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Abstract  5 

Introduction 6 
Transportation is one of the main determinants of atmospheric pollutant emissions in urban 7 
areas. This externality has direct environmental, economic and public health consequences. 8 
This paper aims at investigating the space-time patterns of traffic air pollution in Balneário 9 
Camboriú (Brazil) over projected temporal scenarios and at estimating the damage costs of 10 
traffic air pollution to support transport policy-making.  11 
Methods 12 
To estimate the emission rates of pollutants, emission factors and traffic data were jointly used, 13 
whereas the pollutant concentrations were estimated using the Gaussian plume dispersion 14 
model. To identify the affected areas as well as possible spatial heterogeneity patterns of air 15 
pollution within clustered areas, an exploratory spatial analysis was also conducted. To assess 16 
the economic impact of air pollution, damage costs were calculated for various pollutants. 17 
Results 18 
The modeling results show that oxides of nitrogen (NO2) and oxides of sulphur (SO2) pollutants 19 
exceed the limits of air quality legislation, especially at a distance up to 10 meters from the 20 
roads, while 60% and 71% of the intersections are found to yield pollutant concentrations above 21 
the thresholds, primarily during peak hours. The analysis also confirmed that homogeneous 22 
traffic zones with similar emission rates are spatially clustered exhibiting positive 23 
autocorrelation patterns.  The results of the economic appraisal showed that the estimated costs 24 
of traffic-related emissions were $0.89, $1.38 and $1.43 million/year, respectively, for the 25 
current, short-term and long-term scenarios.  26 
Conclusions 27 
This study serves as the first comprehensive analysis of traffic air pollution for the specific 28 
study region, providing implications and modeling tools that can be leveraged in public policies 29 
focusing on the elimination of the transportation-generated health burden.  The developed 30 
analysis framework can also serve as a supporting tool for Public Agencies focusing on the 31 
high-level evaluation of traffic-related air pollution using limited and aggregate spatial and 32 
traffic data. 33 
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1 Introduction 39 
Road transport and surface traffic constitute one of the major sources of environmental 40 

pollution in urban areas (Anastasopoulos et al., 2017; WHO, 2018; Shekarrizfard et al., 2018; 41 
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Bigazzi and Rouleau, 2017). In Brazilian cities, the appraisal of air pollution levels has been 42 
little explored by health Agencies and Public Authorities, sometimes not receiving due 43 
importance. Among other social impacts, contaminants from the vehicular emissions can be 44 
quite burdensome for public health and local economies (Luo et al., 2018; Dey et al., 2018, 45 
Hyland and Donnelly, 2015). 46 

Since the enactment of the Resolution of the Brazilian National Environment Council 47 
(CONAMA) 018/1986, the Program for the Control of Air Pollution by Motor Vehicles 48 
(PROCONVE) was established, with the objective of reducing the emission levels of pollutants 49 
by motor vehicles, especially in urban centers, among other provisions (Brazil, 1986). 50 
According to Andrade et al. (2017) Proconve was established in stages, as a program aiming to 51 
reduce traffic pollutants through increasingly restrictive standards. The emission limits for 52 
automotive vehicles were set with respect to the Otto cycle and diesel.  53 

In 1989, the National Air Quality Control Program (PRONAR) was established by 54 
resolution 05/1989 (Brazil, 1989), which sets the national limits of emissions by source 55 
typology and priority pollutants. This resolution is complemented by Resolution 491/2018, by 56 
which air quality standards and classes have been determined (Brazil, 2018). This legal 57 
framework has set specific upper concentrations of pollutants, which, if exceeded, can affect 58 
the health, safety, and well-being of the population, as well as cause damage to the flora and 59 
fauna, materials and the environment, in general. The reference contaminants mentioned in the 60 
regulations are CO, SO2, NO2, ozone, fume, and lead (Pb). 61 

Most of the studies available in the literature consider the municipal fleet as the main 62 
source of traffic–related pollutant emissions (MMA, 2011, 2013; CETESB, 2015). Although 63 
this consideration can provide a reasonable approximation of the municipal, state or national 64 
emissions, such an approach does not allow the identification of the emissions’ distributional 65 
characteristics within the urban network. In addition, this approach does not account for actual 66 
traffic flows at a given moment. On the contrary, instantaneous forecasting models allow 67 
emissions to be resolved spatially, and, therefore have the potential to provide more accurate 68 
predictions of air pollution. In this context, over the last decades, there is a growing need to 69 
estimate and apply disaggregate models of air pollution using detailed measurements of vehicle 70 
volumes (Boulter et al., 2007). 71 

In general, many developing countries, such as Brazil, have low quality and quantity of 72 
data available for both air quality and traffic monitoring. Traffic monitoring systems, which 73 
allow the development and maintenance of databases with counts of urban traffic flows, are 74 
available in a limited extent, and primarily, in large metropolitan areas (Pacheco et al., 2017).  75 
However, more accurate databases can support more complex analyses, such as mathematical 76 
modeling of air pollution; the latter can result in significant cost reduction, especially when 77 
compared to air quality monitoring (Lacava, 2003). In addition, mathematical modeling 78 
approaches may enable simulation of different scenarios under various conditions, estimation 79 
of concentrations in areas where monitoring is unfeasible, simulation of emergency actions, 80 
predictions of possible effects on natural and built environment, urban planning analyses as 81 
well as the development and evaluation of strategies for controlling air pollution (Derisio, 82 
1992). 83 

In this context, this study seeks to investigate the environmental and economic impacts 84 
of traffic air pollution in Balneário Camboriú, Brazil over projected scenarios as well as the 85 
possible damage costs arising from the traffic-related air pollution. The main contribution of 86 
the study is to understand the environmental and socioeconomic impacts of air pollution 87 
generated by urban vehicular traffic, considering a low-cost data acquisition to subsidize 88 
strategies for the improvement of urban air quality. 89 
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 To identify and appraise the geographic distribution of these impacts, maps of air 90 

pollution dispersion were developed, and a spatial analysis was conducted. Due to variations in 91 
the socio-demographic, traffic and built environment characteristics across the areas of the 92 
studied metropolitan area, the possible influence of spatial heterogeneity has been accounted 93 
for in the employed methodological framework.  94 

The work was conceived in four distinct, yet interrelated stages (Figure 1): the first stage 95 
aims at estimating emission rates of pollutants in the municipalities using emission factors of 96 
pollutants and traffic flow data. The second stage refers to the estimation of the concentrations 97 
of these pollutants, which was performed by means of mathematical simulation using the 98 
Gaussian plume dispersion model. To investigate whether the actual concentrations match or 99 
exceed the legislation thresholds, the calculated concentrations are spatialized through thematic 100 
maps made using a Geographic Information System (GIS). The third stage constitutes a policy 101 
support appraisal, which is based on the identification of spatial dependence patterns of air 102 
pollution across the various homogeneous traffic zones of the studied metropolitan area. To that 103 
end, an exploratory spatial data analysis (ESDA) is conducted, with its findings assisting in 104 
shaping appropriate environmental countermeasures and harm-reduction policies. In the last 105 
stage, the financial cost of transport-related air pollution is estimated and evaluated using a 106 
wide variety of international case studies on damage costs, which allowed the calculation of the 107 
cost by each specific pollutant. 108 
 109 

