
DEVELOPMENT OF A 3D AUDIO PANNING AND
REALTIME VISUALISATION TOOLSET USING EMERGING

TECHNOLOGIES

PAUL FERGUSON

A thesis submitted in partial fulfilment of the
requirements of Edinburgh Napier University, for the

award of Doctor of Philosophy

May 2010

Authorship Declaration

I, Paul Ferguson, confirm that this thesis and the work presented in it are

my own achievement.

1. Where I have consulted the published work of others this is always

clearly attributed;

2. Where I have quoted from the work of others the source is always

given. With the exception of such quotations this thesis is entirely

my own work;

3. I have acknowledged all main sources of help;

4. If my research follows on from previous work or is part of a larger

collaborative research project I have made clear exactly what was

done by others and what I have contributed myself;

I have read and understand the penalties associated with plagiarism .

.----:>

Signed: (~~)~ Date: ? s: J 5 ! 'LO l D

2

Abstract

This thesis documents a body of research that links the field of electro-acoustic

diffusion and spatialisation with practice in the music and film post-production

industries. Three research questions are posed:

"How can the physical user-interfaces used for panning by the music and film

post-production industries offer creative alternatives to the fader-based hardware

approach commonly used for electro-acoustic performance?"

"How can a Digital Audio Workstation (DAW) be used as an alternative to

dedicated panning hardware?

"How can emerging programming technologies offer creative alternatives to the

MAXIMSP or hardware-based tools commonly used for sound spatialisation?"

This practice-based PhD addresses these questions by designing, developing

and testing a set of hardware and software tools, the Requirement Specification

for this 'Toolset' results from literature review and critical analysis of current

systems to determine potential research gaps. This analysis is followed by the

selection of a suitable methodology for development and testing that allows the

research questions to be explored effectively and results in the following Toolset:

OctoPanner: A multi-featured eight-channel 3D touchscreen panner application

for Apple's Mac OS X controlling a DAW-hosted customisable VST 3D panning

plug-in with C++ source code.

ShapePanner: A synchronisable shape-based sequencer application for Mac OS

X inspired by Experimentalstudio's Halaphon. The user is able to describe the

movement of sounds in a 3D space using shape primitives such as lines and

circles and thus extend the capabilities of the Toolset beyond realtime manual

manipulation of sounds.

3DMIDIVisualiser: An application to allow the user to work without access to a

multi-speaker system by enabling the movement of sounds to be viewed within a

virtual room.

3

Foot Puck: A foot-controlled panning controller enabling a musician to spatialise

their instrument using foot movement.

Initial prototyping was achieved using Cycling '74's Max/MSP but the final

applications are written using Apple's Cocoa environment and Objective C. This

thesis gives close analysis and discussion of the various stages of research

carried out; including the use of Apple's CoreMlD1 and CoreAudio Clock OS X

Core Services in a Cocoa application.

4

5

Table of Contents

Abstract .. 3

Table of Contents .. 5

Table of Figures ... 10

Acknowledgments ... 12

1 Overview ... 13

1.1 Background .. 13

1.2 Research Questions and Context ... 15

1.3 Thesis Structure .. 16

1.3.1 Part I: Requirements and Methodology .. 16

1.3.2 Part II: Implementation ... 16

1.3.3 Part III: Conclusions and contribution to knowledge 17

1.3.4 Appendices .. 17

Part I: Requirements and Methodology ... 18

2 Literature review of past diffusion/spatialisation systems with a focus

on loudspeaker configuration, control and technology 19

2.1 1951 to 1987: Before MAX .. 19

2.1.1 Four-speaker works and events ... 19

2.1.2 Six, eight or ten loudspeaker works and events 22

2.1.3 Loudspeaker arrays and the Loudspeaker orchestra 23

2.2 1988 to present: Post MAX ... 25

2.2.1 IRCAM and MAX .. 25

2.2.2 CNMAT and Level Control Systems ... 26

2.3 Chapter summary and research contribution ... 27

3 Currently available institution-based or commercial systems 28

3.1.1 Research Question 1 - Alternative User-Interfaces 30

3.1.2 Research Question 2 - DAW Hosting ... 31

3.1.3 Research Question 3 - Comparing Max/MSP and alternative

technologies ... , 31

3.1.4 Additional considerations ... 31

3.1.5 Trajectories, cue-lists and automation .. 32

6

3.1.6 Synchronisation .. 32

3.2 Summary of requirements ... 32

3.3 Potential contributions to knowledge ... 35

4 Methodology .. 36

4.1.1 Waterfall Model .. 36

4.1.2 Incremental and Iterative Development Model (II 0) 36

4.1.3 Spiral Model ... 37

4.2 Methodology Conclusion ... 37

4.2.1 Prototype Testing ... 38

Part II: Implementation .. 39

5 Investigating an initial panning solution .. 40

5.1 Introduction ... 40

5.2 Passive analogue panning .. 41

5.3 Prototype 1: The initial digital panner .. 41

5.4 Prototype 2 development .. 43

5.4.1 Background .. 43

5.4.2 Considering Prototype 2 in terms of the 110 methodology 44

5.5 Joystick development .. 45

5.5.1 Software development for the joystick .. 46

5.6 Touchscreen development. ... 46

5.7 Prototype 2 software ... 47

5.7.1 Joystick microcontroller software .. 47

5.7.2 Version 2 of the Max/MSP based panner 47

5.7.3 Testing Prototype 2 .. 49

5.8 Chapter Summary and Research Contribution .. 50

6 Development of OctoPanner Version 2 .. 51

6.1 Mac application development.. .. 51

6.1.1 The Carbon development environment.. ... 51

6.1.2 The Cocoa development environment .. 51

6.2 OS X Core technologies .. '" 52

6.2.1 CoreMI 01 .. 53

6.2.2 CoreAudio Clock .. 53

6.2.3 Core Graphics/OpenGL. ... 54

7

6.3 Cocoa implementation of OctoPanner v2 .. 55

6.3.1 MIDI output from Cocoa ... 57

6.3.2 Implementing the OctoPanner Version 2 application 58

6.4 Chapter Summary and Research Contribution .. 60

7 The ShapePanner application ... 61

7.1 Introduction ... 61

7.2 ShapePanner implementation ... 62

7.2.1 Cocoa Bindings .. 62

7.2.2 The ShapePanner classes ... 64

7.2.3 Timing/scheduling .. 64

7.2.4 Representing time .. 65

7.3 Implementing CoreAudio Clock support .. 66

7.3.1 Creating an accurate scheduler for ShapePanner 67

7.4 Chapter Summary and Research Contribution .. 69

8 3D MIDI Visualiser application .. 70

8.1 Introduction ... 70

8.2 Apple's Quartz technology .. 71

8.3 Chapter Summary and Research Contribution .. 74

9 Foot control of spatialisation .. 75

9.1 Introduction ... 75

9.2 Foot Puck Prototype ... 77

9.3 Chapter Research Contribution ... 78

10 Concert use of the version 2 live Toolset.. ... 79

10.1 Developing a spatialisation technique using Ableton Live 79

10.2 Concert 1 - Haftor Medboe Group, 'The Arches' Glasgow 10-3-2007 82

10.2.1 Concert 1 Evaluation ... ~ .. 83

10.3 Concert 2 - Haftor Medboe Group, 'The Bongo Club' 17-3-2007 84

10.3.1 Concert 2 Evaluation .. 84

10.4 Chapter research contribution ... 84

10.4.1 Question 1 - Alternative User-I nterfaces 84

10.4.2 Research Question 2 - DAW Hosting ... 85

11 OctoPanner Version 3 ... 86

8

11.1 Saving and loading snapshots .. 86

11.2 OctoPanner v3 features .. 87

11.2.1 OctoPanner v3 panels .. 88

11.2.2 Snapshot copying/swapping and initialising 89

11.2.3 OctoPanner v3 MIDI setup ... 89

11.3 Chapter research contribution ... 90

12 Spatialising Macbenach IV .. 91

12.1 A user trial of Octopanner version 3 .. 91

12.2 Pro Tools panner plug-in development using Max/MSP 91

12.3 Reliability and repeatability ... 94

12.4 Evaluating the Toolset's use for Macbenach IV 94

12.5 Chapter Summary and Research Contribution .. 95

12.5.1 Question 1 - Alternative User Interfaces 95

12.5.2 Research Question 2 - DAW Hosting ... 95

13 A C++ VST/RT AS panner plug-in .. 96

13.1 Coding the VST 3D octal panner ... 99

13.2 Guidelines for PFPan plug-in user modification 102

13.2.1 Speaker configuration .. 102

13.2.2 Panning law ... 103

13.3 Chapter summary and research contribution ... 103

Part III: Conclusions and contribution to knowledge 104

14 Conclusions ... 105

14.1.1 Research Question 1 .. 105

14.1.2 Research Question 2 .. 105

14.1.3 Research Question 3 .. 106

14.1.4 Summary .. 107

14.2 Contribution to knowledge ... 107

14.3 Limitations and potential for future work .. 108

Bibliography ... 110

Appendix A Panning in Pro Tools using MIDI controller emulation 121

A.1 JL Cooper CS1 0 ... 121

A.2 CM Labs Motormix ... 122

~--

9

A.3 Mackie HUI ... 123

A.3.1 Analysing the HUI protoco!... .. 123

Appendix 8 A Cocoa wrapper for Carbon CoreMIDI functions 125

Appendix C Investigating CoreAudio Clock ... 135

Appendix 0 PFPan2x4 VST plug-in source code 143

10

Table of Figures

Fig. 4-1: Boehm Spiral model .. 37

Fig. 5-1: Passive panner .. 41

Fig. 5-2: Prototype 1 - Craig lockhart panner using Max/Msp 42

Fig. 5-3: Pro Tools panner window .. 43

Fig. 5-4: Prototype 2 multi-channel spatialiser ... 44

Fig. 5-5: Low-cost joystick viewed from below and above 45

Fig. 5-6: Philips LPC micrcontroller-based panner ... 45

Fig. 5-7: modified Max/MSP simple linear panner .. 47

Fig. 5-8: Six and eight-channel panner48

Fig. 5-9: Sonic Fusion 2006 Max/MSP panner sub-patch 48

Fig. 5-10: OctoPanner v1 (Sonic Fusion 2006) .. 49

Fig. 6-1: TestPanner UI and Interface Builder palette .. 55

Fig. 6-2: Linking controls to corresponding actions .. 56

Fig. 6-3: OctoPanner v2 main window in Interface Builder 59

Fig. 6-4: OctoPanner v2 when running ... 59

Fig. 7-1: ShapePanner prototype interface .. 61

Fig. 7-2: Bindings test application .. 63

Fig. 7-3: Text Field and Table Column inspectors showing bindings 63

Fig. 7-4: ShapePanner incorporating CoreAudio Clock 68

Fig. 8-1: 3D MIDI Visualiser Cocoa application .. 70

Fig. 8-2: Quartz Composer 3D MIDI Visualiser paneL .. 71

Fig. 8-3: Quartz Composer renderer objects in 3D MIDI Visualiser 72

Fig. 8-4: 3D Transformation with published inputs ... 73

Fig. 9-1: Dual-axis foot-controller ... 75

Fig. 9-2: Ludvig foot controller patent. .. 75

Fig. 9-3: Weight distribution based panner evaluation .. 76

Fig. 9-4: 'Puck' based panner evaluation ... 77

Fig. 9-5: Prototype Foot Puck panner .. 77

Fig. 10-1: Ableton Live audio track ... 80

Fig. 10-2: OctoPanner v2 modified MIDI Setup panel .. 81

Fig. 10-3: Ableton return A and return B routing ... 81

11

Fig. 10-4: Concert layout for 'The Arches' (Glasgow) ... 82

Fig. 11-1: OctoPanner version 3 main window ... 87

Fig. 11-2: Octopanner v3 X,Y,Z mirror controls .. 88

Fig. 11-3: OctoPanner v3 touch keyboard .. 88

Fig. 11-4: OctoPaner v3 snapshot editing panels ... 89

Fig. 11-5: OctoPanner v3 MIDI setup panel ... 90

Fig. 12-1: Pluggo based Pro Tools send and receive plug-ins 92

Fig. 12-2: The send and receive plug-ins in a Pro Tools session 92

Fig. 12-3: Audio section of the Max/MSP (Pluggo) patch for OctoSend plug-in .. 93

Fig. 13-1: Senderella V1.08 plug-in in Pro Tools .. 97

Fig. 13-2: PFPan plug-in controls ... 100

Fig. 13-3: PFPan in Ableton Live ... 101

Fig. 13-4: PFPan in Pro Tools .. 101

Fig. 13-5: PFPan plug-in MIDI mapping ... 101

Fig. A- 1: CS 10 Emulator (Cocoa) ... 121

Fig. A- 2: HUI Emulator (Cocoa) .. 124

Fig. B-1: MIDI port pop-up buttons .. 131

Fig. C- 1: Simple Core Audio Clock test application ... 139

Fig. C- 2: Response by Doug Wyatt to the CAClock anomaly 140

Fig. C- 3: CoreAudio Clock Test App v2 .. 142

Acknowledgments

My sincere thanks go to my supervisor Steve Davismoon and the Postgraduate

team at Edinburgh Napier for their guidance and endless encouragement.

Grateful thanks to Dave Hook and my other colleagues for their individual

contributions and support, especially for taking up the strain when I was at my

busiest. Thanks also to Gerard Pape, Haftor Medboe and the other musicians

and composers involved in the testing phases. This thesis is dedicated to my

family, whose unwavering belief in me made it possible.

12

1 Overview

1.1 Background

This thesis documents the PhD by Practice-led research that began as a result of

a series of electro-acoustic masterclasses and performances in 2004 by staff and

visitors to Edinburgh Napier University. The author was technical manager for

these events, which included Edinburgh Napier's Steve Davismoon and CCMIX

(Centre de Creation Musicale lannis Xenakis, Paris). The technical specification

for both of these events requested a symmetrical array of eight full-range

loudspeakers driven by the eight bus outputs of an eight bus analogue mixing

desk. The system would be used to spatialise live musicians, stereo CD or 8

channel Tascam DA98 digital multitrack. This loudspeaker arrangement differed

significantly from the author's experience of surround-sound in 2002 whilst

recording and mixing the soundtrack for a Historic Scotland film for the Urquhart

Castle Loch Ness Visitors' Centre. The centre's new cinema adopted the ITU

8S.775-1 5.1 speaker standard commonly used for DVD, an asymmetrical

speaker array consisting or three front speakers, two rear speakers and a sub­

woofer (AES 2001 p4).

For spatial positioning of the Urquhart Castle musical elements and sound

effects, the author used the joystick-controlled 5.1 panning within the Pro Tools

Digital Audio Workstation (DAW). The difference between this and the 8-bus

analogue mixing technique used by CCMIX was highlighted when the author and

assistant engineer Dave Hook were asked to use the 8-bus mixer to spatialise a

live performance for OJ and Tape by Edinburgh Napier student Gavin Fort. 80th

engineers experienced frustration at their inability to intuitively move a sound in a

straight line, square or circular path using the fader-based system, although It

must be noted that later research showed that experienced diffusers such as

Dennis Smalley were capable of complex manipulation of the eight faders to

perform such sound movements (Austin 2001 p23). This leads to an initial

research question that will be expanded in 1.2:

"How can the physical user-interfaces and audio software used by the music and

film post-production industries offer creative alternatives?"

13

The author worked from 1983 to 1994 as a software and hardware developer for

audio and military applications and had relationships with audio software and

hardware manufacturers such as Steinberg and Digidesign, both of whom

develop their commercial applications using C and C++. The use of the

MAXIMSP graphical programming environment (Cycling '74 2009) that featured

repeatedly in the masterclasses contrasted strongly with his personal experience

and led to the second research question:

"How can emerging programming technologies offer creative alternatives to the

MAX/MSP or hardware-based tools commonly used for sound spatialisation?"

At this point the author saw an opportunity to combine his experience of

professional practice in the audio industries with his previous experience as a

hardware and software developer. The two research questions suggested a body

of research that would investigate alternative user interfaces, DAW hosting and

alternative programming technologies and would lead to the development and

testing of tools that combined audio industries' practice with electro-acoustic and

acousmatic diffusion/spatialisation practice. Although practice-led research

leading to the award of PhD through music composition is common and is offered

by eleven of the Universities surveyed by Frayling in 1997, Biggs (2000 p2)

makes the following statement about the wider application of practice-led PhD

research:

"Practice-based projects are those which include as an integral part the

production of an original artefact in addition to, or perhaps instead of, the

production of a written thesis. They are naturally of great interest to practising

artists and designers, but they are not confined to these disciplines. One may find

examples in music, in software design, in engineering, in law; in fact in any

subject where the result might be an artefact generated in the laboratory or

workplace"

In 2005 the Arts and Humanities Research Council (AHRC) commissioned a

review of practice-led research that offers the following definition "Research in

which the professional and/or creative practices of art, design or architecture play

an instrumental part in an inquiry." (Rust et al 2007 p11). The AHRC Funding

Guide states that practice-based research leading to a new or improved artefact

should integrate with the research questions and research methods to generate

14

new or enhanced knowledge and understanding in the discipline (AHRC 2009

p15). Biggs (2000 p2) summarises four key points of practice-led research as

follows:

i. Define the research questions to be explored.

ii. Specify a research context for those research questions.

iii. Determine a methodology for carrying out the research and answering the

research questions.

iv. State the research's contribution to knowledge and understanding in its

area.

1.2 Research Questions and Context

The initial questions can be split and expanded as follows:

RQ1 "How can the physical user-interfaces used for panning by the music and

film post-production industries offer creative alternatives to the fader-based

hardware approach commonly used for electro-acoustic performance?"

RQ2 "How can a DAW be used as an alternative to dedicated panning

hardware?

RQ3 "How can emerging programming technologies offer creative alternatives

to the MAXIMSP or hardware-based tools commonly used for sound

spatialisation?"

As stated in 1.1 these questions arise from the limited sampling of spatialisation

approaches used by staff and visitors to Edinburgh Napier University and the

author's perception of differences between these approaches and those of the

music and post-production industries. The initial context for this body of work will

be the research and development of a prototype or series of prototypes that will

explore the research questions and will be used by staff and visitors participating

in the Edinburgh Napier University 'Sonic Fusion' programme of masterclasses

and performances. A more detailed research context will result from the Chapter

15

2 literature review, survey of existing systems and review of working practice by

staff and visitors.

1.3 Thesis Structure

This thesis will document the research in three sections:

Part I: Requirements and Methodology

Part II: Implementation

Part III: Conclusions and contribution to knowledge

These sections can be further broken down as follows:

1.3.1 Part I: Requirements and Methodology

The next three chapters of this thesis lead to the generation of the initial

Requirement Specification and a methodology for its implementation and

evaluation:

Chapter 2: A literature review of past diffusion/spatialisation systems with a focus

on technology and loudspeaker configuration.

Chapter 3: A critical review of current systems, leading to a Requirement

Specification for a creative hardware and software Toolset that

addresses some of their limitations.

Chapter 4: Examination of three commonly used development methodologies

and selection of a 'best-fit' methodology that will assist in the

implementation of the chapter 3 requirement specification whilst still

allowing the research to make a significant and original contribution to

knowledge.

1.3.2 Part II: Implementation

Chapters 5 to 13 describe the development of the hardware prototypes and

software applications leading to the final Toolset. The initial prototypes are

developed using MAXIMSP to allow comparision with later prototypes developed

using alternative programming technologies. The use of each prototype in a

concert situation is analysed in terms of the research questions.

16

1.3.3 Part III: Conclusions and contribution to knowledge

Chapter 14 presents a critical evaluation of the research along with its

contribution to knowledge and possible future work.

1.3.4 Appendices

Appendices A, B, C and 0 give more detailed documentation of some of the

research findings along with sample code to allow other researchers to utilise the

technologies where currently available documentation and example code is

minimal or non-existent.

17

::n
C'D
.c
r:::
""'I
C'D
3
C'D
:::l
fit
Q)
:::l
C.

s:
C'D ,...
::::r
o
c.
o -o
cc
'<

--"
co

2 Literature review of past diffusion/spatialisation

systems with a focus on loudspeaker configuration,

control and technology.

This chapter examines the evolution of electro-acoustic spatial works in the

second half of the 20th Century in relation to their loudspeaker configurations,

physical controllers and the advancement of technologies such as the tape

recorder, computer and digital audio, Rather than presenting an exhaustive list,

this literature review examines trends and key features and thus informs the

Requirement Specification for the Toolset in Chapter 3. Since MAX was to have

such a significant effect in later years, this chapter is presented in two sections:

pre-MAX and post-MAX works and developments.

2.1 1951 to 1987: Before MAX

To help inform the Toolset loudspeaker configuration requirement, the works and

events presented in this section will be further categorised by their size of the

loudspeaker array into three categories: four speakers, six eight and ten

speakers and then large speaker arrays.

2.1.1 Four-speaker works and events

In 1951 the recent availability of the tape recorder allowed Radiodiffusion

Television Francais (RTF) engineer Pierre Schaeffer to move from gramophone

based composition to a series of pieces for multiple mono tape recorders in

conjunction with Pierre Henry. These pieces were projected through four

loudspeakers arranged in a tetrahedron - front left, front right, back and

overhead (Manning 2004 p26). Sound spatialisation was via the 'potentiometre

d'espace' also developed that year by Jacques Poullin which consisted of four

large receiver coils (exceeding 1 metre in diameter) representing the tetrahedral

loudspeaker array placed to the sides, in-front of and above the performer. The

coils detected the movements of the performer's hand-held transmitter and

controlled the spatialisation via induction in those coils (Manning 2006 p87).

Malham and Myatt (1995 p59) state that a variation of this system used a special

19

5 track tape recorder where 4 tracks each supplied a loudspeaker and the fifth

track was spatialised by the performer into those speakers.

In 1956 Karlheinz Stockhausen finished Gesang der JOnglinge at Westdeutscher

Rundfunk (WDR), this piece had a detailed spatial plan of the loudspeakers and

hall, detailing the placement and movement of sounds in the space (Fishman­

Johnson 1993 p17). The piece was conceived for four speakers placed around

the audience fed from 4-track tape plus a fifth above the audience fed from a

manually synchronised mono tape, however, due to practical limitations the

premiere took place with a panoramic arrangement of four speakers across the

stage. (Zvonar 2000 p3). Following the premiere Stockhausen remixed the piece

for quadraphonic playback with the speakers placed equally around the audience

as front, left, right and rear (i.e a square rotated by 45 degrees). For his piece

Kontakte in 1960, Stockhausen used the same 4 speaker diamond loudspeaker

configuration as his earlier Gesang der JOnglinge, Stockhausen created sounds

that orbited the audience by using a highly directional loudspeaker revolving on a

turntable whose sound is picked up by four microphones placed around the

turntable (Malham & Myatt 1995 p60).

1967 saw the start of Pink Floyd's involvement in four speaker sound with their

"Games For May" concert at London's Queen Elizabeth Hall using a rudimentary

quadraphonic P.A. system (Cunningham 1997). In 1972 they recorded "Dark side

of the Moon" with quadraphonic playback in mind and Engineer Alan Parsons

produced a conventional stereo mix and a quadraphonic (quad) mix for the ill­

fated quad LP and quad 8-track cassette formats. Quad continued to be a feature

of Floyd concerts using a custom mixing desk designed by Allen & Heath that

incorporated a joystick panner. After experimenting with different loudspeaker

configurations they eventually settled on the front centre, left, right, rear centre

diamond favoured by Stockhausen instead of the more conventional left, right

and rear left, right pairs used by both of the 1970's 'square-based' quad LP

standards. Both of the competing sa and QS quadraphonic LP formats were, by

design, stereo compatible and thus had a front left and right speaker pair

supplemented by a rear speaker pair (Crompton 1974 p2).

Also in 1972, Pierre Boulez composed the first of several versions of Explosante

Fixe for flute, chamber orchestra and electronics as a result of a demonstration of

20

the capabilities of the Halaphon spatialiser designed by Freiburg

Experimentalstudio Director Hans Peter Haller and Engineer Peter Lawo

(Warnaby quoting Haller 1996 p32). The Halaphon extended the concept of

automated panning demonstrated by Stockhausen with his loudspeaker turntable

by providing four channels of automated pattern-based movement (Zolzer 2002

p518).

Until this point the systems described have been analogue, in 1972 John

Chowning, together with James A. Moorer, Loren Rush, and John Grey formed a

research group at Stanford in psychoacoustics, analysis, digital recording, and

digital synthesis design. This group is formally established in 1975 as CCRMA

(Center for Computer Research in Music and Acoustics) and the first CCRMA

quadraphonic concert took place in 1978 (CCRMA 2009).

Significant to Research Question 1 are two 1960's devices that offered manual

panning in contrast to Stockhausen's turntable panning device and the Halaphon

described above: the 'Stirrer' designed by Lowell Cross in 1966 for David Tudor

(Kuivila 2001 p20), and the 'Azimuth Coordinator' designed by Bernard Speight

for Pink Floyd (Cunningham 1997). Both of these devices were potentiometer­

based and allowed a sound to be moved between four outputs, Cunningham

describes the "Azimuth Coordinator" as follows: "This elaborate name was given

to what was essentially a crude pan pot device made by Bernard Speight, an

Abbey Road technical engineer, using four large rheostats which were converted

from 270 degree rotation to 90 degree. Along with the shift stick, these elements

were housed in a large box and enabled the panning of quadraphonic sound. "

21

2.1.2 Six, eight or ten loudspeaker works and events

This sub-section examines works and events leading up to 1987 that used more

than four loudspeakers but less than the tens and hundreds of loudspeakers to

be discussed in 2.1.3. The use of more than four loudspeakers could be

expected to be linked to advances in tape recorder track-count, however, around

the same time as Schaeffer and Henry's experiments with four speakers, John

Cage (1912-1992) and colleagues in the USA formed the "project for music for

magnetic tape", an example of which being Cage's "Williams Mix" (1952) for 8

mono tape machines and 8 loudspeakers placed equally around the auditorium

(Zvonar 2000 p2).

In 1981 Boulez returns to Freiburg Experimentalstudio to compose Repons. The

six-speaker piece was commissioned by South-West German Radio using the

combined resources of IRCAM and Experimentalstudio as the former did not

have an equivalent to the Halaphon at this time (Warnaby quoting Haller 1996

p33).

Also at Experimentalstudio, Luigi Nono begins a fruitful relationship with Haller

that continues through the 80's leading to works such as Prometeo. Prometeo

was performed in 1987 in the Hall of the Alte Oper, Frankfurt using a total of 10

loudspeakers, eight around the periphery of the hall and the final two speakers

centrally placed firing in opposite directions along the long axis of the hall (Haller

1999 p16 figure 2). The same year, Luciano Berio establishes Tempo Reale

studio in Florence where Nicola Bernadini and Peter Otto develop TRAILS

(Tempo Reale Audio Interaction Location System). TRAILS was capable of 32-

channel audio distribution with pre-programmed and real-time spatialisation

(Roads quoting Bernadini and Otto 1996 p454).

Just as with four speakers, no standard configuration appears to be emerging

and it is becoming clear that the Toolset must be able to support more than one

loudspeaker configuration along with pre-determined spatialisation as well as

real-time control.

22

2.1.3 Loudspeaker arrays and the Loudspeaker orchestra

In 1958 Edgard Varese' Poeme Electronique was played through allegedly 400+

loudspeakers at the Philips Pavilion at the Brussels World's Fair. The sounds

from 15 tape recorders were switched between the various arrays of

loudspeakers by telephone relays and the relay routing was controlled by a

control tape. (Ernst 1977 p43). The EMF Institute has the following to say: "As

Varese later described it, the sound followed paths through the loudspeaker

arrays, and groups of speakers were used to create effects such as

reverberation" (EMF 2009)

Expo '70 in Osaka hosted several multi-channel installations, most notably lannis

Xenakis' "Hibiki Hana Ma", a 12 channel piece projected through 800 speakers

around, above and under the audience, and Stockhausen's installation in a

spherical auditorium consisting of 55 loudspeakers arranged in seven rings from

the top to the bottom of the sphere. Zvonar quotes Stockhausen as follows "To sit

inside the sound, to be surrounded by the sound, to be able to follow and

experience the movement of the sounds, their speeds and forms in which they

move: all this actually creates a completely new situation for musical experience.

'Musical space travel' has finally achieved a three-dimensional spatiality with this

auditorium, in contrast to all my previous performances with the one horizontal

ring of loudspeakers around the listeners."

