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ABSTRACT

Trip generation is the first stage of the conventional ‘four-stage’ transport model.
The aim of this stage is to predict total number of trips generated to and from
each zone. The two most common techniques for trip generation are linear
regression (the dependent variable is a linear-in-parameter function of a number
of explanatory variables) and category analysis including multiple classification
analysis (based on estimating number of trip generations as a function of
household attributes). Both techniques of trip generation rely on the availability
of a large socio-economic, mainly revealed preference data set. They also have
technical limitations such as the assumption of linearity which might result in
unreasonable predictions of trip generation. Any deficiency or inaccuracy in the

estimation at this stage will be carried over and will have implications on

subsequent stages.

The other stages of the ‘four-stage’ model employ other techniques including
logistic analysis which broadens the scope of the analysis. Logistic regression
analysis has been used to model travel choices such as mode, route and departure
time but not trip generation. There has not been much research to investigate the
appropriateness of using this technique to model trip generation. The main

reason for this is that logistic regression predicts probabilities rather than the

total number of trips.

In order to be able to model trip generation using logistic regression, the number
of trips (trip frequency) can be treated as a set of mutually exclusive categorical
variables; therefore the built-in upper and lower limits are incorporated.
Therefore, it is not possible to predict a negative number of trips and the
estimates of the model will show the underlying probabilities for the actual
number of trips. This will also provide a behavioural framework that directly
links the number of trips to utility-based consumer and decision-making theory.
Logistic regression can be used to model trip generation as binary, multinomial
or nested logit frameworks. An added advantage of using this approach is the

ability to predict the frequency and number of trips made by each individual.



The aim of this research therefore, is to investigate possible methodologies to
improve performance of trip generation modelling. In order to achieve this aim
firstly, this research investigates the appropriateness of logistic regression to
model trip generation and device a methodology for it. The analysis and
comparisons of the results with results from conventional models are examined.
Exploring the use of stated preference data to calibrate trip generation models is
also studied here. Finally, transport policy measures and enhanced transport

accessibility functions have been investigated in trip generation models.
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CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION

Trip generation is the first phase of the classical ‘four-stage’ transport model
(trip generation, distribution, modal split and assignment). Trip generation is
defined as the number of individual trips generated in a given period of time. The
purpose of this stage is to predict the total number of trips which are generated
from and attracted to each zone. Trip generation analysis provides the means for
relating the number of trips in any zone to its land-use and socio-economic
characteristics such as land use intensity, characteristics of activities and location
within the urban environment. Trip generation models attempt to identify and
quantify the trip ends related to various urban activities without taking into

account other trip characteristics such as direction, length or duration (FHWA,

1975).

The two most commonly used techniques of trip generation modelling have been
linear regression analysis and category analysis. Both approaches have their
strengths and weaknesses. In regression analysis, although there are statistical
tests for the goodness of fit of the models, the assumption of linearity of each of
the independent variables with the dependent variables is restrictive. The lack of
built-in upper and lower limits to the number of trips could potentially lead to
unreasonable predictions as the model’s covariates increase, or could result in
negative number of trips when the covariate values are relatively low (Péez et al.,
2006). The assumption that the number of trips is approximately continuous can
be questioned when typical values for the number of trips are relatively low. The
link between number of trips and covariates in a linear regression, while it may
be based on hypothetical ideas about the process of trip generation, lacks a
behavioural justification such as supported by the theory of random utility (e.g.

Ben-Akiva and Lerman, 1985).



Alternatively, in category analysis the large sample size required to calibrate the
trip rates as well as the absence of statistical tests for the overall goodness of fit
of the models undermines its adequacy (see Stopher and McDonald, 1983;
Ortizar and Willumsen, 2001). Multiple classification analysis (MCA) methods
provide improved techniques to overcome some of the shortcomings of category
analysis approach. In MCA's, the new cell values are calculated based on the
data sample within the givén cell, as well as on an overall mean derived from the
whole data set. These means could also be weighted average means or least
square regressions of the dummy variables. In addition to overcoming the main
shortcomings of category analysis approach the MCA methods, allow goodness-
of-fit statistical tests that permit hypothesis-testing procedures to be followed,

and results to be assessed in terms of the amount of the variability of the

dependent variable that is captured in the model.

Logistic regression overcomes many of the restrictive assumptions of ordinary
least squares regression (Garson, 2002); in particular, the assumption of linearity
between the dependent and independent variables. This technique can be used to
model relationships between the response variables which are binary or
categorical, with more than two categories and several explanatory variables
which may be categorical or continuous. This approach has been widely used to
model other travel choices such as choice of mode (Ortlizar, 1983; Bhat, 1995;
Bhat, 1998a; OrtGzar and Willumsen, 2001), route choice (Yai et al., 1997),
departure time choice (Bhat, 1998b; Saleh and Farrell, 2005) and other travel
choices. However, not many applications in trip generation modelling have been

reported (see for example Daly, 1997).

Discrete choice models, by treating the number of trips (or the trip frequency) as
a set of mutually exclusive and collectively exhaustive categorical variables,
incorporates built-in upper and lower limits. They cannot predict a negative
number of tI‘lpS and the estimates of the model show underlying probabilities for
actual number of trips, whereas the linear regression model only gives the
expectation (and variance) of the number of trips, as implicitly the dependent

variable would be a continuous variable. In addition, the model provides a



behavioural framework that directly links the number of trips to utility-based

consumer and decision making theory.

Logistic regression can be used to model trip generation using binary logit
models (whether or not an individual will make a trip), or multinomial logit
models (probability of making {0, 1, 2 or more trips}, or probability of making
{infrequent, frequent, very frequent trips}, etc. This way, one can investigate the
frequency of trips combined with the number of trips made by each individual or
household (see Hosmer and Lemeshow, 2000 for further discussions on the
applications of logistic analysis). This research investigates modelling trip
generation using logistic regression analysis. A number of trip generation models

using linear regression, category analysis and logistic regression analysis have

been calibrated and compared.

The independent variables that are most commonly considered in trip generation
models are mainly socio economic variables (individual or houschold attributes)
as well as attraction opportunities. One of the main criticisms of trip generation
models is the absence of any variables that represent the transport policies
implemented in zones that affect its accessibility (e.g. public transport, pricing
and parking policies). Typically accessibility refers to the “ease” with which
desired destinations may be reached and is frequently measured as a function of
the available opportunities (sﬁch as employment levels and retail or non-retail

square footage) moderated by some measure of impedance (such as distance,

travel time or cost) (Niemeier, 1997).

Previous researches that have attempted to develop trip generation models that
include impacts of transport policies or accessibility are limited. For example,
Hanson (1959) calibrated a trip generation (production) model with an
accessibility index for each zone in the study area as a measure of the activities
in other zones and a measure of travel impedance between each zone pair.
Freeman (1976) developed a similar model for trip attractions. In both cases, the
accessibility index was a function of opportunities and travel impedance (mainly
time or cost). Leake and Huzayyin (1979) proposed a composite measure of

accessibility which combined private transport and a public transport



accessibility measure. Daly and colleagues (Cohn et al., 1996; Daly, 1997)
introduced an accessibility measure in the logit trip generation model, which is
the logsum from the mode/destination choice model. Transport policies such as
road user charging and parking pricing however, have not previously been

explicitly included in a trip generation model.

Congestion charging as well as parking management measures are increasingly
being considered as management tools in the UK as well as in most world cities
(Litman, 2004; European Commission, 2004). In London, a congestion charging
scheme has been implemented since February 2003 to control traffic congestion
into the city (Banister, 2003). Recently, the City of Edinburgh had plans to
introduce congestion charging in the form of a double cordon as a policy to
reduce traffic in the central areas. Although the scheme has been abandoned
following a public referendum (CEC, 2005), a number of research studies and
investigations have been carried out to investigate public acceptance of the
scheme as well as the forecasts of the impacts of the schemes on various types of
travel behaviour. In this research, parking costs and congestion charging in
Edinburgh have been investigated as accessibility measures in trip generation

models using logistic regression.

1.2 JUSTIFICATION OF RESEARCH

Trip generation analysis is the first stage of the conventional four stage model.
Any inaccuracies in the estimation of trip generation will be carried over the
subsequent stages. Trip - generation techniques suffer from a number of
deficiencies. The aim of this research is to investigate possible methodologies
to improve performance of trip generation modelling. In order to achieve this

aim a number of objectives have been defined as discussed below.

In linear regression analysis, the assumption of linearity of each of the
independent variables with the dependent variables is a strong restrictive. The
lack of built-in upper and lower limits to the number of trips could potentially
lead to unreasonable predictions, or could result in negative number of trips

when the covariate values are relatively low. The assumption that the number of



trips is approximately continuous can also be questioned especially where the
number of trips are low. The lack of a behavioural justification in trip generation
such as supported by the theory of random utility for example is also a drawback
of this stage (e.g. Ben-Akiva and Lerman, 1985). Similarly, in category analysis
the large sample size required to calibrate the trip rates as well as the absence of
statistical tests for the overall goodness of fit of the models undermines its
adequacy (see Stopher and McDonald, 1983; Ortlizar and Willumsen, 2001).
Although multiple classification analysis (MCA) methods provide improved
techniques to overcome some of the shortcomings of category analysis approach,

these methods largely suffer from same limitations of category analysis.

In summary, trip generation analysis, unlike the rest of travel choice analysis, has
limitations in terms of the techniques (conventional techniques), data used (only
revealed preference data) and type of variables (only socio-economic variables).
These limitations have been recognised in the literature and acknowledged to

impair the efficiency of trip generation models to produce accurate predictions.

Logistic regression analysis may offer a way forward to overcome some or all of
the above mentioned limitations of trip generation techniques. It overcomes
many of the restrictive assumptions of ordinary least squares regression (Garson,
2002); in particular, the assumption of linearity between the dependent and
independent variables. This technique can be used to model relationships
between the response variables which are binary or categorical, with more than
two categories and several explanatory variables which may be categorical or
continuous. This approach has been widely used to model other travel choices
such as mode, route, departure time and other travel choices. However, not many
applications in trip generation modelling have been reported. Moreover, this
approach would allow the use of other sources of data such as stated preference

and stated intention data.

The first objective of this research therefore, is to investigate appropriateness

of logistic regression analysis for modelling trip generation.



In order to do that, a number of data sets have been identified and analysed to
carry out the investigations. These are presented and discussed in Chapter 5.
Secondly, the methodology adopted to model trip generation using logit analysis

as well as the calibrated work trip models are presented in Chapter 6.

In order to further assess the performance of the logit models of trip generation,
they have been compared with the conventional trip generation models (i.e.
linear regression analysis and category analysis). There are a number of multiple

classification analysis techniques which have been recently developed but not

widely empirically tested.

The second objective of this research is to investigate, analyse and compare
trip generation models using logistic regression, linear regression and category

andlysis including multiple classification analysis.

Calibration of trip generation models using the conventional (linear regression
and category analysis including multiple classification) models is presented in

Chapter 7. Predictions from all the above models and analysis of the results are

presented in Chapter 8.

One of the main criticisms of trip generation models is the absence of any
variables that represent the transport policies which are implemented in zones
that affect its accessibility (e.g. public transport, pricing and parking policies). As
discussed earlier, the independent variables that are most commonly considered
in trip generation models are socio economic variables (households/individuals’
attributes) as well as attraction opportunities. Congestion charging as well as
parking management measures is increasingly being considered as management
tools in the UK as well as in most world cities (Litman, 2004; European
Commission, 2004). There is empirical evidence that such policies do affect trip
generations as well as other travel decisions (e.g. trip distributions, modal choice
and route choice). However, most of current trip generation models still ignore

this type of variables, and only include mainly socio economic characteristics.



For example, there has been a large number of parking management schemes
implemented in the UK over the past few decades to reduce congestion. There
are a lot of empirical evidences that these schemes have resulted in a reduction of
number of shopping and other trips to the central areas. Therefore, to ignore the
impacts of such policies on trip generations and only consider them at later
choice decisions would certainly be resulting in inaccurate predictions at this,
and all subsequent stages.

The third objective of this research is to investigate the impacts of including
factors to represents transport policy in the trip generation models on their

performance.

In order to achieve this, a data set from the household and shoppers’ survey in
Edinburgh, has been used to calibrate linear and logistic regression models of trip
generation (shopping trips), taking into account parking costs as transport policy

measure. These results are presented in Chapter 9.

Most trip generation models are calibrated from aggregate revealed preference
data (Daly and Miller, 2006). This is despite the growing number and extent of
applications in other sources of data (e.g. stated preference and stated intentions)
and the great number of applications in travel forecasting models using these
data. This is mainly because of the nature of trip generation models and
modelling techniques used (i.e. linear regression analysis and category analysis).
SP techniques offer the opportunity to modellers to test impacts of policy
measures on travel behaviour. So in principle there is no reason why these
techniques cannot be used in trip generation modelling, especially if logistic

regression analysis is used.

For example, in London, a congestion charging scheme has been implemented
since February 2003 to control traffic congestion into the city. There are
empirical evidences that this scheme has resulted in a reduction of number of

shopping and other trips to central London. A similar scheme has been proposed



for Edinburgh. And although the scheme has been abandoned, a number of
research studies and investigations have been carried out to identify public
acceptance of the scheme as well as the forecasts of the impacts of the schemes
on various types of travel choices but not including trip generation. It would be
interesting therefore to use stated preference techniques to investigate impacts of

transport policies on trip generations.

