

EMBEDDED DOCUMENT SECURITY
USING STICKY POLICIES

AND IDENTITY BASED ENCRYPTION
GRZEGORZ KAROL SPYRA

A THESIS IS SUBMITTED AS PARTIAL FULFILMENT OF THE REQUIREMENTS OF
EDINBURGH NAPIER UNIVERSITY, FOR THE AWARD OF

DOCTOR OF PHILOSOPHY IN THE CENTRE FOR DISTRIBUTED COMPUTING,
NETWORKS, AND SECURITY

JANUARY 2019

	 	

ACKNOWLEDGEMENTS

Mojej żonie i dzieciom…

Prof Bill Buchanan you let me do research around all what’s written here

and a wee bit more.

	 	

DECLARATIONS

No portion of the work referred to in this thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

 i

CONTENT
1	 INTRODUCTION	...	3	
1.1	 AUTHOR	PUBLICATIONS	..	3	
1.2	 AIM	AND	OBJECTIVES	...	4	
1.3	 CONTRIBUTION	AND	NOVELTY	..	5	
1.4	 BACKGROUND...	6	
1.4.1	 Data	Loss	Prevention	(DLP)	...6	
1.4.2	 Sticky	Policies	..7	
1.4.3	 Identity..7	
1.4.4	 Health-care	...8	

1.5	 THESIS	STRUCTURE	...	9	
2	 LITERATURE	REVIEW	..	10	
2.1	 INTRODUCTION	..	10	
2.2	 GENERAL	DATA	PROTECTION	REGULATION	(GDPR)	..	10	
2.3	 IRM	..	11	
2.4	 IDENTITY	MANAGEMENT	...	13	
2.4.1	 SCIM	Schema...	14	

2.5	 IDENTITY	METADATA	..	16	
2.5.1	 Identity	Subject,	Data	Object	and	Predicate	...	17	
2.5.2	 Secure	Distribution	of	Identity	Metadata	..	18	
2.5.3	 XML	Schemas	and	Ontologies	..	19	
2.5.4	 Office	Open	XML	–	Standard	Schemas	...	22	

2.6	 CRYPTOGRAPHY	OVERVIEW	..	23	
2.6.1	 Key	Crypto-period	..	24	
2.6.2	 Symmetric	and	Asymmetric	Keys	...	24	
2.6.3	 Algorithm	Security	Lifetime	..	25	
2.6.4	 Quantum	Computing	..	25	
2.6.1	 Key	Management	System	(KMS)	...	26	
2.6.2	 Identity-Based	Encryption	(IBE)	..	27	
2.6.3	 IBE	with	Authenticated	Encryption	..	29	
2.6.4	 Obfuscation	..	29	
2.6.5	 Anonymisation	...	30	

2.7	 INTEGRITY	AND	AUTHENTICITY	...	31	
2.7.1	 XACML	Accountability	and	Auditing	..	32	
2.7.2	 Merkle	Trees	applications	..	32	

2.8	 AUTHENTICATION	..	33	
2.8.1	 Kerberos	..	35	
2.8.2	 SAML	...	36	

2.9	 ACCESS	CONTROL	..	36	
2.9.1	 Role	Based	Access	Control..	36	
2.9.2	 Attribute-Based	Access	Control	...	38	
2.9.3	 Purpose-Based	Access	Control	(PBAC)	..	49	
2.9.4	 Break-Glass	–	Emergency	Access	..	50	

2.10	 CONCLUSIONS	...	51	
3	 STICKY	POLICIES	APPROACH	WITHIN	CLOUD	COMPUTING	...	52	
3.1	 INTRODUCTION	..	52	
3.2	 IDENTITY-BASED	CRYPTOGRAPHY	...	53	
3.3	 IBE-ENABLED	STICKY	POLICY	...	53	
3.4	 SYMMETRIC	DATA-ENCRYPTING	KEY	..	56	
3.5	 SECURITY	OF	STICKY	POLICIES	IBE	...	56	
3.6	 STICKY	POLICIES	IBE	AUTHENTICITY	..	58	
3.6.1	 IBE	Signatures	...	59	
3.6.2	 IBE	Digital	Signature	for	XACML	...	60	

3.7	 STICKY	POLICIES	AUTHORISATION	...	60	
3.8	 TRUSTED	PARTIES	...	63	
3.9	 COMPARISON	..	64	
3.10	 CONCLUSIONS	...	66	

4	 EVALUATION	METHODOLOGY	AND	IMPLEMENTATION	..	67	

 ii

4.1	 INTRODUCTION	..	67	
4.2	 ARCHITECTURE	..	67	
4.3	 MODEL	IMPLEMENTATION	..	69	
4.3.1	 Introduction	..	69	
4.3.2	 Policy	Encapsulation	..	70	
4.3.3	 Cryptography..	72	
4.3.4	 Policy	Engine	..	78	

5	 EVALUATION	..	80	
5.1	 INTRODUCTION	..	80	
5.1.1	 Microsoft	Rights	Management	Services	(RMS)	...	80	
5.1.2	 IONIC	Security	..	80	

5.2	 ACCESS	POLICY	VS	STICKY	POLICY	...	81	
5.3	 OOXML	ZIP	WRAPPER	..	82	
5.3.1	 Policy	Wrapper	..	82	
5.3.2	 Master	Document	with	a	Single	Sub-Document	as	a	Security	Boundary	82	

5.4	 XACML	EVALUATION	...	83	
5.4.1	 XML	and	JSON	Formatted	Policy	..	83	
5.4.2	 Minifilter	Driver	–	Security	..	84	
5.4.3	 Web	Application	..	86	
5.4.4	 Microsoft	Office	Add-in	..	86	

5.5	 RMS	VS	SPIBE	..	87	
5.5.1	 Key	Management	..	87	
5.5.2	 Generate	Keys	Timing	(Additional	keys	for	RMS)	..	88	
5.5.3	 Sticky	Policy	..	90	
5.5.4	 Document	Integration	–	Supported	Formats	...	91	
5.5.5	 Security	..	91	
5.5.6	 Quantum	Computing	..	92	

5.6	 IONIC	VS	SPIBE	...	92	
5.6.1	 Architecture	..	92	
5.6.2	 Key	Management	–	Trusted	Architecture	..	92	
5.6.3	 Sticky	Policy	..	94	
5.6.4	 Document	Integration	–	Supported	Formats	...	94	
5.6.5	 Quantum	Computing	..	94	

5.7	 CONCLUSIONS	...	95	
6	 CONCLUSIONS	AND	FUTURE	WORK	...	98	
6.1	 ACHIEVEMENT	OF	THESIS	AIM,	OBJECTIVES	AND	RESEARCH	QUESTIONS	..	98	
6.2	 RECAP	OF	CONTRIBUTION	AND	NOVELTY..	98	
6.3	 MAIN	FINDINGS	...	98	
6.4	 FUTURE	WORK	...	100	

 iii

FIGURES
FIGURE	1	BRIEF	HISTORY	OF	IDENTITY	PROVISIONING	[47]	...	15	
FIGURE	2	TWO	DIFFERENT	SUBJECTS	ACCESS	CONTEXTS	WITH	IDENTITY	META-DATA;	F	–	FUNCTION	MATCHING	

IDENTITY	ID	WITH	ITS	RIGHTS	R	IN	GIVEN	CONTEXT..	17	
FIGURE	3	ACCESS	TUPLE	WITH	A	SUBJECT	(IDENTITY),	AN	OBJECT	(DATA)	AND	A	PREDICATE	(PERMISSION).	17	
FIGURE	4	TWO	SUBJECTS	IN	REFERENCE	TO	EACH	OTHER	IN	A	TRIPLET	(SUBJECT	–	PREDICATE	–	OBJECT)	

REPRESENT	LINKED	IDENTITIES...	20	
FIGURE	5	LINKED	IDENTITY	WITH	IDENTITY	META-DATA	USING	OBFUSCATED	REFERENCES	ACROSS	SEVERAL	

SECURITY	BOUNDARIES	AND	CONTEXTS	..	20	
FIGURE	6	SYSTEM	ARCHITECTURE:	CALLING	IDENTITY	META-DATA	BY	OBFUSCATED	REFERENCE	UNDER	SOA	

(POSSIBLE	USE	CASE)	..	21	
FIGURE	7	SYSTEM	ARCHITECTURE:	IDENTITY	AUTHENTICATION	IN	SOA	..	22	
FIGURE	8.	A	TRUSTED	SUBSYSTEM	–	NO	KERBEROS	TOKEN	EXCHANGE	POSSIBLE	(SOURCE	BERTOCCI,	2011)	35	
FIGURE	9.	ACCESS	TUPLE	..	40	
FIGURE	10	XACML	POLICY	CONSTRUCT	..	40	
FIGURE	11	POLICY	LANGUAGE	MODEL	[97]	..	41	
FIGURE	12.	LICENSE	MODEL	[114]	..	45	
FIGURE	13.	GRANT	MODEL	[114]	...	45	
FIGURE	14.	PRINCIPAL	A	PRIVATE	KEYHOLDER	HAVING	TEMPORARY	PRINT	RIGHTS	OVER	E-BOOK	UNDER	URI	46	
FIGURE	15.	RIGHT	MODEL	[114]	..	47	
FIGURE	16.	RESOURCE	MODEL	[114]	...	48	
FIGURE	17.CONDITION	MODEL	[114]	..	49	
FIGURE	18	STICKY	POLICY	IBE	ENCRYPTION	...	54	
FIGURE	19	STICKY	POLICY	IBE	DECRYPTION..	54	
FIGURE	20	STICKY	POLICY	IBE	SECURE	SHARING	...	58	
FIGURE	21	STICKY	POLICY	IBE	SECURE	ACCESS	..	58	
FIGURE	22	XACML	RULE	EXAMPLE...	61	
FIGURE	23	POLICY	TEMPLATE	PART	FOR	THE	LOCATION-BASED	ACCESS	RULE	..	62	
FIGURE	24	POLICY	TEMPLATE	DATA	REPRESENTATION	DEFINING	ACCESS	LOCATION	IN	ISO	3166-2	FOR	ATTRIBUTE	

DESIGNATOR	..	62	
FIGURE	25	SPIBE	COMPONENTS	AND	INTERFACES..	69	
FIGURE	26	XACML	POLICY	ENCAPSULATION,	PYTHON	...	71	
FIGURE	27	XACML	POLICY	EXTRACTION,	PYTHON..	71	
FIGURE	28	XDOCUMENT	CONSTRUCTOR,	C#	...	72	
FIGURE	29	OPENS	SQL	FILESTREAM	WITH	OOXML	CONTENT,	C#	..	72	
FIGURE	30	XACML	POLICY	MAPPED	INTO	PUBLIC	KEY	SPACE	VIA	SHA256,	C	...	73	
FIGURE	31.	IBE-BF	PUBLIC	KEY	GENERATION	EVALUATION,	C	...	74	
FIGURE	32	IBE-BF	PRIVATE	KEY	GENERATION	PERFORMANCE	EVALUATION,	C	..	74	
FIGURE	33.	RSA	KEY	PAIR	FACTORIZATION,	C	..	75	
FIGURE	34	RSA	KEY-ENCRYPTING	KEY	ENCRYPTION	EVALUATION,	C	..	75	
FIGURE	35	RSA	KEY-ENCRYPTING	KEY	DECRYPTION	EVALUATION,	C	..	76	
FIGURE	36	IBE-BF	ENCRYPTION	OVER	AES256,	C	..	77	
FIGURE	37	IBE-BF	DECRYPTION	OVER	AES256	EVALUATION,	C	..	77	
FIGURE	38	IBE-BF	DECRYPTION	OVER	AES256,	C	..	78	
FIGURE	39	ACCESS	POLICY	(TP)	AND	STICKY	POLICY	(TS)	DB	QUERY	RESPONSE	TIME	[150]	82	
FIGURE	40.MASTER	DOCUMENT	WITH	TWO	SUB-DOCUMENTS	...	83	
FIGURE	41	POLICY	SIZES	COMPARISON	FORMATTED	WITH	XML	AND	JSON.	XACML	POLICIES	[123].	84	
FIGURE	42	APP	DOCUMENT	ACCESS	WITH	DRIVER	MINIFILTER	..	85	
FIGURE	43	APP	DOCUMENT	PROTECTED	WITH	DRIVER	MINIFILTER	..	86	
FIGURE	44.	TIMES	OF	STICKY	POLICY	MAPPING	INTO	256	[BIT]	SYMMETRIC	KEY	SPACE	USING	IBE-BF	COMPARED	TO	

RSA3072	AND	RSA4096	OPERATIONS	APPLIED	TO	PSEUDO-RANDOM	SYMMETRIC	KEY	88	
FIGURE	45	IONIC	SOLUTION	ARCHITECTURE	[8]	..	93	
	 	

 iv

TABLES
TABLE 1 COMPARISON WITH EXISTING PRIVACY PRESERVATION STUDIES IN E-HEALTH [134].	65	
TABLE 2 IBE AND RSA PERFORMANCE COMPARISON RESULTS (ON CPU INTEL CORE I7 2.9[GHZ])	90	
TABLE 3. IRM SOLUTIONS COMPARISON	...	96	
TABLE 4. IRM OPERATIONS COMPARISON	...	97	
TABLE 5 DENY-OVERRIDES	..	111	
TABLE 6. ORDERED-DENY-OVERRIDES..	111	
TABLE 7. PERMIT-OVERRIDES	...	111	
TABLE 8. ORDERED-PERMIT-OVERRIDES	..	112	
TABLE 9. DENY-UNLESS-PERMIT	..	112	
TABLE 10. PERMIT-UNLESS-DENY	..	112	
TABLE 11. FIRST-APPLICABLE	...	113	
TABLE 12. ONLY-ONE-APPLICABLE – ONLY FOR POLICY SET;	...	113	
TABLE 13. LEGACY DENY-OVERRIDES	..	113	
TABLE 14. LEGACY ORDERED-DENY-OVERRIDES	...	114	
TABLE 15. LEGACY PERMIT-OVERRIDES...	114	
TABLE 16. LEGACY ORDERED-PERMIT-OVERRIDES	...	114	

 v

APPENDIXES
APPENDIX A	 XACML VERSION 3.0 POLICIES AND RULE-COMBINING ALGORITHMS
	 111	
APPENDIX B	 XRML DIAGRAM CONVENTIONS [114]	..	115	
APPENDIX C	 EXTERNAL LIBRARIES / PACKAGES	...	116	
APPENDIX D	 IBE WITH ECC AND RSA EVALUATION – ENVIRONMENT SETUP	117	
APPENDIX E	 IBE WITH ECC AND RSA EVALUATION – COMPILE CRYPTOGRAPHIC
LIBRARIES	 118	
APPENDIX F	 IBE WITH ECC AND RSA EVALUATION – SBE\VC\SBE.SLN (VISUAL
STUDIO SOLUTION)	..	119	
APPENDIX G	 IBE WITH ECC AND RSA EVALUATION –
SBE\VC\CONSOLEAPPLICATION\CONSOLEAPPLICATION.VCXPROJ (VISUAL STUDIO
PROJECT)	 120	
APPENDIX H	 IBE WITH ECC AND RSA EVALUATION –
SBE\VC\CONSOLEAPPLICATION\CONSOLEAPPLICATION.CPP	...	125	
APPENDIX I	XACML XML POLICY (1 OF 400)..	140	
APPENDIX J	 XACML XML POLICY REQUEST (1 OF 400)	..	142	
APPENDIX K	 XACML XML POLICY RESPONSE (1 OF 400)..	143	
APPENDIX L	 XACML JSON-FORMATTED POLICY (1 OF 400)	...	144	
APPENDIX M	 XACML JSON-FORMATTED POLICY REQUEST (1 OF 400)	146	
APPENDIX N	 XACML JSON-FORMATTED POLICY RESPONSE (1 OF 400)	148	
APPENDIX O	 OOXML HELPER	..	149	
APPENDIX P	 XACML POLICY TESTER – XACML-EVALUATION\MAINCLASS.CS	150	
APPENDIX Q	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\ISTICKY.SLN (VISUAL STUDIO SOLUTION)	...	151	
APPENDIX R	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\APPHANDLER.CSPROJ (VISUAL STUDIO PROJECT)	153	
APPENDIX S	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\IDOCUMENT.CS
(PEP.APPHANDLER.CANDYSTORE.IDOCUMENT INTERFACE)...	155	
APPENDIX T	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\ICANDY.CS
(PEP.APPHANDLER.CANDYSTORE.ICANDY INTERFACE)	..	156	
APPENDIX U	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\CANDY.CS
(PEP.APPHANDLER.CANDYSTORE.CANDY CLASS)	...	157	
APPENDIX V	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\PDF\DOCUMENT.CS
(PEP.APPHANDLER.CANDYSTORE.PDF.DOCUMENT CLASS)	..	158	
APPENDIX W	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\PDF\HPDF.CS
(PEP.APPHANDLER.CANDYSTORE.PDF.HPDF CLASS)..	159	
APPENDIX X	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\OOXML\DOCUMENT.CS
(PEP.APPHANDLER.CANDYSTORE.OOXML.XDOCUMENT CLASS)	161	
APPENDIX Y	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\OOXML\MASTER.CS
(PEP.APPHANDLER.CANDYSTORE.OOXML.XMASTER CLASS)	..	164	

 vi

APPENDIX Z	 OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\ CANDYDELIVERY\FILESTREAMER.CS
(PEP.APPHANDLER.CANDYDELIVERY.FILESTREAMER CLASS)	...	166	
APPENDIX AA	OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\ CANDYDELIVERY\SINGLESTREAM.CS
(PEP.APPHANDLER.CANDYDELIVERY.SINGLESTREAM CLASS)...	167	
APPENDIX BB	OOXML STICKY POLICY HANDLER EVALUATION –
UNITTEST\UNITTEST.CSPROJ (VISUAL STUDIO PROJECT)	...	171	
APPENDIX CC	OOXML STICKY POLICY HANDLER EVALUATION –
UNITTEST\UNITTEST1.CS (TEST CLASS)	..	173	
APPENDIX DD	OOXML STICKY POLICY HANDLER EVALUATION –
WEB\DOWNLOADER.ASHX (DOWNLOADER CLASS)	..	175	
APPENDIX EE	OOXML STICKY POLICY HANDLER EVALUATION –
WEB\DEFAULT.ASPX (DEFAULT PAGE)	...	179	
APPENDIX FF	 OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBEDRV.SLN	..	181	
APPENDIX GG	OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBEDRV.VCXPROJ	..	182	
APPENDIX HH	OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBELIB.C	...	186	
APPENDIX II	 OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBELIB.C	...	188	
APPENDIX JJ	 OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBEDRV.C	...	189	
APPENDIX KK	OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBEDRV.INF	...	211	
APPENDIX LL	OOXML MASTER DOCUMENT RENDERING	...	213	
APPENDIX MM	 OOXML MASTER DOCUMENT ACCESS CONTROL – UNLOCKED	214	
APPENDIX NN	OOXML MASTER DOCUMENT ACCESS CONTROL – EWA EXPLICITLY
PROTECTED OWN UPDATE	...	215	
APPENDIX OO	OOXML MASTER DOCUMENT ACCESS CONTROL – CURRENT
DOCUMENT PROCESSOR WAS GRANTED READONLY RIGHTS OVER ENTIRE
CONTENT	 216	

	

 vii

GLOSSARY OF ACRONYMS
Term Definition Term Definition
AAA authentication, authorisation, and accounting KP-ABE key-policy attribute-based encryption
AAL authenticator assurance level LDAP lightweight directory access protocol
ABAC attribute-based access control LiBAC lightweight break-glass access control system

ABE attribute-based encryption
MA-
ABE

multiple-authority attribute-based encryption

ACS access control service MAC mandatory access control
AD DS Microsoft Active Directory Domain Services MFA multi-factor authentication
AE authenticated encryption MHIBE multiple hierarchical identity-based encryption
AEAD authenticated encryption with authenticated data MS Microsoft
AES Advanced Encryption Standard NISC National Institute of Standards and Technology
AES-
CBC Advanced Encryption Standard Cipher Block Chaining

Non-
DAC

Non discretionary access control model

AES-
CTR Advanced Encryption Standard Counter Mode

NTRU a cryptosystem that utilises lattice theory; acronym not clearly defined

AES-
GCM Advanced Encryption Standard Galois Counter Mode

OASIS Organisation for the Advancement of Structured Information Standards

AIP allowable intended purpose OAuth open authentication
API application programming interfaces OECD Organisation for Economic Co-operation and Development
APP application component OLE object linking and embedding
ARBAC
97 administrative RBAC ’97

OOXML Office Open XML format

ASL algorithm security lifetime OpenID open identity
AuthN authentication OWL Web ontology language
AuthZ authorization PBAC purpose-based access control
B2B business to business PDF portable document format
B2C business to customer PDP policy decision point
BDHP bilinear Diffie Hellman problem PEP policy enforcement point
BYOK bring your own key PFS perfect forward secrecy
C-RBAC cryptographic RBAC PHR personal health record
CA certificate authority PII personal identifiable information
CIP conditional intended purpose PIP prohibited intended purpose
CNG Microsoft Cryptography Next Generation PIP policy information point
COM Component Object Model PKC public key certificates
CP-ABE ciphertext-policy attribute-based encryption PKI public key infrastructures
CRUD Create, Read, Update, Delete event PKG private key generator

CSP
credential service provider in identity assurance context;
otherwise cloud service provider

QI quasi-identifier

CSP cloud service provider QRNG quantum number generator
CSU cloud service user RAAC risk-aware access control
CSV comma-separated values format RBAC role-based access control
DAC discretionary access control RDF resource description framework
DES data encryption standard RDFS resource description framework schema
DH Diffie-Hellman algorithm RFID radio-frequency identification

DLP
discrete logarithm problem; but not in data loss
prevention context

RMS Rights Management Services

DNA deoxyribonucleic acid RNA ribonucleic acid
DRM digital rights management RNG random number generator
ECC elliptic-curve cryptography RP relying party
ECS enterprise cloud subscriber RSA Rivest–Shamir–Adleman public key scheme
EHR electronic health record SAML security assertion markup language

FAL federated assurance level
SARBA
C

scoped administrative role-based access control model

FIM federated identity management SCIM cross-domain identity management
FISA Foreign Intelligence Surveillance Act SDK software development kit
fs-HIBE forward-secure hierarchical identity-based encryption SFA single-factor authentication
GDPR The General Data Protection Regulation from EU SMS short message service
GP general medical practitioner SOA service-oriented architecture
HIBE hierarchical identity-based encryption SOAP simple object access protocol
HIBS hierarchical identity-based signing SP service provider
HSM hardware security module SPIBE sticky policy identity-based access control
HTTP HyperText Transfer Protocol SPML service provisioning markup language
IAL identity assurance level SSO single sign-on
IAM identity and access management TA trust authority
IBC identity-based cryptography TCP Transmission Control Protocol
IBE identity-based encryption TPA third party auditor

IBE-BF
identity-based encryption from Dan Boneh and Matthew
K. Franklin

UDP User Datagram Protocol

IBE-IPG identity-based encryption over isogenous pairing groups UWD Universal Windows Driver
IBS identity-based signing VBA Visual Basic for Applications

ID2020

identity in 2020; ID2020 is a nonprofit public-private
partnership committed to improving lives through digital
identity

W3C World Wide Web Consortium

IdP identity provider WWW World Wide Web
IPS isogenous pairing groups X500 directory management protocol standard
IRM information rights management X509 public key certificates format
JSON JavaScript Object Notation format XACML eXtensible Access Control Markup Language
KMS key management system XML eXtensible Markup Language

	

 1

ABSTRACT
Data sharing domains have expanded over several, both trusted and insecure

environments. At the same time, the data security boundaries have shrunk from internal

network perimeters down to a single identity and a piece of information. Since new EU

GDPR regulations, the personally identifiable information sharing requires data

governance in favour of a data subject. Existing enterprise grade IRM solutions fail to

follow open standards and lack of data sharing frameworks that could efficiently integrate

with existing identity management and authentication infrastructures. IRM services that

stood against cloud demands often offer a very limited access control functionality

allowing an individual to store a document online giving a read or read-write permission

to other individual identified by email address. Unfortunately, such limited information

sharing controls are often introduced as the only safeguards in large enterprises, health-

care institutions and other organizations that should provide the highest possible personal

data protection standards.

The IRM suffers from a systems architecture vulnerability where IRM application

installed on a semi-trusted client truly only guarantees none or full access enforcement.

Since no single authority is contacted to verify each committed change the adversary

having an advantage of possessing data-encrypting and key-encrypting keys could change

and re-encrypt the amended content despite that read only access has been granted.

Finally, the two evaluated IRM products, have either the algorithm security lifecycle

(ASL) relatively short to protect the shared data, or the solution construct highly

restrained secure key-encrypting key distribution and exposes a symmetric data-

encrypting key over the network. Presented here sticky policy with identity-based

encryption (SPIBE) solution was designed for secure cloud data sharing. SPIBE

challenges are to deliver simple standardized construct that would easily integrate with

popular OOXML-like document formats and provide simple access rights enforcement

over protected content. It leverages a sticky policy construct using XACML access policy

language to express access conditions across different cloud data sharing boundaries.

XACML is a cloud-ready standard designed for a global multi-jurisdictional use. Unlike

other raw ABAC implementations, the XACML offers a standardised schema and

authorisation protocols hence it simplifies interoperability. The IBE is a cryptographic

scheme protecting the shared document using an identified policy as an asymmetric key-

encrypting a symmetric data-encrypting key. Unlike ciphertext-policy attribute-based

access control (CP-ABE), the SPIBE policy contains not only access preferences but

 2

global document identifier and unique version identifier what makes each policy uniquely

identifiable in relation to the protected document. In IBE scheme the public key-

encrypting key is known and could be shared between the parties although the data-

encrypting key is never sent over the network. Finally, the SPIBE as a framework should

have a potential to protect data in case of new threats where ASL of a used cryptographic

primitive is too short, when algorithm should be replaced with a new updated

cryptographic primitive. The IBE like a cryptographic protocol could be implemented

with different cryptographic primitives. The identity-based encryption over isogenous

pairing groups (IBE-IPG) is a post-quantum ready construct that leverages the initial IBE

Boneh-Franklin (IBE-BF) approach. Existing IBE implementations could be updated to

IBE-IPG without major system amendments. Finally, by applying the one document

versioning blockchain-like construct could verify changes authenticity and approve only

legitimate document updates, where other IRM solutions fail to operate delivering the

one single authority for non-repudiation and authenticity assurance.

 3

1 Introduction

Just in the last couple of years, people experienced transformation from the analogue into

the digital world. This is not only a beginning of a new technological phase, it has started

the new digital era. Today, the international ID2020 alliance plans to deliver one global

digital identity to all living people, including over one billion people who have never been

officially registered. Global digitalisation brings new digital threats with an impact never

seen on such a scale.

Reading news, we could observe a fascinating phenomenon, enormously rapid digital

body growth driven by demands for more functionality, size, speed, and features. This

new living organism is not alone and requires intelligence to protect itself from the

surrounding environment. Without the immunity, it will experience more severe

damages. The recent cyber-attack at German government systems [1] caused not only

exposure of sensitive intelligence information but also weakened the trust citizens have

for the institution that supposed to protect them. Furthermore, we see that trusted channels

providing decent security boundary fail in trying to assure the data protection.

Information lost its protection shield since it entered into a shared cloud space. It is not

about network firewalls anymore, which like veins could keep the bit of information

within a closed stream. In recent years information security has rapidly changed from a

network being a security boundary to an identified information as the only true security

boundary that has left. In 2017 one of the most significant cyber-attacks compromised

the security of the major credit reporting agency in the United States [2] causing personal

data leakage of over 140 million citizens. Just a few months later, the largest Swiss

telecommunication company reported one million Swiss citizen records being stolen [3].

In both cases, attackers easily managed to take an advantage over the security of the

system. Hardly any attacks on such a scale used sophisticated cryptographic techniques

to gain an advantage within a protected system.

1.1 Author Publications

G. Spyra, “Next Generation Authentication Infrastructures With Role Based Security For

Cloud Computing,” Edinburgh Napier University, 2012.

G. Spyra, W. J. Prof Buchanan, P. Cruickshank, and D. E. Ekonomou, “Cloud-Based

Identity and Identity Meta-Data: Secure and Control of Data in Globalization Era,” Int. J.

Reliab. Qual. E-Healthcare, vol. 3, no. 1, pp. 49–66, 2014.

 4

G. Spyra, P. W. J. Buchanan, and D. E. Ekonomou, “Sticky policy enabled authenticated

OOXML for Health Care,” in BCS Health Informatics Scotland Research Conference

2015, 2015, pp. 1–6.

G. Spyra, W. J. Buchanan, and E. Ekonomou, “Sticky policy enabled authenticated

OOXML,” in SAI Computing Conference 2016, 2016.

G. Spyra and W. J. Buchanan, “Protecting Documents with Sticky Policies and Identity-

based Encryption,” in 2016 Future Technologies Conference (FTC), 2017, no. January,

pp. 1–5.

G. Spyra, W. J. Buchanan, and E. Ekonomou, “Blockchain and Git repositories for Sticky

Policies protected OOXML,” in 2017 Future Technologies Conference (FTC), 2017, no.

November, pp. 29–31.

G. Spyra, W. J. Buchanan, and E. Ekonomou, “Sticky policies approach within cloud

computing,” Computers & Security, pp. 1–9, 2017.

1.2 Aim and objectives

This thesis aims to deliver a model for secure information sharing in the cloud, leveraging

common information rights management (IRM) architectures and modern cryptographic

and access control techniques.

The main research questions to answer in this thesis are:

• How to build a secure cloud-ready file sharing framework using sticky policy?

• Is there existing standard, mature and secure components ready to construct such a

solution?

• What are the challenges for secure cloud information sharing especially for

organizations such as health-care, governments and large enterprises?

• How the proposed sticky policy with identity-based encryption (SPIBE) construct

could cope with secure cloud information sharing challenges in comparison to other

IRM solutions?

The research first has to highlight current security related problems when it comes to data

sharing, new data protection regulations and latest global technical trends. Crucial part to

justify the selected components of SPIBE framework are existing already in use

 5

authentication and authorization standards. To synthetize the model design and produce

evaluation with other existing IRM solutions research explains common cryptographic

protocols and related security safeguards including advanced key management.

Work critically asses existing popular IRM solutions to identify potential weak points,

architectural gaps and challenges related to cloud computing and quantum technology.

1.3 Contribution and novelty

This work provides an overview of secure models, which combined, could give a solid

foundation for a new reliable cloud-based secure data-sharing model. Many identities and

personal identifiable information (PII) data hosting models recognise security issues that

come with Cloud computing. Researchers try to propose methods to enforce

accountability over data stored in the cloud shared space [4]. Many focus on data

protection in the health-care context and propose to find the most suitable encryption and

access control model, along with delivering a mature framework for Cloud-based

implementations [5], [6]. Various information rights management (IRM) systems deliver

solutions based on symmetric and both symmetric and asymmetric cryptography [7], [8]

or [9].

While symmetric key-based solutions suffer from difficulty to exchange keys in

distributed implementations [8], the combined symmetric and asymmetric solutions

suffer from a low public key algorithm security lifecycle (ASL) [7], [9].

Proposed model, sticky policy with identity-based encryption (SPIBE) uses unique

document identifier together with policy to identify and protect OOXML document.

Unlike typical IBE construct [10] this work delivers identity from a sticky policy

protecting the data like in [11]. Access policy is formatted with eXtensible Access Control

Markup Language (XACML) standard, which highly constrains the access attributes,

rules and conditions. In compare with non-standardized attribute-based access control

(ABAC) models the SPIBE is simpler to use and to implement due to many existing

XACML schemas. While the ciphertext-policy attribute-based encryption (CP-ABE)

schema [12] extends traditional key-policy attribute-based encryption (KP-ABE) [13]

over access subject context, the SPIBE leverages concept of both, where global document

identifier and its version together with role-based access control (RBAC) like rules are

combined into a policy. Cryptographic construct currently uses AES symmetric

encryption to protect the data and asymmetric identity-based encryption over isogenous

pairing groups (IBE-IPG) [14] to encrypt the symmetric data-encrypting key. SPIBE

 6

contributes significantly by aligning existing IRM models with new data protection

demands and newly developed security techniques.

1.4 Background
1.4.1 Data Loss Prevention (DLP)

A major problem of data protection within the Cloud is that a data, which seems to be

local and personal is in fact unencrypted once stored in the Cloud. Sooner or later this

data might become a subject of direct or indirect processing by third parties. Lack of

encryption mechanisms used to protect the information and the global character of the

Cloud causes data leaks without data owner control [4]. Even encrypted data is still

exposed to several data leakage risks because the encryption techniques cannot compete

with increasing processing power [15]. This new processing power is needed to

effectively encrypt live data in memory generate, release and revoke encryption keys to

achieve a truly protected personal data in the Cloud [16].

Data loss prevention (DLP) is a common data protection programme more or less

successfully adapted by many organisations and corporations. Since the first OECD

recommendation on data protection [17] the data loss has been not only a concern for

financial institutions taking higher precautions worrying to lose its reputation but also for

companies having anything to do with a personal data. Data loss or leakage occurs when

data is no longer under control of the responsible data custodian. Data loss could be an

effect of an external or an insider attack. Unfortunately often we see it is negligence at

the highest corporate C-level [2] [3] that allowed an adversary to take advantage of

unprotected systems. Data loss, as with other security incidents, could cost organisations

a signification amount of money due to indirect loses like reputation, intellectual property,

trade secrets or more direct like stolen bank accounts or credit cards details and crypto-

currency units. Now financial losses will be also be relate to penalties that come into force

on 25 May 2018 following the new Regulation (EU) 2016/680 of the European

Parliament and the EU Council [18]. Furthermore, approved in June 2018, a new

Assembly Bill 375 in California takes effect in January 2020 [19] will make companies

that fail to follow the new privacy prior to data leakage incident liable for high civil

penalties.

Recently the Massachusetts Institute of Technology referred to existing safeguards, i.e.

cryptography, as insufficient to protect data [15], when it comes to personal data shared

in a cloud by governments, medical institutions and others, actually disqualifies any

 7

encryption algorithms used. However, it does not encourage to protect data and to seek

for modern information protection countermeasures.

1.4.2 Sticky Policies

Sticky policies group rules defining who, when, where and how can access the data.

Unlike other access policy models, policies are bound to the data piece. This access

control model could secure personal identifiable information (PII) with high

accountability. Each personal data access attempt is a subject of extensive auditing where

any security breach or a data leakage incident is reported by sticky policies framework.

Detected incidents could be tracked and give solid evidence leading to legal

consequences, e.g. where data is not properly governed under GDPR regulations.

The data owners can feel owning the data released into the Cloud. Policies associated

with the data are protecting and enforcing the data owner consent. E.g. sticky policy

added to medical report about a patient by data owner would cover a data owner consent

and define any subject rights to process that data.

Data owner preferences regarding trust authority (TA) selection for policy management

give possibility to choose only providers that ensure certification for all independent

trusted parties behind TA, i.e. authorization authority and private key generator (PKG).

1.4.3 Identity

Identity can be seen as the unique information sufficient to perform operations on objects.

The subject, owner of the digital identity, could be a living person or any digital actor that

could initiate a digital transaction. Information related to an identity could be seen as a

set of attributes. Attributes could be static in some identity models but can also vary

depending on claims by specific service providers (SPs) [20]. Digital identity has to

uniquely identify the subject in some contexts. However, not all contexts require unique

identification [21]. Most common attributes used for identity identification are email

address [22], international phone numbers [23], in some countries national identification

number or national insurance number. Some governments and institutions conducted

research on RFID implants to identify a living person uniquely.

Technologically advanced biometric measurements could deliver physical characteristics

vector representing unique, immutable identity attributes [24]. The last could potentially

replace all existing identity attributes required to initiate identification and authentication.

Considering non-living subjects, the identity attributes could be constructed from legacy

 8

hardware numbering [25], [26]. However, identifying attributes of a device could be

successfully derived similar to a living person biometrics vector, from a hardware

physical characteristics vector [27]. The process where the subject claims a digital

identity is called authentication (AuthN). Authentication verifies various authenticators

required to complete a digital identity claim. Subject during authentication attempts to

access an authentication service that is in control of authentication technologies. Digital

authentication presents subject with a challenge to solve relevant to security boundaries

and access context of the digital identity. The authentication process could use both

physical and digital channels. The subject can fulfil authentication claims in person or

over the network. Authenticators are also connected with all required entities over the

network, very often this is an open Internet network.

1.4.4 Health-care

In healthcare, medical organisations store and process mostly sensitive personal

information, and also need persistent access to a sensitive data [28] to save their patients

life at any time, without technological and jurisdictional constraints [18]. Unfortunately,

access to such a data is mostly restricted to one institution or very often a single building.

Currently, healthcare services are still concentrated around medical institutions rather

than the patient [29]. Furthermore, most of the legacy systems suffer from lack of

standardisation, therefore, are neither ready for a global integration nor for full personal

health record (PHR) and electronic health record (EHR) enablement.

Even when personal data is stored and processed within secure and well-defined

boundaries, problems can arise because there is no oversight by the data subject (i.e. the

patient). There are strong indications that PHR owners would also like to have full access

to their information [30] and also to be able to control the rights of access to the records.

PHRs and even more so the EHR, which aggregate them require a platform that will allow

secure data exchange [31] preserving privacy across Cloud-based systems [32]. Similar

problems can be found in educational institutions where pupil [33] or student information

cannot be shared due to legal and technological limitations, despite the data subject’s

expectations.

Several works [34], [35] aim to deliver a unified model, which can be adapted under

several security contexts like health-care, education institutions, enterprises and others.

Here is worth mentioning the Microsoft HealthVault development project, which defines,

in detail, several XML schemas ready to adapt in medical institutions. The World Wide

Web Consortium (W3C) aims to address quality of XML language and related schemas

 9

what includes delivery of basic secure standards that guarantee integrity and

confidentiality of information represented as an XML-structured piece of data. The W3C

has created the W3C XML Signature Working Group focused on digital signatures and

W3C XML Encryption Working Group specialised in encrypted content. The main

technological problem with adequate data protection is the efficiency of encryption

algorithms when the encrypted information requires e.g. indexing [4]. Several methods

can be used in parallel for encryption to effectively index unencrypted XML data [36],

although implementation would require further techniques to protect the health-care

related part of personal identifiable information (PII) data which is an integral part of

PHR and EHR data.

1.5 Thesis structure

The following chapters cover:

• Literature Review. This includes research background presenting the current

situation demanding for secure cloud data sharing. It covers existing frameworks

and open standards that integrate with the proposed Sticky Policies with Identity-

Based Encryption (SPIBE) model. It covers current research around

cryptographic primitives that are ready for modern computing.

• Sticky Policies Approach within Cloud Computing. This chapter covers the main

contribution of this work shows how the proposed model protects, encrypts and

decrypts data protected under SPIBE construct.

• Evaluation Methodology and Implementation. This covers actual evaluation that

has been performed to support SPIBE model, recognise its advantages and

disadvantages in comparison to other existing IRM solutions.

• Conclusions and Future work. Finally, the concluding chapter summarises the

research and evaluation showing missing parts and space for further development

and SPIBE model improvements.

The thesis also contains appendixes which contain not only the code used for

evaluation but also the Visual Studio solutions as some of the C++ projects require

specific configurations to be hosted on the MS Windows platform.

 10

2 Literature Review

2.1 Introduction

This chapter provides the fundamentals for sticky policy with identity-based encryption

(SPIBE) model evaluation. It should justify different standards and technologies used

giving the reader a complete context. Starting from explaining the need for standardised

identity, through secure authentication the model could finally authorise an individual to

access the protected data. Protection requires access level countermeasures such as

relevant access control model, access control expression language (i.e. XACML) and

finally a cryptographic primitive that should address the actual demand for flexible and

secure schemes. The final piece, the OOXML document format should introduce the

reader to one but not the only possible SPIBE integration scenario. This chapter also

discusses the IRM weaknesses and proposes potential architectural improvements by

introducing single trusted blockchain tracking all legitimate information changes.

2.2 General Data Protection Regulation (GDPR)

European Union states agreed on adapting directives giving every person a right to the

protection of own personal data [18]. Set of new regulations applied to all Member States

aims to respond to new challenges brought by rapid sociotechnical development. Amount

of collected personal data together with technological advance has exposed new threats.

New scientific fields like the data science allow global processing of all sensitive data

types, never available at this scale before. Both a private sector and public authorities

could use that data for their advantage. Recent events show how new EU regulations may

improve the legal perception of the personal data. British political consulting firm

Strategic Communication Laboratories (SCL Group) / Cambridge Analytica illegally

used personal data of millions of Facebook users [37]. Furthermore, the same company

consulted current United States president Donald Trump during the presidential election.

Facebook owner Mark Zuckerberg confirmed [38] that the data has been sold to

Cambridge Analytica knowing how it will be processed. In the face of the different

charges effectively at 1st of May 2018 SCL Group closed operations also having new EU

regulations hanging above as Damocles’ sword. GDPR highly constrains that freedom of

uncontrolled data processing in favour of a natural person’s freedom. The regulation also

highly constrains personal data processing techniques such as profiling, where personal

preferences, behaviours and attitudes are analysed.

 11

The regulation requires the strengthening of the data subject rights as well as data

recipient obligations. The data recipient means a natural, a legal person or another body

to whom the personal data has been disclosed including legal authorities responsible for

monitoring and compliance with data protection rules. Regulations ease data processing

although not except regulation compliance for scientific research on personal data. Data

subjects should give their explicit consent allowing data processing to be completed, but

only to some extent. This includes deoxyribonucleic acid (DNA) or ribonucleic acid

(RNA) analysis, which is also defined as personal data processing. Data processing

obligations are tightened when data relates in any way to a child, person of age below 16.

This, as with adult person personal data, applies to any information that relates directly

or indirectly to a subject. Any data processing not excluding marketing purposes, creating

a personality or user profile is strictly regulated and requires a consent given or authorised

by the holder of parental responsibility for the child [18]. Furthermore, such consent has

to be explicitly verified by the controller.

GDPR ensures and protects freedom in regard to religion, ethnic origin, political opinions,

sexual orientation, philosophical beliefs and genetic data i.e. also historical ancestry data

that could identify an individual. Any data processing that could reveal such information

threatens these freedoms and is strictly prohibited by the regulation [18].

Regarding security countermeasures, the regulations give strong due diligence safeguards

protecting the data at rest. Cryptographic algorithms security lifecycle makes any

encrypted data vulnerable to tomorrow’s technology. Unlike any other sensitive or

confidential data, the personal data should be protected during time exceeding algorithm

security lifecycle. While protection of critical financial report or country tactical, or

strategic information, is necessary mostly within a relatively short period, i.e. days,

months or decades but the personal data protection is not limited to any period. The

regulation, although, does not apply to deceased persons, and the historical data

processing such as ancestry analysis if related to a living person [18] might fall within the

scope of the regulation.

2.3 IRM

Information rights management (IRM) the document protection related domain of wider

in scope digital rights management (DRM). DRM aims to protect digital intellectual

property such as movies, audio, patents, documents and all types of multimedia where

legal protection require technological safeguards. In other words, it is a collection of

 12

hardware, software, services, and technologies that have been developed for persistently

governing the authorized distribution and use of content and services according to their

associated rights and managing consequences of that distribution and use throughout their

entire lifecycle or workflow [39]. The IRM refers to safeguards for digital information

i.e. digital documents that are either at rest or in transit. Digital documents could consist

of actual documents like Office Open XML (OOXML) or Portable Document Format

(PDF) package encapsulating multimedia content. The package is defined as a rich

content combined into one single file. Depends on the context the digital information

could also refer to an image, a simple text file, an email or even a short message service

(SMS) message.

IRM prevents protected information package from being printed, forwarded, saved,

edited or copied without prior authorisation, ensuring information confidentiality,

integrity, and non-repudiation. The greatest challenge for IRM systems is its

interoperability across different platforms with different editing applications. As with

DRM, missing standards are allowing decent security enforcement for digital data

protection [39]. Existing products are either very homogeneous hence too hermetic for

common use or are highly heterogeneous and are often user-friendly. However, offering

an apparent acceptable level of data protection.

IRM systems enforce data owner access preferences, where owner decides who, under

what conditions and how could process the data. Access preferences follow the digital

data that moves across different security boundaries. Such assigned rights could constrain

access using discretionary access control (DAC) model, where data access is governed at

all times by the data owner. Access could also be defined under mandatory access control

(MAC) specifying document classification. Here, protected information is addressed to a

group of individuals having sufficient level of privileges or the right clearance level that

authorises the access. Finally, the access could be defined under non-discretionary access

control (Non-DAC) model like role-based access control (RBAC) where the document is

addressed to a group of people with a specific role within an organisation. For example,

patient’s medical examination results initially have the patient information assigned (i.e.

data subject), together with laboratory access preferences (i.e. data owner) and general

practitioner (GP) role, giving GP access to read and provide own comments about the

medical test results. Data owner has full rights over the report, but data subject who has

the full legal rights over that data within the IRM system, the data subject could only read

 13

the report. The general practitioner, although, has rights to read and write the report i.e.

complete a diagnosis as the report is addressed for further medical analysis.

2.4 Identity management

Information does not stay within single corporate boundaries, but large, middle and small

companies and organisations federate to collaborate efficiently. Still, digital identity

moving across boundaries becomes often exposed to a threat of identity impersonation

where the illegitimate subject becomes in control of a digital identity. It is important to

design identity management systems following the latest recommendations for

cryptographic techniques, authentication flows, and authentication protocols. To

overcome new data protection challenges, there are existing assurance levels related to

digital identity protection. The digital identity could be measured against several identity

assurance levels [21].

There are two levels of assurance for non-federated identities the Identity Assurance

Level (IAL) and the Authenticator Assurance Level (AAL). IAL consists of three levels,

IAL1 where digital identity does not have to identify a living person uniquely. Any

attributes verification during authentication has only technical context without any actual

relation to real unique identity identification. IAL2 requires verification that digital

identity is uniquely related to a real person identity. Identification of the identity provided

during initial registration either delivered in person or remotely is a must. Either a

credential service provider (CSP) or a relying party (RP) could assert attributes delivered

as a claim for pseudonymous identity. IAL3 requires that individual proofs identity in

person upon registration. Identity meta-data attributes have to be verified by authorised

and trained CSP representative. For pseudonymous identity, attributes could be asserted

via CSP or RP. The AAL has three distinct assurance levels for authentication procedures.

With AAL1 a claimant needs an authenticator that is bound to the digital identity account

[21]. Both single-factor authentication (SFA) or multi-factor authentication (MFA)

techniques could be used.

To complete the authentication the claimant via secure authentication protocol proves he

is a legitimate owner of the authenticator. AAL2 proves that the claimant controls two

distinct authenticators using MFA with a minimum of two distinct factors. Verification

requires secure authentication protocols. All cryptographic techniques used at this level

and above have to be approved. Unlike lower AAL levels the AAL3 requires from the

claimant a proof, using cryptographic protocols, of a possession of a key. A hardware

 14

authenticator and only approved cryptographic techniques could be involved at this level.

Authentication methods used have to preclude any possible identity impersonation.

Furthermore, AAL3 requires minimum two distinct authentication factors via secure

authentication protocols. For federated identities, there is a separate measurement

component called Federated Assurance Level (FAL) [21]. In FAL1 the relying party (RP)

is allowed to receive the bearer assertion signed by the identity provider (IdP) using only

approved cryptography. FAL2 level allows RP to receive signed and encrypted bearer

assertion from IdP. Only RP should have the possibility to decrypt the assertion. The

highest possible assurance level for federated identity is the FAL3. It requires on top of

the lower assurance level safeguards that a digital identity owner the subscriber proofs of

possession of a cryptographic key referenced in the assertion.

2.4.1 SCIM Schema

System for cross-domain identity management (SCIM) was created [40] in order to

standardise the digital identity management including all the processes related to identity

provisioning, meta-directory provisioning, identification, authentication, and federation.

The rapid development of global cloud-based systems requires a completely new

approach to identity management. Legacy identity management systems are monolithic

often based on X500 directories [41] and directory metadata [42], where schema evolved

to store not only identity-related information but configuration metadata from various

applications and systems. Furthermore, lack of consistency in legacy implementations

makes cloud data and information sharing a difficult challenge. Identity-related attributes

are not following a single standard; hence any cross-enterprise identity federation requires

a non-standard approach. Identity provisioning was partially standardised with service

provisioning markup language (SPML) [43]. However, it was never easily adaptable due

to different identity management data schemes. The new SCIM approach highly

simplifies the identity management including cross-domain identity provisioning due to

standardised skimmed schema [44]. SCIM defines a schema for different resource types,

i.e. users, groups, configuration, and so on.

