
 

 

 

 

 

The ecotoxicology of 

nanoparticles in Daphnia magna 

 

 

by 

Philipp Wilhelm Rosenkranz 
 

A thesis submitted in partial fulfilment of the requirements of Edinburgh Napier 

University for the degree of Doctor of Philosophy (PhD) 

July 2010 

EDINBURGH NAPIER UNIVERSITY 

EDINBURGH 

 



 ii

Declaration  
 
 
 
 

I declare that all the work presented in this thesis was undertaken by me. I 

also declare that this thesis was written by me and that the work contained 

herein is my own responsibility. One publication resulted from this project and 

was written in collaboration with Prof. Vicki Stone, Prof. Teresa Fernandes, and 

Dr. Qasim Chaudhry.  

 

 

 

 

 

 

 

 

 

Philipp Wilhelm Rosenkranz  

 

 

 

 

July 2010  



 iii 

Abstract 

Manufactured nanoparticles are increasingly being used in the production of 

consumer products and appliances. A release in the environment, either 

intended through remediation or unintended through a spill at production sites, 

through wastewater or product degradation, is most likely to occur. Due to their 

small size, nanoparticles have a far greater surface area to unit mass ratio than 

conventional substances, rendering them potentially more reactive. This project 

aims to obtain key data on the ecotoxicology of nanoparticles in the aquatic 

environment. Initially, data from acute and chronic toxicity tests were gathered 

by exposing the invertebrate Daphnia magna to nanoparticles of carbon black, 

cerium dioxide, silver and titanium dioxide. The endpoints were mortality, 

moulting frequency, growth and number of offspring. The results indicate that a 

gradient of toxicity can be drawn, with cerium dioxide being the least toxic, to 

silver being the most toxic. Also a size dependent increase of toxicity was 

observed, with exposures to nano sized particles being more toxic than micro 

sized particles. Uptake and fate of nano sized materials were studied by 

exposing D. magna to fluorescent polystyrene beads of 20 nm and 1000 nm 

sizes and the results were compared. Both particle sizes were readily taken up 

in the gut and relocated in storage droplets within the body of D. magna. A 

quantification of the results showed that the mass of 1000 nm sized particles 

taken up was higher at equal exposure concentrations than the 20 nm sized 

particle but the excretion rate was higher as well for the 1000 nm particles. 

However, when assessing uptake as surface area or particle number dose, 

uptake of 20 nm particles exceeds uptake of 1000 nm particles. To assess the 

effect of nanoparticles on oxidative stress, the total antioxidant capacity was 

measured as well as the glutathione concentration of exposed D. magna. A 

decrease in total glutathione in D. magna was detected due to exposure to nano 

sized carbon black, while measuring the total oxidant capacity proved to be 

impossible due to interferences with the method used. 

 

The results show that, when negative effects are observed, these are more 

severe in exposures to nanoparticles than their micro sized counterparts and 

furthermore a clear route of uptake of nanoparticles in the body of D. magna 

can be observed. 
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1. Introduction 

 

1.1 Definition of nanomaterials and their uses 

 

The word “nano” has its origin in the Greek language, meaning “dwarf” 

(Bergeron and Archambault, 2005) and is used today in the scientific 

community as a prefix for one billionth (Scientific Committee on Emerging and 

Newly-Identified Health Risks (SCENIHR), 2007). By this definition, a 

nanometre is 1X10-9 metre. A nanomaterial (NM) is a “material having one or 

more external dimensions in the nanoscale or which is nanostructured” (British 

Standards Institution (BSI), 2007), with nanoscale defined as a dimension of 

100 nm or less (Scientific Committee on Emerging and Newly-Identified Health 

Risks (SCENIHR), 2007). This definition incorporates nanosurfaces, 

nanosheets and many others. The nanorod, nanofibre and the nanotube can be 

described as subsets of nanomaterials. Here two dimensions are in the 

nanoscale. Lastly, nanoparticles have all three dimensions in the nanoscale 

(Borm et al., 2006, British Standards Institution (BSI), 2007, Scientific 

Committee on Emerging and Newly-Identified Health Risks (SCENIHR), 2007). 

 

Nanoparticles are not an invention of humanity as they are also widespread in 

nature. They are produced by volcanoes, as volcanic dust, by algae and natural 

burning processes such as wildfires (Department for Environment Food and 

Rural Affairs (DEFRA), 2005, Moore, 2006). Even evaporating sea water 

produces sea salt nanoparticles (European Commission Community Research, 

2005). Other classes of natural occurring nanoparticles are colloids or humic 

substances (Muirhead and Lead, 2003, Redwood et al., 2005). Humic 

substances are heterogeneous organic materials with a high molecular weight 

that are major constituents of soils and aquatic environments. They play a role 

in the binding and bioavailability of trace metals and trace organic pollutants 

because of their large surface area and strength of binding (Redwood et al., 

2005). Humic substances typically fall in the size range 1 nm to several hundred 

nm, depending on their source, concentration, solution conditions, extraction 

and analysis method (Redwood et al., 2005). 
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Although not from a natural source, nanomaterials can also appear as 

manmade pollution, for example as ultrafine particles (ultrafine = particle in air 

of aerodynamic diameter less than 100 nm (U.S. National Library of Medicine, 

2009)) emitted by diesel fuelled cars, in smelting processes of metals, heating 

of polymers or frying (Moore, 2006, Reijnders, 2006). Combustion-derived NPs 

have been the centre of much research focusing on their role in adverse effects 

on respiratory and cardiovascular health including both morbidity and mortality 

(Donaldson et al., 2005). 

 

According to the National Nanotechnology Initiative (National Nanotechnology 

Initiative, 2009), nanotechnology is defined as the understanding and control of 

matter at dimensions between approximately 1 and 100 nanometers. Although 

the term nanotechnology is modern, the usage of nanomaterials dates far back 

in history. One example is the Lycurgus cup that dates back to the 4th century 

AD (The British Museum, 2009). The opaque green cup turns to a glowing 

translucent red when light is shone through it due to colloidal gold and silver 

incorporated in the cup. The same phenomenon, light scattering by 

nanoparticles, is used in many cathedral and church windows, dating back to 

the 10th century (The Royal Society & The Royal Academy of Engineering, 

2004). 

 

Science became preoccupied with nanotechnology in the second half of the 20th 

century, according to several sources (Bergeron and Archambault, 2005, 

Hardman, 2006, Lauterwasser, 2005, Seaton and Donaldson, 2005), inspired 

by the talk “There’s plenty of room at the bottom” by the physicist Richard 

Feynman. The term nanotechnology itself was created by Norio Taniguchi of 

Tokyo University in 1974 (Lauterwasser, 2005). Other important milestones that 

enhanced the interest in nanotechnology were the invention of the scanning 

tunnelling microscope by Gerd Binnig and Heinrich Rohrer in 1982 (Binnig and 

Rohrer, 1982, Binnig et al., 1982), allowing imaging well in the nanoscale, the 

discovery of the buckyball (a C60 fullerene) in 1985 (Kroto et al., 1985), a new 

shape of carbon, and leading from that, the discovery of carbon nanotubes in 

1991 (Iijima, 1991)(It has to be mentioned here, that the topic of who 

synthesized the first carbon nanotubes is still under discussion although it is 

generally agreed that Iijima was the first to synthesize and correctly characterize a 
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carbon nanotube (Monthioux and Kuznetsov, 2006)). Since then new 

discoveries and applications for nanomaterials are widespread.  

 

Due to their small scale, there are physical and chemical differences between 

nanomaterials and their parent bulk material. For example, due to their small 

size, nanomaterials have a greater surface area per unit mass than their parent 

bulk material. This renders them more chemically reactive, since more of their 

surface is exposed to the environment, thus providing more sites for reactions 

per unit mass. In tandem with enhanced surface-area, effects that change the 

optical, electrical and magnetic behaviour of materials become more important 

at the nanoscale (Owen and Depledge, 2005).  

 

Due to their large surface area, nanoscale materials have also an improved 

catalytic effect when compared to their parent material (Zhang et al., 1998). 

Quantum dots can be modified through changing of the particle size, to emit 

light at different wavelengths and can therefore be used to replace dyes in 

biomedical applications (Chan et al., 2002). Carbon nanotubes are reported to 

be ten times stronger than steel and 1.2 times stiffer than diamond (Donaldson 

et al., 2006). 

 

Fullerenes and ultrafine (uf) carbon black, due to their high electron affinity, can 

produce, if oxygen is available, highly reactive oxygen radicals through electron 

transfer, like the superoxide anion (Koike and Kobayashi, 2006, Sayes et al., 

2004, Wilson et al., 2002). Nevertheless, further studies suggest that C60 

fullerenes, due to their thirty carbon π-bonds can also react with free radicals 

and so be an efficient free- radical scavenger (Gharbi et al., 2005). 

 

An early estimate indicated that nanotechnology is anticipated to revolutionise 

product development and manufacture that could contribute up to one trillion US 

dollars to the worldwide economy by 2015 (Roco, 2001). 

 

A number of nanomaterials have already found their way into consumer 

products, such as TiO2 in paints (Tran et al., 2005), cosmetic formulations 

(Reijnders, 2006), self-clean glass (Bergeron and Archambault, 2005), and ZnO 

in sunscreen lotions (Reijnders, 2006). Many other applications are currently 
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being developed, such as for targeted drug delivery, gene therapy, stain 

resistant coatings, industrial lubricants, advanced tyres and semiconductors. 

There are also some more ambitious uses of nanomaterials, such as in 

bioremediation of polluted environments, which involves their deliberate release 

into the environment (Boxall et al., 2007, Zhang, 2003).  

 

Some of the nanoparticles widely used, like nano sized carbon black or oxides 

of titanium, alumina, zirconium or fumed silica have been in mass production for 

over half a century for a series of applications, ranging from use in pigments 

and rubber products to cosmetics and as the basis for fine polishing powders 

used in the microelectronics industry (Borm et al., 2006).  

 

An important application of nanoparticles is in the area of cosmetics. Two 

significant nanoparticles used for this purpose are TiO2 and ZnO (Royal 

Commission on Environmental Pollution, 2008). Their main function is to 

provide UV protection without the whitening effect of non nanoscale 

substances. Nanoparticles of aluminium, fullerenes, silver and silicon, among 

many others, are also widely used today in the cosmetic industry (Miller et al., 

2006). 

 

Fullerenes have also been the focus of many scientific studies (Brant et al., 

2005, Gharbi et al., 2005, Nakamura and Isobe, 2003, Samal and Geckeler, 

2000, Thompson et al., 2001). Fullerenes are carbon based molecules with a 

different molecular configuration than diamond or carbon black. Their chemical 

composition resembles that of graphite but they are composed of pentagonal 

instead of hexagonal rings (Sayes et al., 2004), making it a three dimensional 

structure. This class of molecules, as already mentioned earlier, were 

discovered in 1985 and earned their discoverers, Kroto, Curl, and Smalley, the 

Nobel Prize of Chemistry in 1996. Fullerenes have a potentially broad range of 

applications, foremost in pharmaceuticals, as a drug delivery vehicle (Nakamura 

and Isobe, 2003) but also as lubricants (Whatmore, 2005) or semiconductors 

(Hood, 2004). Carbon nanotubes due to their stability and their excellent 

electrical conductivity have been used in the manufacture of reinforced 

composites, sensors, nanoelectronics and display devices (The Royal Society & 

The Royal Academy of Engineering, 2004).  
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TiO2 (induced by UV light) and silver, as bulk materials possess antibacterial 

properties, which are enhanced when the materials are used at the nanoscale 

(Lee et al., 2003). This leads to an array of applications, from washing 

machines (Samsung, 2003), to socks that give anti-microbial protection, 

preventing bacteria and fungus that cause itchiness and odour (JR Nanotech, 

2003). Further applications of silver nanoparticles will be discussed in chapter 3. 

 

1.2 Toxicity of nanomaterials 

 

The evidence from the toxicological studies carried out so far suggest that NPs 

can penetrate through cellular barriers (Geiser et al., 2005, Oberdörster et al., 

2005, Tran et al., 2005), and so could reach different areas within a cell or 

organism when compared with larger particles. In in vitro tests, NPs have been 

demonstrated to increase production of highly damaging reactive oxygen 

species (Stone et al., 1998) that can lead to oxidative stress (Stone et al., 1998) 

and inflammation (Brown et al., 2001). This may result in the intensification of 

certain pre-existing ailments such as asthma and cardiovascular diseases 

(Brown et al., 2001). 

 

The two main nanoparticles used in the cosmetic industry, ZnO and TiO2, are 

thought not to be able to penetrate healthy skin deep enough to pose a danger 

to human health (Cross et al., 2007), Gamer et al., 2006). It was stated that the 

particles were limited to the outer stratum corneum, and were not able to 

penetrate to the epidermis or dermis of porcine skin (Gamer et al., 2006). Using 

in vitro human epidermal membrane it has been shown, that ZnO causes 

oxidative stress, cytotoxicity and DNA damage to human epidermal cells even 

at low concentrations (Sharma et al., 2009). Although the skin presents a good 

physical barrier to penetration of nanoparticles in humans with healthy skin, 

people with skin diseases like eczema could still be vulnerable to increased 

particle uptake and, as a consequence, to absorption and toxicity (Royal 

Commission on Environmental Pollution, 2008). Another possible gateway of 

uptake of nanoparticles is through hair follicles. A study showed that uptake of a 

dye in the hair follicles of porcine and human skin was greater when the dye 

was incorporated in particles near the nano size (320 nm) than the dye in non- 
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particle form (Lademann et al., 2007). Although the same report stated that 

massage was needed in order to reach a significantly higher uptake of the 

particulate dye compared to the non- particle form. Furthermore, the particle 

form of dye could still be detected within the hair follicles at 10 days after 

exposure, while the non-particle dye could only be detected at times of up to 4 

days. The study states that by selecting the correct size of particles as drug 

carriers, an efficient selective drug delivery and storage in the hair follicles is 

possible.  

 

It has been reported that elevated concentrations of air pollution ultrafine 

particles (primary particle diameter less than 100 nm) can increase morbidity 

and mortality arising from pulmonary and cardiovascular causes, with both long 

term and short term effects (Peters et al., 1997). Exposures to nano sized TiO2 

via inhalation resulted in a higher tendency to cause inflammation in rat lungs 

when compared with exposures to fine particulate TiO2 (Ferin et al., 1992). 

Furthermore, a study using polystyrene beads as model particles (Brown et al., 

2001) has also demonstrated that a material with low toxicity can be toxic or 

bioreactive, when used in the nanoscale due to a much increased surface area. 

Comparable results have also been obtained in experiments with nanoscale 

carbon black (Koike and Kobayashi, 2006) and nickel (Zhang, 2003). 

 

A different aspect is added by the exposure to carbon nanotubes (CNT). As 

NMs they could show enhanced toxicity when compared with larger particles. 

Nevertheless, they are also fibre shaped and could therefore behave like 

pathogenic fibres such as asbestos and cause toxicity associated with their 

needle-like shape (Donaldson et al., 2006). The length and type of the CNT can 

play a role in their toxicity. Bundled CNT are more likely to be treated by 

organisms or cells like larger materials and CNTs with lengths of more than 10-

20 µm can pose a problem for alveolar macrophages by preventing clearance 

from tissue and causing continual activation of the macrophages leading to 

chronic inflammation as well as an accumulation of fibres due to a lack of 

sufficient clearance (Donaldson et al., 2006). A further study showed that long, 

multi walled CNTs showed pathogenic fibre like behaviour in mouse peritoneal 

(abdominal) mesothelial exposures, in contrast to, short and tangled multi-

walled CNTs that did not show such behaviour (Poland et al., 2008). Exposure 
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of human keratinocytes to carbon nanotubes was associated with oxidative 

stress and apoptosis (Shvedova et al., 2003) and recent toxicity studies on 

nanotubes using mouse models suggested that workers exposed at the current 

permissible exposure level may be at risk of developing pulmonary fibrosis (Lin 

and Datar, 2006, Shvedova et al., 2005). 

 

Here, in contrast, some studies have reported that there are also findings 

reported that discovered no cytotoxicity on cell cultures resulting from 

exposures to fullerenes (Levi et al., 2006) or to single wall carbon nanotubes 

(Wörle-Knirsch et al., 2006). Levi et al. (2006) concluded that a different mode 

of exposure might be responsible for those results. In the study of Levi et al. 

(2006) the pristine fullerenes were solubilised in methanol and plated on petri 

dishes before cells were introduced. Wörle-Knirsch et al. (2006) report 

interference of the CNTs with reagents used in the MTT assay, a common 

assay for cytotoxicity, and false positive effects due to that interference. Also 

impurities of nickel and iron in samples of carbon nanotubes were, according to 

this article, responsible for the observed toxicity. Both articles show that there is 

a great need for standardizing methods to make results comparable. 

 

In section 1.1 of this chapter it was mentioned that nanomaterials have a 

relatively larger surface-area-to-mass ratio than their bulk material. Due to 

that, they can become more chemically reactive (Lauterwasser, 2005). Duffin 

et al. (2002) showed that by using an instillation model on acute inflammatory 

response of rats to low-toxicity poorly soluble particles (PSP) like titanium 

dioxide, carbon black or polystyrene that the acute inflammatory response can 

be attributed to their large surface area. Metal particles, like cobalt and nickel 

in nanoparticle form, also with a high surface area, were more 

inflammogenic on a mass dose basis.  This study therefore suggests that the 

surface reactivity of such particles is a function of both their surface area and 

surface reactivity. 

 

A higher surface area with more particles exposed on the surface and able to 

react, changes also the surface chemistry and surface charge. The charge at 

the surface influences how the substance will interact with other substances, for 
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example in which solvents it will dissolve (Royal Commission on Environmental 

Pollution, 2008). Surface charge also affects whether particles will remain 

dispersed or will aggregate and agglomerate in a specific medium (Royal 

Commission on Environmental Pollution, 2008). An aggregate is a cluster of 

particles held together by strong chemical bonds, while agglomerates are ruled 

by weaker forces, like hydrogen bonds or van der Waals forces and are defined 

as loose accumulations (Schulze Isfort and Rochnia, 2009). Aggregation and 

agglomeration processes play a role in the transport of the material in the 

environment (Boxall et al., 2007). Aggregation leads to the formation of larger 

particles which can get more easily trapped in soil or eliminated through 

sedimentation (Nowack and Bucheli, 2007). The sedimentation can lead in the 

aquatic environment to an elevated exposure of bottom feeding organism or 

that the larger particles appear in the prey pattern of animals feeding in the 

water column. On the other hand, aggregated particles can encounter 

surfactants in the water that might promote particle disaggregation and 

dispersion of nanoparticles in the environment (Tran et al., 2005). These 

surfactants could be manmade, like tensides in wastewater, or natural like 

humic and fulvic substances. Interactions of NMs with these compounds can 

influence bioavailability, mobility in the environment and toxicity due to 

availability to organisms or physical chemical modifications of NMs. 

 

1.3 The ecology of Daphnia magna and their role in 

toxicity testing 

 

Aquatic organisms are widely used in toxicity testing for a variety of reasons. 

Firstly, the aquatic environment is the ultimate sink for any chemicals which end 

up in the environment (van der Oost et al., 2003). Secondly, organisms can 

highlight effects which may not be detectable using standard chemical 

techniques. Thirdly, current risk assessment techniques require the deployment 

of standard assays and species for the detection of hazard in relation to specific 

scenarios (U.S. Environmental Protection Agency (EPA), 2002a). Often 

standard toxicity tests are also more cost effective than analytical methods that 

need to isolate the single compounds and give a quick answer that directly 

relates to the environment. Standard aquatic toxicity tests can be divided into 
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acute and chronic tests. Acute tests focus on one application or exposure, are 

short term tests and mostly have mortality as the endpoint. They can be divided 

into static, non renewable tests, static renewable and flow through tests (U.S. 

Environmental Protection Agency (EPA), 2002a). Static non-renewable tests 

are the simplest ones; the test water is not renewed over the test period. They 

are very cost effective, but are the least realistic and sensitive tests. 

 

Chronic tests simulate several, or a continuous, application and cover a 

substantial part of the organisms’ life cycle. They can have different endpoints 

that are affected by sublethal concentrations of the contaminant.  

 

Furthermore, volatilisation, degradation and/or adsorption of the toxicant to the 

exposure vessel have to be taken into consideration (U.S. Environmental 

Protection Agency (EPA), 2002a). With respect to nanomaterials, sedimentation 

would play a major role in such studies. In the static renewal test, test 

organisms are exposed to a fresh solution of the same concentration of test 

sample at a defined time interval, either by transferring the test organisms from 

one test chamber to another, or by replacing all or a portion of solution in the 

test chambers. The risk of volatilisation and degradation is reduced in this 

method but it is still existent. The organisms are often fed in these tests to keep 

them in a healthier state (U.S. Environmental Protection Agency (EPA), 2002a). 

The most accurate method to ensure that the concentration of a pollutant, or 

effluent, is kept at the required level is the flow-through method. Here the test 

chambers are provided continuously with the solution or suspension to be 

tested to keep the concentrations stable. The estimate of the toxicity is more 

representative than in the other methods and volatilisation, degradation, 

adsorption to the exposure chamber walls and sedimentation are minimal. The 

downside of the flow-through method is that it is very labour intensive and 

requires large amounts of test solution. The method deployed in this study was 

a static renewal test, with a renewal period of the particle dispersed in water of 

24 hours. This provided an acceptable trade off between labour intensity, 

feasibility in laboratory work and simulating possible natural occurrences.  

 

There are several standard toxicity testing methods developed for a range of 

test species (Organisation for Economic Co-operation and Development 
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(OECD), 2006, U.S. Environmental Protection Agency (EPA), 2002a). The most 

prominent are the cladocerans Daphnia magna and Ceriodaphnia dubia, the 

freshwater fish Pimephales promelas (Fathead minnow) and Oncorhynchus 

mykiss (Rainbow trout), the midge Chironomus tentans, oligochaete like 

Lumbriculus variegatus, several marine and freshwater amphipods and the 

freshwater green algae Pseudokirchneriella subcapitata (formerly Selenastrum 

capricornutum). They are used, depending on their life cycle and habitat, for 

different types of toxicity tests. There are different protocols for testing 

pollutants in the water column and attached to the sediment, for freshwater as 

well as for saltwater (Organisation for Economic Co-operation and Development 

(OECD), 2006, U.S. Environmental Protection Agency (EPA), 2000, U.S. 

Environmental Protection Agency (EPA), 2002a, U.S. Environmental Protection 

Agency (EPA), 2002b). Cladocerans and the fish Pimephales promelas are 

fresh water organisms and live in the water column. They, as well as algae, are 

suitable for use in water toxicity tests, while amphipods, Lumbriculus and the 

midge Chironomus tentans in the larval stage live within or close proximity to 

the sediment and so are mostly used in sediment toxicity tests. 

 

The cladoceran Daphnia magna, on which this study has concentrated, is a well 

studied planktonic invertebrate. As a member of the phylum Arthropoda, D. 

magna shares with all other members of this phylum an exoskeleton, jointed 

limbs and a hemocoel as primary internal cavity. The hemocoel accommodates 

their internal organs and has an open circulatory blood or hemolymph system 

(Ruppert et al., 2004). The exoskeleton forces members of the phylum 

Arthropoda to moult, shedding the old exoskeleton in favour of a new one, in 

order to grow (Rupert et al., 2004). D. magna belongs to the subphylum 

Crustacea. Crustaceans main differences to other Arthropods are the presence 

of a nauplius larvae, although often suppressed in favour of a more advanced 

larvae at the hatching stage (Rupert et al., 2004), and biramous (splitted) limps 

(Hejnol and Scholtz, 2004). The members of the class Branchiopoda and the 

subclass Cladocera share a two-valved carapace covering most of the body 

except the appendages. All Cladocerans have an unpaired compound eye 

which is the result of a fusion of two eyes in the late embryonic development 

(Ebert, 2005). An also unpaired nauplius eye is located between the compund 

eye and the mouth (Fig. 1.1). 
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Figure 1.1: The anatomy of Daphnia (from Ebert, 2005) 

 

Like other Crustaceans, D. magna has two pairs of antennae. The first pair of 

antennae is located beneath the rostrum and acts as a sensory organ (Ebert, 

2005). In female D. magna the first pair of antennae is rudimentary and does 

not protrude over the rostrum, in male D. magna, however it is elongated and 

movable (Mitchell, 2001), Fig. 1.2). The second pair of antennae is used for 

locomotion. 
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Figure 1.2: Male D. magna with visible first antenna 

 

During most of the year, populations of D. magna consist almost entirely of 

females that reproduce through parthenogenesis (Ebert, 2005). Self fertilized 

eggs are placed in the brood chamber or broodpouch, which is located dorsally 

beneath the carapace (Fig. 1.1). Production of males appears to be induced 

principally by stressful conditions (Mitchell, 2001), including low temperatures or 

high densities and subsequent accumulation of excretory products, and/or a 

decrease in available food (U.S. Environmental Protection Agency (EPA), 

2002a). In those cases, a parthenogenetic male is produced alongside of 

females, as well as haploid (resting) eggs in cases called ephippia. Those eggs 

require fertilization by the male. This occurrence forms the sexual cycle in 

contrast to the parthenogenetic asexual cycle (Fig. 1.3). 
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Figure 1.3: the sexual and the asexual (parthenogenetic) life cycle of a Daphnia (from 

Ebert, 2005) 

 

The life history of D. magna can be divided into four different stages: the egg, 

juvenile, adolescent and adult. The life span of a single D. magna depends on 

environmental conditions like temperature or food supply and is roughly 40 days 

at 25°C, and about 56 days at 20°C (U.S. Environmental Protection Agency 

(EPA), 2002a). D. magna has three to five juvenile instars (developmental stage 

between moults), followed by a single adolescent instar and 6-22 adult instars. 

Each instar is terminated by a moult. Under favourable conditions an instar lasts 

two days but can last up to a week under unfavourable conditions. The average 

number of eggs per instar is approximately six to ten. 