In this research, the fourth objective is to investigate the use of stated

preference data for calibrating trip generation models.

In order to achieve this, the SP data from Edinburgh Household Survey is used to
calibrate mixed RP/SP logistic regression models for trip generation taking
account of introducing road user charging as a policy measure. These results are

presented in Chapter 10.

Accessibility refers to the “ease” with which desired destinations may be reached
and is frequently measured as a function of the available opportunities (such as
employment levels and retail or non-retail square footage) moderated by some
measure of impedance (such as distance, travel time or cost) (Niemeier, 1997).
Accessibility of the transport system has been recognised and investigated in the
literature but also limited to variables representing the characteristics of the

transport system but not the perceived level of service of that system.

Finally, in this research therefore, the inclusion of transport accessibility

measure in trip generation models is explored and analysed.

. A public transport accessibility measure is calibrated as a function of the distance
from the city centre and the perceived level of service of the public transport

system by the users. These results are presented in Chapter 11.

1.3 RESEARCH OBJECTIVES

The main objectives of this research are to:



1. Examine appropriateness of logistic regression analysis for modelling trip
generation in order to overcome any problems related with the
conventional methods (i.e. trip generation and regression analysis).

2. Investigate, analyse and compare trip generation models using logistic
regression, linear regression and category analysis including more recent
multiple classification analysis techniques. This is to further test the
statistical significance and hence the appropriateness of logistic regression
analysis for trip generation.

3. Investigate and calibrate trip generation models which include transport
policy measures to investigate if these models will improve the prediction
and statistical significance of trip generation models.

4. Explore the use of stated preference data (SP) to calibrate trip generation
models. This is to make use of this data source and to improve the validity
and performance of trip generation models similar to other travel demand
forecasting models (e.g. modal split models).

5. Investigate trip generation models with enhanced transport accessibility

functions to make trip generation models more realistic.

1.4 NOVELTY OF THIS RESEARCH

Limitations in trip generation techniques and analysis have been widely
recognised in the literature, yet very limited investigations and innovations of
these techniques have been reported to date. Trip generation is the first stage in
the analysis and forecasting of demand for travel. Any deficiency or inaccuracy
in the estimation at this stage will be carried over and will have implications on
subsequent stages. While logistic regression analysis has been extensively used
in mode, route, destination and departure time choices, it has not been used in
modelling trip generation. Logistic analysis can overcome some the limitations
of linear regression analysis and category analysis as discussed above. For
example, the assumption of linearity of independent variables, the lack of built-in
upper and lower limits to the number of trips and the assumption that the number

of trips is approximately continuous can also be questioned.



This research defines a framework for modelling trip generation using logistic

analysis.

Moreover, a number of multiple classification analysis techniques which have
been recently developed but not widely empirically tested, are used to calibrate

and analyse work trip generation models.

The research calibrates trip generation models with independent variables that
represent transport policies (such as parking pricing and congestion pricing).
This is very important since the absence of the effects of such policies at the trip
generation stage would result in inaccurate prediction of travel demand
forecasting, even though these impacts aré considered at later decision choices

such as mode and route choice.

Stated preference data and techniques have been investigated in other travel
decision models, but not in trip generation modelling. In this research, trip

generation models have been calibrated using mixed SP/RP techniques.

Finally, the research also investigates modelling transport accessibility in trip
generation models by including a public transport accessibility measure. This
measure reflects the transport users’ perceived levels of service of public
transport. Transport accessibility can include other measures which reflect the

level of accessibility of the transport system.
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CHAPTER 2 TRIP GENERATION MODELLING

2.1 INTRODUCTION

In transport modelling, ‘trip’ or ‘journey’ (both terms are used interchangeably
here) is a one-way movement from a point of origin to a point of destination
(Ortazar and Willumsen, 2001). A Home-Based (HB) Trip is one where the
home of the trip maker is either the origin or the destination of the trip and a
Non-Home-Based (NHB) Trip is, conversely, one where neither end of the trip is
the home of the traveller. Trip Generation is often defined as the total number of
trips generated by households or individuals, be they HB or NHB. A Trip
Production is defined as the home end of an HB trip or as the origin of an NHB

trip and a Trip Attraction is normally defined as the non-home end of an HB trip
or the destination of an NHB trip.

During the 1980s a series of other terms, such as tours and trip chains, appeared
in transport modelling; and these correspond better to the idea that the demand
for travel is a derived demand (i.e. it depends strongly on the demand for other
activities, Ortizar and Willumsen, 2001) and have been used mainly by discrete
choice modellers in practice (Daly et al, 1983). A tour or trip chain can be
defined as a sequence of trip segments that start at home and end at home

(Shiftan, 1999).

2.1.1 Classification of trips

In practise, trips are often classified by different purposes to obtain better trip
generation models. By purpose, personal trips are commonly classified into
(Barber, 1985): work trips, shopping trips, social trips, recreational trips, school
trips, home trips and business trips. This research focuses on work trips and
shopping trips respectively. A work trip can be defined as a trip made to a
person’s place of employment (Barber, 1985); the place of employment may be a

manufacturing plant, a public or private institution such as a hospital or

11



university. A shopping trip can be defined as a trip made to any social outlet,
regardless of the size of the store (or shopping centre) and whether or not a
purchase was actually made. Among all trip purposes, work trips used to be
most numerous followed by shopping trips (Vickerman and Barmby, 1984). The
National Travel Survey data (Department of Transport, 1979) show that
shopping trips have increased from 12.7% of all trips in 1965 to 16.6% in
1975/1976 while work trips have fallen from 35.7% in 1965 to 25.7% in
1975/1976. In 1996/1998 shopping trips accounted for 20.3% of total trips and

has become more numerous than commuting trips which accounted for 18% of

that total (Kershaw et al., 2001).

Work trips and school trips are usually called compulsory (or mandatory) trips
and shopping trips, social and recreational trips and some other less routine trips
(such as seeing a doctor) are called discretionary (or optional) trips (Ortizar and
Willumsen, 2001). When transport policies are introduced, it would mostly
impact on discretionary trips than compulsory trips. Trip generation models for
different types of trips can vary either by the factors in the equations or by the

value of the coefficients of the same factor.

By time of day, trips are often classified into peak and off-peak period trips and
the proportion of journeys by different purposes usually varies greatly with time
of day (Ortizar and Willumsen, 2001). The majority of trips in the AM peak are
usually compulsory (i.e. either to work or education) and this is not the case in

the off-peak period.

Trips can also be classified by person type, as individual travel behaviour is
heavily dependent on socio-economic attributes such as income levels, car

ownership and household size and structure (Ortizar and Willumsen, 2001).

2.1.2 Aggregate and disaggregate approaches

There are two approaches in terms of data aggregation in trip generation models:

aggregate trip generation models and disaggregate trip generation models. The
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aggregation levels are usually defined as area (zonal), household, and person. In
aggregate models, a given geographic area, such as neighbourhood or city, are
used as the unit of analysis. In disaggregate models, the household or individuals
are used (Koppelman and Pas, 1984). Estimating the models at more
disaggregate levels improves the transferability of trip generation models

(Orttzar and Willumsen, 2001).

Atherton and Ben-Akiva (1976) emphasized that disaggregate models tend to
maintain the variance and behavioural context of the response variable and,
therefore, are expected to give better estimates when transferred. Downes and
Gynes (1976) pointed out that when the explanatory pdwcr of the model is of
interest rather than the aggregate forecasts, the disaggregate level should be
selected. Wilmot (1995) indicated that disaggregate models are preferred because
of their independence from zonal definitions. In Supernak et al. (1983) and
Supernak (1987), the person level was preferred for trip generation models
because of the identity of the response factor (trip) and the generative (the
person). One advantage of disaggregate person-level models is the reduced

amount of data required for model estimation.

At prediction, however, a degree of aggregation will be required. An empirical
test of the forecast performance of household- and person-trip generation was
conducted by Badoe and Chen (2004) using data collected in a household-travel-
behaviour survey in the Greater Toronto Area of Canada. They conclude that the
household is theoretically the preferable analysis unit to use in trip production
modelling when the model estimation data are collected in a household travel
survey in which the household is the sampling unit. The empirical test indicates
that household-trip generation models yield predictions of trips at the household

and traffic zone level, respectively, that are marginally more accurate than those

yielded by person-trip generation models.
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2.2 FACTORS INFLUENCING TRIP GENERATION

According to Levinson (1976) and Bruton (1985), trip making is a function of
the following basic factors: the socio-economic characteristics of the trip makers
residing in the area, and the land-use pattern and developments in the study area

(or the physical characteristics of the area).

The explanatory variables used in trip generation models will differ depending
on the type of trip being modelled (Sheppard, 1985). First the potential number
“of trip makers in a zone should be identified by considering the land use mix or
the number of residence. Secondly, the degree to which a potential trip maker’s
characteristics affect his or her propensity to make a trip should be considered.
Lastly, the geographical accessibility of the zone to places where the trip purpose

will be satisfied can also affect the number of trip made.

In general, the explanatory variables can include: 1) social-economic
characteristics of the trip maker; 2) physical and demographic characteristics of
the area; and 3) accessibility and policy-related measures. Some of these
variables are important when aggregate data are used and some of them are
important in disaggregate (e.g. household and individual) models. These
variables are classified into three main groups according to their roles in
aggregate models and disaggregate models. The discussions are based on Bruton

(1985) and Stopher and McDonald (1982).
2.2.1 Factors affecting aggregate trip generation models

The factors which are important in aggregate (zonal) trip generation models are

summarised in Table 2.1 and discussed in the following sections.
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Table 2.1 Factors affecting aggregate trip generation models

Location / land use factor Buchanan and Partners, 1965; Douglas and
Lewis, 1970, 1971; Bruton, 1985; Péez et. al,
2006

The social-economic Schuldiner, 1962; Taylor, 1968

characteristics of the population ‘

Density Stopher and McDonald, 1982; Bruton, 1985

The degree of urbanization Schuldiner, 1962

2.2.1.1 Land-use factors / area type / location variable

Location reflects the surrounding environment and should ideally measure the
spatial separation of households from each of the amenities which they desire,
e.g. schools, shops and workplaces (Douglas and Lewis, 1970, 1971). Different
uses of land produce different trip generation characteristics. For the purposes of
trip generation, the significant land uses include (Bruton, 1985):

o Residential land use, which can be represented in terms of acres of
residential land, number of dwelling units, number of dwelling units per
acre, number of persons per acre, or total population.

e Commercial and industrial land use, which can be expressed as the
numbers employed per unit area of land and the amount of floor space
occupied.

¢ Educational and recreational developments, expressed as the numbers in
attendance. The Guildford study, carried out by Buchanan and Partners
(1965), included a comprehensive analysis of the effect of the
development of the University of Surrey on trip generation and

distribution in Guildford.
Where densities are higher, motorized trips are likely to be fewer because

opportunities for satisfying activities are closer and both congestion and parking

price may be significantly higher, whereas parking availability is lower (Stopher
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and McDonald, 1982). In addition, various services and home deliveries may be
more available, thus reducing the need for some trips. The effect of area type is
likely to be greatest on discretionary travel (home-based socio-recreational,

home-based other) and least on mandatory travel (home based work or school).

Agyemang-Duah et al. (1995) found that suburban living is positively correlated
with weekday, home-based shopping trips. Finally, in an elderly trip generation
study in the Hamilton CMA by Péez et al. (2006), significant spatial variability
was detected in the case of work trips, and in the case of non-work trips

~ significant spatial variability within age cohorts was found.

2.2.1.2 The social-economic characteristics of the population

"The social-economic characteristics of the population could be expected to
produce different movement demands. For example, factory or manual workers
could be expected to produce quite different movement characteristics to
executive clerical workers. Schuldiner (1962) indicated that a trip generation
model based on socio-economic characteristics held some promise. However
Taylor (1968) showed that for all modes of travel and a range of journey
purposes there appears to be little relationship between the zonal socio-economic

characteristics examined by him and trip generation.

2.2.1.3 The degree of urbanization

The degree of urbanization exhibited by an area can be used to represent the
level of integration of the household in the local community. Schuldiner (1962)
found in his analysis of data relating to Chicago that the index of urbanization,
which he derived based on fertility rate, female labour participation rate and the
incidence of single family dwellings, appeared to exert a significant effect on trip
generation rates. The measure of the degree of urbanization often used is distance
from the central area. The argument for the use of this factor is that
characteristics of the population and development, and hence the movement
demand, change with distance from the central area. For example, within the

central area residential development may consist largely of ‘temporary’ hotel,
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flat and boarding-house accommodation occupied by young, single or transient

persons, while the outer suburbs may consist large of single family dwelling

units occupied by married couple with families.

2.2.2 Factors affecting disaggregate household trip generation models

The factors which are important in disaggregate household trip generation

models are summarised in Table 2.2 and discussed in the following sections.