For each resource type, it defines a standard attributes set, e.g. userName, password,

userType, timeZone [44], which represent flat and non-complex attributes or constructed,

complex or multi-valued attributes such as name, groups, x509certificates. Each standard

attribute defined within SCIM schema has its type (e.g., string, dateTime), cardinality

(e.g. singular, complex), mutability (e.g. readWrite, immutable or writeOnly), uniqueness

(i.e. none, global or server), case-exactness (e.g. caseExact is equal to false when

 15

exactness is case-insensitive) and returnability (e.g. password attribute has returnability

equal never, however, id attribute is returned during each request due to returnability

equal to always) [44]. Identity management schema following these provisioning

baselines is ready for global identity federations. This schema constrains existing systems

giving developers some guidelines regarding a standard set of attributes required to

handle security enabled resources like users and groups. SCIM also provides security best

practices and recommendations for sensitive security data (e.g. password attribute)

protection also in the context of other authentication and authorisation security

recommendations [45].

SCIM defines a provisioning schema and a provisioning protocol [46]. It is another

successful standard (see Figure 1) after Service Provisioning Markup Language (SPML)

[43].

Figure 1 Brief history of Identity Provisioning [47]

This protocol operates at the HTTP application layer executing HTTP methods that

represent CRUD (Create, Read, Update, Delete) activities exchanged between different

parties [40]. SCIM 1.1 defines a cloud service provider (CSP), enterprise cloud subscriber

(ECS) and cloud service user (CSU) as three distinct acting parties, actors that take part

in protocol flow.

Only well-designed identity and access management (IAM) system can ensure secure

access to the data. Empowered with SCIM schema existing enterprise systems could

federate and define common data access policies understandable by all parties.

 16

Consistently provisioned and revoked identities across all interconnected environments

highly increase the data security. Standardised single SCIM schema helps to build global

heterogeneous IAM solutions with all heterogeneous systems advantageous.

2.5 Identity metadata

Data held by the identity provider (IdP) can most often be classified as either personally

identifiable information (PII) [48] or personal data. PII includes home addresses, social

security numbers or maiden name, what is enough to allow unique identification of an

individual. Depending on the authentication architecture supported by the IdP, the PII

metadata is exchanged as claimed verified attributes [30] between IdP and SP.

Identity verification methods require a relevant level of assurance [21] with effective

safeguards against unauthorised PII data divulgence. Secure cloud-based identity with

corresponding related personal data requires a secure model that supports the personal

responsibility of the object (i.e. data stored in the cloud) owner over their digital identity

and its authenticity.

While performing research around identity and identity metadata, it is crucial to search

for the possibility of separating PII data from identity itself as well as securely joining the

shared data with identity using unique anonymous or ephemeral links. In modern identity

management implementations, where identity consists of an obfuscated unique identifier

[4] with policies required for further authorisation, only an obfuscated piece of

information [46], should be exchanged during service provider (SP) authentication claim.

Authentication that involves PII data flow needs to face a lack of single globally

established security baselines and certification for SPs and authentication, authorisation,

and accounting (AAA) mechanisms [49]. On the other hand, the model itself is still

vulnerable to more sophisticated attacks such as data inference [50].

Identity accessing object can act as a subject, depending on the activity context as shown

in Figure 2. At the same time personal identity (user) may act as an object when the

subject requires further information about the personal identity metadata. Furthermore,

the SP and the cloud-based service require an identity (user). All access control actors

require identity and identity metadata to be properly accounted for performed activities

in the shared cloud space. With a generic identity and access management framework, all

activities of the subject over an access object are logged for further legal audits. The

technology can benefit from a single, secure model where each entity of access control

 17

operation is equally accountable, as an identity instance inherits a generic schema whether

it is a real person or an automated robot.

Figure 2 Two different subjects access contexts with identity meta-data; f – function matching identity
Id with its rights R in given context

2.5.1 Identity Subject, Data Object and Predicate

Despite the discussed security control identity always remains in the centre. Over the

years very static and naive account-based access management evolved into a global

problem, where legacy security boundaries based on network perimeters were extended

into a public space called the cloud. Account-based security became identity-based

security, with a boundary that cannot be protected by legacy safeguards. To justify this

statement, one simply has to look at the data sharing context. A subject (see Figure 3)

within a strictly defined network environment does not access a data document. However,

an object passes several different network and security boundaries before the subject also

defined within a different context (i.e. medical, governments, enterprises or

organisations) attempts to access it.

Figure 3 Access tuple with a subject (Identity), an object (data) and a predicate (permission).

Publicly exposed data requires several safeguards, and, in this field, research work related

to purpose-based access control models play an important role as they aim to fill an

existing gap [51], [52] not addressed with any legacy access control models (see Section

 18

2.7). Currently in Europe OECD conducts the most crucial non-technically related work,

which addresses legal aspects of data security, [53]. It aims to deliver legal frameworks

to ensure data protection and address privacy concerns related to cloud-based computing

era.

Data structure and access management model both play a crucial role in building a secure

cloud-based data sharing framework [54]. Sticky-policies one of the most promising

access control models effectively enforces owner rights assignments over the owned

object. Recently the National Institute of Standards and Technology (NISC) published

their access control framework called Policy Machine [55], which was one of the

deliverables of Next Generation Access Control project and was proposed as a cloud-

based implementation [56]. Its major architecture components include core access policy

elements, assignments and relations definition, obligations and finally access request

decisions. Single policy framework can not only enforce access control policies

comprehensively across distributed and centralized operating environments, but also

comprise aspects involving the characterization, distribution, and control of implemented

capabilities. Policy Machine aims to dramatically simplify administrative effort, policy

enforcement, data interoperability, and usability challenges faced by every large

organization and enterprise today [55].

2.5.2 Secure Distribution of Identity Metadata

Because identity must securely span across different boundaries, it should provide cross-

platform integration abilities and capacity for identity and access management (IAM) and

federated identity management (FIM). Although, this is not the core part of the SPBIE

framework it has to be integrated if the solution should work on a global scale. There are

existing methods of secure data distribution, and also there are technologies that

compound together can be used to deliver an integrated identity meta-data framework.

Considering XML as a standard for identity meta-data the XML schema would require a

technique, which allows different parties to share an XML schema for a particular type

of content that is attached to the main identity. As identity meta-data content will be

spanned across different systems, it has to share the core identity element to maintain its

unique reference to a single person, while also maintaining several different schemas for

contextual interpretation. In this way, a person only needs to share a core identity element

that subjects can use for self-identification in the process of accessing objects. For

example, a patient registering for private medical treatment would not have to allow the

medical institution to store own PII information but would grant access by reference to

 19

own identity metadata that is hosted centrally by legal institutions. The core identity

ontology should not only identify but also represent identity access and operations

entitlements in the cloud for various services enabled for different access control models.

Encryption with other safeguards delivers the security crucial for distributed identity

metadata. Personal data before it is hosted by any cloud-based service should be

encrypted by default. Furthermore, the encryption of identity metadata should be required

for every single XML node [57], as they form a sensitive part of hierarchical identity

metadata. Digital signatures should be used to ensure the authenticity of XML ontology

definition and to ensure the access control granularity [58].

2.5.3 XML Schemas and Ontologies

One such XML-based ontology is the Web Ontology Language (OWL), which was

designed to define the semantics of the relationships between entities. OWL defines what

is semantically correct in XML, and both deliver data framework for the Web as well as

for Cloud-based systems. OWL has been successfully used for access control systems

implementation [59] as well as with encrypted distributed XML content [57]. There exists

an older alternative approach for delivering structures, the resource description

framework (RDF) together with RDF Schema (RDFS) defining classes for RDF.

Although, while it seems to be easier to adapt, semantic limitations mean RDF may not

satisfy all cloud-based identity metadata framework requirements, although it can be

successfully combined with an OWL in some implementations scenarios and suffice its

constraints [60].

Using OWL ontology [57], a single ontology is defined by a class, a sub-class, properties,

and relationships. There is also a possibility to define OWL class relationships, where

different ontologies can share a common parent. Within OWL it is possible to define the

ontology for our identity metadata, which would allow identity to refer to other identities

with simple predicate definitions (see Figure 4). The identity meta-data, here as a

compound XML model defined under several ontologies, can be spanned across several

contexts (see Figure 5). In other words, different parts of personal data can be stored and

processed by different organisations. XML parts can be defined under various ontologies

with different OWL-defined, XML schemas. A model where different parts of identity

metadata are distributed to different service providers enables it to make use of a range

of existing XML schemas, for instance, Microsoft HealthVault XML. Only such an

approach can guarantee that data access to personal information can be distributed and

efficiently maintained by different cloud service providers (CSP).

 20

Figure 4 Two subjects in reference to each other in a triplet (Subject – Predicate – Object) represent
linked identities

In the health-care sector, the identity metadata would align with the EHR concept, where

a range of different and possibly competing health-care repositories can hold patient

information [31]. Secure access to distributed data is possible thanks to one identity and

identity metadata framework. Securely linked identity metadata is an assurance of data

integrity and authenticity, which is what is required from new cloud-based systems.

Figure 5 Linked identity with identity meta-data using obfuscated references across several security
boundaries and contexts

Distributed XML identity metadata parts need to be linked to refer only to one identity.

This secure XML linking defines that part of the identity metadata that belongs only to

one identity. Without security, such linking is highly vulnerable to several types of attack

including impersonation attack and man-in-the-middle attack. In response, the identity-

based encryption (IBE) model has been successfully utilised to create a secure dynamic

reference for hierarchical data structures as discussed later in this work.

In summary, individual parts of the identity metadata share a common ontology designed

to support secure links. A mandatory obfuscated link is maintained from the main identity

 21

XML to subparts of the identity metadata and back from identity metadata to the main

identity. Requests from separate parts of identity metadata could be hosted in a service-

oriented architecture (SOA) implementation as shown in Figure 6. Web service(s)

exposed as part of dedicated cloud-based services could process distributed requests using

encryption, obfuscation and anonymisation (see also Figure 7, which includes further

SOA implementation details). Next, each cloud-based service could effectively support

such distributed XML model with effective XML clusters [61], where a single XML

document can be partitioned into several clusters.

Figure 6 System architecture: calling identity meta-data by obfuscated reference under SOA (possible
use case)

 22

Figure 7 System architecture: Identity authentication in SOA

2.5.4 Office Open XML – Standard Schemas

Office Open XML (OOXML) standard is mostly built on top of XML files, which

reference to each other to form a single document. XML files can be supplemented with

other reach files to deliver graphic, multimedia and other elements [62]. OOXML data

format can deliver data integrity using internal elements hashing, while confidentiality

can be assured by a single ZIP wrapper password protection and content encryption.

These techniques are sufficient to protect content that does not leave corporate network,

however, when leaked this built-in protection may not be sufficient for personal data.

Cloud-based identity metadata sharing solution to utilise OOXML standard would require

additional safeguards from service providers.

Distributed identity metadata requires a data structure that will allow a comprehensive

view of the data. E.g. doctor checking patient’s medical record will look not only into a

single laboratory result but would also need to see other medical opinions that the patient

received after medical evaluations were made. Such an overview can be shared with the

doctor using the standard functionality of OOXML. Parts of the overall report that could

be edited could be natively controlled in the so-called Master document. Composite

reports can be set to read-only state due to various factors related to document checked

 23

out state or related to access rights that doctor has over the entire report and its

subsections.

Regarding OOXML data indexing, in large databases NoSQL-based it is an easy task for

indexing engine as long as the document is not encrypted. This part requires further

research related to OOXML data anonymisation and obfuscation for indexing purposes.

Office Open XML (OOXML), here a XACML policy wrapper, is a ZIP package file

consisting of one or more file sections followed by a central directory. Multiple XML

document elements define the main document part. Each file section consists of an actual

embedded file and a local metadata file that includes information such as a filename, a

file directory, a timestamp, compression used and a data descriptor that includes a valid

file checksum. Most of OOXML internal sections could be protected by built-in OOXML

encryption. However, some sections are not covered by a native OOXML cryptographic

techniques [63]. In sticky policy with identity-based encryption (SPIBE) concept, a

XACML policy is added as an additional package content that remains in unencrypted

XML format. This policy defines access rules over resources and implements attribute-

based access control (ABAC)-like with attribute values defining legitimate data

processing subject, also role-based access control (RBAC) [64] where business or

institutional roles define who can access the data and finally risk-aware access control

(RAAC) expressions [65], the most dynamic access control technique making access

decisions upon dynamically calculated risk.

2.6 Cryptography overview

Every cryptographic algorithm could be characterized by keys, algorithm and the

message [66]. The perfect key is a truly random group defined at {0,1} of size n. Key size

is often predetermined by the cryptographic algorithm. Larger key size gives lower

probability to break the encryption. However, a not truly random key highly lowers the

security of the cryptographic algorithm as the predictability of the key is highly lowered

due to a limited key space [67]. Common random key generators rely on physical

deterministic hardware setup and machine boot up time to generate keys. These possible

keys might seem hard to predict, however, does require only existing modern computing

power to factorise all the possible keys generated by the underlying randomising

computer library. Key length should be selected precisely for the model, considering key

crypto-period, protected message characteristics such as other key or a data, a context

 24

where the message is either in transit or at rest, or the available processing power, and the

allowed energy consumption.

2.6.1 Key Crypto-period

Keys could have either static or ephemeral life, although all keys have to be revoked at

some point of time the ephemeral keys have rather very short lifecycle in compare to

static keys. Although a shorter key lifetime results in better security, it also reduces

performance. Diffie-Hellman (DH) is a good example of a cryptographic primitive where

the key is used to provide perfect forward secrecy (PFS). This ephemeral key encryption

is often used to exchange other static keys for long-term cryptographic algorithm

lifecycle. PFS property ensures that having two cryptographic primitives one used to

protect communication channel and the second used for the long-term message

encryption, in the case where the long-term key is compromised, the ephemeral session

will not be automatically compromised. Advanced Encryption Standard (AES) is an

example of a static key use, where the single secret key could be kept in hardware security

module (HSM) for a longer period of time. Such key requires increased safeguards as it

is often used to encrypt a larger number of keys and messages. Another approach is to

define different keys life-type within the same system are public key certificates (PKC)

or public key infrastructures (PKI). Certificates consist of RSA key pair [68] and other

key metadata such as a certificate expiry date and a key usage. If the key expiry date is

defined, the system using such a certificate should reject it for further use and revoke it.

Certificate templates based on different certificate purposes specify whether and when

keys should expire. Normally such a key life-time is defined with days, months,

sometimes years. Rarely RSA keys are set without an expiry date under the PKC.

2.6.2 Symmetric and Asymmetric Keys

The most common cryptographic key categorisation is derived from symmetric and

asymmetric algorithms. In symmetric encryption such as AES [66], the same key could

both encrypt and decrypt the message. This key is also referred to as a secret key because

it requires higher security safeguards to keep it secret and exchange with parties to encrypt

and decrypt the message. History shows that symmetric encryption has a significant

disadvantage when it comes to the key exchange between parties. This cryptographic

construct weakness helped Polish mathematicians during World War II breaking Enigma,

the cryptographic hardware-based algorithm used by Germans to exchange strategic

information [69]. French counterparts managed to steal symmetric shared keys what

helped Polish cryptographers breaking the algorithm. Fortunately, modern symmetric

 25

algorithms follow the Kerckhoff’s principle, where the encryption algorithm is known to

parties, although decryption keys are kept secret. Unlike Enigma, the AES cryptographic

primitive is an official open encryption standard, where the security boundary starts and

ends at the key itself. AES algorithm does not leave much space for tampering giving

limited adversary surface for backdoor implementation [70].

On the contrary to symmetric cryptography, the asymmetric algorithm uses two different

keys, one to encrypt and the other to decrypt the message, or to sign and then verify the

message authenticity. Keys used by this cryptographic primitive are often referred as a

public and a private key. The divulged key used for initial encryption or signature

verification is called a public key. The other that is kept a secret is referred to as a private

key and could be used to decrypt or sign the message. DH, RSA and elliptic-curve

cryptography (ECC) [71], [72] are one of the most commonly implemented public key

cryptographic algorithms.

2.6.3 Algorithm Security Lifetime

From the data perspective, the data kept at rest is exposed not only to current

cryptographic vulnerabilities. Encrypted data stored for a time exceeding algorithm

security lifetime (ASL) [73] is exposed to potential future threats. The time length during

which the data has to be protected should be taken into account [66] when selecting the

cryptographic algorithm. ASL for asymmetric encryption is relatively short in

comparison to symmetric encryption mostly due to a public key that by design is known

to different parties. The greatest challenge that shortened ASL of all the commonly used

cryptographic algorithms is quantum computing and the high computational power that

comes with it.

2.6.4 Quantum Computing

Although quantum computing does not pose a direct threat to all modern cryptographic

algorithms, it could be successfully used to break most of the commonly used asymmetric

key algorithms [74] and also symmetric encryptions if too short key sizes are used.

Quantum computers, unlike traditional binary machines, use quantum bits. The qubits

could exist simultaneously in two states representing 0 and 1, what is called

superposition. High parallel processing power quantum computer achieves via

entanglement, a state of two initially completely independent qubits that became

entangled [75]. Such qubits cannot change states independently hence if one qubit

changes state the other changes the state as well. In n qubits [qb] computer the

 26

entanglement allows 2" simultaneous operations. This implicates the most obvious attack

on a cryptographic construct by efficiently factorizing all possible keys. A more

sophisticated challenge for cryptography is a Shor’s algorithm [76] allowing factorization

of large prime numbers m is making RSA algorithm vulnerable to the first actual Shor’s

algorithm quantum implementation.

The RSA algorithm strength comes from a difficulty to produce large prime factors [68],

therefore even with large keys, this algorithm is no longer secure under quantum

processing paradigm [74]. Shor’s algorithm could be used to solve discrete logarithm

problems what could be leveraged to break elliptic curve cryptography (ECC) over Galois

Fields (GF) [77]. It would require 1000[qb] to efficiently factorize 160-bit ECC GF keys.

In regard to symmetric cryptography, the quantum computer could be used to factorise

data encryption standard (DES) keys. Although DES is not considered to be a secure [78]

it is still being used by many organisations. It could be broken using current

computational power, however, with Grover’s algorithm [79] applied on a quantum

computer, the adversary could construct tables for every possible DES key finding all

possible collisions with √𝑛 searches over 𝑛 unsorted database records.

2.6.1 Key Management System (KMS)

Security of cryptographic schema is not only about algorithms but mostly about the

implementation. Insufficient safeguards behind key management give the adversary an

advantage over the most sophisticated and secure cryptographic primitive [73]. Key

management systems (KMS) aim to keep key management under strict governance. The

key management should be aligned with a protected data type, algorithm security lifetime

(ASL), a key crypto-period and a cryptographic schema itself. Quantum computing is the

threat with the highest concern for cryptographic keys security [80]. It has been proven

that the efficient keys factorisation [76] and highly efficient searching over unsorted data

sets, i.e. factorised key tables [79], allow an attacker to compromise the security of legacy

as well as cloud-based systems. KMS system consists of different Crypto modules that

are components extending KMS cryptographic functions and constraining key security

boundaries.

A hardware security module (HSM) provides both physical and logical security

boundaries for the protected key. However, KMS could consist only of logical software

layer module. HSM implements several cryptographic safeguards including

cryptographic modules and random number generators (RNG) and some of the products

 27

already implement quantum number generators (QRNG) [81]. Unfortunately, mostly

financial instructions and governments, rarely medical care and enterprises consider HSM

implementation. Most often KMS boundary starts and ends at the single database level

where either entire database is encrypted or only specific sensitive tables [82]. The keys,

however, that encrypt this database is either cached locally, stored in rights-protected files

or are kept in the system registry. HSM is an appliance that often keeps key–encryption

keys in a dedicated security boundary with own security procedures and own network.

From GDPR perspective, often legacy logical software KMS gives better protection than

the protection offered by cloud service provider (CSP) due to legal and jurisdictional

issues. Proper identity federation could provide sufficient security boundary for cloud

identity, where actual credentials are kept either on-premises or are hosted by certified

local CSP [21].

Considering commercial cloud-based KMS that is a part of some corporate grade cloud

suite, Microsoft has implemented HSM support for its information rights management

(IRM) solution, MS Rights Management Services Online or Azure RMS [7]. It supports

key and data encryption using both cloud-based and on-premises HSM modules.

Unfortunately, only limited data scope could be covered with on-premises HSM, what in

most cases provides sufficient safeguards for keys integrity and confidentiality [73]. Keys

stored outside of a legal jurisdiction in countries like Switzerland could cause concerns

as the local data protection law is considered equal or even more restrictive than existing

European Union regulations [83].

2.6.2 Identity-Based Encryption (IBE)

Encrypted data require secure key repositories able to perform revocation when

necessary. In cloud-based implementations, IBE works efficiently by introducing

ephemeral cryptographic keys. In IBE, with public key encryption, the public key can be

derived from a unique identity identifier. Therefore, this approach reduces the need for

certificate authorities and public key certificates [84]. While public key cryptography

(PKC) successfully protected data in large environments offering high scalability across

various security boundaries, the IBE can simplify the encryption management offering

sufficient security at the same time [85].

As an example, one institution can release an encrypted report with keys to other

institution, which can only access it during the strictly controlled period. Identity-

based cryptography (IBC) is a technology already considered for secure data sharing in

the cloud. Identity-based encryption (IBE) could be [10] easily scalable across several

 28

security boundaries. Considering the fact that most of private cloud service providers

(CSP) offer trusted or semi-trusted platforms to store data, the combination of both native

CSP security and IBE applied by data owner through access control framework might

deliver an acceptable level of security required to protect personal and non-personal data.

The concept where the public key could be derived from any arbitrary text was proposed

in 1984 [86], however, the first practical IBE implementation waited until early 2000.

Different types of IBE schemes provide benefits for different system models. The first

working IBE scheme relies on Weil pairings with security based on the computational

Diffie-Hellman assumption [10]. Another IBE schema dated around the same time as BF

is based on the difficulty of distinguishing quadratic residues from non-residues in the

ring with RSA two large primes products [87]. This model outputs long ciphertexts as a

product of relatively slow bit by bit encryption.

One approach to effective key lifecycle management is forward-secure hierarchical

identity-based encryption (fs-HIBE) with self-expiring keys. fs-HIBE has been

successfully used for several identities and access management for IAM implementations.

It allows secure dynamic joins between identities, making use of time constraints and

dynamic key revocation [84]. Multiple hierarchical ID-based encryption schemes

(MHIBE) is another concept derived from a generalisation of fs-HIBE. MHIBE is not

only highly suitable for federated identity management systems such as this but, because

of the ability of encryption with multiple ID-tuples, it can be efficiently used with the

role-based access control (RBAC) systems implementations [84].

While most of the currently used public key-based schemes are easily breakable using a

quantum computing, there are public key primitives based on lattices that could stand the

new computing power challenge. Lattice-based cryptography was proposed by Ajtai in

1996 [88] although it waited two decades to be recognised as one of the most promising

long-term methods to protect information. Following lattices, the NTRU was the first

open source public key system based on Ajtai work. By changing the setup, it was

possible to create an IBE over lattices such as relatively small the key and the cyphertext

sizes are acceptable for actual real-life implementation [89].

Last and the most promising approach to amend the IBE construct for post-quantum

computing was made by defining IBE pairing over isogenous pairing groups (IPG) [14].

The IBE-IPG does not change the initial IBE construct but only amends the way the

curves are evaluated for morphisms. Isogeny, in other words, looks at elliptic curves

 29

morphisms not only as regular curves but curves that have a specific shape. Thanks to

this observation the Weil pairing used in IBE BF [10] could also be constructed under

isogeny and with a reduced schema amendment the existing system could be adapted as

the new quantum safe construct.

2.6.3 IBE with Authenticated Encryption

Authenticated encryption with authenticated data (AEAD) was initially introduced as an

extension of authenticated encryption (AE) where cryptographic construction could

deliver not only message confidentiality but also data integrity. AE ensures

confidentiality against an active adversary that can decrypt the ciphertext. The product of

AE authenticated message is only a ciphertext, while in AEAD an encrypted message is

accompanied by a plain text data that can be used to efficiently evaluate the message

authenticity before any other crypto techniques are involved.

Authenticated identity-based encryption (Authenticated IBE) delivers both message

confidentiality and integrity on top of IBE [90]. To empower security of our model data

integrity should have additional safeguards, this is where we decided to use Authenticated

IBE. Authenticated IBE could ensure that both XACML policy and OOXML document

content cannot tamper. In cloud space only digitally-signed documents give a non-

repudiation assurance. In other words, author of a document, e.g. general medical

practitioner (GP), can be sure that document content after being signed has not been

falsified by any adversary [5]. The only bottleneck of Authenticated ABE is that unlike

standard AE here encryption and signing are separate operations, therefore, are more

expensive operations, although this crypto approach satisfies security requirements.

2.6.4 Obfuscation

Obfuscation methods aim to hide data, so it cannot be directly processed. Obfuscated data

allows the object owner to reveal only the necessary information required to execute an

operation on that information without exposing PII part. For example, a health cloud-

based services provider (CSP) could introduce a technique where patient’s identity is not

a subject of an exchange between parties; instead, unique pseudonyms are exchanged

between parties to securely satisfy claims [4].

Obfuscation uses basic cryptographic techniques to hide rather than encrypt a data. These

methods use keys and functions to derive obfuscated information that corresponds to

sensitive information, i.e. identity metadata, but which do not disclose actual information

[4]. To decide which part of identity metadata should be obfuscated, policy-based

 30

obfuscation can be used, where different policies enforce obfuscation of specific fields

before these are made available for cloud-based processing. The privacy manager

implementation proposed in [4] for personal data obfuscation can almost transparently

integrate with existing applications. Thus, this is a reasonable safeguard that ensures data

security due-care principals.

2.6.5 Anonymisation

Another approach is anonymisation. Several types of research suggest that personal data

requires further safeguards, where actual information cannot be simply linked with an

individual, therefore, can protect personal rights and, at the same time, following relevant

legal consent, deliver useful research or other materials. Access to the anonymised part

of identity metadata mostly applies to medical research [91], where medical staff and

research students can benefit from previous medical records to save peoples’ lives.

Technically, in research, it is acceptable to process an anonymised data. K-anonymisation

techniques are widely studied as part of artificial intelligence research. They apply to

dataset processing where sophisticated attack techniques like data linking (data inference)

can be used to uniquely identify individual from among other records that are not directly

exposed for processing [92]. Quasi-Identifiers (QIs) can be derived using k-anonymity

from the table of k number of records, where the k-anonymous table ensures anonymity

of the QI from among other k-1 records [93]. K-anonymisation can be effectively used to

deliver statistical data securely. Therefore, all personal data processing, which requires

generalised information rather than identity-specific data should be delivered via

anonymisation. Here, as an example, effectively anonymised information exchanged

between parties or exposed to the general public for research purposes will help others to

base their work on personal data, that when non-anonymised would be restricted for

processing because of the data protection. Students who need to study patients’ history

rather than an individual patient’s case would have access to extensive knowledge-base

of securely indexed and anonymised data.

Existing XML obfuscation [4] and anonymisation [93] are techniques, which provide

high-performance searching and indexing algorithms, ensuring the accessibility required.

Both techniques could be potentially used for most of the implementation. However,

complexity of efficient obfuscation or anonymisation platform may be much higher than

any encryption applied on top of the protected data.

 31

2.7 Integrity and Authenticity

Identity meta-data must provide the most accurate information possible. It should ensure

not only data quality but also data integrity and authenticity. Data quality can be

maintained with well-designed XML ontologies applied at different identity metadata

contexts. Data integrity gives assurance that data has not been amended since the last

valid data change was committed. Authenticity ensures that the subject identified as the

last data processor initiated the data transaction. Because changes made over the identity

metadata are not accountable at the identity metadata level, they require dedicated

functionality responsible for accounting. Identity metadata itself needs to deliver a basic

integrity and an authenticity assurance. This assurance could be guaranteed with a digital

signature applied to the part of the information that requires data integrity. As the digital

signature could be derived not only from the information but could be bound with a

unique identifier, it is used for information, which requires data authenticity [94].

As an example, in medical report authenticity of information is crucial to verify that

diagnoses made have not been amended by the illegitimate party. When a patient’s

personal record was updated by some medical personnel, and afterwards the same

information was changed either by a patient or another healthcare staff member, this later

change has to be uniquely distinguished from all previously made changes. For identity

metadata, we need to ensure that a malicious or ignorant subject did not amend the

information, that information was changed in the current identity context, and an entitled

subject processed that information.

The access control models we described here use signing for non-repudiation and

integrity enforcement; however, identity meta-data requires the same enforcement at the

level of actual data. For instance, using an emergency access example, where a medical

professional need to access a patient’s data to check their medical history if an

unauthorised subject (including the data owner) amended medical history, it may have

critical consequences leading to patient’s death.

Digital signing cryptography requires secure keys to derive a signature. Public-key

infrastructure (PKI) and ID-based signing (IBS) are two different approaches we can use

to deliver keys [95]. While PKI involves trusted certification authorities (CAs) to certify

public keys and bind them with a digital identity, in IBS the public key consists of an

identity unique identifier. Therefore, it simplifies the implementation model by

 32

eliminating CA entity from key management lifecycle However, it introduces other

required by IBS system entities.

To keep the identity metadata model as homogeneous as possible and therefore potential

framework simple, we will focus on IBS as a preferred digital signing technique. IBS and

IBE share the same concept for secure key management. IBS, unlike PKI, can use

certificates issued by an involved trusted authority (TA) based on identity identifier and

the assigned public key. IBS certificate does not require a CA, as it is a simple digital

signature derived from a public key and a unique identity identifier [95]. As an alternative

to certificates, IBS can utilise the hierarchical ID-based encryption (HIBE) discussed

above as a preferred identity metadata encryption method. Hierarchical IBS (HIBS)

schemas become very useful when combined with HIBE [96] as HIBE schema derived

from content encryption can be transformed into HIBS schema. The digital signing and

verification processes are therefore simplified.

2.7.1 XACML Accountability and Auditing

Furthermore, not only data, i.e. OOXML, but also access policy may require

accountability allowing incident identification showing when, how and by whom the

initial data owner access rights were tampered or simply legitimately changed. XACML

policy could be signed. However, it does not guarantee non-repudiation and does not

provide any historical information [97]. Same functionality used for OOXML could be

leveraged for XACML policy as XACML data incorporated as a part of the OOXML

package inherits security safeguards from its wrapper.

2.7.2 Merkle Trees applications

Various applications are leveraging Merkle trees construct designed to ensure distributed

data or database integrity like in [98]. Blockchain and git repositories, the most popular,

have the required functionality available already as a cloud-based service. For secure

construct, the consistent OOXML data versioning requires a single globally available

chain of all the changes. Document changes have to be consistent and relate only to one

previous version. Users should not be able to commit the same version updates with two

different contents simultaneously. Merkle Trees could ensure that and allow quick and

efficient verification of data and its version in large data structures. Simple hashing, a

cryptographic primitive leveraged by Merkle trees ensures the integrity of the current and

the preceding tree leaf.

 33

2.7.2.1 Data Versioning with Blockchain

Blockchain maintains one central chain of all the transactions. The single chain usually

consists of the latest blockchain hash. XACML policy instance and OOXML package

versions could be located on a centralised blockchain what guarantees document

integrity. Data editor who wishes to commit a new version has to ensure that the version

committed is a direct ascendant from the latest committed version. In the case where new

version from a different version ancestor has to be committed to the chain, a new

transaction for version cancelation has to be added to the blockchain by the authorised

actor. Classical blockchain implementation maintains basic transaction metadata unlike

Git repositories, where the entire data history is stored. Excluding the consensus available

in blockchain, these are both very similar.

2.7.2.2 Changes History via Git Repository

In Git everyone may have several branches ascendant from the same data. Consequently,

everyone could commit the latest version into a chain by resolving conflicts with the latest

committed version. Unlike blockchain, in Git the content matters regardless of the branch

while in blockchain the final consensus matters regardless of the content. Entire OOXML

package and XACML policy history can be stored and hosted simultaneously using single

Git repository. Package data could be either stored in unencrypted format, what has many

functional features compared to a single branch consisting only encrypted versions.

2.8 Authentication

Identity as an access attempt subject identifies itself and initiates authentication flow.

Before the authentication decision is made, a target system needs to meet basic

requirement namely it has to support the same authentication protocol. Several factors

will determine whether an authentication framework will suit end-user, medical

institutions, organisation or enterprise needs. Multi-factor authentication model

empowers authenticity and can be an enhancement to the most common username and

password exchange. Something you know is the Type 1 authentication factor specifying

anything that identity owner knows and what can be verified like password, passphrase,

mother’s maiden name, ATM PIN, and so on. Something you have constitutes the Type

2 factor allowing authentication authority to verify whether the person owns physical

object during authentication flow. This can be any electrical device like a one-time token

generator, memory stick, smart card, and so on. Finally, the last Type 3 factor, the

something you are verifies the identity of the owner physical unique features, that

 34

includes all types of biometrics like fingerprints, hand geometry, retina and iris patterns,

body movement, voice prints etc. [99]. On top of these three basic authentication factors,

there is an additional identity specific factor somewhere you are, which, in a cloud

environment, can be simply verified, and additional claims are often transparent to the

authentication initiator.

Authentication system usability is often achieved with a single sign-on (SSO) model

where the subject, here identity once authenticated is allowed to pass other trusted

systems authentication challenges without being prompted. The bottleneck of SSO is that

when implemented without well-defined authenticator policies and with lack of multi-

factor authentication can expose even highly secure systems. If identity is compromised,

all SSO-enabled systems will accept subject authentication claims as legitimate without

further verification [99]. Recently Microsoft warned about new Zero-Day vulnerability

allowing an attacker to take control over active end-user session through crafted MS

Office document using built-in Object Linking and Embedding (OLE) functionality. Such

compromised session in SSO enabled environment maintains unsecured access to all

interconnected systems.

Cloud-based data sharing model to perform any activities as an access attempt subjects

or simply as a passive accessed object should support several authentication technologies

and methods including multi-factor authentication and SSO. Only by re-authentication or

progressive identity authentication using different factors the data can be effectively

protected and hosted in a shared cloud space.

In a cloud computing era any closed trusted environments can provide the best possible

security in terms of information confidentiality and integrity, however, such

environments fail to deliver high availability. Therefore, these solutions will have

difficulties to sustain. New global identity and data sharing models require authentication

that will bring data securely into the shared cloud space, where global organisations and

institutions such as medical, financial, educational, government frameworks aiming to

protect shared data require a reliable and efficient authentication method. Furthermore,

cloud computing seeks for authentication protocols that are easy to integrate with existing

internal infrastructures. Kerberos is one of the most popular authentication protocols,

which successfully secured large infrastructures. However, since it was challenged with

cloud-based authentication, it never adapted to new open cloud space [100] without the

use of new protocols like Secure Assertion Markup Language (SAML) or WS-Security.

 35

2.8.1 Kerberos

Kerberos is the most popular authentication protocol implemented by some of the largest

world organisations and institutions. Many medical institutions use Kerberos as a

standalone authentication technology or adapted it as a part of Microsoft Active Directory

Domain Services (MS AD DS) product suite. Because of Kerberos architecture, it is often

used for single sign-on solutions within relatively closed security boundaries. Any non-

kerberized and not joined environment has to maintain its identity repository and

authentication, and authorisation systems. Let assume a medical doctor or a general

practitioner (GP) have an account in Kerberos federated institutions environment (see

Figure 8) and is coming to use X-Ray medical facility where GP does not have any

credentials, therefore due to Kerberos constrains the GP is not able to use the facility with

currently owned federated account [100].

Figure 8. A trusted subsystem – no Kerberos token exchange possible (source Bertocci, 2011)

In terms of cloud-ready technologies, the Kerberos relies on private-key cryptography

where all involved sides have to protect a shared private-key [99]. Even though

technically cloud service can be integrated with existing internal Kerberos based

authentication systems, in a real-life scenario, for a cloud-based service provider, it

becomes difficult to obtain approval from customer’s information security officer for

firewall policy amendments. To operate Kerberos requires additional network ports to be

open (TCP/UDP 88), what should include Microsoft Active Directory Domain Services

(MS AD DS) LDAP ports (TCP 389, 636), as having these two technologies together

customer can receive comprehensive access control service.

 36

2.8.2 SAML

Looking at other modern authentication protocols SAML is one of the promising cloud-

friendly standards offering very high cross-platform compatibility. SAML was

successfully used for global single sign-on (SSO) solutions and was implemented in

several products offering federated identity functions [100]. It is interoperable with

various legacy authentication and authorisation systems, and it communicates at a high

HTTP protocol layer. Therefore, it does not require any modifications to egress firewall

access policies at the customer side. SAML will leverage TCP ports 80 and 443, which

by default are open in most of the networks passing in the World Wide Web (WWW)

contents. It defines a protocol and token XML structure schema including the use of

simple object access protocol (SOAP) wrapper to exchange standardised messages

between involved authentication flow parties [101].

SAML assertion consists of several features, and in the most generic simplification, it

contains information about the issuer of the token and most often it is expressed using

Distinguished Name format from X509. It has the subject information of all assertion

statements including subject confirmation for relying party (RP) to verify the assertion

relationship between the sender and the subject. Additionally, the assertion is a constraint

with conditions that are part of the assertion. These constraints validate the time frame

when assertion can be evaluated as well as define a recipient or an audience of the

assertion (e.g. RP). SAML assertion also includes an attribute statement related to the

subject, which in WS-Federation are equivalents of claims [100]. Authentication

statement informs parties about initial authentication of the subject. Assertion also

includes information about authorisation against the object for which access was claimed

and this part is called an authorisation statement. It indicates whether a subject can access

an object (resource) the way it is specified in the request. Finally, a digital signature

verifies the integrity of the token contents, so RP is assured of the authenticity of the

assertion. Advice is optional information related to the authorisation itself.

2.9 Access Control
2.9.1 Role Based Access Control

Most of the mature modern access control models that are ready to securely protect the

asset (such as PII) from unauthorised access hardly span outside a simple boundary [42].

The well-known model, role-based access control (RBAC) can be easily adapted for

highly secure end-to-end identity provisioning and revocation within specific security

contexts. A role is assigned with an identity for a set of transactions, for example, as the

 37

ability for a general practitioner (GP) to access patient data and take further actions

according to new circumstances and patient history [102] then update the patient record.

This access control model controls the subject access over the object, based on roles

assigned to the subject in the organisation, which defines a security boundary [58].

Often roles can span across several systems; here, well-integrated infrastructures can

ensure role change enforcement on the end system. Furthermore, well-defined roles and

consistent RBAC system implementation are safeguards against several security threats

such as collusion, creeping privileges, and excessive privileges. Enforcement of

separation of duties is a countermeasure for collusion attack [103], while the principle of

least privilege overcomes problems of creeping privileges and excessive privileges [99].

Although RBAC ensures high security within an organisation, it does not introduce a

namespace that can be implemented across organisations, for example, in open cloud

space.

The identity metadata requires the RBAC concept with its several variations to enforce

control and secure identity with its metadata in the cloud. To protect a policy that is

applied to the object in the cloud and accessed as a part of RBAC transaction the part that

exposes the policy can be encrypted [58].

The new concept of Cryptographic RBAC for the cloud addresses several security threats

that have roots in early RBAC architectures, where this access control model had closed

security boundaries such as enterprises, organisations and institutions. Role-based

Encryption is a model that allows data encryption before it is handed-over to the cloud

service provider (CSP), thus ensuring that only data owners and identities that hold the

required access role can decrypt the information.

Identity metadata requires also clearly defined ontology to reach Cloud maturity for

RBAC. Several approaches are emerging that introduce standardised RBAC in different

sectors, one, the Enhanced RBAC, is focused on clinical education, biomedical research,

and patient care [35]. This work highlights the fact that there is a need to define strict

ontologies where Enhanced RBAC could be applied. These ontologies would constrain

and help to define ontology dedicated for personal data and sensitive personal data (e.g.

related to patient medical history or personal assets) to allow only secure access control

over such data in the cloud.

 38

RBAC implementations have a couple of disadvantages such as a lack of global public

standard defining roles in a public sector, also roles aging, where business changes outrun

actual roles implementations, and one the most important one is the single point of failure.

In case of an attack, the adversary could compromise the central access management

system. XML-based data where RBAC is used to control access can still be protected

using a distributed access control system [104]. Distributed access control systems can

be scaled and adapted for cloud-based implementations. This problem was also addressed

with cryptographic RBAC (C-RBAC) [58] and, unlike the distributed access control

approach; this model was designed for cloud-based IAM systems implementation. C-

RBAC uses policies that are enforced via cloud services, which can be controlled in a

decentralised manner by the data owner.

Finally, to deliver the fully homogeneous model, the ARBAC97 and SARBAC models

can be used to provide control over RBAC systems including granular role hierarchy

amendments, new policy definitions and all other administrative operations which are

fully controlled via a dedicated roles set [58].

2.9.2 Attribute-Based Access Control

Recently widely discussed data protection approach is access models based on attribute-

based encryption (ABE). The concept itself combines cryptography and elements of

access control. The attribute-based access control (ABAC) provides another approach to

govern access, by giving the data owner full control over their data. In the ABAC model,

roles are bound to role attributes and are attached to a data element through attributes

based encryption (ABE) [105]. The ABAC model can coexist with RBAC and easily

enables RBAC beyond a single security boundary [42].

ABE allows the data owner to encrypt the personal data under specific attributes. Same

attributes are attached to subjects who will process the data [6]. The identity metadata

model and especially PII part have to use access control system with encryption applied

to access control properties that are attached to data. The ABE model has been proposed

as the most suitable technology for cloud-based global data access [105], although ABAC

among other access control models described here have specific features in combination

that can satisfy the identity metadata. There seems to be an increasing interest in ABE as

demand on electronic health-care systems has grown in the last few years [6].

Attribute-based infrastructures have been proposed as ready for handling PII information,

for instance, a special implementation of ABE called ciphertext policy ABE (CP-ABE)

 39

with message broadcasting enables an ABAC system to perform ad-hoc direct revocation

[106]. As with RBAC, the main problem with CP-ABE is that a single trust authority

(TA) that can be used to decrypt data. Key escrow enables a single TA to decrypt all the

information and a compromised TA provides the potential attacker access to all the

protected data. A way to overcome this problem is multiple-authority ABE (MA-ABE)

where each TA releases only a partial secret key that is used to encrypt information. On

the other hand key revocation under this approach creates a bottleneck where each TA

needs to be involved in a keys lifecycle [6].

While CP-ABE allows data owners to decide on attribute structure defining permissions

before encrypting data sent into the cloud, the other approach key-policy ABE (KP-ABE)

uses policies to define permissions, and the data owner assigns attributes to define

encrypted data [106]. Service managing policies for KP-ABE automatically generates

access structure for the data then combines access policies into keys [6].

Early ABAC implementations [11] suffered from dynamic membership control.

However, later [107], [108], [106] ABE was reviewed and empowered with attribute

revocation functionality that enabled the fundamental access control functions required

for cloud-based access management. Each ABE construct [11], [84], [108], [106], [105]

concentrates on cryptographic operations under several attributes. ABE makes cloud-

based authorisation a cryptography-centric due to highly constrained implementations by

selected ABE primitives. ABE implementations leverage many fundamental access

control techniques like Break-Glass [6] where data could be accessed in an emergency

scenario with a post-factum approval or a justification. Also, time-constrained attributes

[106], [105] technique that compliments the access control system using ABE. Despite

the fact that ABE is functionally related to attribute-based access control (ABAC) model,

it seems it has never been wider discussed in the context of standardisation to simplify

global integration for secure and flexible access control.

2.9.2.1 XACML

XACML is a policies standard from OASIS. Attached to a data piece could represent a

sticky policy. This policy model defines tuple relationships where a subject performs a

particular action against an object (see Figure 9).

 40

Figure 9. Access Tuple

Actions or access attempts are strictly controlled with XACML policy, which introduces

the concept of obligations. Traditional discretionary access control (DAC) models come

rather with static conditions where access decisions are made upon subject entitlements

gathered in technically constraint security boundary. Here policy includes obligations

separating stateless access conditions from stateful security context oriented conditions

[109]. In other words, authorisation decisions can depend on subject attributes such as

location-somewhere you are factor, relationship to other subjects, time, previous

authorisation decision and others. It is also dependent on object state including a target

system or resource state.

Figure 10 XACML Policy Construct

 41

Figure 11 Policy language model [97]

This policy data model comprises of three elements (see Figure 10 and Figure 11): rule,

policy and policy set [97]. The rule is the most fundamental piece of policy defining the

target, which is an object in the access attempt tuple, the effect that can be expected after

evaluation of the rule. E.g. rule ensures, that highly confidential content object, i.e. target

can be processed by the subject located only in countries specified by the policy

condition. XAML condition is representing a Boolean expression resulting in True or

False. Policy, the next XACML element, is a rules wrapper that can be passed amongst

data-flow entities. It is constructed with a policy target, where, in a sticky policy model,

the Target delivers only additional classification meta-data for the enclosed document.

The rule-combining algorithm defines how the composite rules results are combined.

XACML version 3.0 defines several policies and rule-combining algorithms [97]:

• Extended Indeterminate values – used to hide potential inconclusive decisions

allowing only Permit or Deny while the PDP needs to enumerate “indeterminate”

values to combine rules and policies.

• Deny-overrides – used to take logical Deny decision if any rule or policy results in

Deny. Execution of all rules is stopped immediately after the first encountered Deny

result. Permit result is only possible when none of the evaluated policies and rules

gave Deny result (see Table 5). Policies, policy sets or rules may be executed in any

order.

 42

• Ordered-deny-overrides – same as Deny-overrides used to take logical Deny

decision if any rule or policy results in Deny. The only difference is that the rules

evaluation order is predetermined by the policy containing rules listed in strictly

predefined order (see Table 6). Same policies are evaluated in the order specified in

the policy set.

• Permit-overrides – used to take logical Permit decision if any of rules or policies

results to Permit. Evaluation of all rules or policies will stop immediately if at least

one results to Permit (see Table 7). Policies, policy sets or rules may be executed in

any order.

• Ordered-permit-overrides – same as Permit-overrides used to take logical Permit

decision if any rule or policy results in Permit state. The difference is the rules

evaluation order; it is predetermined by the policy containing rules listed in strictly

predefined order (see Table 8). Same policies are evaluated in the order specified in

the policy set.

• Deny-unless-permit – used to hide potential inconclusive decisions allowing only

Deny decision before any rule or policy evaluates to Permit (see Table 9). Algorithm

never results to either “Indeterminate” or “NotApplicable”.

• Permit-unless-deny – unlike Deny-unless-permit, here all rules or policies evaluate

to Permit unless the first Deny occurrence (see Table 10). Algorithm hides the non-

conclusive results hence results to neither “Indeterminate” nor “NotApplicable”.

• First-applicable – stops evaluation if any of the rules or policies resulted in

conclusive Permit or Deny state (see Table 11). If an error occurs while evaluating

the condition of a rule, then the evaluation stops, and the policy evaluates to

“Indeterminate”, with the appropriate error status.

• Only-one-applicable – unlike other combining algorithms this applies only to Policy

Set; algorithm evaluates to Permit or Deny only when only one child returns valid

Permit or Deny decision (see Table 12).

• Legacy Deny-overrides – designed for all the cases where Deny result should have

precedence over Permit decision (see Table 13). This combining algorithm is

depreciated.

 43

• Legacy Ordered-deny-overrides – same as Deny-overrides, used where Deny result

should take precedence over Permit decision (see Table 14). The rules evaluation

order is predetermined by the policy containing rules listed in strictly predefined

order. This combining algorithm is depreciated.

• Legacy Permit-overrides – here Permit result should take precedence over any Deny

decision (see Table 15). This combining algorithm is depreciated.

• Legacy Ordered-permit-overrides – same as Permit-overrides, Permit result takes

precedence over other Deny decisions (see Table 16). The rules evaluation order is

predetermined by the policy containing rules listed in strictly predefined order. This

combining algorithm is depreciated.

Finally, the last XACML element, the policy set (see Figure 10) is constructed with the

target and set of policies. The possibility of Policy and PolicySet nesting gives many

possibilities to represent access conditions, however, from an architectural perspective, it

seems reasonable to keep the policy relatively flat and constrained by templates from a

given TA context same as in [8]. Considering time required to evaluate complex policies

and PolicySets the despite available XACML features, the policy words should be

reduced to a minimum [110]. The interesting functional part that is defined by XACML

is obligations and advice. The obligation is a must requirement compared to non-

obligatory advice, which can be considered during access control decision.