 

D. magna is principally a lake dweller and has a worldwide distribution in the 

northern hemisphere (Pennak, 1989, U.S. Environmental Protection Agency 

(EPA), 2002a). This invertebrate is restricted to waters that exceed a hardness 

of 150 mg/L (as CaCO3) (Pennak, 1989) and it is mostly found in ponds with 

muddy bottoms, rich in organic matter and with low oxygen demand (3 to 4 

mg/L). 
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Cladocerans are polyphagous feeders and find their food in the seston (living 

and non-living particulate matter, suspended in the water column). Daphnids, 

including Daphnia magna, are classified as fine mesh filter feeders (Geller and 

Muller, 1981), being able to filter particles with a minimum size as small as 200 

nm. These fine mesh filter feeders are most abundant in eutrophic lakes during 

summer phytoplankton blooms.  

 

D. magna plays a very important ecological role in freshwater habitats. This 

includes a role as a very efficient filter feeder that keeps algal blooms at bay or 

as a major food source for a whole range of aquatic invertebrates or 

vertebrates. It is sensitive to environmental conditions and to a whole range of 

contaminants and has a short life cycle that is observable in the laboratory. It is 

not surprising that several studies to date have focused on D. magna as test 

species when assessing the effects of nanomaterials in the aquatic 

environment.  

 

Further aspects of nanomaterials and nanoparticles will be reviewed in later 

chapters. This will include the ecotoxicology of nanoparticles (chapter 3), uptake 

and translocation of nanoparticles (chapter 4) and bioindicators and oxidative 

stress (chapter 5). 

 

 

1.4 Aims 

 

The intent of this thesis was to assess the effects of selected nanomaterials on 

D. magna, so that data and information that can be used in environmental risk 

assessments of nanomaterials are generated. To achieve this, three different 

approaches were chosen, each with a different aim: 

• initial acute toxicity assessments with mortality and moulting as 

endpoints, using D. magna, with a panel of particles of different sizes and 

type. From the results, adequate concentrations were selected for 

chronic tests with further physiological endpoints (mortality, reproduction, 

growth rate, moulting frequency) (chapter 3) 
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• histological experiments were conducted, to observe and quantify the 

accumulation of micro- and nanoparticles within specific organs of D. 

magna (chapter 4). 

• biochemical investigations (oxidative stress) to determine the 

mechanisms of toxicity as well as sub lethal endpoints (chapter 5) 

 

 

1.5 Hypothesis 

 

The key testable Null Hypothesis in this project was that NPs tested have no 

different size dependent effects than larger particles of the same composition at 

the same mass dose on D. magna. 
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2. Culturing of Daphnia magna 

 

D. magna were maintained and cultured according to US Environmental 

Protection Agency (EPA) guidelines (2002a).  

 

2.1 Culture medium 

 

The animals were held in hard reconstituted water as described in Table 2.1. 

 

Table 2.1: D. magna culture water 

Reagent added (mg/L of DI water) Approximate final water quality 

NaHCO3 CaSO4*2H2O MgSO4 KCl pH Hardness Alkalinity 

192.0 120.0 120.0 8.0 7.6-8.0 160-180 110-120 

Hardness and Alkalinity expressed as mg CaCO3/L. 

 

The salts (Fisher Scientific, Loughborough, UK, Analytical reagent grade) were 

dissolved by stirring in deionized water (DI) in a 2L beaker. The salts were 

added in the following order CaSO4*2H2O first, followed by the MgSO4, then 

KCl and at least two hours later, the NaHCO3. Once the salts were dissolved 

they were poured into the holding container and aerated with an air pump 

connected to an air stone with standard aquarium tubing, for at least two hours, 

preferably over night. The hardness and the pH value were measured after all 

the salts were dissolved in the reconstituted water. The water was used in 

experiments or for culturing D. magna for up to 14 days before new medium 

was prepared. The water was aerated with an air pump and an air stone while 

stored.  
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2.2 D. magna maintenance 

 

D. magna were cultured in 2 L glass beakers containing 1600 ml of 

reconstituted water and covered with cling film to prevent evaporation of media. 

When handling the animals, a 5 ml disposable plastic pipette was used, with the 

tip cut off. The beakers were kept in a climate chamber that was set to 20°C 

±1°C and a light/dark cycle of 16h/8h.  

 

To harvest neonates within 24 h of hatching, all gravid (egg carrying) females 

were placed 24 h before harvest in new culture medium (to remove all older 

neonates). Within 24 h the newly hatched neonates were harvested. To prevent 

crowding, the neonates were transferred to fresh medium after approximately 

two days and the density was restricted to 50 neonates per 1600 ml of medium. 

After two weeks the animals were further reduced in number to 30 animals per 

2 L beaker and 1600 ml of medium. The media in the culture was changed at 

least once per week to prevent degradation in water quality or overcrowding by 

neonates. 

 

2.3 Feeding 

 

Cultured single celled green algae of the species Scenedesmus subspicatus or 

Chlorella sp. were obtained from the University of Edinburgh and counted using 

a haematocytometer to obtain the number of cells per ml. An amount of 1x105 

cells/daphnid was fed daily to neonates; after 7 d this was increased to 5x105 

cells/daphnid. The container with algae concentrate was shaken before use, to 

guarantee a homogenous suspension. The algae were kept in a refrigerator at 

approximately 5°C. 
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3. Acute and chronic toxicity testing with 

Daphnia magna 

 

3.1 Introduction 

 

Relatively few studies have been published in the field of ecotoxicology of 

nanomaterials. They have all shown that generating a suspension of 

nanomaterials, such as fullerenes and NP carbon black, in aqueous medium 

poses a major difficulty. Three different methods have been cited so far in the 

literature. The first involves the suspension of the NP in tetrahydrofuran (THF) 

as a carrier solvent, which is subsequently removed by evaporation before 

suspension of the nanomaterials in water. A study using this method suggested 

that fullerenes induced oxidative stress in the brains of fish exposed to 0.5 ppm 

of fullerenes for 48 h (Oberdörster, 2004). A similar method was used to 

prepare particles when investigating mortality in acute 48h toxicity tests of 

Daphnia magna (Crustacea, Cladocera) to TiO2 and fullerenes (Lovern and 

Klaper, 2006) (LC50 (48 h) = 5.5 ppm for TiO2 and 460 ppb for fullerenes). There 

is evidence though, that residues of THF can remain in clusters of fullerene 

particles (Andrievsky et al., 2002), and that charge transfer occurs between 

THF and fullerenes (Brant et al., 2005), causing additional toxicity (Henry et al., 

2007, Spohn et al., 2009). The other two methods of NP preparation are 

sonication for 30min and stirring in water for an extended period of time. D. 

magna did not exhibit any significant mortality when exposed to sonicated TiO2 

over 48 h (Lovern and Klaper, 2006) over a wide range of concentrations. 

Sonicated fullerenes induced mortality in 48 h exposures (LC50 (48 h) = 7.9 

ppm) although with great variation and no clear dose response (Lovern and 

Klaper, 2006). When the fullerenes were suspended by water stirring, no 

significant mortality was observed within a 48 h exposure (LC50 (48 h) > 35 

ppm), in contrast to what was observed for the same concentration when the 

THF method was used (LC50 (48 h) = 800 ppb) (Zhu et al., 2006), showing that 

the method used for suspending fullerenes has a major effect on mortality for 

both particles, TiO2 and fullerenes. Nevertheless, an effect of fullerenes 
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prepared by water stirring can be observed in chronic, 21 day exposures where 

mortality and reduced offspring were reported in concentrations as low as 2.5 

ppm (Oberdörster et al., 2006). 

 

The standard endpoint in acute tests is mortality. The test is mostly conducted 

to estimate an LC50 value (concentration at which 50% mortality occurs or 

median mortality), a No Observed Adverse Effect Concentration (NOAEC), a 

Lowest Observed Adverse Effect Concentration (LOAEC) over a specified 

exposure time span (U.S. Environmental Protection Agency (EPA), 2002a) or to 

evaluate a concentration range for long term exposures. Mortality is normally 

assessed by observation of immobilization of the test animals. Mortality studies 

provide an indication of what would happen if a specific environment was 

exposed to a short pulse of contaminants, as often happens with pesticides in 

agricultural application (Pieters and Liess, 2006). Tests can be utilized with 

adults, juveniles, neonates (newborn), eggs or cell cultures. Mortality has of 

course the effect on an individual that the organism loses its chances to 

reproduce and contribute its genes to the gene pool of the population. At 

population level this can mean a decrease in abundance and fitness. An acute 

toxicity test with D. magna is normally conducted over a 48 h- 96 h period and it 

is normally too short to allow the assessment of endpoints such as growth or 

reproduction/fecundity.  

 

A chronic toxicity test spans often over a wider range of the organisms’ life 

cycle, and includes more than one single exposure due to water changes that 

normally are conducted at regular intervals. Each water change represents a 

distinctive exposure by replenishing the contaminant to its original 

concentration, making a long term exposure a string of multiple exposures. 

Endpoints used to assess the effect of chronic exposures depend mostly on 

characteristics specific to the organisms’ life cycle. These include number of 

offspring for organisms with a short life cycle, since it is easily countable. 

Number of eggs or number of eggs hatched, locomotory activity, gill ventilation 

rate, heart rate, blood chemistry, histopathology, enzyme activity, weight 

increase or growth are also widely used (U.S. Environmental Protection Agency 

(EPA), 2002a).  
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Regarding the ecotoxicological effects of nanoparticles, mostly mortality has 

been used as an endpoint so far with a range of species (Lovern and Klaper, 

2006, Oberdörster et al., 2006, Zhu et al., 2006). Oberdörster et al. (2006) 

assessed the chronic effects of fullerenes on D. magna fertility (number of 

viable offspring) over a 21 day period. In addition they also assessed effects on 

the number of moults and mortality over the time period of the experiment. 

Mortality was recorded at 2.5 ppm and 5 ppm after a lag phase of 4 days and 

occurred for two days. Afterwards mortality dropped to zero again. The animals 

reproduced and moulted as well, though at a lesser rate and had a reduced first 

brood. This could mean that although there seemed to be acclimatisation, the 

overall fitness of the animals was affected. Since D. magna moulting coincides 

with the release of neonates out of the broodpouch, a prolonged moulting 

frequency can mean a lower overall fecundity and an impact on population level 

(Oberdörster et al., 2006). One study so far measured the behavioural and 

physiological changes of D. magna when exposed to nanoparticles (Lovern et 

al., 2007). In this study the hopping rate (erratic swimming behaviour), heart 

rate, feeding appendage beat frequency (beating of the thoracic limps that 

produce the feeding current) and postabdominal curling rate (curling of the 

postabdomen with the postabdominal claws inwards) in relation to NP 

concentration were measured. Erratic swimming behaviour makes D. magna 

more visible to its predator and increases the predation risk (Lovern et al., 

2007). Increased heart beat generally indicates a faster metabolism and is a 

sign of stress. A change in the feeding appendage beat frequency points to a 

change in the feeding rate and energy uptake.  

 

The study here presented focuses on the endpoints of mortality, moulting 

frequency, fertility and growth, assessed through acute and chronic tests. These 

endpoints are easily addressed in the laboratory and provide a good overview 

on the effects nanoparticles may have on individuals and could be used to draw 

conclusions at population level. Toxicity effects observed in D. magna could 

also be similar in other invertebrate taxa and provide information on further 

research on the impacts of nanoparticles. 

 

The particles tested in these studies, titanium dioxide, cerium dioxide, silver and 

carbon black, were chosen because all of them found their way into major 
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consumer applications. Although just one of the tested particles, titanium 

dioxide, was so far reported in the environment in nanoscale as a result of 

mining-wastes (Wigginton et al., 2007), realistic exposure concentrations are 

still unknown and have been only estimated by models so far (Boxall et al., 

2007, Mueller and Nowack, 2008). Furthermore, there are uncertainties of the 

possible pathways of exposure, their fate to the environment, bioaccumulation 

and biomagnification (Crane et al., 2008), information that are vital for 

assessing the risk of nanomaterials to the environment. In the light of these 

facts it was considered a reasonable approach to assess the hazard of 

nanoparticles by choosing particles that have, due to a multitude of application, 

a reasonable likelihood of reaching elevated concentrations in the environment 

and therefore if a hazard is detected, would pose a threat to the environment. 

Also, in the case of cerium dioxide, silver and carbon black, particles of nano 

size and micro size were readily available in the laboratory and made 

exposures of different sized particles side by side possible. 

 

The highest concentrations used (100 mg/L) in the preliminary 48 h acute 

studies (see section 3.2) were chosen based on mass doses used in studies 

published in the literature (Oberdörster et al., 2006, Lovern and Klaper, 2006, 

Zhu et al.,2006). Lovern and Klaper (2006) used 500 mg/L (500 ppm) of 

sonicated and unfiltered titanium dioxide in their 48 h acute exposures of D. 

magna, studies with C60 fullerenes (Oberdörster et al., 2006, Lovern and Klaper, 

2006, Zhu et al.,2006) used mass doses of 10 mg/L and lower. The remaining 

concentrations were done by 1:10 dilutions to span over a wide range of 

concentrations. It was refrained from using the highest concentration, 100 mg/L, 

in the following 96 h acute exposures, due to difficulties described in section 

3.3.1. In the 96 h acute exposures the highest concentrations used were 10 

mg/L. Concentrations in the chronic 21 day exposures were dependent on the 

results of the 96 h acute studies since the aim was to assess sublethal 

endpoints. Therefore exposure concentrations were different for each of the four 

particles tested. 

 

Since it was impossible at the time of the experiments to characterize the 

particles in solution, concentrations and size of particles in solution have to be 

seen as nominal. 



 22

The sections 3.1.1 to 3.1.4 give a brief review of the particles used: 

 

3.1.1 Titanium dioxide 

 

Titanium is a transition metal. Its naturally occurring oxide is titanium dioxide. 

Titanium dioxide accounts for 70% of the total production volume of pigments 

worldwide (International Agency for Research on Cancer, 2006). As a particle 

bigger than 100 nm, it is widely used to provide whiteness and opacity to 

products such as paints, plastics, papers, inks, foods, and toothpastes. It is also 

used in cosmetic and skin care products, and it is present in almost every 

sunblock, where it helps protect the skin from ultraviolet light. When used as a 

nanoparticle in sunscreen and cosmetics, TiO2 has comparable UV protection 

abilities as the bulk material, but loses the cosmetically undesirable whitening 

as the particle size is decreased (Lauterwasser, 2005). As a nanoparticle, it is 

also used in air and water remediation (Long et al., 2006). Although studies 

showed that neither micro sized titanium dioxide, used for example in 

sunscreen, could penetrate the dermal layer of the skin (Lademann et al., 1999, 

Pflucker et al., 2001), nor nano sized titanium dioxide (Gamer et al., 2006) as 

already mentioned in chapter 1, an uptake was still considered possible through 

skin that might be damaged through disease (Lauterwasser, 2005, Royal 

Commission on Environmental Pollution, 2008). Nevertheless, titanium dioxide 

entering an organism via other pathways, such as inhalation or injection, is 

reported to have the potential to cause oxidative stress to a wide range of cell 

types not as monodispersed particle but often as aggregates of 800 - 1900 nm 

(Long et al., 2006). In addition, TiO2 nanoparticles have been shown to cause 

pulmonary inflammation, tissue damage, and fibrosis at sufficiently high mass 

doses (Oberdorster et al., 1992, Oberdorster et al., 1994, Tran et al., 2000, Tran 

et al., 1999).  

 

Due to the many applications of titanium dioxide, a release and possible 

accumulation in the environment is reported to be likely (Bergeron and 

Archambault, 2005). In fact, one report (Department for Environment Food and 

Rural Affairs (DEFRA), 2007) predicts titanium dioxide concentrations in the 

aquatic environment to be in the µg/l range. Although it is unclear if those 
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particles reach the aquatic environment in a nano form. When 66 nm particles 

are applied to water and suspended by vigorously shaking for a short amount of 

time, the particles aggregate to particles ranging in size from 175 – 810 nm with 

a mean of 330 nm (Adams et al., 2006, Department for Environment Food and 

Rural Affairs (DEFRA), 2007).  

 

Lovern and Klaper (2006) assessed the effect of titanium dioxide prepared in 

two different ways, filtered in the presence of tetrahydrofuran (THF) and 

sonicated, and detected significant mortality of D. magna neonates in the 

filtered sample but not in the sonicated sample. As mentioned in the 

introduction (section 3.1), observed mortality could be due to residues of THF in 

the exposure water. A second study by the same authors (Lovern et al., 2007), 

which studied behavioural changes in the presence of sublethal concentrations 

of titanium dioxide, prepared in the same way as above, showed no significant 

changes at elevated concentration when compared to the control. A study with 

primary producers has demonstrated that titanium dioxide nanoparticle can also 

inhibit algal photosynthesis by producing reactive oxygen species that can 

oxidize the algal cell and stop activity of chlorophyll a within 30 min. if the algae 

come into contact with a film of TiO2 coated on glass beads (Kim and Lee, 

2005). This study supports the use of titanium dioxide for the remediation of 

eutrophic water but also demonstrates that toxic effects of titanium dioxide are 

not limited to invertebrates but also to primary producers. 

 

A draft of a review of the Environmental Protection Agency of the United States 

about an assessment of potential ecological and health implications of nano 

sized titanium dioxide (U.S. Environmental Protection Agency (EPA), 2009) 

states that nano titanium dioxide could enter the environment in various ways, 

bathing in natural water bodies after application of sunscreen that contains 

titanium dioxide could be one of them. According to the same review was the 

annual global production of nano sized titanium dioxide estimated at 2000 

metric tons around 2005, with about 65%, or 1300 metric tons, used in 

“personal care” products such as sunscreens and cosmetics. 
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3.1.2 Cerium dioxide 

 

Cerium belongs to the lanthanide group of the rare earth metals. It has two 

common oxidative states, +3 and +4. While cerium also appears in its +3 

oxidative state as for example as cerium (III) oxide (Ce203), the most common 

occurrence is as cerium (IV) dioxide or CeO2. CeO2 is commonly used to polish 

glass, metallic jewellery or lenses (Masui et al., 2003). Additionally it is used as 

electrolyte in solid oxide fuel cells (Masui et al., 2003, Tok et al., 2007) and as a 

catalyst in catalytic converters of automobiles (Thill et al., 2006, Tok et al., 

2007). Common synthesis approaches include hydrothermal and solvothermal 

synthesis, sol–gel synthesis and spray pyrolysis (Tok et al., 2007). 

 

As a nanoparticle, cerium dioxide is used as an additive to diesel fuel to act as a 

fuel borne catalyst (Boxall et al., 2007). Boxall et al. (2007) states that nano 

sized cerium dioxide is added to diesel at a concentration of 5 - 10 ppm and is 

claimed to increase fuel efficiency by ~10%, but on the other hand is estimated 

to release 0.004 g/km of cerium dioxide emission. The same report states, that 

according to the current knowledge for catalysts, lubricants and additives, 

cerium dioxide is the most likely nanoparticle used for those applications to 

enter the aquatic environment.  

 

A cytotoxic effect of cerium dioxide to E. coli was reported (Thill et al., 2006) as 

well as an uptake of ceria nanoparticles in vesicles within the cytoplasm of 

human fibroblast cells (Limbach et al., 2005). Also 20 nm cerium dioxide was 

held responsible to induce toxicity in human lung cancer cells caused by 

oxidative stress in a dose and time dependent pattern (Lin et al., 2006). 

 

The role of cerium dioxide as fuel additive makes an exposure through 

inhalation the primary concern, but contamination of waterways by runoff 

produced by rain or spills of diesel fuel by handling make an exposure likely 

(Boxall et al., 2007). 
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3.1.3 Silver 

 

Silver, like titanium, is also a transition metal which occurs mostly in the +1 

oxidative state and has the highest electrical and thermal conductivity of all 

metals (Chen and Schluesener, 2008). As a precious metal it was and still is 

used in a wide range of applications like jewellery, tableware and coinage. Due 

to its physical properties, it is today also used in electrical contacts and 

conductors, in mirrors and in the catalysis of chemical reactions. Also, silver has 

been known, for a long time, to possess antimicrobial character, as silver ions 

are reported to kill bacteria by inhibiting the expression of enzymes and other 

proteins essential to ATP production (Soto et al., 2005). These attributes have 

resulted in the increased use of silver, in its nanoparticulate form, in wound 

dressings, water filters, food packaging and even clothing (Boxall et al., 2007). 

In 2003, Samsung introduced the first “Silver Sterilization Washing Machine” 

which claimed that 99.9% of bacteria would be killed, preventing bacteria and 

mould and suppress the odour and contamination that accompanies bacteria 

and mould formation (Samsung, 2003).  

 

In toxicological studies, it has been reported that silver nanoparticles (15 nm) 

reduced mitochondrial function drastically and increased membrane leakage in 

mammalian germline stem cells (Chen and Schluesener, 2008) and that 

aggregated silver nanoparticles are cytotoxic to alveolar macrophage cells as 

well as epithelial lung cells. While there are studies showing that silver 

nanoparticles could be used in bone cement or other implantable devices as 

antimicrobial agents (Alt et al., 2004), other studies show that silver in 

nanoparticulate form could be toxic for the bone-lining cells and other tissues 

(Braydich-Stolle et al., 2005). 

 

Concerns over release of nanoparticles in waste water treatment plants has 

already been mentioned in several reports (Department for Environment Food 

and Rural Affairs (DEFRA), 2007, Reijnders, 2006, Scientific Committee on 

Emerging and Newly-Identified Health Risks (SCENIHR), 2007) with waste 

water enriched with silver nanoparticles adding to these concerns (Luoma, 

2008). Another possible source of silver nanoparticles in the environment is the 

leaching of particles out of food packages. According to a study, the most likely 
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nanomaterials entering the environment through disposal of food packaging will 

be clay, and silver nanoparticles (Department for Environment Food and Rural 

Affairs (DEFRA), 2007). Although the same study estimates the particle burden 

of silver nanoparticles in water would be, with 0.1 µg at 10% market penetration, 

low compared to other particles like titanium dioxide or latex, but if toxic effects 

to aquatic invertebrates could emerge at this concentration is not known.  

 

3.1.4 Carbon black 

 

Carbon black, as a nanoparticle, is in use since antiquity, and today is produced 

at a rate of 1.5 million tons every year, making it the most abundant 

nanoparticle (Lauterwasser, 2005). Other sources speak of more than 8 Mt/year 

of carbon blacks produced, mainly for tires (70%) and the rubber industries 

(20%) (European Commission Community Health and Consumer Protection, 

2004) and for printing (Reijnders, 2006). Here the nanoparticles can improve 

abrasion resistance and toughness. (Reijnders, 2006) While accidentally 

produced particles, like in wildfires, are mostly larger, most nano sized carbon 

black particles are produced intentionally (Donaldson et al., 2005). 

Nevertheless, for both types, the most common source of carbon black is 

through incomplete combustion.  

 

Research on inhaled ultrafine carbon black is ongoing in the area of air pollution 

research for over a decade. A study showed that exposure to ultrafine carbon 

black particles (surface area = 150 m2/g; diameter < 0.1 µm) can increase 

respiratory virus infection risk in mice (Lambert et al., 2003) when mice were 

exposed to a virus in the presence of ultrafine carbon black as compared to 

exposures in the absence of ultrafine carbon black. Another study has shown 

that ultrafine TiO2 (mean diameter = 29 nm) and carbon black particles (mean 

diameter = 14.3 nm) impaired phagocytosis by alveolar macrophages more 

strongly than fine particles of the same materials (TiO2 mean diameter = 250 

nm; carbon black mean diameter = 260.3 nm) (Renwick et al., 2001). A further 

study, using the same particles and looking at alveolar macrophages of rats, 

obtained from bronchoalveolar lavage after exposure, detected more epithelial 

damage and cytotoxicity in exposures to the ultrafine particles than in 
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exposures to their fine counterparts (Renwick et al., 2004). Increased workplace 

exposure to carbon black increases respiratory morbidity: increased coughing 

and sputum production, higher risk of chronic bronchitis and an increase in lung 

cancer risk (Reijnders, 2006). It has also been shown that carbon black induces 

inflammation (Donaldson et al., 2005), epithelial injury and that the particles 

are retained in the lung, allowing dose accumulation (Renwick et al., 2004). One 

study suggested that differences of inflammogenicity between ultrafine carbon 

black and larger carbon black particles may be explained through increased 

surface area or particle number of the ultrafine particle (Brown et al., 2000). Also 

the amount of oxidative stress induced in epithelial cells might be, at least 

partially, mediated by surface area of particles (Koike and Kobayashi, 2006). 

 

In the aquatic environment it is predicted that carbon black has only a low toxic 

effect with thresholds ranging from tens to thousands of parts per million (parts 

per million = mg/L) (U.S. Environmental Protection Agency (EPA), 2007). But 

these data are based on 24 hour tests and concentrations for chronic effects 

are predicted. The actual long term effects of carbon black nanoparticles on 

aquatic invertebrates are still to be determined. A study focussing on the marine 

macroalgae Fucus serratus showed, that effects of carbon black nanoparticles 

on sperm concentration and fertilization, body axis alignment, germination and 

rhizoid elongation were likely to be primarily physical (Nielsen et al., 2008).  

 

3.1.5 Aims 

 

The aim of the experiments described in this chapter is to assess the effects of 

particles of different composition and size on D. magna by measuring lethal 

and sublethal endpoints in acute, short term exposures and chronic, long term 

exposures at different mass doses. This enables an estimation of whether 

composition and size play an important role in toxicity. 
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3.2 Methods: 

 

In this section, the different particles used in the exposures are described, as 

well as the methodology and the assessment of endpoints for acute, 48h or 96h 

tests and chronic, 10 day or 21 day tests. In the end, the statistical methods 

used to verify the results and the models used for quantifying and interpreting 

the effects are described. 

 

3.2.1 Acute toxicological tests 

 

In the acute exposures, two different regimes were followed. Preliminary studies 

were conducted in 100 ml beakers with 5 neonates per replicate, exposed for 

48 h. These preliminary tests were conducted with the nanoparticle form only. In 

these acute preliminary studies neonate D. magna were exposed to NP titanium 

dioxide (Degussa P25, average size 25 nm) or NP carbon black (Degussa 

Printex 90, average size 14 nm).  