Table 2.2 Factors affecting disaggregate household trip generation models

Factors

References

Family income

Vehicle ownership

Household structure

Household size

Number of children
Occupied residence

Life style and life cycle

Type of dwelling unit

Value of a property

Stopher and McDonald, 1982; Bruton, 1985; Takyi,
1990

Stopher and McDonald, 1982; Bruton, 1985;
Agyemang-Duabh et al., 1995; Agyemang-Duah and
Hall, 1997; Schmocker et al., 2005

Allaman et al., 1982; McDonald and Stopher, 1983

Schuldiner, 1962; Stopher and McDonald, 1982;
Agyemang-Duah et al., 1995; Takyi, 1979, 1990

Agyemang-Duah et al., 1995
Stopher and McDonald, 1982; Bruton, 1985

Allaman et al. 1982; Ortazar and Willumsen, 2001;
Chicoine and Boyle, 1984

Schuldiner, 1962; Stopher and McDonald, 1982;
Bruton, 1985

Bruton, 1985

The ability to pay for a journey affects the number of trips generated by a
household (Bruton, 1985; Stopher and McDonald, 1982). Thus families with a
high income can generally afford to satisfy more of their movement demands

than low-income families. As one would expect, increasing family income leads



to greater trip production. Family income tends to be related to levels of motor
vehicles ownership. In the analysis of trip generation in a developing country by
Takyi (1990), it has been found, when household income was included in the

same model with car ownership, its influence on trip making was significantly

reduced.

2.2.2.2 Motor vehicle ownership / license ownership

Motor vehicle ownership, or the number of vehicles available for use by each
household, has been found to have a significant influence on trip generation
(Bruton, 1985). Households with more than one motor vehicle tend to generate
more trips per unit than households with only one motor vehicle, although the
single-car households tend to utilize their vehicle more intensively. Motor
vehicle ownership and family size are to a certain extend related. A large non-
motor-véhicle-owning family can be expected to generate fewer trips than the
same size family which has access to three motor vehicles. The most common
measures of car ownership are the total number of cars per zone, car ownership

per person, or car ownership per household.

The acquisition of a vehicle increases substantially the number of trips and
motorized trips made by a household (Stopher and McDonald, 1982, also
Agyemang-Duah et al., 1995; Agyemang-Duah and Hall, 1997, and Schmécker
et al., 2005), this arises both from substitution of vehicular trips for walk trips
and from satisfaction of vehicular trips for walk trips and from satisfaction of
previously unsatisfied demand for travel. The trip making rate of increase is
nonlinear, with a decrease rate of increase with increasing automobile. Vehicle
availability is likely to be the more appropriate measure than ownership because
it is a more accurate measure of the potential to satisfy demand for vehicle trips.

Also the number of vehicles has nonlinear effects on discretionary trip

generation,

The elderly trip generation study in the Hamilton CMA by Péez et al. (2006)

indicates that license ownership relates positively with trip making frequency
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and it also shows that license ownership is a stronger predictor of number of trips
than car ownership. License ownership and car ownership are found to be the
two most important factors affecting elder trip generation, but, it is also found
that overall mobility may not necessarily be negatively affected by lack of access

to a car, presumably as long as transit remained accessible.

However, the results from the studies by Vikerman and Barmby (1985) and
Barmby and Doornik (1989) using the Sussex Household Shopping Survey data

show that car ownership has no clear effect on shopping trips.

2.2.2.3 Family size

Household size is defined as the number of persons in the household without
regard to age, and it is expected to cause increases in trip making for all trip
purposes, although not in a uniform manner (Stopher and McDonald, 1982). The
number of trips per person is expected and has been shown to be relatively
stable. Schuldiner (1962) in his work on the Modesto area of California has
shown that average trip frequency increases with increasing persons per
household, at the rate of approximately 0.8 trips per day for each additional
person. This increase in the number of trips with family size is, however, related
mainly to non-work trips which tend to level off at the four person per dwelling

- unit family size.

In trip generation analysis in Ghana by Takyi (1990), household size, which
reflects the extended family in developing countries, has been found to be the
strongest determinant of trip making, together with car ownership and the
number of employed persons in the household, although trip rates were not
significantly increased for household sizes larger than eight. In this case,
household size as a variable performs significantly better than household income
for work, school and shopping trips, which makes up more than 60 percent of

total household trips.
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Agyemang-Duah et al. .(1995) point out that the household home-based shopping
trips increase with increasing household size but at a decreasing rate and
household sizes have non linear effects on discretionary trip generation. An
earlier study by Takyi (1979) also shows that there is a nonlinear relationship

between household size and the average number of trips per household.

2.2.2.4 The number of children

The presence of children in the family may have a dual influence on shopping
travel (Agyemang-Duah et al, 1995); on one hand, it may lead to some
restrictions on the time available for shopping. Alternatively, it may be regarded
as a scale factor leading to increased shopping. When household size is included
in the meantime, to some extent one might expect the number of children to have
a negative effect; and this is confirmed by their weekday, home-based shopping
trip generation study (Agyemang-Duah et al., 1995). An explanation is that
children of school age are at school and childcare responsibilities might have

some time budget effects on trip making.

2.2.2.5 Occupied residents

It has been found that the proportion of work trips for the gainfully employed
groups decreases as the occupational status increases, although the proportion of
trips for non-work purposes varies little between various groups with the

exception of the unemployed (Bruton, 1985).

The number of workers may be defined as all workers or as full time workers
only, where worker is restricted to work outside the home (Stopher and
McDonald, 1982). The number of workers will be in direct proportion to and is
causative of the number of household work trips. Also, as more members of a
household of a given size work, the number of trips for all other purposes is

likely to be fewer, except for non-home-based trips, because more activities are

likely to be undertaken on the way to or from work.
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2.2.2.6 Life style and life (or family) cycle and household-structure

Ortizar and Willumsen (2001) suggest that life cycle variables could be an
important factor for explaining trip generation. This is consistent with the idea
- that travel is a derived demand and that travel behaviour is part of a larger
allocation of time and money to activities in separate locations. For example, the
concept of life style may be operationalised as the allocation of varying amounts
of time to different (activity) purposes both within and outside the home, where

travel is just part of this allocation (See Allaman et al. 1982).

It can be tested whether the major break pointé or stages (such as the appearance
of pre-school children; the time when the youngest child reaches school age, the
time when all the children of a couple have left home, and the time when all
members of a household have reached retirement age) in the life cycle are
consistent with major changes of time allocation. Different trip rates can be
expected for households and people at various stages of life and, furthermore,
age should correlate with employment, having a driver’s license, and marital

status.

The concepts of life style and stage of family cycle are important from two
points of view: first, that of identifying stable groupings (based on age or sex)
with different activity schedules and consequently demands for travel; second,
that of allowing the tracing of systematic changes which may be based on
demographic variations (e.g. changes in age structure, marital or employment

status).

Chicoine and Boyle (1984) use the Automatic Interaction Detector program to
determine the important components of a life-cycle classification scheme which
emphasize the presence of children more than ages of children. They conclude
that the advantage of a life-cycle-based trip generation procedure over regression
models lies in its simplicity and its ability to handle non-numeric values. It is
preferable to a procedure base& on family size because it explicitly addresses
family structure and thus takes intrahousehold interactions into account. Finally,

a life-cycle-based procedure uses readily available data; an income-based
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procedure is vulnerable to high nonresponse rate if a noncensus data source is

used, and such a scheme must be constantly adjusted to account for the effects of

inflation.

Allaman et al. (1982) use a household structure variable based on the above
ideas in trip generation modelling and the household categories are based on the
age, gender, marital status, and last name of each household member. It was
expected that these categories would have varying effects on trip rates. For
example, adults living alone would be less mobility constrained than those adults
living with children; but they would have none of the opportunities for trip
coordination produced by living with other adult members. More specifically,
when trip-generation rates are analysed by purpose groups, differences between

the trip-generation rates of these household categories would be expected.

Allaman‘ et al. (1982) examined this household-structure concept by using
Baltimore survey data with linear regression analysis and suggest that the
household-structure variable correlates more strongly with trip rates than almost
any other variable, except vehicle ownership. In particular, this should improve
the model significantly where it is combined with vehicle ownership and used as

a substitute for household size.

McDonald and Stopher (1983) tested this variable using Midwest data by using
both analysis of variance and multiple classification analysis (MCA) in contrast
to linear regression and conclude that the household—structure variable does not
perform significantly better than the other variables tested. The contrary
indications may, however, be a result of the different methodologies that were
used in the two analyses. They further mention that even had household-structure
variable performed satisfactorily in the trip generation analysis, there would be
problems implementing it in trip-generation models as, it appears to have
problems when forecasting at zonal level, particularly to obtain distribution of

households by household-structure category.
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2.2.2.7 Type of dwelling unit

The more permanent types of dwelling unit, such as a single family house, reflect
a high degree of integration into the local community on the part of the
household, and lead to a high rate of trip generation (Bruton, 1985). Conversely
the less permanent dwellings, e.g. a hotel room, result in a more limited
integration with local affairs, with a lower resultant trip generation rate.
Schuldiner (1962) found that this was the case as well but not as marked as
expected. However, when family size and car-ownership levels are taken into
consideration, the difference in generation rates is not as great as appeared at first
sight. Similarly, Stopher and McDonald (1982) suggest that household type has a
weak conceptual link, deriving principally from density considerations and some

aspects of vehicle availability associated with vehicle storage space.

2.2.2.8 Rateable value of a property

The rateable value of a property is considered indicative of the occupiers’
financial status (Bruton, 1985). Thus the greater the annual outgoing in rent, or
interest on invested capital, the more likely it is that the occupiers have resources
available to spénd on travel. Rateable value is related to family income and

usually easier to obtain reliable information about it.
2.2.3 Factors affecting disaggregate individual trip generation models

The factors which are important in disaggregate individual trip generation

models are summarised in Table 2.3 and discussed in the following sections.
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Table 2.3 Factors affecting disaggregate individual trip generation models

Factors References

License ownership Péez et al., 2006
Age Bruton, 1985; Paez et al., 2006
Employment status/job type Agyemang-Duah et al., 1995; Péez et al., 2006

Telecommuting Mokhtarian et al., 1995; Henderson and
Mokhtarian, 1996; Henderson et al., 1996; Koenig
etal., 1996

Teleshopping/ electronic- Lenz, 2003; Farag et al., 2003
shopping

2.2.3.1 License ownership

The elderly trip generation study in the Hamilton CMA by Pdez er al. (2006)
indicates that license ownership relates positively with trip making frequency
and it also shows that license ownership is a stronger predictor of number of trips
than car ownership. License ownership and car ownership are found to be the
two most important factors affecting elder trip generation, but, it is also found
that overall mobility may not necessarily be negatively affected by lack of access

to a car, presumably as long as transit remained accessible.

2.2.3.2 The age structure of the population

The age structure of the population is often taken into consideration in trip
generation analysis on the basis that different age groups produce different
movement demands and characteristics (Bruton, 1985). The teenage population
15-20 years, for example, could be expected to produce more journeys of a social

and recreational nature than older age groups.

In the elderly trip generation study in the Hamilton CMA by Pdez et al. (2006),
the results also confirm the negative association between increasing age and trip
making frequency. However, it is found that this behaviour is not spatially

homogenous, in particular with respect to non-work trips. The results also
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suggest that a sizable segment of the 65+ cohort tends to engage in increased trip

making, relative to other cohorts.

2.2.3.3 Employment status and job type

Different employment status may exert different time budget constraint on
shopping trips (Agyemang-Duah et al., 1995). Full-time and to some extent, part-
time work is expected to have a negative impact on weekday home-based
shopping trips. Two opposed effects of unemployment may be hypothesized: one
effect is that an unemployed person has more time and therefore can make more
shopping trips and the other hypothesis is that because a person is unemployed,
he or she does not have enough money for shopping. In their studies of weekday
home-based shopping trips in the greater Toronto Area (GTA), it has been found
that full-time employment has a negative impact on home-based, weekday
shopping trips; however, the effect of unemployment is not statistically

significant in the shopping trip generation.

Péez et al. (2006) found that full time employment has a positive, but relative
small, impact on total trips, but the difference in trip making frequency between
blue collar and other workers is negligible. While for work trips the single most
important factor is employment status, being employed full time correlates

negatively with number of non-work trips made, but the effect is relatively small.

2.2.3.4 Telecommuting

Henderson and Mokhtarian (1996) investigate the impacts of centre-based
telecommuting on individual travel behaviour and emissions, using travel diary
data from the Puget Sound Telecommuting Demonstration Project. A
telecommuting centre, or telecentre, is defined as a facility where employees
(from single or multiple organizations) share workplace and equipment for the
purpose of reducing the length of the commute from the employee’s home to the
workplace. An analysis of personal vehicle usage for this small sample of

workers showed that the number of vehicle-miles travelled (VMT) was reduced
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significantly as a result of centre-based telecommuting. The number of personal
vghicle trips did not change significantly. In essence, centre-based telecommuters
behave as conventional commuters in terms of their number of trips, but more
similar to home-based telecommuters in terms of VMT reductions. Home-based
telecommuting has been found to reduce the number of daily trips and VMT,
leading to substantial savings in personal vehicle emissions (Mokhtarian et al.,
1995; Henderson ef al, 1996; Koenig et al., 1996). However, home-based
telecommuting may not be appropriate for every worker whose job permits it
(Bagley et al., 1994), for reasons such as no adequate space and distractions;
while telecommuting centres may offer more opportunity of social or
professional interaction and provide expensive specialized equipment that can be .

shared by all telecommuting employees.