Obligations are stateful actions that must be taken upon authorisation decision. Only the

possibility to evaluate context distinguish obligations from regular stateless access

conditions [111]. Obligation expressions are evaluated by Policy Decision Point (PDP)

into obligations and passed onto PEP and the advice expressions, which is the same as

obligation expressions that are resolved into advice and passed to PEP. The obligation for

Policy Enforcement Point (PEP) enforces additional stateful conditions and similar to

obligation the advice, which is optional (unlike obligations). Obligations and advice were

distinguished in XACML Version 3 to separate the obligation that is must statement for

PEP from the advice that can be considered by PEP, e.g. Bob can be denied access

because he does not have a valid email address from the educational ac.uk domain.

OASIS empowered XACML with health-care system authentication architectures [112]

and defined entities, i.e. Access Control Service (ACS) responsible for taking access

control decisions. Proposed here model integrates existing architectures with an identity

 44

provider (IdP) and identity-based encryption (IBE) key generator. The IBE as a preferred

encryption method leverages XACML policy as an encryption key that attached to the

OOXML package remains in plaintext and follows the package ensuring data

confidentiality before successful data access authorisation.

To enforce access rules in real productive implementations, it is reasonable to consider a

way to efficiently transform XML-formatted policies from and to an abstract object-

oriented construct that delivers all programming interfaces required to automate policy

creation and evaluation. One of the most applicable techniques that could be used here is

a data serialisation. This is the encoding method where objects of any type are effectively

translated into series of bytes, words or even into higher level formatted JSON and XML

language structure. Serialisation techniques are widely used in programming to share

objects between services implemented under Service Oriented Architecture (SOA).

Dedicated serialisation methods can improve the performance of data translation or

transposition from relational databases into XACML [113]. Well-designed serialisation

components can deliver interface between legacy systems used in medical institutions,

enterprises or governments and modern cloud-based services. Frameworks or systems

that provide cloud-based access control services should provide functionality that allows

migrations or co-existence with legacy systems as the most of existing data, what includes

medical data, is still hosted outside of the cloud.

2.9.2.2 XrML

XrML policy format created and patented by Xerox in 1994 with a purpose of digital

rights management (DRM) [114]. Currently, XrML is owned by ContentGuard a private

software company. Similar to traditional discretionary access control (DAC) XrML

condition, access decisions are made in technically constraint security boundaries. XrML

2.0 policy defines a principal an access control subject that is given some right defining

predicate actions over a resource. The license is the top policy level (Figure 12) under

which all the grants, license issuer principals and other meta-data. Grant consists of the

remaining policy elements (see Figure 13), subject principal, the rights, resource objects

and conditions.

 45

Figure 12. License Model [114]

Figure 13. Grant Model [114]

A Principal could either define the license issuer or a subject. Among other accepted

identifiers the principal accepts a public key cryptography-based identity allowing subject

 46

definition using public and private key pairs. The principal is then defined under

keyHolder describing identity using the public key information (see Figure 14).

Figure 14. Principal a private keyHolder having temporary print rights over e-book under URI

Next, the principal is given certain legacy rights that are very specific for DRM systems.

XrML 2.0 defines the following rights model: accessFolderInfo, backup, copy, delete,

edit, embed, execute, export, extract, install, loan, manageFolder, play, print, read,

restore, transfer, uninstall, verify and write (see Figure 15).

<license>
 <grant>
 <keyHolder>
 <info>
 <dsig:KeyValue>
 <dsig:RSAKeyValue>
 <dsig:Modulus>Fa7wo6NYfmvGqy4ACSWcNmuQfbejSZx7aCibIg
kYswUeTCrmS0h27GJrA15SS7TYZzSfaS0xR9lZdUEF0ThO4w==</dsig:Modulus>
 <dsig:Exponent>AQABAA==</dsig:Exponent>
 </dsig:RSAKeyValue>
 </dsig:KeyValue>
 </info>
 </keyHolder>
 <cx:print/>
 <cx:digitalWork>
 <cx:locator>
 <nonSecureIndirect URI="http://www.contentguard.com/sampleBook.spd"/>
 </cx:locator>
 </cx:digitalWork>
 <validityInterval>
 <notAfter>2018-12-31T23:59:59</notAfter>
 </validityInterval>
 </grant>
</license>

 47

Figure 15. Right Model [114]

 48

Figure 16. Resource Model [114]

A resource could be an e-book, audio, video or image file or any piece of information that

could be owned by a principal (see Figure 16). Under custom setup, XrML could define

access for an OOXML or a portable document format (PDF) file as well as email content

[7].

A policy defines very basic conditions similar to XACML obligation, specifying

circumstances under which subject could access the object (see Figure 17). Via

conditions, the XrML could grant temporary access or access based on territory

 49

preferences to the subject, e.g. movie could be only watched in the United States of

America.

Figure 17.Condition Model [114]

2.9.3 Purpose-Based Access Control (PBAC)

All the above access models control access based on entitlements granted and detailed

access policies. Another model, purpose-based access control (PBAC) allows long-term

maintenance of access granted at some point in time [52] and efficiently enforces need-

to-know and need-to-have principles. In more traditional access control model from the

moment when access is granted to a subject via either role or direct assignment, this

access relationship from a subject to an object is preserved over time unless relevant

auditing procedures enforce access control review and revoke so-called creeping

privileges [99]. This purpose justifies the subject to store, process or access an object

[52]. It could be defined under intended purpose and access purpose categories.

Therefore, the access decision is made based on the correlation between the intended

purpose and the access purpose. The intended purpose falls into three components:

allowable intended purpose (AIP), conditional intended purpose (CIP) and prohibited

intended purpose (PIP) [51]. Where AIP defines unrestricted data access, CIP conditional

 50

data access and PIP denies any access for given purpose. Combined with access purpose,

which could consist of a single RBAC assignment, the data access is enhanced by a very

granular control [51].

As the RBAC model is successful in delivering effective access control functionality and

became widely adopted in many enterprises, it is reasonable to consider the integration

of RBAC with policy-based access control model [51].

The concept of access purpose is not an integral part of any of the previously described

access control models. This does not mean that related security procedures cannot define

circumstances where the subject becomes entitled to process data under the defined access

control model. The purpose-based access control model shows that there is a need for

legal baselines and guidelines for cloud-based IAM implementations. In a global context,

there is a risk of inconsistencies between access management systems caused by

conflicting definitions of legally justified access purposes. It may, therefore, be simplest

for access to PII to be governed by a single legal framework, e.g. one based either in

Europe or the USA. This is a challenge in a world of conflicting attempts by the USA

through FISA, Privacy Shield [115] and similar and the EU through Data Protection law

to establish a worldwide jurisdictional reach.

2.9.4 Break-Glass – Emergency Access

A complete identity and access management (IAM) system consist not only of

technologies but also of relevant security policies and procedures built to support access

control and provide reliable accountability of a subject’s activities over an object. In most

generic scenarios, a subject is entitled to process data when it is granted rights at some

point in time. Rights are granted based on subject roles assignment or based on direct

permissions applied to the object. In a secured environment, before PII data can be

processed, the subject requires a consent [116].

Now let us analyse a person’s experience of an accident abroad, and where a medical

professional need to access the patient’s personal record, which is a part of identity

metadata and due to serious injuries, the patient is unable to approve medical access to

that data. This scenario requires a dedicated and strictly controlled Break-Glass process

allowing access to personal data to be subject to post-processing approval [6]. Such an

access attempt should trigger communication channels that inform the relevant authorities

e.g. authorized personnel of a local health-care practice where the patient is registered.

Next, in most cases, access needs to be justified by the person performing the emergency

 51

access, and then afterwards by the relevant authorities. Break-Glass action thus requires

legal enforcement to account for each occurrence of the emergency access.

Lightweight Break-Glass Access Control System (LiBAC) has been designed explicitly

to take any access decision upfront and next claim the legitimate approval [117].

Whichever access control model is used with new identity and access control models,

there is an increasing demand to deliver positive authorisation decision before the service

provider evaluates entire access context. Finally, a service provider (SP) that needs to

deliver such specialised authorisation, depends on data classification, should obtain a

legal approval and certification proofing that it meets all security requirements.

2.10 Conclusions

Cloud computing to serve its purpose requires compatible standards. Consistent identity

implementation like SCIM schema across different cloud systems, together with support

for XACML authorisation highly improves currently weak cloud systems

interoperability. SCIM schema facilitates identification of access control entities

expressed in XACML policy. Therefore, it simplifies actual implementation, reduces

system customisations and hence imposes additional economic advantageous.

Constrained XACML dictionary compliments this research objective. OOXML however,

has been already adapted as a standard for word processing document format. A number

of features supported by OOXML accelerates this research around IRM and impacts the

final SPIBE model evaluation. Various cryptographic primitives depending on

applications could improve the IRM security. From ASL perspective symmetric

encryption has an advantage over other asymmetric schemes. However, any key exchange

weakens the security of the entire model. The IBE as a cryptographic scheme seems very

flexible in terms of ASL, where actual cryptographic algorithm could be replaced with a

new crypto primitive. Finally, IBE requires a symmetric algorithm to encrypt the data.

Therefore, it still could have an advantage of relatively long ASL. To complement the

proposed SPIBE construct, the blockchain that addresses integrity, non-repudiation and

authenticity of the information, safeguards the entire information lifecycle.

 52

3 Sticky Policies Approach within Cloud
Computing

3.1 Introduction

Since XML was accepted as a data structure among scientists, institutions and

organisations there were several approaches to define globally accepted schemas and

standards. The Organisation for the Advancement of Structured Information Standards

(OASIS) works on building standards mostly based on XML. They have standardized

many XML-based schemas and delivered a suite of namespaces for Web Services,

authentication and authorisation [101]. OASIS created an open standard for access

management XACML that almost entirely implements the concept of access policies

[97]. While sticky policies can be easily expressed with any other XML schema and

ontology [118] we see potential in using an open standard that can be adapted across

several institutions, organisation and enterprises as a common language in the Cloud.

We have already mentioned the OASIS created several open standards, what includes

security assertion markup language SAML, an open format suitable for authentication in

the cloud [119]. Considering XACML [97] as a granular access control language SAML

will complement the final access control framework [109] for secure data sharing in the

cloud.

Following open standards, Office Open XML (OOXML) is a data format created by

several parties [62]. OOXML content can be delivered to end-user as a standalone file or

as an online rendered document, spreadsheet, presentation or other. This standard offers

high transparency for data conversions and data storing [120]. This data structure is easy

to index or pre-process for efficient indexing with various database types.

Combination of XACML, SAML, OOXML and optionally IBE delivers functionality for

cloud-based access control framework where personally identifiable information can be

securely stored in a public cloud space. These technologies support several best security

practices for access control systems. In the literature review, we show that system suitable

for medical institutions, organisations and enterprises should provide such information

security functionality as: break-glass temporary access granted based on a policy owned

by subject; dynamic access key revocation; and a key lease for a constrained period of

time.

 53

3.2 Identity-Based Cryptography

Proposed here construction rearranges IBE schema model entities like in [11], where

author proposes new approaches for IBE schema. SPIBE does not leverage Fuzzy-IBE,

however it shares the functional concepts with a non-primary Fuzzy-IBE application.

Since, e.g. Alice’s data access preferences, including document version are attached to a

document in a form of a sticky policy they constitute a unique characteristic of this

document, its identity under IBE schema. Alice, the author, does not use Bob’s, the

recipient’s identity, but only the XACML-formatted sticky policy identifying the data in

a security context is mapped into a public key. Finally, Bob does not use his private key,

but after he is authorized by the trust authority (TA) policy engine the private key is

calculated from the document sticky policy and a TA master key.

The major SPIBE feature also described in Fuzzy-IBE is that a document shared by Alice

does not have to be stored on a trusted storage server instead it could be hosted on any

untrusted server, which could be freely accessed by Bob and Eve. This is a status quo for

efficient cloud data sharing. Data could securely change its primary location without a

major data migration. Both Bob and Eve could maintain a local copy of the document

securely protected and shared by Alice.

The content of the policy definitions could be encrypted using identity-based encryption

(IBE) [85]. Both policies and data encrypted with IBE add security on top of the sticky-

policies model. However, the bottleneck of this method is that encryption applied this

way makes data heavy-weighted [121].

This specific IBE implementation shares the same sticky policy concept with cyphertext

attributes based encryption (CP-ABE) [122], however while CP-ABE is almost entirely

focused on subject access context the IBE here, used over XACML policies requires a

XACML policy defining also object global unique identity and its distinguished version.

3.3 IBE-Enabled Sticky Policy

The proposed solution combines several identity-based encryption (IBE) and policy

framework components into a simplified model [123]. XACML policy tightens the

security boundary for IBE and constrains the involved parties to trusted and certified

parties only. Simplified trust authority (TA) entity is responsible for both policy

management as well as for key management, while in actual framework these

responsibilities should be handle by two distinguished TAs. It maintains policy templates

 54

(see Figure 18) for TA responsible contexts, e.g. internal medical templates, private

banking customer templates or human resources external candidate templates.

Figure 18 Sticky Policy IBE encryption

Policy templates together with the TA delivers IBE parameters to the editor application

required to generate a policy public key. Based on a policy request the TA also makes an

access decision or delegates part of the decision to a third-party TA. TA stores master key

{s} for its domain (see Figure 19) and after positive access request decision it generates a

policy private decryption key that is leased to the policy enforcement editor application.

Client or server-based editor application handles a read or read-write document access

based on the response from the TA.

Figure 19 Sticky Policy IBE decryption

 55

How Sticky Policy-enabled OOXML protects files? Authenticated against verified

identity provider (IdP) Alice, in order to protect the document, selects preferred trust

authority (TA) from a list of registered TAs, this way she receives a template of possible

policy rules in a given security context (see Figure 20). After defining policy access rules,

the policy set is extended by Alice rights, and together with document global unique

identifier and a TA reference, the sticky policy is ready to protect the document.

Alice to encrypt the document using IBE BF [10] setup requires policy public key 𝑄&'(

therefore she generates

𝑄&'(= 𝐻+(𝑃𝑂𝐿01) (1)

where 𝐻+ is a hash function defined on the group 𝔾+ of prime order q such as

𝐻+: {0,1}∗ ⟶ 𝔾+∗ , which maps sticky policy 𝑃𝑂𝐿01 into a single point on an elliptic-

curve.

Having 𝐻<:𝔾<" ⟶ {0,1}" for some 𝑛 where under bilinear map ê Alice generates

random 𝑟 via random generator 𝑃 from group ℤ@ = {0, … , 𝑞 − 1} under modulo 𝑞 and

calculates parameters:

D
𝑈 = 𝑟𝑃

𝑉 = ℯ H𝑚,𝐻< JêK𝑅MNO, 𝑟𝑄&'(PQR

(2)

where ℯ is a symmetric AES encryption function over message 𝑚 and bilinear map ê. 𝑟

could be generated during initial setup and added to sticky policy as a document unique

identifier. Bilinear map ê over Alice’s public key 𝑄&'(and a TA public key

𝑅MNO	generated from TA master key. Secret key as per IBE is derived from bilinear

mapping ê where ê:	𝔾+ × 𝔾+ ⟶ 𝔾<.

Both AES algorithm and function modulo are symmetric, therefore used in IBE BF [10]

modulo operation shown in (3) is replaced with symmetric encryption function (2)	𝑒.

𝑐 = 𝑚⨁𝐻< JêK𝑅MNO, 𝑟𝑄&'(PQ (3)

Next, both values U, V are stored inside the OOXML document wrapper and together

with the embedded sticky policy are shared in the cloud. Parameters same as other

OOXML wrapped data should be protected by cloud provider at rest and in transit.

 56

How Sticky Policy-enabled OOXML opens the protected file? Authenticated by the

verified identity provider (IdP) Bob accessing the document presents the policy with the

access request to trust authority (TA) using TA reference from the sticky policy. TA takes

access decision and assuming its positive TA uses secret master key 𝑠 and computes

private key (see Figure 21) for given sticky policy as follows:

𝑆&'(= 𝑠𝑄&'(, 𝑠 ∈ ℤ@ (4)

Next TA sends policy response together with sticky policy private key 𝑆&'(to Bob.

Bob can now use symmetric AES decryption function 𝒹 on parameter 𝑉 and hash

function 𝐻<:	𝔾< → {0,1}" and decrypt the document as follows:

𝑚 = 𝒹 J𝑉, 𝐻<Kê(𝑈, 𝑆&'()PQ (5)

The access right specific decision is made by policy framework based on policy response

details. However, all possible permissions are interpreted as a read or read-write rights.

3.4 Symmetric Data-Encrypting Key

Within the discussed IBE model a ciphertext is a product of symmetric encryption over a

plaintext message and a public key derivate in 𝐻<:	𝔾< → {0,1}" . Hashed value 𝑘 is a

symmetric key equal to:

𝑘 = 𝐻< JêK𝑅MNO, 𝑟𝑄&'(PQ = 𝐻<Kê(𝑈, 𝑆&'()P (6)

3.5 Security of Sticky Policies IBE

In evaluated Boneh-Franklin IBE the model security depends mostly on the difficulty of

solving bilinear Diffie Hellman problem (BDHP) [10] and also correct parameters

selection that is must for making discrete logarithm problem (DLP) hard to solve. Based

on the assumption that probability 𝑃𝑟 of finding message m using algorithm 𝒜 is

negligible it has an advantage 𝜖 defined as:

𝑃𝑟[𝒜(𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃) = 𝑒(𝑃, 𝑃)cde] ≥ 𝜖 (7)

An adversary can get an advantage in the selected model if BDHP is easy despite of DLP

security.

 57

Having {𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃} 	∈ 	𝔾+, find 𝑒(𝑃, 𝑃)cde Alice encrypts a document m and selects

Bob as a receiver using tailored policy under selected trust authority (TA). Document is

shared via cloud services and now only Alice – the data owner and Bob should be able to

decrypt the data.

Eve, the adversary, illegitimately obtained the protected document and unpacked the U,

V parameters. Therefore, she knows the following:

h
𝑟𝑃	 ⇐ 𝑄
𝑠𝑃 = 	𝑅&jk

ℎ𝑃 = 𝐻+(𝑃𝑂𝐿01) = 𝑄Mmn ⇐ ∃	ℎ ∈ 	ℤ@, 𝑄Mmn ∈ 	𝔾+

(8)

Because of (1), (2), (4), (8) having 𝑟𝑃, 𝑠𝑃 and ℎ𝑃 Eve now can derive ê(𝑃, 𝑃)pqrfrom

the following:

ê(𝑈, 𝑆&'() = êK𝑟𝑃, 𝑠𝑄MmnP = 	ê(𝑟𝑃, 𝑠ℎ𝑃) = ê(𝑃, 𝑃)rpq (9)

With BDHP easy to solve we compute message 𝑚:

𝑚 = 𝑑J𝑉, 𝐻<((𝑃, 𝑃)rpq)Q ⇐ ê(𝑃, 𝑃)rpq, (10)

what shows that Eve can get an advantage in the selected model only if parameters are

incorrectly selected.

 58

Figure 20 Sticky Policy IBE Secure Sharing

Figure 21 Sticky Policy IBE Secure Access

3.6 Sticky Policies IBE Authenticity

An adversary cannot tamper a policy attached to the data using the proposed method.

Acting as a public key, the sticky policy is authenticated by IBE scheme. As in any

 59

symmetric or asymmetric encryption, only the right key can be used to decrypt the cipher-

text. IBE is a public key asymmetric cryptographic primitive therefore for a given public

key encrypting the message exists one private key decrypting the cipher-text with this

message. If an adversary tries to change the sticky policy attached to the data in this

construct after trust authority (TA) authorises the request, the received private key cannot

be used to decrypt the cipher-text. Adversary having the advantage in a policy engine

authorisation flow, that is, the TA still cannot divulge the message by tampering the sticky

policy.

The accepted security notion for the model [78] that could provide data non-repudiation

assurance with an extra cryptographic operation is an Authenticated Identity-Based

Encryption (Authenticated IBE). It delivers both message confidentiality and non-

repudiation on top of IBE scheme [90]. To implement this authorship safeguard either

sticky policy or OOXML document metadata should carry information about the data

owner. Sender - Alice - using her own private key can authenticate the encryption. Albeit

it requires policy private key being leased by the TA during the initial encryption. If data

integrity is required, there are existing Identity-Based Signature (IBS) schemes [124].

3.6.1 IBE Signatures

IBE scheme can be immediately converted into a public key signature scheme. The

private signing key is the master key {s}, while the public key is a derivate from public

IBE TA parameters. Verification of signature 𝑆t where:

𝑆t = 𝑠𝑄t, (11)

is a result from both encryption of any random message 𝑚′, e.g.:

𝑃𝑂𝐿01	Ü	𝑚′ (12)

under IBE scheme:

𝑐′ = 𝑚′⨁𝐻< JêK𝑅MNO, 𝑟𝑄tPQ (13)

and successful decryption using private key 𝑆t as the decryption key:

𝑚′ = 𝒹 J𝑉, 𝐻<Kê(𝑈, 𝑆t)PQ (14)

 60

This safeguard is more expensive than non-repudiation as requires separate encryption

and signing operations, while Authenticated IBE is faster also in compare to actual IBE

encryption.

3.6.2 IBE Digital Signature for XACML

Access request and especially response, if to be available across different trust authorities

require additional safeguards. XACML response wrapped with SAML object could be

signed and securely exchanged between parties [125].

Furthermore, SPIBE leverages the SAML XML signing profile to deliver a private

decryption key to policy enforcement point (PEP). Policy decision point (PDP) upon

positive access decision sends to PEP not only signed response but also the sticky policy

itself. Using fact that IBE digitally signed sticky policy under IBE digital signing is

actually a SPIBE data decryption key.

PE after policy decision point (PDP) makes positive access decision, before it is sent to

PEP (i.e. BOB), the PE requests PKG to sign the XACML sticky policy. Under IBE

signing (see section 3.6) sticky policy signature generation results in deriving a private

data decryption key 𝑠𝑄&'(. The SAML authorization response would contain not only

XACML response but upon positive access decision, the actual XACML sticky policy

and its signature (i.e. decryption key).

Finally, for higher security the XACML response could be also signed if other entities

(i.e. PEP) require higher authenticity assurance.

3.7 Sticky Policies Authorisation

Sticky policies carry authorisation information required to protect the data. Unlike

conventional policy framework where policy is centrally stored and referenced to data,

here policy is attached to the data and follows it to enforce access control rules. Policy

evaluation upon access request can check who you are, what you have, what you know,

where you are and when and how you can access the data. For example, in countries that

adapted OECD data protection directives [53] owner consent related to data access can

be represented as an access rule and combined into a policy set. As mentioned before,

data access can be constrained by time. For example, a sticky policy added to a financial

report would define any subject rights to process the report within a defined time slot and

before or after a specific date.

 61

XACML policy defines multiple subjects construct with more than one subject involved

in access control decision [97]. This technique implements separation of duties security

principle. This non-cryptographic safeguard can have a functional application similar to

attribute-based encryption (ABE), or Shamir shared secret [126] concept. While the entire

access model document is not cryptographically protected the TA still can reject

document access and its decryption if not all policy conditions are met. I.e. document

could be accessed only if all subjects agree to open the file.

XACML access request construct represents access tuples, with the subject, object and

predicate. The subject is the data owner or data processor who wish to access the object.

The object is the resource document that can be represented by cloud data hosting

provider path and a unique data identifier. Predicate defines an action that subject is

entitled to, based on the policy rules. Because of its internal XML structure, XACML

policies are defined via attributes represented by name/value pairs. XACML sticky policy

subject can be constrained by a technical Role [127] represented as a group in a target

system, where, e.g. Role is equal BusinessEngineering. Because sticky policy remains

unencrypted, its attribute values could be anonymised or obfuscated as a further

safeguard. BusinessEngineering role could be represented by a unique global identifier

(see Figure 22) from within given trust authority (TA) context. Several attribute-based

encryption (ABE) work with an attribute representation using binary-state attributes

where attributes unlike in arbitrary-state binary attributes do not directly disclose any

information about the content of the protected message. XACML rules may remain in

arbitrary-state However, in a form that requires attributes mapping to some predefined

encoded unique attributes.

Figure 22 XACML rule example

The obligation is a directive specifying obligatory operation after access request decision.

For example, an obligation can instruct to raise a security incident after Eve was denied

access to the data. Advice can instruct Bob to use his academic email identity because he

does not have a valid educational ac.uk domain address. An important feature of both

obligations, as well as advice, is the fact that these can enforce data re-encryption under

a larger key space or even different cryptographic method. In case of a newly discovered

cryptographic vulnerability, the TA upon every policy evaluation request, may send

<Policy>
 <Rule Effect="Permit">
 <Target>
 <Subject "GROUP(BusinessEngineering):{956EFF…}"/>
 <Resource "TA_URI/{8781F074-FAB1-4D5D-BBF0…}"/>
 <Action "Read"/>
 </Target>
 </Rule>
</Policy>

 62

respond to the access subject requiring policy templates update as well as the document

re-encryption under a new cryptographic algorithm. TA to respond to the first successful

implementation of quantum decryption computer may enforce IBE based on IBE -

Isogenous Pairing Groups (IPS), which would result in re-encryption of all the data under

new cryptographic safeguard.

Data access control implementation based on XACML sticky policy can efficiently

secure confidential information and personal identifiable information (PII), provide high

accountability, where single data access attempt is a subject of auditing [85].

Comprehensive implementation of sticky policy model could support advanced security

auditing where security breach or a data leakage incident is reported and collected, giving

significant evidence for a further legal investigation. The policy construction is highly

simplified with policy templates that could be pre-defined by each TA. Policy template

can represent a required access evaluation context to be included in the policy (see Figure

23).

Figure 23 Policy template part for the location-based access rule

Policy template (see Figure 24) will use attribute designators to set the correct rules in the

right context, e.g. country jurisdiction.

Figure 24 Policy template data representation defining access location in ISO 3166-2 for attribute
designator

Constrained XACML policy template simplifies policy generation and reduces

complexity on the client-side allowing only a pre-defined set of rules to be configured.

XACML policy defines which individual or group of individuals in what configuration

(i.e. location, time) can be granted permissions to access the protected data in the cloud.

Sticky policies implemented based on XACML suffice wide range of access control

implementations. This includes modern cloud-enabled authentication and authorisation

frameworks which leverage SAML and claims-based authentication like in [128] where

individual prior to authorisation would be a subject of authentication (see Figure 20 and

Figure 21) involving third-party identity providers (IdP).

<Apply xsi:type="AtLeastMemberOf" functionId="urn:oasis:names:tc:xacml:1.0:function:string-at-
least-one-member-of">
 <Apply functionId="urn:oasis:names:tc:xacml:1.0:function:string-bag">
 <AttributeValue ParameterId="location"
DataType=http://www.w3.org/2001/XMLSchema#string/>
 </Apply>
 <AttributeDesignator AttributeId="http://schemas.tscp.org/2012-03/claims/ISO-3166-2"
DataType="http://www.w3.org/2001/XMLSchema#string" />
</Apply>

<Parameter ParameterId="location">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">UK</AttributeValue>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">PL</AttributeValue>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">CH</AttributeValue>
</Parameter>

 63

3.8 Trusted Parties

Sticky-policies make use of trust authorities (TA), which validate compliance with

policies in order to lease decryption keys. Policies likewise cover data owner consent give

subject rights to process data. A model where a TA has to be contacted by the service

provider (SP) to access the PII data delivers high accountability as each personal data

access attempt is a subject of auditing [85] and could be tracked in case of a data leakage

incident. The data owner can then feel that they own the data released into the cloud

because of not only the policies associated with data following data owner approval, but

also for the TA, which specifies where the policy can be interpreted and is pre-selected

by the data owner [121]. Information about the TA is attached to the policy and is passed

to the SP. An XML schema that can store sticky-policy definition can be easily integrated

into identity metadata.

TA as an abstract entity needs to represent one or more actual trust parties that take part

during initial authentication, authorization, key management and actual document

management. Different TAs could exist independently and provide service do many other

service providers, not necessary related to SPIBE. All trusted parties as recommended for

Policy Machine architecture [55] have to authenticate one another. SPIBE recommends

that trusted parties are certified and authenticated but that the actual sticky policy is

signed. Furthermore, to the separation of duties principle recommends that one party

should not be able to compromise model security.

The private key generator (PKG) [129] is the most sensitive TA as it could deliver

decryption keys for every given public key. It is important to inspect the PKG system and

its logs to ensure only that certified PKG implementations are used and only legitimate

decryption requests are processed. The PKG should never hold the same master key for

two independent frameworks, this will eliminate scenarios where private data decryption

key is illegitimately generated without prior authorization. This is a part of core SPIBE

architecture, however there are other safeguards required that would ensure framework

compliance. It is necessary to allow a public audit through third party auditor (TPA) to

certify all the trusted parties.

Policy engine and its sub-entities cannot decrypt data directly, however incorrect false

positive access decisions made could also compromise security of the SPIBE model.

Same as PKG it requires external TPA to verify whether the provider delivers secure

service.

 64

3.9 Comparison

Most of the currently studied IRM solutions are primarily focused around health care

record privacy protection. Among them SPIBE has several distinguished features giving

it functional advantage over other research works. Use OOXML for the actual

implementation makes this solution adaptable by any organization or institution, or even

individual using popular wordprocessing applications. Furthermore, CP-ABE based

solutions [130], [131], [132], [133] , [134], where policy does not contain globally

uniquely identified document with an incorrect setup could lead to situation that CP-ABE

keys are same for different documents. When one of the keys is divulged it could

compromise several unrelated documents. Finally, most of the compared solutions

(see Table 1) do not consider quantum computing as a threat therefore it does not provide

relevant safeguards. It is only possible to assume that research work that does not refer to

any specific cryptographic primitive leaves space for cryptographic quantum hardening.

Solution Strength Weakness Safeguards C
loud-ready

A
ccess C

ontrol

C
ryptography

C
onfidentiality

Integrity

A
ccountability

N
on-repudiation

Standards-based

Im
plem

entation

Q
uantum

 ready

CHISTA
R [135]

Interoperabilit
y, scalability,
maintainability

Inflexible
access control

RBAC;
AES-256;
SSL; MAC;
SSO

 N/A

VistA
[136]

none Client-server
architecture

RBAC
 N/A

G. Hsieh
and R.-J.
Chen
[130]

Flexible access
control and
integrity
control

Lack of
prototyped
architecture

ABAC(XA
CML);
XML
Security (on
policy);
AES; CP-
ABE

 N/A

F.
Rezaeibag
ha and Y.
Mu [131]

Scalability,
confidentiality,
and secure
data
outsourcing

Data sharing
problems can
be caused by
increasing the
complexity of
EHR data
policies

RBAC; CP-
ABE

 N/A

U.
Premarath
ne et al
[137]

Perform access
control
through
context and
location
awareness

Key exchange
problems
between
various parties

RBAC; PKI

M. Peleg
et al
[138]

Structured
specification
of patient data
access
scenarios via
situation
models

Scalability
issues

Situation-
based access
control

N/A N/A

R.
Gajanaya
ke et al.
[139]

Combines
three existing
access control
models

none MAC;
DAC;
RBAC;
PBAC

N/A N/A

A.
Lunardelli
et al [140]

Provides
solution to the
situation of
policy conflict

Lack of
security aspect
issue

ABAC(XA
CML) N/A N/A

J.
Calvillo-

Flexible access
control

No
consideration
of

ABAC(XA
CML) N/A N/A

 65

Arbizu et
al [141]

confidentiality
or integrity
issues

P. Gope
and R.
Amin
[142]

Practicality,
Robustmess

Inflexible
access control

ABAC,
MAC

 N/A

S.
Alshehri,
S. P.
Radziszo
wski, and
R. K. Raj
et al.
[132]

High
performance
over time
overhead and
storage
overhead

Lack of non-
repudiation

ABAC;
ECC; CP-
ABE

 N/A

K. Yang
et al [143]

Flexible access
control,
dynamically
changing user
attributes

Lack of
implementatio
n

ABAC;
Time-
domain
ABE

 N/A

A.
Mohandas
And S. S
[133]

Fine grained
access control,
anonymization

None ABAC; CP-
ABE; k-
anonymizati
on

 N/A

T.
Neubauer
and J.
Heurix
[144]

Provides a
methodology
for the
pseudonymizat
ion of medical
data

No cover for
digital
signature

Pseudonymi
zation;
RSA-2048;
AES-256

N/A

M. T.
SandIkka
ya et al
[145]

Performed the
pseudonymizat
ion and can
break-glass
procedures;
self-protect the
data in case of
breached
access using
biometrics

Inflexible
access control

Encryption
signature;
RBAC;
pseudonimiz
ation N/A

S. Sharma
and V.
Balasubra
manian
[146]

Self-protect
the data in
case of
breached
access using
biometrics

none Biometrics
Encryption;
SHA-256

R. Au and
P. Croll
[147]

Considers
various factors
for privacy
protection

Inflexible
access control

Pseudonymi
zation; PKI;
RBAC;
digital
signatures

N/A

K. Seol et
al [134]

Supports all
evaluative
requirements

none ABAC(XA
CML);
XML
Security

SPIBE Integrates into
common word
processing
systems;
resistant to
non-or-full
access rights
vulnerability

none ABAC(XA
CML);
AES-256;
IBE; IBE-
IPG; CP-
ABE

Table 1 Comparison with existing privacy preservation studies in e-health [134].

	

 66

3.10 Conclusions

Sticky policies in the described cryptographic setup carries the potential to decentralize

data access definitions for modern applications. With IBE the entire construct is not

limited to one specific cryptographic algorithm implementation. It could quickly adapt to

new requirements not only by increasing key sizes but also by replacing actual

cryptographic primitives. Under IBE-IPG the actual model is quantum computing ready

and with sticky policy evaluated under a TA, the security upgrade would only require re-

encryption under a new cryptographic protocol without actual change to entire IRM

architecture. Having several certified TAs separating core responsibilities including

authentication, authorization, PKG and key management system (KMS) ensures that the

SPIBE framework cannot be compromised at a single point. Single TA can not have

power to decrypt all protected documents without having legitimate request approved by

all trusted parties, i.e. TAs. The added blockchain part would efficiently authenticate all

the changes complementing model with document changes authenticity, non-repudiation,

and integrity. OASIS authentication standards with possible XACML profiles show the

selected sticky policies model has solid foundations.

 67

4 Evaluation Methodology and
Implementation

4.1 Introduction

Evaluation is focused on selected architecture components. Model evaluation has been

prepared to see how the rights could be enforced and visible to the end user. The OOXML

document wrapper was configured as a single standalone document and as a master

document constructed with several subdocuments. The master document evaluation aims

to show how a group of authors could collaborate in writing a single report made out of

several subdocuments. Unlike the single document, the master document could be

leveraged to simplify access management over different document elements. Otherwise,

a single document required a custom approach if granular access authorisation to different

document parts is required. The XACML policy embedding and unpacking into and from

OOXML document is not a core part of the evaluation. However, it was added and

removed for each of the other tests performed. The JSON formatted XACML policy

comparison with XML format has to prove that same policy could be expressed to save

the storage space as well as potentially suit future encryption schemes with relatively

larger keys that are limited by plain text message length.

By implementing several XACML policy engine components, it is possible to identify

problematic points and recognise advantageous and disadvantageous of both PEP designs

with the fat-client application and with the web-based application.

SPIBE has been compared to other popular IRM solution from Microsoft, the Azure RMS

and the IONIC Secure Files. Azure RMS same as SPIBE uses both asymmetric and

symmetric encryption. IONIC is based only on symmetric AES encryption. Both other

solutions show strong and weak sides of symmetric and asymmetric cryptography based

IRM approach. Therefore, the comparison with SPIBE helps in to find how the construct

could get the best from existing solutions.

4.2 Architecture

The evaluation of XACML sticky policy with IBE (SPIBE) has been conducted on a

simple, single domain setup (see Figure 25). This is sufficient to see IBE applicability for

sticky policies as well as a potential of leveraging OOXML as an efficient data wrapper.

XACML entities could be deployed in a standalone or a distributed model. By distributing

 68

authorisation entities, dedicated components have to handle authentication to ensure

request and response non-repudiation. Simplified policy engine (i.e. AUTHZ) delivers

XACML policy templates within a given context. Assuming AUTHZ is deployed by an

organisation with strictly defined access policies, policy templates could be retrieved

from policy information point (PIP) based on relationship type between identity and

organisation. OOXML editor application (APP) extended with a custom plug-in for

embedded XACML policy management could retrieve the correct templates based on the

authenticated user using OAuth or SAML tokens. For the evaluation purposes, XACML

templates management has not been implemented on AUTHZ component nor on the APP

side. XACML embedding functionality that is handled by OOXML plug-in is prototyped

(see Appendix O and Appendix X) to pack and unpack predefined XACML policies.

The editor application could be deployed either at a client-side or at a web server side.

Both APP implementations were evaluated. The first APP proof of concept (PoC) used

Microsoft Word as the editor, where access decisions were enforced using file metadata

permissions. Client-based editor implementation is a challenging part of the evaluation.

There are various OOXML compliant editors available. In order to deliver a

comprehensive solution, the client-side extension should support various OOXML

processing suites. An implementation that would support all different applications

including different versions would require the complete understanding of the application

itself. In many cases, vendors do not deliver libraries or software development kit that

would support such a complex integration. Therefore, due to limited supervision over an

OOXML document and the policy the approach requires control at the low driver level.

Under Microsoft Windows system the handler and buffer for file access management has

to implement Universal Windows Driver (UWD) at the Minifilter Driver level. The only

bottleneck of the solution is that driver has to be designed for the exact Windows

distribution and CPU architecture. Despite these drawbacks, the driver-based

implementation seems more consistent and secure as all cryptographic operations are

performed at the lower level where any potential key tampering is relatively limited. It

requires a skilled individual to take an advantage within the selected architecture.

 69

Figure 25 SPIBE components and interfaces

The second APP component PoC was conducted using the limited functionality of the

online web-based OOXML editor (see Appendix Y) with both SPIBE and APP integrated

as one component. Unlike Minifilter driver solution, the web-based editor could be hardly

tampered to give adversary advantage in SPIBE. Direct access to memory that would give

access to extract keys used to protect the document like in MS RMS [148] is limited or

simply impossible as the hardware is not under control of the data processor.

4.3 Model Implementation
4.3.1 Introduction

SPIBE system component (see Figure 25) has been evaluated without modular

implementation that is required to deliver fully functional customer ready framework.

Only mandatory modules required for evaluation were prototyped and integrated. AES,

IBE, PKG components were implemented together under a single program tool reading

configuration from files stored under local file system. KMS and HSM have not been

used. DRV module has been implemented as a standalone driver library, however

 70

integration with existing IBE libraries was not possible with current Visual Studio

solution architecture. PEP, PIP together with PDP were running under separate solution

instance and only the actual XACML policies were shared with IBE component over a

file system. The EDITOR application was implemented as HTML editor, however only

Microsoft Word successfully interpreted rights set on the file IO level (see Figure 40).

OOXML PLUGIN component has not been required for the actual evaluation as all the

XACML policies were pre-generated for actual RSA and IBE performance evaluation.

4.3.2 Policy Encapsulation

The main policy wrapper challenge is to allow efficient and visible to end-user access

rights enforcement. While custom OOXML editor application would deliver the most

comprehensive solution, its maintenance over years would become a bottle neck of the

framework. That is why architecture considers existing Microsoft Office SDK or open

source popular libraries. Microsoft libraries work relatively stable with Microsoft

products and there are many other systems designs has to consider giving it higher priority

due to main objectives, making actual framework standardized for secure cloud data

sharing. The second way to handle OOXML wrapper is to leverage HTML based

application, where the access to the document content would happen on a trusted sever

side. While in a fat-client scenario the document access does not require high machine

power, central server-side implementation needs very efficient back-end that would

handle hundreds of thousands simultaneous read/write requests as well as access decision

requests. Therefore, for server-side application it the SPIBE considers use of either flat

databases that actually host basic document descriptor attributes or classic relational

database. While the document descriptors might vary from the long-term database

maintenance perspective it will be beneficial to use semi-structured No-SQL document

database. For this research, however, we use transactional database with FileStream

feature enabled. Databases work well with document data stored directly with other data,

but it also depends on the size of the actual document and the frequency of access

attempts. FileStream is not the best solution to handle large amount of small frequent

updates, however OOXML is on the border where document is smaller than 1[MB]

suitable for Binary Large Objects (BLOB) table field and document storing rich media

meta-data highly exceeding 1[MB] is suitable to be hosted directly by the file system.

Due to encrypted content that will be stored the direct updates are not recommended as it

will cause various performance issues, where changed data before saving always has to

be encrypted in the buffer. Actual initial access to the stored document should be highly

efficient but the application need to use a cached document version in order to optimize

 71

actual operations on the document and align with overall database performance capacity.

Modern No-SQL databases, like MongoDB have already various features that improve

file access performance, therefore the used underlying database type will highly depend

on the target market and the scale of the implementation. OOXML files, when encrypted

cannot be efficiently hosted as an integrated part by semi-structured database, however

the XACML policy and other unencrypted document meta-data could be efficiently

stored and indexed in XML format. The entire document should be referenced directly

from files. Same time, the policy before saved together with a document could be

deserialized by the object layer and exported as a normalized set of attributes to be finally

stored in the relational database next to the BLOB data-type.

The first part of the implementation reviewed possible ways of efficient storing,

managing, opening and controlling access to OOXML document. To simply encapsulate

and extract XACML policy into and from the OOXML document and to evaluate how

the OOXML ZIP format aligns with standard libraries the basic compression functions

were used (see Figure 26 and Figure 27).

Figure 26 XACML policy encapsulation, Python

Figure 27 XACML policy extraction, Python

For the initial evaluation, the policy enforcement point (PEP) has been implemented as a

part of a Web-based editor application with policy related to a document as a reference.

The application was editing OOXML word processing content after policy decision was

made therefore access rights were already determined during the initial file access (see

Figure 28).

#**
#!/usr/bin/python

#***********************************Functions**********************************

#***********************************
#zip_word_doc_path encapsulates doc section into OOXML file
#***********************************
def zip_word_doc_path(full_doc_path, full_word_doc_path, word_doc_path):
 with zipfile.ZipFile(full_doc_path, 'w') as zip_file:
 zip_file.write(full_word_doc_path, word_doc_path, zipfile.ZIP_STORED)

#**
#!/usr/bin/python

#***********************************Variables**********************************
CONST_WORD_DOC_PATH = 'word/document.xml'

#***********************************Functions**********************************
#***********************************
#extract_word_doc_path extracts doc section from OOXML file
#***********************************
def extract_word_doc_path(full_doc_path):
 file_handle = open(full_doc_path, 'rb')
 with zipfile.ZipFile(file_handle) as zip_file:
 for arch_elem in zip_file.namelist():
 if arch_elem.startswith(CONST_WORD_DOC_PATH):
 zip_file.extract(arch_elem)

 72

Figure 28 XDocument Constructor, C#

Documents were stored in SQL FileStream for efficient access (see Figure 29). Every

data request was followed by XACML policy retrieval.

Figure 29 Opens SQL FileStream with OOXML content, C#

This approach is suitable for HTML-based OOXML editing, however, to use Microsoft

Office SDK the regular file stream suits better the

DocumentFormat.OpenXml.Wordprocessing library.

4.3.3 Cryptography

The core evaluation of IBE-BF and RSA is based on a model construct that allows key-

encrypting key operations. However, the complete end to end SPIBE cryptographic

operations including AES256 data encryption are implemented. The main objective for

evaluation was to create a single consistent solution where programming languages would

not have impact on the overall performance measures. Decision regarding programming

language for the actual solution is crucial because it has to consider further consequences

when it comes to integration with different SPIBE components. If policy enforcement

/// <summary>
/// Creates an instance of a single OOXML document supporting basic access control
functionality
/// </summary>
/// <param name="singleStream">Document file stream</param>
/// <param name="fileAccess">Access type</param>
public XDocument(SingleStream singleStream, FileAccess fileAccess)
{
 this.singleStream = singleStream;
 this.WrapDocument(fileAccess);
}

private SqlFileStream GetData()
{
 const string SQL_TRANS_QUERY = @"SELECT GET_FILESTREAM_TRANSACTION_CONTEXT()";
 //byte[] buffer;
 //UInt32 position = 0;

 string sqlQuery = String.Format(@"
SELECT TOP 1
 [MetaDataFile].PathName()
FROM
 [NEHST].[dbo].[MetaData]
WHERE
 [MetaDataID] = '{0}'", this.metaDataID);
 if(this.fileStreamer.SqlConnection.State == System.Data.ConnectionState.Closed)
 {
 this.fileStreamer.SqlConnection.Open();
 }
 using (SqlCommand sqlCommand = new SqlCommand(sqlQuery,
this.fileStreamer.SqlConnection))
 {
 //using (SqlTransaction sqlTransaction
 this.sqlTransaction =
this.fileStreamer.SqlConnection.BeginTransaction(this.metaDataID.Replace("-", String.Empty));
 sqlCommand.Transaction = this.sqlTransaction;

 string filePath = (string)sqlCommand.ExecuteScalar();
 //SetRemoteSecurityContext(filePath);

 sqlCommand.CommandText = SQL_TRANS_QUERY;

 this.streamHandle = (byte[])sqlCommand.ExecuteScalar();
 return new SqlFileStream(filePath, this.streamHandle, this.fileAccess);
 }
}

 73

point (PEP) application would be running on Unix machine there should be existing not

only set of OOXML editing libraries but also XACML libraries together with all

cryptographic primitive implementations that could work under Unix system. If the

editing application should have option to run as a client or server-side solution it is

important to make underlying libraries generic written in the same programming language

and configured for one single system. Such an approach simplifies the maintenance where

critical changes could be quickly tested and deployed without need to maintain

functionally identical solutions separately because of the programming architecture

limitations.

Cryptographic libraries implemented as under Visual Studio solution allow further

integration with XACML PEP component, but the aim is that popular MS based OOXML

editor application part could be easily evaluated under the same software architecture.

There are two main C++ evaluation methods, one ibe_eval for IBE-BF with Sticky

Policy mapping into key space and the other rsa_eval for RSA evaluation (see Appendix

H). Actual implementation C++ methods could wrap the underlying C cryptographic

libraries and expose them for all other programming language projects under one single

Visual Studio solution.

Figure 30 XACML Policy mapped into Public Key space via SHA256, C

static int ibe_bf_set_public_key(const unsigned char *id, long id_size, unsigned char *key,
const int key_size, char *err)
{
 const int HASH_LEN = 32;
 unsigned char hash[HASH_LEN] = { 0 };

 key = (unsigned char *)malloc(key_size+1);

 if (SHA256(id, id_size, hash) == NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);

 return -1;
 }
 for (int i = 0; i < key_size; i++)
 {
 key[i] = hash[i % HASH_LEN];
 }
 key[key_size] = '\0';

 return strlen((char *)key);
}

 74

Figure 31. IBE-BF Public Key generation evaluation, C

Figure 32 IBE-BF Private Key Generation Performance Evaluation, C

static void ibe_eval(int argc, char **argv)
{
 //...
 for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 element_from_hash(mapped_id_hash_Qid, key, pkey_sz);
 /********
 ++++END_TIMING
 *********/
 QueryPerformanceCounter(&t2);

 time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 printf("%f\n", time_spent);
 fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 /********
 ----END_TIMING
 *********/
 }
 //...
}

static void ibe_eval(int argc, char **argv)
{
 //...
 for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 element_mul_zn(Ppub, gen_P, master_key_s);
 element_printf("++s: %B\n", master_key_s);
 element_printf("++P: %B\n", gen_P);
 element_printf("++Ppub: %B\n", Ppub);

 /********
 ++++END_TIMING
 *********/
 QueryPerformanceCounter(&t2);

 time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 printf("%f\n", time_spent);
 fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 /********
 ----END_TIMING
 *********/
 }
 //...
}

 75

Figure 33. RSA key pair factorization, C

Figure 34 RSA key-encrypting key encryption evaluation, C

static RSA *rsa_create_key_pair(unsigned char **public_key, int *public_key_size, unsigned
char **private_key, int *private_key_size)
{
 const int KEY_SIZE = 1024;
 const int PUB_EXP = 3;
 RSA *key_pair;

 key_pair = RSA_generate_key(KEY_SIZE, PUB_EXP, NULL, NULL);

 BIO *bio_private_key = BIO_new(BIO_s_mem());
 BIO *bio_public_key = BIO_new(BIO_s_mem());

 PEM_write_bio_RSAPrivateKey(bio_private_key, key_pair, NULL, NULL, 0, NULL, NULL);
 PEM_write_bio_RSAPublicKey(bio_public_key, key_pair);

 *private_key_size = BIO_pending(bio_private_key);
 *public_key_size = BIO_pending(bio_public_key);

 *private_key = (unsigned char *)malloc(*private_key_size);
 *public_key = (unsigned char *)malloc(*public_key_size);

 BIO_read(bio_private_key, *private_key, *private_key_size);
 BIO_read(bio_public_key, *public_key, *public_key_size);

 return key_pair;
}

static void rsa_eval()
{
 //...
 for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/

 int size_enc = RSA_public_encrypt(AES_KEY_SZ, aes_key, cipher, key_pair,
RSA_PKCS1_PADDING);
 /********
 ++++END_TIMING
 *********/
 QueryPerformanceCounter(&t2);
 /********
 ----END_TIMING
 *********/

 time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 printf("%f\n", time_spent);
 fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 }
 //...
}

 76

Figure 35 RSA key-encrypting key decryption evaluation, C

The cryptographic evaluation is mostly focused on key-encrypting key cryptographic

operations. For IBE-BF the public key is derived directly from the policy (see Figure 30,

Figure 31 and Figure 32) therefore there is no need to perform key-encrypting key

operations like in RSA, where asymmetric keys have to be derived from prime numbers

factorization (see Figure 33) and symmetric data-encrypting key encrypted or decrypted

under RSA (see Figure 34 and Figure 35).