 

Later tests were conducted by exposing the neonates to nano sized particles 

alongside micro sized particles at the same mass dose. Furthermore the 

animals were exposed individually in 20 ml Scintillation vials with 10 animals per 

treatment. This allowed a better tracking of mortality and especially moulting 

since the single animal could be observed over the exposure duration. The test 

duration was 96 h and all tests were repeated three times. The tested particles 

were: 

• nano sized carbon black (average size 14 nm, Printex 90, Degussa, 

Frankfurt, Germany);  

• micro sized carbon black (average size 260 nm, Huber 990, Degussa, 

Frankfurt, Germany); 

• nano sized silver (average size 35 nm) (NanoAmor, Houston TX, USA); 

• micro sized silver (average size 0.6 - 1.6 µm) (NanoAmor, Houston TX, 

USA); 

• nano sized CeO2 (average size <25 nm) (Sigma- Aldrich, Gillingham, 

Dorset, UK); 
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• micro sized CeO2 (average size <5 µm) (Sigma- Aldrich, Gillingham, 

Dorset, UK). 

The size information provided for silver and CeO2 was derived from supplier 

information, while the carbon black particle sizes were derived from Stone et al. 

(1998). 

 

3.2.1.1 Preparation of the exposure medium in 48h tests 

 

The concentrations chosen for the experiment were 100 mg/L, 10 mg/L, 1 mg/L, 

0.1 mg/L of carbon black or titanium dioxide nanoparticles and a medium 

control (Daphnia medium only). The nanoparticles were weighed in a glove box, 

to avoid contamination of the environment. The material required to make up 

the highest concentration used in the experiment, 100 mg, was weighed in a 

scintillation vial. The nanoparticles were transferred into a 1 L volumetric flask 

and the scintillation vial washed with Daphnia medium several times to insure a 

quantitative transfer. The volumetric flask was then filled 2/3 with reconstituted 

water (Daphnia medium) and sonicated for 30min, then filled up to the 1 L mark 

to give a final concentration of 100 mg/L. The other concentrations were 

prepared by 1:10 serial dilution. 

 

3.2.1.2 Exposure protocol for 48 h tests 

 

For acute tests neonates younger than 24 h were used. They were harvested 

prior to the experiment and pooled to avoid possible differences arising between 

neonates from different culture beakers. One hundred ml beakers were used as 

exposure chambers. They were filled with 40 ml of nanoparticles suspended in 

reconstituted water at the selected concentrations. Three replicates per 

treatment and one control treatment were used with 5 neonates exposed per 

replicate. The animals were not fed during the test duration. Mortality and 

moulting were recorded on a daily basis. Mortality was assumed when no 

movement could be detected and moulting when a shed carapace was 

observed. Moulting and mortality were assessed every day at the time 

equivalent to the time of test setup. The beakers were kept in a climate 
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chamber that was set to 20 °C ±1 °C and a light/dark cycle of 16 h/8 h. The test 

duration was 48 h. 

 

3.2.1.3 Preparation of the exposure medium in 96 h tests 

 

The exposure media were prepared as described in section 3.2.1.1, but the 

concentrations chosen for all particles (carbon black, cerium dioxide and silver) 

were 10 mg/L, 1 mg/L, 0.1 mg/L and 0.01 mg/L and a control. The exposure to 

nano and micro sized carbon black additionally included a treatment of 5 mg/L. 

 

3.2.1.4 Exposure protocol 96 hour tests 

 

The exposure chambers were 20 ml scintillation vials (Fisher Scientific 

Loughborough, UK). Those were loaded via a 20 ml syringe with exposure 

media and algae. Neonate D. magna were then transferred into the exposure 

chamber. There were 10 replicates per treatment, arrayed on a plastic rack that 

was able to accommodate 5 treatments. The exposure media was changed 

daily and D. magna was fed with approximately 5X105 algae cells alongside 

with the water change. Data were collected as described in section 3.2.1.2. 

 

3.2.2 Chronic toxicological tests 

 

The chronic tests were set up in the same way as the acute tests. There was a 

preliminary 10 day test with carbon black nanoparticles (Degussa Printex 90, 

average size 14 nm) at concentrations of 1 mg/L, 0.1 mg/L, 0.01 mg/L, 0.001 

mg/L and a control. This test was conducted following the protocol described for 

the acute preliminary tests but with a duration of 10 days. 

 

Like for the acute 96 hour test, a second set of tests was conducted with the 

animals individually exposed, as described in 3.2.1.4. The particles here were 

carbon black, cerium dioxide and silver in nano size and micro size as 

described in section 3.2.1. The test concentrations chosen were dependent 

upon the outcome in the 96 hour acute tests, and were different for different 
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particles. The exposure duration was 21 days. The exposure media was 

changed daily and D. magna was fed with approximately 5X105 algae cells 

alongside with the water change in both types of test. 

 

The endpoint of mortality was recorded by assessing immobilization of the 

organism, whereas the endpoint of moulting was assessed by registration of a 

cast of the carapace as described in the previous section. 

 

The length measurement was carried out by preserving the animals after the 

end of the experiment in 4% formalin and then mounting them on a glass slide 

under a dissecting microscope (Carl Zeiss, Welwyn Garden City, UK). 

Photographs were taken with a digital camera mounted on the dissecting 

microscope. These pictures were analyzed with Image tool for windows 

(UTHSCSA San Antonio, US). The length of the animals was measured from 

the base of the spina to the top of the head above the complex eye (see Figure 

3.1). The number of offspring (fertility) was assessed by counting the newly 

hatched neonates in each treatment. 

 

 
Figure 3.1: Length measurement of D. magna 

 

For the test to be valid, at least 80% of the animals of the control treatment 

needed to survive the test duration (U.S. Environmental Protection Agency 

(EPA), 2002a). The test was repeated if these criteria were not met.  
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3.2.3 Statistical methods 

 

Statistical tests were carried out with SPSS release 16 (SPSS Incorp., Chicago, 

Il, USA). Data were checked for normality and homogeneity of variances. 

Mortality was analyzed by comparing the different treatments to the control 

treatment by means of a Chi square test. Cumulative moulting and cumulative 

offspring were analyzed by calculating the cumulative effect for each individual 

on a daily bases. Then the different treatments were compared against each 

other for each day by one way ANOVA. A Tukey post hoc test was carried out 

for multiple comparisons of means if the variances of the residuals were 

homogenous, otherwise a Games-Howell post hoc test was used for the same 

purpose. 

 

For evaluating and modelling the effects of the different nanoparticles the 

assumptions described below were made. 

 

For survival 

 

To describe survival due to exposure, a model should include the concentration 

of particles used, as well as exposure time. These two factors should interact, 

since the rate of survival decreases faster, the higher the concentration and the 

longer the exposure duration is. Leaving one factor out of the model (time or 

concentration) would leave the survival rate unchanged. The assumption was 

made that a change in the survival rate (d(%Survival)) is best represented by 

the function of the exponential decay with d(%Survival) proportional to the 

concentration and exposure time and the decrease of survival dependent from 

the rate of survival at every time point. These assumptions lead to the 

differential equations described below: 

 

(1)          d(%Survival) = (±const*Concentration*%Survival)*d(Time) 

 

Dividing equation (1) by %Survival and integrating it delivers the following 

equation: 

 

(2)            Ln(%Survival) = const0 ± const1 *Concentration*Time 
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Or 

 

(3)                      %Survival = e (const0 ± const1 *Concentration*Time) 

 

The const0 in equation (2) represents Ln(%Survival) at t = 0 and should be 

close to 4.6 (= Ln(100%Survival)), the term would stay constant if no exposure 

would take place. 

 

The second term in equation (2), (± const1 *Concentration*Time) represents the 

influence of the exposure to %Survival over time. It shows the strength of the 

interaction between concentration and exposure time for each of the particles 

studied. The sign of this term shows the direction of the interaction. A positive 

sign would indicate a beneficial effect on survival, a negative sign a harmful 

effect. 

 

Furthermore, assuming the single factors concentration and time additive 

instead of multiplicative in the equation did not improve the fit of the model 

significantly. Other models, such as linear models were tested, but showed 

worse fit results than the logarithmic model.  

 

For moulting 

 

It can be assumed that, contrary to mortality or survival, a base moulting 

frequency, independent from exposure, has to be taken into consideration. This 

base moulting frequency is only dependent on time and in this model it was 

assumed it would increase linearly over time if undisturbed. An exposure to 

nanoparticles would influence this base moulting frequency positively or 

negatively, depending on the concentration of the particles and the duration of 

exposure. Moulting is given after integration as Cumulative(%moult), i.e. the 

numbers of moults of each animal are added up and only animals alive at the 

specific time point are taken into consideration. These assumptions lead to the 

differential equations described below: 

 

(4)            d(%moult) = (const1 ± const2*Concentration)*d(Time) 
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Integrating the equation delivers the following equation: 

 

(5)   Cumulative(% moult) = const0 + const1*Time ± const2 *Concentration*Time 

 

Since const0 >0 in equation (5) would mean there is moulting before the start of 

the experiment and this constant proved to be insignificant in all regressions, 

equation (5) can be re-written as: 

 

(6)      Cumulative(%moult) = const1*Time ± const2 *Concentration*Time 

 

This model assumes that under normal conditions, as previously mentioned, 

moulting of D. magna should increase linearly in time, given by the term 

“const1*Time”. The interaction with nanoparticles that may interfere with 

moulting is given by the term “± const2 *Concentration*Time” with ± const2 

indicating the strength of the interaction. A positive sign would indicate an 

increase in moulting, a negative sign a decrease. 

 

For offspring production 

 

It was assumed, that the production rate for offspring would behave similarly to 

moulting in a linear way if undisturbed, dependent on time. An exposure to 

nanoparticles would influence the production of offspring positively or 

negatively, dependent on the concentration of the particles and on the time of 

exposure. As with moulting, offspring is given after integration as Cumulative 

(%offspring), i.e. the numbers of offspring of each animal are added up and only 

animals alive at the specific time point are taken into consideration. These 

assumptions lead to the differential equations described below: 

 

(7)           d(%offspring) = (const1 ± const2*Concentration)*d(Time) 

 

Integrating equation (7) delivers the following equation: 

 

(8) Cumulative(%offspring) = const0 + const1*Time ± const2 

*Concentration*Time 
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The cumulative offspring was assumed to increase linearly from the day the first 

offspring was observed (day 10). The term “const1*Time” in equation (7) gives 

the increase in offspring dependent on time without an interaction with 

nanoparticles, while the term “±const2 *Concentration*Time” in equation (7) 

adds the effect of exposure to nanoparticles, with ±const2 showing the strength 

of the interaction as well as the direction. The constant const0 in equation (7) is 

needed here to accommodate the fact that the animals were neonates at the 

beginning of the experiments and started to reproduce in the course of the 

exposures from day 10 onwards. To model the production of offspring from the 

start of the experiment, a negative constant const0 has to be implemented so 

the equation reaches zero on day 10. 

 

Significance was assumed with a p ≤0.05. 
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3.3 Results 

 

The results in the following chapter are presented with the preliminary 48 h 

acute exposures first, than the 10 day chronic study, followed by the 96 h acute 

studies, the 21 day chronic studies and in the end the modelling of the effects of 

the various nanoparticles. Within these sections, results for carbon black will be 

presented first, than cerium dioxide (or titanium dioxide) and silver last. 

 

3.3.1 Acute 48 h toxicity tests 

 

3.3.1.1 Mortality 

 

In the acute exposure of D. magna to TiO2 nanoparticles (25 nm), only 10% 

mortality was observed in the highest concentration of 100mg/L after 48 h (n=20 

per treatment in 4 replicates) (data not shown). Mortality was not significantly 

elevated when compared to the control at any concentration over a 48 h period. 

It was observed, that D. magna readily took up suspended particles at even low 

concentrations and these could clearly be seen in the gut (Fig. 3.2). 

 

 
Figure 3.2: D. magna after exposure to 0.1 mg/L  

nano sized titanium dioxide for 48 h 
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In the acute exposure to NP carbon black (14 nm), 13.33% mortality was 

observed in the 10 mg/L concentration after 48 h. Due to agglomeration of 

carbon black mainly in the 100 mg/L treatment, 40% of the total animals could 

not be accounted for, that is they were not easily visible (n=15 per treatment in 

3 replicates). The neonate D. magna individuals were often not clearly 

distinguished from the agglomerates of carbon black nanoparticles. Therefore, 

no LC50 could be calculated (data not shown). As with titanium dioxide, an 

uptake and accumulation of particles in the gut was observed (Fig. 3.3). It was 

also observed, that animals exposed to carbon black and titanium dioxide NPs 

were covered in particles, mainly in the higher concentrations of 10 mg/L and 

100 mg/L (Fig. 3.4). In these treatments, a clear impairment of the animals 

swimming ability was observed. 

 

Figure 3.3: D. magna neonate exposed to 1 mg/l 

14 nm carbon black for 48 h. The carbon black 

particles had been ingested and can be seen in 

the gastrointestinal tract 
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Figure 3.4: D. magna after exposure to 10 mg/L  

nano sized carbon black for 48 h 

 

 

3.3.1.2 Moulting 

 

A concentration dependent increase in moulting was observed on treatment of 

D. magna with TiO2 nanoparticles (25 nm) over a 48 h period (Fig. 3.5). After 24 

h the 100 mg/L of TiO2 treatment resulted in the highest occurrence of moulting, 

while after 48 h, 10 mg/L showed a higher moulting frequency. After testing the 

data for a normal distribution, a one way ANOVA was done along with Tukey’s 

pairwise comparisons. For the moulting frequency there was a significant 

increase in moulting, dependent on the TiO2 concentration. After 24 h the 

moulting frequency of the animals in the treatment exposed to 100 mg/L of TiO2 

was significantly higher (p= 0.001) when compared to the control, the 0.1 mg/L 

and the 1 mg/L treatment. In the time period of 24 h to 48 h the 100 mg/L 

treatment was no longer significantly higher than the control, the 0.1 mg/L and 1 

mg/L, but the 10 mg/L treatment was significantly higher than all other 

treatments (p= 0.001) including the 100 mg/L treatment. The cumulative moult 

(Fig. 3.6) showed a similar trend with 10 mg/L being significant higher after 48 h 

than the control, the 0.1 mg/L and 1 mg/L treatment. The exposure to 100 mg/L 

of TiO2 resulted in a significant higher moulting frequency after 48 h than the 

control and the 0.1 mg/L treatment. 
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Figure 3.5: Moulting frequency of D. magna treated with TiO2 particles of 25 nm 

calculated on a day to day basis (four replicates per treatment with n= 5 

per replicate, values are means +/- standard error, * indicates a result with p ≤ 0.05) 

 

 

 
Figure 3.6: Cumulative moults of D. magna treated with TiO2 particles of 25 nm. 

Values are the total number of animals moulting over the indicated time periods  

(four replicates per treatment with n= 5 per replicate, values are means  

+/- standard error, * indicates a result with p ≤ 0.05) 
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3.3.2 Chronic 10 day toxicity test 

 

3.3.2.1 Mortality 

 

In a 10 day chronic test with nano sized carbon black no mortality was observed 

for the first 48 h (Fig. 3.7). Mortality of animals was observed at day 3 in the 1 

mg/L treatment and the 0.1 mg/L treatment. A one way ANOVA for day four 

shows that there is a significant difference between the treatments (p= 0.002), 

with mortality in 1 mg/L being significantly higher than in the other treatments. A 

comparison of the remaining treatments at day 10 shows no further significant 

difference between the treatments. 

  
Figure 3.7: % Mortality of D. magna treated over time with several concentrations of NP 

carbon black (four replicates per treatment with n= 3 in each replicate, values are 

means +/- standard error, * indicates a result with p ≤ 0.05) 
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showed a significant difference (p= 0.007) between the animals in the 

treatments, with the animals in the 1 mg/L treatment having a significantly 

higher amount of moults than the animals in the control and the 0.001 mg/L 

treatment. A comparison of the cumulative moult of D. magna (Fig. 3.9) 

between the different concentrations over the test period showed that there was 

a significant difference in moulting between the animals in the 1 mg/L treatment, 

the control animals and the animals in the 0.001 mg/L treatment on day one (p= 

0.007) and a significant difference between the moults of the animals in the 1 

mg/L treatment and the control at day two (p= 0.018), but no significant 

difference between the 1 mg/L treatment and the 0.001 mg/L treatment. On day 

3 there was no longer a significant difference between the treatments. Mortality 

was too high in the 1 mg/L treatment on day 5 to detect any significant 

differences between this treatment and the other treatments. 

 

 

 

 
Figure 3.8: moulting frequency due to exposure to titanium dioxide calculated on a day 

to day basis (four replicates per treatment with n= 3 per replicate, values are means +/- 

standard error, * indicates a result with p ≤ 0.05) 
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Figure 3.9: Cumulative moults due to exposure to titanium dioxide added up per 

treatment (four replicates per treatment with n= 3 per replicate, values are means +/- 

standard error, * indicates a result with p ≤ 0.05). One hundred % means every animal 

per treatment moulted once on average 
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titanium dioxide showed that there is a significant difference between the control 
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Figure 3.10: Length measurements (control and 0.001 mg/L n= 6, 0.1 mg/L n= 8, 

values are means +/- standard error, * indicates a result with p ≤ 0.05) 

 

3.3.2.4 Offspring 

 

The release of offspring was not observed in the different replicates during the 

duration of the exposure. Nevertheless, the occurrence of animals carrying 

eggs was observed at day 10 in all remaining treatments independent of 

exposure concentration. 
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mortality at day 4. Mortality differed significantly in the three repetitions of the 

different nano carbon black exposures for the 5 mg/L and to a lesser extent for 

the 10 mg/L exposure on days two and three as represented by the standard 

error. On day four, all replicate experiments reached 100% mortality in the 5 

mg/L exposure as well as the 10 mg/L exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Mortality in a 96 h exposure to micro sized (average size 260 nm) carbon 

black (0.01 mg/L n= 10; 5 mg/L n= 20; otherwise n= 30, values are means +/- standard 

error). No significant mortality was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Mortality in a 96 h exposure to nano sized (average size 14 nm) carbon 

black (0.01 mg/L n= 10; 5 mg/L n= 20; otherwise n= 30, values are means +/- standard 

error, * indicates a result with p ≤ 0.05). Since the data had no homogenous variances, 

a non parametric post hoc test was used. 
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3.3.3.2 Moulting 

 

In order to assess any differences in moulting across treatments, the cumulative 

moulting was calculated. The percentage of moults of surviving animals was 

noted on a day to day basis and added up. While an exposure to 260 nm 

carbon black particles seemed to have no effect at the tested concentrations on 

the moulting frequency (Fig. 3.13), there was a significant reduction in the 

moulting frequency of the animals for the exposures to nano sized carbon black 

(Fig. 3.14). Animals in the 5 mg/L treatment and 10 mg/L treatment showed a 

significant reduced moulting frequency already at day 1 (5 mg/L p = 0.001, 10 

mg/L p = 0.029) which stayed significantly lower on day 2 as well (5 mg/L p = 

0.024, 10 mg/L p = 0.006). A cease in moulting of the animals at day 3 in the 5 

mg/L treatment and 10 mg/L treatment of nano sized carbon black was 

observed. Since 100% mortality was recorded in these two treatments, no 

moulting could be observed on day 4. The data were tested by a one way 

ANOVA and a Tukey’s pairwise comparison test on a day to day basis. 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Cumulative moulting in a 96 h exposure to micro sized (average size 260 

nm) carbon black (0.01mg/L n= 10; 5mg/L n= 20; otherwise n=30, values are means 

+/- standard error). No significant difference in the cumulative moulting between 

treatments was observed. 
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Figure 3.14: Cumulative moulting in a 96 h exposure to nano sized (average size 14 

nm) carbon black (0.01 mg/L n= 10; 5 mg/L n= 20; otherwise n= 30, values are means 

+/- standard error, * indicates a result with p ≤ 0.05). Since the data had no 

homogenous variances, a non parametric post hoc test was used. 
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3.3.4.1 Mortality 

 

There was no significant mortality observed in the 96 h test period for either 

CeO2 particle size at any concentration and time point tested (Fig. 3.15 and Fig. 

3.16) 
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Figure 3.15: Mortality in a 96 h exposure to micro sized (average size < 5000 nm) 

cerium dioxide (n=30, values are means +/- standard error). No significant mortality 

was observed in all treatments when compared to the control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Mortality in a 96 h exposure to nano sized (average size < 25 nm) cerium 

dioxide (n=30, values are means +/- standard error). No significant mortality was 

observed in all treatments when compared to the control. 
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3.3.4.2 Moulting 

 

An exposure to micro sized (average size <5000 nm) CeO2 particles had no 

significant effect at the tested concentrations on the moulting frequency of D. 

magna (Fig. 3.17).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Cumulative moulting in a 96 h exposure to micro sized (average size 

<5000 nm) cerium dioxide (n=30, values are means +/- standard error). No significant 

difference in the cumulative moulting between treatments was observed. 

 

In the exposure to nano sized cerium dioxide (average size <25 nm) there was 

a significant reduction in the cumulative moulting frequency of D. magna for the 

highest concentration of 10 mg/L (Fig. 3.18) from day 3 onwards (p < 0.001) 

when compared to the animals in the other treatments or the control.  
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Figure 3.18: Cumulative moulting in a 96 h exposure to nano sized (average size <25 

nm) cerium dioxide (n= 30, values are means +/- standard error, * indicates a result 

with p ≤ 0.05).  

 

3.3.4.3 Length measurement 

 

Due to an obvious length difference in the exposed animals, the animals were 

measured as described in section 3.2.2. A significant reduction was observed in 

the size of D. magna after 96 h for micro-sized CeO2 (0.01 mg/L p = 0.008) and 

nano-sized CeO2 (0.01 mg/L p = 0.003 and 10 mg/l p < 0.001), when compared 

to the control treatment (Fig. 3.19). The 10 mg/L nano exposure also induced a 

significant decrease in animal size compared to all other treatments (p < 0.001). 
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Figure 3.19: Size measurement to determine growth after a 96 h exposure to nano 

(average size <25 nm) and micro (average size <5000 nm) sized cerium dioxide (micro 

0.01 mg/L; 0.1 mg/L; 10 mg/L and nano 0.1 mg/L; 10 mg/L n= 28; micro 1 mg/L n= 27; 

nano 1 mg/L n= 25; nano 0.01 mg/L n= 24; pooled control from nano and micro 

exposure n= 32, values are means +/- standard error, * indicates a result with p ≤ 

0.05).  
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test was repeated twice. No significant mortality was observed when the 

treatments were compared to the control. 
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Figure 3.20: Mortality in a 96 h exposure to nano sized (average size < 25 nm) cerium 

dioxide (n= 20, values are means +/- standard error).  
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the exposure to micro sized silver already on the first day, when compared to 

the control (p < 0.001) (Fig. 3.21). On day four, the animals exposed to 0.1 mg/L 

of micro sized silver showed significant higher mortality than the control 

treatment as well (p = 0.038). 
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Figure 3.21: Mortality in a 96 h exposure to micro sized (average size 600-1600 nm) 

silver (n=30, values are means +/- standard error, * indicates a result with p ≤ 0.05). 

Since the data had no homogenous variances, a non parametric post hoc test was 

used. 

 

 

The nano silver exposure resulted in higher mortality than the micro silver 

exposure (Fig. 3.22). Significant mortality was observed in the 1 mg/L and 10 

mg/L (p < 0.001) and the 0.1 mg/L (p = 0.038) treatments already on the first 

day when compared to the control. 

 

                                                   

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Mortality in a 96 h exposure to nano sized (average size 35 nm) silver (n= 

30, values are means +/- standard error, * indicates a result with p ≤ 0.05). Since the 

data had no homogenous variances, a non parametric post hoc test was used. 
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3.3.5.2 Moulting 

 

The assessment of cumulative moulting in exposures to silver micro and nano 

sized particles was heavily influenced by mortality. The animals in the 10 mg/L 

treatment reached 100% mortality in the micro sized silver exposures, in less 

than 24 h and could therefore not be assessed. No other significant differences 

could be observed in the silver micro particle exposures, when compared to the 

control (Fig. 3.23). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23: Cumulative moulting in a 96 h exposure to micro sized (average size 600-

1600 nm) silver (n=30, values are means +/- standard error).  
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assessed. The 1 mg/L treatment had 93% mortality after 24 h and 100% 

mortality after 48 h. The animals surviving the first 24 h in this treatment did not 

moult. No other significant differences could be observed, when compared to 

the control. 
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Figure 3.24: Cumulative moulting in a 96 h exposure to nano sized (average size 35 

nm) silver (n= 30, values are means +/- standard error).  
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h. 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

control 0.01 0.1 1 10

mg/l

c
u

m
u

la
ti

v
e
 m

o
u

lt
in

g
 (

%
)

Day 1 Day 2 Day 3 Day 4



 55

* 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25: Size measurement to determine growth after a 96 h exposure to nano 

(average size 35 nm) and micro (average size 600-1600 nm) sized silver (micro 0.01 

mg/L n= 27; 0.1 mg/L n= 26; 1 mg/L n= 6 and nano 0.1 mg/L n= 12; 0.01 mg/L n= 28; 

pooled control from nano and micro exposure n= 34; values are means +/- standard 

error, * indicates a result with p ≤ 0.05). 
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3.3.6.2 Moulting 

 

The moulting frequency was analyzed as cumulative moulting over the duration 

of 21 days. In the exposure to micro sized carbon black (Fig. 3.26) it was 

observed, that there was no difference in cumulative moulting of D. magna 

between the various concentrations. The same is true for the exposure to nano 

sized carbon black (Fig. 3.27). No significant reduction in the cumulative 

moulting between treatments was observed on day 21, although animals in the 

2 mg/L treatment showed significant lower cumulative moulting than the control 

on day 5, 8 and day 11 (p< 0.05). Nevertheless, it reaches approximately the 

same number of moults after 21 days and the differences at the end of the 

experiment were not found to be significant. 

 

 

 

Figure 3.26: Cumulative moulting in a 21 day exposure to micro sized (average size 

260 nm) carbon black (n= 10 per treatment). No significant reduction in the cumulative 

moulting between treatments was observed. 
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Figure 3.27: Cumulative moulting in a 21 day exposure to nano sized (average size 14 

nm) carbon black (n= 10, per treatment). Since the data had no homogenous 

variances, a non parametric post hoc test was used. 