 110 
Figure 1. Four steps of the research carried out 111 

2 Background literature review 112 

2.1 Pollution forecasting emission models using traffic data 113 
Air pollution dispersion modeling has been widely employed by practitioners and 114 

researchers, due to its capability to simulate concentrations of pollutants for different scenarios 115 
using traffic data, land use, and road system features as basic input. The merits of such a 116 
modeling approach are particularly evident when monitoring data of air quality are hardly 117 
available (Berkowicz et al., 2006).  An alternate approach to estimating emissions from mobile 118 
sources is by correlating the traffic parameters referring to specific traffic situations – which 119 
are already known to the model user – and then, developing models based on emission factors. 120 

Emission factors represent emitted quantities of specific pollutants per vehicle. These 121 
factors, as previously determined by specialized agencies, are generally expressed in mass 122 
emitted by distance traveled from the pollutant (g /km/vehicle) (USEPA, 1995).  These factors 123 
are typically weighted considering road links and traffic conditions such as volume, traffic 124 
speed, and vehicle typology. According to Pan et al. (2016), the emission rate of a road link can 125 
be calculated as: 126 

𝐸𝐸𝑖𝑖 = 𝑅𝑅𝑖𝑖 ∑ 𝐹𝐹𝑗𝑗𝑄𝑄𝑗𝑗𝑖𝑖𝑛𝑛
𝑗𝑗=1              (1) 127 
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where Ei is the emission rate of road link i (g/h), Fj is the emission factor of vehicle type j 128 
(g/km), calculated on the basis of the link-based average traffic speed, n represents the total 129 
number of vehicle types, 𝑄𝑄𝑗𝑗𝑖𝑖  denotes the volume of vehicles per type j in road link i (veh/h) and 130 
Ri represents the length of the road link i (km). 131 

Since 1972, USEPA (1995) has published a Compilation of Air Pollutant Emission 132 
Factors.  The latter includes emissions factors and process information for more than 200 air 133 
pollution source categories. It should be noted that emission factors and emission inventories 134 
have long been fundamental tools for air quality management. In Brazil, the Environmental 135 
Authority developed a methodology based on emission factors, the application of which can 136 
shed more light on the relationships between traffic emissions and the resulting environmental 137 
concentrations.  Upon their spatial calibration, such relationships can assist in the establishment 138 
of policies and actions that enable air quality standards to be respected (MMA, 2011). 139 

Typically, manuals relate emission factors to different types of vehicles with substantial 140 
differences; for example, heavy vehicles have significant differences with passenger vehicles 141 
in terms of pollutant emissions (Jain et al., 2016; Bukowiecki et al. 2010). Furthermore, these 142 
factors are highly associated with specific traffic conditions. For application purposes, the 143 
model user typically defines a variable referring to the type of traffic situation to which an 144 
emission factor is applicable (i.g. free-flow, stop-and-go), instead of defining a specific speed 145 
variation (INFRAS, 2004).   146 

Air pollution models constitute important tools for air quality management systems and 147 
can be employed by environmental authorities to support the development of effective 148 
strategies to reduce harmful atmospheric issues (USEPA, 2009). Paoli (2006) affirms that their 149 
use is more practical, reduces costs, and allows the simulation of scenarios as well as the 150 
determination of appropriate actions for tackling the patterns of air pollution in the short- and 151 
long-term future. 152 

The study of Costabile and Allegrini (2008) has shown that the real-time integration of 153 
modeling results with actual measurements can act as a validation source and further enhance 154 
the real-time assessment of traffic-related air pollution. This makes the use of emission factors 155 
very appealing, regardless of their limitations (USEPA, 1995). However, there may remain gaps 156 
in the understanding of the relationship between road traffic and emission of pollutants (cause 157 
and effect mechanisms), especially in cases where traffic conditions may vary from location to 158 
location (Boulter et al., 2007). These gaps may arise from location-specific variations in terms 159 
of built-environment characteristics or land use, resulting, thus, in additional uncertainties with 160 
respect to the air pollution prediction.  161 

 Another group of studiesprovides emission factors using real conditions such as tunnel 162 
experiments (Martins et al., 2006; Sánchez-Ccoyllo, 2009; Pérez-Martínez et al., 2014; Alves 163 
et al., 2015). Smit et al. (2009) pointed out, the majority of air pollution models use emission 164 
factors that have been developed from vehicle emission tests in laboratories; the latter typically 165 
reflect controlled conditions of the vehicle use. It should be acknowledged that such a controlled 166 
environment may introduce considerable uncertainties in traffic emission models leading 167 
potentially to inaccurate predictions (e.g., underestimates of traffic emissions). 168 

2.2 Damage cost of emissions 169 
The damage caused by air pollution can be economically quantified by firstly assessing 170 

the environmental and public health impacts. Damage costs methods are used to estimate 171 
control and risk costs required to reduce emissions, either by preventing or mitigating them 172 
(VTPI, 2018).  Such methods can also facilitate environmental decision making and support the 173 
identification of the most effective public policies (Shindell, 2015). Note that the use of damage 174 
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cost methods serves as an alternative to the limited availability of primary monitoring data. 175 
Damage costs are expressed in monetary values per ton of pollutant, with their calculation being 176 
based on the emission reduction or increase and the associated values of benefit or harm, 177 
respectively (DEFRA, 2011). 178 

Damage costs approximate the marginal costs caused by the additional emission (or 179 
reduction) of some mass of pollutants. The main goal of this approach is to support the 180 
assessment of environmental impacts and the choice of harm reduction alternatives and policies 181 
(DEFRA, 2011). In the UK, for example, these costs are used to evaluate national policies, 182 
programs, and projects, simplify appraisals on changes in pollutant emissions, and infer the 183 
non-internalized costs of pollution to society (UK-Government, 2015). 184 

According to the New Zeeland’s guidelines, the damage cost approach is more 185 
straightforward compared to the exposure modeling (NZTA, 2013). Specifically, for the latter, 186 
a thorough understanding of the influential factors (such as sources, terrain, meteorology, and 187 
others) is essential to reach a reliable prediction of pollutant concentrations (NZTA, 2013). In 188 
the context of the program “Clean Air for Europe”, monetized damage costs per ton of pollutant 189 
(PM2.5, SO2, NO2, NH3, and VOC) have been estimated for each European Union country taking 190 
care, at the same time, for possible variations across the sites of emission.  For example, for 191 
NO2, an average damage cost of € 4,107 was calculated, with values ranging from € 530-9,600, 192 
whereas for SO2, an average damage cost of € 5,368 was identified, with values ranging from € 193 
1,400-13,000 (AEA-TE, 2015). It is worth mentioning that specific aspects of the air pollution’s 194 
effect, such as impacts on ecosystems and cultural heritage, were not included in this calculation 195 
of the damage cost.  196 

Table 1 provides examples of damage costs that were used to value environmental 197 
externalities and assess national policies, programs, and projects of different countries. The 198 
values provided are presented in the country’s currency as well as in equivalent US dollar ($) 199 
amounts per ton of emission change. 200 
Table 1. Average damages per ton of emission. Source: UK-DEFRA, 2015, NZTA (2013), 201 
Austroads, 2012, AEA-TE (2005). 202 

 203 
Location Pollutant Central value Central sensitivities 

Low High 

United 
Kingdom  

NO2 (Transport average) £21,044 ($27,329.9) £8,417 £33,670 
PM (Transport urban medium) £66,264 ($86,057.1) £51,881 £75,300 
SO2 £1,956 ($2,540.3) £1,581 £2,224 
NH3 £2,363 ($3,068.8) £1,843 £2,685 