The further IBE-BF evaluation work itself is focused more on simple model workflows

and looking at the actual performance of overall SPBIE cryptographic operations (see

Figure 36, Figure 37, Figure 38). Here the policy into key space mapping under IBE-BF

and data encryption using AES256 are evaluated together in various setups.

static void rsa_eval()
{
 //...
 for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 int size_dec = RSA_private_decrypt(size_enc, cipher, aes_key_v, key_pair,
RSA_PKCS1_PADDING);

 /********
 ++++END_TIMING
 *********/
 QueryPerformanceCounter(&t2);
 /********
 ----END_TIMING
 *********/
 }
 //...
}

 77

Figure 36 IBE-BF encryption over AES256, C

Figure 37 IBE-BF decryption over AES256 evaluation, C

static int ibe_bf_aes256_encrypt(element_t r, element_t U, element_t P, element_t gid,
element_t mapped_id_hash_Qid, element_t Ppub, unsigned char *data, long data_len, unsigned
char *cipher, char *err)
{
 const int HASH_LEN = 32;
 char hash[HASH_LEN] = { 0 };
 unsigned char *gs;

 element_random(r);
 element_mul_zn(U, P, r);

 element_pairing(gid, mapped_id_hash_Qid, Ppub);

 element_pow_zn(gid, gid, r);
 gs = (unsigned char*)malloc(element_length_in_bytes(gid));

 element_to_bytes(gs, gid);

 if (SHA256((unsigned char*)gs, element_length_in_bytes(gid), (unsigned char *)hash) ==
NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);
 }
 unsigned char iv[128] = { 0 };
 int cipher_len = aes_evp256_encrypt((unsigned char*)data, data_len, (unsigned
char*)hash, iv, cipher);

 free(gs);

 return cipher_len;
}

static void ibe_eval(int argc, char **argv)
{
 //...
 for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/

 //ENCRYPTION
 ibe_encrypt(r, U, P, gid, mapped_id_hash_Qid, Ppub, data, data_sz, cipher, err);
 cipher_sz = ibe_bf_aes256_encrypt(r, U, gen_P, gid, mapped_id_hash_Qid, Ppub, data,
data_sz, cipher, err);
 char *b64MsgHash;
 to_base64(cipher, data_sz, &b64MsgHash);
 element_printf("++m: %s\n", b64MsgHash);

 /********
 ++++END_TIMING
 *********/
 QueryPerformanceCounter(&t2);
 ///********
 //----END_TIMING
 //*********/

 time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 printf("%f\n", time_spent);
 fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 }
 //...
}

 78

Figure 38 IBE-BF decryption over AES256, C

4.3.4 Policy Engine

XACML policy engine was evaluated with 400 XACML policies to receive a valid access

response (see Appendix P) and to see the actual policy decision point (PDP) behaviour.

All policy engine components but policy enforcement point (PEP) could be easily

deployed under single system architecture using the same programming language. The

PEP if deployed on a client-side it brings many challenges. To simplify actual SPIBE

deployment it might be easier to create server-side PEP first with web-based editor

application. If PEP should be deployed to client, the actual cryptographic operations

should be handled on as low level as possible to avoid any possibility of intercepting the

keys and making illegitimate changes to the protected document and the access policy.

The Windows system Minifilter driver acting as a PEP has been partially implemented to

see the possible use cases and the implementation complexity (see Appendix JJ).

By comparing XML and JSON formatted XACML policy sizes it is possible to see some

benefits of using JSON formatted expressions as well as possibilities of using some

cryptographic primitives with larger keys that could additionally encrypt the policy to

increase the model security. Larger mapping key space for IBE BF close to policy size

would reduce possible collisions in the long term. Some cryptographic primitives limit

the size of the plaintext to the key size. If encryption of the actual XACML policy should

be considered it is important to see what the largest and the average policy size is. This

static int ibe_bf_aes256_encrypt(element_t r, element_t U, element_t P, element_t gid,
element_t mapped_id_hash_Qid, element_t Ppub, unsigned char *data, long data_len, unsigned
char *cipher, char *err)
{
 const int HASH_LEN = 32;
 char hash[HASH_LEN] = { 0 };
 unsigned char *gs;

 element_random(r);
 element_mul_zn(U, P, r);

 element_pairing(gid, mapped_id_hash_Qid, Ppub);

 element_pow_zn(gid, gid, r);
 gs = (unsigned char*)malloc(element_length_in_bytes(gid));

 element_to_bytes(gs, gid);

 if (SHA256((unsigned char*)gs, element_length_in_bytes(gid), (unsigned char *)hash) ==
NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);
 }
 unsigned char iv[128] = { 0 };
 int cipher_len = aes_evp256_encrypt((unsigned char*)data, data_len, (unsigned
char*)hash, iv, cipher);

 free(gs);

 return cipher_len;
}

 79

part of the evaluation may have many implications for the future work and should be

beneficial for other researchers working on similar problems.

 80

5 Evaluation

5.1 Introduction

Evaluation of the SPIBE model is based on research progress where initial policy and

later sticky policy implementation components, where possible, were tested and

compared to other functional alternative components (see Table 3). Solutions simplicity

was favoured over complexity. At the same time, easily adaptable standards that were

previously successfully implemented on a global scale were preferred over homogeneous

and closed systems. Finally, used algorithm security lifecycle (ASL) was considered as

the highest priority due to IRM purpose and the emerging quantum computing. The

concept of cloud-based data sharing will be only possible when open standards are used

the construct is following Kerckhoff's principle for protection algorithms. The principle

states that a cryptographic algorithm could be known to leave protected data safe under

unknown cryptographic keys. Cloud protection cannot rely on corporate trade secrets as

the only true cloud implementation enables different parties to provide the same

standardised services.

5.1.1 Microsoft Rights Management Services (RMS)

Different available information rights management (IRM) products are currently

available on the market, however, where data protection is a core competency either very

homogenous custom solution is used to protect documents or companies use products

from market leading vendors. In this group, Microsoft Rights Management Services

(RMS) took over other similar products establishing its high position in this market niche

providing services, e.g. to UK Ministry of Defence [148] but also to international

financial institutions, governments, health-care institutions, and large enterprises.

Although Microsoft has managed to introduce its product as a cloud service its internals

seem, have never been changed except couple minor adjustments to make it more

interoperable.

5.1.2 IONIC Security

On the cloud market, there are different information rights management (IRM) products

that more or less successfully conquer legacy markets. However, their advantage over

predecessors is the proper use of modern application programming interfaces (API) and

cloud-ready standards. Among these IONIC products entered the existing large

enterprises market successfully collaborating with Microsoft on empowering the cloud-

 81

based Azure suite [149]. IONIC seem to deliver a complete software development kit

(SDK) for its products including documentation for multi-platform integration via API’s

and different programming languages.

5.2 Access Policy vs Sticky Policy

Sticky policy, unlike access policy, is attached as additional document metadata. Sticky-

policies integrate into existing policy frameworks. It has a major advantage over another

approach where the policy is kept separate from the object. It combines both a policy and

an object (resource) under sticky policies model similar to discretionary access control

(DAC) model. It reduces the number of model entities and also increases the database

access response (see Figure 39). In transactional databases query response time 𝑡M is

equal to natural logarithm of total records number.

𝑡M = ln(𝑎), (15)

In access policy-based access control model, implementation database maintains not only

a document information, which is claimed by the subject, but it also maintains access

policies. XACML-like policy keeps a reference to an actual resource, i.e. document.

However, in access request scenario subject claims object based on resource information

before the policy is evaluated. One can calculate query time 𝑡M	assuming we have to query

policy each out of 𝑝 policies and each document out of 𝑛 documents separately as in:

∀𝑎 = 𝑝	 × 	𝑛, (16)

𝑡M = ln(𝑎) = 𝑙𝑛(𝑛) + ln(𝑝) (17)

In the sticky-policy model, the policy is attached to the resource, and both are claimed in

one single request. Therefore, the query time 𝑡M is derived as following:

∀	𝑝 = 𝑛 (18)

𝑡p = 𝑙𝑛(𝑛) (19)

 82

Figure 39 Access Policy (tp) and Sticky Policy (ts) DB query response time [150]

5.3 OOXML ZIP Wrapper
5.3.1 Policy Wrapper

Office Open XML (OOXML) standard is mostly built on top of XML files, which

reference to each other forming a single document. XML files can be supplemented with

other reach files to deliver graphic, multimedia and other elements [62]. OOXML data

format can deliver data integrity using internal elements hashing, while confidentiality

can be assured by ZIP wrapper password protection and content encryption. These

techniques are sufficient to protect content that does not leave corporate network.

However, when, leaked this built-in protection may not be sufficient for personal data.

Cloud-based data sharing solution in order to utilize OOXML standard would require

additional safeguards from service providers.

5.3.2 Master Document with a Single Sub-Document as a Security
Boundary

As the additional OOXML with embedded XACML evaluation was performed using an

explicit relationship and master document model [62] from WordprocessingML

subclause. This part showed that described here granular access control method can be

used to control access to sub-documents. Whereas policy access response denied resource

Write access model added a read-only attribute to master document what was represented

as a padlock on the document outline (see Figure 40). By representing OOXML sub-

sections as individual documents, it is possible to control access to different document

sections, i.e. sub-documents using one single access enforcement model. Other

 83

techniques would require a customised approach that leverages a single OOXML

document internal XML schema.

Figure 40.Master Document with two sub-documents

Granular access model built for this evaluation is just a proof of concept as various

sources discourage using master document model due to several integrity problems with

complex documentation.

5.4 XACML Evaluation
5.4.1 XML and JSON Formatted Policy

Following tendencies to simplify and reduce the size of a data, the JavaScript Object

Notation (JSON) a skimmed alternative of the eXtensible Markup Language (XML) has

been successfully used to format XACML policy [8]. This research leveraged XML based

XACML policy engine libraries to evaluate the access control model. JSON formatted

policies could reduce the size of the protected document, what considering protection

attached to every piece of information could highly reduce the storage space required to

host the data. Furthermore, the policy cannot be simply encrypted using basic key-

encrypting RSA or ECC algorithms. Currently, the only model to encrypt the policy under

public key algorithm that could be considered are either special public key algorithms

allowing larger messages or partial policy encryption, or policy attributes anonymisation

and obfuscation. With relatively large keys that might be required in the future

considering increasing computing power, the JSON formatted policy could also be a

 84

subject for encryption [7]. To show size differences between JSON and XML formatted

policy the evaluation took 400 XACML policies with internal complexity from low to

complex. The policies fall within different size ranges (see Figure 41), where 3% of all

evaluated XML formatted policies exceed the size of 16[KB] but most 70% of JSON

formatted policies do not exceed the size of 2[KB].

Figure 41 Policy sizes comparison formatted with XML and JSON. XACML policies [123].

5.4.2 Minifilter Driver – Security

The editing application will reject any OOXML modification requests if file metadata is

set with a read-only permission. Access control implemented at mini driver level it is only

a deterrent safeguard protecting a document from rights elevation. IRM systems fail to

enforce strictly only the rights that are assigned to documents [148]. Minifilter driver will

give sufficient protection at the client-side only if supported with additional safeguards

like Blockchain ensuring data versioning. From an interoperability perspective

overwriting file-level access control using a policy enforcement point (PEP) makes this

part of SPIBE implementation transparent to the client editor application. Implementation

at the driver level operates same as anti-virus software intercepting all open file events

based on the specified filter at the file meta-data level. Driver development is not

complicated, however, under Microsoft Windows systems, it requires exact Software

Development Kit (SDK) version installed together with exact Windows Driver Kit

 85

(WDK) and Microsoft Visual Studio version. Microsoft delivers official templates-like

examples for WDK development where SwapBuffer File System Minifilter Driver covers

exact scenario that is required for driver evaluation. Although driver development is

relatively complex and requires rather a quality approach, the final solution reacted for

OOXML document access requests despite editor application or editor application

version.

The solution at this level could handle only limited interface implementation, although it

exposed most of the operations related to policy enforcement point (PEP). Upon an open

request (see Figure 42), it has to intercept a document access attempt, read the sticky

policy, read the current identity information, send an access request to a trust authority

(TA) for evaluation with the identity and enforce the response (see Figure 21) by either

returning default empty document template upon deny response or replacing decrypted

data buffer with file metadata flag set either to read-only or read-write. Upon an update

request (see Figure 43), it contacts the TA for encryption parameters (see Figure 20) to

encrypt the document and write it back to the buffer. Due to possible delays with

productive implementations, minifilter should cache the TA parameters for later

cryptographic operations. The part related to document policy management should be

handled at the higher, application layer.

Figure 42 APP document access with Driver MiniFilter

 86

Figure 43 APP document protected with Driver MiniFilter

5.4.3 Web Application

To solve client systems interoperability problem, the OOXML document could be edited

with a web-based application hosted online. Same as with the minifilter driver approach,

any safeguards aiming to limit the possible data leakage after the document is decrypted

have only a deterrent character. To limit illegitimate document amendments the online

editor application, have to maintain document history metadata to ensure changes in

authenticity and non-repudiation. This part could be achieved either via Git repositories

or same as for minifilter driver; the data versioning could be hosted by blockchain (see

2.7.2).

5.4.4 Microsoft Office Add-in

Editor application plug-in is required to handle document policy edition based on TA

templates. The only responsibility of the plug-in is to recognise the identity TA or allow

addition TA registration to retrieve contextual policy templates. While some of the

templates might be valid across different security boundaries and be accepted by different

cloud services, some could be restricted to the specific trusted realm. Focusing on

Microsoft Windows, a Word Add-in could be developed at the higher programming level,

and, in comparison with previous MS Component Object Model (COM) or Visual Basic

for Applications (VBA) implementations, the Add-in could be added to different MS

Office distributions including distributions dedicated for different operating systems.

Actual complete Add-in development is not part of the evaluation; however, the basic

solution has been created to compare possible implementation scenarios.

 87

5.5 RMS vs SPIBE
5.5.1 Key Management

The core Azure MS RMS feature is the support for bringing your key (BYOK)

architecture. Customers could secure own root infrastructure keys leaving cloud service

provider, i.e. Microsoft with almost no possibility to export keys outside of the strict

boundaries. Using hardware security module (HSM) synchronisation functionality, the

cloud-based HSM synchronizes keys only into specific regions. Technology is based on

Thales Security World concept [151], although unlike with standard HSM Security World

setup, Microsoft amended the master key sharing flow allowing non-physical master key

transfer over the Internet. This model, if secure, would be already in place instead of

physical safeguards. Hence authors assume this implementation weakens the model

security as hardware HSM ensures security not only by protecting the keys in a secure

appliance but also be enforcing strict procedures involving a physical, administrative key

management.

Azure MS RMS by default uses RMS 2048 [bit] key sizes for applications. It seems

currently secure, however, from the security perspective, the entire model has to be either

completely reviewed or replaced with a construct that might be more quantum computing

safe considering RMS algorithm security lifetime (ASL) as well as other vulnerabilities

[148].

The SPIBE evaluation could only leverage soft key management system (KMS) vaulting

via Microsoft Cryptography Next Generation (CNG) certificates with the private key-

encrypting key. For actual implementation authors would leverage standard HSM

implementation with no master key exchange over non-dedicated networks. The IBE

scheme [10], however, is designed with the concept of using the distributed master key,

which is never available in one piece in one single location. Using simple Shamir shared

secret construct [126] master key could be distributed across different KMS locations and

servers. Although authors have not yet evaluated this component on a large scale, there

are several sources proposing this schema as a simple cryptographic primitive that solves

complex security problems.

Another key management feature of SPIBE is that unlike other popular cryptographic

constructs [7] for IRM the key	𝑠 like shown in (8) does not have to be randomly generated

prior IBE operations in order to encrypt the data. The XACML policy, a major secret key

 88

factor, follows the ciphertext. Upon an access request the XACML sticky policy

authorizes the operation and authenticates the key generation.

5.5.2 Generate Keys Timing (Additional keys for RMS)

Prototyped sticky policies of size between 1[KB] and 32[KB] were used to protect the

document, which was encrypted using IBE BF and AES256. Furthermore, IBE

performance was compared to other more legacy RSA encryption - the same public key

cryptographic model that Microsoft used for Azure RMS [7]. In the presented model

sticky policy is used to generate a secret key under IBE for AES encryption of the data

part. In MS RMS the AES secret key for data part encryption is generated separately and

together with a policy to follow the data it is encrypted using RSA and then attached to

the encrypted data. Therefore, here evaluation looks only into the initial process of policy

setup including key-encrypting key operations without actual data-encrypting key

operation (see Table 2).

Figure 44. Times of Sticky policy mapping into 256 [bit] symmetric key space using IBE-BF compared
to RSA3072 and RSA4096 operations applied to pseudo-random symmetric key

Results show (see Figure 44) that RSA with key size 4096[bit] requires more time than

Pairing-based Cryptography, i.e. IBE to pair XACML policy of size between 1[KB] and

32[KB] into AES key space. RSA-3072 performs better and requires less time to complete

cryptographic operations. However, soon it might need to be replaced with RSA of higher

key size 4096 [bit] due to early quantum computing threats. Individual tests also show

that RSA performed better during encryption compared to IBE pairing. RSA decryption,

 89

however, performed much slower, whereas IBE completes within similar time as in the

previous pairing with the public test. The overall performance of RSA-4096 might be

comparable to IBE. However, RSA-2048 performed much better overtaking all other

evaluated cryptographic setups.

IBE
WeilPairing
Private 256
Key [ms]

IBE-
WeilPairing
Policy
Public 256
Key[ms]

RSA 2048
Encrypt
256 Key
[ms]

RSA 2048
Decrypt
256 Key
[ms]

RSA 3072
Encrypt
256 Key
[ms]

RSA 3072
Decrypt
256 Key
[ms]

RSA 4096
Encrypt
256 Key
[ms]

RSA 4096
Decrypt
256 Key
[ms]

AES256GC
M Encrypt
256 Key
[ms]

AES256
GCM
Decrypt
256 Key
[ms]

12.745588 10.976774 0.055943 0.019828 0.274331 16.815242 0.402116 35.084968 0.011074 0.012746
12.330375 15.910127 0.018766 0.025493 0.135219 14.960057 0.20743 33.565706 0.012392 0.0131
11.795164 12.431612 0.019474 0.031158 0.135573 15.501286 0.193978 34.200738 0.015224 0.013808
10.782795 12.637626 0.026555 0.300961 0.134511 14.831918 0.225836 34.386575 0.009914 0.015932
13.138855 10.546694 0.018766 0.01133 0.133449 15.469782 0.192209 35.108331 0.013808 0.0131
11.489330 12.052504 0.010268 0.009914 0.134511 14.788379 0.194332 34.057732 0.012746 0.01487
13.028060 12.683996 0.013455 0.010622 0.133449 16.338083 0.190085 34.093837 0.0131 0.292448
11.161549 11.280838 0.022661 0.010622 0.133449 14.530685 0.211677 34.940546 0.013454 0.01487
10.695363 10.760141 0.022307 0.026201 0.133095 15.967471 0.20566 34.354363 0.033635 0.010976
13.482919 12.010735 0.288923 0.03045 0.133449 15.455269 0.202474 44.690088 0.012746 0.012746
13.012131 11.463136 0.023723 0.024077 0.133095 14.899174 0.191855 35.984419 0.011684 0.012038
12.004364 11.761891 0.020536 0.029034 0.133095 15.471552 0.191147 34.165694 0.011684 0.012038
10.922261 11.269865 0.025493 0.023723 0.133449 14.920412 0.191147 34.240029 0.016286 0.015578
34.011007 10.667399 0.075771 0.016641 0.133095 16.526752 0.190793 34.426574 0.013808 0.013808
11.915870 31.227346 0.023369 0.034699 0.133095 14.66909 0.189731 34.386929 0.016641 0.0131
11.063498 10.469881 0.021244 0.03045 0.150439 16.052779 0.193271 34.738072 0.015578 0.012746
12.421701 10.298203 0.021598 0.181993 0.135927 16.109061 0.192917 34.700905 0.013454 0.014162
11.721892 11.297829 0.322206 0.025493 0.134865 14.934217 0.192917 34.683914 0.01133 0.012392
11.273051 10.50988 0.282904 0.026201 0.134865 16.304102 0.193271 34.331355 0.017349 0.012746
11.783837 10.273779 0.033283 0.033991 0.135573 18.167781 0.205306 36.145832 0.015578 0.013454
11.873747 11.129691 0.256348 0.171017 0.134511 15.209964 0.191855 34.864796 0.012392 0.01487
10.767574 10.331477 0.026201 0.006727 0.136634 16.142689 0.22442 35.210983 0.012392 0.012746
12.568600 11.503135 0.027264 0.016995 0.134865 14.650683 0.189731 34.452414 0.0131 0.012392
10.912704 10.951641 0.036824 0.212089 0.134865 16.036496 0.190439 34.674003 0.012038 0.013808
13.487874 11.123673 0.01912 0.011684 0.145838 16.305871 0.190439 34.717896 0.014516 0.013454
12.207900 10.852174 0.022307 0.032575 0.134865 14.573162 0.190439 34.911874 0.014516 0.012392
12.035160 11.394464 0.03045 0.014163 0.135573 16.760376 0.191147 34.452414 0.012392 0.015578
11.021374 10.544924 0.01735 0.027618 0.135927 14.566437 0.190793 35.667966 0.009914 0.006019
11.361191 10.334662 0.016287 0.016287 0.145838 16.425869 0.189377 34.674357 0.016995 0.012038
10.630232 11.002614 0.026909 0.014517 0.134511 15.681459 0.191147 34.810991 0.020535 0.012392
12.091088 10.557667 0.024785 0.632019 0.13628 15.219521 0.191147 42.231729 0.008497 0.064792
11.284024 11.37181 0.014517 0.014871 0.151147 16.117557 0.191855 34.970988 0.005311 0.1048
10.638373 10.822086 0.00956 0.014517 0.135573 17.380894 0.192917 36.629008 0.006019 0.005311
13.198676 10.541738 0.008144 0.012747 1.448113 15.405358 0.189377 35.362485 0.008497 0.445045
10.828104 11.970028 0.00956 0.013101 0.204598 15.670132 0.189377 34.866919 0.013454 0.012392
12.010735 10.343866 0.00956 0.282904 0.183359 15.27368 0.191501 34.515422 0.006373 0.006019
11.191991 14.075473 0.212797 0.247497 0.156103 15.997559 0.242473 42.925521 0.011684 0.012746
10.653594 10.65855 0.021598 0.014871 0.139112 14.706611 0.271145 34.587279 0.013808 0.016286
12.367188 12.547008 0.019828 0.050278 0.150439 16.55153 0.217341 34.529581 0.01133 0.005665
12.232678 10.423156 0.026909 0.22519 0.141236 16.528522 0.191501 36.2053 0.007435 0.008851
12.237987 11.654636 0.270511 0.023015 0.139112 14.798291 0.227252 35.479651 0.017703 0.013808
10.887572 11.825606 0.029034 0.01133 0.14159 17.191872 0.194686 34.436132 0.012746 0.012392
12.459930 10.615719 0.0956 0.00779 0.136988 15.991541 0.196102 35.962473 0.01487 0.014162
11.140664 11.912684 0.008144 0.00779 0.153271 16.338437 0.199996 34.573828 0.016580 0.013454
12.124007 10.379971 0.009206 0.00779 0.139112 16.364631 0.192563 34.189411 0.014162 0.007435
12.172502 11.293227 0.008144 0.007436 0.13982 17.770267 0.208845 35.05488 0.006019 0.004957
11.929675 10.841909 0.033637 0.008144 0.263358 16.52746 0.192563 34.412415 0.008851 0.007789
12.645413 11.989143 0.008852 0.012393 0.134511 14.940943 0.335569 34.336664 0.004957 0.004249
27.699982 10.503155 0.568994 0.018412 1.179092 16.367463 0.190793 37.018735 0.005311 0.004603
12.848595 11.564019 0.035761 0.044613 0.177342 15.670486 0.204952 34.724267 0.004249 0.004249
10.639789 11.062436 0.035407 0.928378 0.17805 16.52392 0.189731 34.389761 0.004603 0.005665
11.859234 10.398732 0.020182 0.039656 0.145484 17.259127 0.191501 39.990712 0.004957 0.005311
12.300995 11.574638 0.259535 0.030096 0.143714 16.997185 0.189377 34.443919 0.004249 0.003895
10.982791 10.645453 0.026909 0.015225 0.134511 16.988336 0.22265 35.049925 0.030449 0.018057
12.480461 11.371102 0.145524 0.018766 0.134865 16.374897 0.192917 36.278573 0.007435 0.006727
10.798724 10.91235 0.007081 0.047092 0.134865 16.172423 0.213447 35.187267 0.006019 0.004603
12.028788 11.762245 0.008498 0.01735 0.134511 16.378436 0.190439 35.17948 0.007789 0.009914
10.882262 10.775008 0.00779 0.02089 0.14336 24.672785 0.189023 40.24522 0.007435 0.007081
12.563645 12.960805 0.00779 0.029034 0.150439 17.289569 0.189731 35.209214 0.004249 0.004249
10.633772 10.697487 0.026909 0.033637 0.153625 16.708341 0.235748 34.336664 0.004249 0.004249
11.941710 11.423136 0.320435 0.014871 0.16566 16.259147 0.344418 37.862612 0.003895 0.003895
10.994118 12.11268 0.020536 0.00779 0.135927 14.6344 0.221589 34.589049 0.004249 0.004249
10.817839 11.702069 0.239707 0.016641 0.157519 16.306933 0.191855 35.117888 0.021243 0.02443
12.432320 12.114804 0.033991 0.031867 0.134865 14.778468 0.202828 46.262446 0.005665 0.004603
10.645807 10.802264 0.01735 0.034699 0.134865 16.660909 0.204598 37.26581 0.004249 0.004249
11.909498 12.090734 0.02868 0.008852 0.135573 15.099878 0.207783 34.259144 0.005311 0.008143
11.567204 11.46172 0.021598 0.00956 0.164599 16.065522 0.223358 37.425099 0.004957 0.004957
10.697841 11.064913 0.015225 0.008852 0.14336 14.607498 0.20566 34.448875 0.005311 0.006019
13.119032 10.326875 0.018412 0.008144 0.142652 17.134882 0.259464 34.17596 0.004249 0.004603
13.227348 12.047903 0.021244 0.628832 0.135573 15.649247 0.207076 38.159244 0.004249 0.003895
12.138520 10.716602 0.33212 0.024431 0.135927 15.298812 0.202828 34.171712 0.004957 0.202873
11.855340 11.828792 0.007081 0.035407 0.143006 18.698036 0.201412 34.309762 0.004957 0.004249
12.523292 10.901023 0.236874 0.017704 0.157519 16.483567 0.191147 37.990751 0.004249 0.003895
10.979959 10.382449 0.019474 0.205362 0.163537 16.582326 0.191855 34.541616 0.004249 0.004957
12.844347 12.189847 0.195802 0.015933 0.156811 16.283925 0.191855 34.318966 0.012038 0.008497
10.691469 10.684744 0.011684 0.008498 0.159643 15.760042 0.189377 38.518528 0.004603 0.004249

 90

11.763307 11.288272 0.020536 0.013101 0.140528 16.420559 0.191147 34.71117 0.004249 0.004249
11.070223 10.714832 0.020536 0.006727 0.20035 16.359676 0.20035 34.267639 0.004249 0.004249
12.171086 11.608619 0.044967 0.00956 0.138404 18.620162 0.189731 36.597859 0.004957 0.015224
10.669523 10.572534 0.02089 0.010976 0.136988 16.144105 0.189731 35.05488 0.014516 0.010268
11.975338 11.261016 0.029388 0.033283 0.136634 16.274014 0.190439 34.289232 0.004957 0.004603
11.133939 11.889322 0.00956 0.04001 0.13805 16.074726 0.191501 36.327775 0.004603 0.004249
10.842263 10.694655 0.009206 0.016287 0.137342 14.991561 0.193624 34.77701 0.004249 0.004249
12.416037 11.80543 0.009206 0.021598 0.136634 15.579868 0.228668 34.419849 0.004957 0.006727
10.770406 11.429154 0.01133 0.012038 0.135573 15.534913 0.3384 36.309369 0.009205 0.007435
12.058168 12.187723 0.21563 0.00779 0.134865 16.060567 0.258756 35.078951 0.005311 0.005311
11.369686 10.718372 0.035761 0.009914 0.134865 14.8036 0.212739 34.269763 0.004957 0.004603
10.638727 11.667025 0.044967 0.00779 0.217341 16.114371 0.190793 36.295918 0.014516 0.015224
12.532849 11.408269 0.01912 0.008144 0.171678 16.407816 0.223358 34.557899 0.007435 0.004249
10.934650 11.757643 0.018412 0.00779 0.1469 14.561835 0.194686 34.392239 0.003895 0.003895
11.948436 10.681558 0.009206 0.083561 0.144068 20.473222 0.19504 46.720844 0.003895 0.003541
12.651785 14.365379 0.009206 0.01133 0.144776 16.262332 0.198934 34.683914 0.003541 0.006727
12.060292 10.552357 0.00779 0.033637 0.13628 14.734221 0.192563 34.489228 0.007081 0.008143
12.846117 11.223494 0.009206 0.033991 0.157519 15.086073 0.192209 35.193639 0.008143 0.004957
11.300307 11.321545 0.009206 0.038948 0.134865 15.241114 0.193271 34.873645 0.004249 0.003895
14.911917 10.583153 0.020536 0.01735 0.134865 16.145167 0.194686 34.875061 0.014516 0.017703
10.665275 11.648265 0.037886 0.013809 0.134865 19.189708 0.192209 38.625075 0.008497 0.006373
11.471631 10.450058 0.044613 0.008144 0.134511 15.088904 0.190793 34.254188 0.004957 0.004249
11.974630 11.467737 0.022661 0.006727 0.135573 16.174901 0.194332 34.609579 0.004249 0.006019
11.151991 10.770052 0.013809 0.00779 0.135573 16.153662 0.189377 38.195703 0.006727 0.004249

≈12.151734 ≈11.516674 ≈0.060309 ≈0.058011 ≈0.169816 ≈16.100445 ≈0.206789 ≈35.693356 ≈0.009659 ≈0.019693

Table 2 IBE and RSA performance comparison results (on CPU Intel Core i7 2.9[GHz])

5.5.3 Sticky Policy

RMS IRM construct uses eXtensible rights Markup Language (XrML) the rights

expression language that was designed for closed environments [152] where could

implementation was not considered. SPIBE is fully based on XACML policy format.

XrML [153] and XACML [97] are very similar. However, the semantics used to express

access rights are different. Both define tuples where the subject is permitted to perform

specific activity defined by predicate against access object. In XrML a condition is a

functional equivalent of XACML obligations, although what gives XACML advantages

are complex expressions and predicates with negative and deny assertions. Note that

XrML supports the only positive assertion.

XrML defines basic rights and digital licensing where the issuer of the license is

effectively an owner of the digital asset. Same as XACML, XrML supports basic

cryptographic functions. While XACML leverages eXtensible Stylesheet Language

Transformation (XSLT) to constrain the policy, XrML uses templates within a license

document. Both standards support external references to internal policy elements. The

flexibility of both regarding elements extensions is similar; these are terms that could be

redefined to extend the schema. Despite XrML strengths fundamentally it is not suited

for complex access policies and rules while XACML is intended to be suitable for a

variety of application environments [97] what perfectly fits various cloud configurations.

XACML itself formulates attribute-based access control (ABAC) phrases. Its profiles can

support different access control models as per [127], [65]. This policy-based access

control model delivers time-constrained access functionality as well as capabilities to

handle emergency access requests like in Break-Glass scenario. Cross-Enterprise

 91

Security and Privacy Authorisation (XSPA) [112] is a XACML profile dedicated for large

enterprise use but mostly for healthcare institutions that exchange information across

various security boundaries. Technically the XACML is not a part of any particular

cryptographic primitive therefore actual implementation can quickly adapt any new

functional requirements. XACML offers various features like JavaScript Object Notation

(JSON) [154] profile to format the policy using light in size attributes representation in

comparison to the heavier XML predecessor. Furthermore, it could represent legacy

access control objects structure via efficient serialisation as described in [113].

5.5.4 Document Integration – Supported Formats

Officially Microsoft RMS natively supports OOXML, Portable Document Format (PDF),

plain text, CSV and image file formats. It provides integration for mailing client

applications also allowing email protection. Protected file is identified by a changed

extension. Original document file extension is prefixed with a ‘p’ letter, e.g. PDF

document instead of .pdf has a .ppdf extension.

SPIBE concept integrates security part into original OOXML document keeping its

internal structure unchanged. Hence data XML section is replaced with an encrypted data

file and the empty document template. SPIBE does not change the document extension.

5.5.5 Security

It has been proven that IRM system with higher interoperability considering currently

commonly used operating systems, cannot deliver secure, granular access control. It is

not only one IRM product related vulnerability but a logical inference considering facts,

e.g. that read-only protected document could be read by an unauthorised individual

simply using shoulder surfing social attack. Microsoft Azure RMS offers a handful of

deterrent safeguards discouraging an individual from illegitimate document changes or

by restricting message recipients. Despite the obvious IRM vulnerabilities MS RMS

suffers from simple security flow giving adversary full rights over document if the

adversary has even minimal rights to view the content [148]. There is another, a more

serious security issue with the RMS model allowing an adversary to re-encrypt the

amended document. Although Microsoft Office online editor applications do not seem to

suffer from the described vulnerability.

SPIBE aims to leverage Blockchain with document signatures and document versioning

meta-data. The signature could be an incorporated part of XACML policy under

Attributes. Encrypted document is bind to the policy, and even if tampered the change

 92

cannot be submitted to the blockchain as the original updated document. Central

versioning chain despite IRM model selected is the only way to ensure document

authenticity, non-repudiation and integrity.

5.5.6 Quantum Computing

Azure RMS due to used cryptographic primitive has relatively low potential to become a

quantum ready product [74]. The current construct is complex considering in-deep

integration with different RSA key pair certificates. With large RSA keys, it might be

possible to securely share the public key together with encrypted data. However, the key

size might be larger than the policy and the protected file together.

The SPIBE despite a public key encryption has been proved quantum computing ready

[14], [89]. Preferred for SPIBE, the IBE-IPG construct based on pairing-based

cryptography isogeny is a quantum safe encryption, although offers the same complexity

as the evaluated here IBE BF scheme. Existing IBE BE based on Diffie-Hellman

cryptographic primitive could be replaced with its quantum resistant supersingular

isogeny equivalent [14]. IBE over NTRU Lattices [74], [89] is another quantum ready

construct that could be potentially used under IBC scheme. Finally, a proposal to leverage

IBE construct with quadratic residue gives SPIBE high chances to successfully compete

with RMS if it comes to quantum computing.

5.6 IONIC vs SPIBE
5.6.1 Architecture

Most modern solutions here also IONIC Secure Files are built as a framework with

publicly available application programming interfaces (API) and software development

kit (SDK) [8] for simplified cross-platform integration. The product is built under service-

oriented architecture (SOA) with various globally accepted open standards. Shortly it

consists of a policy engine, key services including personal and technical identity on-

boarding (i.e. enrolment service), client SDK suite, management API and

auditing/analytics APIs.

5.6.2 Key Management – Trusted Architecture

IONIC uses a master root key to encrypt a key ring. Key ring contains tens of thousands

key-encrypting keys. These keys are then referenced considering key residency to

relevant key stores. Keystore stores up to one trillion data-encrypting keys. Official

documentation is missing information about key management system (KMS)

 93

implementation details, and from the discussion, with IONIC developer community

manager, it was hard to obtain such information including crypto modules in place or

random key generation (RNG) hardware and software libraries.

Figure 45 IONIC Solution architecture [8]

To manage data-encrypting symmetric keys IONIC Secure Files same as SPIBE uses

Trusted Authority (TA). In Secure Files, symmetric data-encrypting keys are generated

at the TA, i.e. Key Servers side [8] (see Figure 45). IONIC also encrypts immutable

attributes using the same data-encrypting keys and authenticated AES256-GCM. The

model enables a set of mutable attributes to be defined by the data owner, which could

change during a document lifecycle without having an impact on the cryptographic

verification. All IONIC Secure Files data-encrypting keys are stored in a dedicated key

space located at a key server. Therefore the symmetric key escrow is possible at any time

allowing immediate decryption of trillions of protected documents [8].

SPIBE does not support mutable and immutable attributes, but here all attributes are

immutable. A key advantage of SPIBE is its ability to generate a symmetric data-

encrypting key based on the policy itself. The initial protection of the document and the

future re-encryption require the same operations including new key generation under IBE.

The encryption key is generated every time the authorisation policy with its attributes

changes. This is possible as keys could be generated dynamically under IBE algorithm

without the need to upload and store them in the cloud. To decrypt the document upon a

successful access request (see Figure 21) the decryption key is derived from the TA key

and again from the access policy.

 94

5.6.3 Sticky Policy

IONIC Secure Files adapted XACML version 3.0 [97] policy to represent complex access

control statements. IONIC Policy Engine uses several JSON formatted XACML

elements. It is strictly constrained with features that are applicable for files protection in

shared environments (i.e. cloud computing). It supports limited Policy Sets with single

deny-overrides condition across all enclosed policies. The IONIC implementation makes

use of Obligation element. However, it excludes a little bit newer XACML elements

called Advice. Next, the IONIC policy does not implement the full Target element format

most probably due to a selected model where a single sticky policy is attached to a single

document. Unlike IONIC Policy Engine the SPIBE could leverage Target [97] element

to granularly control OOXML document access. Although the final SPIBE evaluation

excludes granular access control functionality from the scope although with the Target

element this part of evaluation would not be possible. Both IONIC Policy Engine and

SPIBE do not support AttributeSelector and Content elements, and the XPath resolver.

The main reason is the sticky policy model, where the policy protects a single document

piece rather than multiple enclosed attributes or XML document sections. Despite these

differences, IONIC Policy Engine and SPIBE use the same XACML elements, although

the IONIC implementation is JSON formatted and SPIBE still evaluates only XML

formatted policies. IONIC policies are already constrained with different templates.

SPIBE requires each TA to deliver its own set of constrained policy templates. IONIC

defined own set of attributes, it limited the data types and the functions. SPIBE, as well,

aims to use the slightly limited XACML functionality to simplify the policy management

from the end-user perspective.

5.6.4 Document Integration – Supported Formats

IONIC Secure Files natively supports OOXML, Portable Document Format (PDF), text,

CSV and image files protection. Same as SPIBE, the IONIC embeds encrypted content

using native OOXML functionality. IONIC adds unencrypted cover-page instructing the

end-user about the encrypted content. SPIBE could potentially extend supportability for

other file formats, however, for the evaluation purposes, OOXML was sufficient to show

how potentially sticky policy could be integrated into existing file formats.

5.6.5 Quantum Computing

Both solutions, the IONIC Secure Files and SPIBE use AES symmetric encryption.

IONIC used key servers to store all symmetric data-encrypting keys, while SPIBE derives

ad hoc symmetric data-encrypting keys using identity-based encryption (IBE) primitive

 95

upon encryption or decryption request. Considering the fact that IBE construct could use

different cryptographic primitives behind it has been proved that IBE as a construct could

be quantum safe. With relatively large key space both constructs under AES encryption

are post-quantum ready [74]. Since SPIBE could quickly respond to cryptographic

primitive changes via policy obligations and advice the data is sufficiently protected upon

re-encryption in case of new cryptographic vulnerabilities. Here security of the SPIBE

model has to be considered as a comprehensive security solution rather than a simple

cryptographic primitive. Only under this assumption, SPIBE security could be compared

with IONIC Secure Files solution that uses only symmetric encryption.

5.7 Conclusions

SPIBE is an attractive construct for global cloud implementations. The IBE-IPG quantum

ready schema in comparison to others used for IRM public key primitives offers a

relatively long algorithm security lifecycle (ASL) providing reliable security for data at

rest (see Table 2). The Microsoft RMS is more complicated than SPIBE. Therefore, it is

hard to consider it as an adaptable framework. Overall key-encrypting-key operations

performance evaluation (see Table 4) shows that IONIC Secure Files outmatch both RMS

and SPIBE as it uses only AES symmetric encryption. RMS, despite of its double

asynchronous encryption operation is faster than SPIBE, which performs only one actual

bilinear mapping. The major operation cost will be the actual data encryption, which for

all of the IRM solutions is nearly identical due to the same symmetric encryption

algorithm. As a product the RMS has an obvious advantage, which is its market position.

IONIC Secure Files, on the other hand, is a symmetric encryption-based product that

despite all disadvantages of the symmetric key construct has a very high potential to

become Azure RMS cloud-ready successor. SPIBE, unlike evaluated products, could

become an open source IRM cloud-based ready framework. IBE does not constrain the

solution to only one cryptographic primitive. Therefore, it could be following the

technological changes. Well-defined XACML templates could make the solution very

interoperable with different systems that could simply span across various cloud services.

SPIBE, to become a fully valuable framework has to provide support not only for

OOXML but also other file types and information formats, i.e. PDF, CSV, and emails.

	

 96

 Characteristics Azure RMS IONIC SPIBE

Specification

Policy Standard XrML XACML XACML
Information Type PDF, OOXML, CSV,

mail, image
PDF, OOXML, CSV,
image

OOXML, *PDF,
*CSV, *mail, *image

Cryptographic
construct

Asymmetric/Symmetric Symmetric Asymmetric/Symmetric

Key-encrypting key RSA 2048 AES256-CTR IBE-IPG
Data-encrypting key AES128/AES256 AES256-GCM AES256-CBC
KMS (custom) HSM Thales (own Key Server) SSM HSM

Property

ASL Short Long Long

Construct complexity High Mid Mid
Key management
complexity

High High Low

Quantum-ready No Yes Yes
Integrity assurance N/A Yes Yes
Authenticity
assurance

No No Yes

Key-encrypting key
protection at rest

High High High

Key-encrypting key
protection in motion

Mid (custom HSM) Low Mid

Data-encrypting key
protection

Low High High

 * - possible extension
Table 3. IRM solutions comparison

	

 97

 Operation Azure RMS IONIC SPIBE

C
ryptographic O

perations C
ost

C
alculation Equation

Encryption
𝑐+ ← 𝑚+

𝑒p + 2 × 𝑒M	 ← 	 𝑒p(𝑠+, 𝑚+)
+ 𝑒M J𝑝M+,K𝑒MK𝑝M+, 𝑠+P, 𝑝M<, 𝑃𝑂𝐿PQ

2 × 𝑒p ← 𝑒p(𝑠+, 𝑠<)
+ 𝑒p(𝑠<,𝑚)

𝑒p + êM+
← 𝑒p(𝑠ê, 𝑚+) + JêK𝑝M+, 𝑃𝑂𝐿PQ	

Decryption
𝑚+ ← 𝑐+

𝑑p + 𝑑M ← 𝑑pK𝑑M(𝑐+)P 2 × 𝑑p
← 𝑑p(𝑠+, 𝑠<) + 𝑑p(𝑠<, 𝑐+)

𝑑p + êp+
← 𝑑p(𝑠ê, 𝑐+) + Kê(𝑠+, 𝑃𝑂𝐿)P

Signing 𝑆+ 𝑆M ← 𝑆M(𝑝p<, 𝑐+) N/A 𝑒p + êM+ ← 𝑒p(𝑠ê, 𝑃𝑂𝐿)
+ JêK𝑝M+, 𝑚+PQ

Signing
Verification
𝑆+

N/A N/A 𝑑p + êp+ ← 𝑑p(𝑠ê, 𝑆+)
+ Kê(𝑠+,𝑚+)P

Key
Generation

𝑛 × 𝑠+ + 	𝑛 × K𝑝M+, 𝑝p+P

+ 	
1
𝑛
	 × K𝑝M<, 𝑝p<P

𝑛 × 𝑠< + 	
1
𝑛
× 𝑠+ 𝑛 × K𝑝M+, 𝑝p+P + 	

1
𝑛
× 𝑠+

*C
ryptographic

O
perations C

ost
[m

s]

Encryption 0.009659 + 2 × 0.060309
= 0.130277

2 × 0.009659 = 0.019318 0.009659 + 11.516674
= 11.526333

Decryption 0.019693 + 0.058011
= 0.077704

2 × 0.019693 = 0.039386 0.019693 + 12.151734
= 12.171427

 𝑐�– ciphertext
 𝑚�– plaintext
 𝑆�– signing product
 𝑛 – number of client-side key pair generation requests
 +

"
 – denotes that the one-time key generation operation cost becomes negligible with higher 𝑛

 𝑒p– symmetric encryption
 𝑒M– asymmetric public key encryption
 𝑑p– symmetric decryption
 𝑑M– asymmetric public key decryption
 𝑆M– asymmetric public key signing
 𝑠� – symmetric key (x – key number)
 𝑝M� – asymmetric public key (x – key number)
 𝑝p� – asymmetric private key (x – key number)
 ê – bilinear mapping (s – on TA master key, p – on TA public key)
 * – considering average operation cost from Table 2

Table 4. IRM operations comparison

 98

6 Conclusions and Future Work

6.1 Achievement of Thesis Aim, Objectives and Research
Questions

It is possible to deliver a secure cloud-based information sharing framework. However,

the development should incorporate only standardised solutions apply only the latest

security techniques. Since legacy IRM products entered into a single global data sharing

security boundary, they struggle with delivering both security [148] and interoperability.

Proposed SPIBE framework, however, could quickly adapt to technological changes and

new security threats.

6.2 Recap of Contribution and Novelty

SPIBE offers a highly flexible model for secure information sharing in the cloud. The

model, unlike other IRM solutions [7], [8], offers relatively long ASL [73] due to IBE

scheme that could integrate various cryptographic primitives consequently addressing

future threats starting from emerging quantum computing. The model successfully

leveraged XACML formatted [97] sticky policy acting as an identity for the information

to compute a key for symmetric data encryption. XACML as a part of a standard

integrates with authorization systems as well as authentication systems like SAML [119],

[125] to deliver one single compatible framework. While other models require either

symmetric or both symmetric and asymmetric keys to be factorized prior data protection,

the SPIBE under IBE paradigm [10] derives keys from the constructed sticky policy. The

possible collisions caused by deriving two identical keys in case same server parameters

are distributed to different end-users in compare to CP-ABE are mitigated in SPIBE by

adding actual document global unique identifier and the document version. Blockchain

solves the most common problem with IRM [148], the data authenticity and non-

repudiation. Every information change made under SPIBE in order to pass into protected

information lifecycle has to be versioned, authenticated and finally committed to a single

global trusted blockchain of all legitimate changes.

6.3 Main Findings

Sticky policies as an access control technique satisfy systems where confidentiality and

integrity of personal information are protected [49] based on policies set by the data

owner. These secure policies follow the data and technically define possible scenarios in

which data can be processed. Such a model is suitable for governments, financial

 99

institutions systems, electronic healthcare systems where patients’ privacy policies would

stick to a medical record [5]. Access policies can be expressed on top of different data

structures. Modern computing powers made this relatively high level expressing language

sufficient to compute complex rules. Cross-domain configurations are one of the

XACML advantages over other policy languages [4]. The future work, especially in a

cloud context, will aim to show the potential how XACML formatted sticky policy could

securely span across various security domains and boundaries [155].