 

3.3.6.3 Length measurement 
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was recorded for animals in the 0.1 mg/L or 0.5 mg/L treatments. 
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Figure 3.28: Size measurement to determine growth after a 21 day exposure to micro 

(average size 260 nm) sized carbon black (control, 1 mg/L and 0.5 mg/L n= 10; 0.1 

mg/L, 2 mg/L n= 8; values are means +/- standard error).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29: Size measurement to determine growth after a 21 day exposure to nano 

(average size 14 nm) sized carbon black (control n= 8, 1 mg/L and 0.5 mg/L n= 9; 0.1 

mg/L, 2 mg/L n= 10; values are means +/- standard error, * indicates a result with p ≤ 

0.05).  

 

 

 

 

0

0.5

1

1.5

2

2.5

3

Control 0.1 mg/l 0.5 mg/l 1 mg/l 2 mg/l

Exposure concentration

Le
ng

th
 [m

m
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Control 0.1 mg/l 0.5 mg/l 1 mg/l 2 mg/l

Exposure Concentration

Le
ng

th
 (m

m
)

* 
* 



 59

3.3.6.4 Offspring 

 

The assessment of effects on offspring was done by counting released 

neonates in the different replicates. This gave a good indicator of influence of 

exposures to particles on fertility. The value measured was the quantity of 

offspring as well as the time point of release. This was done to enable the 

assessment of differences not only at the end, but also during the exposure. 

The treatments were compared by a one way ANOVA with the single animal in 

the replicates of a treatment as data points. A Tukey post hoc test was carried 

out for multiple comparisons of means if the variances of the residuals were 

homogenous, otherwise a Games-Howell post hoc test was used for the same 

purpose. 

 

The exposure to micro sized carbon black revealed no significant difference in 

cumulative offspring production between the different treatments (Fig. 3.30). 

Although the graph indicates that animals in some treatments seemed to start 

producing offspring later than the control, this was not found to be significantly 

different at any time. In the exposure to the nano sized particles (Fig. 3.31), the 

animals treated with the highest concentration of 2 mg/L did not reproduce 

through the duration of the experiment. From day 18 to day 21 the animals in the 

1 mg/L treatment produced significantly lower numbers of offspring than 

animals in the control (p < 0.05). It has to be noted, that the number of offspring 

produced by animals in the control treatment of the nano exposure was higher 

than the ones produced by animals in the control of the micro exposure. 
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Figure 3.30: Cumulative offspring during a 21 day exposure to micro sized carbon 

black (average size 260 nm). No significant difference between the treatments was 

observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31: Cumulative offspring during a 21 day exposure to nano sized carbon 

black(average size 14 nm). Since the data had no homogenous variances, a non 

parametric post hoc test was used (* indicates a result with p ≤ 0.05). 

 

Control 0.1 mg/l 0.5 mg/l 1 mg/l 2 mg/l

Control 0.1 mg/l 0.5 mg/l 1 mg/l 2 mg/l

* 

0

100

200

300

400

500

600

700

Day
 1

Day
 3

Day
 5

Day
 7

Day
 9

Day
 11

Day
 13

Day
 15

Day
 17

Day
 19

Day
 21

Exposure Time

C
um

ul
at

iv
e 

O
ffs

pr
in

g 
%

0
100
200
300
400
500
600
700

Day
 1

Day
 3

Day
 5

Day
 7

Day
 9

Day
 11

Day
 13

Day
 15

Day
 17

Day
 19

Day
 21

Exposure Time

C
um

ul
at

iv
e 

O
ffs

pr
in

g 
%



 61

3.3.7 Chronic 21 day exposure to micro and nano sized cerium 

dioxide 

 

Since there was no mortality observed in the acute 96 h tests to cerium dioxide 

(see section 3.3.4.1), the same concentrations were chosen for the chronic 21 

day test. The concentrations were 10 mg/L, 3 mg/L, 1 mg/L and 0.1 mg/L. 

 

3.3.7.1 Mortality 

 

As for the 96 h studies, exposures to micro sized cerium resulted in no 

significant mortality over the 21 day exposure period (Fig. 3.32). The 3 mg/L 

treatment showed 30% mortality after day 16 but this was not statistically 

significant (p= 0.06) when compared to the control or the other treatments. The 

21 day exposure to nano sized cerium dioxide showed a different pattern of 

mortality (Fig. 3.33). The treatment with the highest concentration, the 10 mg/L 

treatment showed significant mortality of D. magna after day 5 (p= 0.05) when 

compared to the control or the other treatments and the mortality increased on 

the following day, to reach a 100 % at day 7. All other treatments with lower 

concentrations showed no mortality. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32: Mortality in a 21 day exposure to micro sized (average size <5000 nm) 

cerium dioxide (n= 10).  
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Figure 3.33: Mortality in a 21 day exposure to nano sized (average size <25 nm) 

cerium dioxide (n= 10) (* indicates a result with p ≤ 0.05).  

 

3.3.7.2 Moulting 

 

The results of the assessment of cumulative moulting of animals exposed to 

cerium dioxide micro- and nanoparticles looked similar to the results of the 

mortality experiments. No significant difference between the treatments was 

observed in the exposure to micro sized cerium dioxide (Fig. 3.34). In the nano 

exposure to cerium dioxide, there was an effect on moulting of D. magna 

visible in the treatment with 10 mg/L, which also showed mortality (Fig. 3.35). 

Animals in the 10 mg/L treatment had from day 4 onward a significantly reduced 

cumulative moulting (p= 0.002) when compared to the control. The cumulative 

moulting could just be assessed until day 7, due to 100% mortality following 

this time point. Cumulative moulting, at day 4, was found to be more sensitive 

than mortality in detecting changes due to exposure. 
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Figure 3.34: Cumulative moulting in a 21 day exposure to micro sized (average size 

<5000 nm) cerium dioxide (n= 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35: Cumulative moulting in a 21 day exposure to nano sized (average size 

<25 nm) cerium dioxide (n= 10) (* indicates a result with p ≤ 0.05).  
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3.3.7.3 Length measurement 

 

The assessment of growth after the 21 day exposures to cerium dioxide showed 

that neither the micro sized particles (Fig. 3.36) nor the nano sized particles 

(Fig. 3.37) had any significant effect on growth in the exposure period. The 10 

mg/L treatment in the nano exposure to cerium dioxide could not be assessed, 

due to 100% mortality at day 7. 

 

 

 

 

 

 

 

 

 

 

Figure 3.36: Size measurement to determine growth after a 21 day exposure to micro 

(average size <5000 nm) sized cerium dioxide (control, n= 10; 0.1 mg/L and 1 mg/L n= 

9; 3 mg/L and 10 mg/L n= 7; values are means +/- standard error).  

 

 

 

 

 

 

 

 

 

 

Figure 3.37: Size measurement to determine growth after a 21 day exposure to nano 

(average size <25 nm) sized cerium dioxide (1 mg/L n= 10; control and 3 mg/L n= 9; 

0.1 mg/L n= 8; values are means +/- standard error).  
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3.3.7.4 Offspring 

 

The assessment of offspring after the 21 day exposures to cerium dioxide 

showed, similarly to moulting, that neither the micro sized particles (Fig. 3.38) 

nor the nano sized particles (Fig. 3.39) had any significant effect on fertility of D. 

magna in the exposure period. The 10 mg/L treatment in the nano exposure to 

cerium dioxide could not be assessed, due to 100% mortality at day 7 before 

any offspring was produced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: Cumulative offspring during a 21 day exposure to micro (average size <25 

nm) sized cerium dioxide (n= 10).  
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Figure 3.39: Cumulative offspring during a 21 day exposure to nano sized (average 

size <25 nm) cerium dioxide (n= 10).  

 

 

3.3.8 Chronic 21 day exposure to micro and nano sized silver 
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the acute tests, due to the goal to study sub lethal endpoints, as described 

above. These were 0.05 mg/L, 0.01 mg/L, 0.005 mg/L and 0.001 mg/L for both 

sized particles (600-1600 nm and 35 nm).  
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Figure 3.40: Mortality in a 21 day exposure to micro sized (average size 600-1600 nm) 

silver (n= 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41: Mortality in a 21 day exposure to nano sized (average size 35 nm) silver 

(n= 10).  
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significantly lower on day 21 (p = 0.023). No significant reduction in moulting of 

D. magna was observed in the nanoparticle exposure to silver (Fig. 3.43).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.42: Cumulative moulting in a 21 day exposure to micro sized (average size 

600-1600 nm) silver (n= 10) (* indicates a result with p ≤ 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.43: Cumulative moulting in a 21 day exposure to nano sized (average size 35 

nm) silver (n= 10).  
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carapace still intact, while a new one had build underneath (Fig. 3.44). This 

specific animal had released neonates 4 days earlier and failed to moult. 

 

 
Figure 3.44: Moulting affected at an exposure to nano sized silver  

(average size 35 nm) at a concentration of 0.001mg/L after 21 days 
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The length measurement after the exposure to micro silver showed no 
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nano silver resulted in the 0.001 mg/L treatment showing a significant increase 

in growth when compared to the control (p = 0.05), the 0.005 mg/L and 0.01 

mg/L treatment (p = 0.01) (Fig. 3.46). Comparing the 0.001 mg/L to the 0.05 

mg/L treatment indicated no significant difference (p = 0.061). 
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Figure 3.45: Size measurement to determine growth after a 21 day exposure to micro 

(average size 600-1600 nm) sized silver (control, 0.001 mg/L, 0.01 mg/L and 0.005 

mg/L n= 9; 0.005 mg/L n= 8; values are means +/- standard error).  

 

 

 

 

 

 

 

 

 

 

Figure 3.46: Size measurement to determine growth after a 21 day exposure to nano 

(average size 35 nm) sized silver (control and 0.005 mg/L n= 10; 0.01 mg/L and 0.05 

mg/L n= 8; 0.001 mg/L n= 7; values are means +/- standard error, * indicates a result 

with p ≤ 0.05).  

 

3.3.8.4 Offspring 
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showed concentration-dependent decreases in offspring number in both 
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the 0.05mg/L treatment generated significantly less offspring than the animals 
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0.05) (Fig. 3.47). In the nano exposures (Fig. 3.48), the organisms exposed to 

0.01 mg/L and 0.05 mg/L produced significantly less offspring than the control 

from day 19 onwards (p < 0.05). Although the 0.001 mg/L group also had much 

less offspring than the control, this difference was not found to be significant (p 

= 0.062 on day 21). 

 

 

 

 

 

 

 

 

 

 

Figure 3.47: Cumulative offspring during a 21 day exposure to micro sized (average 

size 600-1600 nm) silver (n= 10) (* indicates a result with p ≤ 0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.48: Cumulative offspring during a 21 day exposure to nano sized (average 

size 35 nm) silver (n= 10) (* indicates a result with p ≤ 0.05).  
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3.3.9 Modelling the effects of nanoparticle exposure 

 

In the subsequent models, the abbreviation Conc is used for Concentration in 

[mg/L]. Time is given in Days, since the measurement was made in all 

experiments on a daily basis. The p -value underneath each constant indicates 

the significance level of this specific constant in the model. The pequation -value 

indicates if regressions carried out were found to be statistically significant. R2 

is the unadjusted square of the multiple correlation coefficients, and is a 

measure of the fit of the model. The t –value is the value of the t- distribution. 

The absolute number of this value gives an indication of the precision of the 

specific constant in the model. The higher the value, the more precisely does 

the constant reflect the relationship between measured values and the model. A 

t- value below 2 with the number of data points used here generally means that 

the constant does not contribute to the model (See table for t- distribution in 

(Box et al., 2005)). The numerical values in the equation are regression 

coefficients and give with their algebraic sign the direction and with their 

absolute value the strength of their interaction. 

 

3.3.9.1 Mortality 

 

Modelling mortality of D. magna exposed for 96 h to micro sized carbon black 

delivers the following equation: 

 

(9)                            Ln(%Survival) = 4.598 – 0.001*Conc*Day 

                                p < 0.001  p = 0.013 

                        t-Values          (749.2)   (-2.7) 

       R2 = 0.250   F(1,22) = 7.3     pequation = 0.013 

 

A significant effect of the concentration and exposure time of micro sized 

carbon black was observed on survival. However, with a coefficient of 0.001 this 

effect was found to be very weak. 

 

For nano sized carbon black the equation is: 

 

(10)                          Ln(%Survival) = 4.910 – 0.186*Conc*Day 
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                                           p < 0.001  p < 0.001 

              t-Values           (12.0)   (-5.7) 

       R2 = 0.598   F(1,22) = 32.7   pequation < 0.001 

 

The equation indicates a significant negative effect of concentration and time on 

D. magna survival exposed to nano sized carbon black particles, given the 

coefficient value of 0.186 and the negative algebraic sign. 

 

 

Micro sized cerium dioxide and nano sized cerium dioxide yielded the 

equations: 

 

(11)                           Ln(%Survival) = 4.572 – 0.000*Conc*Day 

                                       p < 0.001  p = 0.131 

              t-Values         (1057.1)   (-1.6) 

         R2 = 0.122   F(1,18) = 2.5  pequation = 0.131 

 

for micro sized cerium dioxide and 

 

(12)                          Ln(%Survival) = 4.564 – 0.001*Conc*Day 

                                                   p < 0.001  p = 0.210 

              t-Values          (393.4)   (-1.3) 

       R2 = 0.086   F(1,18) = 1.7  pequation = 0.210 

 

for nano sized cerium dioxide. Due to very low mortality in both exposures over 

the duration of 96 h the model fit is not very good and the effects of exposure 

are very low or none existent. 

 

Exposure to micro sized silver shows a much stronger influence of particle 

concentration on mortality: 

 

(13)                         Ln(%Survival) = 4.595 – 0.485*Conc*Day 

                                                   p < 0.001  p < 0.001 

              t-Values          (94.6)   (-13.7) 

       R2 = 0.931   F(1,14) = 188.6   pequation < 0.001 



 74

 

With nano sized silver having the strongest effect: 

 

(14)                          Ln(%Survival) = 4.502 – 2.813*Conc*Day 

                                                  p < 0.001  p < 0.001 

              t-Values          (13.9)   (-11.9) 

       R2 = 0.911   F(1,14) = 142.6     pequation < 0.001 

 

Both models showed a significant effect of concentration and exposure time on 

survival. The coefficients obtained showed that the decrease in survival due to 

nano sized silver particles was much stronger than the decrease in survival due 

to micro sized silver particles. 

 

 

Since mortality in the chronic 21 day, exposures was generally low no model 

could be fitted to those data. 

 

3.3.9.2 Moulting 

 
The same modelling approach was followed using moulting data obtained 

during the exposures. Modelling moulting of D. magna exposed to micro sized 

carbon black resulted in the following equations: 

 

(15)                Cumulative(%moult) = 64.075*Day + 0.239*Conc*Day 

                                                          p < 0.001  p = 0.319 

       t-Values             (59.68)            (1.02) 

      R2 = 0.996      F(2,22) = 2766.8    pequation < 0.001 

 

Although the formula suggests a beneficial effect on moulting (increased 

moulting, since the coefficient sign is positive) due to exposure to micro sized 

carbon black, the t- value associated with the second coefficient of 1.02 and its 

p = 0.319 indicate that the interaction of concentration and time do not play a 

significant role. 
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For nano sized carbon black the interaction seems to be much stronger, 

showing that the exposure resulted in a decrease in moulting of the animals with 

a significant negative effect of concentration and day obtained: 

 

(16)                    Cumulative(%moult) = 62.682*Day – 5.515*Conc*Day 

                                                          p < 0.001    p < 0.001 

           t-Values             (34.12)        (-10.41) 

    R2 = 0.984     F(2,20) = 603.4  pequation < 0.001 

 

Micro sized cerium dioxide has a similar effect on cumulative moulting as micro 

sized carbon black: 

 

(17)                      Cumulative(%moult) = 51.188*Day + 0.323*Conc*Day 

                                                             p < 0.001       p = 0.306 

           t-Values             (37.10)            (1.05) 

    R2 = 0.990      F(2,18) = 937.2  pequation < 0.001 

 

The formula also suggests a beneficial effect on moulting but as in micro sized 

carbon black, the t-value of 1.05 and the p- value of p = 0.306 suggest that 

moulting was not significantly affected by the exposure to micro sized cerium 

dioxide. 

 

 In contrast to the mortality results obtained after exposure to nano sized cerium 

dioxide, a negative effect can be seen on moulting during a 96 h exposure time 

to nano sized cerium dioxide: 

 

(18)                   Cumulative(%moult) = 50.612*Day – 1.690*Conc*Day 

                                                         p < 0.001       p < 0.001 

           t-Values           (49.60)            (7.44) 

    R2 = 0.994    F(2,18) = 1423.2    pequation < 0.001 

 

As with mortality, the strongest effect on cumulative moulting can be seen after 

exposures to silver. Micro sized silver exposures resulted in comparable effects 

to nano sized carbon black: 
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(19)               Cumulative(%moult) = 51.982*Day – 7.323*Conc*Day 

                                                      p < 0.001      p = 0.001 

           t-Values         (55.83)          (-3.95) 

    R2 = 0.997    F(2,14) = 2078.2  pequation < 0.001 

 

Nano sized silver had, like in mortality, the strongest overall effect on 

cumulative moulting when compared to the other particles: 

 

(20)               Cumulative(%moult) = 51.630*Day - 91.12*Conc*Day 

                                                       p < 0.001    p = 0.002 

           t-Values            (41.53)          (-4.25) 

    R2 = 0.996    F(2,10) = 1265.0  pequation < 0.001 

 

Due to an absence of significant changes, only changes in moulting due to nano 

sized carbon black and nano sized cerium dioxide (until day 6 of exposure)were 

modelled. 

 

For nano sized carbon black in a 21 day exposure the interaction seemed to be 

less strong than for the 96 h exposure: 

 

(21)                Cumulative(%moult) = 40.093*Day – 1.463*Conc*Day 

                                                        p < 0.001     p = 0.029 

         t-Values             (59.12)          (-2.21) 

    R2 = 0.984    F(2,103) = 3269.2  pequation < 0.001 

 

For nano sized cerium dioxide values similar to the 96 h exposure were 

obtained. Here cumulative moulting was modelled until day six, the day before 

the highest treatment showed 100% mortality, and this resulted in the following 

equation: 

 

(22)              Cumulative(%moult) = 58.909*Day – 1.939*Conc*Day 

                               p < 0.001         p < 0.001 

           t-Values             (41.59)        (-6.42) 

    R2 = 0.988    F(2,28) = 1135.4   pequation < 0.001 
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3.3.9.3 Offspring 

 

The model for micro sized carbon black showed, like the model for moulting, a 

beneficiary effect for cumulative offspring when exposed for 21 days: 

 

(23)     Cumulative(%offspring) = - 434.212 + 38.686*Day + 1.159*Conc*Day 

                                        p < 0.001    p < 0.001    p = 0.005 

      t-Values        (-20.37)     (28.18)         (2.90) 

    R2 = 0.939        F(2,57) = 437.6   pequation < 0.001 

 

For nano sized carbon black it showed a negative interaction indicating a 

decrease in offspring due to exposure: 

 

(24)    Cumulative(%offspring) = - 331.098 + 42.732*Day – 10.901*Conc*Day 

                                        p < 0.001   p < 0.001     p < 0.001 

            t-Values          (-7.52)     (14.93)         (-13.09) 

    R2 = 0.851       F(2,57) = 163.4     pequation < 0.001 

 

Exposure to micro sized cerium dioxide induced a small, negative but with p = 

0.127 not significant interaction with the equation of the cumulative offspring 

from D. magna: 

 

(25)   Cumulative(%offspring) = - 1824.950 + 167.624*Day – 0.539*Conc*Day 

                                        p < 0.001    p < 0.001      p = 0.127 

                t-Values       (-19.14)     (27.55)            (1.55) 

    R2 = 0.931       F(2,57) = 383.7    pequation < 0.001 

 

Nano sized cerium dioxide showed a small positive effect on cumulative 

offspring due to concentration and time, but also, as in equation 25, not 

significant: 

 

(26)   Cumulative(%offspring) = - 1703.171+ 154.329*Day + 0.270*Conc*Day 

                                        p < 0.001    p < 0.001       p = 0.8 

              t-Values       (-18.24)      (25.80)              (0.25) 

    R2 = 0.939       F(2,45) = 345.5     pequation < 0.001 
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As for mortality and moulting, the effects on offspring were strongest when 

exposed to silver. Exposure to micro sized silver seemed to have a strong 

negative effect on offspring production: 

 

(27)   Cumulative(%offspring) = - 254.656 + 23.970*Day – 101.823*Conc*Day 

                                        p < 0.001    p < 0.001    p < 0.001 

             t-Values       (-10.61)     (15.67)            (-5.80) 

    R2 = 0.819       F(2,57) = 128.77    pequation < 0.001 

 

Nano sized silver still causeds the strongest effect on the cumulative number of 

offspring of D. magna but it was not much stronger than micro sized silver: 

 

(28)   Cumulative(%offspring) = - 210.933 + 20.209*Day – 113.705*Conc*Day 

                                        p < 0.001    p < 0.001    p < 0.001 

            t-Values       (-5.74)     (8.63)            (-4.23) 

    R2 = 0.594       F(2,57) = 41.6    pequation < 0.001 

 

A comparison of the constant before the interaction term Conc*Day permits 

predictions about the significance and magnitude of the effects of the different 

particles but also on the impacts of different particle sizes on the various 

endpoints. 

 

Table 3.1 shows that the particles can be ranked in their toxicity with cerium 

dioxide having nearly no negative effect on the endpoints tested, ranging to 

silver having very strong effects in all endpoints observed. It can also be 

concluded that particle size contributes to toxicity, micro sized particles only 

showed adverse effects in case of the silver while nano sized particles showed 

negative effects for all endpoints in the case of silver and carbon black and at 

least in one endpoint, moulting, for cerium dioxide.  
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Table 3.1: List of constants obtained by linear or logarithmic regression of test results 

from exposures of D. magna to different particles in the nano or micro range. Constants 

in red show values not significant in the equation. 

Endpoint Particle Constant 

Mortality Carbon black micro – 0.001 

 Carbon black nano – 0.186 

 Cerium dioxide micro – 0.000 

 Cerium dioxide nano – 0.001 

 Silver micro – 0.485 

 Silver nano – 2.813 

Moulting Carbon black micro + 0.239 

 Carbon black nano – 5.515 

 Cerium dioxide micro + 0.323 

 Cerium dioxide nano – 1.690 

 Silver micro – 7.323 

 Silver nano - 91.12 

 Carbon black nano 21 days – 1.463 

 Cerium dioxide nano 6 days – 1.939 

Offspring Carbon black micro + 1.159 

 Carbon black nano – 10.901 

 Cerium dioxide micro – 0.539 

 Cerium dioxide nano + 0.270 

 Silver micro – 101.823 

 Silver nano – 113.705 
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3.4 Discussion 

 

 

3.4.1 Acute 48h toxicity tests 

 
Although mortality is the key endpoint in acute toxicity tests with D. magna, no 

significant mortality was observed in the concentrations tested during this study 

for neither NP carbon black nor NP TiO2. This is consistent with another study 

which has investigated NP TiO2 (Lovern and Klaper, 2006) and suggests that 

NP TiO2 and most likely NP carbon black both have a low acute toxicity. 

Mortality observed in the here presented study occurred only in the highest 

concentration (100 mg/L) and seemed to be caused by the particles covering 

the entire animal thereby reducing their mobility. However, it has been proposed 

that predicted exposure concentrations in the water for titanium dioxide are 

rather in the low µg/L range (Boxall et al., 2007), so the tested concentrations 

for this particle may be irrelevant or most likely would just appear near heavily 

contaminated sites (e.g. slude dumping sites). Similar predictions for carbon 

black NP could not be obtained. 

 

It was also observed that both nanoparticles were readily ingested and 

accumulated in the gut within 30 minutes. If there was a translocation of the 

tested particles through the gut wall barrier into the body cavity this could not be 

determined by light microscopy due to the resolution of the microscope, but 

also the titanium dioxide and carbon black covered the carapace and therefore 

hindering, even after washing, the detection of particles underneath the 

carapace. In the case of titanium dioxide, studying the uptake and translocation 

via stable isotope tracing could be a possibility (Gulson and Wong, 2006). For 

silver and cerium dioxide neutron activation and detection by gamma 

spectroscopy or autoradiography, could be a promising approach (Oughton et 

al., 2008). Verification through transmission electron microscopy might be 

difficult with the particles used in this study due to a low contrast and 

presumably low concentrations in the observed slides. 
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Moulting frequency was increased at higher concentrations for TiO2 in a dose 

dependent manner as demonstrated by the count of the cumulative moulting 

frequency. The cumulative moulting frequency at 100 mg/L of TiO2 was very 

high in the first 24 h, but was reduced in the second 24 h. This was 

accompanied by the first occurrence of mortality and could mean that moulting 

is an important line of defence for D. magna in the attempt to get rid of particles 

that restrict their fitness. In contrast, Oberdörster et al. (2006) reported that 

moulting decreased with exposure to fullerenes at concentrations of 2.5 and 5 

mg/L. A change in the moulting frequency can lower the number of offspring 

since release of the neonates out of the broodpouch and moulting concur 

(Oberdörster et al., 2006). With an increased moulting frequency, as observed 

in this study, the production of neonates could be reduced and the energy 

rather invested in the production of a new carapace or the neonates released 

prematurely, lowering the survival of the offspring. The uptake of nanoparticles 

in the gut could mean decreased uptake of food particles and increased 

potential for nanoparticle crossing membranes and entering the body cavity. 

The form in which nanoparticles are taken up, as agglomerates or single 

particles, and their behaviour in the intestinal tract needs to be studied further. 

In order to improve the assessment of the moulting frequency, single animals 

were exposed individually in smaller exposure chambers. This study also 

demonstrated the difficulties associated with assessing moulting during 

exposures to NP carbon black (data not shown) since agglomerates in 

suspension make the detection of shed carapaces hard. 

 

 

3.4.2 Chronic 10 day toxicity tests 

 

The conclusions for acute toxicity tests are also true for the chronic tests. 