Location Pollutant Costs in NZD/ton Costs in US$/ton 

New 
Zealand 

PM10 460,012.00 308,208.0 
NO2 16,347.00 10,952.5 
CO 4.13 2.78 
HC 1,310.00 877.7 

Location Pollutant Costs in AU$/ton Costs in US$ /ton 

Australia 
CO 3.3 2.38 
NO2 2,089.2 1,504.2 
PM10 332,505.9 239,418.6 

Location Pollutant Costs in €/ton Costs in U$S/ton 

Europe 
NO2 4,400 5,016.0 
PM2.5 26,000 29,600 
SO2 5,600 6,384.0 
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3 Data collection and preliminary analysis 204 

The available data that were used in this study refer to samples of traffic volumes 205 
collected at road intersections in the city of Balneário Camboriú, which is located in the State 206 
of Santa Catarina in southern Brazil. The population of the city is about 150,000, with the vast 207 
majority of inhabitants being located in highly urbanized areas. The city constitutes a regional 208 
economic hub as well as an important relevant tourist destination of the country (IBGE, 2016), 209 
mainly due to its extensive coastline. The city currently faces severe issues related to urban 210 
mobility, such as traffic congestion, transit inefficiencies, air and noise pollution, being, thus, 211 
one of the most significant urban mobility challenges in the State.  212 

Although Balneário Camboriú is a medium-size city, its urban mobility problems are 213 
similar to those encountered by large metropolitan areas of the country. According to 2010 214 
census (IBGE, 2010), there are 151 municipalities with a population between 100-200k 215 
inhabitants, and 95 municipalities with a population between 200-500k inhabitants, 216 
representing – in total – a population of more than 64 million people (33.7% of the country’s 217 
population). In this context, the medium-sized cities may constitute a significant generator of 218 
traffic-related emissions; hence, the reduction of socio-economic and environmental 219 
externalities arising from urban mobility patterns in such settings is of strategic importance, 220 
region-wise and country-wise. 221 

Figure 2 shows the location of the 50 intersections that were included in our analysis.  222 
The data collection was conducted only on weekdays (Monday to Thursday) between March 223 
2017 and November 2017. The specific period was selected to avoid bias possibly stemming 224 
from seasonal effects and summer tourism. Traffic counts were conducted at intersections 225 
through an iterative process1.  Since the City Council has not employed any traffic monitoring 226 
system, the collection of citywide traffic data was a challenging task. Interestingly, we 227 
combined traffic data available from studies and reports of the City Council (Studies of Impacts 228 
on Neighborhood - Estudos de Impacto de Vizinhança) and on-site counts using video 229 
recordings from traffic cameras positioned at intersections. It should be noted that our sample 230 
primarily consists of on-site traffic counts.  On a daily basis, the volumes were measured from 231 
7.00 through 9.00 in the morning slot, and from 17.00 through 19.00 in the evening slot. These 232 
time slots were strategically selected to capture the prevailing traffic patterns during peak hours. 233 

                                                 
1 At least three traffic counts were conducted at the same intersection. 
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 234 
Figure 2. Location of traffic samples intersections. 235 

To verify daily and seasonal changes in traffic flow, radar traffic data were drawn from 236 
six monitoring points. The radar data were made available by the Balneário Camboriú City 237 
Council (PMBC, 2017).  Note that detailed time series of historical traffic data were not 238 
available by the local reporting system.  In line with previous studies (Capraz et al., 2016; Fang 239 
et al., 2017), to identify statistical variations of traffic flow patterns over time, multiple F-tests 240 
were conducted. According to the formulation of the specific statistical test, the test statistic is 241 
assumed to follow the F-distribution; for further details on the statistical assumptions 242 
underpinning the F-test, see also Washington et al. (2011). The statistical analysis of the radar 243 
data showed that, although there is a significant variation of traffic volumes between season 244 
and off-season months – possibly due to higher tourist flows – the traffic volumes exhibit 245 
overall consistent patterns. Specifically, statistically significant differences (with greater than 246 
99% level of confidence, since the average p-value was equal to 0.009) were identified between 247 
the summer season months (January-March) and the off-season months (August-November). 248 
On a weekly basis, Fridays are found to be associated with statistically different traffic patterns 249 
relative to the other weekdays (with greater than 95% level of confidence since the average p-250 
value was equal to 0.004). Taking into account the aforementioned findings, the traffic 251 
characteristics of weekdays during off-season months are considered as a baseline for the 252 
interpretation of the outcomes of this study.   253 
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In order to estimate the effects of air pollution throughout the city, it was necessary to 254 

extrapolate the traffic flows to the entire urban network. For the extrapolation, two fundamental 255 
criteria were used: (i) road hierarchy; and (ii) homogeneous traffic zones (HTZ), as conceived 256 
by Tischer (2017).  Homogeneous Traffic Zones are defined using socioeconomic criteria and 257 
represent locations classified with respect to their potential in generating and attracting trips. 258 
Following an ordinal scale, High-level zones (e.g., Z5) are overall associated with high 259 
demographic density, income level, and economic potential. On the contrary, low-level zones 260 
(Z1) are associated with low demographic density, income level, and economic potential.  261 

The hourly vehicle flow was separated in peak hour and average daytime hour, 262 
composing, thus, two matrices. Table 3 provides the split of peak hour traffic and average 263 
daytime hour traffic per traffic zone and road hierarchy type.  Note that the values arranged in 264 
the matrix were obtained by the average of the hourly vehicle flow, which was available from 265 
the traffic count samples. Table 3 shows that the higher the traffic zone rank (traffic zones range 266 
from Z1 to Z5) and the road hierarchy (ranging from Local roads to Arterial roads – see also 267 
the “Material and Methods” section for further information), the higher is the traffic generated 268 
by that zone. 269 
Table 2. Estimated vehicle flows per lane for peak and average daytime hours in the city of 270 
Balneário Camboriú, Brazil. 271 

 272 

 
Vehicle per hour per lane per road hierarchy and HTZ 

Peak time Average daytime hour  
Hierarchy 

Traffic Zone 
Arterial 

1 
Arterial 

2 
Collector 

1 
Collector 

2 Local Arterial 
1 

Arterial 
2 

Collector 
1 

Collector 
2 Local 

Z1 710 733 575 297 18 547 375 462 180 10 
Z2 837 773 611 463 144 621 429 458 343 95 
Z3 931 791 704 438 100 586 477 520 275 82 
Z4 795 756 486 444 165 644 550 450 334 135 
Z5 1,042 799 775 446 146 734 585 514 341 98 

Regarding the composition of the observed traffic, Table 4 shows that there is a 273 
predominance of passenger cars representing more than 68% of the traffic flow.  Motorcycles 274 
represent about 19% of the traffic flow, whereas heavy vehicles (trucks and buses) represent 275 
approximately 2.9 and 3.5% of the flow (corresponding to daytime average and peak hour, 276 
respectively). 277 
Table 3. Average composition of the traffic in the Balneário Camboriú, Brazil. 278 

 279 
 Reference Hour Cars Motorcycles Buses Trucks Bicycles 
Peak  69.2% 19.3% 1.5% 1.4% 8.6% 
Daytime Average  68.0% 19.0% 1.7% 1.8% 9.4% 