Like modern authentication methods, including OAuth, SAML, OpenID and other the

XACML compliments suite with ready to use authorisation standard for large companies

[97]. The future work needs to focus on showing that XACML could authorise subjects

in global Business to Business (B2B) and Business to Consumer (B2C) cloud-based

configurations. Furthermore, the proposed model consists of trust authority (TA)

components, where authorisation and cryptographic modules are deployed as separate

(sub) entities. For evaluation, both were implemented as two separate libraries called via

a single application. However, the final solution would consist of two or more web

services bound together using authentication where each service acts as an authenticated

technical identity. Evaluation of the driver level architecture shown that this is a quite

powerful approach with loads of potential for further development. Legacy file access

control constructs [113] empowered with additional modern cryptographic and

authorisation techniques give additional centralized, i.e. cloud-enabled control over the

access management. For the evaluation purposes, Windows based driver has been

developed and installed. The IBE encryption operations have been replaced with a

symmetric XOR encoding against 0xFF value. The integration with XACML libraries

was too complex for the scope of this evaluation. However, as a part of the research

minifilter driver development has a high potential for a standard solution compatible with

various editor applications. Due to difficulties to bound Windows Driver Kit (WDK)

together with GMP crypto libraries, there was only a limited implementation completed

towards the entire model evaluation.

In compare with other IRM solutions and actual market ready products (see Table 3) the

SPIBE have couple major advantages. It leveraged quantum ready public key

cryptographic protocols delivering both the secure public key exchange functionality

together with quantum resistant cryptographic algorithms. By empowering IRM with

blockchain technology the major problem of authenticating data changes is solved.

 100

Simply by maintaining common chain of changes for every document the author and

other contributors are sure they work on the main branch of legitimate changes.

6.4 Future Work

All developed and evaluated components in order to become a ready framework would

require major architectural alignment, considering policy enforcement point as a starting

point where all SPIBE elements such as access control, encryption and document

management interact together. It was challenging to implement consistent components

integrated as per Figure 25 due to different solution architectures. Prototype is sufficient

for Proof of Concept and actual evaluation, but there is a different approach required to

deliver a customer ready framework.

Online editor application could be the first prototyped artefact giving space for further

platform/framework improvements. The final framework, however, has to consider

different operating systems and protected file types. Therefore, architecture requires a

modular approach where different core components could be referenced despite the

underlying system architecture. Approach where only online editor application is

considered simplifies interoperability challenges with PEP supporting different

platforms.

It has been proven that currently accepted information rights management (IRM)

solutions not excluding Azure MS RMS cannot efficiently authenticate changes as well

as differentiate legitimate from illegitimate data amendments [148]. Considering IRM

systems that are designed for interoperability with different operating systems and across

different platforms, the secure solution based on legacy assumptions have to compromise

with very limited data access control. From the moment a policy enforcement point

releases a positive access decision, the editor application that hosts decrypted information

is the only security boundary for the document. In other words, despite the rights

assigned, the data processor has either full access rights or none. The secure solution

would have to maintain a legitimate chain of all the document versions. This would

guarantee that only authenticated and properly signed documents version could be

superseded with its new version.

Considering available technologies for integrity and non-repudiation, a blockchain is a

preferred option as unlike signature it verifies data in a historical context [156].

Furthermore, blockchain service together with Trust Authority (TA) may govern any

illegitimate re-encryption attempt of the amended data. Changed document despite

 101

initially defined sticky policy rights giving only read rights, can be rejected by the TA

therefore and will not be added to the blockchain.

Finally, a well-defined policy template could highly constrain a sticky policy in a given

context as well as enforce the requirement to fill an authenticated originator attribute.

Depends on the implementation each legitimate amendment made would require re-

encryption with a different, new document version and it would require unique identifier

of an authenticated change originator. XACML policy defines two safeguards, an

obligation and advice (see Figure 10). Both could carry further instructions for policy

enforcement point behind editor application defining how to handle the initial

authorisation including basic requirements for data re-encryption under updated policy.

Regarding quantum tampering for SPIBE, the author would need another ten months to

change used C libraries for IBE in the way it respects the other isogenous morphism as

in IBE-IPG. Finally, there are newly developed cryptographic primitives [157] that could

suit more platforms in terms of symmetric encryption efficiency especially considering

low powered devices that do not provide native AES support. Chacha20 stream cypher

seems to overrun AES when it comes to security. Cloud-based secure data sharing

framework should be built on top of such cryptographic protocols.

	

 102

BIBLIOGRAPHY

[1]	 M.	Baumgärtner	et	al.,	“Cyber-Espionage	Hits	Berlin,	The	Breach	from	the	
East,”	Spiegel	Online,	Berlin,	2018.	

[2]	 T.	S.	Bernard,	T.	Hsu,	N.	Perlroth,	and	Ron	Lieber,	“Equifax	Says	Cyberattack	
May	Have	Affected	143	Million	in	the	U.S.,”	The	New	York	Times,	Business	
Day,	New	York,	07-Sep-2017.	

[3]	 Swisscom,	“Swisscom	tightens	security	for	customer	information,”	Bern,	
2018.	

[4]	 M.	Mowbray,	S.	Pearson,	and	Y.	Shen,	“Enhancing	privacy	in	cloud	computing	
via	policy-based	obfuscation,”	J.	Supercomput.,	vol.	61,	no.	2,	pp.	267–291,	
Mar.	2010.	

[5]	 A.	Abbas	and	S.	Khan,	“A	Review	on	the	State-of-the-Art	Privacy	Preserving	
Approaches	in	E-Health	Clouds,”	IEEE	J.	Biomed.	Heal.	Informatics,	vol.	2194,	
no.	c,	pp.	1–1,	2014.	

[6]	 M.	Li,	S.	Yu,	Y.	Zheng,	K.	Ren,	and	W.	Lou,	“Scalable	and	Secure	Sharing	of	
Personal	Health	Records	in	Cloud	Computing	using	Attribute-based	
Encryption,”	IEEE	Trans.	PARALLEL	Distrib.	Syst.,	vol.	XX,	no.	Xx,	pp.	1–14,	
2012.	

[7]	 Sergey	Simakov,	M.	Sieber,	and	M.	Norden,	Azure	RMS	Security	Evaluation	
Guide.	Microsoft,	2015.	

[8]	 Ionic	Security	Inc.,	“Documentation	for	Ionic	.NET	SDK.”	Ionic	Security	Inc.,	
2017.	

[9]	 Martin	Lambert	and	A.	Peet,	“Oracle	Information	Rights	Management	11g	–	
Managing	information	everywhere	it	is	stored	and	used,”	Management,	no.	
March.	Oracle	Corporation,	Redwood	Shores,	CA	94065,	USA,	p.	23,	2010.	

[10]	 D.	Boneh	and	M.	Franklin,	“Identity-Based	Encryption	from	the	Weil	
Pairing,”	SIAM	J.	Comput.,	vol.	32,	no.	3,	pp.	586–615,	2003.	

[11]	 A.	Sahai	and	B.	Waters,	“Fuzzy	identity-based	encryption,”	Annu.	Int.	Conf.	
Theory	…,	pp.	457–473,	2005.	

[12]	 J.	Bethencourt,	A.	Sahai,	and	B.	Waters,	“Ciphertext-Policy	Attribute-Based	
Encryption,”	in	2007	IEEE	Symposium	on	Security	and	Privacy	(SP	’07),	2007.	

[13]	 V.	Goyal,	A.	Sahai,	O.	Pandey,	and	B.	Waters,	“Attribute-Based	Encryption	for	
Fine-Grained	Access	Control	of	Encrypted	Data,”	pp.	1–16,	2006.	

[14]	 T.	Koshiba	and	K.	Takashima,	“Pairing	Cryptography	Meets	Isogeny:	A	New	
Framework	of	Isogenous	Pairing	Groups.,”	IACR	Cryptol.	ePrint	Arch.,	vol.	
2016,	p.	1138,	2016.	

[15]	 L.	Hardesty,	“Raising	cryptography	’	s	standards,”	MIT	News	Office,	p.	3,	2014.	
[16]	 F.	Pagano	and	D.	Pagano,	“Using	in-memory	encrypted	databases	on	the	

cloud,”	2011	1st	Int.	Work.	Secur.	Serv.	Cloud,	pp.	30–37,	Sep.	2011.	
[17]	 OECD,	Annex	to	the	recommendation	of	the	Council	of	23	September	1980:	

Guidelines	governing	the	protection	of	privacy	and	transborder	flows	of	
personal	data,	no.	September.	European	Union,	1980.	

[18]	 European	Parliament	and	T.	Council,	Regulation	2016/679	of	the	European	
parliament	and	the	Council	of	the	European	Union,	vol.	2014,	no.	March	2014.	
European	Union:	European	Commission	(EC),	2016,	pp.	1–88.	

[19]	 E.	Chau	and	R.	Hertzberg,	Assembly	Bill	No.	375,	no.	375.	United	States,	
California,	2018.	

[20]	 D.	Chappell,	“Claims-based	Identity	for	Windows;	Technologies	and	
Scenarios,”	no.	February.	DavidChappell	&	Associates,	2011.	

[21]	 P.	A.	Grassi,	M.	E.	Garcia,	and	J.	L.	Fenton,	“Digital	Identity	Guidelines.	NIST	
Special	Publication	800-63-3,”	2017.	

 103

[22]	 P.	Resnick,	“RFC5322	Internet	Message	Format.”	IETF,	pp.	1–57,	2008.	
[23]	 International	Telecommunication	Union,	E.164	The	International	Public	

Telecommunication	Numbering	Plan.	Switzerland,	2011,	pp.	1–32.	
[24]	 E.	Kursun,	G.	Fernandez,	A.	Berson,	and	B.	Goodman,	“Biometrics	

identification	module	and	personal	wearable	electronics	network	based	
authentication	and	transaction	processing,”	US9892576B2,	2018.	

[25]	 IEEE	Standards	Association,	“Guidelines	for	Use	of	Extended	Unique	
Identifier	(EUI),	Organizationally	Unique	Identifier	(OUI),	and	Company	ID	
(CID),”	no.	Cid.	pp.	1–19,	2017.	

[26]	 IEEE,	“Guidelines	for	64-bit	global	identifier	(EUI-64),”	EUI-64	Guidelines.	
IEEE	Standards	Association,	2007.	

[27]	 G.	E.	Suh	and	S.	Devadas,	“Physical	Unclonable	Functions	for	Device	
Authentication	and	Secret	Key	Generation,”	2007	44th	ACM/IEEE	Des.	Autom.	
Conf.,	pp.	9–14,	2007.	

[28]	 X.	Chen,	“Identity	Federation	in	Federated	Trust	Healthcare	Network.”	
University	of	Virginia,	Virginia,	2004.	

[29]	 E.	V.	Wilson	and	D.	M.	Strong,	“Editors	’	Introduction	to	the	Special	Section	
on	Patient-centered	e-Health :	Research	Opportunities	and	Challenges,”	vol.	
34,	2014.	

[30]	 W.	J.	Buchanan	et	al.,	“Who	Would	You	Trust	To	Identify	You	In	Accessing	
Your	Health	Record ?	So	who	do	we	trust ?,”	2013.	

[31]	 R.	Zhang	and	L.	Liu,	“Security	Models	and	Requirements	for	Healthcare	
Application	Clouds,”	2010	IEEE	3rd	Int.	Conf.	Cloud	Comput.,	pp.	268–275,	Jul.	
2010.	

[32]	 G.	Zhao,	Z.	Li,	W.	Li,	H.	Zhang,	and	Y.	Tang,	“Privacy	Enhancing	Framework	on	
PaaS,”	2012	Int.	Conf.	Cloud	Serv.	Comput.,	pp.	131–137,	Nov.	2012.	

[33]	 W.	J.	Buchanan,	R.	Lewis,	D.	L.	Fan,	and	O.	Uthmani,	“Information	Sharing	
Around	Child	Protection,”	in	Information	Sharing	in	the	Public	Sector,	2012.	

[34]	 A.	Jain	and	C.	Farkas,	“Ontology-Based	Authorization	Model	for	XML	Data	in	
Distributed	Systems,”	in	Digital	Rights	Management,	IGI	Global,	2013,	pp.	
210–236.	

[35]	 X.	H.	Le,	T.	Doll,	M.	Barbosu,	A.	Luque,	and	D.	Wang,	“An	enhancement	of	the	
role-based	access	control	model	to	facilitate	information	access	
management	in	context	of	team	collaboration	and	workflow.,”	J.	Biomed.	
Inform.,	vol.	45,	no.	6,	pp.	1084–1107,	Dec.	2012.	

[36]	 R.	W.	P.	Luk,	H.	V.	Leong,	T.	S.	Dillon,	A.	T.	S.	Chan,	W.	B.	Croft,	and	J.	Allan,	“A	
survey	in	indexing	and	searching	XML	documents,”	J.	Am.	Soc.	Inf.	Sci.	
Technol.,	vol.	53(6),	no.	6,	pp.	415–437,	2002.	

[37]	 R.	Wyden,	“Letter	from	Ron	Wyden	Ranking	Member	of	Committee	on	
Finance	to	Mark	Zuckerberg	CEO	Facebook.”	Ron	Wyden	United	States	
Senator	for	Oregon,	Washington	DC,	2018.	

[38]	 M.	Zuckerberg,	“Hearing	Before	the	United	States	Senate	Committee	on	the	
Judiciary	and	the	United	States	Senate	Committee	on	Commerce	,”	2018,	pp.	
1–7.	

[39]	 W.	Zeng,	C.-Y.	Lin,	and	H.	Yu,	Eds.,	Multimedia	Security	Technologies	for	
Digital	Rights	Management,	1st	Editio.	Academic	Press,	2006.	

[40]	 K.	LI,	P.	Hunt,	B.	Khasnabish,	A.	Nadalin,	and	Z.	Zeltsan,	“RFC7642	System	for	
Cross-domain	Identity	Management:	Definitions,	Overview,	Concepts,	and	
Requirements.”	IETF,	pp.	1–19,	2015.	

[41]	 W.	Yeong,	T.	Howes,	and	S.	Kille,	“RFC	1487	X.500	Lightweight	Directory	
Access	Protocol	Status.”	IETF,	pp.	1–21,	1993.	

[42]	 G.	Spyra,	“Next	Generation	Authentication	Infrastructures	With	Role	Based	

 104

Security	For	Cloud	Computing,”	Edinburgh	Napier	University,	2012.	
[43]	 C.	Collingham	et	al.,	“OASIS	Service	Provisioning	Markup	Language	(SPML)	

Version	2,”	2006.	
[44]	 P.	Hunt,	K.	Grizzle,	E.	Wahlström,	and	C.	Mortimore,	“RFC7643	System	for	

Cross-domain	Identity	Management:	Core	Schema.”	IETF,	pp.	1–104,	2015.	
[45]	 T.	Lodderstedt,	M.	McGloin,	and	P.	Hunt,	“RFC6819	OAuth	2.0	Threat	Model	

and	Security	Considerations.”	IETF,	pp.	1–71,	2013.	
[46]	 P.	Hunt,	K.	Grizzle,	M.	Ansari,	E.	Wahlström,	and	C.	Mortimore,	“RFC7644	

System	for	Cross-domain	Identity	Management:	Protocol.”	IETF,	pp.	1–89,	
2015.	

[47]	 P.	Siriwardena,	“Brief	history	of	Identity	Provisioning,”	Auckland,	pp.	3–5,	
2018.	

[48]	 E.	Mccallister	and	K.	Scarfone,	“Guide	to	Protecting	the	Confidentiality	of	
Personally	Identifiable	Information	(PII)	Recommendations	of	the	National	
Institute	of	Standards	and	Technology.”	U.S.	Department	of	Commerce,	2010.	

[49]	 S.	Pearson	and	N.	Wainwright,	“An	interdisciplinary	approach	to	
accountability	for	future	internet	service	provision,”	Int.	J.	Trust	Manag.	
Comput.	Commun.,	vol.	1,	no.	1,	p.	52,	2013.	

[50]	 S.	Salamatian,	A.	Zhang,	P.	Calmon,	and	S.	Bhamidipati,	“How	to	Hide	the	
Elephant	–	or	the	Donkey	–	in	the	Room :	Practical	Privacy	Against	Statistical	
Inference	for	Large	Data,”	in	1st	IEEE	Global	Conference	on	Signal	and	
Information	Processing,	2013.	

[51]	 M.	Chen,	C.	Yang,	and	M.	Hwang,	“Privacy	Protection	Data	Access	Control,”	
Int.	J.	Netw.	Secur.,	vol.	15,	no.	6,	pp.	391–399,	2013.	

[52]	 L.	Sun	and	H.	Wang,	“A	purpose-based	access	control	in	native	XML	
databases,”	Concurr.	Comput.	Pract.	Exp.,	vol.	24,	no.	10,	pp.	1154–1166,	
2012.	

[53]	 European	Parliament	and	The	Council,	Directive	2016/680	of	the	European	
Parliament	and	the	Council	on	the	protection	of	natural	persons	with	regard	
to	the	processing	of	personal	data	by	competent	authorities	for	the	purposes	of	
the	prevention,	investigation,	detection	or	prosecution	of	crimi,	vol.	2014,	no.	
April.	European	Union:	European	Commission	(EC),	2016,	p.	L	119/89-L	
119/131.	

[54]	 G.	Spyra,	W.	J.	Prof	Buchanan,	P.	Cruickshank,	and	D.	E.	Ekonomou,	“Cloud-
Based	Identity	and	Identity	Meta-Data:	Secure	and	Control	of	Data	in	
Globalization	Era,”	Int.	J.	Reliab.	Qual.	E-Healthcare,	vol.	3,	no.	1,	pp.	49–66,	
2014.	

[55]	 D.	Ferraiolo	and	W.	Jansen,	“NISTIR	7987	Policy	Machine :	Features,	
Architecture,	and	Specification,”	Gaithersburg,	2014.	

[56]	 D.	Ferraiolo	and	S.	Gavrila,	“Policy	Machine,”	Computer	Security	Resource	
Center,	2014.	[Online].	Available:	http://csrc.nist.gov/pm/index.html.	

[57]	 M.	A.	Rahaman,	Y.	Roudier,	P.	Miseldine,	and	A.	Schaad,	“Ontology-Based	
Secure	XML	Content	Distribution,”	IFIP	Adv.	Inf.	Commun.	Technol.,	vol.	297,	
pp.	294–306,	2009.	

[58]	 L.	Zhou,	V.	Varadharajan,	and	M.	Hitchens,	“Cryptographic	Role-Based	Access	
Control	for	Secure	Cloud	Data	Storage	Systems,”	in	Security,	Privacy	and	
Trust	in	Cloud	Systems,	S.	Nepal	and	M.	Pathan,	Eds.	Berlin,	Heidelberg:	
Springer	Berlin	Heidelberg,	2014,	pp.	313–344.	

[59]	 T.	Finin,	A.	Joshi,	J.	Niu,	R.	Sandhu,	and	W.	Winsborough,	“ROWLBAC	-	
Representing	Role	Based	Access	Control	in	OWL,”	in	ACM	Symposium	on	
Access	Control	Models	and	Technologies	(SACMAT’08),	2008.	

[60]	 J.	F.	Sequeda,	Marcelo	Arenas,	and	D.	P.	Miranker,	“On	Directly	Mapping	

 105

Relational	Databases	to	RDF	and	OWL	(Extended	Version),”	in	Proceedings	
of	the	21st	international	conference	on	World	Wide	Web,	2012.	

[61]	 G.	Costa	and	R.	Ortale,	“On	Effective	XML	Clustering	by	Path	Commonality:	
An	Efficient	and	Scalable	Algorithm,”	in	2012	IEEE	24th	International	
Conference	on	Tools	with	Artificial	Intelligence,	2012,	pp.	389–396.	

[62]	 Apple	et	al.,	“Information	technology	—	Document	description	and	
processing	languages	—	Office	Open	XML	File	Formats	—Part	1:	
Fundamentals	and	Markup	Language	Reference,”	vol.	2012.	ISO/IEC,	Geneva,	
p.	5030,	2012.	

[63]	 S.	L.	Garfinkel	and	J.	J.	Migletz,	“New	XML-Based	Files	Implications	for	
Forensics,”	IEEE	Secur.	Priv.,	vol.	7,	no.	2,	pp.	38–44,	2009.	

[64]	 A.	Soceanu,	M.	Vasylenko,	A.	Egner,	and	T.	Muntean,	“Managing	the	Privacy	
and	Security	of	eHealth	Data,”	in	2015	20th	International	Conference	on	
Control	Systems	and	Computer	Science,	2015,	pp.	439–446.	

[65]	 L.	Gasparini,	“XACML	and	Risk-Aware	Access	Control,”	Aberdeen,	2013.	
[66]	 E.	Barker,	“NIST	800-175B:	Guideline	for	Using	Cryptographic	Standards	in	

the	Federal	Government:	Cryptographic	Mechanisms.”	NIST,	2016.	
[67]	 E.	Barker	and	J.	Kelsey,	“NIST	800-90A:	Recommendation	for	Random	

Number	Generation	Using	Deterministic	Random	Bit	Generators,”	NIST	
Special	publication,	no.	March.	NIST,	2015.	

[68]	 R.	L.	Rivest,	A.	Shamir,	and	L.	M.	Adleman,	“Cryptographic	communications	
system	and	method,”	US05860586,	1977.	

[69]	 D.	Gabbasov,	“Breaking	the	Enigma,”	Tartu,	Estonia,	2015.	
[70]	 J.	Daemen,	V.	Rijmen,	and	K.	U.	Leuven,	“AES	Proposal :	Rijndael,”	Complexity,	

pp.	1–45,	1999.	
[71]	 V.	S.	Miller,	“Uses	of	elliptic	curves	in	cryptography,”	Adv.	Cryptol.	—	CRYPTO	

’85,	no.	January,	pp.	417–426,	1986.	
[72]	 N.	Koblitz,	“Elliptic	curve	cryptosystems,”	Math.	Comput.,	vol.	48,	no.	177,	pp.	

203–203,	1987.	
[73]	 E.	Barker,	“NIST	800-57:	Recommendation	for	Key	Management	–	Part	1:	

General,”	NIST	Special	Publication	800-57.	NIST,	pp.	1–142,	2016.	
[74]	 L.	Chen	et	al.,	“NISTIR	8105	Draft	-	Report	on	Post-Quantum	Cryptography,”	

2016.	
[75]	 M.	A.	Nielsen	and	I.	L.	Chuang,	Quantum	Computation	and	Quantum	

Information:	10th	Anniversary	Edition,	10th	ed.	Cambridge	University	Press,	
2011.	

[76]	 P.	W.	Shor,	“Algorithms	for	Quantum	Computation:	Discrete	Logarithms	and	
Factoring,”	in	Proceedings	35th	Annual	Symposium	on	Foundations	of	
Computer	Science,	1994,	pp.	124–134.	

[77]	 J.	Proos	and	C.	Zalka,	“Shor’s	discrete	logarithm	quantum	algorithm	for	
elliptic	curves.”	Department	of	Combinatorics	and	Optimization,	University	
of	Waterloo,	Waterloo,	Ontario,	Waterloo,	2008.	

[78]	 Nigel	P.	Smart,	V.	Rijmen,	B.	Warinschi,	and	G.	Watson,	“Algorithms,	Key	
Sizes	and	Parameters	Report,”	Heraklion,	2014.	

[79]	 L.	K.	Grover,	“A	fast	quantum	mechanical	algorithm	for	database	search,”	in	
Proceedings	of	the	twenty-eighth	annual	ACM	symposium	on	Theory	of	
computing	-	STOC	’96,	1996,	pp.	212–219.	

[80]	 E.	B.	Barker,	M.	Smid,	D.	Branstad,	and	S.	Chokhani,	“NIST	800-130:	A	
Framework	for	Designing	Cryptographic	Key	Management	Systems,”	NIST	
Special	Publication	800-130.	NIST,	pp.	1–120,	2013.	

[81]	 ID	Quantique,	“Random	Number	Generation	using	Quantum	Physics.”	ID	
Quantique,	Geneva,	2010.	

 106

[82]	 G.	Spyra,	“MS	AD	DS	Password	Policies	Issue	Password	Hash	analysis,”	All	
Identities,	2015.	[Online].	Available:	
https://allidentities.wordpress.com/2015/02/02/privileged-account-
password-policy-audit/.	[Accessed:	21-May-2018].	

[83]	 The	Federal	Assembly	of	the	Swiss	Confederation,	Federal	Act	on	Data	
Protection,	no.	1	January	2014.	Switzerland:	Articles	95,	122	and	173	
paragraph	2	of	the	Federal	Constitution,	1992,	pp.	1–24.	

[84]	 D.	Yao,	N.	Fazio,	Y.	Dodis,	and	A.	Lysyanskaya,	“ID-based	encryption	for	
complex	hierarchies	with	applications	to	forward	security	and	broadcast	
encryption,”	in	Proceedings	of	the	11th	ACM	conference	on	Computer	and	
communications	security	-	CCS	’04,	2004,	p.	354.	

[85]	 S.	Pearson,	P.	Bramhall,	and	HP	Laboratories,	“Towards	Accountable	
Management	of	Identity	and	Privacy :	Sticky	Policies	and	Enforceable	
Tracing	Services	Marco	Casassa	Mont,”	in	14th	International	Workshop	on	
Database	and	Expert	Systems	Applications	(DEXA’03),	2003.	

[86]	 A.	Shamir,	“Identity-Based	Cryptosystems	and	Signature	Schemes,”	in	
Advances	in	Cryptology,	vol.	196,	G.	R.	Blakley	and	D.	Chaum,	Eds.	Springer	
Berlin	Heidelberg,	1985,	pp.	47–53.	

[87]	 C.	Cocks,	“An	identity	based	encryption	scheme	based	on	quadratic	
residues,”	in	8th	IMA	International	Conference	on	Cryptography	and	Coding,	
2001,	pp.	360–364.	

[88]	 M.	Ajtai,	“Generating	Hard	Instances	of	Lattice	Problems,”	in	STOC	’96	
Proceedings	of	the	twenty-eighth	annual	ACM	symposium	on	Theory	of	
computing,	1996,	pp.	99–108.	

[89]	 L.	Ducas,	V.	Lyubashevsky,	and	T.	Prest,	“Efficient	Identity-Based	Encryption	
over	NTRU	Lattices,”	ASIACRYPT	2014,	vol.	8874,	pp.	22–41,	2014.	

[90]	 B.	Lynn,	“Authenticated	Identity-Based	Encryption,”	2002.	
[91]	 J.	Sliwa	and	E.	Benoist,	“A	Web	Architecture	Based	on	Physical	Data	

Separation	Supporting	Privacy	Protection	in	Medical	Research,”	Int.	J.	Reliab.	
Qual.	E-Healthcare,	vol.	1,	no.	4,	pp.	68–79,	Jan.	2012.	

[92]	 S.	Kisilevich,	L.	Rokach,	Y.	Elovici,	and	B.	Shapira,	“Efficient	Multidimensional	
Suppression	for	K-Anonymity,”	IEEE	Trans.	Knowl.	Data	Eng.,	vol.	22,	no.	3,	
pp.	334–347,	2010.	

[93]	 M.	Ye,	X.	Wu,	X.	Hu,	and	D.	Hu,	“Anonymizing	classification	data	using	rough	
set	theory,”	Knowledge-Based	Syst.,	vol.	43,	pp.	82–94,	May	2013.	

[94]	 M.	Bartel,	J.	Boyer,	B.	Fox,	B.	LaMacchia,	and	E.	Simon,	“XML	Signature	Syntax	
and	Processing	(Second	Edition),”	2008.	[Online].	Available:	
http://www.w3.org/TR/xmldsig-core/.	

[95]	 E.	Kiltz,	G.	Neven,	T.	N.	CWI	Amsterdam,	S.	IBM	Zürich	Research	laboratory,	
and	B.	Katholieke	Universitet	Leuven,	“Identity-Based	Signatures,”	in	
Cryptology	and	Information	Security	Series,	vol.	2,	IOS	Press,	2009,	pp.	31–44.	

[96]	 C.	Gentry	and	A.	Silverberg,	“Hierarchical	ID-Based	Cryptography,”	in	
International	Conference	on	the	Theory	and	Application	of	Cryptology	and	
Information	Security	(ASIACRYPT	2002),	2002,	pp.	548–566.	

[97]	 A.	Saldhana	et	al.,	“eXtensible	Access	Control	Markup	Language	(XACML)	
Version	3.0,”	2013.	

[98]	 N.	Parab	and	A.	Brown,	“Cloud	Storage	Using	Merkle	Trees,”	20160110261,	
2016.	

[99]	 J.	M.	Stewart,	E.	Tittel,	and	M.	Chapple,	“Accountability	and	Access	Control,”	
in	CISSP®:	Certified	Information	Systems	Security	Professional	Study	Guide,	
Fifth	Edition,	Fourth.,	2011,	pp.	1–45.	

[100]	V.	Bertocci,	Programming	Windows	Identity	Foundation.	Redmond,	

 107

Washington:	Microsoft	Press,	2011.	
[101]	B.	Thigpen,	“An	Introduction	to	XACML,”	no.	Security	401.	2003.	
[102]	D.	F.	Ferraiolo	and	D.	R.	Kuhn,	“Role-Based	Access	Controls,”	15th	Natl.	

Comput.	Secur.	Conf.	(1992),	Balt.,	pp.	554–563,	1992.	
[103]	R.	S.	Sandhu,	D.	Ferraiolo,	and	R.	Kuhn,	“The	NIST	Model	for	Role-Based	

Access	Control:	Towards	A	Unified	Standard,”	in	5th	ACM	Workshop	on	Role	
Based	Access	Control,	2012,	pp.	47–63.	

[104]	J.	López,	A.	Maña,	and	M.	I.	Yagüe,	“XML-based	Distributed	Access	Control	
System,”	E-Commerce	Web	Technol.	Lect.	Notes	Comput.	Sci.,	vol.	2455,	no.	i,	
pp.	203–213,	2002.	

[105]	K.	Yang	and	X.	Jia,	“ABAC:	Attribute-Based	Access	Control,”	in	Security	for	
Cloud	Storage	Systems,	New	York,	NY:	Springer	New	York,	2014,	pp.	39–58.	

[106]	J.	Hur	and	D.	K.	Noh,	“Attribute-Based	Access	Control	with	Efficient	
Revocation	in	Data	Outsourcing	Systems,”	IEEE	Trans.	Parallel	Distrib.	Syst.,	
vol.	22,	no.	7,	pp.	1214–1221,	Jul.	2011.	

[107]	A.	Boldyreva,	V.	Goyal,	and	V.	Kumar,	“Identity-based	encryption	with	
efficient	revocation,”	Proc.	15th	ACM	Conf.	Comput.	Commun.	Secur.	-	CCS	’08,	
p.	417,	2008.	

[108]	C.	I.	Fan,	V.	S.	M.	Huang,	and	H.	M.	Ruan,	“Arbitrary-state	attribute-based	
encryption	with	dynamic	membership,”	IEEE	Trans.	Comput.,	vol.	63,	no.	8,	
pp.	1951–1961,	2014.	

[109]	Y.	Demchenko,	“Security	Languages	for	Access	Control	and	Authorisation:	
SAML	and	XACML	Languages	Overview,”	2010.	

[110]	F.	Li	et	al.,	“Cyberspace-Oriented	Access	Control:	A	Cyberspace	
Characteristics	based	Model	and	its	Policies,”	IEEE	Internet	Things	J.,	vol.	X,	
no.	X,	p.	13,	2018.	

[111]	Y.	Demchenko,	O.	Koeroo,	C.	de	Laat,	and	H.	Sagehaug,	“Extending	XACML	
Authorisation	Model	to	Support	Policy	Obligations	Handling	in	Distributed	
Application,”	in	Proceedings	of	the	6th	international	workshop	on	Middleware	
for	grid	computing	-	MGC	’08,	2008,	pp.	1–6.	

[112]	Mohammad	Jafari	and	D.	DeCouteau,	“Cross-Enterprise	Security	and	Privacy	
Authorization	(XSPA)	Profile	of	SAML	v2	.	0	for	Healthcare	Version	2	.	0	
Committee	Specification	Draft	01	/,”	2014.	

[113]	G.	Karjoth	and	A.	Schade,	“Serialization	of	XACML	policies,”	US8458764	B2,	
2013.	

[114]	ContentGuard,	“eXtensible	rights	Markup	Language	(XrML)	2.0	Specification	
Part	I:	Primer	20,”	no.	November.	Eduworks,	pp.	1–46,	2001.	

[115]	OECD,	Pursuant	to	Directive	95/46/EC	of	the	European	Parliament	and	of	the	
Council	on	the	adequacy	of	the	protection	provided	by	the	EU-U.S.	Privacy	
Shield.	Brussels:	United	States	Federal	Trades	Commission,	2016.	

[116]	OECD,	“OECD	Guidelines	on	the	Protection	of	Privacy	and	Transborder	
Flows	of	Personal	Data.”	Organisation	for	Economic	Co-operation	and	
Development,	2013.	

[117]	Y.	Yang,	X.	Liu,	and	R.	H.	Deng,	“Lightweight	Break-glass	Access	Control	
System	for	Healthcare	Internet-of-Things,”	IEEE	Trans.	Ind.	Informatics,	vol.	
3203,	no.	c,	pp.	1–8,	2017.	

[118]	P.	E.	Sevinc,	“Securing	Information	by	Controlling	Access	to	Data	in	
Documents,”	Eidgenössische	Technische	Hochschule	Zürich,	2007.	

[119]	S.	Cantor	et	al.,	“Assertions	and	Protocols	for	the	OASIS	Security	Assertion	
Markup	Language	(SAML)	V2.0,”	2005.	

[120]	S.	Petride,	A.	Tarachandani,	N.	Agarwal,	and	S.	Idicula,	“Managing	and	
Processing	Office	Documents	in	Oracle	XML	Database,”	in	DBKDA	2011,	The	

 108

Third	International	Conference	on	Advances	in	Databases,	Knowledge,	and	
Data	Applications.,	2011,	no.	c,	pp.	89–95.	

[121]	S.	Pearson,	M.	C.	Mont,	and	G.	Kounga,	“Enhancing	Accountability	in	the	
Cloud	via	Sticky	Policies,”	Secur.	Trust	Comput.	Data	Manag.	Appl.	Commun.	
Comput.	Inf.	Sci.,	vol.	187,	pp.	146–155,	2011.	

[122]	J.	Lai,	R.	H.	Deng,	Y.	Yang,	and	J.	Weng,	“Adaptable	ciphertext-policy	
attribute-based	encryption,”	2007	IEEE	Symp.	Secur.	Privacy(SP’07),	vol.	
8365	LNCS,	pp.	199–214,	2007.	

[123]	G.	Spyra,	W.	J.	Buchanan,	and	E.	Ekonomou,	“Sticky	policies	approach	within	
cloud	computing,”	Comput.	Secur.,	pp.	1–9,	2017.	

[124]	J.	C.	Cha	and	J.	H.	Cheon,	“An	Identity-Based	Signature	from	Gap	Diffie-
Hellman	Groups,”	Int.	Assoc.	Cryptologic	Res.,	pp.	18–30,	2002.	

[125]	S.	Track	and	W.	Product,	“XACML	v3.0	XML	Digital	Signature	Profile	Version	
1.0	Specification	URIs,”	no.	May.	The	Organization	for	the	Advancement	of	
Structured	Information	Standards	(OASIS),	pp.	1–11,	2014.	

[126]	A.	Shamir,	“How	to	share	a	secret,”	Commun.	ACM,	vol.	22,	no.	11,	pp.	612–
613,	Nov.	1979.	

[127]	A.	Anderson,	“XACML	Profile	for	Role	Based	Access	Control	(RBAC),	Version	
2.0,”	2004.	

[128]	V.	Bertocci,	Modern	authentication	with	Azure	Active	Directory	for	web	
applications.	Redmond,	Washington:	Microsoft	Press,	2016.	

[129]	L.	Chen	and	C.	Kudla,	“Identity	Based	Authenticated	Key	Agreement	
Protocols	from	Pairings,”	16th	IEEE	Computer	Security	Foundations	
Workshop,	2003.	Proceedings.	IEEE,	pp.	219–233,	2003.	

[130]	G.	Hsieh	and	R.-J.	Chen,	“Design	for	a	secure	interoperable	cloud-based	
Personal	Health	Record	service,”	in	4th	IEEE	International	Conference	on	
Cloud	Computing	Technology	and	Science	Proceedings	(2012),	2012,	pp.	472–
479.	

[131]	F.	Rezaeibagha	and	Y.	Mu,	“Distributed	clinical	data	sharing	via	dynamic	
access-control	policy	transformation,”	Int.	J.	Med.	Inform.,	vol.	89,	pp.	25–31,	
2016.	

[132]	S.	Alshehri,	S.	P.	Radziszowski,	and	R.	K.	Raj,	“Secure	access	for	healthcare	
data	in	the	cloud	using	Ciphertext-Policy	Attribute-Based	Encryption,”	Proc.	-	
2012	IEEE	28th	Int.	Conf.	Data	Eng.	Work.	ICDEW	2012,	pp.	143–146,	2012.	

[133]	A.	Mohandas	and	S.	S,	“Privacy	Preserving	Content	Disclosure	for	Enabling	
Sharing	of	Electronic	Health	Records	in	Cloud	Computing,”	Proc.	7th	ACM	
India	Comput.	Conf.,	p.	7:1--7:7,	2014.	

[134]	K.	Seol,	Y.	G.	Kim,	E.	Lee,	Y.	D.	Seo,	and	D.	K.	Baik,	“Privacy-preserving	
attribute-based	access	control	model	for	XML-based	electronic	health	record	
system,”	IEEE	Access,	vol.	6,	pp.	9114–9128,	2018.	

[135]	A.	Bahga	and	V.	K.	Madisetti,	“A	cloud-based	approach	for	interoperable	
electronic	health	records	(EHRs),”	IEEE	J.	Biomed.	Heal.	Informatics,	vol.	17,	
no.	5,	pp.	894–906,	2013.	

[136]	E.	P.	M.	O.	Veterans	Health	Administration	Office	of	Information	&	
Technology	and	Office	of	Information	&	Analytics,	VistA	(VA)	Monograph,	
January	13.	Department	of	Veterans	Affairs,	United	States	of	America,	2017.	

[137]	U.	Premarathne	et	al.,	“Hybrid	Cryptographic	Access	Control	for	Cloud-Based	
EHR	Systems,”	IEEE	Cloud	Comput.,	vol.	3,	no.	4,	pp.	58–64,	2016.	

[138]	M.	Peleg,	D.	Beimel,	D.	Dori,	and	Y.	Denekamp,	“Situation-Based	Access	
Control:	Privacy	management	via	modeling	of	patient	data	access	scenarios,”	
J.	Biomed.	Inform.,	vol.	41,	no.	6,	pp.	1028–1040,	2008.	

[139]	R.	Gajanayake,	R.	Iannella,	and	T.	Sahama,	“Privacy	oriented	access	control	

 109

for	electronic	health	records,”	Electron.	J.	Heal.	Informatics,	vol.	8,	no.	2,	
2014.	

[140]	A.	Lunardelli,	I.	Matteucci,	P.	Mori,	and	M.	Petrocchi,	“A	prototype	for	solving	
conflicts	in	XACML-based	e-Health	policies,”	Proc.	CBMS	2013	-	26th	IEEE	Int.	
Symp.	Comput.	Med.	Syst.,	pp.	449–452,	2013.	

[141]	J.	Calvillo-Arbizu,	I.	Roman-Martinez,	and	L.	M.	Roa-Romero,	“Standardized	
access	control	mechanisms	for	protecting	ISO	13606-based	electronic	health	
record	systems,”	2014	IEEE-EMBS	Int.	Conf.	Biomed.	Heal.	Informatics,	BHI	
2014,	pp.	539–542,	2014.	

[142]	P.	Gope	and	R.	Amin,	“A	Novel	Reference	Security	Model	with	the	Situation	
Based	Access	Policy	for	Accessing	EPHR	Data,”	J.	Med.	Syst.,	vol.	40,	no.	11,	
2016.	

[143]	K.	Yang,	Z.	Liu,	X.	Jia,	and	X.	S.	Shen,	“Time-Domain	Attribute-Based	Access	
Control	for	Cloud-Based	Video	Content	Sharing:	A	Cryptographic	Approach,”	
IEEE	Trans.	Multimed.,	vol.	18,	no.	5,	pp.	940–950,	2016.	

[144]	T.	Neubauer	and	J.	Heurix,	“A	methodology	for	the	pseudonymization	of	
medical	data.,”	Int.	J.	Med.	Inform.,	vol.	80,	no.	3,	pp.	190–204,	Mar.	2011.	

[145]	M.	T.	SandIkkaya,	B.	De	Decker,	and	V.	Naessens,	“Privacy	in	commercial	
medical	storage	systems,”	Lect.	Notes	Inst.	Comput.	Sci.	Soc.	Telecommun.	
Eng.,	vol.	69	LNICST,	pp.	247–258,	2011.	

[146]	S.	Sharma	and	V.	Balasubramanian,	“A	biometric	based	authentication	and	
encryption	Framework	for	Sensor	Health	Data	in	Cloud,”	Conf.	Proc.	-	6th	Int.	
Conf.	Inf.	Technol.	Multimed.	UNITEN	Cultiv.	Creat.	Enabling	Technol.	Through	
Internet	Things,	ICIMU	2014,	pp.	49–54,	2015.	

[147]	R.	Au	and	P.	Croll,	“Consumer-Centric	and	Privacy-Preserving	Identity	
Management	for	Distributed	E-Health	Systems,”	in	Proceedings	of	the	41st	
Hawaii	International	Conference	on	System	Sciences	-	2008,	2008.	

[148]	M.	Grothe,	C.	Mainka,	P.	Rösler,	and	J.	Schwenk,	“How	to	Break	Microsoft	
Rights	Management	Services,”	10th	USENIX	Work.	Offensive	Technol.	(WOOT	
16),	pp.	1–14,	2016.	

[149]	G.	Gulati,	“Announcing	new	Microsoft	Azure	Information	Protection	policy	
decision	point	capabilities	with	Ionic	Security,”	2018.	[Online].	Available:	
https://cloudblogs.microsoft.com/enterprisemobility/2018/04/17/announ
cing-new-microsoft-azure-information-protection-policy-decision-point-
capabilities-with-ionic-security/.	

[150]	G.	Spyra,	W.	J.	Buchanan,	and	E.	Ekonomou,	“Sticky	policy	enabled	
authenticated	OOXML,”	in	SAI	Computing	Conference	2016,	2016.	

[151]	P.	DiToro,	“Hardware	Key	Management	in	the	Azure	Cloud.”	Thales	e-
security,	2016.	

[152]	Microsoft	Corporation,	“XrML,”	vol.	747717,	pp.	2–3,	2008.	
[153]	ContentGuard,	“eXtensible	rights	Markup	Language	(XrML)	2	.	0	

Specification	Part	II :	Core	Schema,”	no.	November.	Eduworks,	pp.	1–46,	
2001.	

[154]	H.	Lockhart	and	B.	Parducci,	“JSON	Profile	of	XACML	3.0	Version	1.0,”	no.	
December	2014.	OASICS,	pp.	1–34,	2014.	

[155]	S.	Pearson	and	M.	C.	Mont,	“Sticky	Policies :	An	Approach	for	Managing	
Privacy	across	Multiple	Parties,”	CS	Digital	Library,	IEEE	Computer	Society,	
pp.	60–68,	Sep-2011.	

[156]	K.	Okupski,	“Bitcoin	Developer	Reference,”	Eindhoven,	The	Netherlands,	
2015.	

[157]	Y.	Nir	and	A.	Langley,	“RFC7539:	ChaCha20	and	Poly1305	for	IETF	
Protocols.”	Internet	Research	Task	Force	(IRTF),	pp.	1–45,	2015.	