2.2.3.5 Electronic shopping

Recently, the impacts of electronic shopping (e-shopping) / electronic commerce
on travel behaviour have been studied by some researchers (such as Lenz, 2003;
Farag et al., 2003). In the research carried out by Lenz (2003) in the Stuttgart
region in Southwest Regional in southeast Germahy, it is concluded that there is
little hope for larger traffic reduction through e-commerce and that e-commerce
will have a stronger impact on traffic and transportation only when it is broadly
used for everyday standard shopping. Farag et al. (2003) use an Internet survey
and Netherlands National Survey data to analyse the possible impact of e-
shopping on travel behaviour and their main conclusions include: First, some
shopping time will be saved and used for other maintenance or leisure activities
instead; Second, e-shopping will affect travel behaviour most in the urbanized
western part and in the less urbanized parts of the Netherlands; Finally, a
reduction in car travel in the less urbanized areas of the Netherlands and a

reduction in walking and cycling in the more urbanized areas of the Netherlands

are expected.
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2.2.4 Accessibility and policy-related measures

Accessibility and policy-related measures are given in Table 2.4. The detailed

discussions are as in the following sections.

Table 2.4 Accessibility and policy-related measures

Factors References
Traffic demand management Still and Simmonds, 2000
(TDM) measures:
1. Pedestrianisation and 1. Hass-Klau, 1993; Wiggin, 1993
traffic calming;
2. Park and Ride; 2. Cairns, 1997
3. Parking restraint policy; 3. Still and Simmonds, 2000
4. Congestion charging 4. Schmocker et al., 2006
Parking at work Péez et al., 2006
Public transport cost Vickerman and Barmby, 1984
Petrol fee Vickerman and Barmby, 1984
Accessibility Hansen, 1959; Ben-Akiva and Lerman,
1979; Niemeier, 1997. See Chapter 3 for
more references.

2.2.4.1 Toll measures and pedestrianisation and traffic calming

Schmocker et al. (2006) reviewed the impacts of road pricing on retail and
analysed the shopping trips into London’s central shopping district (Oxford
Street area) before and after the introduction of the congestion charging scheme
in February 2003. The impact of any traffic demand management (TDM)
measure on urban vitality is still in a research stage (Still and Simmonds, 2000)
and a reason for this is that these policies mostly do not come as an isolated
measure but as a package with other policies, which complicates the impact

assessment.
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Pedestrianisation and traffic calming has slightly negative impact on the retail
sector; however, in the long run, it has proved to be beneficial for turnover
(Hass-Klau, 1993; Wiggin, 1993). Park and Ride can lead to small change in
land use patterns that encourages‘ the development of out-of-town shopping
centres with Scottish case studies; on the other hand, it can attract more car bourn
customers from the surroundings to the city centre retailers (Cairns, 1997).
Although parking restraint policy is always strongly opposed by retailers, there is
no statistical evidence that it is linked to the performance of retailing or of other

economic sector (Still and Simmonds, 2000).

Schmécker et al. (2006) indicated that the analysis of the surveys provides some
evidence of a negative impact on shopping trips at John Lewis, Oxford Street
 attributable to congestion charging. The main reasons for the reduction in trip
frequency include negative experiences with the congestion charging scheme or
a generally bad perception of the scheme. However, it is pointed out that
evidence from other travel demand measures on city centre shopping activities
suggest that the long-time effects of the congestion charge could be more

positive.

2.2.4.2 Parking at work

Péez et al. (2006) have found that free parking at work has a positive if modest
effect on the number of trips, which could be attributed to the relative ease of

making subsequent trips, even if not related to work, once that a secure parking

base is available.

2.2.4.3 Travel costs

Vickerman and Barmby (1984) and Barmby and Doornk (1989) have found that
travel costs affect trip making consistently and there is a very significant

tendency to save travel costs by reducing shopping trips as costs increase.
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2.2.4.4 The quality of transportation facilities / services, and the level of

accessibility

The quality of transportation facilities / services available to the trip maker in a
given area and the resulting level of accessibility affect trip generation.
Accessibility has not often been used although most studies have attempted to
include it as it offers a way to make trip generation elastic (responsive) to
changes in the transport system (Ortuzar and Willumsen, 2001); however,
unfortunately this procedure has seldom produced the expected results in the case
of éggregate modelling applications, because the estimated parameters of the
accessibility variable have either been non-significant or of the wrong sign.

Detailed discussions of the applications of accessibility in trip generation models

will be given in Chapter Three.

The factors discussed above are mainly used for trip production studies. The
factors affecting trip attraction can include (Ortiizar and Willumsen, 2001):
roofed space available for industrial, commercial and other services, zonal
employment and accessibility. For freight trip productions and attractions,
important variables include (Ortizar and Willumsen, 2001): number of

employees; number of sales; roofed area of firm and total area of firm.

2.3 TECHNIQUES OF TRIP GENERATION MODELLING

This section reviews trip generation techniques that have been explored in the
literature. These modelling techniques can be classified into four main categories
as shown in Table 2.5 by their similarity of methodology:

1. Linear regression analysis;

2. Category analysis and its improvements or modifications;
3. Discrete choice / trip frequency models;
4

. Other techniques.
The two most commonly used techniques of trip generation modelling are linear
regression analysis and category analysis (FHWA, 1975; Hobbs, 1979;

Koppelman and Pas, 1984; Bruton, 1985; Sheppard, 1985). First the

29



methodologies, advantages and disadvantages of these two methods will be
reviewed in the first two sections. See Ortizar and Willumsen (2001) for more

detailed discussions about the two techniques.

2.3.1 Linear regression analysis
2.3.1.1 Introduction

In the late 1950's and early 1960's linear regression was the most popular method
of predicting what the number of trips generated would be if one of the factors
affecting trip generation changed. This approach uses trip data collected at one
time to determine a functional relationship between trip generation (which are
known as the ‘response’ or ‘dependent’ variable of the function) and the
characteristics that exhibit a causal effect on it (which are known as the
“explanatory’ or ‘independent’ variables of the function) utilising the principle of
least-squares, i.e. the squéred sum of the residuals or deviations from the
estimated line is minimised. The linear least-squares model is based on the
hypothesis that there exists a linear relationship between some dependent

variable and one or more independent variables.

2.3.1.2 Linear regression model

A trip generation model based on linear regression analysis predicts the number

of trips by residents of zone or household i, for travel purpose p and for person

type n as:

Y,=6,+6,X,,+0,X,,+.+60,X,,, +€

1np

Where

Y = the number of trips generated by an individual, household or zone;
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Table 2.5 Classification of trip generation modelling techniques

Category

Modelling techniques

Linear regression
analysis

Multiple linear regression analysis

Some combinations with other models, see the
following categories

Category analysis or
cross-classification and
its modifications or
improvements

Classic cross-classification model

Multiple classification analysis (MCA)
methods

The person-category approach
Generalized linear model

Regression analysis for household strata - a
combination of linear regression model with
category analysis

Discrete choice models
(trip frequency)

Nested-alternative-logit model

Ordered response model

Ordered logit model

Negative binomial model / count data model

Ordered probit model / mixed ordered probit
model

Tobit model - a combination of linear model
with discrete choice models

Other techniques

Growth factor modelling

CHAID (Chi-squared Automatic Interaction
Detection)

Hierarchical tree-based regression (HTBR)
model

Iteratively specified tree-based regression
(ISTBR) model - a combination of linear
regression and HTBR

Artificial neural networks

Trip chaining and trip generation model
Activity-based trip generation model
Direct demand modelling

Dynamic trip generation model
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X; = the independent variables (number of households, number of workers, car
ownership, etc.);
6, = the model coefficients estimated by linear regression. That is, for any given
set of observations X, X}, ... , Xi there exists a corresponding observation Y
which differs from the regression line (6, + 6,.X; + ... + 6.X;) by the amount of
£,
. €= the error terms which are commonly referred to as the disturbance terms of
the equation. They arise in practice mainly because the model does not take
account of all factors which influence the value of Y; thus the £ values account

for the net effect of excluded variables and random deviations.

2.3.1.3 The assumptions of the linear regression model

The use of least-squares regression analysis involves a number of important
assumptions which mainly include (Douglas and Lewis, 1970): |
1. Distribution of the disturbance terms. Regarding the disturbance terms it
is assumed that their mean and co-variance are zero, their variance is
constant and that their distribution is normal. If the variance is not
constant then data is said to be heteroscedastic and this may lead to an
over-statement of the accuracy of the regression equations.

2. Collinearity between independent variables. When two or more variables
are inter-correlated (it is known as multi-collinearity) it becomes difficult
to distinguish their separate effects and sometimes the coefficients of a_
value or sign may be contrary to intelligent expectation.

3. Error in variables. Measurement errors in the independent variables are
not allowed for by the model and if present can lead to biased estimates
of the equation coefficients.

4. The shape of the response surface. It assumes that the dependent variable
is a linear function of the independent variables. The independent

variables need not be in their original forms and transformations such as

the logarithm and reciprocal are sometimes used.
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2.3.1.4 The tests of the multiple linear regression model

The statistical validity of trip generation analysis derived through linear
regression can be assessed by a series of standard statistical tests:

1. Multiple correlation coefficient (R). It indicates the degree of association
between the independent variables and the dependent variables. Its square
is approximately the decimal fraction of the variation in the dependent
variable which is accounted for by the independent variables;

2. t’ test statistic on regression coefficients. The signifiéance of the
regression coefficient of each independent variable in a regression
equation is indicated by the ‘¢’ test statistic. The value of ‘¢’ is calculated
by dividing the regression coefficient by its standard error, and a value of

at least 1.96 is necessary for significance to be established at the 95%

level.

In addition, the size of the regression constant should be carefully examined - if

it is large then the regression set should be used with caution.

Here is an example (Ortizar and Willumsen, 2001) of a multiple linear
regression analysis model to estimate the number of trips per household using

number of workers in the household ‘and number of cars (z-ratios are given in

parentheses):

Y=0.84 + 1.41X,+0.75Z,+3.14Z, R%=0.387
(36) B1) (32 (35

where

Y is household peak hour trips;

X is the number of workers in the household; and

Z) and Z; are two dummies for number of cars with Z, taking the value 1 for
household with one car and 0 in other cases and Z, taking the value 1 for
households with two or more cars and 0 in other cases (it should be noted that
only n-1 dummy variables are needed to represent » intervals); non-car-owning

households correspond to the case where both Z; and Z; are zero.
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This model is a good equation in spite of its low R2 In the model, the intercept
0.84 is not large (i.e. as compared with 1.41 times the number of workers) and
the regression coefficients are significantly different from zero with t-ratios 8.1,
3.2 and 3.5. The positive signs of the coefﬁbients are correct, 1.e. more workers
in a household, more household trips and so with the cars owned by the
households. In this example, it is clear that there is a non-linear relationship
between household car ownership and the number of trips made by a household
and in this case, a model with dummy variables is preferable to that with a single

‘number of cars’ linear variable.

2.3.1.5 The fits of the linear regression model

There may be a large number of variables to exert a causal effect on trip
generation (Douglas and Lewis, 1970, 1971). Some of them may be interrelated
and measure largely the same effect and others may exhibit only minor influence.
The objective of trip end modelling is to provide a reliable forecasting tool. In
the process of trip end modelling attention should be given to the following:

1. The explanatory variables must lend themselves to future estimation and
be incorporated in a meaningful way with particular regard to the sign
and magnitude of their coefficients.

2. If two explanatory variables are highly intercorrelated, it is desirable to
override any automatic selection procedure in order to include only the
preferred variable, i.e., the one that either has more meaning or may be
more easily forecasted.

3. Known or anticipated change in trip-making behaviour should be
reflected in the model. For example, models for vehicle trips must reflect
the rising level of vehicle ownership.

4. Generally it will be necessary to estimate beyond the range of data used
to develop the model in order that future situations are still suitable, and

5. Zonal regression models only explain the variation in trip making
behaviour which exists between various traffic zones and can only

provide reasonable future estimates if the “between zone” variance
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sufficiently reflects the true reasons for trip variability. Zones thus should
be of homogeneous socio-economic composition and should represent as

wide a range of conditions as possible.

2.3.1.6 The effect of zonal, household, and personal regression

A zonal regression can only explain the variation in trip-making behaviour which
exists between zones. As the zone size increases, the amount of variation

between the zones will decrease (Douglas and Lewis, 1970, 1971).

As the aggregate variables directly reflect the size of zone, their use should imply
that the magnitude of the error actually depends on zone size; this
heterocedasticity (variability of variance) has been found in practice (Ortizar and
Willumsen, 2001). Using a 1/H; (where H; is the number of households in zone i)
multiplier, allows heterocedasticity to be reduced because the model is made
independent of zone size. Similarly, it has also been found that the aggregate
variables tend to have higher intercorrelation (i.e. multicollinearity) than the
mean variables. However, it is important to note that a model using aggregate
variables often yields higher values of R, as zone size obviously helps to explain

"the total number of trips (see Doﬁglas and Lewis, 1970).

