses on its use in combinatorial or continuous optimisation domains,
it has more recently been applied to malware analysis and detection, such as
malware feature extraction [27], classification problems [32] among others . [7]
described a proof-of-concept that an EA could evolve a detector to recognise a
virus signature represented as a bit-string, although this was only tested on 8
arbitrary functions designed to show its ability to cope in complex landscapes,
rather than on real viruses. It offers the following advantages:

– Exploration of a huge search space, which is one of the challenges to be
solved in searching for code variants;

– Provides operators that enable easy manipulation of code;
– Proven ability in transformation, optimisation and improvement of software

code [6], [15] and [30]

The idea of using EA based techniques for malware analysis and detection
is not a new concept. For example, [18] use EAs to improve classifier selection
and performance for malware detection. In [13], the authors use a variant of an
EA called Genetic Programming (GP) to evolve variants of a buffer-overflow
attack with the objective of providing better detectors, showing that GP could
effectively evolve programs that ”hid” malicious code, evading detection by Snort
in 2011 instances.

In [2], the authors also used GP to create new mutant samples, applying their
approach to Android based metamorphic malware. New malware samples were
created using mutation techniques and evaluated on their ability to evade detec-
tion by eight antivirus systems. Similarly, [31] creates metamorphic pdf malware
using GP. They also test the instances of the evolved malware to determine if
they evade detection by pdf detectors. The mutants were generated by employ-
ing mutation operators like junk code insertion, code reordering to mention a
few for [2] and operators like deletion, insertion and replacement for [31]. All of
the above approaches generate new malware that can be used to train malware
detectors in order to achieve greater detection rates by the detectors.

4.1 Challenges with Current EA-based Approaches

Although the approaches described above provide evidence that EAs are a useful
methodology, there remains much scope for improvement. [13] focus on buffer-



overflow attacks rather than metamorphic malware, while [31] focus on pdf mal-
ware. Although [2] focus on metamorphic malware, they only consider 8 anti-
virus engines (Eset, GData, Ikarus, Kaspersky, Avast, TrendMicro, BitDefender
and Norton) when evaluating whether their evolved malware is able to evade
detection. It is also unclear whether they test whether the new mutants that
are able to evade detection are still malicious. The fitness function that guides
evolution scores each solution with a discrete value between 0 and 8, depending
on how many engines it evades. This provides very little information to guide
the evolutionary algorithm through the search-space to find evasive solutions.

Our proposed scheme addresses the above weaknesses as follows. Firstly, we
focus on mobile platforms as they are currently targeted by recent malware at-
tacks. We evaluate evasiveness using a large set of 63 AV engines to evaluate the
variants created. Rather than only considering evasiveness as the fitness metric,
we also measure the structural similarity and the behavioural similarity between
the evolved mutants and the original malware and include this information in the
fitness function. This makes it easier for the EA to traverse the fitness landscape
as the fitness function is more fine-grained and hopefully discovers better solu-
tions. It also increases the diversity of evolved variants. Finally, we also ensure
that all variants retain their malicious nature once mutation has occurred.

5 Framework of Detection Scheme

This section proposes a framework of metamorphic malware detection for mobile
computing platforms in order to address some of the challenges raised above.
The framework comprises of five functional modules, namely a data source (i.e.,
a mobile malware dump), a disassembly tool (i.e., apktool), a mutation engine,
a data store for APK variants and a malware detector. The conceptual overview
of the proposed framework is shown in Fig.1.

Fig. 1. A conceptual overview of the proposed detection framework.



The framework includes a data source where the mobile malware is collected
from. Then it uses a disassembly tool to disassemble the mobile malware from
APK to smali. The smali files can then be fed to the mutation engine module.
This module generates novel malware mutants, representing potential future
variants of existing malware. The new mutants are then stored in a data store.
The data stored in the data store module can be used to train a detection module
that offers improved protection against future mutants. If the system is used in
an adversarial context, then improvements in the detection module drives the
generation of more diverse mutants, hence driving further improvement in the
detection system.

To implement the malware generation module, we propose the use of Evo-
lutionary Algorithm which is explained in the next section. This technique is
well-known for its ability to search vast spaces of potential solutions [11]; we use
it to efficiently search for unseen mutants that represent potential states that
existing malware might morph into, thereby providing improved training data
for a detection module.