To compare future trends based on the demographic dynamics of the municipality, the 280 
emissions of pollutants were also considered over a 20-year and a 40-year time horizon. For the 281 
investigation of such future trends, we did not consider the implementation of measures that 282 
could change abruptly the operating conditions of the transportation network. To enable a 283 
projection over time, an exponential trend equation of growth rates relating to the vehicle fleet 284 
was established, using data from 2002 through 2018 (Detran/SC, 2018). The exponential 285 
equation (trend line) allowed the projection of the growth rate for the requested time horizons, 286 
as shown in Figure 3, the exponential form provided the best adjusted values against other curve 287 
forms (linear, logarithm, power), which were also investigated and found to project the rates at 288 
very high levels.  For further details on statistical inference using fitted trend lines, see also 289 
Washington et al. (2011). Despite the anticipated increase of the vehicle fleet over the next 290 
decades, it is evident that the growth rate exhibits a substantially declining trend. 291 
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 292 
Figure 3. Projected geometric growth rate of the vehicle fleet in Balneário Camboriú. Source: 293 
Registered vehicle data Detran/SC (2018) 294 

4 Material and Methods 295 
In order to evaluate the impact of pollution caused by mobile sources in the 296 

municipality, highly disparate input data (traffic data, road characteristics, fleet data, and 297 
emission factors) were collated in one comprehensive dataset.  The latter allows the estimation 298 
of the emission rates, which, in turn, ate transformed into emission concentrations. 299 
Subsequently, such values enable the comparison with the legislative environmental thresholds.  300 

Using the Geographic Information System (GIS) environment, a geographic dispersion 301 
analysis is conducted.  In the context of this analysis, the pollutant concentrations are counter-302 
imposed against the legislation thresholds.  Furthermore, the possibility of spatial 303 
autocorrelation between the studied intersections is also investigated.  Besides the 304 
environmental and health implications, the outcomes of the developed methodological 305 
framework include an economic appraisal focusing on damage costs of air pollution. Figure 4 306 
provides a comprehensive flowchart with all the stages, steps and outcomes of the 307 
methodological framework. 308 

 309 
Figure 4. Comprehensive synthesis of the analysis steps. 310 

 80,000

 85,000

 90,000

 95,000

 100,000

 105,000

 110,000

 115,000

 120,000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

20
17

20
19

20
21

20
23

20
25

20
27

20
29

20
31

20
33

20
35

20
37

20
39

20
41

20
43

20
45

20
47

20
49

20
51

20
53

20
55

20
57

20
59

Pr
oj

ec
te

d 
fle

et
 (n

um
be

r o
f v

eh
ic

le
s)

Pr
oj

ec
te

d 
fle

et
 -

ge
om

et
ric

 g
ro

w
th

 ra
te

 
y = 0,0289e-0,112x

Projected fleet geometric growth rate
Projected fleet (number of vehicles)

Exploratory 
spatial data 

Spatial 
autocorrelation

Emission 
concentration

GIS processing

Air pollution 
maps

Reference values

Traffic flow
Road Hierarchy; 
Link-based grid; 
Traffic Zones.

Emission 
Factors

Pollutants 
regulated (Sox, 
Nox, CO, PM)

Fuel type; 
Vehicle type; 
Vehicle aging

Emission rates

Traffic data Road system 
data

Fleet data

Damage cost per 
pollutant

Air pollution 
costs

Gaussian plume 
model



10 

 
4.1 Fuel type and average age of vehicles 311 

Fuel is an important factor in measuring pollutants rates. According to Gualtieri and 312 
Tartaglia (1998) and Londono et al. (2011), it is typically assumed that light vehicles use 313 
predominantly gasoline whereas the heavy vehicles use diesel.2 314 

Regarding the age of the vehicles, we adopt assumptions about the municipal fleet age, 315 
which were based on data from the State Department of Traffic (Detran, 2017).  Specifically, 316 
the analysis of the latter data verified that the average service life of the city’s vehicles is 317 
approximately 8 years, with 5 years being the most frequently observed vehicle age (mode of 318 
the vehicle age).  Figure 5 provides a graph with the historical evolution of the fleet size of 319 
Balneário Camboriú over the last 90 years. Following the considerations of the CETESB 320 
manuals (CETESB, 2009; CETESB, 2017), the vehicle age was drawn from Figure 5 and used 321 
for weighting the emission factors of pollutants.  322 

 323 
Figure 5.  Number of vehicles registered in the municipality of Balneário Camboriú, Brazil per 324 
year of manufacture. Source: Detran/SC, 2017. 325 

4.2 Determination of links 326 
Vehicle emission inventories in Brazil estimate the emission of pollutants for vehicle 327 

trips as a function of the registered fleet and the average distance traveled by the specific fleet 328 
(as in the MMA, 2011). Herein, it is not possible to adopt this fleet-based method for traffic 329 

                                                 
2 It should be noted that a large part of the light vehicles fleet in Brazil consists of flex vehicles, which can run on 
gasoline and ethanol. However, in the southern region of Brazil, this fuel has been little used, as the operation cost 
of these vehicle is higher compared to gasoline-based vehicles. The use of such vehicles is much more evident in 
the Southeast and Northeast regions, which constitute producing regions of ethanol.  Interestingly, according to 
the association of merchants of fuel (Sindópolis) (DC, 2018), the gas stations in the case study region are stopping 
selling this fuel due to low demand. In addition, data from the National Agency of Petroleum, Natural Gas and 
Biofuels indicate that the consumption of ethanol in the municipality of Balneário Camboriú represents 3.25% of 
the total fuel consumption. That is 2,493.6m³ of ethanol, as opposed to 74,164.1m³ of gasoline, in the year 2016 
(ANP, 2019). Hence, due to the low demand in the case study area, and due to limitations related to the estimation 
of the shares of these vehicles in the traffic fleet and the estimation of the corresponding fuel consumption, the 
specific group was not considered. 
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flow data, since the same vehicle is likely to cross multiple, adjacent intersections; possible 330 
over-counting of the flows in the intersections may introduce significant bias in the analysis.  331 
To account for the fact that the circulation of vehicles at one point can influence the flows at 332 
adjacent points, linked-based techniques are employed. In inventory emissions appraisals, link-333 
based studies are considered advantageous because of providing spatial perspectives to the 334 
analysis (Yao and Song, 2013, Pan, 2016, Borge et al., 2012, Zhang et al., 2016, Gualtieri and 335 
Tartaglia, 1998; and Gois et al., 2007). 336 
 GIS procedures were used to obtain the extensions of the road links. Following the 337 
approach of Zhang et al. (2016), the roads were classified in 5 categories on the basis of their 338 
hierarchy: arterial 1 and 2, collector 1 and 2 and local roads. Arterials serve major areas and 339 
provide a high degree of mobility. Minor arterials serve geographic areas that are smaller 340 
compared to those served by the major arterials. Collectors gather traffic from local roads and 341 
funnel them to the arterial network. Local roads are not designated for long-distance trips, apart 342 
from providing access at the origin or destination of the trip. Table 5 provides the number of 343 
links as well as the average link length per each road hierarchy type. 344 

Table 4.  Average link extension of the road system per road hierarchy 345 
 346 

Road hierarchy Links L (m) Average link extension (km) 
Arterial 1 - A1 173 11,794 0.068 
Arterial 2 - A2 524 35,288 0.067 
Collector 1 - C1 419 47,500 0.113 
Collector 2 - C2 164 17,388 0.106 
Local - L 1,823 239,820 0.132 
Total 3,103 351,790 0.097 