In 1973 at the Group de Recherches Musicales (GRM), Fran90is Bayle created

the Acousmonium with eighty loudspeakers placed across a stage, this

arrangement has become known as a "loudspeaker orchestra". A different

diffusion approach was taken by Christian Clozier for the GMEB Gmebaphone 1, a

console and sound processing system with a large number of loudspeakers often

1 In 1997 version 6 of the Gmebaphone was produced by Christian Clozier, Franc;:ois

Giraudon and Jean-Claude Leduc under the banner of Institut International de Musique

Electroacoustique de Bourges (IMEB) and was renamed the Cybernephone (IMEB 2009

p2).

23

varying in size and distance from the audience allowing the diffusion artist to

create tonal variations and a near or far sound image (Clozier 2001 p89). A third

diffusion approach was taken by Jonty Harrison In 1982 when founding the

Birmingham Electro-acoustic Sound Theatre (BEAST). The BEAST sound

system is a multi-loudspeaker diffusion system for electro-acoustic music that

allows the performer to diffuse a performance via a custom console and Harrison

suggests a minimum of MAIN. WIDE, DISTANT and REAR pairs of speakers for

reproduction of stereo material (Harrison 1999 p5).

24

2.2 1988 to present: Post MAX

It will be seen in Chapter 3 that many of the current spatialisation systems have

been developed in (or utilise in some way) MAX, therefore its arrival in 1988 can

be argued as a turning point alongside the rise of the personal computer. This

section looks at the evolution of MAX but also notes the continued use of

dedicated hardware systems, for example, in 1990/1991 Stockhausen composed

the 8-channel OKTOPHONIE with spatialisation via an Atari-controlled Yamaha

DMP7 digital console and a four-channel spatialization unit called the QUEG

(Quadraphonic Effects Generator) (Bernardini and Vidolin 2005 p3) developed by

Tim Orr and manufactured by EMS in 1975 (Hinton 2001 p10). Pink Floyd also

chose a hardware solution for their 1994 tour of the Division Bell album, once

again using quad but this time using conventional Yamaha mixing consoles for

instruments, vocals and tape replay together with a custom-built 16 channel

quadraphonic Midas XL3 with two manually operated joysticks. (Hilton 1994 p3)

2.2.1 IReAM and MAX

In IRCAM in 1988 Miller Puckette finalised the first version of the graphical

programming language MAX named in honour of Max Mathews, author of the

RTSKED program. This completed IRCAM's 4X computer digital sound

processor. Although MAX was originally conceived as a combined event (MIDI)

and signal (DSP) environment, the initial development of the program was MIDI

only as this was the only interface available to the 4X system (Puckette 1991

p68). The IRCAM Signal Processing Work Station (lSPW) came into general use

for computer music in 1991. It was based on a NeXT computer with a set of DSP

cards having multiple inputs and outputs and Max is ported to the NeXT

operating system. Opcode Systems release Max as a commercial product under

the development of engineer David Zicarelli. In 1996 Puckette develops the MAX­

like public domain program Pure Data (pd) to extend the capabilities of MAX

(Puckette 1996 p1). The audio DSP aspect of Pd is later used by Zicarelli as a

starting point for his "MAX Signal Processing" (MSP) program and in 2000

Zicarelli/Cyciing '74 concludes an agreement with Opcode/Gibson and IRCAM

and takes over the publication and release of MAXIMSP.

25

2.2.2 CNMA T and Level Control Systems

In 1989 David Wessel, formerly at IRCAM working alongside Miller Puckette

founded the Center for New Music and Audio Technologies (CNMAT)

(pronounced sennmat) within the University of California, Berkeley. CNMAT is

now part of a consortium with Stanford's Center for Computer Research and

Acoustics CCRMA and IRCAM. CNMAT has strong links with Level Control

Systems (LCS), founded by sound designer Jonathan Deans and software

designer Steve Ellison to manufacture automated audio control systems for

theatre, sound reinforcement, and location-based entertainment such as theme

parks, circuses and cruise ships. Also in 1991, Naut Humon establishes the

Sound Traffic Control project using a 12 channel analogue mixer by Level Control

Systems and four years later the project is upgraded using a 40 channel digital

LCS system consisting of five LD-88 mixers. Part of LCS's supernova system,

the LD-88 was an 8 x 8 audio mixer with built-in DSP for equalisation and

channel delay. Up to 16 LD-88s could be digitally interconnected to create a 128

input and 128 output system. Control of the LD-88 was via their CueStation

software which provides a graphical user interface to the processor's DSP and

surround panning functions. The Sound Traffic Control project had an integral 3D

viewer window called 'ThreeD' and also included a computer running MAXIMSP

(Humon et al. 1998 pp1-5).

In 2006 Level Control Systems became part of MeyerSound and produced their

3rd generation system called Matrix3 (MeyerSound 2009). This system is the

successor to the LD-88 show control system used by the Sound Traffic Control

project. Also in 2006, Sound Traffic Control's founder Naut Humon established a

theatre venue for Recombinant Media Labs (RCL) in San Francisco, the

successor to Sound Traffic Control is named 'Surround Traffic Control' and was a

16 speaker system arranged as two rectangular layers of 8 speakers, one layer

at ceiling height and the other below ear height. The system incorporated a Sony

DRMX100 digital console and custom spatialisation software written using Max

MSP, Supercollider, PD and Kyma along with software from Immersive Media

Research described in Chapter 3 (Jones 2006 p2). This venue closed in spring

2008 and RCL is currently collaborating with Peter Otto at UCSD which has

resulted in a performance in the UCSD experimental theatre in 2009 (Threw

2009).

26

2.3 Chapter summary and research contribution

The review highlights two separate loudspeaker trends:

i. Small loudspeaker systems, typically 4 or 8 placed equally around the

auditorium, occasionally with an overhead speaker but more commonly in

a single two-dimensional layer.

ii. Large "loudspeaker orchestras" or installations with speaker arrays

numbering in the tens or hundreds often weighted with more speakers

towards the stage and often with some speakers above the audience.

Looking at the section in terms of positional control, there are two clear types:

i. Manual positioning devices such as the potentiometre d'espace, Joystick,

Stirrer and Azimuth Coordinator;

ii. Automated positioning devices such as Halaphon, TRAILS and

Stockhausen's loudspeaker turntable.

Considering the chapter in terms of Research Question 1 (user interfaces), It is

clear that both manual and automated means of control should be developed as

part of the Toolset. It should be noted that although Poulin's potentiometre

d'espace was the only controller capable of panning a sound within a three­

dimensional space, several of the works used 3D loudspeaker arrangements

therefore the Toolset and its controllers should accommodate 20 and 3D

loudspeaker configurations.

Considering the chapter in terms of Research Question 2 (OAW as an alternative

to dedicated hardware), although the early spatialisation systems were purely

hardware-based, there are now other alternatives in use such as purely software­

based solutions using MAX/MSP and hybrid solutions using a hardware matrix

mixer controlled by software. As the next chapter will confirm, there still appears

to be a research gap to be addressed by Research Question 2: "How can a OAW

be used as an alternative to dedicated panning hardware?"

27

3 Currently available institution-based or commercial

systems

Halaphon was the in-house hardware-based spatialisation system developed at

Freiburg Experimental Studio in 1971 by Hans Peter Haller and Peter Lawo,

initially a 4 channel system using variable speed and waveform envelope

oscillators to modulate the amplitude of the loudspeaker outputs and create

pattern-based movement (Zolzer 2002 p518). In 1989 the Halaphon functionality

was incorporated into the Experimental Studio 48x48 Matrix Mixer. Email

discussions in December 2008 with Thomas Hummel at Experimental Studio

revealed that the current Halaphon implementation is a MAXIMSP program with

pre-programmed movement but manual control of the speed.

TRAILS (Tempo Reale Audio Interactive Location System) by Peter Otto and

Nicola Bernardini used a matrix of up to 512 VCAs (Puckette 1991 p5) to create a

24 channel system with eight separate trajectories (Osmond-Smith 1991). The

smaller MiniTraiis system contained an 8x8 VCA matrix that allowed the user to

trigger and level balance 8 channels of movement stored in a playlist (Vidolin

1993). Email discussions in May 2009 with Damiano Meacci at Tempo Reale

revealed that the spatialisation system under development is a MAXIMSP

program with Tempo Reale externals.

SPAT is a software suite developed by IRCAM that spatially processes source

signals with simulation of air absorption, Doppler effect and room acoustic before

output using headphones or up to 8 loudspeakers (IRCAM 2008 p1). The suite is

comprised of C++ externals and Max patches and in earlier versions of

MAXIMSP it was possible to export a MAX patch as a VST plug-in which could

then be 'wrapped' into RTAS and Audio Unit DAW plug-in formats. With the

release of version 5 however, Max/MSP has discontinued support for VST plug-in

generation. Although MAX does not have built-in support for MIDI Time Code,

Peter Elsea at University of California, Santa Cruz (UCSC) describes a MAX

patch that allows reading of MTC (Elsea 2004 p1). This could be developed to

provide basic slave synchronisation but not master.

28

IMEASY X (Integrated Modular Expandable Audio Spatialisation system) by A&G

Soluzioni Digitali is a control application that sends MIDI control messages to

their XSPAT standalone DSP hardware that in turn performs spatialisation of

eight sounds. The Apple-compliant user interfaces suggest that Apple's software

development environment has been used. Spatial input is via a connected pen

called "The Bat" that can be moved within a virtual cube to give 3D real-time input

into IMEASY (A&G 2009) The application allows master or slave synchronisation

with external equipment or software.

Vortex Surround Designer is a product by Immersive Media Research (1M

Research 2008) whose Directors and advisors include Peter Otto, the co­

designer of the Tempo Reale TRAILS system and Naut Humon, founder of

Sound Traffic Control. Input sources are files and the application cannot process

real-time live input. Spatial breakpoint-based panning is a strong feature but

there is no synchronisation with other software as either master or slave.

Distinctive audio setup settings and User Interface items such as menus suggest

that this application has been written using MAX/MSP.

ABShowMaker is the control application for the Audiobox AB64 matrix mixer,

audio recorder and show controller by Richmond Sound Design (Richmond

Sound Design 2009) In addition to fader-based real-time control, the editor allows

the user to add show events to a cue list, a diffusion editor allows straightline

trajectories to be pre-programmed and added to this list.

Matrix3 by MeyerSound is a hardware-based matrix mixer with hard disk audio

playback (MeyerSound 2009). Like its predecessor the LD-88, control of Matrix3

is by CueStation software or faders. A significant feature of the current system is

its 'Cue List' approach that allows different settings to be saved as cues to be

recalled during a performance either manually or under the control of a master

synchronisation source such as MIDI Time Code (MTC). The current version is

OS X-based and incorporates 'SpaceMap', a feature of the application that allows

trajectories to be entered graphically.

OKTEG was developed in 2007 for Stockhausen's 'Cosmic Pulses' by Gregorio

Karman and Joachim Haas from Experimental Studio. OKTEG is a Max/MSP

patch containing eight sequencer-driven amplitude-panning modules with

29

independent fader controlled tempo controls working in conjunction with Pro

Tools. Pro Tools was used for sound playback and to record the encoded

trajectories produced by OKTEG for subsequent playback. (Nordin quoting

Karman 2007 p9).

Table 3-1 below presents these currently available systems and compares key

features:

30

DAW Panning Trajectories Trajectory
Sync.

Platform language Master
hosted Interface & automation view

-slave

User- Requires
SPAT Mac MAX - - -

defined programming

Mac+

Halaphon Matrix MAX Mouse
20 Shape-

- - -
based

mixer

Via
OAW Mouse + 20 Straightline

OKTEG Mac MAX - Pro
Partner faders via Pro Tools

Tools

Mouse +
TRAILS Mac MAX - 20 Straightline - -

faders

Mac+
Undisclosed User- 20 Straightline

MATRIX3 standalone - - y
(C OR C++) defined graphic -based

hardware

ABShow
Mac/PC + 20

Undisclosed Mouse + 20 Straightline
Audiobox - non- Y

-Maker (C OR C++) faders Table-based
hardware realtime

1M EASY
Mac+ 3D

Undisclosed Mouse + 20 Node-
XSPAT - non-

X (C OR C++) 'the Bat' based Y
hardware realtime

Undisclosed 20 Breakpoint-
VORTEX Mac - Mouse - -

(MAX) based

Table 3-1: Comparison of current systems

It is useful to consider the table within the context of the three research

questions:

faders in the form of the Bat and is therefore the only system that would allow an

artist or performer to directly position a sound. The Bat is also the only device

that generates 3D positional information.

3.1.2 Research Question 2 - DAW Hosting

None of the systems can currently be DAW-hosted. With the exception of SPAT

all these systems are standalone solutions. SPAT is a component and not a

complete system therefore SPAT-based solutions are likely to be standalone

although prior to MAXIMSP version 5 SPAT could be integrated into a DAW such

as Pro Tools as a wrapped VST plug-in (Fxpansion 2009). Three of the systems

use the manufacturer's DSP-based hardware to perform spatialisation, the

remaining five systems are standalone systems and can use any Mac-supported

multi-channel audio hardware. Okteg is the most recent system and although this

MAXIMSP application performs its own spatialisation it is designed to work in

conjunction with Pro Tools. Pro Tools automation gives Okteg the ability to record

and replay trajectories in relation to a timeline (Nordin 2007 p10).

3.1.3 Research Question 3 - Comparing Max/MSP and alternative

technologies

Five of the systems are based on MAXIMSP, the other three use undisclosed

programming technology however, since they use Apple user interface elements

such as buttons and pop-up menus it is likely that they use the Apple Integrated

Development Environment (IDE) and therefore C/C++ or Java languages (Apple

2009 p1). It can be seen from the table that system functions such as

synchronisation and trajectory visualisation are missing from the MAXIMSP

based systems, hence a contribution to knowledge could be made if this thesis

investigates alternative programming technology to provide the synchronisation

missing from MAXIMSP solutions. The selection of an appropriate programming

technology will be discussed in chapter 6.

3.1.4 Additional considerations

The literature review and the resulting table clearly show that the systems have

additional features not considered in the original research questions that could

31

inform the requirement specification for the Toolset to be developed by this body

of research:

3.1.5 Trajectories, cue-lists and automation

Beginning with the original Halaphon, the ability to pre-program a sound's path

has become a feature of most of the systems and should therefore be a

requirement for the Toolset resulting from this research. The currently available

systems generally focus on straightline 'two-dimensional trajectories' therefore

there is scope for the research to extend this into three dimensions and include

other trajectories such as circular paths. In addition to recording and replaying

the user's movement of sound using automation, ABSShowmaker and Matrix3

both feature a cue-list approach allowing the user to numerically and/or

graphically pre-describe the movements of sounds and this too should be added

to the Toolset requirement specification.

3.1.6 Synchronisation

Only the three commercial systems that use their own DSP hardware can act as

timecode masters or slaves and thus be integrated into systems either requiring

or generating positional and timing references. As this functionality is missing

from MAXIMSP (and therefore from the systems in the table that use it) but is a

common feature in commercial audio production, it will be added to the Toolset

requirement specification.

3.2 Summary of requirements

At this point the Toolset requirements resulting from the literature review and

analysis of current systems can be summarised as follows:

i. The Toolset is to be DAW hosted

ii. The Toolset development will include the use of commercially used

programming languages and Integrated Development Environments.

iii. The Toolset will integrate or develop alternative panning interfaces

including joysticks and touchscreen controllers.

32

iv. The Toolset will provide 3D shape and breakpoint-based automatable

trajectories via a cue-list.

v. The Toolset will allow synchronisation with other applications as a master

or slave

vi. The Toolset will provide real-time 3D trajectory visualisation.

The first two requirements require more detail before development can begin,

namely choice of DAW host or hosts and choice of programming language/IDE.

Hoffman (1993 p21-23) suggests the combined use of four techniques to obtain

an effective requirement specification:

i. Interviewing prospective users

ii. Survey of Documents and Existing Systems

iii. Analysis of Working Practice

iv. Experimentation with Prototypes

Hoffman's points i and iii should be considered within the context of this research:

as stated in section 1.2 this context is the 'Sonic Fusion' series of masterclasses

and performances at Edinburgh Napier University. Table 3-2 lists the participating

Edinburgh Napier University music staff along with 2004/2005 visitors and the

platform and software applications used on that occasion.

User Institution Platform Software

Davismoon, S Edinburgh Napier University Mac MAXIMSP & Pro Tools

Ferguson, P Edinburgh Napier University Mac Pro Tools & Ableton

Giomi, F Tempo Reale Mac MAXIMSP & Pro Tools

Hails, J Edinburgh Napier University Mac MAXIMSP & Pro Tools

Hook,D, Edinburgh Napier University Mac Pro Tools & Ableton

Medboe, H Edinburgh Napier University PC/Mac Cubase

Miranda, E University of Plymouth PC MAX/MSP

Pape, G CCMIX Mac MAXIMSP & Pro Tools

Stillie, B Edinburgh Napier University Mac Logic & Ableton

Table 3-2: Sonic Fusion series staff and 2004/2005 visitors

33

Although no software application dominates Table 3-2, Pro Tools and Ableton

Live (Ableton 2009) stand out as the main DAW alternatives to MAXIMSP. Table

3-2 also clearly shows that the majority of the Sonic Fusion users are Mac-based,

as are the University's recording studios and music labs. Although these users

were using Mac OS 9 for their performances in 2004 most were experimenting

with OS X, therefore to provide maximum contribution to knowledge the research

will focus on the emerging OS X. Requirements one and two above can be

extended to give the final versions seen in Table 3-3, requirements three to six

remain unchanged:

1 The Toolset is to be Mac-hosted using Pro Tools and Ableton Live DAWs.

2 The Toolset development will include the use of emerging programming!

languages and IDEs for the Mac OS X platform.
!

3 The Toolset will integrate or develop alternative panning interfaces including i

joysticks and touchscreen controllers.

4 The Toolset will provide shape and breakpoint-based automatable

trajectories via a cue-list.

S The Toolset will allow synchronisation with other applications as a master or

slave

6 The Toolset will provide real-time 3D trajectory visualisation.

Table 3-3: Final Toolset Requirement Specification

Chapter 4 will examine the choice of an appropriate methodology for the

implementation and review these requirements.

I

34

3.3 Potential contributions to knowledge

This thesis will potentially extend knowledge in its field by:

i. Pointing towards an alternative perspective on the key developments of

spatial audio since 1950 by focussing on loudspeaker topology, control

and associated hardware;

ii. Examining the use of emerging Mac programming technologies and

development environments as alternatives to MAXIMSP by implementing

a set of requirements followed by critical review;

iii. Developing alternative physical methods of spatialisation control;

iv. Developing a novel shape-based approach to spatialisation control via a

cue-list;

v. Expanding the documentation and sample code available to potential

application developers in this field.

The final contributions to knowledge resulting from the research, development

and evaluation of the Toolset will be reviewed in Chapter 14.

35

4 Methodology

Having established the primary aims of this body of work in chapter 3, we can

now consider three commonly used development methodologies to determine a

'best-fit' strategy for the development and critical evaluation of the Toolset:

4.1.1 Waterfall Model

The author worked as a Defence Industry hardware and software design

engineer from 1983-93 on tightly controlled multi-person projects following the

Waterfall methodology characterised by the following sequential stages (Oriogun

2002)

i. Requirements phase

ii. Design phase

iii. Implementation

iv. Systems Testing

v. Operation and Maintenance

Key to the successful use of this methodology was an emphasis on the

Requirements Engineering phase to ensure an accurate and stable

Requirements Specification, this view is reinforced by Modarres (Modarres et al

1999 p34S). The "client" involvement was critical during this initial phase since

that would be their only involvement until the product was delivered. The

Waterfall model can be criticised for its inflexibility when requirements are

changed during the later project phases, and, since each phase must be

completed before the next is carried out, design problems can remain undetected

until the System Test phase (Goodliffe 2007 p429).

4.1.2 Incremental and Iterative Development Model (110)

Incremental Development is a methodology where new features are developed

and incrementally added to successive releases of the application or system

taking the form of a series of prototypes or software releases. Incremental

36

Development is usually combined with Iterative Development, defined by

Defense Journal contributor Alistair Cockburn as:

"a rework scheduling strategy in which time is set aside to revise and improve

parts of the system". (Cockburn 2008 pp.27- 30) .

By combining Incremental Development with Iterative Development, the liD

methodology allows the developer to benefit from feedback from users, leading to

improvements in software quality as well as features.

4.1.3 Spiral Model

The Spiral model was presented by Barry Boehm in 1988 as a risk-driven

process rather than document-driven or code-driven (Boehm 1988 p1). In Fig .

4-1 the spiral represents iterations round Boehm's four-phase process. Goodliffe

(2007 p430) states that each 360-degree turn round the spiral represents a single

waterfall and that each of these iterations has a typical duration of 6 to 24

months.

objective
sett ing

~

revi ewing
a nd p lannmg

risk a~ses~ment
and reduct io n

d evf> lop ment
and va lidat io n

Fig. 4-1: Boehm Spiral model

4.2 Methodology Conclusion

If this research is to fully explore the capabilities of the emerging Mac

technologies for OS X, the chosen methodology must accommodate new

operating system versions with additional features that could impact upon the

37

implementation of the Toolset requirement specification. Similarly, client use and

real-world testing of the Toolset is also likely to result in modifications and

additions to the Toolset requirements. The evolution of the Toolset requirements

and the need to periodically revisit the implementation strongly suggest that an

Incremental and Iterative methodology or its Spiral derivative would be

appropriate and a Waterfall model would not. Although the Spiral methodology's

Risk Assessment and Reduction phase may be highly relevant in a cost and/or

time-sensitive commercial development, there is potential for conflict with the

'contribution to knowledge' research aim of this work since it involves the use of

new OS X technologies with minimal documentation.

4.2.1 Prototype Testing

Although the Edinburgh Napier masterclass context for this research only offers

limited scope for user testing, this interaction with users will aid the design

process, especially in the areas of user-interface and physical control of

spatialisation. If areas of this research are found to offer opportunities for post­

PhD research or commercial development then a formal testing and critical

evaluation strategy will be required, This engagement with a wider range of users

must be intrinsic to the chosen development strategy and at this point a move to

the risk-driven Spiral model or its derivatives may be appropriate.

38

--.. -3
"C -CD
3
CD
:::s
Q) _.
o
:::s

5 Investigating an initial panning solution

5.1 Introduction

This section describes the initial phase of hardware and software development

for the first and second prototypes along with their subsequent testing and relates

to Research Questions one and three:

RQ1 "How can the physical user-interfaces used for panning by the music and

film post-production industries offer creative alternatives to the fader-based

hardware approach?"

To allow this question to be answered, physical examples of said user-interfaces

must be created. This section first describes joystick, then touchscreen

implementations that will be used in the second panning prototype.

RQ3 "How can emerging programming technologies offer creative alternatives

to the MAXIMSP or hardware-based tools commonly used for sound

spatialisation?"

The first two prototypes will be constructed using MAX/MSP so that a reference

can be established to allow comparison between MAX and the alternative

programming technologies that will be introduced in section 6.

40

5.2 Passive analogue panning

As a starting point it is worth considering the passive panning approach used in

1966 by Bernard Speight for Pink Floyd's joystick-based quadraphonic 'Azimuth

Co-ordinator' (Cunningham 1997 p2), and later by Neve in consoles such as the

VRP series with its 'front-back' and 'left-right' potentiometers (Neve 1991 p 3: 13).

Fig. 5-1 shows a simple passive panner block diagram:

Input

Yaxis
potentiometer

Front outputs

Rear outputs

Fig. 5-1: Passive panner

In this diagram the mono input is fed into a potentiometer (pot) controlled by the

y-axis of the joystick, thus the y position of the joystick determines the proportion

of the signal sent to the front and rear x-axis pots. The x-axis of the joystick

controls the dual-ganged front and rear x-axis pots and therefore the left/right

panning of the front and rear signals supplied by the y-axis pot. This passive

technique for quadraphonic panning will be digitally replicated using Max/MSP to

form the basis of the digital panner described in section 5.3 and the DAW plug-in

using C++ to be described in section 13.

5.3 Prototype 1: The initial digital panner

Three weeks prior to the opening of Napier University's new Craiglockart

Campus mid-September 2004, an interactive soundscape was proposed by

Napier University's Ian Tomlin School of Music wherein visitors could trigger

sounds and modify them using filtering and other effects. This event offered a

useful development deadline for prototype 1 and the proposal was changed from

stereo to a quadraphonic speaker layout to allow visitors to spatia lise triggered

sounds.

41

The MAX/MSP patch shown in Fig. 5-2 digitally replicates the passive quad

output joystick technique examined in Fig . 5-1 by using the 'constant distance

xfade' example patch by Cycling '74 as a potentiometer substitute.

I I,' J I.: - F'I',)r,tlR-':jl'

F'jfl

p "oonstant dis t ance xt t.de"

X ax is l e ft /R19ht
Pan

---, j i
--.J 1 ,.............. .

'r' , ",.', . ,I , ,, , . .. , ,, RtU' GiiD. , • Front Gm

1 r> 0 .7071 07 60.7071 01J
t 1
: I .. · ··'··· ·· ' · ·'·· ··· ··'· '······ ·· ··· ·· ······ ' · ~
f I
t 1
t 1
t 1 , 1

~ I p "oonstant distance x.tade"

...... Input S19na1S! I I L n GiliL run""" R' It G .
~::"":~!~ , : , r"u~ t li tllI.