The detection module can employ machine-learning using an appropriate
learner in detecting the generated mutants. The machine-learning based detector
receives the newly created mutants from the data store as training data. We
suggest that the probabilistic and evidence-based nature of Bayesian inference
techniques makes it a suitable machine learning candidate. Metrics that might
be used to evaluate the suitability of a machine-leaner are suggested below.

– Training time of the model – This refers to the time taken to train the new
machine learning adaptation.

– Classification time - This refers to the time taken for the new machine learn-
ing adaptation to classify the sample as either malicious or benign.

– Model Accuracy - This refers to how accurate the model is in detecting the
malicious binaries.

At the current stage of the research, we focus on the mutation engine in order
to generate high quality and diverse samples to serve as rich a training set to
the machine learning model. At a later stage of the research, we will then train
a machine learning model on the generated diverse variants.

5.1 Malware Evolution

The mutation engine shown in Fig.1 is implemented using an EA. The goal of
the EA is to generate a new set of malware variants that evade current detection
engines, and are diverse with respect to their behavioural and structural sim-
ilarity. The malware, used for demonstration in this paper, was collected from
Contagio Mini Dump [28], a mobile malware dump. The code of this mobile mal-
ware is, first, reverse engineered from an Android Package (APK) to smali and
then converted to a document vector that serves as an input to the evolutionary
algorithm.



An EA given in Algorithm 1 is used to evolve the instances of given malicious
code. It begins with an initial population of solutions created by applying a ran-
dom mutation process to the original malware. Each solution is evaluated using
a fitness function, defined in equation (5.1). The fitness function is minimised
by the algorithm, i.e. the smaller the value, the more evasive the variant, and
the more it is structurally and behaviourally dissimilar to the original malware.
The main loop of the algorithm then selects a mutant as a parent, and mutates
this to create a child mutant. The child replaces the solution in the population
that has worst fitness if its own fitness is better than the worst.

Algorithm 1. Evolutionary Algorithm

1: Initialize pop of mi random mutants i ∈ [0,m− 1]
2: Assign fitness to each mutant
3: while Maximum number of iterations not reached do
4: Randomly select k variants from pop, and set parent pbest to fittest variant
5: Generate a new mutant mnew from pbest by mutating pbest, selecting mutation

operator with uniform probability
6: Evaluate fitness fitnew of new mutant
7: if fitnew > fitworst then
8: Replace the worst fit in pop with mnew

9: Update fitworst

10: end if
11: end while
12: return The variants created

The fitness function referred to in algorithm 1 is given below and returns a
value between 0 and 1:

f(x) =

{
1 if variant not executable

w0DR(x) + w1SS(x) + w2BS(x) otherwise

subject to

{∑2
i=0 Wi = 1

0 ≤ DR(x), SS(x), BS(x) ≤ 1

The defined fitness function takes into consideration of the code level simi-
larities (denoted as SS(x)) between the original malicious file and its variants;
the behavioural similarities (denoted as BS(x)) between the original malicious
file and its variants and the detection rate (denoted as DR(x)) of its variants.
The three functions (DR(x), SS(x) and BS(x)) can be weighted with values
between 0 and 1 to favour one type of solution over another. These functions are
described below:

The Code Level/Structural Similarity: SS(x) measures the similarity be-
tween the original smali file and its mutants. Text similarity (cosine similarity,



levenshtein and fuzzy string matching) and source code similarity (jplag and
sherlock plagiarism detectors as well as normalised compression distance) met-
rics are employed. The structural similarity between the original APK file and
its mutants is an average of all the similarity metrics employed where a value of
0 means the original APK file and its mutants are completely dissimilar and 1
means the original APK file and its mutants are identical.

The Behavioural Similarity: The behavioural analysis of the APK files mu-
tants is measured using Strace and Monkey runner. Strace is used to monitor
the system calls of the variants while monkey runner is used to simulate user
action. A feature vector is constructed from the log of strace where each vector
element represents the frequency of a system call. The behavioural similarity
between the original APK file and its mutants measures the cosine similarity
between the original APK file and its mutants’ feature vector. The result of the
function is a value between 0 and 1 where 0 means the original APK file and
its mutants are completely dissimilar and 1 means the original APK file and its
mutants are identical.