Mortality was observed in relatively low concentrations (1 mg/L) of NP carbon 

black, starting after 48 h after the beginning of exposure. This is the time point 

at which most acute toxicity tests for nanoparticles in the literature end. This 

could mean that any delayed toxicity of nanoparticles would make it necessary 

to assess these data again with a longer duration, for example 96 h. Animals 

exposed to 1 mg/L of NP carbon black showed a clear dose dependent 

response regarding mortality, while animals exposed to 0.1 mg/L showed 
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mortality from day 3 to day 5. Then mortality returned to zero. This could be a 

sign of acclimatization, adaptation or selective survival to the particle exposure. 

The assessment of the moulting frequency suggests that it is elevated at the 1 

mg/L treatment at day one and two. In the cumulative moulting frequency the 

animals in the 0.1 mg/L treatment also showed an elevated cumulative moulting 

frequency but studying the day to day data shows that this is due to the 

elevated moults in day one and six. Otherwise the pattern followed the control 

and 0.001 mg/L treatments. The length measurement data show no difference 

between the remaining animals from the different treatments. This could either 

be because treatment with nanoparticles has no effect on growth, or the 

animals affected experienced mortality rather than reduced growth. It is also 

possible that the exposure period was not sufficient. This needs to be further 

investigated by expanding it to a 21 day instead of a 10 day test. No released 

offspring were detected, although in most cases embryos in the broodpouch 

could be observed. As with the length assessment, longer test duration would 

be advisable to give the animals time to produce successive broods.  

 

3.4.3 Acute 96 h tests 

 

The three tested materials showed differences in mortality between the different 

particles as well as between the different sizes tested. While animals exposed 

to cerium dioxide showed no significant mortality in 96 h at the tested 

concentration and sizes, animals exposed to silver showed high mortality at 

very early time points for nano sized particles as well as their micro sized 

counterpart. Carbon black seems to be intermediary concerning toxicity 

between the two other particles. Carbon black also showed the biggest 

difference in mortality when the different sized particles were compared at the 

same mass dose. While micro sized carbon black induced no significant 

mortality, significant mortality can be seen at exposures to nano sized carbon 

black at the same mass dose.  

 

The high mortality in the silver nano as well as the silver micro exposures could 

be an indication that a second mode of toxicity, such as the release of free 

silver ions might be also responsible for the observed toxicity. Navarro et al. 

(2008) also indicated the importance of free silver ions as a major source of 
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toxicity in their studies of nanoparticulate silver. In their study the inhibition of 

silver nanoparticles and AgNO3 on photosynthetic rates of Chlamidomonas 

reinhardtii were measured and compared. It was concluded that free Ag+ ions 

present in the media were responsible for observed decreases in photosynthetic 

activity on treatment with both, Ag nanoparticles and AgNO3. The silver 

nanoparticles though showed an effect that could not be explained solely by 

free ions in the media. Navarro et al. (2008) hypothesized, that interactions of 

particles with metabolic products like H2O2 at the surface of the algae could lead 

to oxidation and release of ions. This could explain why exposures to silver micro 

particles resulted in toxicity at lower surface area doses compared to the 

nanoparticle exposed D. magna in the here presented study. Nano and micro 

sized particles would both release silver ions in the media, causing toxicity. Two 

different scenarios would be possible to explain the toxicity seen in the 

exposures. First, toxicity of silver was just dependent on free ions released by 

the two different particles into the media. The higher toxicity of nanoparticles, 

when compared to the micro particles, could be due to the higher surface area 

of the nanoparticles and hence a greater formation of ions. The second 

scenario, in addition to the release of ions, would include an interaction of 

particles with the organism for example by ingestion. Here as well, higher 

surface area or particle number of nano silver, at the same mass dose, could be 

responsible for the increased toxicity observed. Which scenario applied to the 

exposures here, could not be determined. An exposure alongside with cysteine, 

which binds free silver ions, as described in Navarro et al. (2008), could provide 

further clues. A second publication (Miao et al., 2009) attributed toxicity 

observed in exposures of the marine diatom Thalassiosira weissflogii to silver 

nanoparticles solely on free silver ions, with nanoparticulate silver having 

negligible toxic effects. 

 

From the results presented here, a gradient of material toxicity can be drawn, 

with cerium dioxide being the least toxic, to silver being the most toxic. Also a 

size dependent increase in toxicity was observed when significant negative 

effects were observed, with exposures to nano sized particles being more toxic 

than micro sized particles. 
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When studying the cumulative moulting due to nanoparticle and microparticle 

exposure it can be said that this endpoint is more sensitive than mortality. 

Moulting frequency in exposures to nano sized carbon black showed that in the 

two highest concentrations (5 mg/L and 10 mg/L) there was a reduction of 

moulting at day one, even before mortality occurred, and a reduction on day two 

of the 10 mg/L treatment. The micro treatment followed the same pattern as 

described for mortality with no effect observed on moulting at the concentrations 

tested, implying that either no sub lethal stress occurs at the tested 

concentrations, or moulting frequency is not sensitive enough to detect it.  

 

Exposure to cerium dioxide showed no change in moulting frequency of D. magna 

exposed to micro particles, leading to the same conclusions as for the carbon 

black micro treatments. In contrast, the animals in the highest concentration in 

the nano treatment showed a significant reduction in moulting over the tested 

period although no significant mortality occurred. This leads to the conclusion, 

that moulting frequency is a more sensitive endpoint to detect stress than 

mortality on exposure to CeO2. 

 

Looking at growth by measuring the length of animals it can be seen in the case 

of cerium dioxide and silver that effects were observed at the same 

concentrations at which D. magna was already affected in the moulting 

frequency. Additionally, significant reduced growth when compared to the control 

could be seen when D. magna were treated with nanoparticle silver at a 

concentration of 0.1 mg/L. A reduced growth was also observed in D. magna 

that were exposed to 0.01 mg/L of micro and nano sized cerium dioxide 

although no lower moulting frequency or higher mortality occurred at those 

concentrations. A similar incidence of a low concentration having an equal 

effect as a high concentration, with intermediate concentrations not being 

affected, was observed in the chronic, 21 day exposure to nano silver (section 

3.3.8) and will be discussed in section 3.4.4 of this chapter. 

 

A length measurement after 96 h of exposure to carbon black was not 

conducted, since the carbon black exposures were the first to be carried out 

and this endpoint was added after obvious length differences were seen in the 

exposure to micro and nano sized cerium dioxide.  
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3.4.4 Chronic 21 day tests 

 

Although no mortality was observed in the carbon black chronic test, it was 

clearly observed that the organisms exposed to the 2 mg/L nanoparticle 

treatment and, to a lesser degree the 1 mg/L treatment, were subject to stress. 

While cumulative moulting only showed significant reduction in the 2 mg/L 

treatment on certain days and reached approximately the same level of 

moulting after the 21 day exposure period, the reduction in growth and the 

absence of offspring showed that the animals were nevertheless under 

considerable stress. 

 

The chronic tests with cerium dioxide revealed no toxic effects for the 

exposures to micro sized cerium dioxide in a mass dose dependent manner. 

Although mortality was increased in the 3 mg/L treatment, this effect might be 

attributed to experimental reasons rather than effects due to particle exposure 

since the same concentration showed no effect in moulting, growth or offspring. 

The increased mortality might have been the result of some animals floating in 

the beginning of the experiment, therefore being handicapped due to 

prevention of food uptake as a consequence. However, even if the mortality 

was elevated in this treatment, it showed not to be significantly higher than 

mortality of D. magna in the other treatments. 

 

The results from the nano exposure to cerium dioxide confirm effects already 

seen in the acute tests. At a concentration of 10 mg/L the animals showed a 

decreased moulting frequency over the 96 h exposure, as well as reduced 

growth. It seems that a prolonged exposure to this concentration leads to 

mortality. However looking at the results from the high concentration exposure, 

it can be hypothesised that above a threshold concentration, duration of 

exposure is more important than concentration of exposure since no significant 

mortality after 96 h was observed at 50 mg/L of nano sized cerium dioxide. This 

could be explained by the particles interfering with food uptake for example 

rather than having toxic effects by themselves. Animals exposed to carbon 

black, titanium dioxide and cerium dioxide were completely covered when 

exposed to higher concentrations of particles such as 5 mg/L or 10 mg/L (Fig. 

3.4). This would lead to an impaired swimming ability as well as a reduced 
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filtering rate due to the filtering apparatus being clogged up by particles. 

Additionally, suspended particles were taken up readily at even low 

concentrations and accumulated in the gut (Fig. 3.2 and Fig. 3.3).  

 

It is known, that suspended sediment particles like silt and clay can have effects 

in cladocerans on various parameters, like ingestion rate (Kirk, 1991), feeding 

rate, body growth and brood size (Kirk, 1992). But those effects were just 

observed at concentrations as high as 50 mg/L of suspended sediment in water 

(Kirk, 1991, Rellstab and Spaak, 2007). With concentrations below 25 mg/L a 

beneficial effect to fitness of Daphnia species was in fact observed at low food 

concentrations (Rellstab and Spaak, 2007). It was hypothesized, that lower 

concentrations could be beneficial to a certain point due to higher turbidity that 

decreases predatory pressure in natural habitats, or the ability of clay and silt 

particles to reduce the bioavailability of hydrophobic toxicants (Rellstab and 

Spaak, 2007). However, these factors are not applicable to laboratory 

experiments and no significant beneficial effect due to low concentration 

exposures to particles was observed. The reasons given for a reduction of 

fitness were an inhibition of algal feeding rate due to a decreased ingestion rate 

(Kirk, 1991), since nutritional algal cells often get rejected accidentally alongside 

clay particles in the filtering process (Kirk, 1992). The high proportion of 

inorganic material in the gut forces the animals to filter more water to obtain 

their required energy (Rellstab and Spaak, 2007). The ingested clay particles, 

that accumulate in the gut, cause the animal to reduce the beating rate of the 

feeding appendages which even further reduces the rate of food collection (Kirk, 

1992). As stated earlier, these studies pointed out that negative effects were not 

observed below 50 mg/L and also the particles used for those assessments had 

a larger mean diameter than the nano sized particles used here. In fact, it was 

even stated, that particles < 1 µm had no inhibitory effect on Daphnia at all 

(Rellstab and Spaak, 2007). While the cerium dioxide micro sized particles with 

< 5 µm fit within the size range that could have adverse effects on fitness of the 

studied species D. magna, the highest concentration seems to be, at 10 mg/L 

not high enough to cause stress in the endpoints observed. The nano sized 

cerium dioxide particles, however, are of a size below 25 nm, which is well 

below the size that should affect the animals. Notwithstanding effects were 

observed at the highest concentration in the acute studies (moulting and 
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growth) as well as the chronic study (mortality). It is possible (in fact, likely), 

that the actual sizes of the nano sized particles suspended in water was, due to 

agglomeration, much higher than the size of the pristine particles and might fall 

in the size of > 1 µm which may lead to the effect of decreased nutrient uptake. 

On the other hand, it might be possible that with cerium dioxide nanoparticles 

other mechanisms unique to nanoparticles take effect. 

 

Chronic exposures to silver showed that this material, even at low 

concentrations for both sized particles, affected fecundity of D. magna. With a 

strongly reduced reproduction rate, a population exposed to even low 

concentrations of µg/L of silver might not be able to sustain itself. Nevertheless, 

it is important to note that exposures to silver in the laboratory may not reflect 

fully results obtained in the field. For example, a study (Gao et al., 2009) 

indicated that toxicity of nano sized silver may be reduced in the presence of 

increased levels of dissolved organic carbon, which is likely to be higher in the 

field than in laboratory exposures. In addition, Luoma (2008) has highlighted 

the importance of silver ligands in the natural environment. 

 

Another remarkable observation for the chronic exposure to silver nanoparticles 

was, that the lowest concentration tested, 0.001 mg/L showed similar trends in 

mortality, growth and fertility as the highest concentration tested. The 0.001 

mg/L nano silver treatment had the highest mortality of D magna in the 

exposure, although this was not significantly higher than the mortality observed 

in the control. Exposed to 0.001 mg/L nano silver, D. magna also experienced a 

lower cumulative moulting rate than animals in the other exposure 

concentrations, except animals in the 0.05 mg/L treatment, but again this effect 

proved to be not significant. Lastly, with p = 0.062, a strong trend towards less 

offspring than the control could be observed for animals exposed to 0.001 mg/L 

nano silver. The growth of the animals was significantly higher for animals 

exposed to 0.001 mg/L nano silver than the control, with animals exposed to 

0.05 mg/L having an increased growth as well when compared to the control, 

although not significant. Increased growth in Daphnia does not necessarily 

mean increased fitness (Rellstab and Spaak, 2007). It can also mean that 

energy was diverted from other activities, for example from reproduction. This 

actually would mean a decrease in fitness, since less offspring would be 
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contributed to the next generation. In contrast, the juvenile growth rate can be 

directly seen as a measure of fitness (Lampert and Trubetskova, 1996, 

Trubetskova and Lampert, 2002), since growth to reach maturity, in order to 

reproduce, is essential. Growth in long term exposures like the chronic 21 day 

exposures has to be set in context with other endpoints like fertility since 

increased growth and decreased fertility could also be a not beneficial effect as 

already mentioned. 

 

The dose response pattern emerging in growth related to exposure to nano 

sized silver particles, was also observed for growth in treatments exposed to 

nano sized cerium dioxide (see Fig. 3.19) and can arguably be ascribed to 

hormesis (Calabrese, 2005, Calabrese and Baldwin, 2003) which was also 

observed by two more recent studies (Barrena et al., 2009, Drobne et al., 2009). 

While here also a U- shaped dose- response occurs when growth after 21 days 

of exposure is plotted against concentration, it is different from hormesis 

because hormesis is generally understood as low- dose stimulation and high- 

dose inhibition (Calabrese and Baldwin, 2003). One explanation for the effects 

seen might be that nano sized particles might be better dispersed at low 

concentrations, due to less particles in the media and less chance of 

agglomeration, and thus higher probably of organism-particle contact.  

 

It was also noted in the 0.001 mg/L and 0.05 mg/L treatments to silver particles 

on several occasions that release of neonates and moulting were occurring 

several days apart. These two processes are normally closely linked. In one 

occasion in the 0.001 mg/L treatment it was observed that one individual had 

the old carapace still intact, while a new one had built underneath (Fig. 3.44). 

This specific animal had released neonates 4 days earlier and failed to moult. It 

is known that metal ions as silver can inhibit Na+ uptake by competing with Na+ 

for the Na+ channels (Bianchini and Wood, 2008, Lam and Wang, 2006). An 

interference of silver ions in the moulting process and a lower Na+ body 

concentration could have those effects, since active Na+ uptake in crustaceans 

is highest immediately before and after the moult, in order to balance the water 

uptake that occurs to allow growth (Zare and Greenaway, 1998). It could even 

be speculated, that the increased growth is a result of the animal taking up 

more water in order to counterbalance the Na+ deficiency and thus grows larger. 
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This uptake of water is an active, drinking like process, and will be discussed 

further in chapter 4. 

 

Estimated environmental concentrations of silver are predicted to be in water at 

0.1 µg if 10% market penetration of nano sized silver in consumer products 

takes place (Boxall et al., 2007). That means if 10% of consumer products like 

fabrics (e.g. clothing), shampoo, soap and toothpaste, for example, that are 

already widely available and sold commercially, include silver nanoparticles. 

This predicted concentration is one tenth of the concentration where 

adverse effects were observed. A 100% marked penetration would exceed 

this concentration (Boxall et al., 2007) and could lead to problems, assuming 

that nanotechnology becomes as established in future to reach this market 

penetration. 

 

3.4.5 Modelling the effects of nanoparticle exposure 

 

The models used for analyzing effects in the short term, 96 h exposures seem 

to fit reasonably well the data obtained. The greater the differences between 

effects induced by different concentrations of the same particle, the better the 

model is able to describe the events. In the case of measurement of mortality in 

the cerium dioxide exposures, where no mortality occured over a wide range of 

concentrations, models will have naturally a lower significance. Still, the factors 

listed in table 3.1 give a good summary of the effects and their respective 

strength. The statement that the different particles can be classified due to their 

toxicity as cerium dioxide, as the least toxic, and silver as the most, are 

confirmed. Moulting and mortality in the chronic tests showed to have less 

influence on the model. In the case of mortality, this poor link was mostly due to 

the lower concentrations used in the exposures and therefore a low 

mortality obtained. This resulted in differences being less significant between 

treatments of different concentrations of particles. 

 

In the case of moulting, the difficulty with modelling these effects lies in the life 

history of D. magna. The animals pass through their whole life cycle in the 

chronic experiments described here. The tests are set up with neonates < 24 h 
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old which, during the experiment, reach maturity and reproduce. D. magna has 

5-6 neonatal instars before it reaches maturity. During those instars, moulting 

frequency is very rapid, often 4-5 times during 6 days. Once the animal 

becomes an adult and starts to reproduce, the moulting frequency reduces to 

once every 3-4 days. Although both situations follow a linear increase of 

cumulative moults, the frequency will be different and a representation by a 

single equation might not be an optimal approach. 

 

A second problem of the models for chronic studies was that the effects seen in 

the 21 day exposure to nano sized silver were similar to both the low and high 

concentrations, with intermediate concentrations not showing any effect. A 

linear model describing an increase or decrease over time for different 

concentrations will underestimate the overall effect if the single effects have a 

U- shaped dose-response. This can be seen in the factors concerning offspring 

generated in the silver nano and silver micro treatments. 

 

It can be concluded from the results shown in this chapter that a gradient of 

toxicity can be drawn from cerium dioxide having a low toxicity at the tested 

concentrations, carbon black an intermediate and silver a high toxicity. 

Furthermore, nano sized particles induced greater effects, when effects were 

observed, than micro sized particles. Toxicity and moulting frequency seems to 

be affected in a surface area dose related pattern with carbon black, while silver 

showed a different mode of toxicity that might be due to Ag+ ions released into 

the media. Long term, chronic exposures showed effects at lower 

concentrations than the short term, acute exposures for all three particles 

tested. Silver nanoparticles in chronic exposures and cerium dioxide micro- and 

nanoparticles showed that growth can be negatively affected at low 

concentrations, while intermediate concentrations showed no effect. Also 

abnormalities in moulting were observed at high as well as low concentrations 

of silver nanoparticles. Both endpoints, growth and moulting, should be an aim 

for future studies, taking low concentrations into account as tested in this work.  
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4. Micro- and nanoparticle uptake by Daphnia 

magna 

 

4.1 Introduction 

 

Due to the small size of a nanoparticle, the active uptake into organisms needs 

to be investigated since the size of particles is contradictory to the feeding 

strategy of the organism. Nevertheless, uptake of NPs has been reported in 

several publications including fullerenes in Daphnia (Oberdörster et al., 2006), 

polystyrene microspheres in medaka (Kashiwada, 2006), gold particles in 

Daphnia (Lovern et al., 2008) and lipid coated carbon nanotubes in Daphnia 

(Roberts et al., 2007). The assessment of uptake is therefore essential as it 

relates to consequences of exposure and dose. 

 

The most likely route of uptake of nanoparticles by D. magna is through 

ingestion, including active selection by the feeding apparatus, as well as 

passive diffusion or uptake alongside larger particles. The maximum diameter of 

particles that can be actively ingested are determined by the size of the animal 

(Burns, 1968), which for a fully grown D. magna can be approximately particles 

with the size of 70 µm and above. The minimum size is believed to be 

dependent on the distances between the setulae on the thoracic limbs of D. 

magna, which is independent from age or size due to the gap being constant 

(Geller and Muller, 1981). Setulae act like a comb and filter particles out of the 

feeding current along the opening of the carapace and channel them to the 

mouth. D. magna is classified as a fine filter feeder (Geller and Muller, 1981) 

which is able to actively filter particles as small as 200 nm, although this is an 

estimate based upon the size/gap between the setulae. Feeding in this 

dimension is not surprising, since D. magna is often reported to feed on bacteria 

that fit within the size range of 200 nm and greater (Hartmann and Kunkel, 

1991, U.S. Environmental Protection Agency (EPA), 2002a). For D. pulicaria, 

free dispersed bacteria are often ingested in the presence of mucus, although 

this mucus is normally absent when the bacteria are attached to bigger algae 
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(Hartmann and Kunkel, 1991). It was even suggested, that Daphnia not only 

feeds by mechanical sieving but also can gather food particles even in the nano 

range by direct interception (Bednarska, 2006, Gerritsen et al., 1988) or by 

drinking the surrounding media to replenish depleted sodium and to facilitate 

digestion (Bianchini and Wood, 2008, Gillis et al., 2005). The direct interception, 

drinking, as NP attached to mucus or as larger particulate matter are all 

possible uptake routes for particles in the nano size range. The appearance of 

ingested matter in the gut is reported to be very rapid after feeding. For 

example, under optimal conditions, the gut has been reported to fill within 30 

min of exposure to a food source (Lotocka, 2001). Approximately 48 min is the 

estimated retention period of a food particle within the gut before defecation 

(McMahon and Rigler, 1965). 

 

Once ingested, food particles are digested, and nutrients are transported across 

the epithelial lining of the digestive tract. The midgut region, which is lined with 

differentiated columnar epithelial cells, is especially responsible for both 

enzyme excretion and absorption of digested food (DeCoen and Janssen, 

1997). The epithelium has a well-developed apical brush border and shows 

endocytotic activity at the base of the apical microvilli and heterophagic 

vacuoles (Bodar et al., 1990). Large spherical storage cells are scattered along 

the digestive tract with the largest concentration in the abdominal part of the 

animal near the posterior curve of the digestive tract (Bodar et al., 1990). These 

storage cells contain lipids such as triacylglycerol (Goulden and Hornig, 1980) 

and large amounts of glycogen (Bodar et al., 1990). The amount of lipid storage 

cells accumulated can be seen as a fitness parameter, since lipids are utilised 

in periods of low ambient food resources (Goulden and Hornig, 1980, Holm and 

Shapiro, 1984). The storage cells are also the site of synthesis of vitellogenin, 

which is then carried by the haemolymph to the ovaries where it forms yolk 

globules (Bodar et al., 1990). The storage cells are separated from the 

surrounding haemolymph by a folded plasma membrane. 

 

Such storage droplets are not just found in Daphnia, but also in other 

invertebrates such as copepods (van Der Veen, 2005). An uptake of 

polystyrene fluorescent nanoparticle was observed into the oil droplets of eggs 

and the yolk area of medaka (Oryzias latipes), but also in various other organs, 
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most notably in the gills and intestines by Kashiwada (2006). This study aims to 

investigate such translocation in D. magna. 

 

D. magna neonates, before hatching, also have a risk of being exposed to 

nanomaterials, if the adult happen to be in contaminated medium during the 

development of the embryo. To prevent low oxygen situations for the embryos, 

D. magna produces a flow of ambient media, diverted from the feeding flow by 

the abdomen of the animal. This water enters the brood chamber at the 

posterior end and flows to the anterior end before entering the ventral carapace 

chamber (Seidl et al., 2002). In this way nanomaterials could be present in the 

feeding current of the unhatched neonates and could expose them to elevated 

levels or even disturb their development. 

 

A different way in which D. magna could be exposed to nanoparticles is via 

coating of the carapace. Although the name “Branchiopoda” suggests, that 

uptake of oxygen mainly happens through the branchial sacs on the thoraic 

limbs, gas exchange also takes place through the carapace surface (Colmorgen 

and Paul, 1995, Pirow et al., 1999). Nanoparticles might be small enough to 

enter into the haemolymph through the same pathway or disrupt the gas 

exchange by clogging up the exchange mechanism, although this mechanism 

has not yet been investigated. 

 

In the present study the qualitative, as well as the quantitative, uptake and fate 

of nanoparticles and larger counterparts were studied using the aquatic 

invertebrate D. magna as a model organism. In the environment, organisms will 

be exposed to a wide range of different particle sizes. To assess size-

dependent uptake, uniform sized particles were used to view uptake as a 

function of size. The particles studied were carboxylated fluorescent polystyrene 

beads of two different sizes; 20 and 1000 nm. These were used as model 

particles because they are well characterized (Colmorgen and Paul, 1995, 

Kolodny et al., 2001, Kulkarni et al., 2005, Pirow et al., 1999) and the nano-form 

has been shown to induce inflammation in animal models (Brown et al., 2001), 

and to produce pro-inflammatory signalling in vitro (Oberdörster et al., 2005). 

The carboxylic surface layer renders the particle negatively charged and 

relatively hydrophilic which, as a result, is less likely to adsorb proteins and 
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other biomolecules than the hydrophobic counterparts (Invitrogen, Paisley, UK, 

2004). The pristine particle has a negative charge according to the supplier. 

This makes them ideal for the study of size dependent uptake. 

 

The chosen method for assessing the qualitative uptake of fluorescent particles 

was confocal laser scanning microscopy (CLSM). This is a non-destructive 

method which allows the qualitative detection of ingestion in whole animals and 

the determination of the area of accumulation. Confocal microscopy also allows 

non-destructive optical sectioning (Chandler and Volz, 2004) due to the fact that 

illumination, specimen and detector have the same focus (Buttino et al., 2003). 

The final image corresponds to the point of focus in the specimen. This enables 

to locate fluorescence, for example, within cell organelles, reducing uncertainty 

of whether the fluorescence is inside or on the surface of the organelle. A 

similar method has been employed in ecotoxicology already, for example to 

assess viability of copepod embryos (Buttino et al., 2003) or quality and 

development of crustacean eggs (Chandler and Volz, 2004). 

 

To quantify fluorescence a fluorimeter was also used. Quantification of 

fluorescence in several samples, simultaneously on a single 96 well plate, can 

thus be done, allowing comparisons between samples.  

 

The particle concentration used in the present study (2 µg/L) was chosen to be 

low enough to minimize sublethal negative effects due to exposure to the 

animals that could interfere with the assessment and to be in a medium 

detectable fluorescence level that allows detection by our methods even when 

dilution or accumulation of particles takes place. The aim was also to use a low 

level concentration compared to other environmental studies (Lovern and 

Klaper, 2006, Lovern et al., 2008, Roberts et al., 2007, Smith et al., 2007) or 

predicted concentrations that could occur in the aquatic environment (Boxall et 

al., 2007). 
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4.1.1 Aims 

The aims of this chapter were: 

I. To assess and compare the uptake of nano or micro particles by D. magna 

during an exposure in an aquatic environment.  