'-:::·:~··· •• : · .. ~"..,.·,/u .. _ ! I 'I 0 .707107 0 .7 071tl7
~ ~.... .. ~'1'''.(~ , j

...... ~~; : ''', « " , J

t;::J~ ! 1
1 1 1 1
I I! 1
1 "' 1 1 (................... 1
I ' I I 1 , · + f .. · ') 1

I I ! I I I
, ... 1 1.. I '···f················· .. ·, 1

I I ! l I I I I

_."'''-.'':E~Jf.;1--.... ~ , .. ''''." .. ~
~~~~~~::~~::; .... , .. ___ .. b .. ' •• 'U, .... ' .. 

output si9nals 
l s and R$ Land R 

Fig. 5-2: Prototype 1 - Craiglockhart panner using MaxiMsp 

The y-axis MIDI controller value drives the y-axis constant distance xfade 'pot' 

whose output is a pair of inversely proportional floating-point front and rear gains 

ranging from 0 to 1. These gains are used to determine the amount of input 

signal fed to the front and rear left-right panners controlled by the x-axis MIDI 

controller value. The host for this patch was a first generation 500MHz Apple G4 

Powerbook running Mac OS9 with a Digidesign 002R firewire audio interface. 

One problem was experienced during testing: Max/MSP would sometimes fail to 

output any audio, although this could usually be resolved by restarting the 

computer. 

A Wacom Graphire 2 tablet and pen was used as the user input device via the 

Wacom Max External by Cycling '74's Richard Dudas. The resulting patch 

worked without problems during the Craiglockhart opening event and was met 

with enthusiasm by visitors, in particular Simon Gage, Director of the Edinburgh 

Science Festival. Prototype 1 did not have any visual indication of panning 

position and it was observed that several users expected the pen to draw 

42 



something on the screen and had initial difficulty relating the Wacom tablet to 

sound movement. 

5.4 Prototype 2 development 

5.4.1 Background 

Before describing the development of joystick and touchscreen controllers for the 

prototype this section will expand upon the author's use of commercial devices. 

As stated in 1.1 the initial research questions arose from involvement in 5.1 

surround mixing projects for Heritage Scotland and EMI that took place between 

June and December 2004. The first project used a Digidesign Pro-Control/Edit 

Pack control surface for the first mix of the Urquhart Castle Visitor Centre 

soundtrack in 5.1 surround sound. Digidesign's Edit Pack contained two Penny & 

Giles motorised faders that proved invaluable for simultaneously panning two 

sound effects that interacted with one another. The motorised faders gave some 

visual feedback as to the sounds' positions but the standard Pro Tools surround 

panner window (Fig. 5-3) gave a considerably clearer indication . 

'I • 'I 

Fig. 5-3: Pro Tools panner window 

The second project used the Sony DMX R100 digital console based on the large 

format Sony Oxford console to surround mix a live recording for DVD. This 

console has facilities broadly similar to other digital desks such as the Yamaha 

02R96 but has a LCD touchscreen as its user-input medium. This touchscreen 

allows surround sound panning by using a finger to move a dot within a square 

that represents the room, essentially the same as the Pro Tools panner window 

but with a touch overlay. This way of manipulating the sound felt intuitive and was 

immediately much easier to control than a joystick or mouse. The only drawback 

43 



was that the touchscreen only allowed one point to be touched at anyone time 

and therefore only one sound could be panned at a time. 

A suitable target for the completion of prototype 2 was the opening concert for 

the 2006 Sonic Fusion Festival in Edinburgh in which it was to feature during a 

performance by Danish guitarist Haftor Medboe. This required development of 

the multi-channel spatialiser shown in Fig. 5-4 with the following specifications: 

• 8 realtime inputs 

• 8 speaker outputs 

• 8 graphic panners using a touchscreen 

• joystick control of graphic panners via MIDI 

5.4.2 Considering Prototype 2 in terms of the 110 methodology 

Incremental additions: this prototype increment will develop and integrate joystick 

and touchscreen controllers and this will introduce programming technology other 

than MAXIMSP. 

Iterative changes: this is the first iteration of prototype 1 and will continue to use 

MAXIMSP for the panning engine with a move to Mac OS X. The MAXIMSP 

panner will be extended to eight channels. In response to user feedback during 

the Craig lockhart event, visual representation of the positions of sounds will be 

added to the user interface. 

Fig. 5-4 shows the physical layout of prototype 2: 

0 0 
0 0 

f 
Sanyo 15" Touchscreen l 

i 
~ c1 

Fig. 5-4: Prototype 2 multi-channel spatialiser 

44 



5.5 Joystick development 

Two commercial MIDI joysticks were available in October 2004: the Axis Panner 

by Gallery and the MCS-Panner by JL Cooper. They were both bulky compared 

to the small joysticks found in Pro-Control and the Yamaha DM2000 and their 

software protocols were not in the public domain. A small low-cost joystick 

mechanism was selected that would require additional electronics and software 

to function as MIDI controller. 

Fig. 5-5: Low-cost joystick viewed from below and above 

Due to its high level of on-chip integration of memory and AID conversion, one of 

the Philips/NXP LPC family of high integration microcontrollers was selected for 

the joystick electronics. The LPC935 has an 8031 core and on-board AID 

converters and flash memory and allowed the two-chip solution shown in Fig. 

5-6: 
Vref 

~'"m." ""."" •• " ~ 
lAID 

~. 
*=' ... / Vx ,2 1 

4 

Rotary encoders 

R;11 Capture! U Compare 
I Unit 

EJ I 

Philips LPC935 

Program 
memory 
(flash) 

user 
defaults 

(eeprom) 

UART ;> Midi out 

buffer 

Fig. 5-6: Philips LPC micrcontroller-based panner 

The Keil MCB900 Ipc935 development board was chosen for the prototype 

development using the included version of the Keil C compiler limited to 4KB 

program size. 

45 



5.5.1 Software development for the joystick 

The four-channel AID converter was set to continuously convert the four 

channels and to generate an interrupt on completion. The MIDI output via the 

UART was also interrupt-driven meaning a complete 3 byte MIDI Continuous 

Controller (CC) message could be loaded into the output buffer for the UART 

interrupt handler to transmit. The AID interrupt handler compared each channel 

with the previously received value and if a change was detected a CC message 

was loaded into the MIDI output buffer. The CC message numbers were 

'hardwired' into the code as CC 12 and 13 for x and y-axes respectively to match 

the x-y output of Korg's Kaoss Pad (Korg 2007). 

The prototype joystick performed satisfactorily although power supply noise 

affected the Voltage Reference for the joystick causing a random glitching of the 

AID converted value. This resulted in random jumps in the position of the panned 

sound and was corrected by improving the power supply regulation and Vref 

decoupling. 

5.6 Touchscreen development 

Following on from the highly positive experience using the touchscreen panning 

window in the Sony DMX R100, the decision was made to incorporate a small 

touchscreen into the second prototype to give the user the option of joystick or 

touchscreen (or both if two sounds were to be panned simultaneously). A search 

for small LCD touchscreen monitors uncovered a family of devices with USB 

touchscreens manufactured by the Taiwanese company Lilliput and a seven inch 

allegedly "Mac compatible" unit was evaluated February 2005. Unfortunately the 

Mac was unable to detect the presence of the display. After close investigation it 

was discovered that the Lilliput display was not Display Data Channel (DOC) 

compliant and did not incorporate the Extended Display Identification Data 

(EDID) ROM that would allow a computer to query the monitor's parameters. As 

a result of this lack of DOC support a considerably larger 15" Sanyo LMU­

TK15A4T LCD touchscreen monitor salvaged from a multimedia kiosk was 

evaluated. The touchscreen in this display was a '3M Microtouch' capacitive 

device and therefore required a much lighter touch compared with the pressure 

required by the resistive touchscreen on the Lilliput display. The touchscreen 

controller was a 3M EXII Capacitive interface controller with a RS232 serial 

46 



output and worked well with a Keyspan USA28X to RS232 converter and the 3M 

Microtouch driver. 

The 15" Sanyo panel also prompted a re-think of the prototype interface as its 

larger size and 1024 x 768 pixel resolution allowed either eight small panners or 

2 rows of four medium-sized panners to be arranged across the screen. 

5.7 Prototype 2 software 

5.7.1 Joystick microcontroller software 

The software can be split into two parts, firstly the embedded C code in the 

Philips LPC935 microcontroller written using the Keil C51 compiler and 

downloaded to the target using Embedded Systems Academy's FlashMagic. 

Secondly, the Max/MSP based audio manipulation part of the software that would 

take realtime audio inputs and spatialise them based on the positions obtained 

from the touchscreen or MIDI joysticks. 

5.7.2 Version 2 of the MaxlMSP based panner 

At this point in the development (January 2006) the new joystick and touchscreen 

offered the user two ways to manipulate the position of a sound, however the 

simple Max/MSP based panner developed for the Craiglockhart launch in 2004 

only allowed 4 speaker panning and needed to be extended to 8. The Max 

simple linear panner patch was modified to provide a centre speaker output as 

shown in Fig. 5-7: 

x position 

Ion centre rl9M 

Fig. 5-7: modified Max/MSP simple linear panner 

47 



By extending the passive joystick technique shown in Fig. 5-1 and this time using 

a combination of Left/Right (LR) and Left/Centre/Right (LCR) panners the six and 

eight speaker configurations in Fig. 5-8 could be obtained. The mono-to-eight­

output panner sub-patch using this technique is shown in Fig. 5-9. 

Xaxis 

front 
C 

t 

~I II """",VV': 
~ 

rear 

Xaxis 

front 
C 

t 

Fig. 5-8: Six and eight-channel panner 

.audio input x axis yaxls 

front m~dle rear 

\~Xpr,I-~ll{l&'r)! ,E'xpr(SflIf2i 

j , I , 

Q :~~ 

left 

Fig. 5-9: Sonic Fusion 2006 MaxiMSP panner sub-patch 

48 



The Fig. 5-9 octal sub-patch was replicated eight times to allow eight separate 

sound inputs to be spatialised to 8 loudspeaker outputs. The Max Icd- object 

was used to give a graphical representation of each sound's position based on a 

simplification of the Pro Tools panner window. 

Fig. 5-10: OctoPanner v1 (Sonic Fusion 2006) 

5.7.3 Testing Prototype 2 

The improvised concert piece by Medboe would use two Line 6 OL4 delay/looper 

pedals (Line 6 2009) to allow him to build up repeating textures and phrases that 

would accompany the direct guitar signal. To allow spatialisation of these three 

sound sources, the two pedals and guitar were connected via 01 boxes to a 

stereo preamp. A Oigidesign 192 I/O and Pro Tools HO core card together with 

its CoreAudio driver provided the Max/MSP runtime environment with 8 inputs 

and 8 outputs. 

The prototype performed flawlessly during the afternoon rehearsals but during 

the concert the Max/MSP patch failed to output audio. The prototype nature of 

the system was explained to the audience whilst a reboot was attempted at which 

point Max/MSP and the audio system successfully connected allowing the piece 

to be performed as planned. 

49 



5.8 Chapter summary and research contribution 

Firstly considering Research Question 1, the introduction of the joystick and 

touchscreen had provided most of the level of positional control anticipated by 

the author although changing between the eight channels caused positional 

jumps since the joystick was not motorised. A significant discovery arose from 

the part-improvised nature of the concert piece. During the performance Medboe 

had been aware of wanting a specific spatialisation of one particular sound as he 

played but was unable to communicate this to the engineer. A discussion ensued 

about enhancements to allow the musician to pan their own sound either by 

guitar mounted joystick or foot control and this led to the additional research that 

is discussed in section 9. This was a significant change to the requirement 

specification and illustrates the flexibility of the liD methodology to incorporate 

Requirement Specification changes resulting from user testing of each system 

iteration. 

The near-failure of Prototype 2 in concert conditions gave cause for concern, 

however, the next phase of incremental development would be to introduce the 

DAW to begin the investigation of Research Question 2. Instead of the integrated 

prototype 1 and 2 applications, the control and audio functions would be 

separated and a DAW environment such as Pro Tools or Ableton Live would be 

used as the panning engine. 

As stated in the methodology, this chapter uses MAX/MSP for the first and 

second prototypes to allow later comparison with alternative programming 

technologies in line with Research Question 3. The use of Max/MSP allowed a 

rapidly prototyped digital solution to be developed that successfully meet the tight 

timescale. In particular, the availability of the MAX external by Dudas allowed 

straightforward integration of the Wacom tablet. 

50 



6 Development of OctoPanner Version 2 

By the end of 2005 OS X had successfully and reliably replaced OS 9 for most Mac­

based musicians and each major release was adding new 'Core Services' for 

programmers, however, little information was available to music programmers and 

example code was sparse. This chapter begins with an overview of Apple's Carbon and 

Cocoa development environments and the OS X Core Services relevant to this research: 

6.1 Mac application development 

6.1.1 The Carbon development environment 

To ease the software developer's transition from OS 9 to OS X, Apple created the 

Carbon environment, a collection of C and C++ functions and data structures that allow 

User Interface (UI) generation, file system and hardware interaction based on the 

original Macintosh Toolbox API (Inside Carbon: Carbon Porting Guide Apple 2001). 

6.1.2 The Cocoa development environment 

In 1996 Apple acquired NeXT Computer Inc, the company that was formed by Apple Co­

founder Steve Jobs in 1988. Apple continued to develop the NeXTSTEP Unix based 

operating system which after a further 5 years of development became OS X. Apple 

renamed the programming environment developed by NeXT to 'Cocoa' and the NS 

prefix frequently found in Cocoa refers to its NextStep heritage. The programming 

language developed as part of NeXTSTEP was called Objective-C, this object-oriented 

superset of C continues to be the main language for most Cocoa programmers although 

Cocoa also allows the use of C++, Java and Applescript (Duncan-Davidson & Apple 

2002 p11). 

Although Apple continue to provide support for Carbon, they state that Cocoa based 

applications are becoming the norm for OS X and that Cocoa allows rapid creation of 

'robust, full-featured Mac OS X applications' such as Apple's own GarageBand, iPhoto 

and Safari. "Cocoa offers a rich collection of ready-made objects for your application's 

user interface ..... Drawing and imaging, file system interaction, Internationalization, user 

preferences (Apple 2006 p1) 

51 



6.2 OS X Core technologies 

Before discussing some of the the Core Technologies in OS X, it is worth re-examining 

the final Requirements Specification resulting from literature review and survey of 

existing systems: 

i. The Toolset is to be Mac-hosted using Pro Tools and Ableton Live DAWs. 

ii. The Toolset development will include the use of emerging programming 

languages and IDEs for the Mac OS X platform. 

iii. The Toolset will integrate or develop alternative panning interfaces including 

joysticks and touchscreen controllers. 

iv. The Toolset will provide shape and breakpoint-based automatable trajectories via 

a cue-list. 

v. The Toolset will allow synchronisation with other applications as a master or 

slave 

vi. The Toolset will provide real-time 3D trajectory visualisation. 

The next prototype of the OctoPanner application (version 2) will therefore: 

• Work in conjunction with a DAW (Requirement 1) 

• Be developed using Cocoa and Objective C (Requirement 2) 

• Integrate external MIDI controller devices as per the MAXIMSP version 

(Requirement 3) 

Considering this functionality in terms of Operating System requirements, 

OctoPanner Version 2 will require MIDI input/output services and a graphical User­

Interface. 

Requirement 4 will be met by the development of an additional application to 

generate shape-based trajectories. This application will be called ShapePanner and 

its development will be described in chapter 7, it will require an accurate timebase 

which will tie in with requirement 5 (synchronisation). In terms of Operating System 

requirements, ShapePanner will require MIDI inpuUoutput services, a graphical 

User-Interface and timebase/synchronisation services. 

52 



Requirement 6 will be met by the development of an additional application to provide 

real-time 3D visualisation of the positions of sounds as they are moved by the MIDI 

outputs of OctoPanner or ShapePanner.This application will be called 3D MIDI 

Visualiser and its development will be described in chapter 8. In terms of Operating 

System requirements, 3D MIDI Visualiser will require MIDI input/output services, a 

graphical User-Interface and 3D graphics services. 

Having established the Operating System requirements for the three applications, The 

OSX Core Services can be evaluated for MIDI input/output, timebase generation, 

master/slave synchronisation, Graphical UI and 3D graphics generation. 

6.2.1 CoreMIDI 

Prior to the introduction of OS X there was no agreed standard for accessing MIDI, and 

audio hardware, sequencer manufacturers such as Opcode, Mark of the Unicorn 

(MOTU) and Steinberg provided their own low-level software interfaces. Apple's Core 

Services within OS X provide low-level to system facilities and in May 2000 Doug Wyatt 

was recruited by Apple to develop MIDI services for OS X to be named CoreMIDI. Wyatt 

was previously responsible for developing the 'Opcode Music System' (OMS) which later 

combined with Steinberg's timing engine to create OMS version 2 to create the 'Open 

Music System'. CoreMIDI is a unified high-performance mechanism allowing 

programmers to access MIDI devices in OS X. CoreMIDI is specified as a highly­

accurate system with time-stamped MIDI messages that are transmitted or received with 

less than 1 millisecond latency and with jitter less than 200 microseconds. 

6.2.2 CoreAudio Clock 

One of the most challenging aspects of creating a MIDI or audio application is the 

creation of a stable and accurate timebase. Manufacturers such as Steinberg and 

Digidesign have implemented solutions based on different timing references meaning 

that 120BPM from one application or hardware sequencer/drum machine was not the 

same as 120BPM on another (Perron 1991 p2). Core Audio Clock is Apple's attempt at 

providing a unified timebase that would allow programmers to access the same clock. 

This clock could be internally generated or externally synchronised to an external master 

clock using MIDI Timecode (MTC) or MIDI Clock. 

53 



6.2.3 Core Graphics/OpenGL 

As a result of the literature review and analysis of other available systems, Requirement 

Specification item 6 in Table 3-3 requires a 3D representation of the room and the 

motion of the sounds in that room. Integrated into OS X is OpenGL, an industry-standard 

3D programming language that would allow the creation of the 3D room and sound 

motion representation. In addition to providing the programmer with Apple's Quartz 20 

drawing system, the Core Graphics framework allows OpenGL, Quartz 20 and 

Quicktime elements to be composited onto the screen. The Quartz Composer 

application allows the programmer to graphically generate and composite these 

elements, the resulting 'composition' can then be integrated into a Cocoa application. 

54 



55 

6.3 Cocoa implementation of OctoPanner v2 

The author's initial evaluation of the Cocoa environment took place in December 2003 

using OS 10.2 and Apple's Project Builder application, the implementation of Cocoa-based 

OctoPanner version 2 took place between July and October 2006 using Apple's 

successor to Project Builder, XCode. What became immediately apparent was the ease 

with which the graphical UI of an application could be generated using Apple's Interface 

Builder application and XCode. 

~ 
rJn~(! r l 

1 
l 
6< 

64 

~ en.bled 

MIDI Channel 

:I:1D 
( Mule ] ~ 

Test Panne r 

PJ~~ 

.1 -Br------'lO 

CJ enabled 

MIDI Channel 

:IJTI 
(Mute ) ~ 

p. 

o 0 Cocoa - Controls 

_ LJ Tel ' ;:;. : .,.... 
- - Te l. . .: ,,::: 

Me nus Conlrols Text WIndows Data Containers GrJphicsVicws 

~ R O ~' (BUltOn) ~ Sl'll tch 
,......" ill • -f}--- ~ Rad io 

U r ' v Raciio f.I l ' Item 1 I : l - -

--..J 

Fig. 6-1: TestPanner UI and Interface Builder palette 

o 

}) 

~: 

Fig. 6-1 shows the UI for a test application called TestPanner created using sliders, 

buttons, pop-up buttons and check boxes from the Interface Builder palette. The sliders 

were set to a 0-127 range and the red text fields set to the integer value of their 

corresponding sliders by control-dragging. 

-r 



The next stage was to create code to respond to control changes in the UI, a class 

called testControlier was created based on the NSObject c1ass2 and three actions 

(methods) were added: 

xChanged: /I this action would be linked to the x sliders 

yChanged: II this action would be linked to the y sliders 

midiChannelChanged: II this action would be linked to the pop-up buttons 

The testControlier class was instantiated in Interface Builder and links from the sliders 

and pop-ups control-dragged as shown in Fig. 6-2 below: 

nnn 

~nstances 

lit n,.' 

H O U 

Window 

e n Test Panner 

'1. PJnncr2 

100 
64 20 

CJ ena ble Q Q ' ' ' .l .l IlUC f III !lpCUUI 

Connections 
MIDI Chanr 

?J 
Unllt leel : 1 m , Out lets ~ Targei/Action -J 

" . Actions 10 t e_s-,'ConlroU~r 

Classes Images Sounds 5! midiChJnnelChangcd. 
1 

• .1 
xChJngcd: 

• yChanged 

M.l inM.n" I 
tes tControUcr 

"_" .• "r t ( Disconnect ) 

Fig. 6-2: Linking controls to corresponding actions 

Next the testControlier header and implementation files were generated and standard 

C printf text display functions added to the methods called when the x or y sliders were 

changed: 

2 This is the main Objective C class, objects sub-classed from NSObject inherit the 

methods for creating, initialising and destroying themselves 

56 



#import "testControlier. h" 

@implementation testControlier 

- (IBAction)xChanged:(id)sender 

{ 

printf("The x slider has been changed"); 

} 

6.3.1 MIDI output from Cocoa 

If at this point a MIDI class existed with methods for initialising, sending and receiving 

MIDI then Cocoa would perhaps be comparable with Max/MSP in terms of ease of use, 

however, the step from printing slider positions to the debug console to outputting them 

from a MIDI port proved to be very complex. Apple do not (as of May 2009) provide a 

Cocoa MIDI class. CoreMIDI is implemented via Carbon function calls and callback 

mechanisms. Fortunately Carbon code can be integrated into a Cocoa application 

meaning it is possible to 'wrap' the Carbon MIDI functions to create a MIDI class. Such a 

MIDI Class could then provide simple to use Cocoa methods for commonly used 

functions in the same way that Max/MSP provides MIDI objects such as ctlout and 

noteout that send continuous controller and note messages respectively. 

As MI DI input and output was fundamental to all three software applications in the 

artefact, a Cocoa MI DI wrapper class was written to provide a level of abstraction from 

the low-level Carbon details. The new MIDI class was prefixed with PF (Paul Ferguson) 

to make it clear that it was new code rather than an Apple provided class and its 

production is described in Appendix B. The PFMIDI class took 4 weeks to write and 

required detailed analysis of the minimal Carbon sample code provided by Apple 

together with the Carbon calling mechanisms. 

The PFMIDI method equivalent to ctlout in Max/MSP is called sendCC and requires 

three parameters: Controller number, data and channel thus the calling convention to 

send the value 127 to controller 2, channel 1 would be as follows: 

[PFMidi sendCC: 2 data: 127 chan: 1J; II ask the PFMidi object to perform 

the sendCC: data: chan: method 

57 



This could then be used in the TestPanner application as follows: 

- (IBAction)xChanged:(id)sender 

{ 

} 

int newValue = [sender intValueJ; 

[PFMidi sendCC:2 data:newValue chan:1J; 

A CC message could now be sent with no knowledge of the underlying complexities of 

the Carbon MIDI interface or the actual construction of a CC message. At this point the 

TestPanner became a functional program with an Apple-compliant UI and MIDI 

functionality, however, development had taken weeks compared with hours for the same 

task implemented using Max/MSP. 

6.3.2 Implementing the OctoPanner Version 2 application 

The second version of OctoPanner essentially uses Cocoa to reproduce the eight­

touchscreen panner concept developed in Max/MSP for the 2006 Sonic Fusion Festival 

event. Version 2 would include standard program functions such as menus and 

preferences to give the look and feel of a standard Mac application. 

Although Cocoa provides palettes of the common User Interface items, it does not offer 

the rich collection of audio and MIDI-related UI objects provided by a music-specific 

application such as Max/MSP. Instead Interface Builder allows the programmer to add a 

'Custom View' to the UI with an assigned custom class allowing the programmer to 

create custom controls such as the Max Lcd- object used in the original panner. Fig. 6-3 

shows the .nib file (Next Interface Builder) main window for OctoPanner V2 with eight 

Custom Views assigned to a custom panView class to be implemented later: 

58 



~rt""" 

(l '»Vlt!lJ(I'~111 
OCt..r.w-"J'ltIIJ)fOl 

fGl tOt fGf rGf 
G0B~~ ~BB~ BBEJEl BBEJ~ 

tGl tOt fGf rOf 
~BEJ~ ~BBEl B~EJEl BBEJ 8 

Fig. 6-3: OctoPanner v2 main window in Interface Builder 

When the OctoPanner application is launched the Cocoa runtime will create eight 

instances of the panView class which will draw the panView custom controls into the 

spaces reserved by the custom views. The panView classes will then respond to mouse 

clicks and drags within the custom controls. 
Octofannft OJ I07 

. [Z'XlMII] la'MltlII!II) 

- ---'h_'_ 11f.IV I \ "1'1'1' 

LOltL JfOfrOf 
~~B~~BB ~ BBB~ BBEJ 8 
\ ,a;...,. KtfJ"' 'tao. 

t[]HC JrDffDf 
~BB~B~B B B~EJEl BBEJEl 

~-~-~---------

Fig. 6-4: OctoPanner v2 when running 

The panView custom class is a subclass of the Cocoa NSView class and implements a 

drawRect method to draw the panner and mouseDown and mouseDragged methods 

to respond to user actions. The code for the panView class is based an Apple example 

59 



class called dotView modified to include scaling features to allow it to be drawn at 

different sizes. 

To provide this application with MIDI output the PFMidi class implemented for the 

TestPanner application was reused, this clearly illustrates the advantages of object­

orientated programming where each application generated would add to the collection of 

reusable classes and custom controls in the same way that Max/MSP has evolved. At 

this point (November 2006) OctoPanner V2 was essentially a Cocoa equivalent of its 

Max/MSP predecessor and would remain in this form until feedback was received from 

performances in Spring 2007. 

6.4 Chapter summary and research contribution 

This chapter contributes to Research Question 3 and the use of alternative programming 

technologies to MAXIMSP. At this point MAXIMSP clearly wins in terms of learning curve 

and development time. This was mainly due to Apple's lack of direct MIDI support in 

Cocoa, however, the reusable PFMidi class would mean that development of 

subsequent MIDI applications would be much faster. It should be stressed that the 

functionality of the version 2 OctoPanner was no greater than version 1. In terms of 110 

Methodology this iteration simply took advantage of available technology (OS X + 

Cocoa) to provide a revised version of OctoPanner that now had an Apple-compliant 

user interface. 

60 



7 The ShapePanner application 

7.1 Introduction 

As stated in 6.2, This application will address the following Requirement Specification 

items: 

4. The Toolset will provide 3D shape and breakpoint-based automatable trajectories 

via a cue-list. 