 110

APPENDIXES

 111

APPENDIX A XACML VERSION 3.0 POLICIES AND RULE-COMBINING
ALGORITHMS

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Deny Permit I{D} Permit I{DP}
Deny Deny Deny Deny Deny Deny Deny
N/A Permit Deny N/A I{D} I{P} I{DP}
I{D} I{D} Deny I{D} I{D} I{P} I{DP}
I{P} Permit Deny I{P} I{DP} I{P} I{DP}
I{DP} I{DP} Deny I{DP} I{DP} I{DP} I{DP}
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 5 Deny-overrides

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Deny Permit I{D} Permit

Deny Deny Deny Deny Deny Deny Deny
N/A Permit Deny N/A I{D} I{P} I{DP}
I{D} I{D} Deny I{D} I{D} I{D} I{DP}
I{P} Permit Deny I{P} I{D} I{P} I{DP}
I{DP} I{DP} Deny I{DP} I{D} I{D} I{DP}
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 6. Ordered-deny-overrides

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Permit Permit Permit Permit Permit
Deny Permit Deny Deny Deny I{P} I{DP}
N/A Permit Deny N/A I{D} I{P} I{DP}
I(D} Permit Deny I{D} I{D} I{DP} I{DP}
I{P} Permit I{P} I{P} I{DP} I{P} I{DP}
I{DP} Permit I{DP} I{DP} I{DP} I{DP} I{DP}
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 7. Permit-overrides

 112

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Permit Permit Permit Permit Permit
Deny Permit Deny Deny Deny I{P} I{DP}
N/A Permit Deny N/A I{D} I{P} I{DP}
I(D} Permit Deny I{D} I{D} I{DP} I{DP}
I{P} Permit I{P} I{P} I{DP} I{P} I{DP}
I{DP} Permit I{DP} I{DP} I{DP} I{DP} I{DP}
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 8. Ordered-permit-overrides

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Permit Permit Permit Permit Permit
Deny Permit Deny Deny Deny Deny Deny
N/A Permit Deny Deny Deny Deny Deny
I{D} Permit Deny Deny Deny Deny Deny
I{P} Permit Deny Deny Deny Deny Deny
I{DP} Permit Deny Deny Deny Deny Deny
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 9. Deny-unless-permit

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Deny Permit Permit Permit Permit
Deny Deny Deny Deny Deny Deny Deny
N/A Permit Deny Permit Permit Permit Permit
I{D} Permit Deny Permit Permit Permit Permit
I{P} Permit Deny Permit Permit Permit Permit
I{DP} Permit Deny Permit Permit Permit Permit
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 10. Permit-unless-deny

 113

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit Permit Deny Permit I{D} I{P} I{DP}
Deny Permit Deny Deny I{D} I{P} I{DP}
N/A Permit Deny N/A I{D} I{P} I{DP}
I{D} Permit Deny I{D} I{D} I{P} I{DP}
I{P} Permit Deny I{P} I{D} I{P} I{DP}
I{DP} Permit Deny I{DP} I{D} I{P} I{DP}
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 11. First-applicable

2nd
ê

1st
è

Permit Deny N/A I{D} I{P} I{DP}

Permit I I Permit I{D} I{P} I{DP}
Deny I I Deny I{D} I{P} I{DP}
N/A Permit Deny N/A I{D} I{P} I{DP}
I{D} I{D} I{D} I{D} I{D} I{DP} I{DP}
I{P} I{P} I{P} I{P} I{DP} I{P} I{DP}
I{DP} I{DP} I{DP} I{DP} I{DP} I{DP} I{DP}
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 12. Only-one-applicable – only for Policy Set;

2nd
ê

1st
è

Permit Deny N/A I I{D} I{P}

Permit Permit Deny Permit Deny I I
Deny Deny Deny Deny Deny Deny Deny
N/A Permit Deny N/A Deny I I
I Deny Deny Deny Deny I I
I{D} I Deny I I I I
I{P} I Deny I I I I
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 13. Legacy Deny-overrides

 114

2nd
ê

1st
è

Permit Deny N/A I I{D} I{P}

Permit Permit Deny Permit Deny I I
Deny Deny Deny Deny Deny Deny Deny
N/A Permit Deny N/A Deny I I
I Deny Deny Deny Deny I I
I{D} I Deny I I I I
I{P} I Deny I I I I
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 14. Legacy Ordered-deny-overrides

2nd
ê

1st
è

Permit Deny N/A I I{D} I{P}

Permit Permit Permit Permit Permit Permit Permit
Deny Permit Deny Deny I I I
N/A Permit Deny N/A I I I
I Permit Deny I I I I
I{D} Permit I I I I I
I{P} Permit I I I I I
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 15. Legacy Permit-overrides

2nd
ê

1st
è

Permit Deny N/A I I{D} I{P}

Permit Permit Permit Permit Permit Permit Permit
Deny Permit Deny Deny I I I
N/A Permit Deny N/A I I I
I Permit Deny I I I I
I{D} Permit I I I I I
I{P} Permit I I I I I
I Indeterminate
{D} Deny
{P} Permit
N/A NotApplicable

Table 16. Legacy Ordered-permit-overrides

	

 115

APPENDIX B XRML DIAGRAM CONVENTIONS [114]

	

 116

APPENDIX C EXTERNAL LIBRARIES / PACKAGES

Library	Name	 Rel.	 Comments	 Licensing	 Url	
The	Pairing-
Based	
Cryptography	
Library	

0.5.14	 	 GNU	Lesser	
General	
Public	
License	

https://crypto.stanfor
d.edu/pbc/files/pbc-
0.5.14.tar.gz	

OpenSSL	 1.0.2	 	 OpenSSL	
SSLeay	

https://github.com/op
enssl/openssl	

GMP	 6.0.0	 	 GNU	LGPL	
v3	
GNU	GPL	v2	

https://gmplib.org/do
wnload/gmp/gmp-
6.1.0.tar.bz2	

XACML.Core	 0.0.0.0	 Unknown	Source;	
Found	.Net	
executable	before	
research	started;	
Extracted	libraries	
and	modified;	

N/A	 https://github.com/Greg
Spyra/xacml-core

Microsoft	
Windows	
Driver	Kit	

10.0.15063.0	 Required	for	
spibedrv	MiniFilter	

Microsoft	 https://go.microsoft.c
om/fwlink/p/?LinkID
=845980	

Microsoft	
Software	
Development	
Kit	

10.0.15063.468	 Required	for	
spibedrv	MiniFilter	

Microsoft	 https://go.microsoft.co
m/fwlink/p/?LinkID=8
45298	

	

 117

APPENDIX D IBE WITH ECC AND RSA EVALUATION – ENVIRONMENT
SETUP

	
@SET PATH=%PATH%;C:\Projects\IBE\gmp-6.0.0;
@SET PATH=%PATH%;C:\Projects\IBE\pbc-0.5.14;
@SET GMP_Dir=C:\Projects\IBE\gmp-6.0.0
@SET GMP_InstallDir=/c/Projects/IBE/gmp
@SET PBC_Dir=C:\Projects\IBE\pbc-0.5.14
@SET PBC_InstallDir=/c/Projects/IBE/pbc_install
@SET OSL_Install=/c/Projects/IBE/openssl
@SET OSL_Dir=C:\Projects\IBE\openssl-1.0.2d

 118

APPENDIX E IBE WITH ECC AND RSA EVALUATION – COMPILE
CRYPTOGRAPHIC LIBRARIES

	
C:\MinGW\msys\1.0\msys.bat
cd $GMP_DIR

export CXXFLAGS="$CXXFLAGS --output-def"

#configure --prefix=$GMP_INSTALLDIR --host=i686-pc-mingw32
configure --prefix=$GMP_INSTALL --host=coreisbr-pc-mingw32 --disable-static --
enable-shared
make & make check & make install

cd $PBC_DIR
#configure --prefix=$PBC_INSTALLDIR --host=coreisbr-pc-mingw32
configure --prefix=$PBC_INSTALL --host=i686-pc-mingw32 --disable-static --
enable-shared ABI=64
make & make check & make install

#openssl-1.0.1q
#Under Visual Studio CMD
cd $OSL_DIR
perl Configure VC-WIN32 --prefix=C:\Projects\IBE\openssl
ms\do_ms
nmake -f ms\nt.mak
nmake -f ms\nt.mak install

#NTSHELL - don’t generate libs under Visual Studio folder!
SET PATH=%PATH%;C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin
lib /machine:x86 /def:libgmp.def

lib /machine:x86 /def:libpbc.def
	

 119

APPENDIX F IBE WITH ECC AND RSA EVALUATION –
SBE\VC\SBE.SLN (VISUAL STUDIO SOLUTION)

	
Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 2013
VisualStudioVersion = 12.0.30501.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "ConsoleApplication",
"ConsoleApplication\ConsoleApplication.vcxproj", "{02419819-AF2A-4E28-A2D9-
086A7AC4A955}"
EndProject
Global
 GlobalSection(SubversionScc) = preSolution
 Svn-Managed = True
 Manager = AnkhSVN - Subversion Support for Visual Studio
 EndGlobalSection
 GlobalSection(SolutionConfigurationPlatforms) = preSolution
 Debug|Win32 = Debug|Win32
 Debug|x64 = Debug|x64
 Release|Win32 = Release|Win32
 Release|x64 = Release|x64
 EndGlobalSection
 GlobalSection(ProjectConfigurationPlatforms) = postSolution
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Debug|Win32.ActiveCfg =
Debug|Win32
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Debug|Win32.Build.0 =
Debug|Win32
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Debug|x64.ActiveCfg = Debug|x64
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Debug|x64.Build.0 = Debug|x64
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Release|Win32.ActiveCfg =
Release|Win32
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Release|Win32.Build.0 =
Release|Win32
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Release|x64.ActiveCfg =
Release|x64
 {02419819-AF2A-4E28-A2D9-086A7AC4A955}.Release|x64.Build.0 =
Release|x64
 EndGlobalSection
 GlobalSection(SolutionProperties) = preSolution
 HideSolutionNode = FALSE
 EndGlobalSection
EndGlobal

 120

APPENDIX G IBE WITH ECC AND RSA EVALUATION –
SBE\VC\CONSOLEAPPLICATION\CONSOLEAPPLICATION.VCXPROJ
(VISUAL STUDIO PROJECT)

	
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup Label="ProjectConfigurations">
 <ProjectConfiguration Include="Debug|Win32">
 <Configuration>Debug</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Debug|x64">
 <Configuration>Debug</Configuration>
 <Platform>x64</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|Win32">
 <Configuration>Release</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|x64">
 <Configuration>Release</Configuration>
 <Platform>x64</Platform>
 </ProjectConfiguration>
 </ItemGroup>
 <PropertyGroup Label="Globals">
 <ProjectGuid>{02419819-AF2A-4E28-A2D9-086A7AC4A955}</ProjectGuid>
 <Keyword>Win32Proj</Keyword>
 <RootNamespace>ConsoleApplication</RootNamespace>
 </PropertyGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'"
Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>true</UseDebugLibraries>
 <PlatformToolset>v140</PlatformToolset>
 <CharacterSet>Unicode</CharacterSet>
 <UseOfMfc>Dynamic</UseOfMfc>
 <CLRSupport>true</CLRSupport>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'"
Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>true</UseDebugLibraries>
 <PlatformToolset>v140</PlatformToolset>
 <CharacterSet>Unicode</CharacterSet>
 <UseOfMfc>Dynamic</UseOfMfc>
 <CLRSupport>true</CLRSupport>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'"
Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>false</UseDebugLibraries>
 <PlatformToolset>v140</PlatformToolset>
 <WholeProgramOptimization>true</WholeProgramOptimization>
 <CharacterSet>Unicode</CharacterSet>
 <CLRSupport>false</CLRSupport>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'"
Label="Configuration">
 <ConfigurationType>Application</ConfigurationType>
 <UseDebugLibraries>false</UseDebugLibraries>
 <PlatformToolset>v140</PlatformToolset>
 <WholeProgramOptimization>true</WholeProgramOptimization>
 <CharacterSet>Unicode</CharacterSet>
 <CLRSupport>false</CLRSupport>
 </PropertyGroup>

 121

 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
 <ImportGroup Label="ExtensionSettings">
 </ImportGroup>
 <ImportGroup Label="PropertySheets"
Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')"
Label="LocalAppDataPlatform" />
 </ImportGroup>
 <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'"
Label="PropertySheets">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')"
Label="LocalAppDataPlatform" />
 </ImportGroup>
 <ImportGroup Label="PropertySheets"
Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')"
Label="LocalAppDataPlatform" />
 </ImportGroup>
 <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'"
Label="PropertySheets">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')"
Label="LocalAppDataPlatform" />
 </ImportGroup>
 <PropertyGroup Label="UserMacros" />
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <LinkIncremental>false</LinkIncremental>
 <IgnoreImportLibrary>false</IgnoreImportLibrary>

<ExtensionsToDeleteOnClean>*.a;*.dll;$(ExtensionsToDeleteOnClean)</ExtensionsT
oDeleteOnClean>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
 <LinkIncremental>true</LinkIncremental>
 <IgnoreImportLibrary>false</IgnoreImportLibrary>

<ExtensionsToDeleteOnClean>*.a;*.dll;$(ExtensionsToDeleteOnClean)</ExtensionsT
oDeleteOnClean>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <LinkIncremental>false</LinkIncremental>

<ExtensionsToDeleteOnClean>*.a;*.dll;$(ExtensionsToDeleteOnClean)</ExtensionsT
oDeleteOnClean>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <LinkIncremental>true</LinkIncremental>

<ExtensionsToDeleteOnClean>*.a;*.dll;$(ExtensionsToDeleteOnClean)</ExtensionsT
oDeleteOnClean>
 </PropertyGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <ClCompile>
 <PrecompiledHeader>Use</PrecompiledHeader>
 <WarningLevel>Level3</WarningLevel>
 <Optimization>Disabled</Optimization>

<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;_LIB;_CRT_SECURE_NO_WARNINGS;%(
PreprocessorDefinitions)</PreprocessorDefinitions>
 <SDLCheck>true</SDLCheck>

<AdditionalIncludeDirectories>C:\Projects\SBE\gmp\include;C:\Projects\SBE\open
ssl\include;C:\Projects\SBE\pbc\include;C:\Projects\IBE\openssl\lib;%(Addition
alIncludeDirectories)</AdditionalIncludeDirectories>
 <CompileAsManaged>true</CompileAsManaged>
 </ClCompile>

 122

 <Link>
 <SubSystem>Console</SubSystem>
 <GenerateDebugInformation>true</GenerateDebugInformation>

<AdditionalDependencies>libgcc.a;libmingwex.a;libpbc.lib;libgmp.lib;libeay32.l
ib;ssleay32.lib;%(AdditionalDependencies)</AdditionalDependencies>

<AdditionalLibraryDirectories>$(SolutionDir)fodder;$(SolutionDir)lib;%(Additio
nalLibraryDirectories)</AdditionalLibraryDirectories>
 <AdditionalOptions>/SAFESEH:NO %(AdditionalOptions)</AdditionalOptions>

<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
 <OptimizeReferences>true</OptimizeReferences>
 <EnableCOMDATFolding>true</EnableCOMDATFolding>
 </Link>
 <PostBuildEvent>
 <Command>COPY /Y "$(SolutionDir)"\lib*.DLL* "$(TargetDir)"</Command>
 </PostBuildEvent>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
 <ClCompile>
 <PrecompiledHeader>Use</PrecompiledHeader>
 <WarningLevel>Level3</WarningLevel>
 <Optimization>Disabled</Optimization>

<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
</PreprocessorDefinitions>
 <SDLCheck>true</SDLCheck>

<AdditionalIncludeDirectories>C:\Projects\SBE\pbc\include\pbc;%GMP%\include;%(
AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
 <CompileAsManaged>true</CompileAsManaged>
 </ClCompile>
 <Link>
 <SubSystem>Console</SubSystem>
 <GenerateDebugInformation>true</GenerateDebugInformation>

<AdditionalDependencies>libgcc.a;libmingwex.a;libpbc.lib;libgmp.lib;%(Addition
alDependencies)</AdditionalDependencies>

<AdditionalLibraryDirectories>$(SolutionDir)fodder;$(SolutionDir)lib;%(Additio
nalLibraryDirectories)</AdditionalLibraryDirectories>
 </Link>
 <PostBuildEvent>
 <Command>COPY /Y "$(SolutionDir)"\lib*.DLL* "$(TargetDir)"</Command>
 </PostBuildEvent>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <ClCompile>
 <WarningLevel>Level3</WarningLevel>
 <PrecompiledHeader>Use</PrecompiledHeader>
 <Optimization>MaxSpeed</Optimization>
 <FunctionLevelLinking>true</FunctionLevelLinking>
 <IntrinsicFunctions>true</IntrinsicFunctions>

<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;_LIB;_CRT_SECURE_NO_WARNINGS;%(
PreprocessorDefinitions)</PreprocessorDefinitions>
 <SDLCheck>true</SDLCheck>

<AdditionalIncludeDirectories>C:\Projects\SBE\gmp\include;C:\Projects\SBE\open
ssl\include;C:\Projects\SBE\pbc\include;C:\Projects\IBE\openssl\lib;%(Addition
alIncludeDirectories)</AdditionalIncludeDirectories>
 <CompileAsManaged>false</CompileAsManaged>
 </ClCompile>
 <Link>
 <SubSystem>Console</SubSystem>
 <GenerateDebugInformation>true</GenerateDebugInformation>
 <EnableCOMDATFolding>true</EnableCOMDATFolding>

 123

 <OptimizeReferences>true</OptimizeReferences>

<AdditionalDependencies>libgcc.a;libmingwex.a;libpbc.lib;libgmp.lib;ssleay32.l
ib;libeay32.lib;%(AdditionalDependencies)</AdditionalDependencies>

<AdditionalLibraryDirectories>$(SolutionDir)fodder;$(SolutionDir)lib;%(Additio
nalLibraryDirectories)</AdditionalLibraryDirectories>
 <AdditionalOptions>/SAFESEH:NO %(AdditionalOptions)</AdditionalOptions>
 </Link>
 <PostBuildEvent>
 <Command>COPY /Y "$(SolutionDir)"\lib*.DLL "$(TargetDir)"</Command>
 </PostBuildEvent>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <ClCompile>
 <WarningLevel>Level3</WarningLevel>
 <PrecompiledHeader>Use</PrecompiledHeader>
 <Optimization>MaxSpeed</Optimization>
 <FunctionLevelLinking>true</FunctionLevelLinking>
 <IntrinsicFunctions>true</IntrinsicFunctions>

<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
</PreprocessorDefinitions>
 <SDLCheck>true</SDLCheck>

<AdditionalIncludeDirectories>C:\Projects\SBE\gmp\include;C:\Projects\SBE\pbc\
include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
 </ClCompile>
 <Link>
 <SubSystem>Console</SubSystem>
 <GenerateDebugInformation>true</GenerateDebugInformation>
 <EnableCOMDATFolding>true</EnableCOMDATFolding>
 <OptimizeReferences>true</OptimizeReferences>

<AdditionalDependencies>libgcc.a;libmingwex.a;libpbc.lib;libgmp.lib;%(Addition
alDependencies)</AdditionalDependencies>

<AdditionalLibraryDirectories>$(SolutionDir)fodder;$(SolutionDir)lib;%(Additio
nalLibraryDirectories)</AdditionalLibraryDirectories>
 </Link>
 <PostBuildEvent>
 <Command>COPY /Y "$(SolutionDir)"\lib*.DLL "$(TargetDir)"</Command>
 </PostBuildEvent>
 </ItemDefinitionGroup>
 <ItemGroup>
 <Text Include="ReadMe.txt" />
 </ItemGroup>
 <ItemGroup>
 <ClInclude Include="stdafx.h" />
 <ClInclude Include="targetver.h" />
 </ItemGroup>
 <ItemGroup>
 <ClCompile Include="ConsoleApplication.cpp" />
 <ClCompile Include="stdafx.cpp">
 <PrecompiledHeader
Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Create</PrecompiledH
eader>
 <PrecompiledHeader
Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">Create</PrecompiledHea
der>
 <PrecompiledHeader
Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">Create</Precompile
dHeader>
 <PrecompiledHeader
Condition="'$(Configuration)|$(Platform)'=='Release|x64'">Create</PrecompiledH
eader>
 </ClCompile>
 </ItemGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

 124

 <ImportGroup Label="ExtensionTargets">
 </ImportGroup>
</Project>

 125

APPENDIX H IBE WITH ECC AND RSA EVALUATION –
SBE\VC\CONSOLEAPPLICATION\CONSOLEAPPLICATION.CPP

	
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>
#include <fcntl.h>
#include <math.h>
#include <string.h>
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/sha.h>
#include <openssl/ssl.h>
#include <pbc.h>
#include <windows.h>

static char *gen_file_date_time(char *file_text, char *file_extension)
{
 const int TIME_SIZE = 16;
 const char FORMATTER_DATETIME[] = "%Y%m%d-%H%M%S";
 const char FORMATTER_FILENAME[] = "%s%s.%s";
 time_t raw_time;
 struct tm *info;
 char staged_result[TIME_SIZE];
 char *file_name = (char*)malloc(TIME_SIZE + strlen(file_text) +
strlen(file_extension) + 1);

 time(&raw_time);
 info = localtime(&raw_time);

 strftime(staged_result, TIME_SIZE, FORMATTER_DATETIME, info);

 sprintf(file_name, FORMATTER_FILENAME, file_text, staged_result,
file_extension);

 return file_name;
}

static void gen_random(int size, char *arr)
{
 srand(time(0));
 arr[size + 1] = { 0 };
 for (int i = 0; i < size; i++)
 {
 arr[i] = (char)(rand() % 255 + 0);
 }
 arr[size] = '\0';
}

static int to_base64(const unsigned char *data, int data_sz, char
**base64encoded)
{
 BIO *bio, *b64;
 BUF_MEM *ptr_buffer;

 b64 = BIO_new(BIO_f_base64());
 bio = BIO_new(BIO_s_mem());
 bio = BIO_push(b64, bio);
 BIO_set_flags(bio, BIO_FLAGS_BASE64_NO_NL);
 BIO_write(b64, data, data_sz);

 BIO_flush(b64);
 BIO_get_mem_ptr(bio, &ptr_buffer);
 BIO_set_close(bio, BIO_NOCLOSE);

 126

 base64encoded = (char)malloc((ptr_buffer->length + 1) * sizeof(char));
 memcpy(*base64encoded, ptr_buffer->data, ptr_buffer->length);
 (*base64encoded)[ptr_buffer->length] = '\0';

 BIO_free_all(bio);

 return (0);
}

size_t calcDecodeLength(const char* base64encoded)
{
 size_t len = strlen(base64encoded),
 padding = 0;

 if (base64encoded[len - 1] == '=' && base64encoded[len - 2] == '=')
 padding = 2;
 else if (base64encoded[len - 1] == '=')
 padding = 1;

 return (len * 3) / 4 - padding;
}

int from_base64(const char* base64encoded, unsigned char** data, size_t*
length)
{
 BIO *bio, *b64;

 int decodeLen = calcDecodeLength(base64encoded);
 data = (uint8_t)malloc(decodeLen);

 bio = BIO_new_mem_buf((char *)base64encoded, -1);
 b64 = BIO_new(BIO_f_base64());
 bio = BIO_push(b64, bio);

 BIO_set_flags(bio, BIO_FLAGS_BASE64_NO_NL);
 *length = BIO_read(bio, *data, strlen(base64encoded));

 BIO_free_all(bio);

 return (0);
}

static void pbc_pairing_init(pairing_t pairing, int argc, char **argv)
{
 char s[16384];
 FILE *fp = stdin;

 if (argc > 1) {
 fp = fopen(argv[1], "r");
 if (!fp) pbc_die("error opening %s", argv[1]);
 }
 size_t count = fread(s, 1, 16384, fp);
 if (!count) pbc_die("input error");
 fclose(fp);

 if (pairing_init_set_buf(pairing, s, count)) pbc_die("pairing init
failed");
}

static unsigned char *get_text_from_file(char *file_path, long *bytes_read)
{
 FILE *fp;
 unsigned char *txt;
 long file_sz;

 fp = stdin;

 127

 fp = fopen(file_path, "rb");
 if (!fp) pbc_die("error opening %s", file_path);
 fseek(fp, 0L, SEEK_END);

 file_sz = ftell(fp);
 rewind(fp);

 txt = (unsigned char*)calloc(1, file_sz + 1);
 if (!txt)
 {
 fclose(fp);
 pbc_die("memory alloc fails for new ID!");
 }
 if (1 != fread(txt, file_sz, 1, fp))
 {
 fclose(fp);
 free(txt);
 pbc_die("ID read fails!");
 }
 fclose(fp);
 *bytes_read = file_sz;

 return txt;
}

static unsigned char *get_data_from_file(char *file_path, long *bytes_read)
{
 FILE *fp;
 unsigned char *data;
 long file_sz;

 fp = stdin;
 fp = fopen(file_path, "rb");
 if (!fp) pbc_die("error opening %s", file_path);
 fseek(fp, 0L, SEEK_END);

 file_sz = ftell(fp);
 rewind(fp);

 data = (unsigned char*)calloc(1, file_sz + 1);
 if (!data)
 {
 fclose(fp);
 pbc_die("memory alloc fails for new ID!");
 }
 if (1 != fread(data, file_sz, 1, fp))
 {
 fclose(fp);
 free(data);
 pbc_die("ID read fails!");
 }
 fclose(fp);
 *bytes_read = file_sz;

 return data;
}

static int ibe_encrypt(element_t r, element_t U, element_t P, element_t gid,
element_t mapped_id_hash_Qid, element_t Ppub, unsigned char *data, int
data_len, unsigned char *cipher, char *err)
{
 const int HASH_LEN = 32;
 char hash[HASH_LEN] = { 0 };
 unsigned char *gs;

 element_random(r);
 element_mul_zn(U, P, r);
 element_pairing(gid, mapped_id_hash_Qid, Ppub);

 128

 element_pow_zn(gid, gid, r);
 gs = (unsigned char*)malloc(element_length_in_bytes(gid));

 element_to_bytes(gs, gid);

 if (SHA256((unsigned char*)gs, element_length_in_bytes(gid), (unsigned
char *)hash) == NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);
 }

 //if (SHA1(gs, HASH_LEN, (unsigned char *)hash) == NULL)
 //{
 // ERR_error_string(ERR_get_error(), err);
 // printf("%s\n", err);
 //}
 for (int i = 0; i < data_len; i++)
 {
 cipher[i] = data[i] ^ hash[i % HASH_LEN];
 }
 free(gs);

 return (0);
}

void aes256_encrypt(const unsigned char *data, const unsigned char *key,
unsigned char **cipher)
{
 AES_KEY enc_key;
 AES_set_encrypt_key(key, 256, &enc_key);
 AES_encrypt((unsigned char*)data, (unsigned char*)*cipher, &enc_key);
}

void aes256_decrypt(const unsigned char *cipher, const unsigned char *key,
unsigned char **data)
{
 AES_KEY dec_key;
 AES_set_decrypt_key(key, 256, &dec_key);
 AES_decrypt((unsigned char*)cipher, (unsigned char*)*data, &dec_key);
}

int aes_evp256_encrypt(unsigned char *plaintext, int plaintext_len, unsigned
char *key, unsigned char *iv, unsigned char *ciphertext)
{
 EVP_CIPHER_CTX *ctx;

 int len;

 int ciphertext_len;

 /* Create and initialise the context */
 if (!(ctx = EVP_CIPHER_CTX_new()))
 {
 ;
 }

 if (1 != EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
 {
 ;
 }

 if (1 != EVP_EncryptUpdate(ctx, ciphertext, &len, plaintext,
plaintext_len))
 {
 ;
 }
 ciphertext_len = len;

 129

 if (1 != EVP_EncryptFinal_ex(ctx, ciphertext + len, &len))
 {
 ;
 }

 ciphertext_len += len;

 EVP_CIPHER_CTX_free(ctx);

 return ciphertext_len;
}

int aes_evp256_decrypt(unsigned char *ciphertext, int ciphertext_len, unsigned
char *key, unsigned char *iv, unsigned char *plaintext)
{
 EVP_CIPHER_CTX *ctx;

 int len;

 int plaintext_len;

 if (!(ctx = EVP_CIPHER_CTX_new()))
 {
 ;
 }

 if (1 != EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, iv))
 {
 ;
 }

 if (1 != EVP_DecryptUpdate(ctx, plaintext, &len, ciphertext,
ciphertext_len))
 {
 ;
 }
 plaintext_len = len;

 if (1 != EVP_DecryptFinal_ex(ctx, plaintext + len, &len))
 {
 ;
 }

 plaintext_len += len;

 EVP_CIPHER_CTX_free(ctx);

 return plaintext_len;
}

static int ibe_bf_aes256_encrypt(element_t r, element_t U, element_t P,
element_t gid, element_t mapped_id_hash_Qid, element_t Ppub, unsigned char
*data, long data_len, unsigned char *cipher, char *err)
{
 const int HASH_LEN = 32;
 char hash[HASH_LEN] = { 0 };
 unsigned char *gs;

 element_random(r);
 element_mul_zn(U, P, r);

 /********
 ++++INIT_TIMING
 *********/
 //LARGE_INTEGER frequency; // ticks per second
 //LARGE_INTEGER t1, t2; // ticks

 130

 //double time_spent;
 //QueryPerformanceFrequency(&frequency);
 /********
 ----INIT_TIMING
 *********/
 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\IBE-
Pairing_Policy-Public-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 //QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 element_pairing(gid, mapped_id_hash_Qid, Ppub);

 /********
 ++++END_TIMING
 *********/
 //QueryPerformanceCounter(&t2);

 //time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 //printf("%f\n", time_spent);
 //fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 /********
 ----END_TIMING
 *********/
 }

 element_pow_zn(gid, gid, r);
 gs = (unsigned char*)malloc(element_length_in_bytes(gid));

 element_to_bytes(gs, gid);

 if (SHA256((unsigned char*)gs, element_length_in_bytes(gid), (unsigned
char *)hash) == NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);
 }
 unsigned char iv[128] = { 0 };
 int cipher_len = aes_evp256_encrypt((unsigned char*)data, data_len,
(unsigned char*)hash, iv, cipher);

 free(gs);

 return cipher_len;
}

static int ibe_bf_decrypt(element_t xt, element_t private_key_Did, element_t
U, unsigned char *data, unsigned char *cipher, int cipher_len, char *err)
{
 unsigned char *gs;
 const int HASH_LEN = 32;
 char hash[HASH_LEN] = { 0 };

 element_pairing(xt, private_key_Did, U);
 gs = (unsigned char*)malloc(element_length_in_bytes(xt));
 element_to_bytes(gs, xt);

 if (SHA256((unsigned char*)gs, element_length_in_bytes(xt), (unsigned
char *)hash) == NULL)
 {
 ERR_error_string(ERR_get_error(), err);

 131

 printf("%s\n", err);
 }
/*
 if (SHA1((unsigned char*)gs, HASH_LEN, (unsigned char *)hash) == NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);
 }*/

 for (int i = 0; i < cipher_len; i++)
 {
 data[i] = cipher[i] ^ hash[i % HASH_LEN];
 }

 free(gs);
 return (0);
}

static int ibe_bf_aes256_decrypt(element_t xt, element_t private_key_Did,
element_t U, unsigned char *data, unsigned char *cipher, long cipher_len, char
*err)
{
 unsigned char *gs;
 const int HASH_LEN = 32;
 char hash[HASH_LEN] = { 0 };

 /********
 ++++INIT_TIMING
 *********/
 //LARGE_INTEGER frequency; // ticks per second
 //LARGE_INTEGER t1, t2; // ticks
 //double time_spent;
 //QueryPerformanceFrequency(&frequency);
 /********
 ----INIT_TIMING
 *********/
 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\IBE-
Pairing_Policy-Private-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 //QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 element_pairing(xt, private_key_Did, U);
 /********
 ++++END_TIMING
 *********/
 //QueryPerformanceCounter(&t2);

 //time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 //printf("%f\n", time_spent);
 //fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 /********
 ----END_TIMING
 *********/
 }

 gs = (unsigned char*)malloc(element_length_in_bytes(xt));
 element_to_bytes(gs, xt);

 if (SHA256((unsigned char*)gs, element_length_in_bytes(xt), (unsigned
char *)hash) == NULL)

 132

 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);
 }

 unsigned char iv[128] = { 0 };
 int data_len = aes_evp256_decrypt((unsigned char*)cipher, cipher_len,
(unsigned char*)hash, iv, data);

 free(gs);

 return data_len;
}

static int ibe_bf_set_public_key(const unsigned char *id, long id_size,
unsigned char *key, const int key_size, char *err)
{
 const int HASH_LEN = 32;
 unsigned char hash[HASH_LEN] = { 0 };

 key = (unsigned char *)malloc(key_size+1);

 if (SHA256(id, id_size, hash) == NULL)
 {
 ERR_error_string(ERR_get_error(), err);
 printf("%s\n", err);

 return -1;
 }
 for (int i = 0; i < key_size; i++)
 {
 key[i] = hash[i % HASH_LEN];
 }
 key[key_size] = '\0';

 return strlen((char *)key);
}

static int ibe_bf_pkg_gen(pairing_t pairing, element_t master_key, element_t
private_key)
{

}

static int element_serialize(element_t element, char **serialized_element)
{
 int element_sz = element_length_in_bytes(element);
 unsigned char *data = (byte*)malloc(element_sz);

 element_to_bytes(data, element);
 to_base64(data, element_sz, serialized_element);
 free(data);

 return (0);
}

static int element_deserialize(const char *serialized_element, element_t
element)
{
 unsigned char *data;
 size_t data_size;

 from_base64(serialized_element, &data, &data_size);
 element_from_bytes(element, (unsigned char *)data);

 free(data);
 return (0);

 133

}

static inline void element_write(element_t elem, FILE *myfile)
{
 int sz = element_length_in_bytes(elem);
 fwrite(&sz, 4, 1, myfile);
 unsigned char* data = (unsigned char*)pbc_malloc(sz);
 if (!data) printf("DATA IS NULL\n");
 element_to_bytes(data, elem);
 fwrite(data, sz, 1, myfile);
 pbc_free(data);
}

static inline void element_read(element_t elem, FILE *myfile) {
 int sz;
 fread(&sz, 4, 1, myfile);
 unsigned char* data = (unsigned char*)pbc_malloc(sz);
 fread(data, sz, 1, myfile);
 element_from_bytes(elem, data);
 pbc_free(data);
}

static RSA *rsa_create_key_pair(unsigned char **public_key, int
*public_key_size, unsigned char **private_key, int *private_key_size)
{
 const int KEY_SIZE = 1024;
 const int PUB_EXP = 3;
 RSA *key_pair;

 key_pair = RSA_generate_key(KEY_SIZE, PUB_EXP, NULL, NULL);

 BIO *bio_private_key = BIO_new(BIO_s_mem());
 BIO *bio_public_key = BIO_new(BIO_s_mem());

 PEM_write_bio_RSAPrivateKey(bio_private_key, key_pair, NULL, NULL, 0,
NULL, NULL);
 PEM_write_bio_RSAPublicKey(bio_public_key, key_pair);

 *private_key_size = BIO_pending(bio_private_key);
 *public_key_size = BIO_pending(bio_public_key);

 *private_key = (unsigned char *)malloc(*private_key_size);
 *public_key = (unsigned char *)malloc(*public_key_size);

 BIO_read(bio_private_key, *private_key, *private_key_size);
 BIO_read(bio_public_key, *public_key, *public_key_size);

 return key_pair;
}

static void ibe_eval(int argc, char **argv)
{
 const int KEY_SZ = 32; //Bytes
 const int KEY_SPACE_LENGTH = 256;
 pairing_t pairing;
 element_t gen_P, Ppub, private_key_Did, mapped_id_hash_Qid, U, r, xt,
gid;
 element_t master_key_s;

 unsigned char *key = (unsigned char *)malloc(KEY_SZ);
 char err[80] = { 0 };

 long data_sz;
 long id_sz;

 unsigned char *gs = NULL;

 134

 unsigned char *id =
get_text_from_file("C:\\Projects\\SBE\\vc\\ConsoleApplication\\IIA007Policy.xm
l", &id_sz);
 unsigned char *data =
get_data_from_file("C:\\Projects\\SBE\\vc\\ConsoleApplication\\ProgressReportT
emplate.docx", &data_sz);

 unsigned char *cipher = (unsigned char *)malloc(data_sz);
 int cipher_sz;
 unsigned char *mv = (byte*)malloc(data_sz);

 LARGE_INTEGER frequency; // ticks per second
 LARGE_INTEGER t1, t2; // ticks
 double time_spent;
 QueryPerformanceFrequency(&frequency);

 /***
 errors strings initialization for SHA1 & clock initialization for times
computation
 ***/
 ERR_load_crypto_strings();
 SSL_load_error_strings();

 printf("IBE\n\n");

 /***
 pairing function initalization from the input file which contains the
pairing parameters
 ***/
 pbc_pairing_init(pairing, argc, argv);
 if (!pairing_is_symmetric(pairing)) pbc_die("pairing must be symmetric");

 //G1
 element_init_G1(gen_P, pairing);
 element_init_G1(Ppub, pairing);
 element_init_G1(mapped_id_hash_Qid, pairing);
 element_init_G1(private_key_Did, pairing);
 element_init_G1(U, pairing);

 //Zr
 element_init_Zr(master_key_s, pairing);
 element_init_Zr(r, pairing);

 //GT
 element_init_GT(gid, pairing);
 element_init_GT(xt, pairing);

 //PKG generation of P, master_key_s and Ppub
 element_random(gen_P);
 element_random(master_key_s);

 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\IBE-
Key_Gen_Policy-Public-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
// QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 element_mul_zn(Ppub, gen_P, master_key_s);
 //element_printf("++s: %B\n", master_key_s);
 //element_printf("++P: %B\n", gen_P);
 //element_printf("++Ppub: %B\n", Ppub);

 135

 /********
 ++++END_TIMING
 *********/
 //QueryPerformanceCounter(&t2);

 //time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 //printf("%f\n", time_spent);
 //fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 /********
 ----END_TIMING
 *********/
 }

 //generate 256 long key
 int pkey_sz = ibe_bf_set_public_key(id, id_sz, key, KEY_SPACE_LENGTH,
err);

/* char *b64IdHash;
 to_base64((unsigned char *)key, KEY_SZ, &b64IdHash);
 printf("++idHash: %s\n", b64IdHash);
*/
 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\IBE-
Key_Gen_Policy-Private-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 //QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 element_from_hash(mapped_id_hash_Qid, key, pkey_sz);
 /********
 ++++END_TIMING
 *********/
 //QueryPerformanceCounter(&t2);

 //time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC /
frequency.QuadPart;
 //printf("%f\n", time_spent);
 //fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 /********
 ----END_TIMING
 *********/
 }

 /* char *serialized;
 element_serialize(master_key_s, &serialized);
 printf("+++serialized: %s", serialized);
 free(serialized);

 element_deserialize(serialized, master_key_s);
 */

 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\IBE-
AES256-Enc_Policy-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 {
 /********
 ++++BEG_TIMING
 *********/
 // QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING

 136

 *********/

 //ENCRYPTION
 //ibe_encrypt(r, U, P, gid, mapped_id_hash_Qid, Ppub, data, data_sz,
cipher, err);
 cipher_sz = ibe_bf_aes256_encrypt(r, U, gen_P, gid, mapped_id_hash_Qid,
Ppub, data, data_sz, cipher, err);
 //char *b64MsgHash;
 //to_base64(cipher, data_sz, &b64MsgHash);
 //element_printf("++m: %s\n", b64MsgHash);

 /********
 ++++END_TIMING
 *********/
 // QueryPerformanceCounter(&t2);
 ///********
 //----END_TIMING
 //*********/

 // time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC
/ frequency.QuadPart;
 // printf("%f\n", time_spent);
 // fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 }

 element_mul_zn(private_key_Did, mapped_id_hash_Qid, master_key_s);
 //element_printf("++Qid: %B\n", mapped_id_hash_Qid);
 //element_printf("++Did: %B\n", private_key_Did);

 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\IBE-
Dec_Policy-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 //{
 /********
 ++++BEG_TIMING
 *********/
 //QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 int data_len = ibe_bf_aes256_decrypt(xt, private_key_Did, U, mv, cipher,
cipher_sz, err);
 /********
 ++++END_TIMING
 *********/
 //QueryPerformanceCounter(&t2);
 /********
 ----END_TIMING
 *********/

 // time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC
/ frequency.QuadPart;
 // printf("%f\n", time_spent);
 // fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 //}
 //printf("\n%d\n", memcmp(data, mv, data_len));

 /***free mem***/
 element_clear(gen_P);
 element_clear(Ppub);
 element_clear(mapped_id_hash_Qid);
 element_clear(private_key_Did);
 element_clear(U);
 element_clear(gid);
 element_clear(r);
 element_clear(xt);
 element_clear(master_key_s);
 pairing_clear(pairing);

 137

 free(gs);
 free(id);
 free(key);
 //free(cipher);
 free(data);
}

static void rsa_eval()
{
 const int KEY_SPACE_LENGTH = 256;
 const int AES_KEY_SZ = 256;
 const int RSA_KEY_SZ = 4096;
 const int PUB_EXP = 3;

 unsigned char aes_key_seed[AES_KEY_SZ] = { 1 };
 unsigned char aes_key[AES_KEY_SZ];
 unsigned char aes_key_v[AES_KEY_SZ];

 printf("RSA\n\n");

 LARGE_INTEGER frequency; // ticks per second
 LARGE_INTEGER t1, t2; // ticks
 double time_spent;
 QueryPerformanceFrequency(&frequency);

 //Key_Gen
 int aes_key_bytes = ibe_bf_set_public_key(aes_key_seed, AES_KEY_SZ,
aes_key, KEY_SPACE_LENGTH, NULL);

 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\RSA-
Key_Gen-4096-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 //{
 /********
 ++++BEG_TIMING
 *********/
 // QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/

 // RSA *key_pair = RSA_generate_key(RSA_KEY_SZ, PUB_EXP, NULL,
NULL);

 /********
 ++++END_TIMING
 *********/
 // QueryPerformanceCounter(&t2);
 ///********
 //----END_TIMING
 //*********/

 // RSA_free(key_pair);
 // time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC
/ frequency.QuadPart;
 // printf("%f\n", time_spent);
 // fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 //}

 RSA *key_pair = RSA_generate_key(RSA_KEY_SZ, PUB_EXP, NULL, NULL);
 unsigned char *cipher = (unsigned char*)malloc(RSA_size(key_pair));

 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\RSA-
Enc_AES256Key-4096-", "csv"), "w");
 //for (int i = 0; i < 100; i++)

 138

 //{
 /********
 ++++BEG_TIMING
 *********/
// QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/

 int size_enc = RSA_public_encrypt(AES_KEY_SZ, aes_key, cipher, key_pair,
RSA_PKCS1_PADDING);
 /********
 ++++END_TIMING
 *********/
// QueryPerformanceCounter(&t2);
 /********
 ----END_TIMING
 *********/

 // time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC
/ frequency.QuadPart;
 // printf("%f\n", time_spent);
 // fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 //}
 //fclose(file_key_gen);

 //printf("%d\n", size_enc);

 //FILE *file_key_gen;
 //file_key_gen = fopen(gen_file_date_time("C:\\Projects\\Evaluation\\RSA-
Dec_AES256Key-4096-", "csv"), "w");
 //for (int i = 0; i < 100; i++)
 //{
 /********
 ++++BEG_TIMING
 *********/
 //QueryPerformanceCounter(&t1);
 /********
 ----BEG_TIMING
 *********/
 int size_dec = RSA_private_decrypt(size_enc, cipher, aes_key_v,
key_pair, RSA_PKCS1_PADDING);

 /********
 ++++END_TIMING
 *********/
 //QueryPerformanceCounter(&t2);
 /********
 ----END_TIMING
 *********/

 // time_spent = (t2.QuadPart - t1.QuadPart) * (double)CLOCKS_PER_SEC
/ frequency.QuadPart;
 // printf("%f\n", time_spent);
 // fprintf(file_key_gen, "%f;[ms]\n", time_spent);
 //}
 //fclose(file_key_gen);

 // printf("\n%d\n", memcmp(aes_key, aes_key_v, size_dec));

 /*for (int i = 0; i < size_enc; i++)
 {
 printf("\n%d - %d::%d", i, aes_key[i], aes_key_v[i]);
 }*/

 RSA_free(key_pair);
 //free(aes_key);
 //free(aes_key_v);

 139

 //free(cipher);
 //free(rsa_private_key);
 //free(rsa_public_key);
}

int main(int argc, char **argv)
{
 ibe_eval(argc, argv);
 rsa_eval();

 return 0;
}

 140

APPENDIX I XACML XML POLICY (1 OF 400)
	
<?xml version="1.0" encoding="UTF-8"?>
<Policy
 xmlns="urn:oasis:names:tc:xacml:1.0:policy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy
 cs-xacml-schema-policy-01.xsd"
 PolicyId="urn:oasis:names:tc:xacml:1.0:conformance-test:IIA002:policy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:deny-overrides">
 <Description>
 Policy for Conformance Test IIA002.
 </Description>
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 <AnyResource/>
 </Resources>
 <Actions>
 <AnyAction/>
 </Actions>
 </Target>
 <Rule
 RuleId="urn:oasis:names:tc:xacml:1.0:conformance-test:IIA002:rule"
 Effect="Permit">
 <Description>
 A subject with a role attribute of "Physician" can read or
 write Bart Simpson's medical record.
 </Description>
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch

MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">Physician</AttributeValue>
 <SubjectAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:example:attribute:role"

DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch

MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#anyURI">http://medico.com/record/pa
tient/BartSimpson</AttributeValue>
 <ResourceAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"

DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>

 141

 <ActionMatch

MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">read</AttributeValue>
 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 <Action>
 <ActionMatch

MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">write</AttributeValue>
 <ActionAttributeDesignator

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"

DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
</Policy>
	

 142

APPENDIX J XACML XML POLICY REQUEST (1 OF 400)
	
<?xml version="1.0" encoding="UTF-8"?>
<Request
 xmlns="urn:oasis:names:tc:xacml:1.0:context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context
 cs-xacml-schema-context-01.xsd">
 <Subject>
 <Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>B65172AD-4D9E-4440-8745-
2AC3C1B9FC49</AttributeValue>
 </Attribute>
 </Subject>
 <Resource>
 <Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>http://nhs.uk/services/API/FE5A064C-0C55-449F-
9EB4-45596370AE96</AttributeValue>
 </Attribute>
 </Resource>
 <Action>
 <Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>read</AttributeValue>
 </Attribute>
 </Action>
</Request>
	

 143

APPENDIX K XACML XML POLICY RESPONSE (1 OF 400)
	
<?xml version="1.0" encoding="UTF-8"?>
<Response
 xmlns="urn:oasis:names:tc:xacml:1.0:context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:context
 cs-xacml-schema-context-01.xsd">
 <Result>
 <Decision>Permit</Decision>
 <Status>
 <StatusCode
 Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
 </Status>
 </Result>
</Response>
	

 144

APPENDIX L XACML JSON-FORMATTED POLICY (1 OF 400)
	
{
 "?xml": {
 "@version": "1.0",
 "@encoding": "UTF-8"
 },
 "Policy": {
 "@xmlns": "urn:oasis:names:tc:xacml:1.0:policy",
 "@xmlns:xacml-context": "urn:oasis:names:tc:xacml:1.0:context",
 "@xmlns:md": "http://www.medico.com/schemas/record",
 "@xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
 "@xsi:schemaLocation": "urn:oasis:names:tc:xacml:1.0:policy\r\n
cs-xacml-schema-policy-01.xsd",
 "@PolicyId": "urn:oasis:names:tc:xacml:1.0:conformance-
test:IIIG006:policy",
 "@RuleCombiningAlgId": "urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:deny-overrides",
 "Description": "Evaluation Policy 398",
 "PolicyDefaults": {
 "XPathVersion": "http://www.w3.org/TR/1999/Rec-xpath-19991116"
 },
 "Target": {
 "Subjects": {
 "AnySubject": null
 },
 "Resources": {
 "AnyResource": null
 },
 "Actions": {
 "AnyAction": null
 }
 },
 "Rule": {
 "@RuleId": "urn:oasis:names:tc:xacml:1.0:conformance-
test:IIIG006:rule",
 "@Effect": "Permit",
 "Condition": {
 "@FunctionId": "urn:oasis:names:tc:xacml:1.0:function:and",
 "Apply": [
 {
 "@FunctionId":
"urn:oasis:names:tc:xacml:1.0:function:integer-equal",
 "Apply": {
 "@FunctionId":
"urn:oasis:names:tc:xacml:1.0:function:xpath-node-count",
 "AttributeValue": {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "./xacml-context:Resource/xacml-
context:ResourceContent/md:record//md:name"
 }
 },
 "AttributeValue": {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#integer",
 "#text": "2"
 }
 },
 {
 "@FunctionId":
"urn:oasis:names:tc:xacml:1.0:function:xpath-node-equal",
 "AttributeValue": [
 {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "./xacml-
context:Resource/xacml-context:ResourceContent/md:record"

 145

 },
 {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "//md:record"
 }
]
 },
 {
 "@FunctionId":
"urn:oasis:names:tc:xacml:1.0:function:xpath-node-match",
 "AttributeValue": [
 {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "."
 },
 {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "./xacml-
context:Resource/xacml-context:ResourceContent/md:record"
 }
]
 }
]
 }
 }
 }
}
	

 146

APPENDIX M XACML JSON-FORMATTED POLICY REQUEST (1 OF 400)
	
{
 "?xml": {
 "@version": "1.0",
 "@encoding": "UTF-8"
 },
 "Request": {
 "@xmlns": "urn:oasis:names:tc:xacml:1.0:context",
 "@xmlns:md": "http://www.medico.com/schemas/record",
 "@xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
 "@xsi:schemaLocation": "urn:oasis:names:tc:xacml:1.0:context\r\n
cs-xacml-schema-context-01.xsd",
 "Subject": {
 "Attribute": [
 {
 "@AttributeId":
"urn:oasis:names:tc:xacml:1.0:subject:subject-id",
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "AttributeValue": "B65172AD-4D9E-4440-8745-
2AC3C1B9FC49"
 },
 {
 "@AttributeId":
"urn:oasis:names:tc:xacml:1.0:conformance-eva:test-attr",
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "AttributeValue": {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "Evaluation 398"
 }
 },
 {
 "@AttributeId":
"urn:oasis:names:tc:xacml:1.0:conformance-test:test-attr",
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "AttributeValue": {
 "@DataType":
"http://www.w3.org/2001/XMLSchema#string",
 "#text": "Evaluation 398"
 }
 }
]
 },
 "Resource": {
 "ResourceContent": {
 "md:record": {
 "md:hospital_info": {
 "md:name": "Balmoral Hospital",
 "md:department": "Urology"
 },
 "md:patient_info": {
 "md:name": "James Lovelock",
 "md:age": "80",
 "md:sex": "male",
 "md:health_insurance": "201510120000"
 },
 "md:diagnosis_info": {
 "md:diagnosis": {
 "md:item": [
 {
 "@type": "primary",
 "#text": " Acute Bacterial
Prostatitis"
 },

 147

 {
 "@type": "secondary",
 "#text": "Asymptomatic Inflammatory
Prostatitis"
 }
]
 },
 "md:pathological_diagnosis": {
 "md:diagnosis": {
 "md:item": {
 "@type": "primary",
 "#text": "Acute Bacterial Prostatitis
(Prostatitis (Inflammation of the Prostate Gland))"
 }
 },
 "md:date": "2015-10-05",
 "md:malignancy": {
 "@type": "yes"
 }
 }
 }
 }
 },
 "Attribute": {
 "@AttributeId":
"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
 "@DataType": "http://www.w3.org/2001/XMLSchema#anyURI",
 "AttributeValue": "http://nhs.uk/services/API/FE5A064C-0C55-
449F-9EB4-45596370AE96"
 }
 },
 "Action": {
 "Attribute": {
 "@AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-
id",
 "@DataType": "http://www.w3.org/2001/XMLSchema#string",
 "AttributeValue": "read"
 }
 }
 }
}
	

 148

APPENDIX N XACML JSON-FORMATTED POLICY RESPONSE (1 OF 400)
	
{
 "?xml": {
 "@version": "1.0",
 "@encoding": "UTF-8"
 },
 "Response": {
 "@xmlns": "urn:oasis:names:tc:xacml:1.0:context",
 "@xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
 "@xsi:schemaLocation": "urn:oasis:names:tc:xacml:1.0:context\r\n
cs-xacml-schema-context-01.xsd",
 "Result": {
 "Decision": "Permit",
 "Status": {
 "StatusCode": {
 "@Value": "urn:oasis:names:tc:xacml:1.0:status:ok"
 }
 }
 }
 }
}
	

 149

APPENDIX O OOXML HELPER
	
#***
*
Script Name: ModelEvaluation.py
Language: Python
Author: Greg Spyra G$

Project: Sticky-Policies Eval400
Date Written:
Reason:Sticky-Policies Model Workflows
Notes:
Version: 1.0
Version History:
1.0G$ 25 Jan 2016
#***
*
#!/usr/bin/python

#***********************************Variables*********************************
*
CONST_WORD_DOC_PATH = 'word/document.xml'
CONST_DOC_PATH = 'Z:\\University\\Publications\\Dissertation_PhD-
2013\\Thesis\\Evaluation\\400\\XUnitTest.zip'

#***********************************Functions*********************************
*
#***********************************
#extract_word_doc_path extracts doc section from OOXML file
#***********************************
def extract_word_doc_path(full_doc_path):
 file_handle = open(full_doc_path, 'rb')
 with zipfile.ZipFile(file_handle) as zip_file:
 for arch_elem in zip_file.namelist():
 if arch_elem.startswith(CONST_WORD_DOC_PATH):
 zip_file.extract(arch_elem)

#***********************************
#zip_word_doc_path encapsulates doc section into OOXML file
#***********************************
def zip_word_doc_path(full_doc_path, full_word_doc_path, word_doc_path):
 with zipfile.ZipFile(full_doc_path, 'w') as zip_file:
 zip_file.write(full_word_doc_path, word_doc_path, zipfile.ZIP_STORED)