II. To qualitatively examine the total uptake of nano or micro particles and 

determine possible locations of accumulation.  

III. To quantify uptake and depuration of nano or micro particles and compare 

the two sizes to each other. 
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4.2 Methods 

 

4.2.1 Materials 

 

The polystyrene beads (FluoSpheres® Molecular probes) were purchased from 

Invitrogen (Paisley, UK) and the chemicals (Analytical reagent grade) for the 

reconstituted water from Fisher Scientific (Loughborough, UK). 

 

The reconstituted hard water used in the exposures and for culturing Daphnia, 

was prepared according to U.S. Environmental Protection Agency (U.S. 

Environmental Protection Agency (EPA), 2002a) guidelines for acute toxicity 

studies and is described in chapter 2.2. 

 

4.2.2 Particles 

 

Polystyrene carboxylated beads with diameters of 20 nm and 1000 nm were 

used in the present study. They were labelled with the fluorescent dye 

fluorescein isothiocyanate (FITC) with an excitation maximum at a wavelength 

of 505 nm and an emission maximum at 515 nm. The dye was encapsulated 

within the bead, rather than attached to the particle surface (Invitrogen, 2004). 

 

4.2.3 Particle preparation 

 

The polystyrene particles stock solution was sonicated in a water bath for 30 

minutes and then dispersed in reconstituted U.S. EPA hard water (U.S. 

Environmental Protection Agency (EPA), 2002a) at a final concentration of 2 

µg/L. The suspensions were generated immediately prior to use in each 

experiment. 

 

 



 97

4.2.4 Particle size Characterization 

 

The size characterization of the polystyrene beads was conducted by photo 

correlation spectroscopy of quasielastically scattered light (PCS-QELS) 

(90Plus/BI-MAS, Brookhaven Instrument, New York, NY, USA) at the Institute 

of Occupational Medicine (IOM) in Edinburgh in collaboration with Dr. Roger 

Duffin. To measure the size distribution particles were suspended in 

reconstituted water at a concentration of 2 µg/L, as described above, and 

measurements were taken in a temperature controlled room at 20°C at 0h, 1h, 

2h, 3h, and 4h. The light scattering was measured for 5 min. A pure, filtered 

sample of U.S. EPA reconstituted water was included as a control. 

 

4.2.5 Source of D. magna 

 

The animals used in these experiments were taken from an in house culture 

that was fed and maintained as described in chapter 2. 

 

4.2.6 Qualitative and quantitative assessment of uptake  

 

Adult and neonate (<24h old) D. magna were exposed to the 20 nm and 1000 

nm carboxylated polystyrene beads (2 µg/L) in a climate chamber at 20°C and 

sampled for the qualitative assessment at 0min (control, no beads added), 30 

min, 1 h, 2 h, 4 h, 6 h, 12 h and 24 h exposure time. For the quantitative 

assessment the time points chosen were: 0 h exposure (control, no beads 

added), 1 h, 2 h, 3 h and 4 h exposure. The animals were exposed in 100 ml 

beakers with 80 ml of reconstituted EPA hard water per beaker. Five animals 

were included in each treatment beaker, and each treatment was replicated 

three times. 

 

For the qualitative assessment of uptake, following exposure, animals were 

washed twice with deionised water for approximately 2 min and preserved in 

10% formalin. The uptake and fate of fluorescent polystyrene beads within the 

body of the invertebrates was then observed using laser scanning confocal 
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microscopy (LSM 510 Meta, Carl Zeiss, Welwyn Garden City, UK). The 

magnification used for adults was 25 times, while for neonates the magnification 

was 100 times and 200 times. The gain and offset were held constant at 700 

and 0 respectively. 

 

For the quantitative assessment of uptake only adults were used (6 weeks old). 

After sampling, the five animals per replicate were washed once with Trypan 

blue, to quench fluorescence from the surface of the animals, and twice with 

deionised water. Afterwards they were sacrificed and preserved in 10% 

formalin. The water and formalin were removed and replaced with 40 µl of fresh 

reconstituted water before the D. magna were homogenised with a Kontes 

Pellet Pestle (Fisher Sciences Loughborough, UK). This step was necessary, 

since the five homogenized animals do not give enough homogenate to cover 

the bottom of a well in a 96 well plate. Five homogenized six week old D. 

magna delivered approximately 10 µl of homogenate. It was determined that 50 

µl were needed to cover the bottom of a well in a 96 well plate reliably which 

was reached by the 10 µl of homogenate and the 40 µl of reconstituted water 

added to the sample before homogenation. The homogenised samples were 

then transferred into a 96 well plate (96 Well Krystal 2000 white, Porvair 

Sciences, Shepperton, UK) and the fluorescence quantified using a fluorimeter 

(Fluo Star Optima, BMG Labtech, Aylesbury, UK) at an excitation wavelength of 

485 nm and emission wavelength of 520 nm. The concentrations of the 

fluorescent beads were calculated by linear regression of a standard curve 

prepared by suspension of the particles, at different concentrations, in EPA 

reconstituted hard water. This standard curve for the 1000 nm particles ranged 

from 53 µg/L to 422 µg/L final concentration, while the curve for the 20 nm 

particles ranged from 1 µg/L to 21 µg/L final concentration. Each standard curve 

had two more intermediate concentrations. New standard curves were prepared 

for each of the three repetitions of the experiment. For the calculation of the 

uptake concentration the values were multiplied by five to take the previous 

dilution of the D. magna homogenate into consideration. Shading or 

interference of the fluorescence measurement by inclusion of D. magna 

fragments within the homogenate were ruled out by adding polystyrene beads 

to D. magna homogenate and comparing their fluorescence to an identical 

concentration of pure polystyrene beads (data not shown). 
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In addition to measuring uptake at the specific time points of 0 h to 4 h, animals 

were also exposed for 4 h to the polystyrene beads as described above and 

then transferred to 80 ml of fresh U.S. EPA reconstituted hard water in order to 

investigate depuration, that is, what proportion might be excreted and/or 

retained within the organism over time. At the end of the 4 h incubation with 

particles, the medium was changed hourly to minimize re-ingestion of excreted 

material. Five time points were also chosen for sampling, as follows: 0 hr, 1 h, 2 

h, 3 h and 4 h post exposure. The fluorescence of the exposed organisms was 

assessed by fluorimetry as described above.  

 

The uptake as well as the depuration experiments were repeated three times, 

with five animals per replicate and three replicates per time point at each 

repetition. No mortality was observed in any of the experiments. 

 

For transmission electron microscopy (TEM), the samples were fixed in 3% 

glutaraldehyde prepared in 0.1 M sodium cacodylate buffer at pH 7.3, for 2 h. 

The fixed samples were then washed three times, for 10 min per wash, in 0.1 M 

sodium cacodylate. Specimens were subsequently post-fixed in 1% osmium 

tetroxide prepared in 0.1 M sodium cacodylate for 45 min, before washing three 

times, for 10 min per wash, in 0.1 M sodium cacodylate buffer. These sections 

were dehydrated in 50%, 70%, 90% and 100% normal grade acetone for 10 min 

each, followed by further two 10 min incubations in acetone (Analar grade). 

Samples were then embedded in Agar 100 resin, before cutting 1 µm sections 

using a Reichert OMU4 ultramicrotome (Leica Microsystems,, Milton Keynes, 

UK). The resultant sections were stained with Toluidine blue and viewed by light 

microscopy in order to select suitable areas for investigation. Ultrathin sections, 

60 nm thick were cut from selected areas, stained in uranyl acetate and lead 

citrate and viewed in a Phillips CM120 TEM (FEI UK, Cambridge, UK), and 

images were collected via a Gatan Orius CCD camera (Gatan, Oxon, UK). The 

fixing, dehydration, embedding, cutting and imaging of the samples were done 

at the University of Edinburgh by Mr. Stephen Mitchell. 
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4.2.7 Statistical methods 

 

Statistical tests were carried out with Minitab release 13.1 or release 14 

(Minitab, Coventry, UK). Data were checked for normality and homogeneity of 

variances and upon compliance parametric methods were used. One-way 

analysis of variance (ANOVA) was used to assess any effects of each particle 

size and two-way ANOVA was used to compare the effects of the two particle 

sizes against each other. A Tukey post hoc test was carried out for multiple 

comparisons of means if the variances of the residuals were homogenous, 

otherwise a Games-Howell post hoc test was used for the same purpose. 

Significance was assumed with p ≤ 0.05. Given that two independent 

hypotheses were tested using the same data, the Bonferroni correction was 

applied and a significance level of 0.025 was considered.  
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4.3 Results 

4.3.1 Size distribution of polystyrene beads in water 

 

Dynamic light scattering with PCS-QELS revealed that for the 20nm 

polystyrene beads the most frequently observed sized particles found in the 

reconstituted water were approximately 20 nm or 40 nm in diameter, resulting in 

an overall average of approximately 30 nm (24.6 nm ±1.9 nm standard error for 

0 h, 34.2 nm ±1.6 nm standard error for 4 h). The particle size was monitored 

over 4 h in three replicates with a sample taken from each every hour (Figs. 4.1 

- 4.5), and a one way ANOVA of the averages at the different time points 

showed that there was no significant difference in average size between 

different time points (p = 0.776) (Fig. 4.6). It was observed, that replicates, 

especially at the time points of 2 h and 3 h, had different distribution of particles 

from each other, with the distributions being either around 20 nm or around 40 

nm. It was never observed that a single replicate had a particle distribution with 

one peak at 20 nm (single particles) and a second peak at 40 nm (particles as 

duplets). Few agglomerates above 100 nm were detected, and in all cases they 

stayed below 0.5% of overall occurrence, showing that the 20 nm polystyrene 

beads are well dispersed in the reconstituted water over the exposure period. 

An assessment of the 1000 nm polystyrene beads by PCS-QELS proved to be 

impossible since they were outside the detection limit of the equipment. 
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Figure 4.1: Size distribution of 20 nm polystyrene beads in water (2 µg/L) after 0 h. 

Shown are the three different replicates that were measured independently at each 

time point 

 

 

Figure 4.2: Size distribution of 20 nm polystyrene beads in water (2 µg/L) after 1 h. 

Shown are the three different replicates that were measured independently at each 

time point. 
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Figure 4.3: Size distribution of 20 nm polystyrene beads in water (2 µg/L) after 2 h. 

Shown are the three different replicates that were measured independently at each 

time point. 

 

 

Figure 4.4: Size distribution of 20 nm polystyrene beads in water (2 µg/L) after 3 h. 

Shown are the three different replicates that were measured independently at each 

time point. 
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Figure 4.5: Size distribution of 20 nm polystyrene beads in water (2 µg/L) after 4 h. 

Shown are the three different replicates that were measured independently at each 

time point. 

 

 

Figure 4.6: Mean diameter of 20 nm polystyrene beads in water (2 µg/L) over a time 

period of 4 h (values are means +/- standard error).  
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4.3.2 Qualitative assessment of fluorescent polystyrene bead 

uptake by D. magna. 

 

To assess the pattern of uptake of 20 nm and 1000 nm fluorescent polystyrene 

beads, three adults and three neonates were observed for each time point of 0 

min (control, no beads added), 30 min, 1 h, 2 h, 4 h, 6 h, 12 h and 24 h, and 

confocal images, superimposed on bright field images were captured (Fig. 4.7 

and Fig. 4.8). Uptake was observed at the first time point of 30 min for both 20 

nm and 1000 nm particles. In all observations of the D. magna exposed to 1000 

nm the gastrointestinal tract clearly contained sufficient fluorescent particles to 

allow observation of the entire tract, while the same observation was not always 

as clear with the 20 nm particle treatments. In the presence of both particle 

sizes, accumulation of fluorescence was observed in structures distinct from the 

gastrointestinal tract, hypothesised to be the oil storage droplets. 
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Figure 4.7: Uptake of 20 nm and 1000 nm polystyrene beads in neonate 

24 hours old at start of experiment) over 24 h
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Figure 4.7: Uptake of 20 nm and 1000 nm polystyrene beads in neonate D. magna (< 

1000 nm 
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Figure 4.8: Uptake of 20 nm and 1000 nm polystyrene beads in adult 
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4.3.3 Quantitative assessment of fluorescent polystyrene bead 

uptake by D. magna
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Figure 4.8: Uptake of 20 nm and 1000 nm polystyrene beads in adult 
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Animals treated with 1000 nm took up approximately 1.45 
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Figure 4.8: Uptake of 20 nm and 1000 nm polystyrene beads in adult D. magna over 24 

4.3.3 Quantitative assessment of fluorescent polystyrene bead 

D. magna was quantified 

by fluorimetry and expressed in terms of the mass of particles per organism 

Assuming that all of the fluorescence remained trapped 

bead, fluorescence associated with both particle sizes 

accumulated in the organisms within 60 min generating a particle burden that 

was significantly greater than the control treatment (p< 0.001) when tested by a 

ntly different from each other (p> 

 ng per animal after 

ng per animal at 240 min (Fig. 4.9). In contrast, 

took up much less particulate, reaching 0.036 ng at 

ng per animal at 240 min (Fig. 4.10). In fact, the 

beads was found to be 40 times higher at 

60 min and 30 times higher at 240 min than the uptake of 20 nm beads when 

were compared to each other by one way ANOVA (p< 0.001) (Fig. 
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Figure 4.9: Uptake of 1000 nm polystyrene beads by Daphnia over 4 h. The data 

represents the mass of particles measured by fluorimetry per animal (values are means 

+/- standard error n= 9, * indicates a result with p ≤ 0.05). 

  
Figure 4.10: Uptake of 20 nm polystyrene beads by Daphnia over 4 h. The data 

represents the mass of particles measured by fluorimetry per animal (values are means 

+/- standard error n= 9, * indicates a result with p ≤ 0.05).  
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Figure 4.11: Comparison of uptake of 1000 nm polystyrene beads against the uptake of 

20 nm polystyrene beads over a period of 4 h. Compared are the means of uptake at 

the various time points. 
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but this difference at the 4 h time point lacked statistical significance when 

tested by a one way ANOVA followed by a Tukey post hoc test (p= 0.187). 

 

 
Figure: 4.12: D. magna were treated with 1000 nm particles for 4 h before transfer to 

clean water. The graph represents the mass of particulate remaining per animal over 4 

h in clean water (values are means +/- standard error n= 9, * indicates a result with p ≤ 

0.05).  
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Figure 4.13: D. magna were treated with 20 nm particles for 4 h before transfer to clean 

water. The graph represents the mass of particulate remaining per animal over 4 h in 

clean water (values are means +/- standard error n= 9). 

 

 

Figure 4.14: Comparison of depuration of 1000 nm polystyrene beads against the 

depuration of 20 nm polystyrene beads over a period of 4 h. Compared are the means 

of uptake at the various time points. 
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Since one of the characteristics of nanoparticles is that they have a higher 

surface area per mass dose than their larger parent particle, the same data 

were reanalyzed and expressed as surface area per organism, rather than 

particle mass per organism. This recalculation revealed that the final surface 

area dose reached 13332 µm2 per animal for the 20 nm particles compared to 

just 8711 µm2 per animal for the 1000 nm polystyrene beads (figures 4.15 and 

4.16). When comparing the different sized particles at the different time points in 

the uptake phase, uptake was significantly higher at 2 h (p = 0.005), 3 h and 4 h 

(p < 0.001) for the 20 nm particles than the 1000 nm particles when compared 

by a one way ANOVA. Due to the more effective excretion of the 1000 nm 

particles, the surface area particle burden decreased within 4 h of depuration to 

635  µm2 per animal, compared to 7758  µm2 per animal for the organisms 

exposed to 20 nm particles. In the depuration phase, the 20 nm particle load 

was in all time points significantly higher (p < 0.001) than the 1000 nm particle 

load when compared by a one way ANOVA. 

 

 

 

Figure 4.15: Uptake and clearance rate of 1000 nm polystyrene beads by D. magna 

over 8 h expressed in surface area taken up/remaining. Calculated as dose per animal 

(values are means +/- standard error n= 9) 
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Figure 4.16: Uptake and clearance rate of 20 nm polystyrene beads by D. magna over 

8 h expressed in surface area taken up/remaining. Calculated as dose per animal 

(values are means +/- standard error n= 9). 
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Figure 4.17: Uptake and clearance rate of 1000 nm polystyrene beads by D. magna 

over 8 h expressed in particle number taken up/remaining. Calculated as dose per 

animal (values are means +/- standard error n= 9). 

 

 

Figure 4.18: Uptake and clearance rate of 20 nm polystyrene beads by D. magna over 

8 h expressed in particle number taken up/remaining. Calculated as dose per animal 

(values are means +/- standard error n= 9). 
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4.3.4 Electron microscopy 

 

The polystyrene particles were imaged by applying approximately 1 µl of each 

onto a TEM grid and drying them until no liquid was detected. Afterwards the 

grids were imaged by TEM (Fig. 4.19). Pictures of sections of exposed D. 

magna were also taken by TEM and confirmed the translocation of 1000 nm 

particles into the oil storage droplets (Fig. 4.20) as previously suggested by the 

confocal microscopy images. Images taken from samples prepared after 

exposures to 20 nm particles showed also particles of the right size within the 

oil storage droplets but similar inclusions were discovered in control treatments 

without the possibility of making a clear distinction. 

 

 

20 nm 1000 nm 

  
Figure 4.19: Transmission electron microscopy pictures of a 20 nm polystyrene bead 

(left) and a 1000 nm polystyrene bead (right). The black bar represents on the left hand 

side 20 nm and on the right hand side 2 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118

Control 20 nm 1000 nm 

   

   

   
Figure 4.20: Transmission electron microscopy pictures of oil storage droplets in D. 

magna that were either unexposed (left), exposed for 1 h to 20 nm polystyrene beads 

(middle) or 1000 nm polystyrene beads (right). The black bar represents in the control 

and 20 nm treatments 1 µm (top), 0.2 µm (middle control), 0.5 µm (middle 20 nm) and 

50 nm (bottom). In the 1000 nm treatment, the black bar represents 20 µm (top), 5 µm 

(middle) and 2 µm (bottom). 
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4.4 Discussion 

 

Due to the expansion of nanotechnology, the potential for release of 

nanoparticles into the environment is considered significant in many reports 

(Boxall et al., 2007, Department for Environment Food and Rural Affairs 

(DEFRA), 2007, Joner et al., 2008). Although it can be assumed that 

nanoparticles in an aquatic environment will have a wide distribution of different 

sizes, little information is available at this time to indicate how nanoparticles will 

behave in the environment and what their impact might be on different species. 

This study aimed to investigate the potential for particles of different sizes to be 

taken up by D. magna, and then to determine their potential for translocation 

within the organism. It has been observed in the experiments described in 

chapter 3 that uptake of various nanoparticles took place already at short 

exposure durations, with the particles observed in the gastrointestinal tract (Fig. 

3.2 and 3.3) 

 

For this purpose fluorescent, carboxylated polystyrene beads were employed 

due to the ability to be imaged by confocal microscopy and detected by 

fluorimetry. D. magna were chosen because they are a test species used in 

many standard ecotoxicity tests, for which much data are available for other 

environmental contaminants. Feeding of the animals during the experiment was 

avoided, because this could have interfered in several ways: Uptake rates could 

have been greatly enhanced by aggregation or agglomeration of particles to 

algae. This would without a doubt happen in a natural environment but would 

add the additional component of taking food concentration into consideration in 

the assessment. The autofluorescence of algae cells could have provided false 

positive results for uptake via ingestion. It is also known that the gut passage 

time is inversely related to food concentration (Gillis et al., 2005) with clearance 

rates reported of less than an hour at high food concentrations. Since these 

clearance rates are quite rapid and uptake as well as depuration would have 

been strongly dependent on food concentration in the media as just being 

dependent on particle concentration it was deemed better to exclude food in the 

present study. 
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In terms of characterising the particles to which the organisms were exposed, 

the size distribution of 20 nm polystyrene beads shows a size range mostly at 

around 17-20 nm or 35-45 nm. This would mean that the dispersal of the 

particles is mostly as single beads or as doublets. There does not seem to be a 

stable distribution between both states but rather a flipping back and forth 

between the two. It could also be that this is an artefact created by the 

methodology. Agglomerations of larger particles was also observed but of 

negligible concentration and not at all time points, suggesting that they probably 

broke up in the course of the experiment. With the data shown it can be 

assumed that the 20 nm polystyrene beads stayed within the nano-size range in 

the course of the 4 h experiment.  

 

As seen in the confocal images, both the 20 and 1000 nm polystyrene beads 

were taken up into the organism within just 30 min of exposure. Relatively high 

concentrations of the beads were easily visible by confocal microscopy, within 

the gastrointestinal tract (GIT), indicating that ingestion is a major route of 

uptake for both particle sizes. The intensity of fluorescence within the GIT 

appeared greater for the 1000 nm polystyrene particles than for the 20 nm 

particles. D. magna are filter feeders, enabling them to ingest particles between 

the sizes of 70 µm (Burns, 1968) and down to around 200 nm (Geller and 

Muller, 1981). Therefore the 1000 nm polystyrene particles are within the lower 

size range of the food particles ingested by D. magna allowing their active and 

intended uptake leading to accumulation within the GIT.  

 

The ingestion of the 20 nm particles was more surprising as these particles 

should be too small for the feeding apparatus of D. magna (Geller and Muller, 

1981), therefore suggesting that the uptake was passive and unintentional. As 

stated previously the confocal pictures illustrated that the GIT of animals 

exposed to 1000 nm particles was brightly fluorescent. The same observation 

was not always true when the animals were exposed to 20 nm particles, 

indicating a lower uptake via ingestion. The relatively higher efficiency of 1000 

nm particle uptake versus the 20 nm particle uptake was verified by fluorimetry 

when the data were considered on a mass per organism basis. The ingestion of 

the 20 nm particles could happen by various mechanisms, for example they 

could be taken up randomly by accident, entering the GIT by means of being 
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washed in along with water which is taken up in considerable amounts in a 

drinking-like process (Gillis et al., 2005). Alternatively, they could be taken up 

actively alongside or adsorbed onto larger particles such as algae, bacteria, 

carapace fragments from previous moults or faeces in the exposure water. A 

third possibility could be that they are transformed into larger agglomerates by 

handling and incorporation into mucus used by D. magna to enhance the 

uptake of bacteria (Hartmann and Kunkel, 1991) or by direct interception 

(Gerritsen et al., 1988).  

 

The confocal images indicated that the fluorescence had translocated into lipid 

storage droplets. This was positively confirmed for the 1000 nm particles by 

Transmission Electron microscopy. Images taken from animals treated with 20 

nm particles are less conclusive. The images showed particles in the 20 nm 

range within the oil storage droplets, but similar inclusions can be observed in 

control pictures. A differentiation between those particles proved impossible due 

to the resolution of the method. Since 1000 nm particles were found in the 

storage droplets, having crossed the GIT barrier, a mere leaching of the 

fluorescent dye instead of the whole particle seems unlikely for both sized 

particles.  

 

An accumulation of nanoparticles in storage compartments could have serious 

consequences for D. magna. Polystyrene nanoparticles have been shown to 

generate reactive oxygen species in vitro, to a greater extent than larger 

particles (Brown et al., 2001). If the nanoparticles are reactive they could 

interact with vital food compounds and degrade them, rendering them 

potentially less useful for the organism. Since many commercially used 

nanoparticles such as fullerenes are lipophilic (Moore, 2006, Oberdörster, 2004) 

it will be important to determine their potential to accumulate in such storage 

compartments and even cause toxicity. A similar study looked at qualitative and 

quantitative uptake of gold nanoparticles in Daphnia (Lovern et al., 2008). This 

article also recognizes the possibility of uptake of nanoparticles in the GIT of 

Daphnia. However a translocation of gold nanoparticles was not observed and 

no uptake in the midgut region after one hour of exposure was detected via 

TEM images. As stated earlier, uptake observed by confocal microscopy was 

clearly higher with 1000 nm particles in the gut than with the nano sized 
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particles but translocation took place nevertheless in neonate and adult D. 

magna as early as the first time point of 30min. The difference of the observed 

effects might be due to different surface characteristics of the used particles. 

Also during the intake phase in the gold uptake study, only samples of the 

midgut, not the upper part of the digestive tract were taken into consideration 

stating that an uptake earlier in these regions might be possible.  

 

Given the quick uptake and relocation within the body, and the fact that a 

quantity of oil droplets are transferred from the mother to newly generated eggs 

(Goulden and Hornig, 1980, Tessier and Goulden, 1982), even a short term 

exposure could lead to residues of nanoparticles remaining in the planktonic 

community, although this is likely just for an intermediate time period, since 

energy reserves are continually used for maintaining metabolism and support 

processes like moulting (O'Connor and Gilbert, 1968). Also, in the environment, 

populations of Daphnia oscillate between stages of good food supply and 

phases of starvation (Goulden and Hornig, 1980) where energy reserves would 

be mobilized and accumulated particles might therefore become available to 

induce toxicity.  

 

An accumulation of the 20 or 1000 nm nanoparticles in unhatched eggs could 

not be observed in any organisms, although fluorescence from 20 nm particles 

appeared to accumulate around the shell of a permanent egg (ephippia) with 

consequences unknown. An exposure of the eggs seems likely, since the brood 

pouch is connected directly to the ambient media and a steady flow of water 

through this chamber is maintained by the adult to provide oxygen to the 

developing embryos. The developing embryos, in contrast to eggs, were 

observed to experience an accumulation of fluorescent particles of both sizes in 

their storage droplets as soon as they showed filter activity in the brood pouch, 

but prior to hatching. 

 

The quantitative uptake as detected by fluorimetry shows a similar pattern of 

particle uptake as the qualitative confocal studies. The particles were taken up 

within 60 minutes with a relatively small subsequent increase over time until 240 

minutes, suggesting that uptake and excretion rates are almost balanced at 

these times. The D. magna accumulated 1000 nm particles into their bodies 
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reaching a concentration approximately 700 times greater than the 

concentration of the surrounding media, with most of the fluorescence located in 

the well filled GIT. Exposure to 20 nm beads shows an accumulation of 

approximately 20 times the concentration in the surrounding medium. It has to 

be taken into consideration, that the fluorimetry measurements involved the use 

of whole animals, while most of the fluorescence was actually located in the GIT 

and adjacent oil droplets, making it likely that the concentration in those specific 

locations was even higher.  