5. The Toolset will allow synchronisation with other applications as a master or slave 

This application will overcome the 20 and circular path restrictions of the Halaphon and 

the straight-line limitations of TRAILS and Matrix3. Requirement 4 above can be 

extended into the following design goal: 

'A time-ordered list of shape primitives such as lines and circles plus height information 

used to control the 3D trajectories of sixteen sounds' 

The development began with an exercise to investigate how such an application might 

look if implemented using Interface Builder and the Carbon or Cocoa UI palettes. 
:!,) p r, Untitled 

SUfi TlIM end Time; Shape C()n\tn~nl 

line flu te trajectory I 

~( Dl!lete ) 

MaHer; 

S{iHt time OO :()O:QO:OO 

_X_ '_ 
Start point 0 

Cnd time 00.00.00.00 End point 0 

Du ration OO:OO.OO:OU 

I Circle t Un. I 

re petitions 0 

Fig. 7-1: ShapePanner prototype interface 

61 



The main element Fig. 7-1 is a 'Table View' configured in Interface Builder to have four 

columns with headings. This interface follows the Master-Detail database model 

(Anguish et al 2003 p689) wherein a Master list presents items in abbreviated form and 

the highlighted item is shown beneath the list in its complete form with all details visible. 

Each item in the list represents a sound's line or circle trajectory and has a start/stop 

times and shape parameters. It must be noted that this was simply a User Interface 

prototype and no classes and methods were written at this time. 

7.2 ShapePanner implementation 

Code generation for a fully working version began in September 2006, the design 

followed the commonly used Model-View-Controller (MVC) design model: 

Model -an array of data objects representing each shape along with start and stop 

times. Each object is an instance of a Shape class written for this application. 

View -the Master-Detail User Interface shown in Fig. 7-1 

Controller - code written by the programmer to respond to changes in the View and 

update the model; conversely any changes to the model would be reflected in the View 

by the Controller. 

7.2.1 Cocoa Bindings 

Prior to OS 10.33 a considerable amount of code was required to move data backwards 

and forwards between the View and Model, however with 10.3 Apple introduced a very 

powerful Cocoa feature called 'bindings' (Apple 2005 p1) along with 

NSObjectController and NSArrayController classes designed to ease the production 

of MVC applications. Apple's bindings allow an attribute of an object to be 'bound' to an 

attribute of another, for example, in Fig. 7-1 the value of the 'start time' text field could be 

bound to a variable called startTime within the currently selected item in the model, 

changing one would then automatically update the other. 

To evaluate this binding mechanism the small Cocoa test application shown in Fig. 7-2 

was produced consisting of a Table View with start and stop time columns along with a 

3 Of the six commonly available Cocoa programming text books available in May 2008, 

only Hillegass (2nd ed. 2004) has been updated for OS 10.3. None of them address 

features introduced in OS 10.4 or 10.5 

62 



detail area comprised of two text fields with number formatters set to display times as 

xx.xx seconds. 

. ~.0_0_ ..... Window 

MlSftf 

~ -- [nd Tlme: 

1.20 2.40 

~ 
1.00 4. 10 

4.80 S.H 
5.50 5.91 
6.20 6.90 
6.95 7.27 
7.71 8.29 

~~ 

Ol.' rJ 11 

Start Time 0 

End Time 0 

hi 

Fig. 7-2: Bindings test application 

A class called Shape was created with variables called startTime and endTime. An 

instance of NSArrayController was added to the program and set to reference the 

Shape class just created. Keys startTime and endTime were then added to the 

NSArrayController instance via the inspector. The Insert and Delete buttons were 

assigned to the insert: and remove: actions in NSArrayController 

To complete the program the detail start/end time text fields and the start/end time Table 

View columns were bound to the Array Controller as shown in Fig. 7-3: 
o 0 NSTcxtricld IrnDe(tor 

~ Binding. f: I 0 
,. value Bl nd ~ 

Bind to: NSArrayControlier (NSArravConHoiler) ~ ; J 

Contro ller KEY: sElection 

Model KeV P.lth: sU rtTIme 

'Illuf lunsformu: 

~ AltO'1ii Edll ing .. Iuk lpl <: VJ. luts S.!lec li on 

o Alr/."'~ P(€Hm~ IIpph(JI IOIl Mod;l1 Alua 

I!i!J Cor.dluo n.J.l t( SEll £.dH~I~ 

o ( ordlflo] nal t, Sm £.r,lbl~ 

o ( or.d ItAlnal l'r' St U H,dden 

o (orcm ~ous t( Upd;1I1S ValiJ'e 

~ f:;Y Sf;S For Nc" AWhCl bl( ":t.,.1 

a V:.' ld,lIU Irr.m.!<d') I ~'I' 

"Iuhlplt ..... Iur~ 'l.lcthoJdt • . 
I ••• • ·• 

No Stlrclit.n fl.l.ctholder: 

""",., 

l:j 

~ 

8 

//. 

o .... 0 NH.blcColumn In.DeClOr 

~ Binding. f: ) 0 
" VJ l u ~ Bind 

Bind to: ~rrJYCo-ntrOllU(NSA-rr~.,<o~m 

Contro ll t:r Kt:v: olrrangt dObjt:ct5 

~todtl Kt y Path : !i.tanTim c 

V.I\.!! InnJrormu : 

e Al k1'M Ed,tlllg Mul l! pl~ vo1l un S ~l tCl/ on 

Q AI'IIays 'ruwu Applic-.JIIOII )lodal Alen ~ 

f!J eordll!onal lySf.U l dl fJbll 

o eor.dmo~ ly Sers I n .. bll d 

o (ontmuou1'Y lJpdJfu V .. lul! 

S (lUlU Son OUCflplor 

1 @I RaIl" For Not Apphclbl f II:tYI 

o VOIlidalu 1rrt11fdI Uoi!y 

"'\.li t/pIt vlluuP/u fih old. , 

No 5.!:IH lion Place holder: 
I •• ,' I -•. -lr. 

tJ 
[:J 

EI 

d 

Fig. 7-3: Text Field and Table Column inspectors showing bindings 

63 



The only coding required was to implement the Shape class that would represent the 

trajectory shape object in the list. Having established the success of the bindings 

mechanism, this test application was used as the starting point for the ShapePanner 

program. 

7.2.2 The ShapePanner classes 

The application implementation can be broken down into the following classes: 

shapeController the MVC controller that will respond to incoming time messages and 

to changes in the UI that require program action 

Shape 

PFMidi 

the model will be an array of Shape objects, each with a start and 

end time plus shape parameters. The Shape class will have methods 

for generating coordinates based on a current time supplied by the 

shapeController class 

this class extends the PFMidi class already described and adds MIDI 

Time Code support to the initialisation and MIDI input and output 

methods 

Additional classes would be required to provide custom UI elements to allow the user to 

specify the line and circle parameters graphically rather than the numerical method in 

Fig. 7-2. 

7.2.3 Timing/scheduling 

Critical to the application is an accurate timebase and a means of scheduling the 

conversion of a Shape object's parameters into MIDI based coordinates that create the 

trajectory that it specifies. For example, if the user adds a line object to the list that starts 

at one second and ends at two seconds then the application must output the line's start 

coordinate when the timebase reaches one second and then continue to output 

interpolated points at a specified interval; finishing with the line's end coordinate when 

the timebase reaches two seconds. Any inaccuracies in the timebase and the time 

interval between points will result in jitter in the sound's positioning. Cocoa provides an 

NSTimer class that allows the creation of single or repeating timer events but Apple 

64 



states that the timing accuracy is dependent on CPU load and thus NSTimer has a 

resolution of the order of 50 to 100 milliseconds and is therefore unusable as a timing 

reference. 

Core MIDI on the other hand has a stated latency of less than 1 millisecond so it was 

decided that external MI DI Time Code (MTC) would be used as the timebase and that 

the initial version of ShapePanner would slave to external timecode generated by Pro 

Tools. The Pro Tools timecode would be used to schedule the conversion and 

transmission of trajectory coordinates. The MIDI Specification (MMA 1983) specifies 

MTC as a series of eight quarter-frame messages representing a complete SMPTE 

frame every two frames, therefore a regular timing pulse can be obtained from these 

messages in multiples of 1 Oms (assuming European 25 FPS frame rate). 

50 updates per second was chosen for the output rate of the x,y,z positional information 

generated by ShapePanner. This figure was based on the 20mS sampling frequency 

chosen by Soundcraft for their DC2000 series console automation after considerable 

research by the company. (Soundcraft 1997 p29). The 200 microsecond maximum jitter 

for CoreMIDI thus represents a 1 % maximum timing error. 

7.2.4 Representing time 

As timecode was to be used as the timing reference, standard SMPTE hh:mm:ss:ff 

representation of time was chosen for the shape start and stop times in the UI. An 

integer rather than floating point representation of elapsed time was used based on 

50Hz timer 'ticks', for example a start time of 00:00:03:01 (3 seconds and 1 frame) at a 

frame rate of 25FPS (2 ticks per second) would be represented by the integer value 3 x 

50 + 2. 

The standard Cocoa number and date/time formatters available on the Interface Builder 

palette do not allow timecode display so a custom formatter PFSimpleFormatter was 

sub-classed from NSFormatter (Apple 2006 p2). The stringForObjectValue and 

objectValueForString methods were overridden to convert the integer 'ticks' representation of 

timecode into a hh:mm:ss:ff string and to convert a hh:mm:ss:ff input by the user in to 

the integer representation. 

PFFormatter was added to the start/end text fields and table columns programmatically: 

[[startTimeColumn data Cell] setFormatter:PFSimpleFormatter]; /1 tell the data cell of the 

startTime column to perform the setFormatter method 

65 



Only MTC quarter-frame decoding was implemented since analysis of the Pro Tools 

timecode output showed it did not send full-frame messages when its transport was 

started. Frame rate support was limited to the European 25 FPS as it was anticipated 

that CoreAudio Clock routines would eventually be used once example code became 

available. 

When the PFMidi class has decoded a complete SMPTE frame it sends the 

updateTimecode: method to the shapeControlier class who then updates the current time 

field in the UI. A check is then made to see if the new current timecode value falls within 

the start and stop time of any shapes in the time-ordered list using the Shape class 

timelnRange method: 

-(bool)timelnRange:(int)currentTime II tests to see if supplied time is between the 

shape's start and end times 

If a shape in the list returns YES then shapeControlier sends that shape the 

getPointForTime: method: 

-(NSPoint)getPointForTime:(int)currentTime II returns an x,y coordinate corresponding 

to supplied time 

At this point (November 2006) the feasibility of the ShapePanner application had been 

successfully demonstrated although shapes were limited to lines and part of the UI was 

textual rather than graphical. Work was also needed with regard to timecode support 

and the generation of point information based on the timecode value. 

7.3 Implementing CoreAudio Clock support 

One of the most challenging tasks for a programmer producing a MIDI or audio 

application is the design of a highly accurate timebase. Rather than individual 

programmers providing their own implementation, Apple's CoreAudio Clock offers 

developers a universal source of timing information for OS X audiolMIDI programs, thus 

improving compatability between manufacturers and significantly reducing the amount of 

code to be written to fully support common application features such as timecode rates, 

offsets, tempo and time signature maps. 

66 



CoreAudio Clock was introduced into OS 10.4 in April 2005 with minimal 

documentation, by April 2008 a Google search for "CoreAudio Clock" only revealed two 

Apple documents plus an Apple forum query posted by the author of this thesis. Despite 

occasional requests by programmers on Apple's Core Audio forum for more information 

and example code, to date none has been forthcoming. After proof of concept of the 

ShapePanner program in chapter 7, work began to generate test code to investigate 

Core Audio Clock based on the available documentation, this work is described in 

Appendix C. 

7.3.1 Creating an accurate scheduler for ShapePanner 

The use of an external MIDI timebase such as MTC as the ShapePanner positional 

reference also gives a timing reference since the incoming quarter-frame messages can 

be used to synchronise the transmission of shape data. However, if the ShapePanner is 

to be able to act as a timecode master, then an internally generated periodic timer event 

with greater accuracy than the Apple NSTimer class is required. Since a powerful 

feature of CoreAudio Clock is its ability to generate accurate MTC or MIDI clock based 

on the selected timebase, the author hypothesised that this could be combined with the 

CoreMlD1 timestamping mechanism to give the scheduling solution that follows: 

If CoreAudio Clock could be set to generate MTC, and this MTC was wrapped back 

into the application via a separate virtual input, the application's MIDI callback procedure 

would receive accurate quarter frame pulses based on the selected internal timebase 

and frame rate. The ShapePanner application could use these pulses to calculate 

timestamps for any shape messages to be sent during the next quarter frame; CoreMlD1 

would then transmit those MIDI messages at the appropriate times based on the 

timestamps. To investigate this MTC loopback technique, MTC output was added to a 

test application and the NSTimer display update scheduler was successfully replaced by 

the quarter frame 'ticks' synthesised from the internally generated timebase. 

Having established that using CoreAudio Clock was viable and offered significant 

advantages to a programmer, ShapePanner was rewritten to incorporate this new 

67 



technology as its timebase and scheduler, Fig. 7-4 shows the rewritten UI with an added 

transport bar at the bottom of the screen supporting internal and external clocking. 

() A Shape Sequencer 

StJrt Time Dura tion End Time Ch Shape Cornmtnt 

00:00:00:00 00:00:01 :00 00 :00:01 :00 0 circle 
.'ni.ftiti.i.I,".t.i,I,i.ii.t.i',I.'n.i.ii.i·'III ............................. . 
' 00 :00:01 :00 00 :00:01 :00 00:00:02 :00 0 line 

00:00:02 :00 00:00:01 :00 00 :00:03:00 0 line 
00:00:03:00 00 :00:01 :00 00:00:04:00 0 lin e 

New ) [ Duplicate] ( Repeat 

Start time 00 :00:00:00 ® 

Duration 00 :00 :0 1:00 

End time 00 :00:01:00 ® 
MIDI chan 1 

8 Internal 

MTC 

~ 

Arc/Cifcie I Li ne Controller 

",-.. 

U 

centre 83 83 

radius 75 

start angie 45.00 

end angle 130.00 

[ swap ) 

00:00:00 :00 

RotOltion 

anticiockwise 
clockwise 

Fig. 7-4: ShapePanner incorporating CoreAudio Clock 

A 

68 



7.4 Chapter summary and research contribution 

Unlike the implementation of OctoPanner using Cocoa compared with MAXIMSP in the 

previous chapter there are clear gains here from using Cocoa/Objective C. Much of the 

development such as the UI and master-detail table was achieved graphically using 

Interface Builder and Apple's bindings feature rather than lines of code. However, the 

same cannot be said of CoreAudio Clock, its lack of Cocoa class support means using 

the low-level Carbon function calls and callbacks. The documentation is extremely 

minimal and there is no example code available. This is unfortunate since development 

of ShapePanner shows that CoreAudio clock is a powerful timebase and synchronisation 

engine hence the inclusion of Appendix C in this thesis to considerably extend the 

documentation available to other researchers and to provide the first example code. 

If we examine this chapter in terms of Research Question 3: "How can emerging 

programming technologies offer creative alternatives to the MAXIMSP or hardware­

based tools commonly used for sound spatialisation?" it can be strongly argued that 

Cocoa's features such as the master-detail database and MIDI timecode synchronisation 

support have led to an application whose features would be very difficult to implement in 

MAX. 

69 



8 3D MIDI Visualiser application 

8.1 Introduction 

As stated in 6.2, the development of this application as part of the Toolset will address 

the following Requirement Specification item: 

6. The Toolset will provide real-time 3D trajectory visualisation 

It became evident during the development and testing of OctoPanner and 

ShapePanner that such a visual representation of the trajectories of sounds would be 

useful when access to a performance space and speaker array was not possible. 3D 

MIDI Visualiser is a standalone Cocoa application controlled by assignable MIDI 

messages to allow use with any MIDI panning source. 

Window 

Rotat~ A Rotate 
~ ~~ 

Fig. 8-1: 3D MIDI Visualiser Cocoa application 

70 



8.2 Apple's Quartz technology 

Key to the 3D MIDI Visualiser application is the Quartz Composer 'composition' shown 

in Fig. 8-2. Apple's Quartz Composer tool introduced in OS 10.4 allows the programmer 

to exploit the Mac's 20 and 30 capabilities without knowledge of the OpenGL graphics 

open standard. The user can create a composition from elements such as Lighting 

Environment objects together with sphere and graphics sprite renderers that can be 

placed, manipulated and externally controlled. 

Fig. 8-2: Quartz Composer 3D MIDI Visualiser panel 

71 



Fig. 8-3 shows the 3D MIDI Visualiser quartz composition viewed in Quartz Composer, 

this composition contains the following elements: 

Four sphere renderer objects with external control of their x,y,z coordinates and colour 

to represent the moving sounds 

Two loudspeakers added to investigate the cube rendering capabilities of Quartz 

Composer 

Four graphics sprite objects using photographs of Napier University's ornate Turmeau 

Hall to represent the three walls and floor 

speAker 1 
Clt".l!,I· 
0\ 1',1),\ </,\ 

O""'II' I ",rl 
,-, 11\,',111 f1 

I', I< .!J U "11 

\,' K"'lll ('I 

n L ~ .IJII n 
ll\\Ltl:h 
t.' lh . I' 1 
n u· ~,t , 

U ItH,tL"hr 

1," .. 01 101 , 

(ll·11 L d, I 

I) ' '''' 11 1 '1 

\) 1\'11'.1 L · ,, , 

,-'11"1'11 1(',\'1' 

t I Il(. L ,~'" 

O lJI' fill '. 

n 10 /11..- 1 " 
Ol.j)lm ';"j . 

O J .u.,.·ll l" '" 

UlA '''' ', I''J'", 
(1 1:I~r J ln' l 

(' 0 '1·,1",1,\1 11 '1 

n I J" lulll 'll 

.p .. rur2 
(I I Ibt~ 

O\ I'.,\IIL .• n 

()) "Y l1 1, 0:1 

Of " 01;.11 II 

i) \ I( ,'''I .n 

n ~ 1("1111"" 

I'lL ~ ·l1k II 

IJ\'"Jth 
.jll. \1'1 
0 0 ·,-(, 
P I-, ·ml·"'Jf 

O l fHr.1 ' III '~. 

\) I 'h L·!.r 

(I td,I '''.1\, 
1,1 KH I' I L. I "~ 

o k' 9 t IIH,\',' 
(II H' (,.,,1 .• / 

I ) tHO, nI l',' 

I) IqlL· I .I( 

111' 1' 111" ", 
(IL.' ", ' l,·,· , ·, 

,) f'lIl1'~ ,,,' "I" 

''It< -dill I 
l) lI·c·\1 ('IHI 'I 

I" I .Vt Lu'iI ~' l 

] 8 

.~r. 
e ' ,.,, !II· 
e \ I'u\" ·vrl 

."'I.,'II'rl 
el l 'ullll 11 
(J \I< ClI.I !l IO" 

OY lhlJlI ·n 
Ol$< '.,11· n 
(I ~(.) ', 

el,,'Of 
C'10111 • 
01"..,,11'­
O U. (' t r,l"lIn,1 

o I .H.I lullp' ,! 

.phere 2 
el".\bl, 
• X 1',lIl t . ,n 
.\' 1'0)\,1":1 

el l ',nIU n 
O )'it l'IJ UM, 

o Y ti!JLW,n 
Ol H ,t,lIl·. n 

o ~'.\ I ~ 

.l,,:!., 
(J Im.!" .. 

() t,1 .. r, d l,vl 

OIJ,(oI' Ir,! 11, 
0 1 \C4 Lu ll l r' lI 

rspiii,. 
.I"hl, 
• X "I/ \l l l1)n 

."' 1',,"11"" 

.ll',I\1I1 II 

,_, \ 1(1,'lIlun 

0 ' M',lll l ,n 
I) l R, I , II ,n 
O\<.lIt 
.If'·'J' 
,jl'-llJ.' 

t) U·,,.,dln 1 

00.:.ft 1 'H n" 
(I II " lul l l"'i 

~pll'" 4 
e, .1 10 '. 
.' I''''I II"n 
.,' 1'0\,1101(1 

el l 'o\llI_ 1I 

0.\ I< "II !I "~ 
o ~ It ,IJ II ·n 

c) ll<',Illl 11 

() ~(.' , ~ 

.lu'm 
Olfll,.h 

() t:.lrrJlfl'/ 
() U" r, tt. 1.,.,1 ' HI 

o t .ll1 LO! :lr\l 

,." wa ll 
O /. · Iht.-l), Pu" ', "rl 
r.lY I',II,I ' ,., 

I) i l" ',"1 II 

0 \ 1« (III II V!l 

0" k"I JII " 
0 1 K t.ll' II 
(1\', '1.1111 

O li,I'I' 1 

Ill"',,, 
O IIllJ,· 
Ollln'Jlrl 1 
n lJ .. ,..,!\ 1,'\1 11 ,1 

Q II,' Lu ll l ~, '1 

ngh'w~II 
o 1 "'..1bl· 
OX I'Inl l t" I' 

O ~' ".I ~ .I I"n 

'0." .":: . \ 
Ol l'(o\lllll 
U ),t( ,I HII. " 

0 '1' N"O Il ·n 
Ol I< ,1,111' 1\ 

O \\'IJ , 1l 
O H. l) t' t 

o t,, ~(lt 

01'11 ,1,," 

{} 1i1.,."J."" 

O llo r,lh'd' lI l l 

o }..ICE LulU ' I 

(b.lckw.II 
(j I fI..1 bl" 
())" ,',,<,11.-." 

I tn ''''JI''fICO~ I () ~ """I.,,n 
hl"J" f) 

(J l l'uUIt 1\ 

I'), 1' '''.111 "" 
0 ," K"tJII 'II 

t lC>LH"" " \ ~ ~:~':~' I 
\. ()l"'OI 

O I'H,\ ' 
OU .... J ,11Ll 

(J U. .I il I"" nl 
0 1,\" Lu lht" 

110 

I 6 

floor 
O l flJ ht, 
O \l'us III.n 
O y ,'o\ , II '.'l 

Ol l'.lUH n 

O.\ I<"I.II.,·n 

OY W"i J II '1i 

Ol k ·.lltl' n 

O\\ ,ulh 
(\ 11· ,'1 \" 
fjl"loI 

O'nn, · 
OU.'I',lI ," , 
n U.pl n Idl n 'l 
Of)" Lul :I '11 

Fig. 8-3: Quartz Composer renderer objects in 3D MIDI Visualiser 

72 



The Quartz composition is hierarchical. The renderer objects are assembled inside a 3D 

Transformation object to allow the virtual room can be viewed from any angle. This 

object is itself inside a lighting environment object. 

po Tr3nsforn1~hon 
I) ~ t"'l.bl~ 

01(., 1 .1.·nUII .j" X 
(J H.'ll' (n UII';I'1 ~ 

(, k·.1.u~n Oft~l"ll 

• "'·.l .. t, n), 

• H"I,'.n' 
• k"r .. t • .., n l 
o IrJmIHI"11 \ 

o r.,unIJ II ·',1 Y 
o 'f.l II \11 11 "'" l 
elo,'(I. I t 

eL"'II,,l 

e" 
eVI 
ell 
eYl 
e" 
ell 
.lrll lr.- , 

• f ~·.Ibl • ..' 
.Xi 
eVi 
eL, 
elr.lt:l. ~ 

eL ,,,,,,1 
el'.I!JI., 
.:';.1 .y., 
e[4 

ell.',." .. 

Fig. 8-4: 3D Transformation with published inputs 

Fig. 8-4 shows the 3D Transformation object encapsulating these rendering objects 

with its own published x, y and z rotation parameters. Note that the enable, x,y,z and 

color parameters of the four sphere renderers are visible indicating that they were 

'published' in the layer below. 

Although Quartz Composer has a MIDI controller object, incorporation of the QC 

composition into a Cocoa application allowed a UI with control over the view angle and 

the number of 'sound' spheres and their colours as shown in Fig. 8-1 . To achieve this, a 

Quartz Composer composition was incorporated into Cocoa using Interface-Builder. The 

UI elements were then bound to the published inputs in the composition. In Fig. 8-1 the 

3D Transformation object encompassing the room is seen rotated slightly down and to 

the left via the tilt and rotate sliders and colours have been assigned to the sounds using 

the OS X inkwell controls towards the top of the window. 

73 



8.3 Chapter summary and research contribution 

The graphical nature of Quartz Composer allowed rapid prototyping and experimentation 

leading to the 3D representation of the room. Although the Quartz Composer 

composition was incorporated into a Cocoa application and thus required Objective C 

code, a more limited version of 3D MIDI Visualiser could have been generated purely 

graphically using just Quartz Composer. 

It should be noted that a 3D realtime visualiser was not an initial research aim and 

instead resulted from a research gap shown up by literature review. It nevertheless adds 

weight to Research Question 3 "How can emerging programming technologies offer 

creative alternatives to the MAXIMSP or hardware-based tools commonly used for 

sound spatialisation?" 

74 



9 Foot control of spatialisation 

9.1 Introduction 

As stated in chapter 5, Sonic Fusion 2006 Guitarist Haftor Medboe had requested a 

device to allow him control of panning as he played. The literature review and survey of 

current systems in chapters 2 and 3 revealed only one commercially available panning 

controller, the 'Sat', that offered an alternative means of control to joystick and 

touchscreen. As none of these devices could be used as the gUitarist played, research 

began in November 2006 into a means of foot control of spatialisation. As a starting 

point the single-axis volume or wah pedal familiar to guitarists was considered. Although 

this gave an intuitive representation of front/back sound position, an effective means of 

left/right control was required. A simple mechanical prototype was assembled in 

November 2006 with conventional front/back rocking action plus a left/right tilt as per Fig. 

9-1 : 

Fig. 9-1: Dual-axis foot-controller 

Shortly after this test, literature review uncovered a 2003 patent filed by Lester Ludvig 

that related to the pedal-steel guitar and describes a "simultaneous single-foot 

adjustment of a plurality of continuous range parameters" using a volume pedal concept 

with a rotating top element shown in Fig. 9-2: 

i~ ~ 
Fig. 9-2: Ludvig foot controller patent 

75 



The Fig. 9-1 prototype and a Fig. 9-2 mock-up were tested by four Edinburgh Napier 

University guitar-playing members of staff and none considered either controller intuitive, 

in addition, both controllers were criticised for requiring awkward and uncomfortable 

ankle movements. 

To avoid this unnatural ankle movement, the author's third controller proposal was 

tested by the four guitarists. Fig. 9-3 shows a musician standing on a flexibly mounted 

foot-plate, the musician would shift his/her weight from the left leg to the right to 

represent left/right panning, and from ball of foot to heel to represent front/rear panning. 

Detection of panning position would be via strain gauges or force sensing resistors in 

each corner. Of the three devices tested, this prototype was preferred by two of the 

guitarists but the remaining two found it hard to balance, although the concept felt 

intuitive. 

Fig. 9-3: Weight distribution based panner evaluation 

The evaluation of the author's fourth and final foot controller design took place in 

December 2006 following some unrelated experimentation with computer pointing 

devices. Fig. 9-4 shows a low-friction 'puck' on a highly polished surface and was rated 

as intuitive and easy to manipulate by the testers. Two observations were made, firstly 

that the area of the baseboard should be reduced and secondly that the movement of 

the puck should be mechanically constrained to the board. 

76 



Fig. 9-4: 'Puck' based panner evaluation 

Having selected the fourth controller type for further development, the resistive, 

capacitive and infra-red LED based technologies used for touch screens were 

considered before choosing the electromagnetic induction technique used by Wacom for 

pen tablet position detection (Wacom 2006 p1). 

9.2 Foot Puck Prototype 

A Wacom sensing coil and circuit board were mounted inside a plastic puck constructed 

using 1 OOmm diameter PVC with a low-friction base and a non-slip top surface. 

The position-sensing PCB was mounted in a routed recess in the baseboard and 

covered with high-density foam board. The assembly was completed by a constraining 

rectangle that allowed the puck to traverse to the edge of the tablet in each direction. A 

low-friction rubber/felt lamination was later fitted to the edge of the constraining rectangle 

to reduce the impact noise when the puck hit the edge. Fig. 9-5 shows the completed 

prototype. 

Fig. 9-5: Prototype Foot Puck panner 

77 



To decode the USB output from the Wacom board a simple Max/MSP patch was written 

using the as x version of the Wacom external used in section 5.6. This patch converted 

the tablet positional information into MIDI which could then be used to control any of the 

eight panners in the OctoPanner v2 application. 

The Foot Puck was tested in the two March 2007 concerts to be described in chapter 

10. To allow concert use of the Foot Puck its USB output was extended to the mix 

position using a USB to RJ45 transceiver pair connected by a 30m cable. Unlike the as 
9 Wacom driver and MAXIMSP Dudas external used in section 5.3, the as x Wacom 

driver preferences pane options did not allow a Max patch to run in the background 

without the tablet movements controlling the screen cursor. As a workaround, the Max 

patch was hosted on a separate laptop whose MIDI output fed the OctoPanner v2 

application running on its own Mac. 

9.3 Chapter Research Contribution 

If we first consider the physical user-interface alternatives to be investigated by 

Research Question 1, the Foot Puck shows that there is scope for development for 

additional controllers beyond those available in the music and film post-production 

industries or in existing spatialisation systems. Now considering the use of emerging 

programming technologies to be investigated by Research Question 3, to implement the 

Foot Puck in Cocoa would be complex and would require writing low-level code to 

interface to the Wacom Human Interface Device (HID). Implementing the Foot Puck in 

MAXIMSP was very straightforward since the low-level code already existed in the form 

of an 'external' by Richard Dudas (Cycling '742007 p1). 

78 



10 Concert use of the version 2 live Toolset 

In September 2006 a meeting took place to re-examine the May 2006 Sonic Fusion 

performance using OctoPanner v1 and to agree concert dates to trial version two of the 

Toolset. Two dates in March 2007 were agreed with the Haftor Medboe Group4 for 