As the regression models are to be used to predict future trips generated,
reasonable forecasts can only be expected if the models take account of a
sufficient high proportion of the total variation in trip behaviour. Ideally,
therefore, the zones should be as small a;s possible to maximise the between zone
variance and to reduce the within zone variance which is unaccounted for by the
model. However, small zones can result in more expensive models in terms of
data collection, calibration and operation; and present greater sampling errors
which are assumed to be non-existent by the multiple linear regression models. If
sampling errors exist in the independent variables, these can produce biased

estimates of the regression coefficients.
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If zonal aggregation precedes analysis, then the basic relationship between
household characteristics and trip-making behaviour are likely to be obscured.
Concentration on the household as the basic unit of analysis provides a more

meaningful description of the factors underlying trip-making behaviour.

The household models attempt to explain the total variation between households
' and can be easily expanded to provide zonal trip end estimates. For base year
conditions these estimates can be shown to be as accurate as those obtained from
zonal based models. The household models are much more likely to be stable

over time and will hence provide more reliable future estimates.

Downes et al. (1976) used data from a household survey in the Reading area in
1962 and 1971, to compare two alternative types of trip generation model, one
based on household trip rates and the other on person trip rates for each
household. Statistical considerations favour models based on person trip data
because the error variables in household trip rate data is often found to vary with
household size and this can invalidate the analytical procedure used to construct
the models. Further examination of the residuals errors of one model of each type
~ confirmed that the person rate model was the better of the two. Therefore, in
terms of statistical validity and practical utility, it was concluded that models

based on person trip rates were preferable to those based on household trip rates.

2.3.1.7 The advantages and disadvantages of regression analysis

The regression analysis method has the following advantages:
1.. Regression models are simple;
2. Itis relatively easier to include many variables in linear models; and
3. The linear regression models have statistical measures to evaluate the

goodness-of-fit, such as r-test, the coefficient of determination (Rz) and

- F-test for the complete model.

On the other hand, the regression analysis method has the following

disadvantages:
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1. The need to assume a linear relationship between dependent variable and
independent variables. It is not easy to detect non-linearity because a
linear effect may turn out to be non-linear when the presence of other
variables is allowed in the model.

2. There is a class of variablés, those of a qualitative nature, which usﬁally
shows non-linear behaviour (e.g. type of dwelling, occupation of the head
of household, age, and sex). In these models, these variables are usually
treated as dummy variables where the independent variables under
consideration are divided into several discrete intervals and each of them
is treated separately in the model. Or some transformation has to be
considered, i.e. to transform the variables in order to linearise their effect
(e.g. take logarithms, raise to a power). However, selecting the most
adequate transformation is not an easy or arbitrary exercise and it takes
time and effort.

3. Problems may be encountered in relation to heteroscedasticity and
multicollinearity. For zone-based linear regression, the magnitude of the
error depends on zone sizes when aggregate variables are used. By using
multipliers, this heteroscedasticity can be reduced because the model is

made independent of zone size (Ortizar and Willumsen, 2001).

2.3.2 Category analysis or cross-classification

This section discusses category analysis and a number of enhanced approaches
known as multiple classification analysis. An overview of these approaches is

given in Table 2.6.
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Table 2.6 An overview of category analysis and its modifications or

improvements

_ Modelling
‘Technique

Brief Description

Selected References

Category analysis
Or cross-
classification

MCA_1

MCA 2

MCA 3

MCA 4

The person-
category approach

Regression
analysis for
household strata

It assumes trip generation rates are
relatively stable over time for certain
household stratification.

An improvement to the classic
cross-classification; based on
analysis of variance (ANOVA); The
estimated mean trip rates for cells of
the cross-classification table utilize a
model fit based on data from all
cells.

Weighted averages are used. It
corresponds to a numerical
correction that tries to consider the
fact that the number of observations
by category is not equal.

It is based on working estimation of
the household trip rates by
estimating least squares regressions
where the independent variables are
all dummy variable; one for each of
the categories of the strata variables.

The trip rates are calculated as the
average number of trips by
household for each category. It is
equivalent to the estimation of an
OLS model with dummy variables
representing each category.

A person-level category analysis
model.

This method is a mixture of cross-
classification and linear regression
model.

Stopher and
McDonald, 1983;
Orthzar and
Willumsen, 2001

Stopher and
McDonald, 1983;
Rickard, 1989; Said
and Young, 1990;
Said et al., 1991,
Guevara and
Thomas, 2007; Glass
and Stanley, 1986

Guevara and
Thomas, 2007;
Orttzar and
Willumsen, 2001;
Clark, 1996

Guevara and
Thomas, 2007

Guevara and
Thomas, 2007,
Guevara and Ben-
Akiva, 2006;
Goodman, 1973

Supernak, 1979;
Supernak et al., 1983

Hall et al. (1987)
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2.3.2.1 The classical model

At the end of the 1960s an alternative method for modelling trip generation
appeared and quickly became widely used. The method is known as category
analysis in the UK (Wootton and Pick, 1967) and cross-classification in the
USA. It originally developed in the Puget Sound Regional Transportation Study
(1964) and it is based on reporting trips rates per household for any trip purpose
as a function of household attributes. In this method, households are categorised
into categories on the basis of a cross classification of their characteristics and
applies a constant trip generation rate for each category. The advantages of
category analysis include that it is easy to understand and no. prior assumptions
about the shape of the relationship are required. The difficulty with category
analysis is the lack of any effective way to choose the best groupings of
household characteristics and hence the best categories. Another drawback of
~ category analysis is the lack of inferential statistics, so there is no way to assess
the statistical significance of the explanatory variables in trip generation. Finally,
the huge samples required to develop the trip rates also account as a drawback of

this method.

The dependent variable Y is measured in trip rates (¢#°(h) - the average number of
trips with purpose p by members of households of type 4 or #j, — the number of
trips with purpose p by the average person in category j). The main assumption
made by category analysis is that mean trip production rates do not change (or at
least change very little) over the timescale being considered. One of the
appealing properties of category analysis is that household characteristics are
often of the discrete or qualitative type and so the categories relate to meaningful

household units observed in the xjeal world.

The method proceeds as follows for each zone: first, home interview or census
data is collected from households to determine the number of trips generated by
each household and the characteristics (income, household size, car-ownership,
etc.) of that household; second, the households are then divided into categories
according to these characteristics; third, for each category, the mean trip

production rate is calculated by adding together the number of trips generated by
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each household in that category and then dividing by the number of households
belonging to that category; and finally, the new number of trips produced by
each category zone is then estimated by multiplying the mean trip rate by the
new number of households in that category. The new number of trips produced

by the zone is then estimated by summing over all categories.

The most commonly used method (Wilson, 1974) to predict the number of
households in each category in the future consists in, firstly, defining and fitting
to the calibration data, probability distributions for income, car ownership and
household structure, etc.; secondly, using these to build a joint probability

function of belonging to a household type.

Table 2.7 presents an example (Ortuzar and Willumsen, 2001) of a category
analysis model based on four household-size and three car-ownership levels. The
table presents the trip rates for each household category. Generally the more

people and cars in a household, the more trips would be made by the household.

Table 2.7 Trip rates per household calculated using category analysis

Car ownership level
Household size
0 car 1 car 2+ cars
1 person 0.12 0.94 -
2 or 3 persons 0.60 1.38 2.16
4 persons 1.14 1.74 2.60
5+ persons 1.02 1.69 2.60

It should be noted in this example that trip rate values decrease for 0 and 1 car-
owning households when household size increase from 4 to 5 or more persons.

This is contrary to intuition and may be due to insufficient data for these cells.

2.3.2.2 The advantages and disadvantages of the classical model

The disaggregate cross-classification method has the following advantages

(Stopher and McDonald, 1983):
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Cross-classification groupings are independent of the zone system of the
study area;

No prior assumption about the shape of the relationships is required (i.e.
they do not even have to be monotonic, let alone linear);

Relationships can differ in form from class to class of any one variable
(e.g. the effect of household size changes for zero car-owning households
can be different from that of one car-owning households); and

The cross-classification model does not permit extrapolation beyond its

calibration classes, although the highest or lowest class of a variable may

be open-ended.

But the model has several disadvantages, which are common to all traditional

category analysis methods:

1.

There is no statistical goodness-of-fit measure for the rhodel, so that only
aggregate closeness to the calibration data can l;e ascertained;

Unduly large samples are required; otherwise cell values will vary in
reliability because of differences in the numbers of households being
available for calibration at each one. It is suggested that at least 50
observations per cell are required to estimate the mean reliably.

The least-reliable cells are likely to be those at the extremes of the matrix,

which may also be the most critical cells for forecasting;

There is no effective way to choose among variables for classification or
to choose best grouping of a given variable, except to use an extensive
trial-and-error procedure not usually considered feasible in practical
studies;

The procedure suppresses information on variances within a cell;

It is particularly difficult to account for land use and accessibility factors
in a cross-classification methodology, both because the number of cells
quickly becomes oo large and because these variables are particularly
difficult to divide into meaningful ranges; and

It is very difficult to estimate the future number of households in each

category (Ortizar and Willumsen, 2001).
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The fundamental problem of category analysis is the rigid structure that is
imposed on the way in which the independent variables operate (Daly, 1997).
There is no role for insight into the mechanisms affecting the numbers of trips
made: in direct consequence the amount of data that is required is very large.

Essentially, the method gives no explanation of trip generation.

Efforts have been made to overcome the shortcomings of the classic cross-
classification model and these models are discussed in the following sections.

Also see Section 6.3 in this research and Guevara and Thomas (2007) for further

information.

2.3.2.3 Multiple classification analysis_I (MCA_l)

An alternative methodology for calibrating cross-classification models is
multiple classification analysis (MCA). The method is based on analysis of
variance (ANOVA, Johnson and Leone, 1964), which provides a structured
procedure for choosing among alternative independent variables and alternative

groupings of the values of each independent variable (See Stopher and

McDonald (1983) for details).

Consider a model with a continuous dependent variable (such as the trip rate) and
two discrete independent variables, such as household size and car ownership.
First, a grand mean can be estimated for the dependent variable over the entire
sample of households. Second, group means can be estimated for each row and
column of the cross-classification matrix; each of thése can be expressed in turn
as deviations from the grand mean. Observing the signs of the deviations, a cell
value can be estimated by adding to the grand mean the row and column
deviations corresponding to the cell. In this way some of the problems arising

from too few observations on some cells can be compensated.
If interactions are present, then these deviations need to be adjusted to account

for the interactive effects. This is done by taking a weighted mean for each of the

group means of one independent variable over the groupings of the other
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independent variables, rather than a simple mean, which assumes that variation is

random over the data in a group.

Because it is based on ANOVA, MCA also has statistical goodness-of-fit
measures associated with it. Primarily these consist of an F statistic to assess the
entire cross-classification scheme, a correlation ratio statistic for assessing the
contribution of each classification variables (Stopher, 1975), and an R? for the
entire cross-classification model. These measures provide a means to compare

among alternative cross-classification schemes and to assess the fit to the

calibration data.

In MCA, the cell values are no longer based only on the size of the data sample
within a given cell; rather the cell values are based on grand mean derived from
the entire data set, and on two or more class means which are derived from all

data in each class relevant to the cell in question.

This procedure overcomes a number of the criticisms that have been made of the
traditional cross-classification models. Specifically, the method permits a
statistically based selection of variables for the cross-classification models, and

also allows comparisons to be made between alternative groupings of any given

variable.

Second, the method provides a statistically sound procedure for estimating cell
means, which reduces the inherent variability of rates computed from different
size sample of households and is capable of providing estimates for some cells
where data may be lacking in the base data set (the use of this capability does

reduce some of the available statistical information).

Third, there are goodness-of-fit statistics from all of these steps in the process
that permit more specific comparisons to be made, good hypothesis-testing
procedures to be followed, and results to be assessed in terms of the amount of

the variability of the dependent variable that is captured in the model.
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Finally, and more important, the method takes into account the interactions
among the alternative independent variables, which have never been taken into

account in standard cross-classification models.

It is mentioned that any phenomenon that has a nonlinear, and possibly
discontinuous, functional form, and that is most readily related to variables that

are categorical in nature, would be a prime candidate for this method.

Although the problem of not having large number of observations in each cell in
the classical category analysis method has been overcome by using this analysis,
Guevara and Thomas (2007) point out that it only corresponds to the OLS
estimates of a model in which the number of observations by category is exactly
the same (Glass and Stanley, 1986), which could hardly be true if surveyed
households are, as usual, randomly sampled. The transgression of the assumption
may lead to a significant overestimation of the future number of trips and a

systematic bias in its socio-economic composition.

2.3.2.4 Multiple classification analysis_2 (MCA_2)

MCA_2 method is presented by Stopher and McDonald as a correction of
MCA_1 for cases in which *‘interaction’> among variables (which really means
correlation among explanatory variables) is present. In practice, this method
corresponds to a numerical correction that tries to consider the fact that the
number of observations by category is not equal. This method was described in

Ortazar and Willumsen (1994) and Clark (1996).

MCA_2 differs from MCA_1 in that the average number of trips by household of
each stratus is calculated as weighed averages. Guevara and Thomas (2007)
indicate that MCA_2 method could improve the estimated coefficients, but
hardly turn them into the OLS estimates. The net effect of this method should

then be a partial improvement in the estimates.
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2.3.2.5 Multiple classification analysis_3 (MCA_3)

The third modified method MCA _3 is the method of linear ordinary least squares
(Guevara and Thomas, 2007), which is based on working estimation of the
household trip rates by estimating least squares regressions where the

independent variables are all dummy variable; one for each of the categories of

the strata variables.