4.3 Pollutants and Emission Factors 347 
Brazilian air quality legislation (Conama 491/2018) provides a set of indicators that 348 

need to be monitored in order to maintain environmental and public health. Out of the pollutants 349 
listed by that resolution, CO, NO2, Particulate Matter, and SO2 have been previously studied 350 
in-depth by various environmental authorities (MMA, 2014, Ibama, 2014, CETESB, 2017) 351 
using the emission factor-based approach. The emission factors used in this study were drawn 352 
from CETESB (2017). The emission factors that were used in this study are presented in Table 353 
6. These factors were weighted according to the year of vehicle manufacture to CO, NO2 and 354 
PM contaminants. SO2 factor was used from CETESB (2009), due to the absence of yearly 355 
reference value in the recent reports. 356 
Table 5. Employed emission factors for air pollutants. Source: CETESB, 2017, CETESB 357 
(2009) 358 

Vehicle data Emission factors (g/km) 
Type  Fuel CO3 NO2

3
 PM3  SO2

4 
Light Gasoline 2.71- 0.02 0.0012 0.07 

Motorcycles Gasoline 1.28 0.09 0.0042 0.02 
Heavy Diesel 0.82 4.68 0.20 0.13 

 359 

4.4 Emission and concentration of pollutants 360 
The emission – typically expressed as a ratio of mass per time – is a function of the type 361 

and volume of vehicles as well as of the emission factors, which are intrinsic to each type of 362 

                                                 
3 Emission factor weighted accordingly to the year of the vehicle manufacture. 
4 CETESB (2009). 
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pollutant. However, air quality measures are typically expressed in concentration units (mass 363 
per volume). Consequently, to estimate the dispersion of the contaminant through the air as 364 
well as its concentration at the receptor, the application of a mathematical model is necessary. 365 
In this study, the Gaussian plume dispersion model is employed. This modeling approach 366 
attempts to describe and solve physical processes within a distinct mathematical and numerical 367 
framework, although it employs simplified flows over flat terrain (Tripathi et al., 2018). For 368 
model implementation, the following default values were used: h=0.4 m; diameter of 369 
release=0.05m; u=1 m/s; ambient temperature = 25oC; Atmospheric condition category = slight 370 
unstable. Note that the default climate values for the Gaussian plume dispersion model were to 371 
based on the study of Araujo et al. (2009). Although the model considers general characteristics 372 
of atmospheric stability class, specific climatic characteristics such as ocean breeze, winds, and 373 
rainfall were not included in the model specification; the latter should be taken into account 374 
when interpreting the results. 375 

For the implementation of the Gaussian plume dispersion model, the tool developed by 376 
NCSEC (http://www.ncsec.org/) was used, where the Gaussian routine method is incorporated 377 
in an Excel-based application. The rates and concentrations (in kg/h and μg/m³, respectively), 378 
were estimated per each intersection of the study area. The consideration of different 379 
homogeneous zones and hierarchy levels (as presented in Table 3) allowed us to extrapolate the 380 
concentration values for the entire road network of the municipality. After the calculation of 381 
the concentrations, a GIS analysis was then undertaken to map the spatial distribution of 382 
concentrations per each contaminant considered in the study. The latter helped obtain isolines 383 
of concentrations and perform, then, linear interpolation for the emitting points (intersections). 384 
The concentrations values were, in turn, aggregated in nominal classes using the legal 385 
concentration thresholds for each pollutant type as a reference basis. 386 

 387 

4.5 Air Pollution spatial analysis 388 
Initially, all the intersections of the city roads were determined and classified with 389 

respect to the traffic zone and the road hierarchy associated with each of them, following the 390 
approach of Tischer (2017). That was accomplished in a Geographic Information System (GIS) 391 
environment. Using the homogeneous traffic zones established within the studied municipality 392 
as well as the measured traffic flows, the methodology aims at identifying intersection-specific 393 
factors that will enable the appraisal of the air pollution level at a specific location. The 394 
calculations of the concentration of the contaminants were combined with the attribute 395 
worksheet of the intersections in the GIS environment. This allowed the development of 396 
thematic maps by each type of pollutant. The maps were classified by reference to the threshold 397 
concentrations of the Brazilian air quality legislation Conama 491/2018 (Brazil, 2018).  398 

The previously mentioned legislation establishes air quality standards based on the 399 
effects on health, safety, and well-being of the population and the environment. To that end, it 400 
determines primary and secondary quality standards. In this study, we considered a day-based 401 
scale of concentrations for the first stage of implementation. The upper concentrations are 402 
specified as: SO2: 125 µg/m³ (24-h), NO2: 260 µg/m³ (1-h), particulate matter: 240 µg/m³(24-403 
h), and CO: 9ppm (converted to 9,000µg/m³) (8-h) (Brazil, 2018). 404 

The development of thematic maps of dispersion of pollutants requires the use of 405 
generalized functions, due to the need for extrapolating the pollutants concentration data, which 406 
were calculated for the intersections, to the entire urban area. For this purpose, the Natural 407 
Neighbor interpolation algorithm was employed. This approach identifies groups 408 
geographically close to the interpolated points and creates values by applying weights 409 
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proportional to the distance between them (Sibson, 1981; Arcgis, 2018). In this context, maps 410 
were developed for the four pollutants by considering the peak and average daytime hours of 411 
the vehicle flows. 412 

Besides the geographic analysis of pollutants dispersion, an Exploratory Spatial Data 413 
Analysis (ESDA) was also conducted to identify clusters with similar air pollution patterns in 414 
the municipality. This type of analysis can assist in the formation of land use and transportation 415 
policies and the preliminary identification of spatial dependence of transportation-related air 416 
pollution that may warrant further investigation. 417 

4.5.1 Exploratory Spatial Data Analysis (ESDA) 418 
Due to its dispersion, air pollution can be expressed in spatial terms. The spatial 419 

variations of the traffic or built environment characteristics that determine the air pollution 420 
levels may introduce spatial heterogeneity in the distribution of air pollution across the city 421 
districts (Lin and Ge, 2006; Sun et al., 2017). Thus, the possible presence of geographically 422 
associated clusters or spatial differentiations between specific points should be taken in account 423 
to evaluate the validity of air pollution predictions and to possibly identify social gradients that 424 
may have an influence on pollutants’ exposures (Jerrett et al., 2005, Briggs et al., 2000). 425 

One of the fundamental hypotheses of this study is the spatial relationship between air 426 
pollution and traffic zones. According to Anastasopoulos et al. (2010), spatial dependence 427 
constitutes a significant spatial effect and can be defined as the co-variation of properties 428 
inserted in a spatial system. This relationship is also called spatial autocorrelation and can be 429 
used to identify similar patterns that can be joined in clusters. Specifically, autocorrelation 430 
considers the sample points, focusing on their locations and the values associated with them 431 
(Ord and Getis, 1995).  Spatial autocorrelation allows hypotheses to be tested to evaluate the 432 
relationship between variables in space resulting, thus, in a better understanding of the effects 433 
among each other within the same geographical context (Getis, 2007). The clustering of similar 434 
values of a variable in adjacent spatial units indicates the presence of positive spatial 435 
autocorrelation; when geographic areas tend to be surrounded by neighbors with very different 436 
values, there is strong evidence for the presence of negative spatial autocorrelation 437 
(Khomiakova, 2008). The study of Lorant et al. (2001) has shown that the use of spatial 438 
autocorrelation in regression models may affect the relationship between pollutant emissions 439 
and traffic zones. To that end, the possibility of autocorrelation likely underpinning the spatial 440 
structure of the data should be investigated in order not to lead to erroneous conclusions. 441 