 

D. magna were also exposed to particles for 4 h before transferring to fresh 

water and studying elimination of the particles from the organisms over time. 

The 1000 nm particles cleared relatively quickly from the organisms, reaching 

just 12.5 % of the original particle burden within 240 min, indicating that most of 

the particles had been located in the GIT as observed in the confocal pictures 

and were subsequently excreted with faeces. In contrast, the 20 nm particles 

reached 67 % of their maximum particle burden, suggesting a lower clearance 

than the 1000 nm particles. At the end of the 4 h incubation in clean water, the 

mass concentration detected in the 1000 nm treatments were just double the 

concentrations detected in the 20 nm treated organisms, compared to the 38 

fold difference observed at the end of the 4 h particle exposure. However, it 

should also be noted that the particle burden, in terms of mass was still lower in 

the 20 nm particle exposed organisms than the 1000 nm exposed D. magna at 

the end of the clean water exposure period. 

 

Recalculation of the data to express the particle burden as surface area dose 

revealed that the maximum surface area taken up by the D. magna was 1.65 

times greater for the 20 nm particles than the 1000 nm particles. In addition, the 

surface area dose remaining at the end of the clean water incubation was 

approximately 40 times greater for the 20 nm polystyrene beads than the 1000 

nm particles. Surface area has been linked to the ability of nanoparticles to 

induce inflammation in the lung of animals (Duffin et al., 2002, Stoeger et al., 

2006). It has been hypothesised that this is due to the fact that it is the surface 

over which interactions and reactions with biological molecules occur (Stone 

and Kinloch, 2007). Similar numbers can be expected if the particle burden 

would be calculated as particle number instead of mass dose. 
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Once the gut is cleared, a better estimate can be made with respect to what 

actually was taken up and relocated from the gut and has to be considered 

bioaccumulation. A short term exposure of females and a tracking of 

fluorescence in neonates produced after the exposure should provide 

information as to whether deposited nanoparticles have the potential to be 

passed on to the next generation. 

 

This study clearly demonstrates the ability of D. magna to take up nanoparticles 

and micron sized particles from water by ingestion. The study demonstrates that 

the mass uptake of nanoparticles is less than for micron sized particles, but that 

the uptake is easily detected and results in translocation from the GIT of the 

nanoparticles into other compartments of the adult and neonate organisms. 

Both the nanoparticles and the micron sized polystyrene beads were excreted 

to some extent, although a greater proportion of the 20 nm particle dose was 

retained within the organism. This study also demonstrates the impact on data 

interpretation of considering the exposure dose in terms of mass, versus 

surface area, versus particle number. Finally, this study also indicates the 

potential for uptake of nanoparticles by eggs and the developing foetus, 

probably via direct exposure to water circulating within the brood pouch. In the 

future it will be essential to relate toxicity and biomarker endpoints to all 3 dose 

metrics in order to identify which is most relevant in terms of hazard 

assessment. 

 

The study presented here is in press in Environmental toxicology & chemistry 

(Rosenkranz et al., 2009). 
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5. Bioindicators for measuring oxidative stress in 

Daphnia magna due to nanoparticle exposure 

 

5.1 Introduction 

 

Many toxicological studies concerning nanomaterials have focussed on 

oxidative stress as an endpoint (Brown et al., 2001, Maynard et al., 2004, 

Oberdörster, 2004, Stone et al., 1998). Due to the ability of some of the 

nanomaterials to produce free radicals and/or reactive oxygen species, this is a 

logical approach. Since oxygen is required for all aerobic prokaryote and 

eukaryote cells for energy production through the electron transport chain, 

reactive oxygen species (ROS) and derivates are produced naturally (Kohen 

and Nyska, 2002). Among these oxygen compounds produced in high 

concentrations in the living cell are hypochlorous acid (HClO), hydrogen 

peroxide (H2O2), the superoxide anion radical, the hydroxyl radical, organic 

peroxides, aldehydes, ozone (O3), and O2 (Kohen and Nyska, 2002). The most 

vulnerable targets to oxidative damage within a cell are (Kohen and Nyska, 

2002): 

(i) proteins, leading to loss of structure and function,  

(ii) lipids, leading to lipid peroxidation and a weakening of cell 

membranes,  

(iii) DNA, leading to base modification and single and double strand 

breaks 

 

To detoxify endogenous, but also with exogenous sources of free radicals and 

ROS, the different cells, and the whole organism have a wide array of defence 

mechanisms to deal with reactive metabolites. Principally the cell tries to cope 

with oxidative stress by either preventing the endogenous production of ROS by 

regulating enzymes that indirectly produce ROS, by detoxifying ROS with the 

aid of antioxidant enzymes and antioxidant molecules, so called scavengers, or 

repairing damage caused by oxidative stress. Physical defence is also possible, 

for example, tocopherol (vitamin E) is an antioxidant that promotes the stability 
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of membranes but also prevents the ROS from approaching the target through 

steric hindrance (Kohen and Nyska, 2002). Steric hindrance occurs when the 

size of functional groups within a molecule prevent a chemical reaction due to 

interfering with the reactant by the three dimensional arrangement of the atoms. 

 

Biological effects related to oxidative stress that are suitable as biomarkers 

include either cellular responses, such as increased activities of antioxidant 

enzymes and concentrations of non-enzymatic antioxidant compounds, or the 

results of oxidative stress toxicity such as oxidation of proteins, lipids and 

nucleic acids (van der Oost et al., 2003). 

Defence systems that play a role in the detoxification of ROS include the 

antioxidant enzymes such as; 

• superoxide dismutase (SOD),  

• catalase (CAT) and  

• glutathione-dependent peroxidase (GPOX)  

(van der Oost et al., 2003). 

Superoxide dismutase (SOD) is a group of metalloenzymes that catalyze the 

conversion of reactive superoxide anions (O2
-) to hydrogen peroxide (H2O2), 

which in itself is an important ROS as well (Kohen and Nyska, 2002). H2O2 is 

subsequently detoxified by two types of enzymes: CAT and GPOX (van der 

Oost et al., 2003).  

CAT is a hematin-containing enzyme that facilitates the removal of hydrogen 

peroxide (H2O2), by metabolizing it to molecular oxygen (O2) and water (Kohen 

and Nyska, 2002). While GPOX also catalyses the metabolism of H2O2 to water, 

involving a concomitant oxidation of reduced GSH to its oxidized form (GSSG) 

(van der Oost et al., 2003). 

 

There are also a number of low-molecular-weight antioxidants, such as GSH 

(glutathione in reduced form), β-carotene (vitamin B), ascorbate (vitamin C), α-

tocopherol (vitamin E) and ubiquinol. Ascorbate and α-tocopherol are not 

synthesized by animal cells and therefore have to be taken up by the diet (van 

der Oost et al., 2003). 

 

GSH (γ-glutamylcysteinylglycine) is the major cytosolic low molecular weight 

antioxidant (Kohen and Nyska, 2002, van der Oost et al., 2003, Zhang et al., 
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2004). It acts as a reducing agent and is often the first line of defence against 

oxidative stress (Zhang et al., 2004). When a cell is faced by an oxidizing agent, 

two GSH molecules are oxidized to one GSSG molecule, thus reducing the 

oxidant: 

2 GSH + H2O2  → GSSG + 2 H2O 

GSSG can either be converted back to GSH or secreted from the cell (Barata et 

al., 2005, Zhang et al., 2004). In order to convert GSSG back to its reduced 

form, another electron donor like NADPH is needed, as well as the enzyme 

glutathione reductase. A mild oxidative stress results in an initial GSH depletion, 

followed by an activation of the enzymes responsible for intracellular synthesis 

of GSH (Stone et al., 1998), leading to an overall increase. The activation of 

those enzymes is time dependent (within 6- 8 h, (Stone et al., 1998)). Therefore 

a time dependent response of GSH to mild oxidative stress can be observed. 

When the oxidative stress exceeds the capacity of recovery of GSH, like in 

excessive oxidative stress, it leads to toxicity without any recovery or 

compensation. 

 

To measure oxidative stress via GSH depletion it is advisable to measure the 

total glutathione concentration alongside, since an elevated glutathione level 

gives a good indication of increased synthesis of GSH or a shifting in the 

reduced glutathione -total glutathione balance due to oxidative stress (Zhang et 

al., 2004). Oxidized and reduced glutathione can be measured by fluorimetry 

through reaction with the fluorophore o-phtalaldehyde (OPT) (Hissin and Hilf, 

1976). However, in a study by Senft et al. (2000) it was shown, that assay 

relying on the binding of GSH to OPT at high pH, were overestimating the 

GSSG levels due to other components in the sample either reacting with OPT 

or quenching fluorescence when measuring GSSG. Another problem in the 

assay was that after measurement of GSH, N –ethylmaleimide (NEM) was 

added to the sample so GSH would not interfere with measurements of GSSG. 

NEM alkylates GSH, rendering it inactive towards OPT. As Senft et al. (2000) 

points out, NEM that did not react can remain in the sample and interfere with 

measurements as soon as GSSG was reduced to GSH. In the method used in 

this chapter, which is a modified version of the method employed by Senft et al. 

(2000) to allow the use of a 96 well plate, reduced GSH and total glutathione 

were measured. The GSH measurement still relies on the reaction of GSH with 
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OPT, although a lower pH is used. The reduction of GSSG in the sample was 

achieved by sodium hydrosulfite (dithionite) and measured alongside GSH. 

NEM was merely used to confirm the absence of background fluorescence in 

the sample. 

 

Another method to estimate oxidative stress is to measure the total antioxidant 

capacity. In the method applied here, a radical cation is generated in the 

presence or absence of an antioxidant (Re et al., 1999). The radical (ABTS 

[2,29-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)]), a blue/green 

chromophore, and metmyoglobin (Met Mb) act as reagents and H2O2 as the 

oxidant. When H2O2 oxidizes the ABTS Met Mb complex, a blue colour appears. 

The antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethychroman-2-carboxylic acid) 

prevents oxidation if it is present in high enough concentration. The intensity of 

the blue colour is directly proportional to the presence of oxidized ABTS Met Mb 

complex and inversely proportional to the antioxidant capacity. That means the 

higher the absorbance, the lower the antioxidant capacity. The samples, in this 

case homogenized D. magna, are compared to the Trolox standards to define 

their Trolox equivalent antioxidant capacity (TEAC). 

 

5.1.1 Aims 

 

The aims of this chapter were to assess oxidative stress induced by exposure to 

nanoparticles and to see if a size dependent relationship of this stress exists. To 

achieve this, two methods were used. One measuring the total antioxidant 

capacity and a second one that looks at a specific low-molecular-weight 

antioxidant. 
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5.2 Methods 

 

5.2.1 TEAC assay 

 

5.2.1.1 Exposure of Daphnia magna 

 

The solutions were prepared as described in section 3.2.1.1. Animals (4-6 

weeks old) were exposed in 100ml beakers with nanoparticles suspended in 80 

ml of reconstituted EPA hard water. Four replicates per treatment and one 

control were used with 10 animals per replicate. The animals were exposed to 

NP carbon black (Degussa Printex 90, average size 14 nm) and to fine sized 

carbon black (Degussa Huber 990, average size 260 nm) at the concentrations 

of 10 mg/L, 1 mg/L, 0,1 mg/L and a control. Ten animals were sampled each 

after 4 h and 24 h and transferred into eppendorf vials. 

 

5.2.1.2 Preparation of Metmyoglobin 

 

The dialysis tubing was prepared by cutting it into a 20 cm length and soaking it 

in tap water for 30 min with four or five changes of water. It was then rinsed with 

distilled water and heated for 3 min in a 5 mM EDTA (Sigma-Aldrich Company 

Ltd., Gillingham, UK) solution (1.25 ml of a 3 g/20 ml solution in 100 ml of 

distilled water) at 60-70°C. Afterwards it was rinsed with distilled water 2-3 

times. 

 

The stock solution of potassium ferricyanide (Sigma-Aldrich Company Ltd., 

Gillingham, UK) at a concentration of 740 µM was made by dissolving 2.4 mg of 

potassium ferricyanide in 10 ml of PBS pH 7.4 (Invitrogen Ltd Paisley, UK). To 

the stock solution of potassium ferricyanide, 7.5 mg/ml myoglobin (Sigma-

Aldrich Company Ltd., Gillingham, UK) was added. It was mixed and allowed to 

stand for 5 min at room temperature. The solution was then transferred into the 

dialysis bag and dialysed against 400 ml of PBS pH 7.4 for 30 min. Then the 
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buffer was changed and the solution was again dialysed for 15 min. The 

solution was then decanted into a test tube with a screw top and kept on ice. 

 

An amount of 0.1 ml of the metmyoglobin (Met Mb) solution was diluted with 0.9 

ml of phosphate buffered saline (PBS) and the absorbance was read in a 

spectrophotometer (Optima Fluo Star) at 490 nm, 560 nm, 580 nm and 700 nm 

against PBS as a blank. 

 

5.2.1.3 Trolox Solution 

 

To prepare the stock solution, 6.2 mg of trolox (6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid) (Sigma-Aldrich Company Ltd., 

Gillingham, UK) was weighed and added to 10 ml of PBS. The solution was 

then sonicated for 15-30 min and kept on ice. 

The working solution was 1 ml of the stock solution added to 9 ml of PBS. 

 

5.2.1.4 ABTS 

 

To prepare the stock solution, 27.4 mg of ABTS (2,29-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid)) (Sigma-Aldrich Company Ltd., Gillingham, 

UK) were weighed and added to 10 ml of PBS. The working solution was 1 ml 

of the stock solution added to 9 ml of PBS and kept at room temperature. 

 

5.2.1.5 Hydrogen peroxide 

 

To prepare the stock solution, 100 µl of a 30 % H2O2 (Sigma-Aldrich Company 

Ltd., Gillingham, UK) solution were added to 9.9 ml of PBS. The working 

solution was 50 µl of the stock solution added to 10.95 ml of PBS and kept at 

room temperature. 
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5.2.1.6 Sample preparation 

 

The exposed D. magna were homogenized in an eppendorf vial, using a 

homogenizer (Kontes Pellet Pestle, Fisher Sciences Loughborough, UK). 

 

5.2.1.7 Preparation of measurement 

 

Prior to the experiment 1 ml eppendorf tubes were prepared in duplicates and 

the required reagents were added into each, in the order shown in table 5.1 

from top to bottom. The reaction was started with the addition of H2O2. 

 

Table 5.1: Solution composition for TEAC assay: All volumes are in µl. Ten µl of Trolox 

standard is equal to 2.5 mM Trolox equivalent antioxidant capacity (TEAC) 

 Standards Sample 

 Blank 2.5 mM 5 mM 7.5 mM 10 mM 12.5 mM  

ABTS 300 300 300 300 300 300 300 

Trolox 

(Stds) or 

sample 

0 10 20 30 40 50 10 

Met Mb 36 36 36 36 36 36 36 

PBS 497 487 477 467 457 447 487 

H2O2 167 167 167 167 167 167 167 

The tubes were inverted and the reaction carried out for 6 min. One hundred 

microliter each were added into a 96 well plate (96 Well Krystal 2000 white, 

Porvair Sciences Ltd., Shepperton, UK) and the absorbance was read 

immediately at a wavelength of 734 nm. The antioxidant capacity was 

calculated by comparing the results to different concentrations of Trolox 

standards by using linear regression (Re et al., 1999).  

 

Furthermore, to measure the background absorbance of homogenized D. 

magna and nanoparticles, samples were measured by leaving H2O2 out of the 

sample or measuring the sample in pure PBS. 
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5.2.2 Reduced Glutathione/ total Glutathione assay 

 

5.2.2.1 Exposure of Daphnia magna 

 

The solutions were prepared as described in section 3.2.1.1. Animals (4-6 

weeks old) were exposed in 100 ml beakers with nanoparticles suspended in 80 

ml of reconstituted EPA hard water. Three replicates per treatment and one 

control were used with 10 animals per replicate. The animals were exposed to 

carbon black, cerium dioxide and silver in both micro and nano size (particle 

description in chapter 3.2.1) at concentrations of 10 mg/L for cerium dioxide and 

carbon black and 0.1 mg/L for silver, concentrations effects have been 

observed in acute studies beforehand (see chapter 3). One treatment of 

unexposed animals was included as a control. The animals were sampled after 

3h. 

 

5.2.2.2 Reagents needed for assay 

 

All reagents were purchased from Sigma-Aldrich, Gillingham, UK) 

 

5.2.2.3 Redox quenching buffer 

 

To prepare the redox quenching buffer (RQB buffer) 490 ml of distilled water 

were measured in a glass cylinder and 10 ml of 1 M HCl were added inside a 

fume cupboard. To this acid, 0.4 g of ethylendiamine tetra acetate (EDTA) and 

0.88 g of ascorbic acid were added to give a buffer with a final concentration of 

20 mM HCl, 2.15 mM EDTA and 10 mM ascorbic acid. The buffer was then 

stored until use at 4°C. 
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5.2.2.4 Extraction buffer 

 

To prepare the extraction buffer (5% Trichloracetic acid in RQB) 5 g of 

Trichloracetic acid were weighed and dissolved in 100 ml of RQB buffer. The 

buffer was then stored until use at 4°C. 

 

5.2.2.5 Phosphate buffer saline solution  

 

From a 1 L bottle of distilled water, 100 ml of water were removed, and then 100 

ml of PBS 10x solution were added. The solution was mixed by gentle agitation. 

The buffer was then stored until use at 4°C. 

 

5.2.2.6 Potassium phosphate (pH 7.0 1 M) 

 

In a bijou tube 6.8 mg of potassium phosphate were weighed and dissolved in 

30 ml of distilled water and the pH adjusted to pH 7.0 with 10N NaOH. 

Afterwards the volume was filled to 50 ml with distilled water. The solution was 

then stored until use at 4°C. 

 

5.2.2.7 Potassium phosphate (pH 6.9 0.1 M) 

 

In a bijou tube 6.8 mg of potassium phosphate were weighed and dissolved in 

200 ml of distilled water and the pH adjusted to 6.9 with 10N NaOH. Afterwards 

the volume was filled up to 500 ml with distilled water. The solution was then 

stored until use at 4°C. 

 

5.2.2.8 N-ethylmaleimide (NEM) in RQB (7.5 mM) 

 

In a bijou tube .7 mg of NEM were weighed and dissolved in 5 ml of RQB buffer. 

The NEM was prepared fresh on each day of experiment and stored on ice. 
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5.2.2.9 O-phtalaldehyde (OPT) in methanol (5 mg/mL) 

 

In a bijou tube 10 mg of OPT were weighed and dissolved in the fume cupboard 

in 2 mL of methanol. 

The OPT was prepared fresh on each day of experiment and stored on ice, 

protected from light in tin foil. 

 

5.2.2.10 Dithionite (sodium hydrosulfite) in RQB (10 mM) 

 

In a bijou tube 17.4 mg of dithionite were weighed (avoid any contact with water 

as it reacts violently). 

In the fume cupboard, the dithionite was dissolved in 1 mL of RQB (in contact 

with an acid like RQB, the dithionite produces a toxic gas, so the process had to 

be kept in the fume cupboard). 

 

5.2.2.11 Preparation of the sample for measurement 

 

D. magna were removed from the exposure vessel and transferred to a 1.5 ml 

eppendorf vial. All exposure media was removed and the D. magna were 

homogenized using a homogenizer (Kontes Pellet Pestle, Fisher Sciences 

Loughborough, UK). Then 100 µl of cold RQB-TCA buffer was added and the 

vial vortexed and incubated on ice for 5 min. Afterwards, the eppendorf vials 

were centrifuged for 5 min at 15 000 g. and replaced on ice until the sample 

was applied to the 96 well plate. 

 

5.2.2.12 GSH standards 

 

A first stock solution of GSH at 0.05 M (15 mg/mL) was prepared by dissolving 

15 mg of reduced GSH into 1 mL of extraction buffer (5% TCA in RQB). This 

0.05 M stock solution of GSH was stored on ice. 
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The first stock solution was diluted 1 in 100 (990ul 5% TCA in RQB and 10ul of 

0.05 M GSH) to give a 0.5 mM GSH second stock solution. Both stock solutions 

were prepared fresh and kept on ice. 

 

The standards used for comparing against a sample were prepared by diluting 

standard 2 as described in table 5.2.  

 

Table 4.2: Dilution volumes used for making up standards for comparing against 

measurement of reduced glutathione 

GSH Concentration (µM) Dilution 
100 800 µl 5% TCA in RQB : 200 µl 0.5 mM GSH 
50 900 µl 5% TCA in RQB : 100 µl 0.5 mM GSH 
25 500 µl 5% TCA in RQB : 500 µl 50 µM GSH 
12.5 500 µl 5% TCA in RQB : 500 µl 25 µM GSH 
6.25 500 µl 5% TCA in RQB : 500 µl 12.5 µM GSH 
3.125 500 µl 5% TCA in RQB : 500 µl 6.25 µM GSH 
0 1 ml 5% TCA in RQB 

 

5.2.2.13 GSSG standards 

 

As negative control for the reduced GSH measurements and positive control for 

total GSH measurements GSSG standards were used. To achieve this, 15 mg 

of GSSG were weighed and dissolved in 1 ml of 5% TCA in RQB (25 mM 

solution of GSSG). The 25 mM stock solution was diluted afterwards 1 in 100 

(990 ul 5% TCA in RQB and 10 µl of GSSG solution) to give a second stock 

solution of 0.25 mM GSSG. Both stock solutions were prepared fresh and kept 

on ice. 

 

The standards used for comparison were made out of the second stock solution 

as described in table 5.3. 
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Table 5.3: Dilution volumes used for making up standards for comparing against 

measurement of total glutathione. 

GSSG Concentration (µM) Dilution 
100 400 µl 5% TCA in RQB : 600 µl 0.25 mM GSSG 
50 700 µl 5% TCA in RQB : 300 µl 0.25 mM GSSG 
25 500 µl 5% TCA in RQB : 500 µl 50 µM GSSG 
12.5 500 µl 5% TCA in RQB : 500 µl 25 µM GSSG 
6.25 500 µl 5% TCA in RQB : 500 µl 12.5 µM GSSG 
3.125 500 µl 5% TCA in RQB : 500 µl 6.25 µM GSSG 
0 1 ml 5% TCA in RQB 

 

5.2.2.14 Preparing the 96 well plate 

 

The 96 well plate was prepared following the order described in table 5.4.  

 

A negative control for background fluorescence was used to determine that no 

other fluorescence source was present besides the fluorophore OPT. NEM 

alkylates GSH, rendering it inactive to a reaction with OPT and thus would show 

only fluorescence with an origin different from GSH (Senft et al., 2000). 

 

The GSH standards were used to quantify the GSH concentrations while the 

GSSG standards were used to verify that the reduction of GSSG by dithionite 

was quantitative. This was confirmed when readings were equal to the GSH 

standards. 

 

Additionally two more negative controls were added to the plate: 

 

The first was a sample that included GSSG at a concentration of 100 µM. It was 

used to verify that no background fluorescence would arise from the molecule 

itself.  

The second was GSH at a concentration of 100 µM, which was prepared like 

the negative control for background fluorescence. Its function was to verify that 

NEM was used in adequate concentration to block all GSH. 

 

Samples were prepared in triplicates while standards or controls were prepared 

in duplicates or triplicates according to the amount available. 
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5.2.2.15 Reading the plate 

 

The plate was read in a fluorescent plate reader (Fluostar Optima, BMG 

Labtech, Aylesbury, UK) with Excitation at 350 nm and emission at 420 nm.  

 

 

 



  

 

1
3
8
 

Table 5.4: Preparing a 96 well plate for measurement of reduced and total glutathione. The plate was loaded, following the order from top to bottom  

 red. GSH 

measurement 

Total GSH 

measurement 

Neg. control for background 

fluorescence 

GSH standards GSSG standards 

19 µL 5% TCA in RQB     

10 µL of sample     

10 µL of GSH standard     

10 µL of GSSG standard     

4 µL per well of RQB     

4 µL per well of 7.5 mM NEM     

48 µL of 1 M potassium 

phosphate pH 7 
    

Incubate 5 min      

7 µL of 10 mM dithionite     

incubate 1 h      

200 µL of 0.1 M potassium 

phosphate pH 6.9 
    

29 µL OPT 5 mg/mL      

Incubate 30 min in the dark      
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5.3 Results 

 

5.3.1 TEAC assay 

 

The result description of the TEAC assay includes some logical discussion in 

order to allow the reader to understand the protocol modifications and 

development incorporated. 

 

A comparison of antioxidant capacities of untreated D. magna, D. magna 

treated with t-BHP (tert. butyl hydroperoxide) as positive control and D. magna 

exposed to 14 nm carbon black (10 mg/L for 1 h) showed a strong negative 

value for the trolox equivalent in the case of D. magna exposed to carbon black 

(Fig. 5.1). The animals in the control treatment showed as well as the positive 

control a positive value for trolox equivalents that did not differ significantly from 

each other (p = 0.5) when compared by a one way ANOVA. This indicated, 

besides the negative value for carbon black, that t-BHP was not functioning at 

the tested concentration as a positive control, since the value should have been 

significantly below the control. 

 

 
Figure 5.1: Antioxidant capacities of untreated D. magna, D. magna treated with t-BHP 

(tert. Butyl hydroperoxide) as positive control and a carbon black treatment (10 mg/L 

for 1 h). Ten trolox equivalents are equal to 2.5 mM trolox. 
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In the case of the D. magna exposed to carbon black, within the assay a 

negative trolox equivalent value is without sense and a lower trolox equivalent 

value is synonymous to a higher absorbance, it was hypothesized that the 

carbon black particle might interfere with the absorbance measurements. 

 

To test this hypothesis, standard curves where 10 µl PBS were exchanged with 

a suspension of 100 mg/L carbon black in water media. These were compared 

to standard curves with 10 µl water media instead of carbon black (Fig. 5.2). 