surround sound concert performances in Glasgow and Edinburgh. Medboe stressed that 

a re-occurrence of the almost total failure of the Max/MSP-based OctoPanner system 

during the Sonic Fusion concert would be unacceptable to the concert promoters and a 

solution avoiding Max/MSP was requested. This offered an opportunity to research the 

use of a DAW to perform the spatialisation in line with Research Question 2 "How can a 

DAW be used as an alternative to dedicated panning hardware?" Ableton Live was 

chosen for the two concerts because it has been developed specifically for live use and 

also offers strong effects options, it would act as a panning and effects engine controlled 

by the MIDI panner output from OctoPanner v2. 

10.1 Developing a spatialisation technique using Ableton Live 

A restriction placed on the March 2007 concerts was that both venues were only 

prepared to re-configure for quadraphonic and not six or eight speaker playback, hence 

only a quad panning solution needed to be found for Ableton Live. Although this 

application does not have surround sound support it does feature flexible MIDI mapping 

of screen controls to external controllers. The output from OctoPanner V2 is a series of 

x,y,z points sent as MIDI CC messages where the MIDI channel indicates which of eight 

screen panners have been moved; the following scheme was developed to use these 

CC messages to perform quad panning using Ableton Live: 

4 The Haftor Medboe Group are a jazz quartet with a strong interest in the incorporation 

of emerging technology, their second album was released by Linn Records in 2006 in 

multi-channel SACD format. 

79 



Audio From 
lU I In ",I 
11 1 ",I 
Monllor 

llil iAlII"1 
Audio To 
ISends Onty ",I 
I 1 

Sends 

~ 
~ 

Fig. 10-1: Ableton Live audio track 

Fig. 10-1 shows an Ableton Live audio track with a mono external input and its output set 

to the stereo sends busses A and B. The pan control in this figure has been mapped to 

the x-axis of the screen panner in Octopanner so that the external audio input will be 

left/right panned identically into the A and B stereo send busses. The implementation of 

Y-axis control from OctoPanner is less straightforward, in the Fig . 5-1 passive panner 

the x-axis panners were preceded by a y-axis panner feeding mono front and rear 

busses. As Ableton Live does not have track output busses, the following solution was 

used: 

The OctoPanner application was modified to allow it to optionally send out three CC 

messages to represent a point: 

X position: 0 -127 MIDI CC message 

Y position: 0 - 127 MIDI CC message 

Reverse Y position: 127 - 0 MIDI CC message 

The modified OctoPanner MIDI setup panel is shown in Fig. 10-2, this panel allows the 

user to specify which MIDI CC numbers are to be used for x-axis and y-axis plus reverse 

y-axis if enabled via the check box. 

80 



, e ('I ('I __ _ _ MIDI Setup 

~ l ob" l 5 Nl in9~ 

MIDI Input MIDI Output 

lAC Bus 1 : lAC Bus 1 f: I 

X Ax is 
CC number 13 

V Axis 
CC n um~r 12 

X Aldi rcwrsc --
CC numbtr 11 

Enable ~ 

CC Test 

PJnner e 1 () 4 0 5 0 6 0 7 0 8 

CC 8 xoDIis O Ya)(b (} Y rc\'crsc 

Value 0---

~ 

Fig. 10-2: OctoPanner v2 modified MIDI Setup panel 

If the y-axis MIDI CC is mapped to Send A in Fig. 10-1 and the reverse y-axis is mapped 

to Send B then Sends A and B become front and rear busses respectively, When the 

touch panner is set to full front output (y = 127) the front bus send control will be OdB 

(fully clockwise) and the rear bus send control will be fully attenuated (anticlockwise) . 

Send A and B will move in opposite directions as the OctoPanner y-axis output moves 

towards the rear (y=O). 

To map the front and rear busses to physical speakers the send bus return tracks A and 

B are assigned to output pairs 1-2 and 3-4 as shown in Fig. 10-3 

I 
I 

AudiO To Aud fo To I 
le xl OuI ",ll e>I OuI ... 1 
111 112 ",1111 314 ... 1 
G.) Send. G.) s.ncSa 
AG.) AG.) 

8 8 

(T) <] (T) 11<] 

0 ~I IT] 

Fig. 10-3: Ableton return A and return B routing 

81 



Although the concert requirements for March 2007 were quad, this approach could be 

extended to include centre speakers between the four corners by modifying OctoPanner 

to subdivide the x axis and/or y axis into 3 or more and output the corresponding number 

of CC messages. This is explored further in chapter 12.2. 

10.2 Concert 1 - Haftor Medboe Group, 'The Arches' Glasgow 10-3-2007 

The first surround sound concert was to take place in The Arches, a Glasgow arts 

performance venue. A technical meeting was arranged with the Arches' senior engineer 

Phil Zambonini. It was agreed that Zambonini would mix the band as a stereo 

performance and also manage the floor monitor mixes. The author assisted by Dave 

Hook from Edinburgh Napier University would take instrument feeds from the Front Of 

House (FOH) console, add delays and filtering and spatialise the performance into the 

rear speakers. Although the venue promoter had enthusiastically welcomed the surround 

sound aspect of the concert and stated that the audience would be seated around a 

central stage to maximise the effect, no such arrangements were made and the band 

were obliged to perform in their standard concert layout shown in Fig. 10-4: 

I---~tage ---I 
DO· n 5"" -DO 

0::~:.",n n ,-
I 

Ferguson/Hook I 
I 

00000000000 
00000000000 
00000000000 
00000000000 
00000000000 
00000000000 
o· rear speakers o 

Fig. 10-4: Concert layout for 'The Arches' (Glasgow) 

82 



It can be seen in Fig. 10-4 that some of the audience are very close to the front speakers 

and a large distance from the rear speakers. The reverse is true for people choosing to 

sit towards the rear of the raised seating area. The direct result of this was that any 

quieter spatialised rear sounds were inaudible to those sitting close to the stage and that 

the author had to take great care not to overwhelm those nearer the back with loud rear 

sound. Notwithstanding this, the concert was successful and although the spatialisation 

was subtle, several members of the audience made favourable, enthusiastic comments. 

10.2.1 Concert 1 Evaluation 

The combination of OctoPanner, the Foot Puck and Ableton Live worked very well and 

was reliable. Zambonini has since made contact regarding follow-up performances 

geared specifically to surround sound. Concert use of the Toolset also showed that the 

following modifications/additions to OctoPanner were desirable: 

Layout 

• Under the pressure of the concert the two-by-four panner layout shown in Fig. 

6-4 proved to be confusing when moving between the touchscreen and the eight 

parallel fader Behringer BCF2000 MIDI controller since there was no correlation 

between them. 

• Adding touchscreen mutes and solos would reduce the need to move between 

the BCF2000 and the touchscreen. 

• On-screen labelling equivalent to the white tape 'scribble strip' used by live sound 

engineers was required to make it clear which panner corresponds to which 

instrument on stage. 

Snapshots 

• Possibly the most significant addition to OctoPanner would be a means of storing 

snapshots of the panner, mute and fader positions determined for each song 

during the soundchecklrehearsal. 

As there were 7 days between the two concerts, only the simplest of these modifications 

could be added, namely 'scribble strip' text fields were added to each panner so that the 

83 



user could identify them (as 'guitar', 'sax' 'darabuka' etc). The other modifications were 

later incorporated into OctoPanner version 3 described in chapter 11. 

10.3 Concert 2 - Haftor Medboe Group, 'The Bongo Club' 17-3-2007 

Edinburgh's Bongo Club allowed a more flexible audience arrangement with the 

audience seated and standing around a central mix position facing the stage. Rear 

speakers were placed in the corners of the room facing towards the mix position. This 

centrally placed audience afforded a more adventurous use of surround mixing and the 

event received a large number of positive comments. 

10.3.1 Concert 2 Evaluation 

Notably, Medboe found the use of the Foot Puck to be intuitive and he particularly 

enjoyed using it in his improvised sections. Again although incorporation of scribble 

strips had improved the user experience, the two-by-four panner screen layout was still 

found to be confusing under pressure and the lack of snapshots was again noted. One 

additional functional requirement for OctoPanner was highlighted by the Edinburgh 

concert: the design is based on the panning of eight mono sources and although that 

was largely the case with the Haftor Medboe Group's setup, a stereo microphone pair 

had been tried on the glockenspiel to good effect. As the touchscreen was a single touch 

device the left and right glockenspiel faders could not be moved in unison and a 

requirement was therefore noted to allow two adjacent panners to be linked as a stereo 

pair. 

10.4 Chapter research contribution 

The testing allowed by the two concerts gives information relating to two of the Research 

Questions: 

10.4.1 Question 1 - Alternative User-I nterfaces 

The touchscreen proved highly effective and intuitive and offered clear feedback to the 

user on the position of the eight sounds. The single-touch nature of the touchscreen was 

a limitation however. The Foot Puck satisfactorily answered the request for a panning 

device made by Medboe after the 2006 Sonic Fusion performance. This requirement for 

a musician's live spatialisation controller highlights the fact that the available tools 

84 



reviewed in Chapter 3 place most emphasis on control by the spatialising/diffusing 

engineer. 

85 

10.4.2 Research Question 2 - DAW Hosting 

The successful use of Ableton Live as the spatialisation engine shows that a case can 

be made for a DAW as a practical alternative to a hardware matrix mixer for 

quadraphonic works. It should be noted however that the use of bus sends for eight 

speakers or more will be considerably more complex. 



11 OctoPanner Version 3 

Although the layout changes discussed in 10.2 would be relatively straightforward to 

implement, snapshot save and recall required a major change to the program 

architecture. For the new version of OctoPanner the Model-View-Controller paradigm 

was used and the panner processing was separated from the view controller code to 

form a Panner class. To incorporate the stereo linking requirement in section 10.3, the 

Panner class was designed to represent a stereo object with left and right x,y and z 

(height fader), mute, solo and volume Keys5. Having created a stereo Panner class with 

these parameters, the eight sets of Ul controls could then be bound to one of four stereo 

Panner instances. 

11.1 Saving and loading snapshots 

Apple provides Cocoa with the NSCoding mechanism (Hillegass 2004 pp152-155) for 

storing the states of objects. To implement this protocol the required encodeWithCoder: and 

initWithCoder: methods were written for the stereo Panner class. When the user selects 

save from the File menu each of the four stereo Panner instances will be asked by the 

Cocoa run-time system to encode its Key variables into a stream of bytes. This process 

is reversed when a file is loaded and each Panner object is asked to initialise its Key 

variables from the supplied byte stream. To allow more than one snapshot per file, an 

array was added to the main controller class to hold ten versions of the four stereo 

Panner instances. Selecting a snapshot chooses which four of the 40 Panner instances 

are connected to the View (the Ul). The tab control at the top of the main window shown 

in Fig. 11-1 shows that the Snapshot tab is currently selected and thus the 10 snapshot 

buttons are visible, all 10 snapshots are saved when the user executes the 'save' 

command. 

5 In Cocoa a Key refers to the name assigned to a variable, for example leftVol, the Key­

Value Cocoa methods allow these variable to be accessed from outside a class. 

86 



87 

r Snapshot 1 Mirror Re mote I 
0[Q8GJGJ0[Q0G] GD 

sn3P2 snJP] snao4 snap5 snap6 snap7 snapS snap9 sn i plO r-______________________ sn3Dl 

GlockL 8 guitar 1 • ~ guitar 2 _ .1.. ._ sax ~ trombone .I. darabuka ~ _________ , Clock R 

• 
bell, 

• 

~ 
12 

Ittight 

[soia] [~l 

J 

~ 
8 

12 

~ " 
Height -

I sOia] [Mute] 

e = 

J 

• 
~ 

;==0 

Hl! ight 

[~ ] 8 

link' 

~ 

v~ T 

• 

~ 

Height 

~ 
F 

8 [Mute) 

[ 

vol r
~ 

• 

Jl 

~ 
f F I ;;;.. LJ

H 
Height 

[soia ] [~ u~] 

J 

• 

~ 
link' 

~ 

~ 
Height 

[SOia ] [Mut. ] 

Un li 

. ~ 
vol I 

• 
~ 

~ 

~ ~ 
HC!igh t -

81~ 

r:::=: 

J 

• 
GJ 

LJ ?= 
Heigh. _ 

(SOlO ) [Mute) 

lInli 

w i T 
( Glock L ) ( Clock R ) I C - guiiar} - ) I ( g-uitar 2 ) I C , ax --) I C i,ornb"". U) I C darablOt<a) I ( bell , ) 

Fig. 11-1: OctoPanner version 3 main window 

11.2 OctoPanner v3 features 

The two-by-four matrix of panners in versions 1 and 2 (Fig. 6-3) has been replaced by 

eight vertical 'channel strips': each channel has an x-y panner, height slider, solo, mute 

and volume fader. Between each pair of channels are 3 link buttons that allow the pan, 

height and volume sections of adjacent panner pairs to be linked. Note that panners 1 

and 2 are linked in Fig. 11-1 which has resulted in the separating line between them 

being replaced by linking boxes to indicate stereo linking. Next to each height slider are 

J1, J2 and F buttons that place that channel under remote control by Joystick1 or 2 or 

by Foot Puck. These are configured as 'radio buttons' so selecting control of a channel 

automatically de-selects the others. 



11.2.1 OctoPanner v3 panels 

Although the primary elements in the main window have now been covered, some key 

features are still be addressed: 

In addition to the link buttons on each channel strip, there are three 'mirror' buttons per 

channel pair that are revealed by selecting the 'mirror' tab at the top of the main window. 

! Snap5 hol rMii;or - , Remote ) 

(0 (!) 00(0 00(0 0(0(0 

Fig. 11-2: Octopanner v3 X,Y,Z mirror controls 

To use mirroring the link buttons must be pressed to link the left and right panners and 

height fader. If none of the three mirror buttons in Fig. 11 -2 are pressed, the panner 

position and height of the right hand channel in the pair will follow the left hand channel 

exactly. Pressing an axis mirror button will cause the linked channel to perform the 

opposite move, for example, if the z mirror is pressed then the right hand sound will 

move down as the left hand sound moves up. Although originally intended for linking 

stereo instruments, the mirror buttons allow the movement of one sound to creatively 

control the movement of another. 

Each channel in Fig. 11-1 has a name field above its panner and on a button at the 

bottom of the strip, as OctoPanner is intended for touchscreen as well as mouse control 

the user must be provided with a means of alphanumeric input - pressing a name button 

brings up the touch keyboard shown in Fig. 11 -3: 
0 " ,r') Ch;lnnl!l N ~me Editor 

Channel )( name : darabuka ~ 

8LJLJULJULJULJ~ ~ 
~L:JU~LJ U~LJ ~UU 
UU~LJ~L:JLJULJ .,,"" 

l:J LJ ~ LJ LJ ~ L:J lJ U l:J 
""" 
~ 

Fig. 11-3: OctoPanner v3 touch keyboard 

88 



11.2.2 Snapshot copying/swapping and initialising 

Pressing the snapshot edit button opens the Snapshot Edit panel with its two tabs: 

' e nn Sn~ho~Edi1 'e nn 2naps~[d it~ -----
I Ren. meilnIUa)i,e t Copy/Swap l ~ Renam.! "nilialise -i Co py/Swa p I 

r r('II lI To Rt nilmC! 

1 0 snap l 0 1 snap l ( Initiali •• 1 ) 

20 snap2 0 2 snapZ ( Inltl . Ii,. 2 ) 

30 snap3 0 3 snap3 ( Inltiali,e 3 

SCIH l a s ingle 'SOUICf; ' Warn ing: 

40 snap4 0 4 snilp$hot in Ihe k h snap4 ( InUiallse 4 ) InlUalise will restore 
(olumn and ol 'dutlnol tion' th i! derauh sett ing for 

50 snapS 0 5 snJ pShol in I h ~ right sna p S ( Init ialise 5 ) every chilnnel's name, 
(olumn 

panner, he Ight etc. 

60 snap6 0 6 snap6 ( I" Ulallse 6 ) settings (or that 

~ 
snaps hot 

70 snap? 0 7 snap 7 ( Iniliali,e 7 ) 

80 snapS 0 8 ~ snapS ( IniUali,. 8 ) 

90 snap9 0 9 snap9 ( Inlt la li,. 9 ) 

00 snap l O 0 0 ~ snaplO ( Inlt l.Ii,.O ~ 

Fig. 11-4: OctoPaner v3 snapshot editing panels 

These two tabs allow the user to rename snapshots using the touch keyboard or to 

initialise them to a blank 'factory setting'. Snapshots can also be copied and swapped, 

for example a snapshot could be copied and used as a basis for another, and where 

snapshots are used to represent pieces in a performance their order could be changed 

using the swap tab. 

11.2.3 OctoPanner v3 MIDI setup 

The final changes to OctoPanner version 3 were to the MIDI setup panel; since each 

channel has a height slider plus Mute and Solo buttons the user is given a means of 

specifying a MIDI CC number for those controls. Note that the z-axis can be mirrored to 

allow control of height in an application such as Ableton Live in the same way as the y­

axis was controlled in section 10.1 . The send test CC box at the bottom of the MI DI 

panel has been extended to allow the additional CC messages to be sent to applications 

that have a MIDI mapping 'learn mode'. 

89 



,. I) n n ___ ~_1IDI~ 

Ports 

MIDI Input MIDI Output 

\ Not ( onnt<ted r: : Not connected ~ : ~ 

rJnn~fS 

X Axis YAxl,J 
C( nun1ber 1.1 CC number 12 

y Ax i ~ revenc --
cc number 11 

Enable ISIl 
Uri'Jhl 

Z AMil Z Axil revust --
CC numbu CC numbtr 

Enable C Enable C 
~olLmH~ 

Volume Mute- Solo 
(( numbe;r (C numbe r CC numbe r 

Send Tc , ' C~ 

Chonnel e 1 C 2 C 3 0 4 0 5 0 6 C 7 C 8 

Value 0 63 

~~n. 0 0 0 0 0 0 0 0 
X ,)xis Y il )..h Y rev. Z axis Z rev. Vol. Mu te So lo 

Fig. 11-5: OctoPanner v3 MIDI setup panel 

11.3 Chapter research contribution 

In terms of the 110 methodology this chapter has demonstrated both incremental and 

iterative development. New features were incorporated but existing features were also 

reworked as a result of user feedback. This chapter's research informs both Research 

Questions one and three. Although the touchscreen input device itself has not changed, 

its functionality has been considerably extended by the addition of the mirroring feature 

and flexible snapshot save, recall, copy and swap. Because each panner object inherits 

from a Class with an intrinsic parameter store/retrieve mechanism these features were 

relatively straightforward to implement and incorporate within an intuitive Apple­

compliant user-interface. In this instance Cocoa compares favourably with MAXlMSP's 

more limited store and recall. 

90 



12 Spatialising Macbenach IV 

12.1 A user trial of Octopanner version 3 

The composition of a piece called Macbenach IV by Gerard Pape (CCMIX) during the 

Sonic Fusion 2007 concert series allowed OctoPanner v3 to receive a real-world test 

almost 12 months after the first performance using the Max/MSP-based OctoPanner v1. 

Pape had requested a Pro Tools HD system and engineer and had scheduled 

rehearsals and subsequent recording sessions with trombonist John Kenny. These 

sessions provided a suitable deadline for the completion of OctoPanner v3 and a 

solution for controlling Pro Tools. 

Since Pro Tools does not have a MIDI 'learn mode' to allow send controls to be mapped 

to external controller messages, the control surface emulation research detailed in 

Appendix A was carried out over four weeks. Although this work provides the reader with 

a previously unavailable insight into controller emulation for Pro Tools, the result did not 

perform well enough to be considered for practical use and the alternative means of 

panning described below was developed. 

12.2 Pro Tools panner plug-in development using MaxlMSP 

Unlike the published VST (Steinberg) and Audio Units (Apple) plug-in specifications, 

Digidesign only allows RTAS and TOM plug-in development of commercially justified 

applications and states that education research usage does not generally qualify. There 

are however, other ways to create an RTAS compatible plug-in, firstly using a VST to 

RTAS wrapper and secondly using Max/MSP with Cycling '74's Pluggo technology. 

Max/MSP is able to create a VST compatible plug-in from a Max/MSP patch which then 

uses the Pluggo runtime environment to generate an RTAS compatible plug-in. 

Since Pluggo provides up to eight busses to allow audio transfer between plug-ins, a 

panning solution was developed wherein a MIDI controlled panner 'Send' plug-in is 

placed on every audio track and spatialises that audio track input down the eight Pluggo 

busses representing eight speakers. Eight Pluggo bus 'Receive' plug-ins are placed on 

91 



eight Pro Tools aux tracks to receive the spatialised audio and direct it to the eight 

hardware outputs. 

D
P'UggOBUSl 

audio track input . : 

Pluggo Bus 8 

OctoPanner send plug-in 
on each audio track 

Pluggo Bus x aux track output 

eight OctoPanner receive plug-ins 
on aux tracks 

Fig. 12-1: Pluggo based Pro Tools send and receive plug-ins 

Fig. 12-2 shows the send and receive plug-ins in a Pro Tools session. Note that next to 

the 'Audio l ' audio track being spatialised is a Pro Tools MIDI track whose input is 

connected to OctoPanner v3 via a USB MIDI interface and whose output is routed to 

the panner plug-in on the audio track. This allows the MIDI output from OctoPanner to 

be used to control the panner and also allows OctoPanner movements to be recorded 

and played back, thus OctoPanner can be used as a composition tool as well as for live 

applications. 

I I I I I 

I~ for9001··3 J" ."., I I~ PF r x2 I m PFrx3 I m PFrx4 I I~ PF rx5 I 1:1 PF r x6 I 1:1 PF rx7 I I~ PF .. 8 I 
@] @] @] ill @] @] @] @] ill 
@] , @] @] ill @] @] @] @] ill 
@] @] @] @] @] @] @] @] ill 
@] @] @] @] @] ill @] @] ill 
I A I I IHIOISI'(1R2211 I A1 6 II A16 II A 16 II A16 II A 16 II A1 6 II A 16 II A 16 I 
I Bus 1 I Ifrg. 15nd21-11 I A9 II Al0 II Al1 II A1 2 II A 13 II A14 II A 15 II A16 I 
I ..,1. r .><I I I ... 1. r.><I I I ... t.rud I I ..,t. r .><I I I ... 10 r.od I I . ulo n od I I lUI. r.><I I I ..,t. nod I I ..,to r.><I I I . ul. r.od I 

- 0 
III Ie , 

-

CD CD CD 
wOO wOO wOO wOO wOO wOO wOO wOO wOO wOO 

~ i 
'~ ,J t L t 

ai 
f i f i r i, ~ i 

J t 

• • 

il il I 
'; 

I , 
llyn - QI - - - - - - - - -. ~ . • . ~ . 

"'" "'" 
. ~ . ~ . 

"'" "'" 

. ~ ... ... ... ... ... ... ..- or or ..-
MI • • • • "i! • "if • nif • 

"" 
• If' • "" • if" • 

"" Audio 1 Midi 1 L C R Lmld Rmld ls C. R. 

Fig. 12-2: The send and receive plug-ins in a Pro Tools session 

92 



The audio section of the send plug-in Max/MSP patch is shown in Fig. 12-3. It is 

essentially the eight-speaker Max/MSP patch used in Fig. 5-8 with the adc- input object 

replaced by the plugin- object and the dac- output objects replaced by plugsend­

objects. As the Pluggo environment does not include a MIDI Continuous Controller ctlin 

object, the MIDI control section of the plug-in (not visible) uses the plugmidiin and 

midi parse objects to read and check for x or y CC messages. 

Y lxis 

o. 
front mlddlto rear 

plu9~in audio input 

jpllJginZ I 
~"'''''''' ... ,,,.r.t'u'''''L''''(''L,,,,4 ii r '~~~T/////"''''////''''A w...., ...... ",("""fl 

!1 1'1' p gou II ~r r f i: I 'plulj1-in audio output I J 
,! I ! I' Ii I' I .····_·······1 
hi! ! I 
t-tT-t 

nur rear 
ceontre ri9ht 

!plugstnd .... pfchan2 I 

Fig. 12-3: Audio section of the MaxlMSP (Pluggo) patch for OctoSend plug-in 

This solution to panning in Pro Tools allows the composer or spatialisation engineer to 

re-configure the room's loudspeaker arrangement by modification of the above patch, 

thus allowing any permutation of x, y and z array within the limitation of the 8 busses 

provided by Pluggo. 

93 



12.3 Reliability and repeatability 

Unfortunately returning to Max/MSp6 for the spatialisation appeared to have introduced 

some audio problems: 

When a saved Pro Tools session was re-opened the spatialised audio was often 

distorted. This distortion could be cured by bypassing and un-bypassing the Pluggo send 

and receive plug-ins a number of times although this was clearly unsatisfactory. This 

behaviour appeared to be random in that sometimes the send plug-in was the cause, 

sometimes one or more of the bus receive plug-ins had distorted outputs. 

The more significant problem was that the audio sent down the eight pluggo busses was 

often delayed by an amount that varied from bus to bus. This random delay appeared to 

be a random multiple of 512 samples. i.e. multiples of 11.6 milliseconds at 44.1 KHz. This 

could be corrected by adding individual track delays in Pro Tools or by using negative 

delay compensation offsets but the random nature of the problem meant that the delay 

for each track had to be examined and set accordingly each time the session was 

loaded. 

12.4 Evaluating the Toolset's use for Macbenach IV 

Macbenach IV was scored by Pape for eight separately recorded and spatialised 

trombone parts with microtonal tuning differences. A ninth trombone part would be 

played live and spatialised using a 20 eight-speaker rectangular configuration. The 

separate tracks were recorded into Pro Tools during a recording session three days 

before the premiere of the piece in Craiglockhart Chapel. Spatialisation of the eight Pro 

Tools tracks was performed one track at a time by Pape using OctoPanner version 3 

and a resistive touchscreen. The spatialisation information for each track was recorded 

into Pro Tools to allow editing and playback, with visualisation via the 3D MIDI 

Visualiser. Pape found OctoPanner to be intuitive and easy to use but found the 

pressure required by the resistive touchscreen was tiring when large numbers of tracks 

with vigorous panning were spatialised. As a result of this he asked if it would be 

possible to copy and mirror one of the recorded automation tracks to automate the final 

track. An immediate solution was not apparent, but it was later suggested by the author 

6 Developed using Max 4.6.2 and Pluggo 3.6.1 with OS1 0.4.8 on G5 Power Mac 

94 



that the automation data recorded onto the Pro Tools MIDI track could be sent back to 

OctoPanner to control the left side of a stereo panner pair. The linked and mirrored right 

side of the stereo panner would then give the panning information that Pape had 

requested and allow experimentation with x and y axis mirroring. The issue of 

touchscreen pressure raised by Pape would have been solved by using the capacitive 

screen in the joystick-based control surface as this only requires a light touch. 

12.5 Chapter Summary and Research Contribution 

The research described in this chapter can be considered in terms of Research Question 

1 (alternative User Interfaces) and Question 2 (DAW hosting). 

12.5.1 Question 1 - Alternative User Interfaces 

The touchscreen-controlled panning was effective and well received by the user. Since 

the spatialisation was recorded track by track this technique has a significant advantage 

over the eight-fader approach. Because only the automation data is recorded rather than 

the audio from the faders' eight bus outputs, the automation for each track requires 

considerably less space and is editable. Although Pape did not use any of the 

ShapePanner output in the final piece he gave a very positive reaction to it and could 

see potential for use in other projects. 

12.5.2 Research Question 2 - DAW Hosting 

Since Pro Tools had been specified by Pape for the recording session this had been an 

ideal opportunity to research this question but the results were mixed. Although the 

spatialisation was satisfactorily performed, the distortion and timing problems exhibited 

by the MAX/MSP panner were unacceptable. To potentially address this Chapter offers 

an alternative approach using C++ that will also allow comparison with MAXIMSP in line 

with Research Question 3 - Comparing Max/MSP and alternative technologies. 

95 



13 A C++ VST/RTAS panner plug-in 

The Steinberg Software Development Kit 2.4 (SDK) documentation for VST plug-in 

development was examined In September 2007 with a view to creating a more reliable 

panner plug-in than the Max/Pluggo version used for Macbenach IV. It was immediately 

apparent that the VST version 2.4 specification does not include any form of bussing7 

between plug-ins. It was assumed at that point that the Max/MSP plugSend/Receive bus 

mechanism was provided by the Pluggo run-time environment, however, in December 

2007 the FXPansion VST to RTAS wrapper was used on a Mac without the Pluggo run­

time and the FXPansion config tool was able to detect and successfully wrap the 

Max/MSP PFOctoSend and PFrx1-8 VST plug-ins described in section 12.2. 

Unfortunately the plug-ins still exhibited the same distortion and delay problems but this 

did indicate that the inter-plug communication code was within the Max/MSP-generated 