As this can be seen as an application of OLS, it is possible to use all the
computational and statistical tools available for it in the literature. Particularly, if
some distribution of the error is assumed, for example Normal, it would be

possible to use statistical tests to identify variables for stratification or the size of

each stratum.

To summarize, MCA_3 estimates corresponds to ANOVA (or OLS) estimates
correctly calculated whén MCA_1 is not applicable because the number of
observations by category is not the same. On the other hand MCA_2 method can

be seen as a numerical approximation of MCA_3 in cases where MCA_1 is not

applicable.

2.3.2.6 Multiple classification analysis_4 (MCA_4)

In MCA_4, the trip rates are calculated as the average number of trips by
household for each category. This method, also known as Category Analysis
(Ortﬁzér and Willumsen, 1994), is equivalent to the estimation of an OLS model
with dummy variables representing each category (see, for example, Goodman,

1973).

If the underlying model is linear, MCA_3 and MCA_4 are statistically equal. In
that case they would both be consistent, but the first would be more efficient
because it entails the estimation of fewer coefficients with the same information.
Thus, MCA_3 should be chosen. If the underlying model is non-linear, MCA_4

would be consistent but MCA_3 will not, because the omitted attributes would
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be correlated with the observed linear attributes, causing endogeneity (Guevara

and Ben-Akiva, 2006).

Guevara and Thomas (2007) conclude that MCA_1, the MCA method most
widely used to estimate trip generations worldwide, should be discarded because
it is supported by an assumption with very low probability of occurrence in the
real world, the transgression of which may imply a severe bias in transportation
systems modelling. The MCA_2 method should be seen as a numerical
correction of MCA_1, which improves to some extent its results but is still weak,
especially in modelling future scenarios. Thus, MCA_2 should also be discarded.
The MCA_3 and MCA_4 methods are considered to be superior to the previous
ones, in terms of precision and theoretical basis. The selection of one or another

will depend on the case investigated, a decision that can be tested statistically.

In this thesis the MCA_1, MCA_2 and MCA_3 techniques were used to estimate
trip generation models (see Chapter 6). Only results obtained from MCA_3

model however, were used in the final comparisons with the other methods.

2.3.2.7 The person-category approach

This approach was originally proposed by Supernak (1979) and it has been
argued that, compared to household-based models, it has the following
advantages (Supernak et al. 1983):
1. A person-level trip generation model is compatible with other
components of the classical transport demand modelling system, which is

‘based on trip-makers rather on houscholds.
2. It allows a cross-classification scheme that uses all important variables

and yields a manageable number of classes; this in turn allows class

representation to be forecasted more easily.
3. The sample size required to develop a person-category model can be

several times smaller than that required to estimate a household-category

model.
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4. Demographic changes can be more easily accounted for in a person-
category model as, for example, certain key demographic variable (such
as age) are virtually impossible to define at household level, and

5. Person categories are easier to forecast than household categories, as the

latter require forecasts about household information and family size.

The major limitation that a person-category model may have is the difﬁculty of
introducing household interaction effects and household money costs and money
budgets into a person-baséd model. However, Supernak et al. (1983) argue that it
is not clear how vital these considerations are and how they can be effectively

incorporated even in a household-based model.

2.3.2.8 Generalized linear model with cross-classification

Said and Young (1990) review the disadvantages of the cross-classification
analysis such as the variation in the reliability of trip rate values due to the
variation in the number of households available in each cell for calibration and
the loss of information when all households within each cell are treated similarly -
(Kassoff and Deutschman, 1969; Stopher and McDonald, 1983) and they applied
generalized linear model framework (GLM) (Dobson, 1983; McCullagh and
Nelder, 1983) for estimating work trip rates for households in Kuwait where
there are great variations among households for the same nationality (for
example, households vary in size between 1 and 50 persons) and between
households of different nationality groups (e.g. three different groups) and in the

difficulties that exist in the routine use of the cross-classification analysis

approach.

The classical linear regression model of the form to be used is (Said and Young,

1990):
Hp=pta + Byx,, + Byxy

Where
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M, is the true mean of household work trip numbers in cell (ij,k). 4 is an
overall mean, a, is the effect of nationality type / and S, and f,, are regression
coefficients allowing for assumed linear effects of x, (household size)

and x, (number of cars owned per household).

Said and Young (1990) point out two criticisms may be made of this classical
linear regression model. First the range of its application is limited as sometimes
the number of trips is relatively small but all must be positive. Second, the
assumption of constant variance within cells is unlikely to be satisfied in practice

with cells with the higher mean trip rates being likely to exhibit larger variances.

A possible way to overcome the first problem is to adopt a logarithmic model for

the means with the following form (Said and Young, 1990):

logpy, =pu+a, +pyx, +5,%5

If variance heterogeneity among cells exists, the distribution is approximately
Poisson. To obtain variance stabilization with Poisson observations, the square

root transformation is used.

An alternative approach (i.e. MCA in Section 2.3.2.3) still within the GLM
framework for handling grouped data is to use ANOVA models, see for example
Dobson (1976). The mean trip rates of cell, (j, k), could be expressed as (Said
and Young, 1990):

Vo=mim +m+m,+ €4/n,

Where

m is the grand mean of the true cell means;

m, are deviations of true row means about the grand mean;

m, are deviations of true column means about the grand mean; and
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m,, represent deviations from additivity of row and column effects about the

grand mean.

The use of regression and ANOVA models with grouped data solves the
problems related to the difficulty of forecasting household characteristics at the
level of detail required for regression models with ungrouped data. However, the
use of ANOVA does not take into account the quantitative nature of the two

variables used in the example.

An illustrative GLM analysis was described in which trip rates of Kuwaiti
households living in villas were utilized. Three regression-type models were '
fitted which are classical model for untransformed data, classical model with
square root transformation of household trip data and a model that assumes a
Poisson distribution of individual household trip rates within cross-classification
cells with logarithmic link function for their means. The analysis showed that
work trip rates of this household group are influenced by car ownership,
household size, and the interactive effect of these two variables. It is concluded
that the three models produce generally adequate fits; and only cross-
classification cells with very low frequencies show significant discrepancies. The
differences between the mean trip rate estimates from classical regression models
for untransformed data and squared route transformed household trip data and
this model are relatively small indicating that there is flexibility in the choice of a
particular model for the data and the three models produce generally adequate
fits. This analysis is very similar to that of Guevara and Thomas (2007) as
discussed in Sections 2.3.2.3 - 2.3.2.6 above. These types of investigations,
analysis and proposed approaches show that there are still needs and

_ opportunities in the area of trip generation modelling.

Other applications of generalized linear models in trip generation include
Rickard (1989) who describes an application of GLM to railway trips, Said ef al,
(1990), who extend this analysis to include qualitative variables and address the

use of GLM with cross-classified household data using regression and ANOVA
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specifications, and Said et al. (1991) who apply this procedure to estimate mean

trip rates of households in urban areas with a distinct mix of households group.

2.3.2.9 Regression analysis for household strata — another improvement to the

classic model

This is a mixture of cross-classification and regression modelling of trip
generation and it may be the most appropriate approach on certain occasions
(Ortazar and Willumsen, 2001). For example, in an area where the distribution
of incdme is unequal it may be important to model impacts of policies on
different income groups; therefore it may be necessary to model travel demand
for each income group separately throughout the entire modelling process (see
Hall et al., 1987) for an example. A general problem of this approach is that

some categories have rather few data points.

2.3.3 Discrete choice models

This section discusses discrete choice models that have been considered in trip

generation modelling. An overview of these models is given in Table 2.8.

2.3.3.1 Nested-alternative-logit (ordered choice) model and ordered response

model /ordered logit model

Sheffi (1979) developed a nested-alternative-logit model in a disaggregate, utility
maximization framework for estimating choice probabilities among nested
alternatives, i.e., the alternatives available to an individual randomly chosen from
the population exhibit some internal choice related ranking: choice of a given
alternative implies that all lower-ranked alternatives have been chosen as well.

The utility model that corresponds to the choice among ordered integer

alternatives is:
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Table 2.8 Overview of trip generation — discrete choice models

Modelling
Technique

Brief Description

Selected References

Nested-alternative-
logit (ordered
choice) model

Ordered response
model /ordered
logit model

Negative binomial
model / count data
model

Ordered probit
model / mixed
ordered probit
model

Frequency choice
logit model - ‘stop
and go’ trip
generation model /
the exponential
model

Tobit model

To estimate choice probabilities among
nested alternatives, i.e., the alternatives
available to an individual exhibit some
internal choice related ranking: choice
of a given alternative implies that all
lower-ranked options have been chosen
as well.

A type of discrete choice model which
maintains the ordinal nature in the
dependent variable in situations where
there are more than two responses.

The negative binomial distribution is a
generalization of the Poisson
distribution.

Simple linear regression analysis would
be inappropriate due to the large
number of zero trips in the sample, and
the difference between making 0 trips
and 1 trip might be far more significant
than a difference between 5 and 6 trips.

To use a hierarchical structure
representing an indefinite number of
choices. At each hierarchical level, the
choice is whether to make further
journeys or stop at the present number
(hence the name ‘stop-go model’).

It is a combination of regression and
discrete choice models. It differentiates
from regression model by the
incorporation of truncated or censored
dependent variables; it assumes that the
dependent variable has a number of its
values clustered at limiting value,
usually zero.

Sheffi, 1979

Agyemang-Duah et
al., 1995; Agyemang-
Duah and Hall, 1997;
Schmdocker et al., 2006

Rickard, 1988;
Barmby and Doornik
(1989); Washington et
al.,2003; Jang, 2005;
Guy, 1987;

Schmdocker et al.,
2005; Long, 1997,
Péez et al., 2006;
Jones, 1991; Duncan
and Jones, 2000.

Daly, 1997; Daly and
Miller, 2006;
Kouwenhoven et al.,
2006

Cotrus et al., 2005;
McDonald and Moffitt,
1980.
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Where

P, is the probability that alternative i is chosen;

U, is the utility of alternative k to an individual randomly chosen from the

population;

The model is a product of independent binary choices. Estimating each of the
binary probabilities can be carried out through the use of a logit model. The use
of a logit model is justified in the case of a binary choice problem since the
difficulties arising from the independence of irrelevant alternatives (IIA)
property of the multinomial logit (MNL) model do not exist in a binary model
(Domencich and McFadden, 1975).

The essence of the model is in capturing the special correlation implied by the
definition of nested alternatives and overcoming the difficulty from applying the

MNL model to this problem: the 1IA property.

This rﬁodel was applied for estimating probabilities of non-work vehicle trip
frequencies by elderly individuals. Sheffi (1979) points out that, in general, a trip
generation model might not conform to this model of ordered nested alternatives
in two aspects. First, there is a problem with using the entire household as the
behavioural unit. Trips might be decided upon simultaneously and carried out by
more than one person and the model cannot account for this phenomenon since
the “one choice at a time” assumption is basic to its structure. The second
difficulty is that multi-destination trip chains (in which a number of trips are
combined in a single tour from the residence) cannot be accounted for in the

model, and tours have to be counted as trips.
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Agyemang-Duah et al. (1995) summarized the shortcomings of regression
models and category analysis. They point out that the problems with the standard
regression model include lack of any built-in upper limit to household trips as the
“values of explanatory values, such as household size and vehicle ownership,
increase and the possibility of the regression models predicting negative trips.
The difficulty with category analysis is the lack of any effective way to choose
the best groupings of household characteristics and hence the best categories and
also lack of inferential statistics and thus no way to assess the statistical
significance of the explanatory variables in trip generation. Also both models
treat the number of trips per household as a continuous dependent variable, but to
develop a behavioural basis for trip generation, the dependent variable must be
discrete rather than continuous. The possible solutions to this problem include to
use Poisson regression models, which have been shown to be appropriate in
applications to count data, especially when the count for some observations is
small or 0 (Guy, 1987), and to use one of the family of discrete choice models,
which are based on a probabilistic theory of choice among a finite set of options.
Also there is a definite order to the trip-making decision. If a person makes two
trips, that person also necessarily makes one trip. The ordered response model,
which maintains the ordinal nature in the dependent variable in situations in
which there are more than two responses, is adopted in their study of home-based

shopping trips in the greater Toronto area.

The ordered response model has the following advantages over the standard
regression models (Agyemang-Duah et al., 1995): first, the property that choice
probabilities are necessarily between 0 and 1 means that in prediction mode, the
model cannot forecast negative or infinite trip. The second advantage is that the
model predicts the whole distribution of the response levels unlike the standard
regression approach, which will at best predict the mean of the dependent
variables. And thirdly, the model offers a way to exploit the ordering of

information.

Schmécker et al. (2006) developed an ordered logit model to estimate the

reduction of shopping trips a person makes in response to a congestion charge in
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London and the levels of frequency reduction include slight decrease, decrease,

significant decrease and very significant in shopping trip frequency.

2.3.3.2 Count data model / negative binomial model

Gourieroux et al. (1984) point out that the classical linear regression model
(CLRM) is not appropriate for analyzing trip frequency, a discrete variable
which can only take non-negative values for three reasons: firstly, the
observation set is not that of the CLRM; secondly, the assumption of normality
for the error term cannot be made; and thirdly, the predictions from CLRM could

allow for impossible values.