#*************************************Main************************************
*
import zipfile

extract_word_doc_path(CONST_DOC_PATH)
#zip_word_doc_path(CONST_DOC_PATH, CONST_WORD_DOC_PATH, CONST_WORD_DOC_PATH)

#***
*
#***
*
#***
*
#***
*

 150

APPENDIX P XACML POLICY TESTER – XACML-
EVALUATION\MAINCLASS.CS

	
using Xacml.Core;
using Xacml.Core.Runtime;
using System;
using System.Xml;

namespace XacmlTest
{
 internal class MainClass
 {
 private static void Main(string[] args)
 {
 string policyDocument = string.Empty;
 string contextDocument = string.Empty;
 bool verbose = false;
 foreach (string str in args)
 {
 if ((int) str[0] == 47 || (int) str[0] == 45)
 {
 if ((int) str[1] == 112 || (int) str[1] == 80)
 policyDocument = str.Substring(3);
 if ((int) str[1] == 114 || (int) str[1] == 82)
 contextDocument = str.Substring(3);
 if ((int) str[1] == 118 || (int) str[1] == 86)
 verbose = true;
 }
 }
 try
 {
 if (contextDocument.Length == 0 || policyDocument.Length == 0)
 throw new Exception("Request or policy file not specified.");
 new EvaluationEngine(verbose).Evaluate(policyDocument,
contextDocument, XacmlVersion.Version11).WriteDocument((XmlWriter) new
XmlTextWriter(Console.Out)
 {
 Formatting = Formatting.Indented
 });
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine();
 Console.WriteLine("Usage:");
 Console.WriteLine("\t-p:[policyFilePath] - The path to the policy
file");
 Console.WriteLine("\t-r:[requestFilePath] - The path to the request
file");
 Console.WriteLine("\t-v - Makes the execution
verbose");
 }
 }
 }
}

 151

APPENDIX Q OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\ISTICKY.SLN (VISUAL STUDIO SOLUTION)

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 2013
VisualStudioVersion = 12.0.30501.0
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "ConsoleApplication",
"ConsoleApplication\ConsoleApplication.csproj", "{EC1FD466-EB9A-46EC-8B0C-
AF7DF9AC866E}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "AppHandler",
"AppHandler\AppHandler.csproj", "{7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "pep", "pep", "{496C2933-
A2CA-4E11-9E44-10753B15E0BD}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "UnitTest",
"UnitTest\UnitTest.csproj", "{8E832E59-61E2-4C07-B80B-72182C913427}"
EndProject
Project("{E24C65DC-7377-472B-9ABA-BC803B73C61A}") = "Web",
"http://localhost:1607", "{131694CE-5D98-41D6-BA98-918E4923A288}"
 ProjectSection(WebsiteProperties) = preProject
 UseIISExpress = "true"
 TargetFrameworkMoniker = ".NETFramework,Version%3Dv3.5"
 Debug.AspNetCompiler.VirtualPath = "/localhost_1607"
 Debug.AspNetCompiler.PhysicalPath = "Web\"
 Debug.AspNetCompiler.TargetPath = "PrecompiledWeb\localhost_1607\"
 Debug.AspNetCompiler.Updateable = "true"
 Debug.AspNetCompiler.ForceOverwrite = "true"
 Debug.AspNetCompiler.FixedNames = "false"
 Debug.AspNetCompiler.Debug = "True"
 Release.AspNetCompiler.VirtualPath = "/localhost_1607"
 Release.AspNetCompiler.PhysicalPath = "Web\"
 Release.AspNetCompiler.TargetPath = "PrecompiledWeb\localhost_1607\"
 Release.AspNetCompiler.Updateable = "true"
 Release.AspNetCompiler.ForceOverwrite = "true"
 Release.AspNetCompiler.FixedNames = "false"
 Release.AspNetCompiler.Debug = "False"
 SlnRelativePath = "Web\"
 EndProjectSection
EndProject
Global
 GlobalSection(SubversionScc) = preSolution
 Svn-Managed = True
 Manager = AnkhSVN - Subversion Support for Visual Studio
 EndGlobalSection
 GlobalSection(SolutionConfigurationPlatforms) = preSolution
 Debug|Any CPU = Debug|Any CPU
 Release|Any CPU = Release|Any CPU
 EndGlobalSection
 GlobalSection(ProjectConfigurationPlatforms) = postSolution
 {EC1FD466-EB9A-46EC-8B0C-AF7DF9AC866E}.Debug|Any CPU.ActiveCfg =
Debug|Any CPU
 {EC1FD466-EB9A-46EC-8B0C-AF7DF9AC866E}.Debug|Any CPU.Build.0 =
Debug|Any CPU
 {EC1FD466-EB9A-46EC-8B0C-AF7DF9AC866E}.Release|Any CPU.ActiveCfg =
Release|Any CPU
 {EC1FD466-EB9A-46EC-8B0C-AF7DF9AC866E}.Release|Any CPU.Build.0 =
Release|Any CPU
 {7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A}.Debug|Any CPU.ActiveCfg =
Debug|Any CPU
 {7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A}.Debug|Any CPU.Build.0 =
Debug|Any CPU
 {7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A}.Release|Any CPU.ActiveCfg =
Release|Any CPU
 {7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A}.Release|Any CPU.Build.0 =
Release|Any CPU

 152

 {8E832E59-61E2-4C07-B80B-72182C913427}.Debug|Any CPU.ActiveCfg =
Debug|Any CPU
 {8E832E59-61E2-4C07-B80B-72182C913427}.Debug|Any CPU.Build.0 =
Debug|Any CPU
 {8E832E59-61E2-4C07-B80B-72182C913427}.Release|Any CPU.ActiveCfg =
Release|Any CPU
 {8E832E59-61E2-4C07-B80B-72182C913427}.Release|Any CPU.Build.0 =
Release|Any CPU
 {131694CE-5D98-41D6-BA98-918E4923A288}.Debug|Any CPU.ActiveCfg =
Debug|Any CPU
 {131694CE-5D98-41D6-BA98-918E4923A288}.Debug|Any CPU.Build.0 =
Debug|Any CPU
 {131694CE-5D98-41D6-BA98-918E4923A288}.Release|Any CPU.ActiveCfg =
Debug|Any CPU
 {131694CE-5D98-41D6-BA98-918E4923A288}.Release|Any CPU.Build.0 =
Debug|Any CPU
 EndGlobalSection
 GlobalSection(SolutionProperties) = preSolution
 HideSolutionNode = FALSE
 EndGlobalSection
 GlobalSection(NestedProjects) = preSolution
 {EC1FD466-EB9A-46EC-8B0C-AF7DF9AC866E} = {496C2933-A2CA-4E11-9E44-
10753B15E0BD}
 {7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A} = {496C2933-A2CA-4E11-9E44-
10753B15E0BD}
 {131694CE-5D98-41D6-BA98-918E4923A288} = {496C2933-A2CA-4E11-9E44-
10753B15E0BD}
 EndGlobalSection
EndGlobal

 153

APPENDIX R OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\APPHANDLER.CSPROJ (VISUAL STUDIO PROJECT)

	
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="12.0" DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <Import
Project="$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.Common.prop
s"
Condition="Exists('$(MSBuildExtensionsPath)\$(MSBuildToolsVersion)\Microsoft.C
ommon.props')" />
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == ''
">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProjectGuid>{7F9EEEB1-3698-4AB5-BE66-8B82F7161A8A}</ProjectGuid>
 <OutputType>Library</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>AppHandler</RootNamespace>
 <AssemblyName>AppHandler</AssemblyName>
 <TargetFrameworkVersion>v4.5</TargetFrameworkVersion>
 <FileAlignment>512</FileAlignment>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU'
">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' ==
'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup>
 <SignAssembly>true</SignAssembly>
 </PropertyGroup>
 <PropertyGroup>
 <AssemblyOriginatorKeyFile>keyPair.snk</AssemblyOriginatorKeyFile>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="DocumentFormat.OpenXml, Version=2.5.5631.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL"
/>
 <Reference Include="System" />
 <Reference Include="System.Core" />
 <Reference Include="System.Transactions" />
 <Reference Include="System.Xml.Linq" />
 <Reference Include="System.Data.DataSetExtensions" />
 <Reference Include="Microsoft.CSharp" />
 <Reference Include="System.Data" />
 <Reference Include="System.Xml" />
 <Reference Include="WindowsBase" />
 </ItemGroup>
 <ItemGroup>
 <Compile Include="CandyDelivery\FileStreamer.cs" />
 <Compile Include="CandyDelivery\SingleStream.cs" />
 <Compile Include="CandyStore\Candy.cs" />
 <Compile Include="CandyStore\PDF\Document.cs" />
 <Compile Include="CandyStore\PDF\HPDF.cs" />

 154

 <Compile Include="CandyStore\ICandy.cs" />
 <Compile Include="CandyStore\IDocument.cs" />
 <Compile Include="CandyStore\OOXML\Document.cs" />
 <Compile Include="CandyStore\OOXML\Master.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 </ItemGroup>
 <ItemGroup>
 <None Include="keyPair.snk" />
 </ItemGroup>
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
</Project>

 155

APPENDIX S OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\IDOCUMENT.CS
(PEP.APPHANDLER.CANDYSTORE.IDOCUMENT INTERFACE)

	
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace pep.AppHandler.CandyStore
{
 interface IDocument
 {

 }
}

 156

APPENDIX T OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\ICANDY.CS
(PEP.APPHANDLER.CANDYSTORE.ICANDY INTERFACE)

	
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace pep.AppHandler.CandyStore
{
 /// <summary>
 /// Interface for wrapped data content
 /// Delivers secure execution space for sticky policy data
 /// </summary>
 public interface ICandy : IDisposable
 {

 /// <summary>
 /// Builds interpreted XACML master document wrapper
 /// </summary>
 /// <param name="documents">Documents file streams</param>
 void Wrap(List<FileStream> documents);

// void PlantFile(byte[] FileContent);
 }
}

 157

APPENDIX U OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\CANDY.CS
(PEP.APPHANDLER.CANDYSTORE.CANDY CLASS)

	
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace pep.AppHandler.CandyStore
{
 /// <summary>
 /// Class provides information about different documents (candies)
supported
 /// </summary>
 public class Candy
 {
 #region Enums
 /// <summary>
 /// Enumerator for supported document types
 /// </summary>
 enum Type
 {
 OOXML = 0x01,
 PDF = 0x02
 };
 #endregion
 }
}

 158

APPENDIX V OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\PDF\DOCUMENT.CS
(PEP.APPHANDLER.CANDYSTORE.PDF.DOCUMENT CLASS)

	
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace pep.AppHandler.CandyStore.PDF
{
 class Document
 {
 #region Enums
 public enum FileTypeExtension
 {
 Unsupported = 0,
 PDF = 1
 }
 #endregion

 #region Variables
 private static readonly byte[] FILE_SIGNATURE_PDF = new byte[] { 0x25,
0x50, 0x44, 0x46 };
 #endregion

 #region Public Static Methods
 public static FileTypeExtension GetFileTypeExtensionFromSignature(ref
byte[] FileContent)
 {
 byte[] temp =
FileContent.Take(FILE_SIGNATURE_PDF.Length).ToArray();
 if(
StructuralComparisons.StructuralEqualityComparer.Equals(FILE_SIGNATURE_PDF,
FileContent.Take(FILE_SIGNATURE_PDF.Length).ToArray()))
 {
 return FileTypeExtension.PDF;
 }
 return FileTypeExtension.Unsupported;
 }
 #endregion
 }
}

 159

APPENDIX W OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\PDF\HPDF.CS
(PEP.APPHANDLER.CANDYSTORE.PDF.HPDF CLASS)

	
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.IO.MemoryMappedFiles;
using System.Linq;
using System.Security.AccessControl;
using System.Text;
using System.Threading.Tasks;

namespace pep.AppHandler.CandyStore.PDF
{
 public class HPDF : IDisposable
 {
 #region Variables
 private bool _bDisposed;
 private FileStream _fileStream;
 private string _filePath;

 private FileSystemRights _fileSystemRights;
 private FileSecurity _fileSecurity;
 private FileOptions _fileOptions;
 #endregion

 #region Constructors
 public HPDF()
 {

 }

 public HPDF(byte[] FileContent)
 {
 this.PlantFile(FileContent, out this._filePath);
 }
 #endregion

 #region Public Methods

 /// <summary>
 /// Method opens data using default assigned Windows appliction
 /// Data with only NoCoat enabled policy can be opened.
 /// Data with disabled NoCoat policy can be opened only if data type
 /// is supported for secure file management
 /// </summary>
 public void OpenDefault()
 {
 try
 {
 using(Process processHandle = new Process {StartInfo =
new ProcessStartInfo(this._filePath)})
 {
 processHandle.Start();
 processHandle.WaitForExit();
 }
 }
 catch (Exception eX)
 {
 throw new Exception(string.Format("{0}::{1}", new
StackFrame(0, true).GetMethod().Name, eX.Message));
 }
 }

 160

 /// <summary>
 /// Creates MemoryMappedFile for unwrapped policy data
 /// </summary>
 /// <param name="FileContent">Data file content</param>
 public void PlantFile(byte[] FileContent)
 {
 this.PlantFile(FileContent, out this._filePath);
 }

 /// <summary>
 /// Creates MemoryMappedFile for unwrapped policy data
 /// </summary>
 /// <param name="FileContent">Data file content</param>
 /// <param name="FilePath">Path for newly generated file</param>
 private void PlantFile(byte[] FileContent, out string FilePath)
 {
 Document.FileTypeExtension fileExtension =
Document.GetFileTypeExtensionFromSignature(ref FileContent);
 FilePath = String.Format(@"{0}\{1}.{2}", Path.GetTempPath(),
Guid.NewGuid(), fileExtension);

 this._fileSystemRights = FileSystemRights.Read |
FileSystemRights.CreateFiles;
 this._fileOptions = FileOptions.Encrypted;

 //Define complete access control rights
 //this._fileSecurity.

 this._fileStream = new FileStream(FilePath, FileMode.CreateNew,
this._fileSystemRights, FileShare.None, 8, this._fileOptions,
this._fileSecurity);

 using (BinaryWriter binWriter = new
BinaryWriter(this._fileStream))
 {
 binWriter.Write(FileContent);
 }
 }
 #endregion

 #region IDisposable Members
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool bDisposing)
 {
 if (!this._bDisposed)
 {
 if (bDisposing)
 {
 this._fileStream.Dispose();
 File.Delete(this._filePath);
 }

 this._bDisposed = true;
 }
 }
 #endregion
 }
}

 161

APPENDIX X OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\OOXML\DOCUMENT.CS
(PEP.APPHANDLER.CANDYSTORE.OOXML.XDOCUMENT CLASS)

	
using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Xml;

using pep.AppHandler.CandyDelivery;

namespace pep.AppHandler.CandyStore.OOXML
{
 /// <summary>
 /// Class handing low level OOXML document operations
 /// </summary>
 public class XDocument : IDisposable
 {
 #region Variables
 private bool disposed = false;
 private WordprocessingDocument data;
 private SingleStream singleStream;
 private byte[] policy;
 #endregion

 #region Properties
 /// <summary>
 /// OOXML document property
 /// </summary>
 public WordprocessingDocument Data
 {
 get
 {
 return this.data;
 }
 set
 {
 this.data = value;
 }
 }
 #endregion

 #region Constructors
 /// <summary>
 /// Creates an instance of a single OOXML document
 /// </summary>
 /// <param name="singleStream">Document file stream</param>
 public XDocument(SingleStream singleStream)
 {
 this.singleStream = singleStream;
 this.WrapDocument(FileAccess.Read);
 }

 /// <summary>
 /// Creates an instance of a single OOXML document supporting basic
access control functionality
 /// </summary>
 /// <param name="singleStream">Document file stream</param>
 /// <param name="fileAccess">Access type</param>
 public XDocument(SingleStream singleStream, FileAccess fileAccess)
 {

 162

 this.singleStream = singleStream;
 this.WrapDocument(fileAccess);
 }
 #endregion

 #region Public Methods
 /// <summary>
 /// Returns single OOXML document
 /// </summary>
 /// <returns>Single OOXML document</returns>
 public WordprocessingDocument GetDocument()
 {
 return this.data;
 }

 public void AddPolicy(XmlDocument xmlDocument)
 {
 CustomFilePropertiesPart customProperty;
 if (this.data.CustomFilePropertiesPart == null)
 {
 customProperty = this.data.AddCustomFilePropertiesPart();
 }
 else
 {
 customProperty = this.data.CustomFilePropertiesPart;
 }
 xmlDocument.Save(customProperty.GetStream());
 }
 #endregion

 #region Private Methods
 /// <summary>
 /// Method wraps document stream into OOXML document
 /// </summary>
 private void WrapDocument(FileAccess fileAccess)
 {
 OpenSettings settings = new OpenSettings();
 settings.AutoSave = false;
 this.data = WordprocessingDocument.Open(singleStream.Stream,
(fileAccess == FileAccess.ReadWrite), settings);
 }

 /// <summary>
 /// Method tries openning OOXML document from the stream
 /// </summary>
 /// <param name="singleStream">Document stream</param>
 /// <param name="document">Opened out OOXML document</param>
 /// <returns></returns>
 private bool TryOpenFromStream(SingleStream singleStream, out
WordprocessingDocument document)
 {
 OpenSettings settings = new OpenSettings();
 settings.AutoSave = false;
 try
 {
 document =
WordprocessingDocument.Open(singleStream.Stream, false, settings);
 }
 catch
 {
 document = null;
 return false;
 }
 return true;
 }
 #endregion

 #region IDisposable Members
 public void Dispose()

 163

 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)
 {
 if (this.data != null)
 this.data.Close();
 this.data.Dispose();
 if (this.singleStream != null)
 {
 singleStream.Dispose();
 }
 }

 this.disposed = true;
 }
 }
 #endregion
 }
}

 164

APPENDIX Y OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\CANDYSTORE\OOXML\MASTER.CS
(PEP.APPHANDLER.CANDYSTORE.OOXML.XMASTER CLASS)

	
using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using pep.AppHandler.CandyDelivery;

namespace pep.AppHandler.CandyStore.OOXML
{
 /// <summary>
 /// Class responsible for handling OOXML master document generation
 /// </summary>
 public class XMaster : IDisposable
 {
 #region Variables
 private bool disposed = false;
 private string name;
 private WordprocessingDocument data;
 private MemoryStream memoryStream;
 #endregion

 #region Constructors
 public XMaster()
 {
 this.name = Guid.NewGuid().ToString();
 this.memoryStream = new MemoryStream();
 this.data = WordprocessingDocument.Create(this.memoryStream,
DocumentFormat.OpenXml.WordprocessingDocumentType.Document, true);
 }
 #endregion

 #region Public Methods
 /// <summary>
 /// Builds interpreted XACML master document wrapper
 /// </summary>
 /// <param name="documents">Documents file streams</param>
 public void Wrap(List<SingleStream> documents)
 {
 string altChunkId = "AltChunkId1";
 MainDocumentPart mainPart = this.data.AddMainDocumentPart();
 AlternativeFormatImportPart chunk =
mainPart.AddAlternativeFormatImportPart(
 AlternativeFormatImportPartType.WordprocessingML,
altChunkId);
 foreach(SingleStream singleStream in documents)
 {
 OpenSettings settings = new OpenSettings();
 settings.AutoSave = false;
 WordprocessingDocument doc =
WordprocessingDocument.Open(singleStream.Stream, false, settings);

 //FileMode.Open
 chunk.FeedData((Stream)singleStream.Stream);
 AltChunk altChunk = new AltChunk();
 altChunk.Id = altChunkId;
 mainPart.Document
 .Body

 165

 .InsertAfter(altChunk,
mainPart.Document.Body.Elements<Paragraph>().Last());
 }
 mainPart.Document.Save();
 }
 public void PlantFile() { }
 //public
 #endregion

 #region IDisposable Members
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)
 {
 if (this.data != null)
 this.data.Dispose();
 }

 this.disposed = true;
 }
 }
 #endregion
 }
}

 166

APPENDIX Z OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\ CANDYDELIVERY\FILESTREAMER.CS
(PEP.APPHANDLER.CANDYDELIVERY.FILESTREAMER CLASS)

	
using System;
using System.Collections.Generic;
using System.Data.SqlClient;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace pep.AppHandler.CandyDelivery
{
 public class FileStreamer : IDisposable
 {
 #region Variables
 private bool disposed = false;
 private string sqlConnectionString;
 private SqlConnection sqlConnection;
 #endregion

 #region Properties
 public SqlConnection SqlConnection
 {
 get
 {
 return this.sqlConnection;
 }
 }
 #endregion

 #region Constructors
 public FileStreamer(string sqlConnectionString)
 {
 this.sqlConnectionString = sqlConnectionString;
 this.sqlConnection = new SqlConnection(sqlConnectionString);
 }
 #endregion

 #region IDisposable Members
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)
 {
 if (this.sqlConnection != null)
 this.sqlConnection.Dispose();
 }

 this.disposed = true;
 }
 }

 #endregion
 }
}

 167

APPENDIX AA OOXML STICKY POLICY HANDLER EVALUATION –
ISTICKY\APPHANDLER\ CANDYDELIVERY\SINGLESTREAM.CS
(PEP.APPHANDLER.CANDYDELIVERY.SINGLESTREAM CLASS)

	
using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;
using System;
using System.Collections.Generic;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using System.IO;
using System.Linq;
using System.Security;
using System.Security.AccessControl;
using System.Security.Permissions;
using System.Security.Principal;
using System.Text;
using System.Threading;
using System.Threading.Tasks;
using System.Transactions;

namespace pep.AppHandler.CandyDelivery
{
 /// <summary>
 /// Class handing SqlFileStreams for documents
 /// </summary>
 public class SingleStream : IDisposable
 {
 #region Constants
 private const int packetSize = 10 * 1000 * 1024; //[MB]
 #endregion

 #region Variables
 private bool disposed = false;
 private string metaDataID;
 private FileStreamer fileStreamer;
 private Stream stream;
 SqlTransaction sqlTransaction;
 private FileAccess fileAccess;
 private byte[] streamHandle;
 #endregion

 #region Properties
 public Stream Stream
 {
 get
 {
 return this.stream;
 }
 }
 #endregion

 #region Constructors

 public SingleStream(FileStreamer fileStreamer, Stream stream)
 {
 this.fileStreamer = fileStreamer;
 this.fileAccess = FileAccess.ReadWrite;
 this.UploadData(stream);
 this.stream = GetData();
 }

 public SingleStream(FileStreamer fileStreamer, string metaDataID)
 {
 this.fileAccess = FileAccess.ReadWrite;
 this.fileStreamer = fileStreamer;

 168

 this.metaDataID = metaDataID;
 this.stream = GetData();
 }
 #endregion

 #region Public Methods

 #endregion

 #region Private Methods
 public void UploadData(Stream stream)
 {
 const string sqlTransactionQuery = @"
INSERT INTO
 MetaData
 (MetaDataFile)
OUTPUT
 INSERTED.MetaDataFile.PathName(),
 INSERTED.MetaDataID,
 GET_FILESTREAM_TRANSACTION_CONTEXT()
VALUES (0x)";
 try
 {
 if (this.fileStreamer.SqlConnection.State ==
System.Data.ConnectionState.Closed)
 {
 this.fileStreamer.SqlConnection.Open();
 }
 using (SqlCommand sqlCommand = new
SqlCommand(sqlTransactionQuery, this.fileStreamer.SqlConnection))
 {
 this.sqlTransaction =
this.fileStreamer.SqlConnection.BeginTransaction();
 sqlCommand.Transaction = this.sqlTransaction;
 sqlCommand.CommandText = sqlTransactionQuery;

 string sqlStreamFullPath;
 byte[] data;

 using (SqlDataReader sqlReader =
sqlCommand.ExecuteReader())
 {
 sqlReader.Read();
 sqlStreamFullPath = sqlReader.GetString(0);
 this.metaDataID =
sqlReader.GetGuid(1).ToString();
 data = sqlReader.GetSqlBytes(2).Buffer;
 }

 using (SqlFileStream sqlFileStream = new
SqlFileStream(sqlStreamFullPath, data, FileAccess.Write))
 {
 stream.CopyTo(sqlFileStream);
 }

 sqlCommand.Transaction.Commit();
 }
 }
 catch
 {
 }
 }

 private SqlFileStream GetData()
 {
 const string SQL_TRANS_QUERY = @"SELECT
GET_FILESTREAM_TRANSACTION_CONTEXT()";
 //byte[] buffer;
 //UInt32 position = 0;

 169

 string sqlQuery = String.Format(@"
SELECT TOP 1
 [MetaDataFile].PathName()
FROM
 [NEHST].[dbo].[MetaData]
WHERE
 [MetaDataID] = '{0}'", this.metaDataID);

 if(this.fileStreamer.SqlConnection.State ==
System.Data.ConnectionState.Closed)
 {
 this.fileStreamer.SqlConnection.Open();
 }
 using (SqlCommand sqlCommand = new SqlCommand(sqlQuery,
this.fileStreamer.SqlConnection))
 {
 //using (SqlTransaction sqlTransaction
 this.sqlTransaction =
this.fileStreamer.SqlConnection.BeginTransaction(this.metaDataID.Replace("-",
String.Empty));
 sqlCommand.Transaction = this.sqlTransaction;

 string filePath = (string)sqlCommand.ExecuteScalar();
 //SetRemoteSecurityContext(filePath);

 sqlCommand.CommandText = SQL_TRANS_QUERY;

 this.streamHandle = (byte[])sqlCommand.ExecuteScalar();
 return new SqlFileStream(filePath, this.streamHandle,
this.fileAccess);
 }
 }
 #endregion

 private void SetRemoteSecurityContext(string filePath)
 {
 string securityContext = Thread.CurrentPrincipal.Identity.Name;
 FileSystemAccessRule rule = new
FileSystemAccessRule(securityContext, FileSystemRights.Write,
AccessControlType.Allow);

 PermissionSet permissionSet = new
PermissionSet(PermissionState.Unrestricted);
 permissionSet.AddPermission(new
FileIOPermission(FileIOPermissionAccess.Read, new string[] { filePath }));
 permissionSet.AddPermission(new
FileIOPermission(FileIOPermissionAccess.Write |
FileIOPermissionAccess.PathDiscovery, new string[] { filePath }));
 permissionSet.Assert();

 DirectoryInfo dirInfo = new
DirectoryInfo(Path.GetDirectoryName(filePath));

 bool what = false;
 DirectorySecurity security = dirInfo.GetAccessControl();

 security.ModifyAccessRule(AccessControlModification.Add, rule,
out what);
 dirInfo.SetAccessControl(security);
 }
 #region IDisposable Members
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 170

 protected virtual void Dispose(bool disposing)
 {
 if (!this.disposed)
 {
 if (disposing)
 {
 if (this.stream != null)
 this.stream.Dispose();
 if (this.sqlTransaction != null)
 this.sqlTransaction.Dispose();
 }

 this.disposed = true;
 }
 }

 #endregion
 }
}

 171

APPENDIX BB OOXML STICKY POLICY HANDLER EVALUATION –
UNITTEST\UNITTEST.CSPROJ (VISUAL STUDIO PROJECT)

	
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="12.0" DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <Configuration Condition=" '$(Configuration)' == ''
">Debug</Configuration>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProjectGuid>{8E832E59-61E2-4C07-B80B-72182C913427}</ProjectGuid>
 <OutputType>Library</OutputType>
 <AppDesignerFolder>Properties</AppDesignerFolder>
 <RootNamespace>UnitTest</RootNamespace>
 <AssemblyName>UnitTest</AssemblyName>
 <TargetFrameworkVersion>v4.5</TargetFrameworkVersion>
 <FileAlignment>512</FileAlignment>
 <ProjectTypeGuids>{3AC096D0-A1C2-E12C-1390-A8335801FDAB};{FAE04EC0-301F-
11D3-BF4B-00C04F79EFBC}</ProjectTypeGuids>
 <VisualStudioVersion Condition="'$(VisualStudioVersion)' ==
''">10.0</VisualStudioVersion>
 <VSToolsPath Condition="'$(VSToolsPath)' ==
''">$(MSBuildExtensionsPath32)\Microsoft\VisualStudio\v$(VisualStudioVersion)<
/VSToolsPath>
 <ReferencePath>$(ProgramFiles)\Common Files\microsoft
shared\VSTT\$(VisualStudioVersion)\UITestExtensionPackages</ReferencePath>
 <IsCodedUITest>False</IsCodedUITest>
 <TestProjectType>UnitTest</TestProjectType>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU'
">
 <DebugSymbols>true</DebugSymbols>
 <DebugType>full</DebugType>
 <Optimize>false</Optimize>
 <OutputPath>bin\Debug\</OutputPath>
 <DefineConstants>DEBUG;TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <PropertyGroup Condition=" '$(Configuration)|$(Platform)' ==
'Release|AnyCPU' ">
 <DebugType>pdbonly</DebugType>
 <Optimize>true</Optimize>
 <OutputPath>bin\Release\</OutputPath>
 <DefineConstants>TRACE</DefineConstants>
 <ErrorReport>prompt</ErrorReport>
 <WarningLevel>4</WarningLevel>
 </PropertyGroup>
 <ItemGroup>
 <Reference Include="DocumentFormat.OpenXml, Version=2.5.5631.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35, processorArchitecture=MSIL"
/>
 <Reference Include="System" />
 <Reference Include="System.XML" />
 <Reference Include="System.Xml.Linq" />
 </ItemGroup>
 <Choose>
 <When Condition="('$(VisualStudioVersion)' == '10.0' or
'$(VisualStudioVersion)' == '') and '$(TargetFrameworkVersion)' == 'v3.5'">
 <ItemGroup>
 <Reference
Include="Microsoft.VisualStudio.QualityTools.UnitTestFramework,
Version=10.1.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL" />
 </ItemGroup>
 </When>
 <Otherwise>
 <ItemGroup>

 172

 <Reference
Include="Microsoft.VisualStudio.QualityTools.UnitTestFramework" />
 </ItemGroup>
 </Otherwise>
 </Choose>
 <ItemGroup>
 <Compile Include="UnitTest1.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 </ItemGroup>
 <ItemGroup>
 <ProjectReference Include="..\AppHandler\AppHandler.csproj">
 <Project>{7f9eeeb1-3698-4ab5-be66-8b82f7161a8a}</Project>
 <Name>AppHandler</Name>
 </ProjectReference>
 <ProjectReference
Include="..\ConsoleApplication\ConsoleApplication.csproj">
 <Project>{ec1fd466-eb9a-46ec-8b0c-af7df9ac866e}</Project>
 <Name>ConsoleApplication</Name>
 </ProjectReference>
 </ItemGroup>
 <Choose>
 <When Condition="'$(VisualStudioVersion)' == '10.0' And '$(IsCodedUITest)'
== 'True'">
 <ItemGroup>
 <Reference
Include="Microsoft.VisualStudio.QualityTools.CodedUITestFramework,
Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL">
 <Private>False</Private>
 </Reference>
 <Reference Include="Microsoft.VisualStudio.TestTools.UITest.Common,
Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL">
 <Private>False</Private>
 </Reference>
 <Reference Include="Microsoft.VisualStudio.TestTools.UITest.Extension,
Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL">
 <Private>False</Private>
 </Reference>
 <Reference Include="Microsoft.VisualStudio.TestTools.UITesting,
Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a,
processorArchitecture=MSIL">
 <Private>False</Private>
 </Reference>
 </ItemGroup>
 </When>
 </Choose>
 <Import Project="$(VSToolsPath)\TeamTest\Microsoft.TestTools.targets"
Condition="Exists('$(VSToolsPath)\TeamTest\Microsoft.TestTools.targets')" />
 <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
 <!-- To modify your build process, add your task inside one of the targets
below and uncomment it.
 Other similar extension points exist, see Microsoft.Common.targets.
 <Target Name="BeforeBuild">
 </Target>
 <Target Name="AfterBuild">
 </Target>
 -->
</Project>

 173

APPENDIX CC OOXML STICKY POLICY HANDLER EVALUATION –
UNITTEST\UNITTEST1.CS (TEST CLASS)

	
using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;
using System;
using System.Collections.Generic;
using System.IO;
using System.Xml;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using pep.AppHandler.CandyStore.OOXML;
using pep.AppHandler.CandyDelivery;

namespace UnitTest
{
 [TestClass]
 public class UnitTest1
 {
 [TestMethod]
 public void TestMethod1()
 {

 string connectionString = @"Persist Security
Info=False;Integrated Security=SSPI;database=NEHST;server=WIN-
TK7VVQF2IT3;Connect Timeout=120";
 //string connectionString = @"Persist Security
Info=False;Trusted_Connection=False;database=NEHST;server=WIN-
TK7VVQF2IT3;Connect Timeout=120;User ID=developer;password=Secure123";

 using(SingleStream singleStream = new SingleStream (new
FileStreamer(connectionString), @"FE8F3116-99A4-E411-9403-000C29E5BED1"))
 {
 using (XDocument candy = new XDocument(singleStream,
FileAccess.ReadWrite))
 {
 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.Load(@"Z:\Projects\Hamster2.5\policy.xml");
 candy.AddPolicy(xmlDocument);
 }
 }
 }

 [TestMethod]
 public void TestMethod2()
 {
 string connectionString = @"Persist Security
Info=False;Integrated Security=SSPI;database=NEHST;server=WIN-
TK7VVQF2IT3;Connect Timeout=120";
 //string connectionString = @"Persist Security
Info=False;Trusted_Connection=False;database=NEHST;server=WIN-
TK7VVQF2IT3;Connect Timeout=120;User ID=developer;password=Secure123";

 using (FileStream fileStream = new
FileStream(@"Z:\Projects\Hamster2.5\Hamster2_Ewa.docx", FileMode.Open))
 {
 using (SingleStream singleStream = new SingleStream(new
FileStreamer(connectionString), (Stream)fileStream))
 {
 using (XDocument candy = new
XDocument(singleStream, FileAccess.ReadWrite))
 {
 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.Load(@"Z:\Projects\Hamster2.5\policy.xml");
 candy.AddPolicy(xmlDocument);

 174

 }
 }
 }
 }
 }
}

 175

APPENDIX DD OOXML STICKY POLICY HANDLER EVALUATION –
WEB\DOWNLOADER.ASHX (DOWNLOADER CLASS)

	
<%@ WebHandler Language="C#" Class="downloader" %>

using System;
using System.Web;
using System.IO;
using System.Text;
using DocumentFormat.OpenXml.Packaging;
using DocumentFormat.OpenXml.Wordprocessing;
using DocumentFormat.OpenXml;

public class downloader : IHttpHandler {

 public void ProcessRequest (HttpContext context)
 {
 try
 {
 string fileName = Guid.NewGuid().ToString() + ".docx";
 string path = context.Server.MapPath("~/docs/") + fileName;
 if (!(string.IsNullOrEmpty(context.Request["what"])) &&
(context.Request["what"].ToLower() == "saveasword")
 && !(string.IsNullOrEmpty(context.Request.Form[0])))
 {
 SaveAsWord(context.Request.Form[0], path, fileName);
 }

 }
 catch (Exception ex)
 {
 context.Response.ContentType = "text/plain";
 context.Response.Write(ex.ToString());
 System.Diagnostics.Trace.WriteLine(ex.ToString());
 }

 }

 public bool IsReusable {
 get {
 return false;
 }
 }

 /// <summary>
 /// Wrapper function to save the richtext values as word
 /// </summary>
 /// <param name="input">rich text</param>
 private void SaveAsWord(string input, string fullFilePath, string
fileNameOnly)
 {
 CreateDocument(fullFilePath);
 input = ReplaceMailMerge(input);
 generateWordDocument(input, fullFilePath, fileNameOnly);

 }

 /// <summary>
 /// Replace the merge field with some custom text
 /// In real world this may come from database
 /// </summary>
 /// <param name="input">input text</param>
 /// <returns>Mail merged text</returns>
 private string ReplaceMailMerge(string input)

 176

 {
 input = input.Replace("{^FirstName^}", "Billy");
 input = input.Replace("{^LastName^}", "Bob");
 input = input.Replace("{^Title^}", "Dr.");
 return input;
 }

 /// <summary>
 /// Create a new docx
 /// </summary>
 /// <param name="path">Path where the doc file is to be created</param>
 private void CreateDocument(string path)
 {

 // Create a Wordprocessing document.
 using (WordprocessingDocument myDoc =
WordprocessingDocument.Create(path, WordprocessingDocumentType.Document))
 {
 // Add a new main document part.
 MainDocumentPart mainPart = myDoc.AddMainDocumentPart();
 //Create DOM tree for simple document.
 mainPart.Document = new Document();
 Body body = new Body();
 Paragraph p = new Paragraph();
 Run r = new Run();
 Text t = new Text("");
 //Append elements appropriately.
 r.Append(t);
 p.Append(r);
 body.Append(p);
 mainPart.Document.Append(body);
 // Save changes to the main document part.
 mainPart.Document.Save();
 }
 }

 /// <summary>
 /// Add the HTML markup in the file
 /// Save the document
 /// Send the path of this document to the caller
 /// </summary>
 /// <param name="htmlMarkup">Rich text</param>
 /// <param name="fullFilePath">Path of the file</param>
 /// <param name="fileNameOnly">Name of the file</param>
 public void generateWordDocument(string htmlMarkup, string fullFilePath,
string fileNameOnly)
 {
 try
 {
 /*----------- Generate the Document -----------------------*/
 //put some title
 string pageTitle = Guid.NewGuid().ToString();
 //open the document
 using (WordprocessingDocument wordDoc =
WordprocessingDocument.Open(fullFilePath, true))
 {
 //get the document
 MainDocumentPart mainPart = wordDoc.MainDocumentPart;
 int altChunkIdCounter = 1;
 int blockLevelCounter = 1;

 string mainhtml = "<html><head><style
type='text/css'>.catalogGeneralTable{border-collapse: collapse;text-align:
left;} .catalogGeneralTable td, th{ padding: 5px; border: 1px solid #999999;
}</style></head><body style='font-family:Trebuchet MS;font-size:.9em;'>" +
htmlMarkup + "</body></html>";
 string altChunkId = String.Format("AltChunkId{0}",
altChunkIdCounter++);

 177

 //Import data as html content using Altchunk
 AlternativeFormatImportPart chunk =
mainPart.AddAlternativeFormatImportPart(AlternativeFormatImportPartType.Html,
altChunkId);

 //add the chunk to the doc
 using (Stream chunkStream = chunk.GetStream(FileMode.Create,
FileAccess.Write))
 {
 using (StreamWriter stringWriter = new
StreamWriter(chunkStream, Encoding.UTF8)) //Encoding.UTF8 is important to
remove special characters
 {
 stringWriter.Write(mainhtml);
 }
 }

 AltChunk altChunk = new AltChunk();
 altChunk.Id = altChunkId;
 //insert the text in the doc
 mainPart.Document.Body.InsertAt(altChunk,
blockLevelCounter++);
 //save the document
 mainPart.Document.Save();
 }
 /*----------- End Generate the Document -----------------------*/

 /* ------- Send the response -----------*/
 //clear the response object
 HttpContext.Current.Response.ClearContent();
 //add the demilited string to the response object and write it.
 string url = HttpContext.Current.Request.ApplicationPath +
"/docs/" + fileNameOnly;
 HttpContext.Current.Response.Write(url);
 HttpContext.Current.Response.End();

 /* -------End Send the response -----------*/
 }
 catch (Exception ex)
 {
 HttpContext.Current.Response.Write(ex.Message.ToString());
 }
 }

 /// <summary>
 /// Function to download the newly generated doc file
 /// </summary>
 /// <param name="completeFilePath">File path</param>
 /// <param name="contentType">Content type</param>
 private void DownloadFile(string completeFilePath, string fileNameOnly,
string contentType)
 {
 Stream iStream = null;

 // Buffer to read 10K bytes in chunk:
 byte[] buffer = new Byte[10000];

 // Length of the file:
 int length;

 // Total bytes to read:
 long dataToRead;

 try
 {
 // Open the file.
 iStream = new FileStream(completeFilePath, FileMode.Open,

 178

 FileAccess.Read, FileShare.Read);

 // Total bytes to read:
 dataToRead = iStream.Length;

 HttpContext.Current.Response.ContentType = contentType;
 HttpContext.Current.Response.AddHeader("Content-Disposition",
"attachment; filename=" + fileNameOnly);

 // Read the bytes.
 while (dataToRead > 0)
 {
 // Verify that the client is connected.
 if (HttpContext.Current.Response.IsClientConnected)
 {
 // Read the data in buffer.
 length = iStream.Read(buffer, 0, 10000);

 // Write the data to the current output stream.
 HttpContext.Current.Response.OutputStream.Write(buffer, 0,
length);

 // Flush the data to the HTML output.
 HttpContext.Current.Response.Flush();

 buffer = new Byte[10000];
 dataToRead = dataToRead - length;
 }
 else
 {
 //prevent infinite loop if user disconnects
 dataToRead = -1;
 }
 }
 }
 catch (Exception ex)
 {
 // Trap the error, if any.
 HttpContext.Current.Response.Write("Error : " + ex.Message);
 }
 finally
 {
 if (iStream != null)
 {
 //Close the file.
 iStream.Close();
 }
 HttpContext.Current.Response.Close();
 }
 }
}

 179

APPENDIX EE OOXML STICKY POLICY HANDLER EVALUATION –
WEB\DEFAULT.ASPX (DEFAULT PAGE)

	
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"
Inherits="_Default" ValidateRequest="false" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Online Editor with Mail Merge</title>
 <script src="scripts/ckeditor/ckeditor.js"
type="text/javascript"></script>
 <script src="scripts/ckeditor/adapters/jquery.js"
type="text/javascript"></script>
 <script type="text/javascript" src="scripts/jquery-1.3.2.min.js"></script>
 <script src="scripts/myAjax.js" type="text/javascript"></script>
 <script language="javascript" type="text/javascript">
 //select the merge fields dropdown and implement the onchange event
 //to insert the selected value in the text area
 $(document).ready(function() {
 $("#MergeFields").val('0');
 $("#MergeFields").change(onSelectChange);
 });

 function onSelectChange() {
 var selected = $("#MergeFields option:selected");
 var oEditor = CKEDITOR.instances.editor1;

 if (selected.val() != 0) {
 var valueToInsert = selected.text();
 // Check the active editing mode.
 if (oEditor.mode == 'wysiwyg') {
 // Insert the desired HTML.
 oEditor.insertHtml(valueToInsert);
 }
 else {
 alert('You must be on WYSIWYG mode!');
 }
 }
 $("#MergeFields").val('0');
 }
 </script>

</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h2>
 Online Richtext editor with Mail Merge
 </h2>
 <!-- This <div> holds alert messages to be display in the sample
page. -->
 <div id="alerts">
 <noscript>
 <p>
 Online Richtext editor requires JavaScript to
run.
 In a browser with no JavaScript support, like yours,
you should still see
 the contents (HTML data) and you should be able to
edit it normally,
 without a rich editor interface.
 </p>
 </noscript>
 </div>

 180

 <p>
 This is online rich text editor sample with mail merge.

 Use the text area below to type in your document.