VST plug-ins and was not provided by the Pluggo environment. This clearly showed that 

there must be a way to add bus or sidechain functionality to a VST 2.4 plug-in. 

In February 2008 an Internet search for VST plug-ins with sidechains led to the "Aux 

Bus" VST plug-in by Dirk Offringa (Offringa 2005 p1). This plug-in allows 8 channels of 

communication between its instances. Offringa acknowledges programmer Sean 

Person: 

" ... who found the trick to achieve latency-free communication between instances". 

Although the website pointed to by Offringa's hyperlink no longer exists, a download link 

for version 1.08 of Person's Senderella plug-in was eventually located (Person 2005 p1). 

The FXPansion Wrapper Config tool was used to wrap the Senderella VST plug-in and 

the resulting RTAS plug-in was tested in Pro Tools 7.3. 

7 Although busses have been added to the VST version 3.0 specification only Nuendo 

and Cubase currently support VST 3 plug-ins (April 2008). 

96 



o .... -I Spkr 2 I • I VST Sonderolla II bypass I III AS • 

1:1 <faclory d. faull > I - I + IQlT compa .. . l aulo I u fo I ~ 
MIDI Nodo: VST Stndt rtll. I 

I Channe l ILi t I I I 
I Mode III L I Send I 
I Amounl l Ull 100 \10 I. 
J 1 ml I I Red i .. ecI I 

r._ . " . ::r ~ad one .I/Save one ~ ]I Save 0 11 

Fig. 13-1: Senderella V1.08 plug-in in Pro Tools 

The plug-in shown in Fig. 13-1 was instantiated in SEND mode on an audio track and in 

RECEIVE mode on an aux track. Although a recognisable signal passed from one 

instance to the other the signal received by the aux track was badly corrupted and 

unusable. Various Pro Tools hardware buffer sizes were tried with no improvement but 

when the number of processors available for RTAS processing was set to one the signal 

passed cleanly. 

To test the integrity of the signal further, two instances of Senderella were used to bus a 

test signal to two aux tracks, one of which was phase inverted, the result was total signal 

cancellation indicating that the Senderella busses are sample aligned rather than 

delayed by multiples of 512 samples as is the case with Max/MSP plugSend and 

plug Receive. 

A search through all posts on the KVR programmer's forum since 2002 found several 

posts by ModulR (Sean Person). In March 2005 ModulR posted a reply to a forum 

question in which he stated his technique for sharing data in Senderella. Later in the 

thread he presented the C++ code for the simplified Windows version of Senderella. 

97 



The Senderella code was examined in detail during March and unsuccessful attempts 

were made at converting it into a Mac version. Eventually Person's declaration of shared 

data shown below was extracted and analysed: 

#pragma data_seg(JlSHAREDJI) 

struct BufferRec 

{ 

}; 

int id; 

int mode; 

float left[MAX_BUFFER_SIZE]; 

float right[MAX_BUFFER_SIZE]; 

int processCounter; 

BufferRec buffer[MAX_CHANNELS][MAXJNSTANCES]; 

int numSendsOnThisCh[MAXJNSTANCES]; 

int numRecvsOnThisCh[MAX_INSTANCES]; 

int instanceSlot[MAX_1 N ST ANC ES-1]; 

int randomCheck; 

#pragma data_segO 

#pragma comment(linker, JI/section:SHARED,RWSJI) 

This code is central to the operation of the Senderella plug-in and this sharing technique 

is explained by McGahan (Jan 2000 p1). It defines an array of stereo audio buffers that 

allow a single stereo audio channel to be shared by up to 64 instances of the plug-in. 

The integer variable mode declared in the BufferRec structure indicates whether an 

instance of the plug-in is functioning as a SEND or as a RECEIVE. By implementing 

send and receive code in a single plug-in rather than Max/MSP's separate plugSend 

and plugReceive, Person's audio buffers can be shared between send/receive 

instances. 

98 



13.1 Coding the VST 3D octal panner 

A new Mac 3D panner plug-in called PFPan was written by the author in March 2008. 

Appendix D presents the documented source code to allow user customisation. PFPan 

is based on the gain plug-in example provided by Steinberg in their VST SDK version 

2.4. PFPan incorporates a modified version of the Person/McGahan data sharing 

technique with forced initialization of the data to ensure it is placed in the data segment 

by the compiler (Microsoft 1999 p1). The aGain example does not have a GUI and was 

chosen so that users of OctoPanner or ShapePanner wishing to modify the speaker 

configuration or panning law of the panner plug-in would not have to understand 

unnecessary code. 

Rather than repeat the eight-bus limit in Max/MSP plugSend/plugReceive, 16 busses 

were chosen to provide two layers of eight speakers when using a 3D speaker array. As 

ShapePanner allows up to 16 sounds to be spatialised (each sound is allocated one of 

the 16 possible MIDI channels) a maximum of 16 send plug-in instances are anticipated 

therefore the shared array of audio buffers can be specified as follows: 

const int MAX_BUFFSIZ = 4096; 

const int MAX_CHANNELS = 16; 

const int MAX_INSTANCES = 16; 

#pragma data_seg("PFSHARED") 

struct BufferRec 

{ 

int mode; 

float audio[MAX_CHANNELSj(MAX_BUFFSIZ]; 

}; 

BufferRec sneakyBuffer[MAX_INSTANCES] = {1}; 

otherwise it may go in bss_seg not data_seg 

#pragma data_segO 

II Ferguson should initialise it 

II now instruct the linker that this shared section is Read Write Shared (RWS) 

#pragma comment(linker, "/section:PFSHARED, Read Write Shared") 

99 



Note that although the maximum hardware buffer size in Pro Tools HD is 2048 samples 

a maximum plug-in buffer size of 4096 was chosen to match the Ableton Live maximum 

value. 

The PFPan plug-in controls are shown in Fig. 13-2: 

Control Function 

Mode: Sets the plug-in instance to either SEND or RECEIVE audio: 

there can be a maximum of 16 SEND instances and there 

should be exactly: one RECEIVE instance per speaker. 

Send/Speaker 1-16: In SEND mode each send instance of the plug-in must be 

assigned a unique number from 1 to 16, this number does not 

correspond to a bus or speaker number. In RECEIVE mode 

the receive plug-in for each speaker should be set to its 

appropriate speaker bus number. 

X axis: Slider range from 0 to 1, 0 = max left, 1 = max right 
I 

Yaxis: Slider range from 0 to 1, 0 = max rear, 1 = max right I 

Z axis: Slider range from 0 to 1, 0 = lowest, 1 = highest I 

I 

Volume: Signal attenuation in decibels from -infinity to OdS 
I 

Fig. 13-2: PFPan plug-in controls 

100 



Fig. 13-3 shows the PFPan plug-in in Ableton Live configured as 'Send' instance no. 1. 

Note that Ableton's generic interface conveniently allows any two plug-in parameters to 

be mapped onto the assignable x/y controller. Fig. 13-4 shows the PFPan plug-in in Pro 

Tools via the FXPansion RTAS wrapper, in this case the plug-in has been set to 

'Receive' audio sent to speaker bus no. 16. 

aUla 
A 
OJllJOllQil 

YJ!I\ImIJ 

0.000000,,8 "" 

Fig. 13-3: PFPan in Ableton Live Fig. 13-4: PFPan in Pro Tools 

The PFPan plug-in was initially coded as a 20 quadraphonic panner and successfully 

tested in Ableton as a VST plug-in and in Pro Tools via the FXPansion RTAS wrapper. 

MIDI control of the panner axes and send/receive volumes was added next based on the 

canDo and processEvent methods in Steinberg's vstxsynth example code in SDK 2.4. 

Z- axis control was then added and the plug-in tested in a 3D speaker configuration 

consisting of a lower and upper layer of 4 speakers (2x4). The plug-in sliders are 

mapped to MIDI Continuous Controllers as shown in Fig. 13-5: 

Parameter MIDI message 

Volume CC7 

X axis CC12 

Yaxis CC13 

Z axis CC14 I 

Fig. 13-5: PFPan plug-in MIDI mapping 

101 



The user is able to customise this map by using Xcode to modify the values defined in 

PFPan.h: 

const int XAXIS_CC = 12; II Kaoss pad x axis 

const int YAXIS_CC = 13; II Kaoss pad y axis 

const int ZAXIS_CC = 14; 

const int VOLUME_CC = 7; 

The plug-in must then be rebuilt by selecting Build from the Build menu. 

To remove the zipper noise and clicks that occur when large x,y,z or volume changes 

are made quickly, code was added to the processReplacing: method to ramp from the 

old to new value within the length of one audio buffer, for example if Pro Tools is set to a 

sample rate of 44.1 KHz and a hardware buffer size of 256 samples then 

processReplacing: will gradually implement the x, y, z or volume change within 256 

sample periods (5.BmS). 

13.2 Guidelines for PFPan plug-in user modification 

13.2.1 Speaker configuration 

The user may assign any of the 16 speaker busses to a 3D location by modifying the 

processReplacing: method. The x, y and z slider values are floating point numbers 

ranging from 0 to 1. In the PFPan2x4 example code in Appendix D the origin is defined 

as the lower rear left corner of the room so the volume of a front left speaker should 

increase as Y increases but decrease as X increases, i.e proportional to 1 minus X. A 

simple Quad panner could therefore be implemented as follows: 

... audio[SPEAKER1][i] = sampleValue * (1-X) * Y; II left front 

... audio[SPEAKER2][i] = sampleValue * X * Y; II right front 

... audio[SPEAKER3][i] = sampleValue * (1-X) * (1-Y); II left rear 

... audio[SPEAKER4][i] = sampleValue * X * (1-Y); II right rear 

1I ... audio[SPEAKER5][i] unused 

1I .. . audio[SPEAKER16][i] unused 

I· 

102 



13.2.2 Panning law 

The panning law could be built in to the mathematics of processReplacing or it could 

be implemented within the process Events method where the MIDI control message is 

received. To present the simplest example the PFPan2x4 code is for a linear panner, 

therefore the MIDI value representing an axis is converted from an integer ranging from 

o to 127 to a float from 0 to 1 simply by dividing by 127. 

13.3 Chapter summary and research contribution 

The research described in this chapter can be considered in terms of Research Question 

2 (DAW hosting) and Question 3 (alternative technologies). 

This C++ version of the VST Panner successfully demonstrates the potential for Pro 

Tools to act as a 16-channel 3D spatialisation engine. When the previous chapter's 

MAXlMSP-based panner was tested in May 2008 it was assumed that the distortion and 

audio timing problems believed to be associated with VST/Pluggo and MAXIMSP 

version 4.6.1 would be addressed by a subsequent software release. It is now known 

that version 5 of MAXIMSP has removed this functionality, hence this chapter's C++ 

solution to a VST multi-channel panner and its documented code in Appendix 0 is 

significant. 

103 



~ 
::l 
o :e -CD 
C. 

CQ 
CD 

---.. 
o 
o 
::l 
n 
t: 
en _. 
o 
::l 
en 
S» 
::l 
C. 
n o 
::l ..... .., _. 
a­
t: ..... _. 
o 
::l ..... 
o 



14 Conclusions 

This Chapter begins by evaluating the success of this body of research in answering the 

original research questions posed. 

14.1.1 Research Question 1 

"How can the physical user-interfaces used for panning by the music and film post­

production industries offer creative alternatives to the fader-based hardware approach 

commonly used for electro-acoustic performance?" 

The positive user feedback suggests that the answer is yes, especially in the case of the 

final touchscreen version where the physical controller incorporates snapshot recall and 

a mechanism allowing one sound's movement to mirror the movement of another. The 

non-motorised joystick was found to be less successful since it could not reflect the true 

position of a sound when switching between sounds or if automation was used. Although 

this was not part of the initial question, the literature review highlighted a potential 

research gap for physical control of spatialisation by musician rather than engineer. 

University of Sheffield researcher David Moore (2005 p297) suggests that although it will 

be met with resistance, the time has come to question the appropriateness of the 

traditional fader as a control paradigm and explore alternate means for a performer to 

control diffusion such as joysticks, foot-pedals switches and track-balls. The Foot Puck 

developed during this research appears to offer an original solution to musician control 

of spatialisation and a patent application is under consideration. 

14.1.2 Research Question 2 

"How can a DAW be used as an alternative to dedicated panning hardware? 

The qualified success using Ableton Live and Pro Tools as panning engines 

demonstrates that they have potential although the single-processor limitation of the 

VST panner developed during this research is a restriction. Recent developments in both 

DAWs may offer other possibilities; the potential for the Ableton Live DAW to replace a 

hardware matrix mixer may be increased by the imminent arrival of 'MAX for Live'. 

Zicarelli (2009 p1) indicates that 'MAX for Live' will include a MAX-based API allowing 

Ableton Live to be controlled and extended and this is likely to give increased scope for 

105 



using this DAW for multi-speaker works. Similarly the release of Pro Tools version 8 may 

offer new possibilities since plug-in parameters can now be mapped to supported 

hardware controllers. Although this technique cannot be applied to the panner in the Pro 

Tools output window, it may offer options when using Paul Neyrinck's Mix51 5.1 panner 

plug-in (Neyrinck 2009 p1). At present, the Pro Tools 7.1 implementation follows the 

Sony SDDS standard for cinema release consisting of a planar array of five front 

loudspeakers plus two rear channels (Sony 2001 p1). It is reasonable to assume that 

this may be supplemented in a future release by the Blu-ray 7.1 alternative which spaces 

the seven loudspeakers more evenly round the listener and thus is more in line with 

electro-acoustic practice (DTS 2006 p10). 

14.1.3 Research Question 3 

"How can emerging programming technologies offer creative alternatives to the 

MAXIMSP or hardware-based tools commonly used for sound spatialisation?" 

Without doubt, Max/MSP scores highly with its rapid creation of functional programs with 

a small learning curve provided that the required internal objects or externals are 

available. This can be at the cost of the user interface since this tends to be driven by 

what can be easily achieved and often contravenes Apple's 'User Interface Guidelines' 

(Apple 2007 p1). On the negative side, there have been issues with MAXIMSP audio 

stability during this research. In contrast, Cocoa has a steeper learning curve and lacks 

objects (classes) specifically for MIDI and audio meaning that the programmer must 

include some Carbon code based on the minimal examples provided by Apple and this 

research contributes significantly in this area. To balance this, the programmer is 

presented with the full range of services that OS X can provide, for example Quartz 3D 

graphics and comprehensive clocking and synchronisation via CoreAudio Clock. The 

Cocoa user is also presented with a drag and drop User Interface building tool with the 

result that the final result is more likely to present the end user with a familiar user 

interface and set of functions. 

The key phrase in Research Question 3 is 'creative alternatives'. It can be argued that 

the strengths of Apple's OS X Core technologies allowed development of several 

features that could be very difficult to duplicate in MAX/MSP, for example: 

106 



OctoPanner - Snapshot save, recall, copy and paste. 

Shape Panner - Data-driven trajectory generation with a master-detail user interface, 

master/slave MIDI Time Code and MIDI clock synchronisation. 

3D MIDI Visualiser - Realtime 3D display of sound movement within a virtual room 

using Quartz Composer and Cocoa. 

VST Panner plug-in - Not possible using MAXIMSP version 5. Apple's Xcode IDE and 

C++ were used to create the VST plug-in. 

14.1.4 Summary 

Common to all three Research Questions is the word 'alternative'. It is clear that the 

controllers, DAWs and technologies presented here should not necessarily replace what 

has gone before, instead their use should also be considered as a means of creatively 

and effectively supplementing older techniques. 

14.2 Contribution to knowledge 

The author argues that the research presented in this thesis makes a substantial and 

original contribution to knowledge by: 

• Pointing towards an up-to-date, alternative perspective on the key developments 

of spatial audio since 1950 by focussing on loudspeaker topology, control and 

associated hardware to identify research gaps; 

• Examining the practical use of emerging Mac programming technologies such as 

Cocoa and Quartz as alternatives to MAXIMSP by implementing a set of 

requirements followed by critical review; 

• Developing alternative physical methods of spatialisation in the form of a foot­

controlled 'puck'; 

• Developing a novel shape-based approach to automated spatialisation control 

via a synchronisable cue-list; 

107 



• Developing techniques for 3D visualisation of MIDI positional data within a virtual 

room; 

• Developing a technique for inter-communication between plug-in instances with 

subsequent development of a 3D 16-channel DAW plug-in and documented 

source code to allow configuration by the user. 

• Expanding the documentation available on Cocoa and Apple's Core technologies 

and by providing the first example of sample code using CoreAudio Clock to 

assist future researchers in this field. It is anticipated that Cocoa will become 

increasingly significant to developers since iPhone and iPod applications can 

only be developed using Cocoa and XCODE and this will almost certainly be the 

case for the anticipated tablet device. 

One of the most pleasing aspects of this research has been the response from users 

and potential users. Discussions are underway with the Royal Academy of Music 

regarding shape-based panning, and with Aberdeen University about the use of the Pro 

Tools panning solution. The plug-in solution developed during this research may now be 

of use to other developers, for example, an email in May 2009 from Damiano Meacci at 

Tempo Reale indicated that his research into a VST panner had stalled as a result of the 

removal of pluggo from MAXIMSP version 5. 

14.3 Limitations and potential for future work 

The Edinburgh Napier performance and masterclass context of this research gave 

limited scope for interaction with users although the user feedback was useful and 

informed the design process. Consideration should therefore be given to future 

engagement with larger numbers and a wider range of users, for example improvised 

performance, DJs and VDJs to inform future requirement specifications. If any aspects of 

this research are then deemed to be candidates for commercial development, 

consideration should be given to formal testing methods within the chosen development 

methodology. 

108 



The Person/McGahan data sharing mechanism used in the VST panner plug-in only 

works when a single processor core is assigned to plug-in processing. Although a 

refinement of their technique could be investigated it is still a workaround for the lack of 

side-chain busses in the VST 2.4 specification. It is possible that sequencer 

manufacturers other than Steinberg may implement hosting of VST version 3 plug-ins in 

the future. This would allow true busses to be used between the send and receive 

panners. The author's preferred solution would be to develop a true RTAS version of the 

PFPan plug-in with the support of Digidesign that included a graphical UI to allow users 

to configure the loudspeaker array to their individual requirements. 

A Significant limitation of the current OctoPanner is that the single-touch touchscreen 

only allows use of one panner at a time. Although the system could be reworked using 

the multi-touch Jazz Mutant Lemur, facilities such as snapshots would be lost. Multi­

touch capability is being rolled out across Apple's product line in the form of the iPhone, 

iPod, Macbook, Magic Mouse and Snow-Leopard. It can be reasonably predicted that 

the leaked reference to an "Apple Slate" by the New York Times Editor Bill Keller 

(Gawker 2009 p1) is indeed indicative of its existence. It is likely that such a tablet 

device will be offer capacitive multi-touch functionality like the iPhone and that its 

development will be via Cocoa. This could form the basis of a wireless multi-touch 

version of OctoPanner and thus remove its biggest limitation. 

109 



Bibliography 

Ableton (2009) What is Live? Available at: 

http://www.ableton.com/live (Accessed: 1-10-2009) 

A&G Soluzioni Digitali (2009) IMEASY - Integrated Modular Expandable Audio 

Spatialisation system overview Available at: http://imeasy.aegweb.itl (Accessed: 18-02-

2009) 

AES (2001) Technical document AESTD1001.0.01-05 Multichannel surround and 

operations. New York 

Anguish, S., Buck, E. M., Yacktman D. A. (2003) Cocoa Programming SAMS 

Apple Computer Inc. (2001) Learning Carbon O'Reilly 

Apple Inc. (2005) Cocoa Bindings Reference. Available at: 

http://developer.apple.com/documentation/Cocoa/ReferenceICocoaBindingsRefl 

(Accessed: 12-03-2008) 

Apple Inc. (2006) Cocoa fundamentals Guide. Available at: 

http://developer.apple.com/documentation/Cocoa/Conceptual/CocoaFundamentalsl 

(Accessed: 12-03-2008) 

Apple Inc. (2006) Data Formatting Programming Guide for Cocoa. Available at: 

http://developer.apple.com/documentation/Cocoa/ConceptuaI/DataFormattingl 

(Accessed: 12-03-2008) 

Apple Inc.( 2007) Inside Mac OS X: Aqua Human Interface Guidelines. Available at: 

http://developer.apple.com/documentation/UserExperienceIConceptual/OSXHIGuideline 

sl (Accessed: 12-03-2008) 

110 



Apple (2009) Developer Connection: XCODE Available at: 

http://developer.apple.com/tools/xcode/ (Accessed: 1-10-2009) 

Austin, L. (1989) "David Tudor and Larry Austin: A Conversation", Denton, Texas, 

Available at: http://www.emf.org/tudor/Articles/austin .html (Accessed: 1-10-2009) 

Austin, L. (2001) "Sound Diffustion in Composition and Performance Ptactice II: An 

Interview with Ambrose Field" Computer Music Journal, 25:4, pp21-30 

Bernardini, N. and Vidolin, A. (2005) Sustainable live electro-acoustic music. In 

Proceedings of the International Sound and Music Computing Conference. Salerno, Italy 

Biggs, M.A.R. (2000) Editorial: the foundations of practice-based research. Working 

Papers in Art and Design 1. Available at: 

http://www.herts.ac.uk/artdes/research/papers/wpades/voI1/voI1intro.htm (Accessed: 18-

10-2009) 

Boehm, B. (1988) "A Spiral Model of Software Development and Enhancement", 

"Computer", "IEEE", 21 (5): pp 61-72 

Bosi, M. (1990) An interactive real-time system for the control of sound localization. In S. 

Arnold and G. Hair, editors, Proceedings of the ICMC, Glasgow 

Bruce, M., Cooper, R. (2000) "Creative Product Design: A Practical Guide to 

Requirements Capture Managemenf' Wiley 

CCRMA (2009) People: John Chowning 

https://ccrma.stanford.edu/people/john-chowning (Accessed: 18-10-2009) 

Chadabe, J. (1997) Electric Sound The Past and Promise of Electronic Music Prentice 

Hall 

Choi, A. (2003) Fish Creek MIDI (FCM) Framework. Available at: 

http://members.shaw.ca/akochoi-old/blog/2003/12-07/index.html#2 (Accessed: 12-03-

2008) 

111 



Chowning, J. M. (1970) The simulation of moving sound sources. Audio Engineering 

Society 39th Convention, pp 692--694 

Clozier, C. (2001) The Gmebaphone Concept and the Cyberm!Jphone Instrument 

Computer Music Journal: Vol. 25, no. 4. Cambridge, MA: MIT Press: pp 81 -90. 

CM Labs (1999) Motormix Developers Guide version 1.2 CM Labs Inc. 

Cockburn, A. (2008) "Using Both Incremental and Iterative Development". STSC 

CrossTalk: Journal of defense software engineering (USAF Software Technology 

Support Center) 21 (5) 

Crompton, T.W.J. (1974) The subjective performance of various quadraphonic matrix 

systems BBC Research Department Report 1974/29 

Cross, L. (2001) Remembering David Tudor: A 75th Anniversary Memoir Frankfurter 

Zeitschrift fOr Musikwissenschaft, TM1 

Cunningham, M. (1997) Sound On Stage no. 5, SOS Publications Ltd. 

Cycling '74 (2007) Xoaz's collection of Max and MSP externals and patches Available at: 

http://www.cycling74.com/twiki/bin/view/Share/RichardDudas (Accessed: 1-10-2009) 

Cycling '74 (2009) MaxlMSPIJitter Product Overview. Available at: 

http://www.cycling74.com/products/mmjoverview (Accessed: 1-10-2009) 

Cutler, M., Robair, G. & Bean (2000). "The Outer Limits - A Survey of 

Unconventional Musical Input Devices". Electronic Musician. Available at: 

http://emusician.com/mag/emusic_outer_limits/ (Accessed: 1-10-2009) 

Doherty, D. (1998) . "Sound Diffusion of Stereo Music Over a Multi­

Loudspeaker Sound System: From First Principles Onwards to a 

Successful Experiment". SAN Journal of Electro-acoustic Music, 11 : 9-11 . 

112 



Dolby Laboratories (1999). "Surround Sound: Past, Present and Future". Available at: 

http://www.dolby.com/assets/pdf/tech Iibrary/2 Surround Sound Past. Present. pdf 

(Accessed: 18-10-2009) 

DTS (2006) DTS-HD Audio Consumer White Paper for Blu-ray Disc and HD DVD 

Applications Available at: 

http://www.dts.com/- /media/B962F033C9254AD4B62ECFC6293C9E86.ashx 

(Accessed: 01-10-2009) 

Elsea, P. (2004) "MAX and MTC" Available at: 

www.pescadoo.netlannexe/max/Max&MTC.pdf (Accessed: 17-02-2009) 

EMF (2009) Electronic Music Foundation - Varese poeme. Available at: 

http://emfinstitute.emf.org/exhibits/varesepoeme.html (Accessed: 01-10-2009) 

Ernst, D. (1977) The Evolution of Electronic Music. New York: Schirmer Books 

Fishman-Johnson, E. (1993-94) The Movement of Sound in Space: An Update -

Proceedings of the Bowling Green State University new music & art festivals 14 & 15 

paper sessions volumes 5-6 

Frayling, C. et al (eds.) (1997) Practice- based Doctorates in the Creative and 

Performing Arts and Design. N.p. [UK]: UK Council for Graduate Education 

Fxpansion (2009) VST to RTAS Adapter 2.1 overview. Available at: 

http://www.fxpansion .com/index.php?page=15 (Accessed: 17-02-2009) 

Gaskell, P.S. and Ratliff, P.A. (1977) Quadraphony: Developments in Matrix H decoding 

BBC Research Department Report 1977/2 

Gawker (2009) Bill Keller: Apple Tablet 'Impending' Available at: 

http://gawker.com/5389636/bill-keller-apple-tablet-impending (Accessed: 29-10-2009) 

113 



Goodliffe, P (2007) "Code Craft: The Practice of Writing Excellent Code". No Starch 

Press 

Haller, H. P. (1999) Nono in the studio - Nono in concert - Nono and the interpreters 

Contempory Music Review Vol. 18 Part 2 pp.11 -18 

Harrison, J. (1998). "Sound, Space, Sculpture - Some Thoughts on the 

'What,' 'How' and 'Why' of Sound Diffusion". Organised Sound, 

3(2): pp 117-127. 

Harrison, J. (1999) "Diffusion - Theories and Practices, with Particular Reference to the 

BEAST System", EContact!, 2(4) 

Hillegass, A. (2004) Cocoa Programming for Mac OS X 2nd ed. Addison-Wesley 

Hilton, K. (1994) Floyd in Florida. Studio Sound no. 8 

Hinton, G. (2001) A Guide to the EMS Product Range 1969 to 1979 Available at: 

http://www.ems-synthi .demon.co.uk/emsprods.html#gueg (Accessed: 01 -10-2009) 

Hoffmann, H.F. (1993) "Requirements Engineering, a survey of Methods and Tools" IFI 

Humon, Naut et al. (1998) Sound Traffic Control: An Interactive 3-D Audio System for 

Live Musical Performance. ICAD '98 Proceedings, University of Glasgow, 

IMEB (2009) About of the Cybernephone (formerly Gmebaphone) 

Institut International de Musique Electroacoustique de Bourges Available at: 

http://www.imeb.net/IMEB v2/PDF/About-of-the-Cybernephone.doc (Accessed: 01 -10-

2009) 

1M-Research (2008) Vortex Surround Designer: VSD Features Available at: 

http://im-research.com/products/designer/ (Accessed: 01 -10-2009) 

114 



IRCAM (2008) SPA T Reference Manua/- OveIView. Available at: 

http://support.ircam.fr/forum-ol-doc/spat/3 .0/spat-3-ref/coloverview . html (Accessed: 01-

10-2009) 

Jones, S. (2006) "Recombinant Media Labs" Available at: 

http://mixonline.com/design/profiles/audio recombinant media labsl retrieved 2-11-

2008 

Kernighan, B., Ritchie, D. (1988) The C Programming Language 2nd ed . Prentice Hall 

Koftinoff, J (2009) "osc_dev: Oscpack TCP" CREATE forum Available at: 

http://lists.create.ucsb.edu/pipermail/oscdev/2009-Augustl001735.html (Accessed: 01 -

10-2009) 

Korg (2007) Korg Kaoss Pad Dynamic Effects/Sampler User Manual Available at: 

http://www.korg .co.uk/downloads/kp3/support/KP3 OM EFG1 .pdf (Accessed: 01 -10-

2009) 

Kuivila , R. (2001) Open Sources: Words, Circuits, and the Notation/Realization Relation 

in the Music of David Tudor Proceedings of the Getty Research Institute Symposium, 

'The Art of David Tudor," 2001. 

KVR Forum (2005) Topic: Sidechain - sharing data between plugins Available at: 

www.kvraudio .com/forum/viewtopic.php?t=77794 (Accessed: 12-04-2008) 

Line 6 (2009) Line 6 DL4 Stompbox Modeller Available at: 

http://uk.line6.com/dI4/ (Accessed: 01 -10-2009) 