Evasiveness of Variants: The function DR(x) assesses the ability of a mu-
tated APK to evade detection by antivirus engines. It is measured with the
analysis report from Virustotal to determine the APKs evasive ability. Virusto-
tal comprises of 63 antivirus engines that represent most of the state-of-the-art
antivirus engines. The function checks to see which of these antivirus engines
flags a submitted file as malicious or benign. DR(x) returns the percentage of
engines that detects the variants where a lower percentage indicates a more
evasive variant.

Maliciousness and Executability To assess the executability of a mutated
APK file, tests against its compilation and execution are conducted after mu-
tation. The tools that are used for the assessment of the executability of the
mutated APK files are listed as follows.

– To check for the compilation of an APK file: apktool, apksigner and zipalign.
– To check that the file runs: Android emulator.

We wrap the functions that check to see that the APK variants run and compile
properly in a bash script. Finally, in order to ensure that the evolved variants
retain their maliciousness we use Droidbox, a dynamic analysis tool, to check
that the variants are still malicious. We only analyse the results for the variants
that retain their maliciousness.

6 Experiments

In this preliminary study, the malware utilised in this work for demonstration is
from the Contagio Minidump. The original parent malware was selected from the
dump at random. The experiment was conducted in a VM Workstation running



Ubuntu operating system. The EA consists of a population size of 20. Parents
are selected using tournament selection [9] with k = 5. The best of the k selected
parents is mutated by adding either junk codes like line numbers, reordering its
variables or distorting the program code’s control flow through the insertion of
a goto statement that jumps to a label that does nothing. The EA is then run
10 times for 100 iterations, and the best variant produced in each of the 10 runs
is recorded.

(a) Boxplot of best fitness in terms of de-
tection rate (DR(x), behavioral similarity
(BS(x)) and structural similarity (SS(x))
of the variants for the ten runs of the EA

(b) Boxplot of best fitness for 5 runs of the
EA where the fitness is a weighted com-
bination of DR(x), BS(x) and SS(x) as
given in eq. (1) in Section 5.1

Fig. 2. Boxplots of best fitness

First, we conduct three experiments in turn in which the fitness function only
uses one of the three metrics DR, BS, SS to understand the influence of each
individual component i.e. the weight of interest is set to 1 and the weights for the
other two metrics set to 0. The initial experiments using each of the functions
in the fitness function are illustrated in Fig. 2(a).

The original malware had a detection rate (DR(x)) of 0.597. We see from
Fig.2(a) that we are able to create variants in which the best has a rate of 0.278
and all 10 values are less than 0.32. Also, we see that we are able to create variants
that are only 35% behaviourally (BS(x)) similar to the original malware and
64% structurally (SS(x)) similar to the original malware, indicating behavioural
and structural diversity.

When we combine all the functions in the fitness function as given in equation
(5.1), we are able to generate a diverse set of mutants that are executable, evasive
and behaviourally and structurally different compared to the original malware
which would have a weighted fitness value of 0.8657 (with a value 1 for BS(x)
and SS(x) and 0.597 for DR(x)), as seen in Fig.2(b).

We also analyse which engines are more likely to be fooled by the new evasive
mutants as seen in Fig.3. The original malware was detected by 37 out of the



63 antivirus engines. We analyse how many of these engines that detected the
original malware were able to be fooled by the best variant found in each of the
10 runs of the EA (Fig. 3).

Fig. 3. Analysis of the detection engines

Some detection engines (e.g. Trustlook, McAfee and F-Secure) are fooled by
all 10 new variants. On the other hand, Avast Mobile and Babable were not
fooled in any of the runs (i.e. they were able to detect the new malware). Also,
14 of the engines were not fooled in any of the 10 runs while 17 of the engines
were fooled in all the 10 runs of the EA.

7 Conclusion

In this paper we carried out a review of current methods to metamorphic malware
analysis and detection. We also proposed a framework that could be used to
tackle detection of malware by creating a mutation engine that provides new
training examples representing potential states the malware can morph too, that
can then be used to train better detectors.

Furthermore, we provide a proof of concept for the mutation engine that uses
an EA showing it is capable of generating a diverse set of malicious mutants. This
is advantageous in that it will help in determining the effectiveness of the existing
IDS. To complete the framework, future work will conduct a more thorough
experimental analysis of the EA, including EA parameters and investigating
how the approach generalises to other classes of malware. Also, it will focus on
designing new machine learning (ML) methods that can be trained using the
new metamorphic malware created in order to be robust to future attacks.
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