 Use the dropdowns below that have mail merge fields.
 </p>
 <textarea cols="50" id="editor1" name="editor1" rows="10"></textarea>
 <!-- instantiate a new instance of CKEDITOR -->
 <script type="text/javascript">
 //<![CDATA[
 // Replace the <textarea id="editor1"> with an CKEditor instance.
 var editor = CKEDITOR.replace('editor1',
 {
 toolbar: 'myToolBar', skin: 'office2003', width: '60%'
 });
 //]]>
 </script>

 <div id="eMessage">
 </div>
 <div id="eButtons">
 Insert Merge Fields from here
 <select id="MergeFields" >
 <option value="0" selected="selected">Select Merge
Fields</option>
 <option value="1">{^Title^}</option>
 <option value="2">{^FirstName^}</option>
 <option value="3">{^LastName^}</option>
 </select>

 <input type="button" name="saveAsWord" id="saveAsWord"
 onclick="javascript:ajaxDownloadDoc()" value="Download as
word" />
 </div>

 </div>
 </form>
</body>
</html>

 181

APPENDIX FF OOXML STICKY POLICY HANDLER EVALUATION –
SPIBEDRV\SPIBEDRV.SLN

Microsoft Visual Studio Solution File, Format Version 12.00
Visual Studio 14
VisualStudioVersion = 14.0.25123.0
MinimumVisualStudioVersion = 12.0
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "spibedrv",
"spibedrv.vcxproj", "{18A7AC9C-B3DA-4935-9A35-56FD35FF2705}"
EndProject
Global
 GlobalSection(SolutionConfigurationPlatforms) = preSolution
 Debug|Win32 = Debug|Win32
 Debug|x64 = Debug|x64
 Release|Win32 = Release|Win32
 Release|x64 = Release|x64
 EndGlobalSection
 GlobalSection(ProjectConfigurationPlatforms) = postSolution
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Debug|Win32.ActiveCfg =
Debug|Win32
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Debug|Win32.Build.0 =
Debug|Win32
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Debug|Win32.Deploy.0 =
Debug|Win32
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Debug|x64.ActiveCfg = Debug|x64
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Debug|x64.Build.0 = Debug|x64
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Debug|x64.Deploy.0 = Debug|x64
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Release|Win32.ActiveCfg =
Release|Win32
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Release|Win32.Build.0 =
Release|Win32
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Release|Win32.Deploy.0 =
Release|Win32
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Release|x64.ActiveCfg =
Release|x64
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Release|x64.Build.0 =
Release|x64
 {18A7AC9C-B3DA-4935-9A35-56FD35FF2705}.Release|x64.Deploy.0 =
Release|x64
 EndGlobalSection
 GlobalSection(SolutionProperties) = preSolution
 HideSolutionNode = FALSE
 EndGlobalSection
EndGlobal
	

 182

APPENDIX GG OOXML STICKY POLICY HANDLER
EVALUATION – SPIBEDRV\SPIBEDRV.VCXPROJ

	
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="12.0"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <ItemGroup Label="ProjectConfigurations">
 <ProjectConfiguration Include="Debug|Win32">
 <Configuration>Debug</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|Win32">
 <Configuration>Release</Configuration>
 <Platform>Win32</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Debug|x64">
 <Configuration>Debug</Configuration>
 <Platform>x64</Platform>
 </ProjectConfiguration>
 <ProjectConfiguration Include="Release|x64">
 <Configuration>Release</Configuration>
 <Platform>x64</Platform>
 </ProjectConfiguration>
 </ItemGroup>
 <PropertyGroup Label="Globals">
 <ProjectGuid>{18A7AC9C-B3DA-4935-9A35-56FD35FF2705}</ProjectGuid>
 <RootNamespace>$(MSBuildProjectName)</RootNamespace>
 <Configuration Condition="'$(Configuration)' == ''">Debug</Configuration>
 <Platform Condition="'$(Platform)' == ''">Win32</Platform>
 <SampleGuid>{740DFB1D-45E5-406F-BBB6-4AF0E6C30DBA}</SampleGuid>
 <ProjectName>spibedrv</ProjectName>

<WindowsTargetPlatformVersion>$(LatestTargetPlatformVersion)</WindowsTargetPla
tformVersion>
 </PropertyGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
 <PropertyGroup Label="Configuration"
Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <TargetVersion>Windows10</TargetVersion>
 <UseDebugLibraries>False</UseDebugLibraries>
 <DriverTargetPlatform>Universal</DriverTargetPlatform>
 <DriverType>WDM</DriverType>
 <PlatformToolset>WindowsKernelModeDriver10.0</PlatformToolset>
 <ConfigurationType>Driver</ConfigurationType>
 </PropertyGroup>
 <PropertyGroup Label="Configuration"
Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
 <TargetVersion>Windows10</TargetVersion>
 <UseDebugLibraries>True</UseDebugLibraries>
 <DriverTargetPlatform>Universal</DriverTargetPlatform>
 <DriverType>WDM</DriverType>
 <PlatformToolset>WindowsKernelModeDriver10.0</PlatformToolset>
 <ConfigurationType>Driver</ConfigurationType>
 </PropertyGroup>
 <PropertyGroup Label="Configuration"
Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <TargetVersion>Windows10</TargetVersion>
 <UseDebugLibraries>False</UseDebugLibraries>
 <DriverTargetPlatform>Universal</DriverTargetPlatform>
 <DriverType>WDM</DriverType>
 <PlatformToolset>WindowsKernelModeDriver10.0</PlatformToolset>
 <ConfigurationType>Driver</ConfigurationType>
 </PropertyGroup>
 <PropertyGroup Label="Configuration"
Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <TargetVersion>Windows10</TargetVersion>
 <UseDebugLibraries>True</UseDebugLibraries>
 <DriverTargetPlatform>Universal</DriverTargetPlatform>

 183

 <DriverType>WDM</DriverType>
 <PlatformToolset>WindowsKernelModeDriver10.0</PlatformToolset>
 <ConfigurationType>Driver</ConfigurationType>
 </PropertyGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
 <PropertyGroup>
 <OutDir>$(IntDir)</OutDir>
 </PropertyGroup>
 <ImportGroup Label="PropertySheets"
Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" />
 </ImportGroup>
 <ImportGroup Label="PropertySheets"
Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" />
 </ImportGroup>
 <ImportGroup Label="PropertySheets"
Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" />
 </ImportGroup>
 <ImportGroup Label="PropertySheets"
Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props"
Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" />
 </ImportGroup>
 <ItemGroup Label="WrappedTaskItems" />
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <TargetName>spibedrv</TargetName>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
 <TargetName>spibedrv</TargetName>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <TargetName>spibedrv</TargetName>
 <EnableInf2cat>false</EnableInf2cat>
 <Inf2CatUseLocalTime>true</Inf2CatUseLocalTime>
 <Inf2CatNoCatalog>false</Inf2CatNoCatalog>
 <IntDir>$(ConfigurationName)\</IntDir>
 </PropertyGroup>
 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <TargetName>spibedrv</TargetName>
 <EnableInf2cat>false</EnableInf2cat>
 </PropertyGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
 <ClCompile>
 <TreatWarningAsError>true</TreatWarningAsError>
 <WarningLevel>Level4</WarningLevel>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 <ExceptionHandling>
 </ExceptionHandling>
 </ClCompile>
 <Link>

<AdditionalDependencies>%(AdditionalDependencies);$(DDK_LIB_PATH)\fltMgr.lib</
AdditionalDependencies>
 </Link>
 <Midl>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </Midl>
 <ResourceCompile>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;

 184

POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </ResourceCompile>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
 <ClCompile>
 <TreatWarningAsError>true</TreatWarningAsError>
 <WarningLevel>Level4</WarningLevel>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 <ExceptionHandling>
 </ExceptionHandling>
 </ClCompile>
 <Link>

<AdditionalDependencies>%(AdditionalDependencies);$(DDK_LIB_PATH)\fltMgr.lib</
AdditionalDependencies>
 </Link>
 <Midl>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </Midl>
 <ResourceCompile>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </ResourceCompile>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup
Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
 <ClCompile>
 <TreatWarningAsError>true</TreatWarningAsError>
 <WarningLevel>Level4</WarningLevel>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 <ExceptionHandling>
 </ExceptionHandling>
 <Inf2CatAdditionalOptions>
 </Inf2CatAdditionalOptions>
 </ClCompile>
 <Link>

<AdditionalDependencies>%(AdditionalDependencies);$(DDK_LIB_PATH)\fltMgr.lib</
AdditionalDependencies>
 </Link>
 <Midl>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </Midl>
 <ResourceCompile>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </ResourceCompile>
 <Inf>
 <DateStamp>04/08/2018</DateStamp>
 <DriverVersionSectionName>1.0.0.0</DriverVersionSectionName>
 <CatalogFileName>spibedrv.cat</CatalogFileName>
 </Inf>
 <PostBuildEvent>
 <Command>"$(WindowsSdkDir)bin\$(DDKPlatform)\inf2cat.exe"
/os:10_$(DDKPlatform)
/driver:"$(ProjectDir)$(IntDir)$(MSBuildProjectName)"</Command>
 </PostBuildEvent>
 </ItemDefinitionGroup>
 <ItemDefinitionGroup

 185

Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
 <ClCompile>
 <TreatWarningAsError>true</TreatWarningAsError>
 <WarningLevel>Level4</WarningLevel>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 <ExceptionHandling>
 </ExceptionHandling>
 </ClCompile>
 <Link>

<AdditionalDependencies>%(AdditionalDependencies);$(DDK_LIB_PATH)\fltMgr.lib</
AdditionalDependencies>
 </Link>
 <Midl>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </Midl>
 <ResourceCompile>

<PreprocessorDefinitions>%(PreprocessorDefinitions);_WIN2K_COMPAT_SLIST_USAGE;
POOL_NX_OPTIN=1</PreprocessorDefinitions>
 </ResourceCompile>
 </ItemDefinitionGroup>
 <ItemGroup>
 <ClCompile Include="spibedrv.c" />
 <ClCompile Include="spibelib.c" />
 <ResourceCompile Include="spibedrv.rc" />
 </ItemGroup>
 <ItemGroup>
 <Inf Exclude="@(Inf)" Include="*.inf" />
 <FilesToPackage Include="$(TargetPath)"
Condition="'$(ConfigurationType)'=='Driver' or
'$(ConfigurationType)'=='DynamicLibrary'" />
 </ItemGroup>
 <ItemGroup>
 <None Exclude="@(None)" Include="*.txt;*.htm;*.html" />
 <None Exclude="@(None)"
Include="*.ico;*.cur;*.bmp;*.dlg;*.rct;*.gif;*.jpg;*.jpeg;*.wav;*.jpe;*.tiff;*
.tif;*.png;*.rc2" />
 <None Exclude="@(None)" Include="*.def;*.bat;*.hpj;*.asmx" />
 </ItemGroup>
 <ItemGroup>
 <ClInclude Include="resource.h" />
 <ClInclude Include="spibelib.h" />
 </ItemGroup>
 <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
</Project>
	

 186

APPENDIX HH OOXML STICKY POLICY HANDLER
EVALUATION – SPIBEDRV\SPIBELIB.C

	
#include <fltKernel.h>

#define OOXML_EXTENSION_SIZE 4

long XOrBuffer(PUCHAR buffer, const long BUFFER_SIZE)
{
 if (buffer)
 {
 for (long i = 0; i < BUFFER_SIZE; i++)
 {
 buffer[i] ^= 0xFF;
 }

 return BUFFER_SIZE;
 }
 else
 {
 return (long)-1;
 }
}

BOOLEAN IsOOXML(PFLT_CALLBACK_DATA Data)
{
 WCHAR string[OOXML_EXTENSION_SIZE];
 UNICODE_STRING oOxmlExtension;
 oOxmlExtension.Buffer = string;
 oOxmlExtension.MaximumLength = OOXML_EXTENSION_SIZE;
 oOxmlExtension.Length = OOXML_EXTENSION_SIZE;

 RtlInitUnicodeString(&oOxmlExtension, L"docx");

 PFLT_FILE_NAME_INFORMATION FileNameInformation = NULL;
 NTSTATUS status;

 status =
 FltGetFileNameInformation(Data, FLT_FILE_NAME_NORMALIZED,
&FileNameInformation);

 if (NT_SUCCESS(status))
 {
 status = FltParseFileNameInformation(FileNameInformation);

 if (NT_SUCCESS(status))
 {
 //KdPrint(("Parent Dir is %S\n", FileNameInformation-
>ParentDir.Buffer));
 if (RtlCompareUnicodeString(&FileNameInformation->Extension,
&oOxmlExtension, TRUE) == 0)
 {
 FltReleaseFileNameInformation(FileNameInformation);
 return TRUE;
 }

 FltReleaseFileNameInformation(FileNameInformation);
 }
 else
 {
 KdPrint(("Error FltParseFileNameInformation"));
 }
 }
 else if (status == STATUS_FLT_INVALID_NAME_REQUEST)
 {
 KdPrint(("Error STATUS_FLT_INVALID_NAME_REQUEST"));

 187

 }
 else if (status == STATUS_INSUFFICIENT_RESOURCES)
 {
 KdPrint(("Error STATUS_INSUFFICIENT_RESOURCES"));
 }
 else if (status == STATUS_INVALID_PARAMETER)
 {
 KdPrint(("Error STATUS_INVALID_PARAMETER"));
 }
 return FALSE;
}
	

 188

APPENDIX II OOXML STICKY POLICY HANDLER
EVALUATION – SPIBEDRV\SPIBELIB.C

	
#ifndef SPIBE_LIB_
#define SPIBE_LIB_

long XOrBuffer(PUCHAR buffer, const long BUFFER_SIZE);
//long XOrBuffer(unsigned char **buffer, const long BUFFER_SIZE);

#endif //SPIBE_LIB_
	

 189

APPENDIX JJ OOXML STICKY POLICY HANDLER
EVALUATION – SPIBEDRV\SPIBEDRV.C

	
#include <fltKernel.h>
#include "spibelib.h"
#include <suppress.h>

/*
Based on Microsoft SwapBuffers template
*/

#pragma prefast(disable:__WARNING_ENCODE_MEMBER_FUNCTION_POINTER, "Not valid
for kernel mode drivers")

PFLT_FILTER gFilterHandle;

#define BUFFER_SWAP_TAG 'bdBS'
#define CONTEXT_TAG 'xcBS'
#define NAME_TAG 'mnBS'
#define PRE_2_POST_TAG 'ppBS'

typedef struct _VOLUME_CONTEXT
{
 UNICODE_STRING Name;

 ULONG SectorSize;

} VOLUME_CONTEXT, *PVOLUME_CONTEXT;

#define MIN_SECTOR_SIZE 0x200

typedef struct _PRE_2_POST_CONTEXT
{
 PVOLUME_CONTEXT VolCtx;

 PVOID UnpackedCandy;

} PRE_2_POST_CONTEXT, *PPRE_2_POST_CONTEXT;

NPAGED_LOOKASIDE_LIST Pre2PostContextList;

NTSTATUS
InstanceSetup(
 In PCFLT_RELATED_OBJECTS FltObjects,
 In FLT_INSTANCE_SETUP_FLAGS Flags,
 In DEVICE_TYPE VolumeDeviceType,
 In FLT_FILESYSTEM_TYPE VolumeFilesystemType
);

VOID
CleanupVolumeContext(
 In PFLT_CONTEXT Context,
 In FLT_CONTEXT_TYPE ContextType
);

NTSTATUS
InstanceQueryTeardown(
 In PCFLT_RELATED_OBJECTS FltObjects,
 In FLT_INSTANCE_QUERY_TEARDOWN_FLAGS Flags
);

DRIVER_INITIALIZE DriverEntry;
NTSTATUS
DriverEntry(
 In PDRIVER_OBJECT DriverObject,

 190

 In PUNICODE_STRING RegistryPath
);

NTSTATUS
FilterUnload(
 In FLT_FILTER_UNLOAD_FLAGS Flags
);

FLT_PREOP_CALLBACK_STATUS
SwapPreReadBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 _Flt_CompletionContext_Outptr_ PVOID *CompletionContext
);

FLT_POSTOP_CALLBACK_STATUS
SwapPostReadBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
);

FLT_POSTOP_CALLBACK_STATUS
SwapPostReadBuffersWhenSafe(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
);

FLT_PREOP_CALLBACK_STATUS
SwapPreDirCtrlBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 _Flt_CompletionContext_Outptr_ PVOID *CompletionContext
);

FLT_POSTOP_CALLBACK_STATUS
SwapPostDirCtrlBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
);

FLT_POSTOP_CALLBACK_STATUS
SwapPostDirCtrlBuffersWhenSafe(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
);

FLT_PREOP_CALLBACK_STATUS
SwapPreWriteBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 _Flt_CompletionContext_Outptr_ PVOID *CompletionContext
);

FLT_POSTOP_CALLBACK_STATUS
SwapPostWriteBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
);

 191

VOID
ReadDriverParameters(
 In PUNICODE_STRING RegistryPath
);

#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, InstanceSetup)
#pragma alloc_text(PAGE, CleanupVolumeContext)
#pragma alloc_text(PAGE, InstanceQueryTeardown)
#pragma alloc_text(INIT, DriverEntry)
#pragma alloc_text(INIT, ReadDriverParameters)
#pragma alloc_text(PAGE, FilterUnload)
#endif

CONST FLT_OPERATION_REGISTRATION Callbacks[] =
{

{ IRP_MJ_READ,
 0,
 SwapPreReadBuffers,
 SwapPostReadBuffers },

{ IRP_MJ_WRITE,
 0,
 SwapPreWriteBuffers,
 SwapPostWriteBuffers },

{ IRP_MJ_DIRECTORY_CONTROL,
 0,
 SwapPreDirCtrlBuffers,
 SwapPostDirCtrlBuffers },

{ IRP_MJ_OPERATION_END }
};

CONST FLT_CONTEXT_REGISTRATION ContextNotifications[] =
{

{ FLT_VOLUME_CONTEXT,
 0,
 CleanupVolumeContext,
 sizeof(VOLUME_CONTEXT),
 CONTEXT_TAG },

{ FLT_CONTEXT_END }
};

CONST FLT_REGISTRATION FilterRegistration =
{
sizeof(FLT_REGISTRATION), // Size
FLT_REGISTRATION_VERSION, // Version
0, // Flags

ContextNotifications, // Context
Callbacks, // Operation callbacks

FilterUnload, // MiniFilterUnload

InstanceSetup, // InstanceSetup
InstanceQueryTeardown, // InstanceQueryTeardown

 192

NULL, // InstanceTeardownStart
NULL, // InstanceTeardownComplete

NULL, // GenerateFileName
NULL, // GenerateDestinationFileName
NULL // NormalizeNameComponent

};

#define LOGFL_ERRORS 0x00000001 // if set, display error messages
#define LOGFL_READ 0x00000002 // if set, display READ operation info
#define LOGFL_WRITE 0x00000004 // if set, display WRITE operation info
#define LOGFL_DIRCTRL 0x00000008 // if set, display DIRCTRL operation info
#define LOGFL_VOLCTX 0x00000010 // if set, display VOLCTX operation info

ULONG LoggingFlags = 0; // all disabled by default

#define LOG_PRINT(_logFlag, _string) \
 (FlagOn(LoggingFlags,(_logFlag)) ? \
 DbgPrint _string : \
 ((int)0))

NTSTATUS
InstanceSetup(
 In PCFLT_RELATED_OBJECTS FltObjects,
 In FLT_INSTANCE_SETUP_FLAGS Flags,
 In DEVICE_TYPE VolumeDeviceType,
 In FLT_FILESYSTEM_TYPE VolumeFilesystemType
)
{
 PDEVICE_OBJECT devObj = NULL;
 PVOLUME_CONTEXT ctx = NULL;
 NTSTATUS status = STATUS_SUCCESS;
 ULONG retLen;
 PUNICODE_STRING workingName;
 USHORT size;
 UCHAR volPropBuffer[sizeof(FLT_VOLUME_PROPERTIES) + 512];
 PFLT_VOLUME_PROPERTIES volProp = (PFLT_VOLUME_PROPERTIES)volPropBuffer;

 PAGED_CODE();

 UNREFERENCED_PARAMETER(Flags);
 UNREFERENCED_PARAMETER(VolumeDeviceType);
 UNREFERENCED_PARAMETER(VolumeFilesystemType);

 try
 {
 status = FltAllocateContext(FltObjects->Filter,
 FLT_VOLUME_CONTEXT,
 sizeof(VOLUME_CONTEXT),
 NonPagedPool,
 &ctx);

 if (!NT_SUCCESS(status))
 {
 leave;
 }

 status = FltGetVolumeProperties(FltObjects->Volume,
 volProp,
 sizeof(volPropBuffer),
 &retLen);

 if (!NT_SUCCESS(status))
 {
 leave;
 }

 193

 FLT_ASSERT((volProp->SectorSize == 0) || (volProp->SectorSize >=
MIN_SECTOR_SIZE));

 ctx->SectorSize = max(volProp->SectorSize, MIN_SECTOR_SIZE);

 ctx->Name.Buffer = NULL;

 status = FltGetDiskDeviceObject(FltObjects->Volume, &devObj);

 if (NT_SUCCESS(status))
 {
 status = IoVolumeDeviceToDosName(devObj, &ctx->Name);
 }

 if (!NT_SUCCESS(status))
 {
 FLT_ASSERT(ctx->Name.Buffer == NULL);

 if (volProp->RealDeviceName.Length > 0)
 {
 workingName = &volProp->RealDeviceName;
 }
 else if (volProp->FileSystemDeviceName.Length > 0)
 {
 workingName = &volProp->FileSystemDeviceName;
 }
 else
 {
 status = STATUS_FLT_DO_NOT_ATTACH;
 leave;
 }

 size = workingName->Length + sizeof(WCHAR);

#pragma prefast(suppress:__WARNING_MEMORY_LEAK, "ctx->Name.Buffer will not be
leaked because it is freed in CleanupVolumeContext")
 ctx->Name.Buffer = ExAllocatePoolWithTag(NonPagedPool,
 size,
 NAME_TAG);
 if (ctx->Name.Buffer == NULL)
 {
 status = STATUS_INSUFFICIENT_RESOURCES;
 leave;
 }

 ctx->Name.Length = 0;
 ctx->Name.MaximumLength = size;

 RtlCopyUnicodeString(&ctx->Name,
 workingName);

 RtlAppendUnicodeToString(&ctx->Name,
 L":");
 }

 status = FltSetVolumeContext(FltObjects->Volume,
 FLT_SET_CONTEXT_KEEP_IF_EXISTS,
 ctx,
 NULL);

 LOG_PRINT(LOGFL_VOLCTX,
 ("spibedrv!InstanceSetup: Real SectSize=0x%04x,
Used SectSize=0x%04x, Name=\"%wZ\"\n",
 volProp->SectorSize,
 ctx->SectorSize,
 &ctx->Name));

 194

 if (status == STATUS_FLT_CONTEXT_ALREADY_DEFINED)
 {
 status = STATUS_SUCCESS;
 }
 }
 finally
 {
 if (ctx)
 {
 FltReleaseContext(ctx);
 }

 if (devObj)
 {
 ObDereferenceObject(devObj);
 }
 }
 return status;
}

VOID
CleanupVolumeContext(
 In PFLT_CONTEXT Context,
 In FLT_CONTEXT_TYPE ContextType
)
{
 PVOLUME_CONTEXT ctx = Context;

 PAGED_CODE();

 UNREFERENCED_PARAMETER(ContextType);

 FLT_ASSERT(ContextType == FLT_VOLUME_CONTEXT);

 if (ctx->Name.Buffer != NULL)
 {
 ExFreePool(ctx->Name.Buffer);
 ctx->Name.Buffer = NULL;
 }
}

NTSTATUS
InstanceQueryTeardown(
 In PCFLT_RELATED_OBJECTS FltObjects,
 In FLT_INSTANCE_QUERY_TEARDOWN_FLAGS Flags
)
{
 PAGED_CODE();

 UNREFERENCED_PARAMETER(FltObjects);
 UNREFERENCED_PARAMETER(Flags);

 return STATUS_SUCCESS;
}

NTSTATUS
DriverEntry(
 In PDRIVER_OBJECT DriverObject,
 In PUNICODE_STRING RegistryPath
)
{
 NTSTATUS status;

 ExInitializeDriverRuntime(DrvRtPoolNxOptIn);

 ReadDriverParameters(RegistryPath);

 195

 ExInitializeNPagedLookasideList(&Pre2PostContextList,
 NULL,
 NULL,
 0,
 sizeof(PRE_2_POST_CONTEXT),
 PRE_2_POST_TAG,
 0);

 status = FltRegisterFilter(DriverObject,
 &FilterRegistration,
 &gFilterHandle);

 if (!NT_SUCCESS(status))
 {

 goto SwapDriverEntryExit;
 }

 status = FltStartFiltering(gFilterHandle);

 if (!NT_SUCCESS(status))
 {
 FltUnregisterFilter(gFilterHandle);
 goto SwapDriverEntryExit;
 }

SwapDriverEntryExit:

 if (!NT_SUCCESS(status))
 {
 ExDeleteNPagedLookasideList(&Pre2PostContextList);
 }

 return status;
}

NTSTATUS
FilterUnload(
 In FLT_FILTER_UNLOAD_FLAGS Flags
)
{
 PAGED_CODE();

 UNREFERENCED_PARAMETER(Flags);

 FltUnregisterFilter(gFilterHandle);

 ExDeleteNPagedLookasideList(&Pre2PostContextList);

 return STATUS_SUCCESS;
}

FLT_PREOP_CALLBACK_STATUS
SwapPreReadBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 _Flt_CompletionContext_Outptr_ PVOID *CompletionContext
)
{
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;
 FLT_PREOP_CALLBACK_STATUS retValue = FLT_PREOP_SUCCESS_NO_CALLBACK;
 PVOID newBuf = NULL;
 PMDL newMdl = NULL;
 PVOLUME_CONTEXT volCtx = NULL;
 PPRE_2_POST_CONTEXT p2pCtx;
 NTSTATUS status;
 ULONG readLen = iopb->Parameters.Read.Length;

 196

 try
 {
 if (readLen == 0)
 {
 leave;
 }

 status = FltGetVolumeContext(FltObjects->Filter,
 FltObjects->Volume,
 &volCtx);

 if (!NT_SUCCESS(status))
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreReadBuffers: Error getting
volume context, status=%x\n",
 status));

 leave;
 }

 if (FlagOn(IRP_NOCACHE, iopb->IrpFlags))
 {
 readLen = (ULONG)ROUND_TO_SIZE(readLen, volCtx->SectorSize);
 }

 newBuf = FltAllocatePoolAlignedWithTag(FltObjects->Instance,
 NonPagedPool,
 (SIZE_T)readLen,
 BUFFER_SWAP_TAG);
 if (newBuf == NULL)
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreReadBuffers: %wZ Failed to
allocate %d bytes of memory\n",
 &volCtx->Name,
 readLen));

 leave;
 }

 if (FlagOn(Data->Flags, FLTFL_CALLBACK_DATA_IRP_OPERATION))
 {
 newMdl = IoAllocateMdl(newBuf,
 readLen,
 FALSE,
 FALSE,
 NULL);

 if (newMdl == NULL)
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreReadBuffers: %wZ
Failed to allocate MDL\n",
 &volCtx->Name));

 leave;
 }

 MmBuildMdlForNonPagedPool(newMdl);
 }

 p2pCtx = ExAllocateFromNPagedLookasideList(&Pre2PostContextList);

 197

 if (p2pCtx == NULL)
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreReadBuffers: %wZ Failed to
allocate pre2Post context structure\n",
 &volCtx->Name));

 leave;
 }

 LOG_PRINT(LOGFL_READ,
 ("spibedrv!SwapPreReadBuffers: %wZ newB=%p newMdl=%p
oldB=%p oldMdl=%p len=%d\n",
 &volCtx->Name,
 newBuf,
 newMdl,
 iopb->Parameters.Read.ReadBuffer,
 iopb->Parameters.Read.MdlAddress,
 readLen));

 iopb->Parameters.Read.ReadBuffer = newBuf;
 iopb->Parameters.Read.MdlAddress = newMdl;
 FltSetCallbackDataDirty(Data);

 p2pCtx->UnpackedCandy = newBuf;
 p2pCtx->VolCtx = volCtx;

 *CompletionContext = p2pCtx;

 retValue = FLT_PREOP_SUCCESS_WITH_CALLBACK;
 }
 finally
 {
 if (retValue != FLT_PREOP_SUCCESS_WITH_CALLBACK)
 {

 if (newBuf != NULL)
 {

 FltFreePoolAlignedWithTag(FltObjects->Instance,
 newBuf,
 BUFFER_SWAP_TAG);
 }

 if (newMdl != NULL)
 {

 IoFreeMdl(newMdl);
 }

 if (volCtx != NULL)
 {

 FltReleaseContext(volCtx);
 }
 }
 }
 return retValue;
}

FLT_POSTOP_CALLBACK_STATUS
SwapPostReadBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags

 198

)
{
 PVOID origBuf;
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;
 FLT_POSTOP_CALLBACK_STATUS retValue = FLT_POSTOP_FINISHED_PROCESSING;
 PPRE_2_POST_CONTEXT p2pCtx = CompletionContext;
 BOOLEAN cleanupAllocatedBuffer = TRUE;

 FLT_ASSERT(!FlagOn(Flags, FLTFL_POST_OPERATION_DRAINING));

 try
 {
 if (!NT_SUCCESS(Data->IoStatus.Status) ||
 (Data->IoStatus.Information == 0))
 {

 LOG_PRINT(LOGFL_READ,
 ("spibedrv!SwapPostReadBuffers: %wZ newB=%p No
data read, status=%x, info=%Iu\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Status,
 Data->IoStatus.Information));

 leave;
 }

 if (iopb->Parameters.Read.MdlAddress != NULL)
 {
 FLT_ASSERT(((PMDL)iopb->Parameters.Read.MdlAddress)->Next ==
NULL);

 origBuf = MmGetSystemAddressForMdlSafe(iopb-
>Parameters.Read.MdlAddress,
 NormalPagePriority | MdlMappingNoExecute);

 if (origBuf == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostReadBuffers: %wZ
Failed to get system address for MDL: %p\n",
 &p2pCtx->VolCtx->Name,
 iopb->Parameters.Read.MdlAddress));

 Data->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
 Data->IoStatus.Information = 0;
 leave;
 }

 }
 else if (FlagOn(Data->Flags, FLTFL_CALLBACK_DATA_SYSTEM_BUFFER) ||
 FlagOn(Data->Flags, FLTFL_CALLBACK_DATA_FAST_IO_OPERATION))
 {
 origBuf = iopb->Parameters.Read.ReadBuffer;
 }
 else
 {
 if (FltDoCompletionProcessingWhenSafe(Data,
 FltObjects,
 CompletionContext,
 Flags,
 SwapPostReadBuffersWhenSafe,
 &retValue))
 {
 cleanupAllocatedBuffer = FALSE;
 }
 else
 {

 199

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostReadBuffers: %wZ
Unable to post to a safe IRQL\n",
 &p2pCtx->VolCtx->Name));

 Data->IoStatus.Status = STATUS_UNSUCCESSFUL;
 Data->IoStatus.Information = 0;
 }

 leave;
 }

 try
 {
 XOrBuffer((p2pCtx->UnpackedCandy),
 Data->IoStatus.Information);

 RtlCopyMemory(origBuf,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Information);
 }
 except(EXCEPTION_EXECUTE_HANDLER)
 {
 Data->IoStatus.Status = GetExceptionCode();
 Data->IoStatus.Information = 0;

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostReadBuffers: %wZ Invalid
user buffer, oldB=%p, status=%x\n",
 &p2pCtx->VolCtx->Name,
 origBuf,
 Data->IoStatus.Status));
 }

 }
 finally
 {
 if (cleanupAllocatedBuffer)
 {
 LOG_PRINT(LOGFL_READ,
 ("spibedrv!SwapPostReadBuffers: %wZ newB=%p
info=%Iu Freeing\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Information));

 FltFreePoolAlignedWithTag(FltObjects->Instance,
 p2pCtx->UnpackedCandy,
 BUFFER_SWAP_TAG);

 FltReleaseContext(p2pCtx->VolCtx);

 ExFreeToNPagedLookasideList(&Pre2PostContextList,
 p2pCtx);
 }
 }
 return retValue;
}

FLT_POSTOP_CALLBACK_STATUS
SwapPostReadBuffersWhenSafe(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
)
{
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;

 200

 PPRE_2_POST_CONTEXT p2pCtx = CompletionContext;
 PVOID origBuf;
 NTSTATUS status;

 UNREFERENCED_PARAMETER(FltObjects);
 UNREFERENCED_PARAMETER(Flags);
 FLT_ASSERT(Data->IoStatus.Information != 0);

 status = FltLockUserBuffer(Data);

 if (!NT_SUCCESS(status))
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostReadBuffersWhenSafe: %wZ Could not lock
user buffer, oldB=%p, status=%x\n",
 &p2pCtx->VolCtx->Name,
 iopb->Parameters.Read.ReadBuffer,
 status));

 Data->IoStatus.Status = status;
 Data->IoStatus.Information = 0;
 }
 else
 {
 origBuf = MmGetSystemAddressForMdlSafe(iopb-
>Parameters.Read.MdlAddress,
 NormalPagePriority | MdlMappingNoExecute);

 if (origBuf == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostReadBuffersWhenSafe: %wZ Failed to
get system address for MDL: %p\n",
 &p2pCtx->VolCtx->Name,
 iopb->Parameters.Read.MdlAddress));

 Data->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
 Data->IoStatus.Information = 0;
 }
 else
 {
 XOrBuffer(p2pCtx->UnpackedCandy,
 Data->IoStatus.Information);

 RtlCopyMemory(origBuf,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Information);
 }
 }

 LOG_PRINT(LOGFL_READ,
 ("spibedrv!SwapPostReadBuffersWhenSafe: %wZ newB=%p info=%Iu
Freeing\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Information));

 FltFreePoolAlignedWithTag(FltObjects->Instance,
 p2pCtx->UnpackedCandy,
 BUFFER_SWAP_TAG);

 FltReleaseContext(p2pCtx->VolCtx);

 ExFreeToNPagedLookasideList(&Pre2PostContextList,
 p2pCtx);

 return FLT_POSTOP_FINISHED_PROCESSING;
}

 201

FLT_PREOP_CALLBACK_STATUS
SwapPreDirCtrlBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 _Flt_CompletionContext_Outptr_ PVOID *CompletionContext
)
{
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;
 FLT_PREOP_CALLBACK_STATUS retValue = FLT_PREOP_SUCCESS_NO_CALLBACK;
 PVOID newBuf = NULL;
 PMDL newMdl = NULL;
 PVOLUME_CONTEXT volCtx = NULL;
 PPRE_2_POST_CONTEXT p2pCtx;
 NTSTATUS status;

 try
 {
 if (iopb->Parameters.DirectoryControl.QueryDirectory.Length == 0)
 {

 leave;
 }

 status = FltGetVolumeContext(FltObjects->Filter,
 FltObjects->Volume,
 &volCtx);

 if (!NT_SUCCESS(status))
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreDirCtrlBuffers: Error getting
volume context, status=%x\n",
 status));

 leave;
 }

 newBuf = ExAllocatePoolWithTag(NonPagedPool,
 iopb->Parameters.DirectoryControl.QueryDirectory.Length,
 BUFFER_SWAP_TAG);

 if (newBuf == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreDirCtrlBuffers: %wZ Failed to
allocate %d bytes of memory.\n",
 &volCtx->Name,
 iopb-
>Parameters.DirectoryControl.QueryDirectory.Length));

 leave;
 }

 RtlZeroMemory(newBuf, iopb-
>Parameters.DirectoryControl.QueryDirectory.Length);

 newMdl = IoAllocateMdl(newBuf,
 iopb->Parameters.DirectoryControl.QueryDirectory.Length,
 FALSE,
 FALSE,
 NULL);

 if (newMdl == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,

 202

 ("spibedrv!SwapPreDirCtrlBuffers: %wZ Failed to
allocate MDL.\n",
 &volCtx->Name));

 leave;
 }

 MmBuildMdlForNonPagedPool(newMdl);

 p2pCtx = ExAllocateFromNPagedLookasideList(&Pre2PostContextList);

 if (p2pCtx == NULL)
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreDirCtrlBuffers: %wZ Failed to
allocate pre2Post context structure\n",
 &volCtx->Name));

 leave;
 }

 LOG_PRINT(LOGFL_DIRCTRL,
 ("spibedrv!SwapPreDirCtrlBuffers: %wZ newB=%p newMdl=%p
oldB=%p oldMdl=%p len=%d\n",
 &volCtx->Name,
 newBuf,
 newMdl,
 iopb-
>Parameters.DirectoryControl.QueryDirectory.DirectoryBuffer,
 iopb-
>Parameters.DirectoryControl.QueryDirectory.MdlAddress,
 iopb->Parameters.DirectoryControl.QueryDirectory.Length));

 iopb->Parameters.DirectoryControl.QueryDirectory.DirectoryBuffer =
newBuf;
 iopb->Parameters.DirectoryControl.QueryDirectory.MdlAddress = newMdl;
 FltSetCallbackDataDirty(Data);

 p2pCtx->UnpackedCandy = newBuf;
 p2pCtx->VolCtx = volCtx;

 *CompletionContext = p2pCtx;

 retValue = FLT_PREOP_SUCCESS_WITH_CALLBACK;

 }
 finally
 {
 if (retValue != FLT_PREOP_SUCCESS_WITH_CALLBACK)
 {
 if (newBuf != NULL)
 {

 ExFreePool(newBuf);
 }

 if (newMdl != NULL)
 {

 IoFreeMdl(newMdl);
 }

 if (volCtx != NULL)
 {

 FltReleaseContext(volCtx);

 203

 }
 }
 }

 return retValue;
}

FLT_POSTOP_CALLBACK_STATUS
SwapPostDirCtrlBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
)

{
 PVOID origBuf;
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;
 FLT_POSTOP_CALLBACK_STATUS retValue = FLT_POSTOP_FINISHED_PROCESSING;
 PPRE_2_POST_CONTEXT p2pCtx = CompletionContext;
 BOOLEAN cleanupAllocatedBuffer = TRUE;

 FLT_ASSERT(!FlagOn(Flags, FLTFL_POST_OPERATION_DRAINING));

 try
 {
 if (!NT_SUCCESS(Data->IoStatus.Status) ||
 (Data->IoStatus.Information == 0))
 {

 LOG_PRINT(LOGFL_DIRCTRL,
 ("spibedrv!SwapPostDirCtrlBuffers: %wZ newB=%p No
data read, status=%x, info=%Ix\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Status,
 Data->IoStatus.Information));

 leave;
 }

 if (iopb->Parameters.DirectoryControl.QueryDirectory.MdlAddress !=
NULL)
 {
 origBuf = MmGetSystemAddressForMdlSafe(iopb-
>Parameters.DirectoryControl.QueryDirectory.MdlAddress,
 NormalPagePriority | MdlMappingNoExecute);

 if (origBuf == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostDirCtrlBuffers: %wZ
Failed to get system address for MDL: %p\n",
 &p2pCtx->VolCtx->Name,
 iopb-
>Parameters.DirectoryControl.QueryDirectory.MdlAddress));

 Data->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
 Data->IoStatus.Information = 0;
 leave;
 }

 }
 else if (FlagOn(Data->Flags, FLTFL_CALLBACK_DATA_SYSTEM_BUFFER) ||
 FlagOn(Data->Flags, FLTFL_CALLBACK_DATA_FAST_IO_OPERATION))
 {
 origBuf = iopb-

 204

>Parameters.DirectoryControl.QueryDirectory.DirectoryBuffer;
 }
 else
 {
 if (FltDoCompletionProcessingWhenSafe(Data,
 FltObjects,
 CompletionContext,
 Flags,
 SwapPostDirCtrlBuffersWhenSafe,
 &retValue))
 {
 cleanupAllocatedBuffer = FALSE;
 }
 else
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostDirCtrlBuffers: %wZ
Unable to post to a safe IRQL\n",
 &p2pCtx->VolCtx->Name));

 Data->IoStatus.Status = STATUS_UNSUCCESSFUL;
 Data->IoStatus.Information = 0;
 }

 leave;
 }

 try
 {

 RtlCopyMemory(origBuf,
 p2pCtx->UnpackedCandy,
 /*Data->IoStatus.Information*/
 iopb->Parameters.DirectoryControl.QueryDirectory.Length);

 }
 except(EXCEPTION_EXECUTE_HANDLER)
 {
 Data->IoStatus.Status = GetExceptionCode();
 Data->IoStatus.Information = 0;

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostDirCtrlBuffers: %wZ Invalid
user buffer, oldB=%p, status=%x, info=%Iu\n",
 &p2pCtx->VolCtx->Name,
 origBuf,
 Data->IoStatus.Status,
 Data->IoStatus.Information));
 }
 }
 finally
 {
 if (cleanupAllocatedBuffer)
 {
 LOG_PRINT(LOGFL_DIRCTRL,
 ("spibedrv!SwapPostDirCtrlBuffers: %wZ newB=%p
info=%Iu Freeing\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Information));

 ExFreePool(p2pCtx->UnpackedCandy);
 FltReleaseContext(p2pCtx->VolCtx);

 ExFreeToNPagedLookasideList(&Pre2PostContextList,
 p2pCtx);
 }
 }

 205

 return retValue;
}

FLT_POSTOP_CALLBACK_STATUS
SwapPostDirCtrlBuffersWhenSafe(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
)
{
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;
 PPRE_2_POST_CONTEXT p2pCtx = CompletionContext;
 PVOID origBuf;
 NTSTATUS status;

 UNREFERENCED_PARAMETER(FltObjects);
 UNREFERENCED_PARAMETER(Flags);
 FLT_ASSERT(Data->IoStatus.Information != 0);

 status = FltLockUserBuffer(Data);

 if (!NT_SUCCESS(status))
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostDirCtrlBuffersWhenSafe: %wZ Could not lock
user buffer, oldB=%p, status=%x\n",
 &p2pCtx->VolCtx->Name,
 iopb-
>Parameters.DirectoryControl.QueryDirectory.DirectoryBuffer,
 status));

 Data->IoStatus.Status = status;
 Data->IoStatus.Information = 0;
 }
 else
 {
 origBuf = MmGetSystemAddressForMdlSafe(iopb-
>Parameters.DirectoryControl.QueryDirectory.MdlAddress,
 NormalPagePriority | MdlMappingNoExecute);

 if (origBuf == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPostDirCtrlBuffersWhenSafe: %wZ Failed to
get System address for MDL: %p\n",
 &p2pCtx->VolCtx->Name,
 iopb-
>Parameters.DirectoryControl.QueryDirectory.MdlAddress));

 Data->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
 Data->IoStatus.Information = 0;
 }
 else
 {
 RtlCopyMemory(origBuf,
 p2pCtx->UnpackedCandy,
 /*Data->IoStatus.Information*/
 iopb->Parameters.DirectoryControl.QueryDirectory.Length);
 }
 }

 LOG_PRINT(LOGFL_DIRCTRL,
 ("spibedrv!SwapPostDirCtrlBuffersWhenSafe: %wZ newB=%p info=%Iu
Freeing\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,

 206

 Data->IoStatus.Information));

 ExFreePool(p2pCtx->UnpackedCandy);
 FltReleaseContext(p2pCtx->VolCtx);

 ExFreeToNPagedLookasideList(&Pre2PostContextList,
 p2pCtx);

 return FLT_POSTOP_FINISHED_PROCESSING;
}

FLT_PREOP_CALLBACK_STATUS
SwapPreWriteBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 _Flt_CompletionContext_Outptr_ PVOID *CompletionContext
)
{
 PFLT_IO_PARAMETER_BLOCK iopb = Data->Iopb;
 FLT_PREOP_CALLBACK_STATUS retValue = FLT_PREOP_SUCCESS_NO_CALLBACK;
 PVOID newBuf = NULL;
 PMDL newMdl = NULL;
 PVOLUME_CONTEXT volCtx = NULL;
 PPRE_2_POST_CONTEXT p2pCtx;
 PVOID origBuf;
 NTSTATUS status;
 ULONG writeLen = iopb->Parameters.Write.Length;

 try
 {
 if (writeLen == 0)
 {
 leave;
 }

 status = FltGetVolumeContext(FltObjects->Filter,
 FltObjects->Volume,
 &volCtx);

 if (!NT_SUCCESS(status))
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreWriteBuffers: Error getting
volume context, status=%x\n",
 status));

 leave;
 }

 if (FlagOn(IRP_NOCACHE, iopb->IrpFlags))
 {
 writeLen = (ULONG)ROUND_TO_SIZE(writeLen, volCtx->SectorSize);
 }

 newBuf = FltAllocatePoolAlignedWithTag(FltObjects->Instance,
 NonPagedPool,
 (SIZE_T)writeLen,
 BUFFER_SWAP_TAG);

 if (newBuf == NULL)
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreWriteBuffers: %wZ Failed to
allocate %d bytes of memory.\n",
 &volCtx->Name,
 writeLen));

 207

 leave;
 }

 if (FlagOn(Data->Flags, FLTFL_CALLBACK_DATA_IRP_OPERATION))
 {
 newMdl = IoAllocateMdl(newBuf,
 writeLen,
 FALSE,
 FALSE,
 NULL);

 if (newMdl == NULL)
 {

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreWriteBuffers: %wZ
Failed to allocate MDL.\n",
 &volCtx->Name));

 leave;
 }
 MmBuildMdlForNonPagedPool(newMdl);
 }

 if (iopb->Parameters.Write.MdlAddress != NULL)
 {
 FLT_ASSERT(((PMDL)iopb->Parameters.Write.MdlAddress)->Next ==
NULL);

 origBuf = MmGetSystemAddressForMdlSafe(iopb-
>Parameters.Write.MdlAddress,
 NormalPagePriority | MdlMappingNoExecute);

 if (origBuf == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreWriteBuffers: %wZ
Failed to get system address for MDL: %p\n",
 &volCtx->Name,
 iopb->Parameters.Write.MdlAddress));

 Data->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES;
 Data->IoStatus.Information = 0;
 retValue = FLT_PREOP_COMPLETE;
 leave;
 }
 }
 else
 {
 origBuf = iopb->Parameters.Write.WriteBuffer;
 }

 try
 {
 RtlCopyMemory(newBuf,
 origBuf,
 writeLen);
 XOrBuffer(newBuf, writeLen);
 }
 except(EXCEPTION_EXECUTE_HANDLER)
 {
 Data->IoStatus.Status = GetExceptionCode();
 Data->IoStatus.Information = 0;
 retValue = FLT_PREOP_COMPLETE;

 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreWriteBuffers: %wZ Invalid

 208

user buffer, oldB=%p, status=%x\n",
 &volCtx->Name,
 origBuf,
 Data->IoStatus.Status));

 leave;
 }

 p2pCtx = ExAllocateFromNPagedLookasideList(&Pre2PostContextList);

 if (p2pCtx == NULL)
 {
 LOG_PRINT(LOGFL_ERRORS,
 ("spibedrv!SwapPreWriteBuffers: %wZ Failed to
allocate pre2Post context structure\n",
 &volCtx->Name));

 leave;
 }

 LOG_PRINT(LOGFL_WRITE,
 ("spibedrv!SwapPreWriteBuffers: %wZ newB=%p newMdl=%p
oldB=%p oldMdl=%p len=%d\n",
 &volCtx->Name,
 newBuf,
 newMdl,
 iopb->Parameters.Write.WriteBuffer,
 iopb->Parameters.Write.MdlAddress,
 writeLen));

 iopb->Parameters.Write.WriteBuffer = newBuf;
 iopb->Parameters.Write.MdlAddress = newMdl;
 FltSetCallbackDataDirty(Data);

 p2pCtx->UnpackedCandy = newBuf;
 p2pCtx->VolCtx = volCtx;

 *CompletionContext = p2pCtx;

 retValue = FLT_PREOP_SUCCESS_WITH_CALLBACK;
 }
 finally
 {
 if (retValue != FLT_PREOP_SUCCESS_WITH_CALLBACK)
 {

 if (newBuf != NULL)
 {

 FltFreePoolAlignedWithTag(FltObjects->Instance,
 newBuf,
 BUFFER_SWAP_TAG);

 }

 if (newMdl != NULL)
 {

 IoFreeMdl(newMdl);
 }

 if (volCtx != NULL)
 {

 FltReleaseContext(volCtx);
 }
 }

 209

 }

 return retValue;
}

FLT_POSTOP_CALLBACK_STATUS
SwapPostWriteBuffers(
 Inout PFLT_CALLBACK_DATA Data,
 In PCFLT_RELATED_OBJECTS FltObjects,
 In PVOID CompletionContext,
 In FLT_POST_OPERATION_FLAGS Flags
)
{
 PPRE_2_POST_CONTEXT p2pCtx = CompletionContext;

 UNREFERENCED_PARAMETER(FltObjects);
 UNREFERENCED_PARAMETER(Flags);

 LOG_PRINT(LOGFL_WRITE,
 ("spibedrv!SwapPostWriteBuffers: %wZ newB=%p info=%Iu
Freeing\n",
 &p2pCtx->VolCtx->Name,
 p2pCtx->UnpackedCandy,
 Data->IoStatus.Information));

 FltFreePoolAlignedWithTag(FltObjects->Instance,
 p2pCtx->UnpackedCandy,
 BUFFER_SWAP_TAG);

 FltReleaseContext(p2pCtx->VolCtx);

 ExFreeToNPagedLookasideList(&Pre2PostContextList,
 p2pCtx);

 return FLT_POSTOP_FINISHED_PROCESSING;
}

VOID
ReadDriverParameters(
 In PUNICODE_STRING RegistryPath
)
{
 OBJECT_ATTRIBUTES attributes;
 HANDLE driverRegKey;
 NTSTATUS status;
 ULONG resultLength;
 UNICODE_STRING valueName;
 UCHAR buffer[sizeof(KEY_VALUE_PARTIAL_INFORMATION) + sizeof(LONG)];

 if (0 == LoggingFlags)
 {
 InitializeObjectAttributes(&attributes,
 RegistryPath,
 OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
 NULL,
 NULL);

 status = ZwOpenKey(&driverRegKey,
 KEY_READ,
 &attributes);

 if (!NT_SUCCESS(status))
 {

 210

 return;
 }

 RtlInitUnicodeString(&valueName, L"DebugFlags");

 status = ZwQueryValueKey(driverRegKey,
 &valueName,
 KeyValuePartialInformation,
 buffer,
 sizeof(buffer),
 &resultLength);

 if (NT_SUCCESS(status))
 {

 LoggingFlags = *((PULONG)
&(((PKEY_VALUE_PARTIAL_INFORMATION)buffer)->Data));
 }

 ZwClose(driverRegKey);
 }
}

 211

APPENDIX KK OOXML STICKY POLICY HANDLER
EVALUATION – SPIBEDRV\SPIBEDRV.INF

	
[Version]
signature = "$Windows NT$"
Class = "Encryption"
ClassGuid = {46b682d4-a96f-409b-b450-f56d3a6f703b}
Provider = %ProviderString%
DriverVer = 04/08/2018,1.0.0.0
CatalogFile = spibedrv.cat

[DestinationDirs]
DefaultDestDir = 12
MiniFilter.DriverFiles = 12 ;%windir%\system32\drivers

[DefaultInstall]
OptionDesc = %ServiceDescription%
CopyFiles = MiniFilter.DriverFiles

[DefaultInstall.Services]
AddService = %ServiceName%,,MiniFilter.Service

[DefaultUninstall]
DelFiles = MiniFilter.DriverFiles
DelReg = MiniFilter.DelRegistry

[DefaultUninstall.Services]
DelService = spibedrv,0x200

[MiniFilter.Service]
DisplayName = %ServiceName%
Description = %ServiceDescription%
ServiceBinary = %12%\%DriverName%.sys ;%windir%\system32\drivers\
Dependencies = "FltMgr"
ServiceType = 2 ;SERVICE_FILE_SYSTEM_DRIVER
StartType = 0 ;SERVICE_BOOT_START
StartType = 3 ;SERVICE_DEMAND_START
ErrorControl = 1 ;SERVICE_ERROR_NORMAL
LoadOrderGroup = "FSFilter Encryption"
AddReg = MiniFilter.AddRegistry

[MiniFilter.AddRegistry]
HKR,,"SupportedFeatures",0x00010001,0x3
HKR,"Instances","DefaultInstance",0x00000000,%Instance1.Name%
HKR,"Instances\"%Instance1.Name%,"Altitude",0x00000000,%Instance1.Altitude%
HKR,"Instances\"%Instance1.Name%,"Flags",0x00010001,%Instance1.Flags%

[MiniFilter.DelRegistry]
HKR,,"SupportedFeatures",0x00010001,0x3
HKR,"Instances","DefaultInstance",0x00000000,%Instance1.Name%
HKR,"Instances\"%Instance1.Name%,"Altitude",0x00000000,%Instance1.Altitude%
HKR,"Instances\"%Instance1.Name%,"Flags",0x00010001,%Instance1.Flags%

[MiniFilter.DriverFiles]
%DriverName%.sys

[SourceDisksFiles]
spibedrv.sys = 1,,

[SourceDisksNames]
1 = %DiskId1%,,,

[Strings]
ProviderString = "Napier"
ServiceDescription = "Sticky Policy Identity-based Encryption Mini-Filter
Driver"

 212

ServiceName = "spibedrv"
DriverName = "spibedrv"
DiskId1 = "spibedrv Device Installation Disk"

Instance1.Name = "spibedrv Instance"
Instance1.Altitude = "141000"
Instance1.Flags = 0x0 ; allow automatic attachments
	

 213

APPENDIX LL OOXML MASTER DOCUMENT RENDERING

	

 214

APPENDIX MM OOXML MASTER DOCUMENT ACCESS CONTROL –
UNLOCKED

	

 215

APPENDIX NN OOXML MASTER DOCUMENT ACCESS CONTROL – EWA
EXPLICITLY PROTECTED OWN UPDATE

	

 216

APPENDIX OO OOXML MASTER DOCUMENT ACCESS CONTROL –
CURRENT DOCUMENT PROCESSOR WAS GRANTED READONLY RIGHTS
OVER ENTIRE CONTENT

	