Ludvig, LF. (2003) Extensions and generalizations of the pedal steel guitar 

Patent US 6,852,919 B2 

Larman, C Victor R. Basili , V.R. (2003) "Iterative and Incremental Development: A Brief 

History," Computer, vol. 36, no. 6, pp. 47-56 

115 



McGahan, P. (2000) How to share a data segment in a OLL Available at: 

URL: www.codeproject.com/KBIDLLldata seq share.aspx (Accessed: 12-04-2008) 

Manning, P. (2004) Electronic and Computer Music. revised ed. Oxford University Press 

Marshall, G. and McCully, B. (1998) The HUI Reference Guide rev. B Mackie Inc. 

Malham, D. G. (1990) Ambisonics - a technique for low-cost, high-precision, three­

dimensional sound diffusion. Proceedings of the International Computer Music 

Conference 1990, pp 118--120 

Malham, D.G. and Myatt, A. (1994) 3-D Sound Spatialization using Ambisonic 

Techniques Computer Music Journal 

Malham, D. G. (1995) 3-d sound spatia/ization using ambisonic techniques. Computer 

Music Journal, 19(4) pp 58--70, 

Malham D.G. (1998) Composition and diffusion: space in sound in space Organised 

Sound 3(2) 

Manning, P. (1993) Electronic and Computer Music. 2d ed. Oxford: Clarendon Press 

Manning, P. (2006) "The significance of techne in understanding the art and practice of 

electro-acoustic composition" Organised Sound 11 (1) Cambridge University Press 

Meyer Sound (2007) Matrix3 Audio Show Control System Available at: 

URL: http://www.meyersound.com/lcs/matrix3/ (Accessed: 01-10-2009) 

Microsoft (1999) C/C++ Preprocessor reference - data_seg Available at: 

http://msdn.microsoft.com/en-us/library/thfhx4st.aspx (Accessed: 12-04-2008) 

MMA (1983) The MIDI Specification V1.0 MIDI Manufacturers Association 

Modarres, M. Kaminskiy, M. Kritsov, V. (1999) "Reliability engineering and risk analysis: 

116 



a practical guide" CRC Press 

Mooney, J. (2001). "Ambipan and Ambidec: Towards a Suite of VST Plugins with 

Graphical User Interface for Positioning Sound Sources within an Ambisonic Sound­

Field in Real Time". M.Sc. thesis (Music Technology Research Group; University of 

York). 

Moore, A., Moore, D. & Mooney, J. (2004). "M2 Diffusion - The Live Diffusion of Sound in 

Space". Proceedings of the International Computer Music Conference (ICMC) 2004 

Miami FL. 

Moore, D. (2004). "Real-Time Sound Spatia/ization: Software Design and 

Implementation". Ph.D. thesis (Department of Music; University of Sheffield) 

Nelson, R and Andrews, S (2003) Practice as Research: Regulations, Protocols and 

Guidelines PALATINE, Lancaster University 

Neve (1991) Operator's Handbook for the VR Legend Console issue 1 Neve Electronics 

International Ltd, Cambridge 

Neyrinck, P. (2009) Mix 51: 5.1 Surround Panning And Surround Mixing For Pro Tools 

LE Available at: 

http://www.neyrinck.com/Pages/mix51more.html (Accessed: 01-10-2009) 

Nordin, I. L. (2007) "Stockhausen Edition no. 91 (Cosmic Pulses)" Available at: 

http://home.swipnet.se/sonoloco25/stockhausen/91 .html (Accessed: 01-10-2009) 

Oriogun P K, (2002) "Towards Understanding Software Requirements Capture: 

Experiences of Professional Students using the NIA to Support the Win-Win Spiral 

Model", LTSN-ICS Electronic Journal (ITALICS), ISSN 1473-7507, Volume 1, Issue 2 

Osmond-Smith, D. (1991) Berio Oxford University Press 

Offringa, D. (2005) Aux Bus Set Available at: 

117 



www.solidsoundstudio.net (Accessed: 12-04-2008) 

Parks-Sydow, D. (1995) More Mac programming techniques M&T Books, New York 

Perron, M. (1991) "How Steady Is Your Click Track?" Preprint 3132 Proceedings of the 

91st AES Convention, New York 

Person, S. (2005) Senderella version 1.08 Available at: 

www.substructive.com/plugins/senderella-v1 .08.zip (Accessed: 12-04-2008) 

Place, T (2005) "An Interview with David Wessel" Available at: 

http://www.cycling74.com/story/2005/9/13/19320/0068 (Accessed: 08-11 -2008) 

Puckette, M. (1991) "Combining Event and Signal Processing in the Max Graphical 

Programming Environment" Computer Music Journal 15(3) MIT 

Puckette M (1991) "Something Digital" Computer Music Journal 15(4) 

Puckette, P (1996) Pure Data: another integrated computer music 

in Proceedings, International Computer Music Conference Pages 37-41 

Pulkki, V. (2000) Generic panning tools for MAXIMSP. Proceedings of International 

Computer Music Conference 2000. pp. 304-307. Berlin, Germany, 

Pulkki , V. and Karjalainen, M. (2001) Localization of amplitude-panned virtual sources I: 

Stereophonic panning. Journal of the Audio Engineering Society. 

Reed, C. (2003) SynthTest 1.2.1 Available at: 

U RL: www.manyetas.com/creed/synthtest.html (Accessed : 12-04-2008) 

Richmond Audio Design (2001). "The AudioBox Disk Playback Matrix Mixer". 

Available at: http://www.hfi.com/dm16.htm. (Accessed: 01 -10-2009) 

Richmond Sound Design (2009) ABShowMaker User Manual Available at: 

118 



http://hfi.richmondsounddesign.com/ABSMmanuaIlABSMHelp.htmI (Accessed: 01-10-

2008) 

Roads, C (1996) The Computer Music Tutorial, MIT Press, Cambridge 

Roads, C., Kuchera-Morin, J. & Pope, S. (2001). "Research on Spatial and 

Surround Sound at CREATE". (Santa Barbara CA.; Berkeley, University of California) 

Rolfe, C. (1999). "A Practical Guide to Diffusion". EContact! 2(4). (CEC). Available at: 

http://cec.concordia.ca/econtact/Diffusion/pracdiff.htm (Accessed: 12-04-2008) 

Rumsey, F. (2001). Spatial Audio Focus Press, Oxford 

Rust, C. Mottram, J. Till, J. (2007) "AHRC Research Review: Practice-Led Research in 

Art, Design and Architecture" Available at: 

www.ahrc.ac. ukl AboutiPolicy/Documents/Practice-Led Review Nov07. pdf (Accessed: 

01-10-2009) 

Solid State Logic (1995) SSL 4000G Series Console Operators Manual 4th edition 

Solid State Logic Ltd, Oxford 

Sony (2001) Sony Dynamic Digital Sound: What is SODS? Available at: 

www.sdds.com (Accessed: 01-10-2009) 

Soundcraft (1997) DC2000 Console User Guide. Harman International Industries, 

Stamford, CT 

Threw, B (2009) "Recombinant Media Labs at UCSD Roundup" Available at: 

www.barrvthrew.com/2009/06/15/recombinant-media-labs-at-ucsd-roundupl (Accessed: 

12-10-2009) 

Tutschku, H. (2002). "On the Interpretation of Multi-Channel Electro-acoustic Works on 

Loudspeaker-Orchestras: Some Thoughts on the GRM-Acousmonium and BEAST". 

SAN Journal of Electro-acoustic Music, 14: pp 14-16. 

119 



Truax, B. (1998). "Composition and Diffusion - Space in Sound in Space". 

Organised Sound, 3(2): pp 141-146. 

Wacom (2006) EMR (Electro-Magnetic Resonance) Technology Available at: 

www.wacom-components.com/english/technology/emr.html (Accessed: 12-04-2008) 

Warnaby, J. (1996) Review: Das Experimentalstudio der Heinrich Strobel Stiftung des 

Sudwestfunks, Freiburg, 1971-1989 by Hans-Peter Haller. Tempo No. 197 

Wiener, R. & Pinson , L. (1988) An Introduction to Object-oriented Programming and C++ 

Addison-Wesley 

Worrall, D. (1998) . "Space in Sound - Sound of Space". Organised Sound, 3(2): 93-99. 

Worrall, D. (2002) . "David Worrall Home Page". Available at: 

http://www.avatar.com.au/worrall/ (Accessed : 01-10-2009) 

Wyatt, S. et al. (1999) . "Investigative Studies on Sound Diffusion / Projection". 

EContact! 2(4). (CEC). Available at: 

http://cec.concordia .ca/econtactiDiffusion/lnvestigative.htm (Accessed: 12-04-2008) 

Vidolin, A (1993) "Interpretazione musicale e signal processing" 

Centro di Sonologia Computazionale dell'Universita di Pad ova Available at: 

www.dei.unipd.itl- musica/DispenseNidolinMit.pdf (Accessed: 10-10-2009) 

Yandell P. (2002) PYMIDI Framework v1.1 Available at: 

http://pete.yandell.com/software/ (Accessed: 12-04-2008) 

Zicarelli , D. (2009) Tools for Creating Devices in Live Available at: 

http://www.cycling74.com/story/2009/1/15/114420/967 (Accessed: 01-10-2009) 

Z6lzer, U (2002): DAFX Digital Audio Effects. John Wiley & Sons, Chichester 

Zvonar, R. (1999) "A history of spatial music", EContact!, 7(4) (CEC) 

120 



Appendix A Panning in Pro Tools using MIDI controller 

emulation 

This Appendix investigates a method of surround panning in Pro Tools that does not 

require a panner plug-in. Unlike Ableton Live, Pro Tools does not allow controls to be 

mapped to MIDI messages by the user. Instead, the user must use an approved and 

supported Digidesign controller such as the Command 8 or third-party controllers such 

as the JLCooper CS10, Mackie HUI or CM Labs Motormix. If OctoPanner and 

ShapePanner were to control the pans and sends in Pro Tools, those programs must 

emulate a supported MI DI Controller. 

A.1 JL Cooper CS10 

The CS10 was the first controller supported by Pro Tools in 1991, The eight faders are 

non-motorised and the rotary controllers are 270 degree travel potentiometers rather 

than endless-travel rotary encoders. The CS10 MIDI implementation is clearly described 

in the user manual and the CS 1 0 has been emulated by other controller manufacturers 

such as Roland and Kenton as a result. To investigate the suitability of the CS10 

protocol for Pro Tools panning a simple Cocoa application was produced: 
o n n 

0>------

0 0000 
SHIFT F1 F2 Fl F4 

00 
f5 f6 fl f8 f9 

L:JLJl::Jl:JL:J 

n r""'I 'OLOO 
:SC; d 1 IOOn (C", MUTt 0 
f1 n 
Scll il l rrt<j~tlKY 

" LOC \...-

",0 
n n 0 
'om J.a r.chrid th 

o o 0 
o 

~ 

CS IO Emu lator 

Fig. A- 1: CS10 Emulator (Cocoa) 

0000000 
00000 

A 

Pro Tools allows multiple CS10s to be connected so the CS10 emulator emulates 2 

devices hence the 16 faders shown in Fig . A- 1. The emulator was recognised by Pro 

Tools and all controls worked. The non-motorised nature of the faders was immediately 

121 



problematic; the incorporation of the original CS10 into Pro Tools added two nulling 

arrow LEOs similar to those found on a VCA-based console automation system, Pro 

Tools only 'picks up' the fader when it is moved to the current screen position. Although 

this can be solved by ramping each fader from min to max during initialisation the same 

technique cannot be used for the six potentiometers. Since the six pots affect the target 

track selected by the 'SEL' switches each time a different track is selected the adjusted 

potentiometers must pass through the current screen control position to pick it up 

(meaning a controlling application cannot simply update a track's pan/sends then switch 

to another track). Although this test was unsuccessful it did show that CS10 emulation 

could be a very simple method for controlling the Pro Tools transport and selecting 

location markers. 

A.2 eM Labs Motormix 

The Motormix was investigated next since it is a controller with eight motorised faders 

and eight endless rotary encoders and its MIDI protocol is also defined in Developer 

information available from CM Labs. The Cocoa CS10 Emulator was adapted to 

implement the fader part of the Motormix protocol and to implement the MIDI 

handshaking interrogation/response used by Pro Tools to detect if a Motormix is 

connected. The Motormix Emulator was able to successfully control faders in Pro Tools 

but it then became apparent that the Motormix protocol did not allow the Pro Tools send 

pans to be controlled8
. As a result the otherwise successful Motormix emulation was put 

on hold. 

8 Unlike Ableton Live where the track pan control also affects the panning of a stereo 

send, Pro Tools had separate track pan and send pan controls. After this research took 

place Digidesign introduced a pan linking preference in Pro Tools 7.3 

122 



A.3 Mackie HUI 

The HUI was a complex MIDI controller designed for Pro Tools with functionality 

approaching that of Digidesign's now obsolete Pro-Control. The HUI implementation in 

Pro Tools incorporates a 'fader flip' mode where the currently selected send bank (A to 

E) is mapped onto the motorised faders with the send level under fader control and the 

send pan under rotary encoder control. Although this gives the required control of sends 

and pans the HUI protocol is not published. 

A.3.1 Analysing the HUI protocol 

The HUI reference guide includes a brief MIDI Implementation Chart that indicate that 

faders are allocated to two separate blocks of CC messages and that switches are 

mapped to another block. The chart also indicates a handshake mechanism using MIDI 

Note On messages. Although this information is minimal it does give enough insight into 

the protocol to allow further analysis. 

A Mackie HUI was connected to a Pro Tools system and Snoize's MIDI Monitor used to 

examine the messages passing between the two, only general results are presented 

here as the protocol is not in the public domain. 

Handshaking - Pro Tools polls the HUI at approximately 0.75 second intervals, unlike 

the elaborate handshaking required with a Logic Control, the HUI inverts and returns the 

note on value sent by Pro Tools, this is stated in the HUI implementation chart although 

unclear. 

Switches - The HUI switches are arranged into related banks such as channel strip 

one to seven, transport, send selects. The switches within each bank are assigned a 

number from zero to seven. For example, the channel strip number one bank contains 

Fader touch, select, mute, solo in increasing numerical order. A key press or release is 

therefore transmitted as two MIDI CC messages: OF (hex) representing the 'bank 

number' followed by 2F (hex) representing the 'switch number'. 

Faders Mackie state that the HUI fader resolution is 1024 steps, i.e. 10bit. The 

Implementation Chart indicates that the channel one fader MSB is transmitted as CC 00 

and the LSB as CC 20 (hex). Monitoring the data stream confirms this. 

At this point it was observed that no only were there similarities between the HUI and the 

published Logic Control protocols but also similarities with the published Motormix 

123 



124 

meaning sufficient information was available to produce the HUI Emulator shown in Fig. A-

2: 

60 0 HUI Emulator 

[sodA] 0 0 0 0 0 0 0 n 
[ s ndB ] ~ 8~~~§)~~8 
[Sod c] 
[snd 0] 
[Snd E I 
~ 

8~~~8~~~ 
GDBBBGDBBB 

8 

Ten MtUil9 C! 

Bank Numbcr a . I., 

simu lated 
rotary encoder 

« I ~ l::J l::J L:J 
4 

Fig. A- 2: HUI Emulator (Cocoa) 

The upper-right corner of Fig. A- 2 shows a test message generator to allow the HUI 'bank 

+ switch number' combinations to be generated to investigate the HUI protocol further. 

Similarly, below this is a simulation of a rotary encoder, the available documentation 

showed that the encoders send incremental information to indicate clockwise or anti­

clockwise rotation rather than the specific position message sent by the faders. 

Having determined enough HUI protocol information to be able to control Pro Tools faders, 

sends and send pans a HUI class was added to a test version of OctoPanner application 

to convert its x/y coordinate information into Pro Tools control movements. The HUI 

handshaking response was added to the PFMidi class. The result was successful control 

of Pro Tools however there was a significant issue that was not overcome; large amounts 

of panner activity caused OctoPanner to allocate too much CPU time to the UI thread 

meaning the delay in responding to the Pro Tools handshaking poll was too great. This 

resulted in Pro Tools flagging to the user that the HUI was not responding. 



Appendix 8 A Cocoa wrapper for Carbon CoreMIDI 

functions 

The audio section of the Apple Developer site contains minimal information about 

CoreMIDI. A 2001 Apple document called coreAudio.pdf is the most informative, giving 

some information on CoreAudio, CoreMIDI and AudioUnits, additional information can 

be found in the documentation file for midiServices.h that presents the available MIDI 

routines. 

Alongside this sparse documentation is source code for a very simple C program called 

echo.cpp that echoes MIDI received on any input port to the first output port found. Two 

things should be noted about this example code, firstly it is a simple command-line 

application and has no GUI, secondly it is a Carbon application rather than Cocoa. The 

following analysis of this example is presented to help explain the coreMIDI interface. 

Before analysing the program three terms should be explained: 

MIDIDevice A piece of MIDI hardware, for example a Midisport 2x2 MIDI interface. 

MIDIEntity The MIDI device may sometimes contain separate blocks of functionality, 

for example the Midisport 2x2 interface contains two separate MI DI ports A and B, each 

with a MIDI input and output; the Midisport 'MIDIDevice' would be described as 

containing two 'MIDIEntities' - Ports A and B 

MIDIEndpoint This is the lowest level and usually represents a physical MIDI 

input or output connection, thus the Midisport 2x2's two MIDIEntities A and Beach 

contain two MIDIEndpoints, four in total: MIDI input A, MIDI output A, MIDI input B, MIDI 

output B. 

For a program to send and receive MIDI, the programmer must create a MIDI client and 

MI DI input and output ports, these input and output ports will then be connected to 

MIDIEndpoints and references to these will be stored using the following data types 

defined in midiservices.h: 

MIDICl ientRef - a reference to the client (the program) 

MIDIPortRef - a reference to a MIDI input or output port 

MIDIEndpointRef - a reference to a physical MIDI connection9 

9 This could also be a virtual endpoint representing a physical cable 

125 



Although the sample file is called echo.cpp the code is C rather than C++, thus all the 

MIDI routines are standard C procedures. Since this code is Apple's only example of a 

MI DI application additional comments have been added to this thesis in blue to explain 

the example in greater detail. 

First declare references to the output port through which MIDI will be sent and to the 

physical MIDI endpoint that will be attached to this output port 

MIDIPortRef gOutPort = NULL ; 

MIDIEndpoi ntRef gDest NULL ; 

Before any Core MIDI functions can be called the application must establish itself as a 

MIDI client 

I I create client and ports 

MIDIClientRef client = NULL ; 

MIDIClientCreate(CFSTR( "MIDI Echo" ), NULL , NULL , &c1ient); 

Now create an input port for the new client and specify the application's MyReadProc 

function as the callback function to be automatically called by Core MIDI when MIDI is 

received , then create an output port to allow the application to send MIDI 

MIDIPortRef inPort = NULL ; 

MIDIInputPortCreate(c1ient, CFSTR( "Input port"), MyReadProc, NULL , &inPort); 

MIDIOutputPortCreate(c1ient, CFSTR( "Output port"), &gOutPort); 

At this point the application has created a MIDI client with an input and output port but 

these ports have not been connected to physical MIDI endpoints. In a complete 

application the user would be given a means of selecting these from a list of available 

ports - echo.cpp does not implement this but does show how to get information about 

the available devices 

The following code fragment determines how many physical devices are attached and 

then gets and prints the name, manufacturer and model strings for each device 

II enumerate devices (not really related to purpose of the echo program 

I I but shows how to get information about devices) 

126 



int i, n; 

CFStringRef pname, pmanuf, pmodel; 

char name[64], manuf[64], model[64]; 

n = MIDIGetNumberOfDevices(); 

for (i = 0 ; i < n; ++i) { 

} 

MIDIDeviceRef dev = MIDIGetDevice(i); 

MIDIObjectGetStringProperty(dev, kMIDIPropertyName, &pname); 

MIDIObjectGetStringProperty(dev, kMIDIPropertyManufacturer, &pmanuf); 

MIDIObjectGetStringProperty(dev, kMIDIPropertyModel, &pmodel); 

CFStringGetCString(pname, name, sizeof(name), 0); 

CFStringGetCString(pmanuf, manuf, sizeof(manuf), 0); 

CFStringGetCString(pmodel, model, sizeof(model), 0); 

CFRelease(pname); 

CFRelease(pmanuf); 

CFRelease(pmodel); 

printf( "name=%s, manuf=%s, model =%s\n" , name, manuf, model); 

127 



Rather than allowing the user to choose which MIDI device inputs to receive from, 

echo.cpp connects all available MIDI input endpoints to its input port: 

II open connections from all sources 

n = MIDIGetNumberOfSources(); 

printf( "%d sources\n" , n); 

for (i = 0 ; i < n; ++i) { 

} 

MIDIEndpointRef src = MIDIGetSource(i); 

MIDIPortConnectSource(inPort, src, NULL); 

Similarly, the user does not choose which MIDI output to use, instead the MIDI output is 

echoed to the first available MIDI output endpoint, note that here is no destination 

equivalent of MIDIPortConnectSourceO, instead the programmer obtains a reference to 

the required MIDI output endpoint and passes this to the MIDISendO function when 

sending MIDI 

II find the first destination 

n = MIDIGetNumberOfDestinations(); 

if (n > 0) 

gDest = MIDIGetDestination(0); 

Having now created a client and connected MIDI input and output ports, the programme 

enters a continuous run loop awaiting MIDI messages that will automatically cause the 

MyReadProc callback function specified during initialisation to be called. 

To understand the following code it is necessary to know that that the callback function 

is sent a list of MIDI packets (MIDIPacketList) containing one or more complete MIDI 

messages without running status, each message is supplied as a MIDI Packet - a C 

structure consisting of a length and number of data bytes, for example continuous 

controller message 1 with a value 127 would be represented by a MIDIPacket whose 

length was 3 and data was 80 01 7F (hex). 

128 



If there is an available MIDI output, this function iterates through the supplied packet list 

and re-sends the packet to the first available output: 

{ 

} 

static void MyReadProc(const MIDIPacketList *pktlist, void *refCon, void 

*connRefCon) 

for ( unsigned int j = 0; j < pktlist->numPackets; ++j) { 

for ( int i = 0 ; i < packet->length; ++i) { 

the incoming MIDI packet is processed here 

packet = MIDIPacketNext(packet); get the next packet 

} 

MIDISend(gOutPort, gDest, pktlist); echo the packet 

} 

Having examined the data types and mechanisms for MIDI input and output using the 

Carbon function calls, the creation of the Cocoa PFMidi wrapper can now be 

considered. The aim of this MIDI class was to provide simple methods to allow a Cocoa 

application to perform operations such as sending continuous controller messages. 

Consider first the PFMidi method called sendCC requiring three parameters: Controller 

number, data and channel as follows: 

[PFMidi sendCC:2 data:127 chan:1]; II send a CC#2 message whose value is 

127 using MIDI channel 1 

Moving to the implementation of the sendCC method, the method declaration is similar 

to a C function and is preceded by a minus to indicate it is a method. In this example the 

sendCC method does not return a value hence the (void) declaration, the three 

arguments are integers and this is indicated by the (int) prefix 

- (void) [ PFMidi sendCC:(int) ccNumber data( int) newValue chan:( int) 

chanNumber ] 

{ 

129 



II method implementation 

} 

The low level transmission of MIDI data must use the Carbon MIDISend function which 

requires the client output port reference, the MIDI output endpoint reference and a MIDI 

packet list MIDI data to be sent. The implementation code within this method is 

essentially the same as Apple's Carbon echo.cpp example: 

-(void)[ PFMidi sendCC:( int)ccNumber data( int)newValue chan:( int)chanNumber ] 

{ 

} 

OSStatus status; 

MIDIPacket · packet = &outPacketList.packet[0]; II note: first packet in 

list is the only one that can be 

directly addressed 

outPacketList.numPackets 1; 

packet->timeStamp = 0; II send immediately 

packet->length = 3; II one controller message 

packet->data[0] = CONTROLLERMSG I (chanNumber & 0xf); II status byte 

for continuous controller message 

with MIDI channel number OR'd into 

the lower nibble 

packet->data[l ] ccNumber; 

packet->data[Z] newValue & 0x7f ; 

status = MIDISend(gOutPort, gDest, &outPacketList); 

printf("CC - midiSend returned OSStatus %d\n", status); 

Although writing this method requires knowledge of the CoreMIDI interface and Carbon, 

the object-orientated nature of Cocoa means its implementation is local to the PFMidi 

class and does not need to be understood by users of the class. Similar methods can be 

added to the PFMidi class to send MIDI note, pitch bend and program change 

messages. The Fish Creek Framework (Choi 2003 p1) and the PYMIDI Framework 

(Yandell 2002) are useful examples of Cocoa MIDI wrappers but were not used in this 

research project since neither provided the timecode and clock support required. 

130 



B.2 MIDI System Initialisation and Port selection 

As noted earlier, Apple's MIDI echo example does not have a User Interface and does 

not allow selection of input and output MIDI ports which is unacceptable for a real-world 

application. The open source SynthTest (Reed 2002 p1) example populates a pop-up 

button with the enumerated MIDI input endpoints and this idea was used to provide the 

PFMidi object with MIDI input and output port pop-up buttons (Fig. B- 1) 

Midi Setup 

Mid i Input 

Midi Outp 

( Close ) 

Fig. B- 1: MIDI port pop-up buttons 

This is a simplified code fragment that shows the use of the PopUp8utton class and its 

removeAliltems and addltemWithTitle methods to clear a pop-up button and populate it 

with the list of available MIDI input endpoints 

II Build list of available ports 

[inputPopup removeAllItems]; 

{ 

nDevices MIDIGetNumberOfSources(); II how many MIDI inputs on this 

system? 

if (nDevices > 0) 

{ 

for (i=0 ; i<nDevices ++i) 

{ 

MIDIEndpointRef dev MIDIGetSource(i); 11 get a reference 

if (dev != NULL) 

MIDIObjectGetStringProperty(dev, kMIDIPropertyName, &pname); 

CFStringGetCString(pname, name, sizeof(name), 0); 

CFRelease(pname); 

131 



} 

} 

} 

[inputPopup addltemWithTitle: [NSString stringWithCString: 

name]]; 

B.3 Calling Cocoa from a Carbon callback function 

Decoding of the MTC quarter-note stream was implemented in the PFMidi class within 

the Carbon callback function called myReadProc. During Cocoa evaluation in February 

2004 this function had proved to be very difficult to modify due to the lack of 

documentation and example code by Apple and thus it is explained in some detail here. 

MyReadProc is based on the callback function described in Apple's echo.cpp example. 

The Cocoa MIDI examples presented so far have only performed MIDI output and this is 

straightforward even though a Carbon CoreMIDI function is being called from Cocoa. 

However, the CoreMIDI callback mechanism that calls the user's myReadProc function 

runs on a separate high priority thread 10 and calling a Cocoa method from myReadProc 

caused the program to crash when any MIDI was received. After extensive searches in 

February 2004 no supporting documentation could be found and a request for help was 

placed on Apple's CoreAudio developers bulletin board11
. 

The post received a single response from programmer Patrick Gustovic whose 

assistance was invaluable: 

Paul. 

When you call MIOllnputPortCreate from an Objective-C context, pass in 
"self" for the fourth argument (ref Con). Then when your MIDI read proc 
is called, that "self" object will pop in as the second argument 
(readProcRefCon) . Then you can call back into the context from which 
you setup the MIDI read proc. 

10 as x is a multi-threaded language wherein a program can have several totally 

separate processes (threads) running concurrently. 

11 It would appear that this is a common problem experienced by programmers new to 

Cocoa and MIDI as a search of the Apple CoreAudio List reveals similar requests for 

assistance dated after this posting. 

132 



i.e. 

void myReadProc(const MIDIPacketList *pktlist, void *readProcRefCon, 
void *srcConnRefCon) 
{ 
[(SomeObjC_ Class*)readProcRefCon doSomethingj; 
) 
Patrick 

To illustrate this response consider Apple's sample Carbon echo.cpp code: 

First the callback routine MyReadProc is established when the input port is created: 

MIDlinputPortCreate(client, CFSTR(IO lnput portIO), MyReadProc, NULL, &inPort); 

Then the MyReadProc function is defined: 

static void MyReadProc(const MIDIPacketList *pktlist, void *refCon, void 

*connRefCon) 

{ 

II code removed here 

} 

It can be seen here that the fourth argument Gustovic refers to is set to NULL when 

MyReadProc is referenced and is not used by the MYReadProc example code. To allow 

the MyReadProc callback function to perform Cocoa methods the NULL reference 

currently passed to MyReadProc when MIDI is received should be changed to refer to 

the PFMidi class that created it, i.e. self 

MIDIInputPortCreate(client, CFSTR( IO Input portIO), MyReadProc, self , &inPort); 

Thus the second argument passed to MyReadProc is now a reference to the PFMidi 

class: 

static void MyReadProc(const MIDIPacketList *pktlist, void *refCon, void 

*connRefCon) 

{ 

II code removed here 

[(PFMidi *)refCon doSomethingJ II ask the PFMidi class to perform 

the required method 