In this study, the geographical connections between the traffic zones were specified on 442 
the basis of the contiguity indicator, which assumes that interactions are present only if two 443 
zones share a common border (Anselin, 2018), considering up to 10 neighboring zones. To 444 
explore whether spatial dependence patterns of air pollution are statistically evident across the 445 
traffic zones, the Moran’s I test was conducted. The test statistic can be defined as 446 
(Anastasopoulos et al., 2010; Tang et al., 2013; Zou et al., 2014):  447 

𝐼𝐼 = �𝑛𝑛
𝐸𝐸
� . �𝑧𝑧

′𝑊𝑊𝑧𝑧
𝑧𝑧′𝑧𝑧

�          (3) 448 

Where 𝑧𝑧 is a vector containing 𝑛𝑛 observations measured in deviation from the mean, 𝑊𝑊 449 
is a spatial weights matrix with 𝑛𝑛 x 𝑛𝑛 elements representing the spatial topology of the system, 450 
and 𝐸𝐸 denotes the sum of elements of the 𝑊𝑊. Moran´s I local can provide insights regarding the 451 
degree of spatial autocorrelation at each specific location; for its calculation, 999 permutations 452 
were used (see also Anastasopoulos et al., 2010; Anselin, 2018). 453 

To identify possible spatial autocorrelation patterns, the exploratory analysis of spatial 454 
data was performed through the software Geoda (Anselin, 1996). Along with Moran’s I test, 455 
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the ESDA analysis can assist in identifying possible spatial relationships between clusters or 456 
unobserved heterogeneity effects associated with the traffic air pollution and corresponding 457 
traffic zones. For further insights with regard to possible sources and statistical implications of 458 
unobserved heterogeneity see: Mannering et al., 2016; Fountas and Anastastopoulos, 2017; 459 
Fountas et al., 2018a; Cai et al., 2018; Fountas et al., 2018b; Mannering, 2018; Fountas and 460 
Anastasopoulos, 2018; Aguero-Valverde, 2018; Fountas and Rye, 2019; Pantangi et al., 2019, 461 
Fountas et al., 2019; Barbour et al., 2019. 462 

4.6 Damage costs of emissions 463 
Due to the inclusion of daytime traffic flows in the database, the projected costs reflect 464 

daytime flows across business days on a yearly basis (i.e., 240 days/year). The emissions were 465 
weighted on the basis of 1 peak hour and 11 hours representing the average daytime flow; as 466 
such, 12 hours per day were considered in total. Table 7 presents a compilation of damage cost 467 
values by each pollutant considered in this study. Various organizations as well as previous 468 
studies have suggested several cost ranges as reference values (to name a few, NZTA, 2013, 469 
Austroads, UK-DEFRA, 2015, European Commission, AEA, Krewitt et al., 1999; Rabl and 470 
Spadaro, 2000; Rabl et al. 2005; Mirasgedis et al. 2008; Gu et al., 2012). To avoid possible 471 
overestimation of the damage cost, we employed values corresponding to the lower limits of 472 
the reference ranges that were provided in Table 1. Table 7 summarizes the exact values that 473 
were used in this study. 474 
Table 6. Compilation of marginal damage costs per ton of emissions of pollutants considered 475 
for each organization. 476 

 477 

Reference Values per ton 
CO NO2 PM SO2 

NZTA (2013)  NZD    4.13   NZD   16,347.00  n/a5 n/a 
Austroads  AU$     3.30  AU$     2,089.20  n/a n/a 
UK-DEFRA, 2015 n/a  £     8,417.00  £ 51.881,00 £    1,581.00 
European Commission  n/a  €     2,500.00  n/a €    3,700.00 
AEA (Europe average) n/a  €     4,107.14  n/a €    5,367.86 

5 Results 478 

5.1 Exploratory spatial data analysis (ESDA) 479 
Table 8 shows that the Moran’s I was found to vary from 0.103 to 0.264, depending on 480 

the pollutant type.  For all the pollutant types, the p-value is equal to 0.05 or less, implying that 481 
homogeneous traffic zones with similar emission rates are spatially clustered (positive 482 
autocorrelation) with greater than 95% level of confidence. 483 
Table 7. Moran´s I results for each pollutant.  484 

 485 
Pollutant Moran´s I Mean Sd z-value Pseudo p-value 

SO2 0.264 -0.0104 0.0647 4.239 0.001 
CO 0.103 -0.0037 0.0620 1.732 0.043 

Particulate Matter 0.238 -0.0113 0.0645 3.870 0.001 
NO2 0.144 -0.0038 0.0622 2.372 0.010 
Figure 6 and Figure 7 and provides the Moran’s I scatterplots along with maps of the 486 

study area. Both Figures show the spatial dependence patterns of pollutants per intersection.  487 
                                                 
5 Not applicable. Blank cells indicate that the institution has not provided applicable values for the specific 

pollutant.  
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Specifically, the first (upper-right) quadrant HH (High–High) of the scatterplot shows zones 488 
with high values of pollutant emissions surrounded by zones with high values of pollutants. The 489 
second quadrant LH (Low–High) shows zones with low values of pollutant emissions 490 
surrounded by zones with high values of pollutant emissions. The third quadrant LL (Low-491 
Low) illustrates zones with low pollutant rates surrounded by zones with low rates of pollutants, 492 
whereas the fourth quadrant HL (High-Low) depicts zones with high rates of pollutants 493 
surrounded by zones with low rates. Quadrants HH and LL exhibit positive spatial 494 
autocorrelation indicating, thus, spatial clustering of similar magnitude and sign.  In opposite 495 
manner, quadrants LH and HL exhibit negative spatial autocorrelation reflecting spatial 496 
clustering of opposite magnitude and sign.  497 

The spatial autocorrelation of the pollutant dispersion provides evidence of low 498 
concentrations in zones of low potential for trip generation (i.e., low-order homogeneous traffic 499 
zones). These zones mainly form the cluster LL of neighboring areas, which are associated with 500 
low concentration values for the pollutants CO, SO2, and NO2. Interestingly, in peripheral areas 501 
of the city, there is a predominance of low-level roads and areas of low population density; the 502 
latter factors may reduce the potential for pollutant generation. An inverse relationship between 503 
trip generation potential and pollutant concentrations was observed in the cluster LH, where 504 
low concentrations of pollutants are associated with high-order homogeneous traffic zones. 505 
This may be attributed to the significant presence of roads with less intense flow patterns (i.e., 506 
roads of lower hierarchy) in the specific zones. The opposite is observed in the HL cluster, with 507 
points of high pollutant concentrations being located in low-order homogeneous traffic zones. 508 
This finding may be capturing the relatively high traffic flows in roadways of higher road 509 
hierarchy. 510 

Regarding the high-high (HH) pattern of autocorrelation, the largest cluster formation 511 
was observed for the SO2 pollutant, with four points of high correlation being identified in a 512 
high-order homogeneous traffic zone6. In addition, a HH cluster was observed for the 513 
particulate matter with three points of high correlation as well as for the CO with one point of 514 
high correlation. Those areas coincide with the southwest portion of the municipality consisting 515 
of densely populated areas with high-flow road network. In contrast, about 30 intersections 516 
(60% of the total) were not found to have statistically significant autocorrelation. This can be 517 
attributed to the absence of a relationship between neighboring intersections in terms of 518 
pollutant emissions. In these areas, there is a diversity of land uses, while the presence of 519 
different HTZ types and vehicles flows is evident. The diverse nature of these factors may not 520 
allow the establishment of clusters with similar patterns. 521 