Barmby and Doornik (1989) propose to model the number of trips, T;, as a
Poisson variable. This would have two distinct advantages. Firstly, the model
could not predict a negative number of trips for certain values of the regressed
variables. Secondly, the estimates of the model show underlying probabilities for
actual number of trips, whereas the linear regression model only gives the
expectation and variance of the number of trips, as implicitly the dependent

variable would be a continuous variable. A Poisson model could be described as

(Barmby and Doornik, 1989):

=4 2
€A 4 =0,1,2,...

7;'"'./(’1):

ET)=4 =ep(XB); i=l,..,n

Where X; is a vector of characteristics of the household which defines the mean

of the distribution.

Barmby and Doornik (1989) indicate that a generalization of the Poisson
distribution, the negative binomial distribution, could be a better choice to
constructing a statistical model for trip frequency. The :simple Poisson

distribution assumes that the variance is constrained to be equal to the means,
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and this would be too restrictive for the data that are characterised by over-
dispersion or under-dispersion, according to whether the variance is less than or
greater than the mean. Also to generate the Poisson form for the probability
function, the events must have occurred independently through time. The over
(under) dispersion is circumvented, by modelling A, the Poisson parameter, as a
Gamma distribution, A()). The new distribution of the observed number of trips

can be obtained by mixing the distribution as:
8
g0)=[ 76 A)dA
[]

The resulting form of a negative binomial distribution is (Barmby and Doornik,

1989):

(e, +7,) [ y )’( K )
T ~glt)= ERA ; ! t, =0,1,...
;- ) oe,+0r N\ +u ) \r,+u )

The above model can be parameterized as (Caméron and Trivedi, 1986):

4, =exp(X,P)
7==lew(x:p) a>0

E(1)=exp(X8)
VAR(T) = E(T;)+ o[ E(T)}™
It can be seen now that the variance and mean are no longer constrained to be
equal, and the parameters @ and k will determine the form of the relationship

between E(T) and VAR(T).

As there is a maximum number of trips in the record, an upper truncation is taken

into account in estimating the Negative Binomial model. In general, if T ~ f),
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truncation at T* will result in a truncated density of the following form (Barmby

and Doornik, 1989; see also Cohen, 1961):

g)=-2L92; (-0,.... 1*

Zf(j)

Figure 2.1 shows a comparison of the predictions of the Negative Binomial
model and the regression model in fitting observed data. For the first model, the
implied relative frequencies are computed as the mean of the implied individual
probabilities. Though both the normal frequency curve implied by the regression
results, and the Negative Binomial lack the flexibility to pick up the bimodality

in the observed data at trip level one, the latter tracks the relative frequencies of

the observed data better than does the normal curve.

Relative Frequency

Trip Level

veeeee Negative Binomial trequency polygon
- — = QObserved frequency polygon
Normal frequency curve

Figure 2.1 Comparison of predictions using the negative binomial model and

the linear regression model

Source: Barmby and Doornik (1989)
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Rickard (1988) compares the use of the Poisson distribution and the Negative
Binomial to model long-distance rail trips as a generalized linear model (GLM)
(McCullagh and Nelder, 1983). She finds the Negative Binomial distribution to
be the more appropriate, and postulates that this is because the overall
distribution is the sum of those of a number of sub-groups, each following its

own Poisson distribution.

Jang (2005) also developed a Negative Binomial model and a modified count
data model for trip generation to overcome over-dispersion of the Poisson model
due to the assumption that the conditional variance of the dependent variable
equals the conditional mean. Zero inflated models, which use a logistic mixing
distribution to add to the zero mass of the probability density function (Cameron
and Trivedi, 1990), are developed including the zero inflated Poisson (ZIP)
model and the Zero inflated Negative Binomial (ZINB) model. These models
allow for two sources of over-dispersion and extra zero resulting in individual
heterogeneity in the positive set and are at work in determining the number of
zero counts. The zero inflated model is a natural extension of the Poisson (or

Negative Binomial) specification and is given by (Jang, 2005):

Prly, =0]=p, +(1-p, )™

e

'

Py =y,|Y>0]=(1-9,) Y =12,

whereln 4, = 8 X,.

This distribution can also be interpreted as a finite mixture with a degenerate
distribution whose mass is concentrated a zero. The proportion of zeros, @,, is
added to the Poisson (or Negative Binomial) distribution, and other frequencies

are reduced by a corresponding amount.

The zero inflated Negative Binomial model (ZINB) is selected as the optimal
model through Vuong test and is used to calibrate non home based trips at
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household level and has shown improved variable estimation and decreased

€rrors.

2.3.3.3 Ordered probit model /mixed ordered probit model

Schmdcker et al. (2005) used an ordered Probit model to estimate trip generation
of elderly and disabled people in London taking the daily trip frequency as a
latent variable. In the study, a model for total trips as well as models for specific
trip purposes (namely work trips, shopping trips, personal business trips and
recreational trips) were estimated. It is pointed out that simple linear regression
analysis would be inappropriate due to the large number of zero trips in the
sample, and the difference between making 0 trips and 1 trip might be far more
significant than a difference between 5 and 6 trips. So an ordered Probit model
was used as it provides a technique to estimate regression models for this sort of
data. Alternatively, an ordered logit model would also be suitable. As the
difference between a logit and probit model is in the assumption of the
distribution of the error terms: a probit model assumes a normal distribution,
whereas logit assumes a Gumbel distribution, Long (1997) concludes that the
choice between logit and probit is mainly a matter of convenience as both models
normally come to the same result. It is also mentioned that another method
would be to use a Poisson or Negative Binomial model for count data

(Washington et al., 2003).

Péez et al. (2006) point out that the ordered probit model, by treating the number
of trips (or the trip frequency) as a set of mutually exclusive and collectively
exhaustive ordinal categorical variables, incorporates built-in upper and lower
limits. In addition, the model provides a behavioural framework that directly

links the number of trips to utility-based consumer and decision making theory.

In their elderly trip generation study, Péez et al. (2006) used a mixed ordered
probit model, which is part of a family of models alternatively know as random
coefficients, variance components, multilevel, or hierarchical models (see Jones,
1991; Duncan and Jones, 2000). The models of this family are characterized by

their ability to accommodate random variation of the coefficients, which makes
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them suitable for exploring spatial variation in individual trip rates, and in
particular the relationships between these rates and the factors that influence
them (e.g. location and age). The use of the mixed ordered probit models allows

for a mixture of variables at different levels of geography.

Despite the intuitive appeal of these models, an erstwhile constraint to their
application was the complexity of the estimation procedures (Pdez et al., 2006).
Hedeker and Gibbons (1994) have developed methods for estimating the mixed
ordered probit model that use numerical quadrature techniques. As an alternative
to this approach, Train (2003) provides a discussion of simulation techniques,
whereby random numbers are generated to obtain a simulated log-likelihood

function that can be maximized to obtain estimates.

2.3.3.4 Frequency choice logit model — ‘stop and go’ trip generation model / the

exponential model

Daly (1997) indicated that a model with a logit form is suitable for predicting the
total number of trips by first calculating the probability that each individual will
choose to make a trip. The total travel volume is then obtained by multiplying the
number of individuals of each type by their probabilities of making a trip. The
logit model represents the choice of each individual whether or not to make a

trip, and therefore it is particularly suited to dealing with disaggregate data.

To model higher trip frequencies, Daly (1997) proposes the use of a hierarchical
structure representing an indefinite number of choices. At each hierarchical level,
the choice is whether to make further journeys or stop at the present number
(hence the name ‘stop-go model’). A separate model is found preferable to model
the first choice, as possibly strong difference exists between the 0 and 1+ choice
where the remaining choices could then be modelled. Also because normally
there is little data on travellers making multiple journeys, it is necessary to model
the remaining choices with a single ‘stop-go’ model (i.e. which predicts the same
probability of stopping at every level of the hierarchy). If the probability of an

individual #» making at least one journey is p, , and then the probability of making
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a further journey at each stage is ¢,, then the expected number of journeys is

(Daly, 1997):

When the 0/1+ model and the 1/2+, 2/3+ models are the same, the stop-go

reduces to a geometric model with parameterl-p, .

Suppose the ‘stop’ alternative for an individual has utility ¥, which may
incorporate all non-accessibility (e.g. socio-economic) effects and the ‘go’
alternative has a utility of 2.V, , a multiple of the logsum (Ortiizar and

Willumsen, 2001). Then the probability of travel is (Daly and Miller, 2006):

_ o exp(A-V)
P e GV Y e (V)

And then
D,=exp(A-V, -V)=a-exp(4-V,)

Where & does not depend on accessibility. The exponential model has the same
expectation of the forecast number of trips as a stop-go model in which the two
model components are identical. The model can be considered to be an
implementation for forecasting of the simpliﬁc& stop-go or geometric model and

it has a secure basis in utility theory.

Daly (1997) also investigated an accessibility measure by calculating the logsum
of destination choice in an integrated trip generation, mode and destination
choice model using the hierarchical structure. A number of applications of this
approach have been developed including Cambridge Systematics Europe (1981),
HCG and TOI (1990) and Cohn et al (1996).
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Daly and Miller (2006) compare this derivation of exponential trip generation
with a Poisson model and note that while both models give rise to a mean trip
rate that is an exponential of the logsum, the probability distributions for the
actual number of trips made by an individual are very different. The mode of the
Poisson distribution occurs around the mean, whereas the mode of the geometric
distribution is always zero. The geometric distributions also have a larger
variance. The difference of the two models is less for lower trip rates. For the
Poisson model, the link to utility theory has yet to be established. Larson (2003)
found a corresponding problem with the Poisson model in some of his tests on
Norwegian data, where he found it necessary to introduce an initial binary choice

model for the 0/1+ choice.

Daly and Miller (2006) point out that the geometric model cannot be
recommended for trip generation in urban and regional contexts. As
behaviourally, the decision whether to travel at all (0, 1+ trips) is usually found
to be quite different from the decision whether to make a further trip ,(1/2+’ 2/3+
etc.). For long-distance travel, however, a single model is acceptable. The
exponential model is an exact implementation of the geometric model, where
each step is modelled by a binary choice, and it can represent the actual

behaviour accurately.

It is also noted that the exponential model is different from a constant-elasticity
model. While the difficulty in the elasticity model is to define a zero for
generalized cost, i.e. defining exactly which components should and should not

be included; this difficulty does not arise in the exponential model.

2.3.3.5 Tobit mode!

Cotrus et al. (2005) explored the use of regression and Tobit models in trip
generation in two metropolitan areas and two time periods in Israel, and
investigated their spatial and temporal transferability, Hald (1949) first presented
the model that, in its final form, is called the Tobit model (Tobin, 1958). Tobit

models differentiate from regression models by the incorporation of truncated or
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censored dependent variables. Tobit analysis assumes that the dependent variable
has a number of its values clustered at a limiting value, usually zero. Tobit
models can be presented as discrete/continuous models that first make a discrete
choice of passing the threshold and second, if passed, a continuous choice
regarding the value above the threshold. As shown by McDonald and Moffitt
(1980), Tobit analysis can be used to determine fhe changes in the value of the
dependent variable if it is above the limit, as well as changes in the probability of

being above the limit.

Cotrus et al. (2005) indicate.that Tobit models tend to present the mechanism of
" trip generation more realistically, capturing and estimating (partially) non-
travellers. As a combination of regression and discrete choice models, the Tobit
model may be more suitable for implementation in trip generation modelling
than discrete choice and regression models, particularly because Tobit is better
formulated to differentiate non-travellers from travellers. However, non-
travellers are underestimated which may be partly due to the fact that the best

Tobit model has not been obtained.

2.3.4 Other trip generation techniques

Other trip generation approaches and modls include This section looks at other
techniques that have not been included in the above three categories and an

overview of these models is given in Table 2.9.

2.3.4.1 Growth factor modelling

Growth factor modelling is one of the techniques that have been proposed to
model trip generation which may be applied to predict the future number of
journeys. Its basic equation is T; = Fyt,, where T, and ¢ are future and current trips
in zone i respectively, and F; is a growth factor which is related to variables such
as population, income and car ownership. The method is very crude. It is
therefore only used in practice to predict the future number of external trips to an
area; this is because there are not too many in the first place (so errors cannot be

too large) and also because there are no simple ways to predict them.
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Table 2.9 Overview of other trip generation modelling techniques

Modelling . it
Technique Brief Description References
Growth factor To use a growth factor rate to predict the Orthzar and

modelling

Criterion-based
segmentation
modelling tool —
CHAID (Chi-
squared Automatic
Interaction
Detection)

Hierarchical tree-
based regression
(HTBR) model and
iteratively specified
tree-based
regression (ISTBR)
model

Artificial neural
networks

Approaches to
model trip chaining
and trip generation

Direct demand
modelling

Dynamic trip
generation model

future number of journeys.

Presented in the form of a tree, each final
node represents a group of homogenous
households concerning daily trip making;
Allows to identify significant interaction
effects between categories of explanatory
variables.

HTBR is a tree-based method more adept at
treating multicollinearity among variables;
interactions between independent variables
are also less troublesome. Iteratively
specified tree-based regression (ISTBR)
combines desirable properties of OLS with
HTBR.

Computing system made up of number of
simple highly interconnected processing
elements that process information by
dynamic state response to external inputs.