133 



} 

Note that ref Con is coerced to be a pointer to a PFMidi class which stops Xcode 

warning that the targeted class might not implement the method required. 

134 



Appendix C Investigating CoreAudio Clock 

Apple's document entitled "Core Audio Overview" includes a brief description of the 

technology and refers the programmer to CoreAudioClock.h in the AudioToolbox 

framework. This header documents the CoreAudio clock system calls in a concise 

manner aimed at the experienced Carbon Mac programmer. A brief examination of the 

list below will show that functions are included to create and dispose of clocks and to 

configure, start and stop them. Additional functions appear to allow conversion between 

different time representations such as host-time, SMPTE and bars/beats: 

CAClockAddListener - Adds a callback function to receive notifications of changes to the 

clock's state. 

CAClockArm - Allow received sync messages to start the clock. 

CAClockBarBeatTimeToBeats - Converts a CABarBeatTime structure to a number of beats. 

CAClockBeatsToBarBeatTime - Converts a number of beats to a CABarBeatTime structure. 

CAClockDisarm - Disallow received sync messages from starting the clock. 

CAClockDispose - Dispose a clock object. 

CAClockGetCurrentTempo - Obtain the clock's current musical tempo. 

CAClockGetCurrentTime - Obtain the clock's current position on the media timeline. 

CAClockGetPlayRate - Obtain the clock's playback rate. 

CAClockGetProperty Gets the current value of a clock's property. 

CAClockGetPropertylnfo - Gets information about a clock's property. 

CAClockGetStartTime - Obtain the position on the media timeline where playback will start, or 

has already started. 

CAClockNew - Create a new clock object. 

CAClockRemoveListener - Removes a listener callback function. 

CAClockSecondsToSMPTETime - Converts seconds to a SMPTE time representation. 

CAClockSetCurrentTempo - Manually override the clock's musical tempo during playback. 

CAClockSetCurrentTime - Sets the clock's current position on the media timeline. 

CAClockSetPlayRate - Alter the clock's playback rate. 

CAClockSetProperty - Changes the value of a clock's property. 

CAClockSMPTETimeToSeconds - Converts a SMPTE time representation to seconds. 

CAClockStart - Begin advancing the clock on its media timeline. 

135 



CAClockStop - Stop advancing the clock on its media timeline. 

CAClockTranslateTime - Convert between time units. 

CoreAudioClock.h also presents each of the functions in a slightly expanded form, for example : 

CAClockNew 

Create a new clock object. 

extern OS Status CAClockNew(Ulnt32 inReservedFlags, CAClockRef *outCAClock); 

Parameters 

in Reserved Flags - Must be O. 

outCAClock - Must be non-null. On successful return, the new clock object. 

Return Value 

An OSStatus error code. 

Availability 

Introduced in Mac OS X v1 0.4. 

Again, minimal documentation aimed at providing a reference for an experienced 

programmer. This format is used for Core Audio in general, however, Core Audio has 

additional documentation and example code to help introduce the key concepts to 

programmers. 

It was assumed that a clock object was analogous to a CoreMIDI client, in that it must be 

created and a reference to it used in subsequent function calls. The above description of 

CAClockNew indicates that the clock object will be referenced using a CAClockRef 

suggesting the following test code: 

CAClockRef pfClockRef; 

osErr = CAClockNew(0 , &pfClockRef); II create a new clock 

printf("clockNew returned %d\n", osErr); 

136 



Running this code printed 0 to the console indicating successful creation of a clock. This 

new CAClockRef was then passed to CAClockStart and CAClockStop as follows: 

osErr = CAClockStart(pfClockRef); 

printf("clock start returned %d\n", osErr); 

osErr = CAClockStop(pfClockRef); 

printf("clock stop returned %d\n", osErr); 

The returned 0 OSStatus code indicated that the newly created clock object could be 

started and stopped successfully. Now calling the CAClockGetCurrentTime function 

would allow verification that a running clock actually existed: 

CAClockGetCurrentTime 

Obtain the clock's current position on the media timeline. 

extern OSStatus CAClockGetCurrentTime( 

CAClockRef inCAClock, 

CAClockTimeFormat inTimeFormat, 

CAClockTime *outTime); 

Parameters 

inCAClock - The clock object. 

inTimeFormat - Specifies the desired format for outTime. 

outTime - On exit, the clock's current time position. 

It appeared from the above that to obtain the current clock time, the programmer must 

specify the required time format which would then be returned as a CAClockTime 

variable 

Apple explains the available clock time formats as follows: 

kCAClockTimeFormat_HostTime - Absolute host time 

137 





printf("currentTime ... returned err %d, time %f\n",osErr, 

pfTimestamp.time.seconds); 

Having now established that a clock object could be created, started and read, a Cocoa 

UI was created to allow the above Carbon code to be tested further, The simple UI 

shown in Fig. C- 1 creates a CAClock object on initialisation and has buttons allowing 

the user to call the CAClockStart and CAClockStop functions and to check the clock 

start time and current time using the CAClockGetCurrentTime and 

CAClockGetStartTime functions. 

Core Audio Clock 

!Cet Stan Time ' 11.00 

[Get Curr Time ) 22 .00 

Fig. C- 1: Simple Core Audio Clock test application 

Unpredicted behaviour 

This test application revealed an apparent anomaly: as expected the newly created clock 

is stationary, its Start Time is zero and the Current Time is zero; the clock starts when 

CAClockStart is sent and the time updates as expected each time 'Get Current Time' is 

pressed. However, when CAClockStop is sent the clock does not stop advancing as 

suggested by the CAClockStop documentation, pressing 'Get Current Time' shows that 

the time is still advancing. 

It was also observed that when stop is pressed the current time is stored as the new 

start time but this only happens for the first stop press following a start press. This may 

indicate a MIDI sequence type of transport behaviour where Stop acts as a timeline 

pause and Play continues from the position stopped at12
. 

12 This mode corresponds to the "insertion follows playback" option in Pro Tools 

139 



140 

After several days of experimentation and literature review this anomaly was flagged on 

the Apple Developer support forum and received the following response from Apple: 

Subject: Re: my CoreAudio Clock won't stop! 
From: Doug Wyatt <emall@hidden> 
Date: Wed, 17 Jan 2007 12:30 .46 - 0800 
Delive red- to: emai l@lhidden 

Delivered - to: emai l@lhidden 

That's not something that's turned up in our internal tes t code. 

It'd be best to fil e a bug with a reproducible test case. 

Thanks 
Doug 

Fig. C- 2: Response by Doug Wyatt to the CAClock anomaly 

It is interesting to note that Doug Wyatt is the programmer responsible for Opcode's OMS 

and subsequently OS X Core MIDI, as a result of our email exchange a formal developer 

bug report was filed with Apple. A formal response was received from Apple two weeks 

later indicating that the test program behaved as expected by Apple, sending 

CAClockStop does NOT stop the clock (as implied by the function documention), instead 

it initiates a callback to the user's callback function indicating that the clock has stopped 

(although the clock continues to run). 

In practical terms this means the programmer must implement a Carbon callback function 

to respond to changes in the clock state and only update time displays when the clock is 

indicated as running. The reason for this seemingly complex approach became clear when 

the test code was extended to allow external SMPTE or MIDI Clock control. At this point 

the transport play/stop state is under external control rather than UI control, the callback 

mechanism allows an application UI control and external control the same way. 

Clues to the implementation of the callback mechanism can be derived from the 

CAClockAddListener function and the Core MIDI echo.cpp example. 

CAClockAddListener - "adds a callback function to receive notifications of 

changes to the clock's state." 

extern OSStatus CAClockAddListener(CAClockRef inCAClock , 



changes to the clock's state . " 

extern OSStatus CAClockAddListener(CAClockRef inCAClock , 

CAClockListenerProc inListenerProc , void *inUserData); 

Parameters 

inCAClock - The clock object. 

inListenerProc - The callback function. 

inUserData - This value is passed to the callback function, in the userData parameter. 

In use this function could immediately follow the creation of a clock object during 

program initialisation to assign a callback procedure to the new clock. CoreAudioClock.h 

documents inListenerProc as follows: 

A client-supplied function called when the clock's state changes. 

typedef void (*CAClockListenerProc)( 

void *userData, 

CAClockMessage message, 

const void *param); 

Parameters 

userData - The value passed to CAClockAddListener when the callback function was 

installed. 

Message - Signifies the kind of event which occurred. 

Param - This value is specific to the message (currently no messages have values). 

Critical to understanding callback use is the message field indicating what type of event 

has triggered the callback, CAClockMessage is documented as follows: 

kCAClockMessage_StartTimeSet - A new start time was set or received from an external sync 

source. 

kCAClockMessage_Started - The clock's time has started moving. 

141 



kCAClockMessage_Slopped - The clock's time has stopped moving. 

kCAClockMessage_Armed - The client has called CAClockArmO. 

kCAClockMessage_Disarmed - The client has called CAClockDisarmO. 

kCAClockMessage_PropertyChanged - A clock property has been changed. 

kCAClockMessage_WrongSMPTEFormal - The clock is receiving SMPTE (MTC) messages in a 

SMPTE format that does not match the clock's SMPTE format. 

Once the significance of the callback procedure to CoreAudio Clock use was understood 

by the author, a comprehensive version of the test application was written over a one­

month period. The UI (Fig. C- 3) allows the user to specify internal, external SMPTE or 

MIDI clock as the timebase. The CAClockSetProperty function has been used to allow 

the user to set the MIDI source when externally synchronised and the MIDI destination 

for generated timecode. 

Core Au dio Clock 

[Get Start Time) 0 .00 

l Get Curr Time ) 6 .60 

1< 

Sync Source 

lAC Bu s 1 ! : 

Sync Destinat ion 

'lAcPf~- m 

TimebJlc 

~ Interna l 

" MTC 

v M1di Cloc k 

Fig. C- 3: CoreAudio Clock Test App v2 

This successful test application demonstrated that Apple's CoreAudio Clock Carbon 

functions could now be incorporated into the ShapePanner application and that it would 

not be necessary to wait for Apple to publish example code. 

142 



Appendix D PFPan2x4 VST plug-in source code 

11------ --- -- -- - - ------------------ - --- - -- - ----------- ---------------------- -

I I 16/412008 

II Filename 

II Created by 

II Description 

pfpan.h 

Paul Ferguson copyright 2008 All Rights Reserved 

Simple 3D panner plugin (Mono->Mono) 

II using SDK 2.4 code by Steinberg Media Technologies 

11- -- -------- - --- - - --- --- - --- - ------------------------ -------- - - -- - - -- - - --- --

#ifndef __ PFPan __ 

#define __ PFPan __ 

#include <audioeffectx.h> 

#include <math.h> 

#define SEND 0 

#define RECEIVE 1 

#define SPEAKER1 0 

#define SPEAKER2 1 

#define SPEAKER3 2 

#define SPEAKER4 3 

#define SPEAKER9 8 

#define SPEAKER10 9 

#define SPEAKER11 10 

#define SPEAKER12 11 

const int MAX_BUFFSIZ = 4096 ; 

const int MAX_CHANNELS = 16 ; 

const int MAX_INSTANCES = 16 ; 

const int XAXIS_CC 12 ; 

const int YAXIS_CC 13 ; 

143 



const int ZAXIS_CC = 14 ; 

const int VOLUME_CC = 7; 

enum 

{ 

II Global 

kNumPrograms 1 , 

II Parameters Tags 

kMode = 0 , 

kSpeaker, 

kXAxis, 

kYAxis, 

kZAxis, 

kVolume, 

kNumParams 

} ; 

class PFPan; 

11---------- - ----------------------------------------- --------------------

class PFPanProgram 

{ 

friend class PFPan; 

publ ic: 

PFPanProgram 0; 

~PFPanProgram C) {} 

private: 

float fMode; 

float fSpeaker; 

float fXAxis; 

float fYAxis; 

float fZAxis; 

144 



} ; 

fl oat fVo 1 ume; 

char name[24]; 

11---------------------------------------------------- ----------- --- ---- --
class PFPan : public AudioEffectX 

{ 

public: 

PFPan (audioMasterCallback audioMaster); 

~PFPan (); 

II---from AudioEffect----------- -- --- - -- - -- -

virtual void processReplacing ( float** inputs, float** outputs, Vstlnt32 

sampleFrames); 

virtual Vstlnt32 processEvents (VstEvents* events); II handle midi control 

events 

virtual Vstlnt32 PFPan::canDo (char* text); 

virtual Vstlnt32 PFPan::getNumMidilnputChannels (); 

virtual Vstlnt32 PFPan::getNumMidiOutputChannels (); 

virtual void setProgram (Vstlnt32 program); 

virtual void setProgramName ( char* name); 

virtual void getProgramName ( char* name); 

virtua l bool getProgramNamelndexed (Vstlnt32 category, Vstlnt32 index, 

char* text); 

virtual void setParameter (Vstlnt32 index, float value); 

virtual float getParameter (Vstlnt32 index); 

virtual void getParameterLabel (Vstlnt32 index, char* label); 

virtual void getParameterDisplay (Vstlnt32 index, char* text); 

virtual void getParameterName (Vstlnt32 index, char* text); 

virtual void resume (); 

virtual bool getEffectName ( char* name); 

145 



virtual bool getVendorString ( char* text); 

virtual bool getProductString ( char* text); 

virtual VstInt32 getVendorVersion () { return 1000 ; } 

virtual VstPlugCategory getPlugCategory () { return kPlugCategEffect; } 

protected: 

} ; 

PFPanProgram* programs; 

float* buffer; 

float fMode; 

float fSpeaker; 

float fXAxis, fYAxis, fZAxis, fVolume; 

float oldX, oldY, oldZ, oldVolume; 

float mode; 

int sendInstanceNum; II each SEND instance must be set to a unique 1-16 

number by the user 

int receiveSpeakerNum; 11 for RECEIVE instances - speaker number from 1 to 

16 derived from float 0.0 to 1.0 

value supplied by interface 

#endif 

--I 

146 



11---------------------------------------------------------------------------

II 16/4/2008 

II Filename pfpan.cpp 

II Created by Paul Ferguson copyright 2008 All Rights Reserved 

II Description Simple 3D panner plugin (Mono->Mono) 

II using SDK 2.4 code by Steinberg Media Technologies 

11-------------------- ------ ---------------------- ---- --------- -- ------ ------

#include <stdio.h> 

#include <string.h> 

#ifndef __ PFPan __ 

#include "pfpan.h" 

#endif 

11================================================ 

II 

II Create a shared data segment (these variables become global to all 

instances) 

II based on a technique used by Sean Person for Senderella 

II 

11================================================ 

#pragma data_seg("PFSHARED") 

struct BufferRec 

{ 

int mode; 

float audio[MAX_CHANNELS][MAX_BUFFSIZ]; 

} ; 

BufferRec sneakyBuffer[MAX_INSTANCES] {0}; II must initialise it 

otherwise it may go in bss_seg not 

data_seg 

147 



#pragma data_seg() 

II now instruct the linker that this shared section is Read Write Shared 

(RWS) 

#pragma comment(linker, "/sectlon:PFSHARED, RWS") 

11------------------------------ ----------- ----------- -----------------------

AudioEffect* createEffectInstance (audioMasterCallback audioMaster) 

{ 

return new PFPan (audioMaster); 

} 

/1---------------------------------------------------- -----------------------

PFPanProgram::PFPanProgram () 

{ 

} 

/1 default Program Values 

fMode = SEND; // SEND is 0 .0 

fSpeaker = 0 ; 1/ speaker 1 of 16 

fXAxis 0.5 ; // centred 

fYAxis 1.0 ; // front 

fZAxis = 0.0 ; 11 bottom 

fVolume = 1.0 ; // 0 dB 

strcpy (name, "Init" ); 

11---------------------------------------------------------------------------

PFPan: :PFPan (audioMasterCallback audioMaster) 

: AudioEffectX (audioMaster, kNumPrograms, kNumParams) 

148 



{ 

II init 

II first clear the sneaky inter-plugin buffer 

for ( int i = 0 ; i < MAX_CHANNELS; i++) 

{ 

for ( int j = 0; j < MAX_INSTANCES; j++) 

{ 

for ( int k = 0 ; k < MAX_BUFFSIZ; k++) 

{ 

sneakyBuffer[j].audio[i][k] 

} 

} 

} 

programs = new PFPanProgram[numPrograms]; 

fMode = SEND; 

fSpeaker = 0 ; 

fXAxis 0 .5; 

fXAxis 1.0 ; 

fZAxis = 0.0 ; 

fVolume = 1.0 ; II 0 dB 

sendInstanceNum receiveSpeakerNum 0; 

if (programs) 

setProgram (0); 

setNumInputs ( 1); II mono input 

setNumOutputs (1); II mono output 

= 0 ; 

setUniqueID ( 'PF01' ); II this should be unique, use the Steinberg web page 

for plugin Id registration 

149 



/ /suspend 0; 

resume (); / / fl ush buffe r 

} 

//------ ------ -- - - -------- -- -------- --- --------- -- --------- - - -- -- - --- - ----

PFPan: : ~PFPan () 

{ 

} 

if (buffer) 

delete [] buffer; 

if (programs) 

delete [] programs; 

//------ - ------ -- ------------ - -------- ------------- -- --------- -- ---- --- - - -

void PFPan::setProgram (Vstlnt32 program) 

{ 

PFPanProgram* ap &programs[program]; 

curProgram = program; 

setParameter (kMode, ap->fMode); 

setParameter (kSpeaker, ap->fSpeaker); 

setParameter (kXAxis, ap->fXAxis); 

setParameter (kYAxis, ap->fYAxis); 

setParameter (kZAxis, ap->fZAxis); 

setParameter (kVolume, ap->fVolume) ; 

} 

//---- ------ ------------ --------- ----- -- ----- ------ ---- ------------- --- -- -
void PFPan::setProgramName ( char *name) 

{ 

strcpy (programs[curProgram].name, name) ; 

} 

150 



11---- - - ---------- --------------------- - - -- ----------- - -- - - - -- - --- ---- - ---

void PFPan: :getProgramName ( char *name) 

{ 

} 

if (!strcmp (programs[curProgram].name, "Init")) 

sprintf (name, "%s %d" , programs[curProgram].name, curProgram + 1); 

else 

strcpy (name, programs[curProgram].name); 

11- - - -- ------- - - - -- - -- -- --------------- -- -- -- - ----- --- -----------------------

bool PFPan: :getProgramNamelndexed (Vstlnt32 category, Vstlnt32 index, char* 

text) 

{ 

} 

if (index < kNumPrograms) 

{ 

} 

strcpy (text, programs[index].name); 

return true; 

return false; 

11--- - - -- -- - ------------ ----- - -- - - - ---- ----------- --- -------------- - ------

void PFPan::resume () 

{ 

} 

II (buffer, 0, size * slzeof (float)); 

AudioEffectX::resume (); 

11--- -- - - ----------- -- -- -- - -- - ---------- ---- ----- - - --- ------------------- -

void PFPan::setParameter (Vstlnt32 index, float value) 

{ 

PFPanProgram* ap &programs[curProgram]; 

switch (index) 

151 



{ 

case kMode 

case kSpeaker 

fMode = ap->fMode value; 

break ; 

fSpeaker = ap->fSpeaker = value; 

sendInstanceNum = receiveSpeakerNum = ( int ) 

ceilf(fSpeaker*15); II the range is 

o to 15 to match sneakyBuffer - NOT 

1 to 16 

II clear all the buffers to prevent stale samples being added into the busses 

for ( int i = 0; i < MAX_CHANNELS; i++) 

case kXAxis 

case kYAxis 

case kZAxis 

case kVolume 

} 

} 

{ 

for ( int j = 0 ; j < MAX_INSTANCES; j++) 

{ 

for ( int k = 0; k < MAX_BUFFSIZ; k++) 

{ 

} 

} 

break ; 

sneakyBuffer[jJ.audio[iJ[kJ = 0; 

} 

oldX fXAxis; II old x,y,z hold the previous 

value to be used for de-zippering 

fXAxis ap->fXAxis = value; 

break ; 

oldY = fYAxis; 

fYAxis = ap->fYAxis value; 

break ; 

oldZ = fZAxis; 

fZAxis = ap->fZAxis value; 

break ; 

oldVolume = fVolume; 

fVolume = ap->fVolume value; 

break ; 

152 



153 

//---- ------- -- ---- -- -------------------------------- -- -------------------
float PFPan: :getParameter (Vstlnt3Z index) 

{ 

float v 0 · , 

swi tch (index) 

{ 

case kMode : v fMode; break ; 

case kSpeaker v fSpeaker; break ; 

case kXAxis v fXAxis; break ; 

case kYAxis v fYAxis; break ; 

case kZAxis v fZAxis; break ; 

case kVolume : v = fVolume; break ; 

} 

return v; 

} 

//------------------- -- ------------------------------------------------- --
void PFPan: :getParameterName (Vstlnt3Z index, char *label) 

{ 

swi. tch (index) 

{ 

case kMode : strcpy (label, "Mode" ); break ; 

case kSpeaker strcpy (label, "Send/Speaker"); break ; 

case kXAxi.s strcpy (label, "X axi.s" ); break ; 

case kYAxis strcpy (label, "Yaxi.s" ); break ; 

case kZAxis strcpy (label, "Z axi.s" ); break ; 

case kVolume : strcpy (label, "Volume"); break ; 

} 

} 

//--------------- - ----------------------------------------------- -- -------

voi.d PFPan::getParameterDisplay (Vstlnt3Z i.ndex, char *text) 

{ 

swi.tch (index) 



{ 

} 

} 

case kMode //int2string ((int)fMode, text, kVstMaxParamStrLen); 

break ; 

case kSpeaker : int2string (( int)(ceilf(fSpeaker*15) +1), text, 

kVstMaxParamStrLen); break ; 

case kXAxis float2string (fXAxis, text, kVstMaxParamStrLen); 

case kYAxis float2string (fYAxis, text, kVstMaxParamStrLen); 

case kZAxis float2string (fZAxis, text, kVstMaxParamStrLen); 

case kVolume : dB2string (fVolume, text, kVstMaxParamStrLen); 

break ; 

//------ -- ----- -- -- - -- -- -- ---------- -- - --- --------- --- - ------- - -- - ------ - -

void PFPan: :getParameterLabel (Vstlnt32 index, char *label) 

{ 

swi tch (index) 

{ 

case kMode 

case kSpeaker 

case kXAxis 

case kYAxis 

case kZAxis 

case kVolume 

} 

} 

if (fMode <0 .5) strcpy (label, "Send"); 

else strcpy (label, "Receive"); break ; 

break ; 

strcpy (label, '"' ); 

strcpy (label, "" ); 

strcpy (label, "" ); 

strcpy (label, "dB"); 

break ; 

break ; 

break ; 

break ; 

//--------------------- ------ ----- --------------------- -------------------
bool PFPan::getEffectName (char* name) 

{ 

} 

strcpy (name, "PFPan"); 

return true; 

//-------------- - -- - --------------- --- ------------------------------------

154 

break ; 

break ; 

break ; 



bool PFPan::getProductString ( char* text) 

{ 

} 

strcpy (text, "PFPan"); 

return true; 

11---------------------------------------------------- --------------------

bool PFPan::getVendorString (char* text) 

{ 

} 

strcpy (text, "PFergy" ); 

return true; 

II-----------MIDI stuff starts here - PF 

Vstlnt32 PFPan::canDo ( char* text) 

{ 

} 

if (!strcmp (text, "receiveVstEvents")) 

return 1; 

if (!strcmp (text, "receiveVstMidiEvent")) 

return 1; 

return -1 ; II explicitly can't do; 0 => don't know 

11---------------------------------------------------- -----------------------

Vstlnt32 PFPan::getNumMidilnputChannels () 

{ 

return 1 ; II we are monophonic 

} 

11---------------------------------------------------- -----------------------

Vstlnt32 PFPan::getNumMidiOutputChannels () 

155 



{ 

return 0 ; II no MIDI output back to Host app 

} 

11-------- - ----- - --- ------------ - -- -- - -------- - --- - - - - - --- - -- --------- - ---- --

VstInt32 PFPan: :processEvents (VstEvents* ev) 

{ 

float x; 

for (VstInt32 i 0 ; i < ev->numEvents; i++) 

{ 

if ((ev->events[i])->type != kVstMidiType) 

continue; 

VstMidiEvent* event = (VstMidiEvent*)ev->events[i]; 

char* midiData = event->midiData; 

VstInt32 status = midiData[0] & 0xf0 ; II ignore the channel nibble 

if (status 

{ 

0xb0) II must be a CC message 

x = ( float ) (midiData[2] & 0x7f); 

if (midiData[l ] == XAXIS_CC) II Kaoss pad x-axis 

setParameter (kXAxis, x/127); 

else if (midiData[ l ] == YAXIS_CC) II Kaoss pad y-axis 

setParameter (kYAxis, x/127); 

else if (midiData[ l ] == ZAXIS_CC) II Z-axis 

setParameter (kZAxis, x/127); 

else if (midiData[ l ] VOLUME_CO I I volume 

156 



setParameter (kVolume, x/127); 

} 

event++; 

} 

return 1 ; 

} 

11------- - ---- - ----- - - - ---------- -- --- - - -- - -- -- --- - --- --------- ------ ------- -

void PFPan: :processReplacing ( float** inputs, float** outputs, Vstlnt32 

sampleFrames) 

{ 

float* in inputs[0] ; 

float* out1 = outputs[0]; 

float sampleValue; 

II de-zipper any change in X, Y or Z value by gradually adding in this 

delta value 

float deltaX (fXAxis - oldX)/(sampleFrames); 

fl oat de 1 taY (fYAxis - oldY)/(sampleFrames); 

fl oat del taZ (fZAxis - oldZ)/(sampleFrames); 

float deltaVolume (fVolume - oldVolume)/(sampleFrames); 

for ( int i 

{ 

0; i<sampleFrames; i++) 

sampleValue *in++;11 read the input buffer, we'll only use this value 

if the plug-in is in SEND mode 

if (fMode < 0.5) II SEND mode so write to shared buffer 

{ 

oldX+=deltaX;11 each iteration round the loop will increment the old 

X,Y,Z and volume values until they 

reach the current values 

oldY +=de ltaY ; 

oldZ+=deltaZ; 

oldVolume +=deltaVolume; 

157 



sneakyBuffer[sendlnstanceNum].audio[SPEAKER1][i] = sampleValue * ( l -oldX) * 
oldY * ( l -oldZ) * oldVolume; II 

lower left front 

sneakyBuffer[sendlnstanceNum].audio[SPEAKER2][i] = sampleValue * oldX * oldY 

* ( l -oldZ) * oldVolume; II lower 

right front 

sneakyBuffer[sendlnstanceNum].audio[SPEAKER3][i] = sampleValue * ( l -oldX) * 
( i -oldY) * ( l -oldZ) * oldVolume; II 

lower left rear 

sneakyBuffer[sendlnstanceNum].audio[SPEAKER4][i] = sampleValue * oldX * ( 1-

oldY) * ( l -oldZ) * oldVolume; II 

lower right rear 

II sneakyBuffer[sendlnstanceNum].audio[SPEAKER5][i] = sampleValue * II 

speaker not in use 

II sneakyBuffer[sendlnstanceNum].audio[SPEAKER6][i] = sampleValue * II 

speaker not in use 

II sneakyBuffer[sendlnstanceNum].audio[SPEAKER7][i] = sampleValue * II 

speaker not in use 

II sneakyBuffer[sendlnstanceNum].audio[SPEAKER8][i] = sampleValue * II 

speaker not in use 

sneakyBuffer[sendlnstanceNum].audio[SPEAKER9][i] = sampleValue * ( l -oldX) * 
oldY * oldZ * oldVolume; II upper 

left front 

sneakyBuffer[sendlnstanceNum].audio[SPEAKER10][i] = sampleValue * oldX * oldY 

* oldZ * oldVolume; II upper right 

front 

sneakyBuffer[sendlnstanceNum].audio[SPEAKERll][i] = sampleValue * ( l -oldX) * 
( i -oldY) * oldZ * oldVolume; II 

upper left rear 

sneakyBuffer[sendlnstanceNum].audio[SPEAKER12][i] = sampleValue * oldX * (1-

oldY) * oldZ * oldVolume; II upper 

right rear 

II sneakyBuffer[sendlnstanceNum].audio[SPEAKER13][i] sampleValue * II 

speaker not in use 

158 



} 

} 

} 

II sneakyBuffer[sendInstanceNum].audio[SPEAKER14][i] = sampleValue * II 

speaker not in use 

II sneakyBuffer[sendInstanceNum].audio[SPEAKER15][i] = sampleValue * II 

speaker not in use 

II sneakyBuffer[sendInstanceNum].audio[SPEAKER16][i] = sampleValue * II 

speaker not in use 

*out1++ sampleValue;11 pass it to this plug-in's output 

else II RECEIVE mode so read from shared buffer (ignore panner axes) 

{ 

II read all the 16 possible SEND instance buffers and add them together 

sampleValue = 0; II clear the sample value, 

} 

for ( int j = 0 ; j<MAX_INSTANCES; j++) 

{ 

sampleValue += sneakyBuffer[j].audio[receiveSpeakerNum][i]; 

} 

*out1++ sampleValue * oldVolume; II scale it then send it to the 

plug-in output 

159 


	517808__0001
	517808__0002
	517808__0003
	517808__0004
	517808__0005
	517808__0006
	517808__0007
	517808__0008
	517808__0009
	517808__0010
	517808__0011
	517808__0012
	517808__0013
	517808__0014
	517808__0015
	517808__0016
	517808__0017
	517808__0018
	517808__0019
	517808__0020
	517808__0021
	517808__0022
	517808__0023
	517808__0024
	517808__0025
	517808__0026
	517808__0027
	517808__0028
	517808__0029
	517808__0030
	517808__0031
	517808__0032
	517808__0033
	517808__0034
	517808__0035
	517808__0036
	517808__0037
	517808__0038
	517808__0039
	517808__0040
	517808__0041
	517808__0042
	517808__0043
	517808__0044
	517808__0045
	517808__0046
	517808__0047
	517808__0048
	517808__0049
	517808__0050
	517808__0051
	517808__0052
	517808__0053
	517808__0054
	517808__0055
	517808__0056
	517808__0057
	517808__0058
	517808__0059
	517808__0060
	517808__0061
	517808__0062
	517808__0063
	517808__0064
	517808__0065
	517808__0066
	517808__0067
	517808__0068
	517808__0069
	517808__0070
	517808__0071
	517808__0072
	517808__0073
	517808__0074
	517808__0075
	517808__0076
	517808__0077
	517808__0078
	517808__0079
	517808__0080
	517808__0081
	517808__0082
	517808__0083
	517808__0084
	517808__0085
	517808__0086
	517808__0087
	517808__0088
	517808__0089
	517808__0090
	517808__0091
	517808__0092
	517808__0093
	517808__0094
	517808__0095
	517808__0096
	517808__0097
	517808__0098
	517808__0099
	517808__0100
	517808__0101
	517808__0102
	517808__0103
	517808__0104
	517808__0105
	517808__0106
	517808__0107
	517808__0108
	517808__0109
	517808__0110
	517808__0111
	517808__0112
	517808__0113
	517808__0114
	517808__0115
	517808__0116
	517808__0117
	517808__0118
	517808__0119
	517808__0120
	517808__0121
	517808__0122
	517808__0123
	517808__0124
	517808__0125
	517808__0126
	517808__0127
	517808__0128
	517808__0129
	517808__0130
	517808__0131
	517808__0132
	517808__0133
	517808__0134
	517808__0135
	517808__0136
	517808__0137
	517808__0138
	517808__0139
	517808__0140
	517808__0141
	517808__0142
	517808__0143
	517808__0144
	517808__0145
	517808__0146
	517808__0147
	517808__0148
	517808__0149
	517808__0150
	517808__0151
	517808__0152
	517808__0153
	517808__0154
	517808__0155
	517808__0156
	517808__0157
	517808__0158
	517808__0159