The results of the exploratory spatial data analysis showed that intersections located in 522 
major roads near high-dense traffic zones might constitute hot spots of air pollution, as indicated 523 
by the strong, positive spatial autocorrelation. This finding is intuitive since these areas are 524 
subject to the effect of traffic congestion, traffic flows fluctuations as well as their air pollution-525 
related implications. Overall, this appraisal provides a preliminary, yet descriptive overview of 526 
the underlying spatial effects, with the identification of the specific sources of spatial 527 

                                                 
6 In Figure 7, red points indicate sources of high pollutant concentrations, which are also highly correlated. 
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heterogeneity warranting further investigation, possibly through spatial econometric modeling 528 
approaches (Fountas et al., 2018c; Cai et al., 2018; Aguero-Valverde, 2018). 529 

 530 
Figure 6. Moran´s I Scatterplot for pollutants CO, PM, NO2 and SO2. 531 
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 532 
Figure 7. Moran´s I map for CO, Particulate Matter, NO2 and NO2 pollutants. 533 

 534 

5.2 Emission rate and concentration of pollutants 535 
The emission rates of pollutants constitutes a fundamental cohort of results, since it 536 

serves as the input for the calculation of the concentrations of the studied pollutants. These rates 537 
were calculated for each type of intersection; note that a total of 25 types of intersections were 538 
identified using the road hierarchy and the homogeneous traffic zones as defining criteria (see 539 
Table 9 for a comprehensive overview of the emission rates per intersection type). 540 
Table 8. Emission rates of pollutants (E) per Homogeneous Traffic Zone (HTZ) and Road 541 
Hierarchy. 542 

 543 

HTZ Road 
Hierarchy 

Peak Hour Average Daytime Hour 

Veh/h Emission rate E (Kg/h) Veh/h Emission rate - E (Kg/h) 
CO NO2 MP SO2 CO NO2 MP SO2 

1 

A1 710 0.0260 0.0130 0.00029 0.0046 547 0.0201 0.0117 0.00025 0.0035 
A2 772 0.0283 0.0142 0.00032 0.0050 375 0.0138 0.0080 0.00017 0.0024 
C1 575 0.0211 0.0106 0.00024 0.0037 462 0.0170 0.0099 0.00022 0.0030 
C2 297 0.0109 0.0055 0.00012 0.0019 180 0.0066 0.0039 0.00008 0.0012 
L 18 0.0007 0.0003 0.00001 0.0001 10 0.0004 0.0002 0.00000 0.0001 

2 

A1 837 0.0307 0.0154 0.00035 0.0054 621 0.0228 0.0133 0.00029 0.0040 
A2 773 0.0283 0.0142 0.00032 0.0050 429 0.0158 0.0092 0.00020 0.0028 
C1 611 0.0224 0.0112 0.00025 0.0039 458 0.0168 0.0098 0.00021 0.0030 
C2 463 0.0170 0.0085 0.00019 0.0030 343 0.0126 0.0073 0.00016 0.0022 
L 144 0.0053 0.0026 0.00006 0.0009 95 0.0035 0.0020 0.00004 0.0006 

3 

A1 788 0.0289 0.0145 0.00033 0.0051 586 0.0215 0.0126 0.00027 0.0038 
A2 791 0.0290 0.0145 0.00033 0.0051 477 0.0175 0.0102 0.00022 0.0031 
C1 704 0.0258 0.0129 0.00029 0.0045 520 0.0191 0.0112 0.00024 0.0034 
C2 419 0.0154 0.0077 0.00017 0.0027 275 0.0101 0.0059 0.00013 0.0018 
L 100 0.0037 0.0018 0.00004 0.0006 82 0.0030 0.0018 0.00004 0.0005 
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HTZ Road 
Hierarchy 

Peak Hour Average Daytime Hour 

Veh/h Emission rate E (Kg/h) Veh/h Emission rate - E (Kg/h) 
CO NO2 MP SO2 CO NO2 MP SO2 

4 

A1 795 0.0292 0.0146 0.00033 0.0051 644 0.0237 0.0138 0.00030 0.0041 
A2 739 0.0271 0.0136 0.00031 0.0048 550 0.0202 0.0118 0.00026 0.0035 
C1 486 0.0178 0.0089 0.00020 0.0031 450 0.0165 0.0096 0.00021 0.0029 
C2 444 0.0163 0.0081 0.00018 0.0029 334 0.0123 0.0072 0.00016 0.0022 
L 165 0.0060 0.0030 0.00007 0.0011 135 0.0050 0.0029 0.00006 0.0009 

5 

A1 1,042 0.0382 0.0191 0.00043 0.0067 734 0.0270 0.0157 0.00034 0.0047 
A2 793 0.0291 0.0146 0.00033 0.0051 585 0.0215 0.0125 0.00027 0.0038 
C1 775 0.0284 0.0142 0.00032 0.0050 514 0.0189 0.0110 0.00024 0.0033 
C2 446 0.0164 0.0082 0.00018 0.0029 341 0.0125 0.0073 0.00016 0.0022 
L 146 0.0053 0.0027 0.00006 0.0009 98 0.0036 0.0021 0.00005 0.0006 

The modeling results have shown that NO2, SO2, and CO are the pollutants that exceed 544 
the limits of air quality legislation. It should be noted that the estimated values come from 545 
simulated data rather than from a primary data collection; thus, such estimated concentrations 546 
serve as reference values within the context of a preliminary investigation of air pollution levels, 547 
since there is no emission data available, nor any monitoring program, to the study area. 548 

These concentrations derived by the model are mainly observed up to 20 meters 549 
(approximately) from the road network, with the peak of concentrations being observed at a 550 
distance near 10 meters from the road network. At this distance, for example, about 60%,71% 551 
and 41% of the intersections during the peak hours are associated with concentrations exceeding 552 
the thresholds, for NO2, SO2, and CO, respectively; the same is observed for 50% and 65% of 553 
the intersections during the average daytime hours, for SO2 and NO2, respectively (see also 554 
Figure 8-11). The 20-year projections show that 61%, 83% and 58% of the intersections during 555 
peak hours (for NO2, SO2, and CO, respectively), and 53% and 83% of the intersections during 556 
daytime average hours (for NO2 and SO2, respectively) are associated with exceeding 557 
concentrations. It is worthwhile to mention that local roads, and, in some districts, secondary 558 
collector roads do not generally exhibit concentrations over legislation thresholds. 559 
 560 

 561 
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   562 

Figure 8. Map of SO2 concentrations for the average daytime and peak hour. 563 
 564 

 565 
Figure 9. Map of NO2 concentration for the average daytime and peak hour. 566 

The upper limits of concentrations were not reached by the contaminant Particulate 567 
Matter in the conducted simulation, even when considering future scenarios. The highest value 568 
was about 26μg/m³ (the considered upper limit was 240μg/m³ - see Figure 11 for a mapping 569 
overview of the concentrations).  570 

 571 

 572 
Figure 10. Map of CO concentration for the average daytime and peak hour. 573 
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 574 