 

 
Figure 5.2:  Comparison of a normal standard curve with a standard curve 

containing 100 mg/L carbon black. The equation of the normal standards and the R2 

value are below, while for the carbon black they are on top 

 

These results suggest that carbon black at the measured concentration might 

just have a minor effect, if any, on absorbance measurements. These results 

were further confirmed by measuring several concentrations of carbon black (0 

mg/L; 10 mg/L, 100 mg/L and 1000 mg/L) prepared according to sample 

preparation but without adding H2O2 (expected was no colour change) (Fig. 

5.3). 
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Figure 5.3: Absorbance comparison of several carbon black concentrations (n =3 per 

treatment, values are means +/- standard error, * indicates a result with p ≤ 0.05). 

 

These results indicated, that a slight, but not significant, increase in absorbance 

was observed for the treatment containing 100 mg/L carbon black. A significant 

increase in absorbance was observed for the treatment containing 1000 mg/L 

carbon black (p < 0.001) when compared by a one way ANOVA to the other 

treatments. 

 

5.3.1.1 Measuring the antioxidant capacity of unexposed D. magna 

 

For this study, ten D. magna per replicate were homogenized and 10 µl of this 

homogenate were added to the test as described in table 5.1. An average 

absorbance of 0.252 at 734 nm was measured for the three replicates but it was 

observed that no colour change at all took place in the set time of 6 min 

indicating that the measured absorbance was probably background absorbance 

instead of absorbance produced by the reaction of ABTS, Met Mb and H2O2. To 

verify this, a measurement of homogenized D. magna with all the reagents, but 

without H2O2 (no colour change), confirmed that the measured absorbance was 

background absorbance (0.237 at 734 nm). The reading should have been 

close to 0 if the sample has no background absorbance. 
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A dilution of 10 µl D. magna homogenate in 90 µl PBS showed to be sufficient 

to reduce the background absorbance to 0.022, allowing the antioxidant 

capacity to be detectable within the standard curve. 

 

The TEAC measured for untreated D. magna was 3.25 mM trolox equivalents in 

the dilution. Taking the dilution into consideration, a trolox equivalent of 32.5 

mM trolox for 10 µl of D. magna homogenate was calculated. 

 

5.3.1.2 Antioxidant capacity of D. magna exposed to carbon black 

 

D. magna were exposed to two different concentrations (1 mg/L and 10 mg/L) of 

carbon black in EPA media for 1 h and, along with untreated D. magna, 

prepared for measurement according to the TEAC assay. The homogenised D. 

magna were measured with all reagents added, but before H2O2 was added (no 

colour change) (Fig. 5.4) and 6 min after H2O2 was added (colour change) (Fig. 

5.5 blue bars) 

 

 
Figure 5.4: Absorbance of D. magna untreated, treated for one hour with 1 mg/L and 

10 mg/L carbon black, before H2O2 was added (n= 3 per treatment, values are means 

+/- standard error, * indicates a result with p ≤ 0.05).  
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Fig. 5.4 shows that there was already inherent absorbance present in the 

samples before H2O2 was added, since all treatments were significantly different 

from each other (p ≤ 0.005) when tested by a one way ANOVA This background 

absorbance has to be taken into consideration when calculating the antioxidant 

capacity. If this background absorbance was not taken into consideration no 

difference of antioxidant capacity could be observed after 1 h of exposure to 

different concentrations of carbon black (blue bars Uncorrected in Fig. 5.5). 

However, if the background absorbance was taken into consideration by 

subtracting the background from the measurements in the assay, an increase in 

antioxidant capacity could be observed (red bars Corrected in Fig. 5.5). The 

controls as well as the uncorrected values differed not significantly from each 

other, while the corrected values for 1 mg/L and 10 mg/L had a significantly 

increased trolox equivalent in relation to the controls or uncorrected values (p< 

0.004 for the uncorrected values, p< 0.027 for the corrected control). The 1 

mg/L and 10 mg/L value did not differ significantly from each other. 

 

 
Figure 5.5: Antioxidant capacities of five untreated control D. magna and carbon black 

treatments (1 mg/L and 10 mg/L for 1 h). Ten Trolox equivalents are equal to 2.5 mM 

Trolox. (n = 3 per treatment, values are means +/- standard error, * indicates a result 

with p ≤ 0.05). 
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carbon black added to the D. magna homogenate subsequently, as well as two 

additional nanoparticles in two further treatments, TiO2 and silver, were 

measured in pure PBS (Fig. 5.6). 

 

 
Figure 5.6: Absorbance of PBS, homogenized D. magna in PBS and three 

nanoparticles added to homogenized D. magna in PBS (D. magna untreated n= 6, 

otherwise n = 3 per treatment, values are means +/- standard error, * indicates a result 

with p ≤ 0.05).  

 

While a sample of D. magna homogenate showed no significantly increased 

absorbance when compared to the PBS control, the three nanoparticle 

treatments showed significantly increased background absorbance (p < 0.001) 

when compared to the PBS control (Fig. 5.6) when tested by a one way 

ANOVA.  
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NEM was not able to quench all fluorescence of GSH reliably and the detected 

background fluorescence was homogeneously spread over all samples 

independent from the treatment. Therefore they did not interfere in the 

assessment of differences between reduced or total glutathione, particle or size 

of particle. 

 

The standard curves of reduced GSH at the concentrations described in table 

5.2 delivered in all three triplicates of the experiment standard curves with a R2 

of 0.98 and above. To assess the concentration of reduced and total glutathione 

and the ratio of reduced glutathione against total glutathione, the averages of 

the replicates in each single experiment were determined first, before the data 

of each treatment were pooled. 

 

 

 

Figure 5.7: Levels of reduced and total glutathione in D. magna exposed for 3 h to 

different sized particles (n= 49 for reduced glutathione and n= 45 for total glutathione, 

values are means +/- standard error, * indicates a result with p ≤ 0.05).  

 

While the average total amount of reduced glutathione was lower in all 

treatments than in the control, this difference failed to be statistically significant 
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decreased (p= 0.042) in the nano sized carbon black treatment when compared 

to the control (Fig. 5.7) when tested by a one way ANOVA. The other 

treatments showed no significant difference when compared to the control. 

 

 
Figure 5.8: Ratios of reduced to total glutathione in D. magna exposed for 3 h to 

different types and sized particles (n= 21 for reduced glutathione and total glutathione, 

values are means +/- standard error). 

 

Comparing the ratio of reduced glutathione to total glutathione, it was observed, 

that the ratio was independent of particle or size and it was nearly constant at 

two third when the ratio reduced glutathione to the total glutathione 

concentration was calculated (Fig. 5.8). 
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5.4 Discussion 

 

The results of the TEAC assay show clearly that such absorbance methods are 

difficult to employ when measuring biomarkers on the exposure to particulate 

matter. Although the particles initially did not seem to interfere substantially with 

the assay (see Fig. 5.2) when used at concentrations of up to 100 mg/L, the 

situation changed when the animals were homogenized after exposure to 

particles. It is possible that the particles become better dispersed in the D. 

magna homogenate, allowing them to interfere strongly with 

spectrophotometrical readings and masking the required colour change 

indicating the build-up of the blue/green chromophore ABTS. This masking 

leads to a higher absorbance which in turn leads to an underestimation of trolox 

equivalent antioxidant capacity. The good dispersion of particles might be partly 

due to lipids and carotinoids used as energy storage in D. magna (Holm and 

Shapiro, 1984, van Der Veen, 2005). It is likely that these lipids mix with the 

particles during the homogenising process and this mixture of finely dispersed 

particles becomes the source of the background absorbance observed. In 

addition, this background absorbance is dependent on concentration of 

nanoparticles used in the exposure or more precisely it is dependent on uptake 

of particles by D. magna during the exposure time. This would make the 

background absorbance that has to be taken into consideration dependent on 

concentration as well as time of exposure. An animal exposed to 1 mg/L of 

carbon black for 3 h would have a different background absorbance from an 

animal exposed to 10 mg/L for the same duration due to a higher uptake.  

 

The result of not taking background absorbance into consideration can be seen 

in Fig. 5.5. The uncorrected values would lead to the conclusion that the 

animals would have an equal antioxidant capacity over a range of 

concentrations they are exposed to. With the background absorbance taken into 

consideration, it can be seen that the antioxidant capacity actually rises as soon 

as animals are exposed to nanoparticles for 1 h. 

 

Although it is possible to estimate the background absorbance as shown by 

measuring the absorbance before adding the H2O2 that starts the reaction and 
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subtracting those results from readings gathered after the reaction is finished, 

this method quickly becomes unreliable if differences in the concentration of 

antioxidants are small between the treatments and there is a significant 

background absorbance. Also, uptake over time makes it difficult to compare 

treatments with different time points or concentrations. Lastly, Fig. 5.6 shows 

that those problems are not limited only to carbon black, but can be expected 

for other particles as well.  

 

In the light of these results it has to be concluded that the TEAC assay is 

unsuitable in its current state for assessing the antioxidant capacity of D. magna 

due to nanoparticles.  

 

Since the glutathione assay measures levels of antioxidants via fluorescence 

instead of absorbance, fewer problems might be expected. The control for 

checking on background fluorescence shows that there is a level of 

fluorescence from the samples but, this background is relatively less than in the 

previous TEAC assay. Also, the methodology of this assay includes 

centrifugation which helps remove most of the particle burden. The TEAC assay 

is very unspecific, since it assesses total antioxidant capacity and gives 

information on the overall status of antioxidants within a biological sample. That 

means centrifugation that would remove from the sample particles that interfere 

with the assay could also remove components that act as antioxidants and so 

alter the results. In the GSH assay on the other hand, the homogenized sample 

is treated with RQB-TCA buffer. Trichloracetic acid (TCA) is used to precipitate 

high MW proteins and nucleic acids, leaving just analytes of interest in the 

supernatant after centrifugation. This step also removes interfering particles and 

carapace fragments. 

 

The results of the GSH assay show that the only treatment effected by 

exposure to particles is the carbon black treatment to nanoparticles. Results 

from the exposure indicate that the reduced glutathione and the total glutathione 

are lower than in the other treatments although only the total glutathione 

concentration was significantly lower than the control. This result was 

unexpected. A significantly lower level of total glutathione compared to a 

reduced, but not significantly lower level of reduced GSH, would lead to the 
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conclusion that the concentration of GSSG must be severely reduced. It would 

also mean that the concentration of glutathione that can be recycled to GSH, 

and therefore would be available to reduce further oxidative stress, would be 

reduced. Normally, when mild oxidative stress is observed, an increase in GSH 

levels can be observed (Zhang et al., 2004), since GSSG levels rise at the 

expense of GSH levels, once oxidative stress gets more severe. GSSG is 

recycled by the enzyme glutathione reductase and the oxidation of NADPH to 

NADP+ (Zhang et al., 2004). If accumulation of GSSG is too high, it is 

transported outside of the cell to prevent NADPH depletion.  

 

In this study the ratio of reduced glutathione to total glutathione was not 

significantly elevated in any treatment, indicating that higher production of GSH 

did not occur, as would be expected with mild oxidative stress. Additionally, 

no accumulation of GSSG was observed, which could be detected by a higher 

amount of total glutathione and a lower ratio of reduced glutathione to total 

glutathione and what would point to more severe oxidative stress. 

 

While it can be concluded that the GSH assay succeeded in highlighting 

changes due to exposure to nanoparticles, the changes cannot be explained by 

the normal mechanism of glutathione homeostasis. An assessment of the 

enzyme glutathione reductase, which might have been inhibited due to 

exposure, or an assessment of NADPH levels, which, if they would be too low, 

would lead to excretion of GSSG, would be good leads for follow up 

experiments. 
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6. Final conclusions and future work 

 

The present work clearly shows that nanoparticles have the potential for 

negative effects on D. magna upon exposure. It was further demonstrated that 

nanoparticles are readily taken up by D. magna and can be subsequently 

relocated within the body of exposed individuals D. magna. 

 

The aim of chapter 3 was to assess the effects of different particles on D. 

magna by exposing them to different sized particles and measuring lethal and 

sublethal endpoints in acute, short term exposures and chronic, long term 

exposures at different mass doses. The results thus obtained should enable an 

estimate not only of the toxicity of the different particles but also if the size of the 

particles is an important factor of toxicity. 

 

Results obtained indicate that, when an effect was observed, it was always more 

pronounced in treatments to nano sized particles than micro sized particles.  

The main causing factor(s) underlying these observations could include 

parameters such as larger surface area or higher particle number in the nano 

treatments, however due to lack of evidence the actual factors remain 

unknown. Although exposures to carbon black suggest that for this material 

surface area is likely to be responsible for some effects on D. magna such as 

mortality and moulting, results obtained on exposures to silver indicate a different 

mode of toxicity, with free silver ions being one of the most obvious factors. The 

endpoints chosen for the acute and chronic tests were found to be suitable to 

detect effects due to exposure.  

 

Regarding the results from chapter 3, further experiments would seem 

promising. Exposures to carbon black and silver, with different sized particles 

on a surface area dose or particle number dose would allow further 

investigation of the relationships between surface area and toxicity. 

Exposures to cerium dioxide resulted in no evident toxicity in the 

concentrations tested and would require probably concentrations that would not 

be environmentally relevant to detect effects at equal surface area dose of 

micro and nano sized particles. However, since D. magna exposed to cerium 
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dioxide showed a significant reduction in growth after 4 day exposures to 10 

mg/L of nano sized particles it would be interesting to investigate if this size 

reduction is due to reduced nutrient uptake. This could be done by exposures to 

micro and nano sized cerium dioxide at different food levels.  

 

With silver micro and nano particles, the moulting frequency and mortality 

seemed to be not exclusively surface area related. Exposures to micro and 

nano sized particles in the presence of cysteine, which acts as a ligand to Ag 

ions and reduces their free concentration in the media (Navarro et al., 2008), 

would reveal if the toxic effects observed with silver are partly due to free ions in 

the media.  

 

Another promising field of future research would be studying the association 

between manufactured nanoparticles and naturally occurring colloids and 

organic substances such as humic and fulvic acids. Manufactured nanoparticles 

most likely will encounter those substances in aquatic systems. It is important 

therefore to address how this could affect the bioavailability of manufactured 

nanoparticles and their uptake into cells and organisms as well as how it could 

alter their toxicity. 

 

The most important drawback of the studies chapter 3 is describing was that no 

characterization of the particles in the exposure medium could be done. 

Dynamic light scattering and Zeta potential measurements of the particles in 

media would have allowed assessing better the actual particle size and the 

stability of aggregates or agglomerates initially and over the whole exposure 

duration. This would have allowed getting a better approximation of the 

exposure conditions and relating the mass dose more efficiently to a surface 

area dose. These two methods, among others, (Joner et al., 2008, Klaine et al., 

2008, Powers et al., 2006) seem to become standard in the laboratory when 

assessing the toxicity of nanomaterials and further experiments with a similar 

aim would benefit from data acquired through these methods.  

 

Nevertheless, dispersion data gathered in laboratory experiments as here 

described have to be taken with caution when applied to the environment or 

even other studies using the very same materials. Since dispersion, shape of 
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occurring aggregates and surface charge can depend on the dispersion 

protocol used as well as the media the particles are suspended in (Royal 

Commission on Environmental Pollution, 2008). In this study an artificial EPA 

media, which is widely used in D. magna toxicity testing, was chosen. Using this 

artificial media as well as a constant dispersion protocol assures that one 

toxicity test using this protocol can be compared to another toxicity test using 

the same protocol and has the same duration. Even comparing laboratory data 

of experiments using the same protocol but different exposure durations are 

difficult to compare, since nanoparticle aggregates might not be stable over time 

(Royal Commission on Environmental Pollution, 2008) or excretory products of 

the test animals might shift the pH in the exposure media and change the 

dispersion as well. Excretory products might even interact with the 

nanomaterials directly with unknown consequences.  

 

However, it is a good approach to assess toxicity initially with a widely used 

media like the OECD or EPA artificial water since it allows comparisons 

between results of different publications that use the same media as well. The 

impacts of other environmental factors like the pH or particulate organic matter 

in the water, which can both influence the behaviour of NP´s in water as already 

mentioned elsewhere, would have expanded the scope of this thesis too much. 

In fact, both environmental factors, influence of the pH and influence of 

particulate organic matter on the toxicity of NP´s, would require own research 

projects to do credit to these important factors.  

 

A further point that should be included in future research would be the use of 

positive controls alongside particle exposures. This would add an additional 

quality control of the animals used. In the here presented study, the test results 

were accepted if 90% of the control animals survived. Standard reference 

toxicants could be SDS (Sodium dodecyl (lauryl) sulfate), NAPCP (Sodium 

pentachlorophenate) or cadmium chloride as proposed by EPA (U.S. 

Environmental Protection Agency (EPA), 2002a). Using those reference 

toxicants would have ensured a better evaluation of the health and sensitivity of 

the test organisms over time. Even salts of the particles tested, like silver nitrate 

as done in Navarro et al. (2008) or cerium hydroxide (Ce(OH)3) could be used 

and give additional information about the toxicity of dissolved ions. 
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The aims of chapter 4 were to assess and compare the uptake of nano or micro 

particles by D. magna, to examine qualitatively the total uptake of those 

particles and determine possible locations of accumulation as well as to quantify 

uptake and depuration and compare the two particle sizes. 

 

Results obtained in chapter 4 showed that uptake of micro sized, as well as 

nano sized, particles took place. Although uptake of nano sized particles was 

considerably lower than micro sized particles, when compared on a mass dose 

basis, when compared on a surface area dose or particle number dose basis, 

the uptake of the nano sized particles exceeded the uptake of the micro sized 

particles. Additionally, depuration was quicker in the micro sized particles than 

in the nano sized particles, resulting in mass doses for both sized particles after 

a depuration time of 4 h that were not significantly different from each other 

anymore. In addition, translocation was observed by confocal microscopy for 

both sized particles as soon as after 30 min of exposure, with the particles 

crossing the barrier between the gastrointestinal tract and the body cavity and 

accumulating in oil storage droplets. From these results it can be concluded that 

it is possible for nanoparticles to be ingested and accumulated readily in the gut 

in significant concentrations and that a potential exists for these ingested 

nanoparticles for translocation with possible toxic effects. The accumulation of 

nanoparticles in the gut could lead to transfer of considerable amounts to higher 

trophic levels in the food chain of the aquatic environment with effects yet not 

investigated for D. magna and rarely for other invertebrates (Holbrook et al., 

2008). Also, the lipid containing storage droplets are normally partially 

transferred to the offspring (Goulden and Hornig, 1980, Tessier and Goulden, 

1982). An uptake of nanoparticles by embryos via maternal translocation could 

mean higher mortality of neonates due to toxic effects or reduced nutrient 

uptake due to a lesser nutrient content in the transferred storage droplets. 

 

These last two points mentioned, accumulation of nanoparticles via a food 

chain, as well as maternal transfer of nanoparticles to embryos, would be good 

approaches to further research. In addition, expanding the time line of 

depuration would give more helpful information on the long term fate of 
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nanoparticles in D. magna. Lastly, exposures at different mass doses would 

give further information of concentration dependent uptake and depuration. 

 

Just as interesting as the uptake and translocation of nano sized particles, is the 

uptake and translocation of their micro sized counterparts. A similar experiment 

as presented here was done by Browne et al. (2008) with the mussel Mytilus 

edulis. Here, even bigger polystyrene beads, 3 µm and 9.6 µm, were used. As 

in this study, a translocation across the epithelial barrier was observed and 

particles were detected in the hemolymph (Browne et al., 2008). In contrast to 

the study presented in chapter 4, translocation took much longer and the 

polystyrene beads were detected in the hemolymph at 3 days with the 

maximum at 12 days after an initial 3 h exposure. Nevertheless, the first time 

point of examination for translocation was not stated in the study, making a 

quicker translocation possible. The study also points out that the particle 

number encountered in the hemolymph was at all times higher for the smaller 

sized particles than for the larger sized particles. This was also true for the here 

presented study when the results were calculated as particle number. In 

contrast to the here presented study the particles were not detected in storage 

droplets but in haemocytes, a cell type found in invertebrates that fulfils the 

function of phagocytes in vertebrates. The mechanism of translocation across 

the gut epithelial could not be determined but it was assumed that phagocytosis 

played a role (Browne et al., 2008). The aim of Browne et al. (2008) was to 

study possible uptake and translocation of microplastic particles in the marine 

environment by the mussel Mytilus edulis. The accumulation and fragmentation 

of plastics in the terrestrial and marine environment are becoming more and 

more a reason of concern (Barnes et al., 2009). Although no reference was 

found that stated that plastic particles are a major concern in freshwater 

habitats, this might mean the problem did not get any attention yet. On the other 

hand, the subclass cladocera has severall members that are part of the marine 

planctonic community (Rupert et al., 2004) and could take up and translocate 

plastic particle in a way similar as described in chapter 4. 

 

The aims of chapter 5 were to study oxidative stress induced by exposure to 

nanoparticles and to assess if a size dependent relationship of this stress could 

be detected. To achieve this, two methods were used: One measuring the total 
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antioxidant capacity and a second one that focuses on a specific low-molecular-

weight antioxidant. 

 

In the case of the measurement of total antioxidant capacity by the TEAC 

assay, it has to be concluded that the TEAC assay is unsuitable in its current 

state for assessing the antioxidant capacity of D. magna due to nanoparticles. 

The reason for this conclusion was the fact that particles were found to interfere 

with the measurement of absorbance. The dispersion of particles in the 

presence of homogenized D. magna was enhanced, most likely by lipids in the 

homogenate. An adapted method, also measuring absorbance in homogenates 

of exposed D. magna, could be used for quick estimates of uptake of 

nanoparticles. 

 

While it can be concluded that the GSH assay succeeded in highlighting 

changes due to exposure to nanoparticles, the changes cannot be explained by 

the normal mechanism of glutathione homeostasis with one time point 

measured. To get a clearer picture of the processes involved, several time 

points should be chosen as well as multiple concentrations. Lastly, as 

previously mentioned in chapter 5, an assessment of the enzyme glutathione 

reductase, or of NADPH levels, would be good leads for follow up experiments. 

 

The results presented in chapter 5 should also make cautious about using 

commonly employed biomarkers in combination with nanoparticles without 

proper control treatments to verify that the nanoparticles do not interfere with 

the method. Concerns have already been raised (Jones and Grainger, 2009) 

that many standard assays might not be suitable. For example, a widely used 

cytotoxicity assay, the MTT assay that measures the ezymatic reduction of a 

tetrazole to a formazan in active mitochondria, was found to give false results 

when used in assays with carbon nanotubes (Wörle-Knirsch et al., 2006) or 

quantum dots (Hoshino et al., 2004). In one case, the formazan was found to 

attach to the carbon nanotubes and could therefore not be detected by the 

assay (Wörle-Knirsch et al., 2006), in the other case the tetrazole was reduced 

to formazan without an enzymatic reaction, giving false positive results 

(Hoshino et al., 2004). It is also known that proteins can bind to nanoparticles 

(Aggarwal et al., 2009, Cedervall et al., 2007) making the use of assays 
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involving proteins, like the LDH assay or the glutathione reductase assay 

mentioned before, problematic. A good approach to prevent errors is, including 

control treatments that test for interferences of nanoparticles as shown in (Clift 

et al., 2008). 

 

Finally, it has to be discussed, how the findings of this thesis can help with 

assessing the risk that nanomaterials can pose to the environment. As already 

mentioned, this study concentrated on hazard assessment under controlled 

laboratory conditions. To test if exposures in the environment will happen with 

the nanoparticles tested in chapter 3, was not an aim of this thesis, since this 

would have been far too complex to accomplish in the given time. Nevertheless, 

the data point to a potential hazard of at least the silver particles and carbon 

black particles and possible exposure pathways should be researched to 

perform a risk assessment. There have been already several publications 

discussing approaches to manage environmental risk assessment of 

nanomaterials (Crane et al., 2008, Owen et al., 2009, Owen and Handy, 2007). 

The problem with nanoparticles is that it is not certain in what form an exposure 

will take place for each nanoparticle since from the spill side to the exposure 

side they may undergo complex changes (Owen et al., 2009). Furthermore, 

surface coating or surface alteration of a nanoparticle might change his 

behaviour and toxicity drastically. According to severall websites there are 

already thousands of consumer products in circulation and one report states 

that three to four new products containing nanoparticles are added each week 

(National Institute for Occupational Safety and Health (NIOSH), 2009). So what 

is the right approach to assess their risk to the environment? Owen et al. (2009) 

suggested two different approaches to managing the risk: A hazard driven 

approach and an exposure driven approach. The first approach would involve 

the assumption that an exposure route for any nanomaterial cannot be ruled out 

and therefore extensive hazard testing should take place. The second approach 

would involve a first step in assessing the environmental behaviour of 

nanomaterials to find out if an exposure might take place. Hazard assessment 

would only take place if an exposure would be possible. The author also points 

out, that both approaches would take a large amount of time and the risk 

assessment would be lagging behind due to the quick appearance of novel 

nanomaterials (Owen et al., 2009). The danger of lagging behind makes a 
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hazard assessment similar as presented here a reasonable approach, using 

nanomaterials that are widely used in consumer products. For future hazard 

assessments, similar approaches as proposed from EU REACH 

“Implementation Project 3.3 for aquatic toxicity” (Crane et al., 2008) seems 

sensible. Here, short term assessments are first undertaken with either Daphnia 

or algae species, if the need for further investigations arise, chronic testing is 

employed (Crane et al., 2008). Since even acute Daphnia 96 h exposures are 

quite labour intensive and therefore costly and considering the number of nano 

sized particles as well as the different environmental parameters that need to be 

considered, testing in vivo test systems for their suitability as screening tools 

might be a good idea.  

 

 

The testable Null Hypothesis in this project that NPs tested will have no 

different negative effects than larger particles of the same composition in the 

same mass dose on D. magna, can be rejected in the light of the results 

presented in this thesis. 

 

The author hopes that the results, suggestions and ideas presented in this 

thesis will contribute to future research in the area of ecotoxicology of 

nanoparticles. As with all research, the results lead to as many additional 

questions as they answer and more research is needed for each section 

described here. 
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