 575 
Figure 11. Map of Particulate Matter (PM) concentration for the average daytime and peak 576 
hour. 577 

Table 10 presents the areas affected by pollutants that exceed the primary quality 578 
standards (i.e., SO2 and NO2) and are liable to cause damage to the population's health. An area 579 
of about 1.45 million m² was estimated to be affected by SO2 during peak hours; for NO2, the 580 
corresponding estimate is about 4.86 million m², and for CO, 0.21 million m².  During average 581 
daytime hours, an area of 0.71 million m² was estimated to be affected by SO2, whereas an area 582 
of 4.03 million m² was estimated to be affected by NO2. The estimates for future scenarios 583 
indicate a mixed growth trend for the affected areas, possibly due to the projected rate of 584 
increase in traffic flows. Focusing on the SO2 emissions during peak hours, the growth rate of 585 
the affected areas is around 87.4% considering the 20-year scenario, whereas for the remaining 586 
20 years of the 40-year scenario, the growth rate decreases to 3.4%. During the average daytime 587 
hours, the affected area increases approximately 109.1% for SO2 and 29.1% for NO2, 588 
considering the 20-year scenario. For the remaining 20 years of the 40-year scenario, the 589 
affected area increases by 5.2% for SO2 and by 1.9% for NO2. 590 

The identified affected areas are adjacent to the road network, with the emissions arising 591 
from the latter having a direct impact on the adjacent households, in terms of possible health 592 
burden. Considering a reference size of 300 m² per property (PMBC, 1974), it is estimated that 593 
approximately 1.0k households are exposed to excessive emissions of SO2, approximately 4.6k 594 
households are exposed to excessive emissions of NO2, and 72 households are exposed to 595 
excessive emissions of CO, during peak hours. During the average daytime hours, 596 
approximately 445 and 3.7k households are exposed to excessive emissions of SO2 and NO2, 597 
respectively (see also Table 10 for the exact values). 598 
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Table 9. Estimated area and number of households affected by pollutants exceeding legislative 599 
thresholds. 600 

 601 

Pollutant Scenario: 2040 
Peak hour Average daytime hour 

Affected 
area (m²) % variation Affected 

properties* 
Affected 
area (m²) % variation Affected 

properties* 

SO2 
Current 302,090 - 1,007  133,556 -  445  
Scenario: 2040 566,202 87.4% 1,887  279,320 109.1%  931  
Scenario: 2060 585,449 3.4% 1,951  293,883 5.2%  980  

NO2 
Current 1405515 

 
4.685  1,116,866 -  3,723  

Scenario: 2040 1714966 20.2% 5.717  1,441,874 29.1%  4,806  
Scenario: 2060 1743421 1.5% 5.811  1,469,070 1.9%  4,897  

CO 
Current 21,715 - 72 - - - 
Scenario: 2040 93,067 328.6% 310 - - - 
Scenario: 2060 102,844 10.5% 343 - - - 

* A typical area size of urban property is considered equal to 300m². 602 

5.3 Damage costs of the emissions 603 
Table 11 provides the calculated damage costs per pollutant for the current and future 604 

scenarios. The pollutants with the highest damage values are NO2, PM, SO2, and CO (the rank implies 605 
a descending order). The total damage cost is approximately equal to US$ 886k for the current 606 
scenario. For the 20-year time horizon, the total cost is expected to increase to approximately US$ 607 
1,381k per year, possibly due to the accelerated growth of vehicle fleet, whereas it does stabilize in 608 
the long run (40-year horizon) to approximately US$ 1,433k per year.  609 

Despite their preliminary nature, such damage cost values highlight the need for a deeper 610 
investigation of the methodological approaches focusing on their calculation and evaluation. 611 
However, what it can be inferred from this preliminary analysis, is that these values reflect a high 612 
social cost, which goes far beyond the purely economic value and more importantly, involves direct 613 
implications on the quality of life and level of health of the urban population. 614 
Table 10. Damage costs results (in US$) 615 

 616 
Scenario  Damage Cost (US$) per year per pollutant 

 CO NO2 PM SO2 Total 
Current   $ 1,096.07   $ 396,192.26   $ 387,987.69   $ 101,212.62   $ 886,488.64  
Future 2040   $ 1,707.84   $ 617,327.23   $ 604,543.59   $ 157,704.87   $ 1,381,283.53  
Future 2060   $ 1,772.42   $ 640,669.46   $ 627,402.45   $ 163,667.96   $ 1,433,512.28  

6 Summary and Conclusions 617 
This study provides a comprehensive, yet preliminary approach towards the quantification 618 

and evaluation of air pollution patterns from mobile, transportation-related sources. This integrated 619 
approach may contribute to the municipal environmental management and the formulation of public 620 
policies as well as support the decision making process of Public Authorities, especially from an 621 
environmental and economic perspective. The potential of this approach to approximate the extent of 622 
the population’s exposure to possible environmental and health risks using very limited data 623 
highlights its applicability in urban settings lacking systematic monitoring of the transportation-624 
related air pollution. The city of Balneário Camboriú, Brazil falls within this category, as such, the 625 
evaluation of its air pollution dynamics formed the basis for the development of this integrated 626 
approach.  627 

With regard to the outcomes of this approach, the generation of dispersion maps of pollutant 628 
concentrations allows the initial evaluation of strategies for the improvement of urban air quality. 629 
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Since urban traffic constitutes a significant determinant of the air pollution patterns, remedies for air 630 
pollution reduction should also account for separate or interrelated sources of pollution within the 631 
transportation network. To that end, spatial autocorrelations of air pollution were also identified, 632 
where the clustering of various urban districts with similar air pollution patterns was found to be 633 
interrelated with the presence of homogeneous traffic zones.  Even though the spatial autocorrelation 634 
analysis cannot thoroughly explain the underlying mechanism of the spatial dependence, it does 635 
provide a preliminary identification of the sources that may induce spatial heterogeneity (such as, 636 
land use activities, interactive effect of congestion and road hierarchy, diversity of activities across 637 
homogeneous traffic zones). Furthermore, the spatial dependence patterns can shed more light on 638 
possible “hotspots” of air pollution that need to be addressed by local policies. 639 

It should be mentioned that the findings of this study have intrinsic limitations, which should 640 
be carefully considered by traffic and environmental modellers when interpreting them.  The need for 641 
extrapolation of the traffic flows to the entire network, the use of mathematical models and reference 642 
values that allow a satisfying, yet empirical approximation of the transportation-generated 643 
externalities constitute some of these limitations. However, all these limitations stem from the very 644 
limited availability of environmental and transportation data, which is commonly observed in the 645 
developing countries of Latin America.  In this context, this work should be viewed as a 646 
methodological alternative for assessing the air pollution dynamics using aggregate data; the findings 647 
of this assessment can potentially serve as input for appraisals of the health implications of 648 
transportation-related activities. 649 

Despite its potential, the evaluation of the aggregate patterns of air pollution cannot provide 650 
practice-ready insights to stakeholders and public Agencies without an a priori quantification of the 651 
interrelationship between various public health aspects and externalities of transportation. In Brazil, 652 
this quantification can be expressed in terms of reference values of emissions at a state or country 653 
level, with the specification of these values requiring deeper and more disaggregate analyses. Using 654 
detailed datasets of real-time traffic flows and emissions, future endeavors can lead not only to the 655 
validation or modification of the findings of the specific study but also to significant methodological 656 
and empirical advances. The latter may include the application of more robust modeling approaches 657 
(e.g., spatial econometric models), the provision of more accurate predictions and the identification 658 
of effective countermeasures for areas susceptible to transportation-generated air pollution. 659 
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