Trip generation and trip chaining integrating
concepts from activity-based analysis.
Structure of the model system is recursive,
depicting a sequential decision-making
mechanism assuming that the number of
discretionary trips is dependent on the
number of mandatory trips.

The model subsumes trip generation,
distribution and mode choice.

Model examines dynamic characteristics of
a household trip generation, i.c., the
correlation of trip making over time. The
generalized method of moments procedure
is used.

Willumsen, 2001

Kass, 1980;
Strambi and Bilt,
1998; Bilt, 1997

Washington and
Wolf, 1997;
Washington,
2000

Caudill, 1987,
Fahgri and Hua,
1992; Tillema et
al., 2004

Goulias et al.,
1990

Kraft, 1968

Meurs, 1990;
Anderson and
Malave, 2005
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Activity-based trip  Model developed to estimate trip Wang (1997)
generation model productions from the analysis of complete

travel/activity patterns; classifies travel

patterns with respect to activity, spatial, and

temporal characteristics.

2.3.4.2 Criterion-based segmentation modelling tool - CHAID

Strambi and Bilt (1998) identify the difficulties with the applications of
conventional trip generation models which are typical of segmentation problems:
identification and categorization of explanatory variables and of the interactions
between them and explore the use of CHAID (Chi-squared Automatic Interaction
Detection), to analyze household trip generation rates. CHAID is a criterion-
based segmentation modelling tool originally developed by Kass (1980) and
CHAID models are presented in the form of a tree, each final node representing a
group of homogenous households concerning daily trip making. CHAID can
automatically identify significant interaction effects between categories of
predictor/explanatory variables which provide the opportunity to avoid flaws in
model specification, in particular, biases resulting from omitting relevant

interactions.

An application to data from an origin-destination survey for Sao Paulo produced
interesting results (Bilt, 1997), in agreement with theoretical expectations and
amenable to interpretation based on the likely activity-travel patterns of each
group of households generated by the technique. CHAID can be used as an
exploratory technique for aiding model development or as a model itself. The
application of CHAID as a modelling tool requiring a highly disaggregate
projection of the population may become possible considering the advances in

methods for the generation of synthetic populations.
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2.3.4.3 Hierarchical tree-based regression (HTBR) model and iteratively
specified tree-based regression (ISTBR) model

Washington and Wolf (1997) explored the use of a hierarchical tree-based
regression (HTBR) model in trip generation and compared it to ordinary least
squares régression. HTBR is one of the two types of tree-based methods:
classification trees, which are designed to partition data, based on the discrete
nature of categorical or class data and regression trees, to partition (regress) data
on the basis of continuous response data. It is sometimes referred to as

classification and regression trees, or CARTSs (Breiman et al., 1984).

HBTR is more adept at treating multicollinearity among variables because it
handles them automatically within the tree construction process (Washington and
Wolf, 1997). Interactions between independent variables are also less trouble-
some in HBTR. In the estimation of an ordinary least squares (OLS) regression
model, which derives its name from the criterion used to draw the best fit
regression line: a line such that the sum of the squared deviations of the distances
of all the points to the line is minimized (Garson, 2006), the modeller must
specify the correct functional interaction between variables to account for their
synergistic effect, where in HTBR interactions are handled automatically. HBTR
methods treat non-additive and non-linear behaviour better than do OLS
methods. HTBR is superior to OLS regression as discrete variables take on
significantly more than two levels. Washington and Wolf (1997) pointed out that
OLS regression, whose estimated coefficients are easily interpretable, is
generally a more intuitive tool than HBTR for explaining phenomenon.
However, theory is better developed for OLS regression than for HBTR, and
therefore, HTBR’s shortcomings include a lack of formal methods for: analysis
of residuals and outliers, dealing with omitted influential independence variables,
efficiency, bias, consistency of estimated model parameters, finding statistically
significant tree depth, testing of working hypotheses, and model selection and

refinement criteria.

Washington (2000) presents an iterative modelling method that combines some

desirable properties of OLS with hierarchical tree-based regression (HBTR).
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This combined approach, named iteratively specified tree-based regression
(ISTBR), is shown to provide insights into data structure provided by
hierarchical tree-based regression, while retaining the desirable parametric
properties of OLS. ISTBR helps the analyst to identify potentially important
interactions, nonlinearities, and non-additive behaviour between the response
variable and the predictor variables. Specifying linear regression models using
the ISTBR modelling approach differs from traditional linear modelling in that
the modelling results are driven by data — exposing second- and higher-order
interactions, nonlinearities, and non-additive behaviour between variables. Best
subsets and stepwise regression procedures, in contrast, rely on a priori
identification of important interactions and specifications of a functional form of
the independent variables. ISTBR equips the modeller with improved tools for
exploring and identifying alternative model specifications and affords the analyst

insight into systematic patterns in data that might otherwise go undetected.

2.3.4.4 Artificial neural networks

Artificial neural networks (ANNs) is a computing system made up of a number
of simple, highly interconnected processing elements that process information by
dynamic state response to external inputs (Caudill, 1987). Fahgri and Hua (1992)
presented a demonstration of the applicability of ANNs in zonal trip generation
forecasting, using the ADALINE (i.e., Adaptive Linear Element) and the back-
propagation ANN models. ADALINE is a combinatorial logical circuit that
accepts several inputs and produces one output, operating with a least mean
square error-correcting learning rule. Back propagation has at least one hidden
layer and during the learning process, the error information is propagated back
from the output layer through the network to the first hidden layer. Back
propagation is a powerful technique for constructing nonlinear transfer functions
between a number of continuously valued inputs and one or more continuously
valued outputs. One of the obvious differences between ADALINE and the
regression method is the handling of the optimization of the weights and the
coefficients. The regression method pursues the coefficients that will produce the

minimum error on the surveyed data, which can be considered the training data
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sets for the ADALINE model. The training of ADALINE pursues the best value
of the weights that will allow the model to obtain good results on the testing data
sets, but not on the training data sets. Even if a set of weights will allow the
model to perform well on the training data sets, unless those values of the
weights will allow the model to reach the approximate error minimum on the
testing data sets, those weights are not considered good. The results obtained by
ANNs techniques outperformed those obtained by conventional regression

models.

Tillema et al. (2004) investigate modelling trip generation using neural networks
to see whether neural networks can out-perform traditional regression methods or
not with the smallest data sets. The neural networks are tested in two situations
with regards to the data availability; (i) data is scarce; and (ii) data is sufficiently
at hand. The question of whether neural networks can be used in trip generation
modelling is answered positively. However, neural networks do not overall out-
perform classical regression models in situations where data is scarce. The

advantages over regression models are negligible.

2.3.4.5 Approaches to model trip chaining and trip generation

Goulias et al. (1990) developed a model system of trip generation and trip
chaining by integrating concepts from activity-based analysis. The structure of
the model system is recursive, depicting a sequential decision-making
mechanism assuming that the number of discretionary trips is dependent on the

number of mandatory trips.

First, the number of trips for mandatory activities can be expressed as a linear
function of exogenous variables alone (i.e. income and structure of the
household). Second, the number of trips for discretionary activities may be
represented by a linear function of the number of mandatory trips as well as
exogenous vériables. The statistical significance of each variable can be used to
identify possible causal links betweeh the exogenous and endogenous variables.

Finally, the number of trip chains is formulated as a linear function of the
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nuﬁxber of trip by purpose. And then, the number of trip chains can be converted

into home-based and non-home-based trip rates based on simple identity.

One advantage of this method is that it reflects a possible multistage decision-
making process that may be followed by households when making trips. Another
important property of the model system is that it explicitly considers the interface
among trips made for different purposes, thus integrating home-based and non-
home-based trip generation in a coherent manner. However, the model system
needs further development to be a component of a comprehensive procedure of
travel demand forecasting. For example, the model system cannot be used to
predict the sequence in which trips for different purposes are linked.

Consequently, it is unable to estimate home-based and non-home-based trip

generation by purpose.

2.3.4.6 Direct demand modelling

The conventional sequential 4-step model classic methodology requires the
estimation of relatively well-defined sub-models (Ortizar and Willumsen, 2001).
An alternative approach is to develop directly a model subsuming trip
generation, distribution and mode choice. This is very attractive as it avoids
some of the pitfalls of the sequential approach. There are two types of direct
demand models: purely direct, which use a single estimated equation to relate
travel demand directly to mode, journey and personal attributes; and a quasi-
direct approach which employs a form of separability between mode split and

total (O-D) travel demand.

The earliest forms of direct demand models were of the multiplicative kind. The
SARC (Kraft, 1968) model, for example, estimates demand as a multiplicative
function of activity and socioeconomic variables for each zone pair and level-of-
service attributes of the model serving them. The model is very attractive in
principle, as it handles generation, distribution and modal split simultaneously,

including attributes of competing modes and a wide range of level of service and
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activity variables. Its main problem is the large number of parameters needed to

cash in on these advantages.

The approach can further be enhanced to combine generation (i.e. choice of
frequency), distribution (i.e. choice of destination) and mode choice in one
combined model. It is possible to use the nested logit model structure for this
modelling. The direct demand model, as it is calibrated simultaneously for these
sub-models, would not suffer from the problems of having to cope with the

errors in trip-end totals and those generated by poorly estimated intra-zonal trips.

Recently, the logit frequency model is re-introduced in the direct demand
models, which combines generation (i.e. choice of frequency), distribution (i.e.
choice of destination) and mode choice in one combined (i.e. nested) logit
model; examples include Daly and others in Europe (Daly, 1997) and Iglesias et.
al (2008) in Chile. In the latter correct accessibility measures were derived for

intercity trip generation.

2.3.4.7 Dynamic trip generation models

Meurs (1990) reviewed the problems with conventional models such as the
omission of variables in the models when they are correlated with the included
explanatory variables and the models are static when based upon cross-section
data, and examined the dynamic characteristics of a household trip generation,
i.e., the correlation of trip making over time. The basic models considered in the
research are the serial correlation and the state-dependence models. As part of
the correlation of the error-terms over time is due to time-invariance of
unobserved heterogeneity, unobserved heterogeneity is taken into account using
random effects. The generalized method of moments procedure is used for
estimation of the models: it is asymptotically efficient and does not require
assumptions about the initial conditions. It is concluded that trip making in total
and by transit was best described using state-dependence models; and trip

making by car by a model with lagged exogenous variables.
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Anderson and Malave (2005) developed a zonal time-dependent dynamic trip
generation model for a medium-sized urban community, which is necessary to
supply data to support the dynamic traffic-assignment models. The results show
that a 15-min model performs better, with model predictions closer to the
average number of trips being made from the zone, than a 5-min model, because
of the aggregation involved. However, both models can predict time-dependent

trip making with the community.

2.3.4.8 An activity-based trip generation model

Wang (1997) developed an activity-based trip generation model to address
shortcomings of the conventional trip-based approach such as problems with
conventional generation models resulted from a fundamental incapability to
address temporal and spatial characteristics of activities and the trips which they
generated, and the sequencing and scheduling of trips and activities, and
interactions between household members, are ignored in the standard model. The
model was developed to estimate trip productions from the analysis of complete
travel/activity patterns and it classifies travel patterns with respect to activity,
spatial, and temporal characteristics. The results obtained show that there is
temporal stability of activity patterns in similar life cycle groups in the 1985 and
1994 Portland test data and it is concluded that patterns are a viable structure on

which to base future forecasts.

2.3.5 Temporal and spatial transferability of the models

Transferability is an issue in two dimensions, space and time (Agyemang-Duah
and Hall, 1997). Temporal transfer occurs when a model estimated in one time
period in a specific geographic context is used in future forecasting in the same
area and spatial transfer involves applying a model estimated on data from one
particular spatial entity to another geographic context. Transferability can help to
reduce substantially the need for costly full scale transportation surveys in

different metropolitan areas or different areas in the same metropolitan area, and

70



thus to allow for cost-effective analyses of transportation plans and policies. The

following summary is based on a discussion by Ortlizar and Willumsen (2001):

Transport models, in general, are developed to assist in the formulation and
evaluation of transport plans and projects. While on some occasions use has
been made of descriptive statistics for examining travel trends, most
developments have used cross-sectional data to express the amount of travel in
terms of explanatory factors. A key assumption of this approach is that the model
parameters will remain constant (or stable) between base and design years
(Ortizar and Willumsen, 2001). A number of researchers have examined the
assumption and found the transferability of models in time (i.e., their temporal
stability) satisfactory (see Downes and Gyenes 1976; Karasmaa and Pursula
1997) when trips by all modes are considered together. Unsatisfactory results,

however, were obtained in other studies (see Doubleday 1977; Copley and Lowe

1981).

Geographic transferability should be seen as an important attribute of any travel
demand model for the following reasons (Orttizar and Willumsen, 2001):
1. It would suggest the existence of certain repeatable regularities in travel
behaviour which can be picked up and reflected by the model;
2. It would indicate a higher probability that temporal stability also exists;
this is essential for any forecasting model; and
3. It may allow reducing substantially the need for costly full-scale

transportation survey on different metropolitan areas.

Not all travel characteristics can be transferable between different areas or cities
such as the average work trip duration should be a function of area size, shape
and the distributions of workplaces and residential zones over space. However,
trips reflect the need for individuals’ participation in various activities outside
home and if trip rates are related to homogeneous groups of people, they can be
expected to remain stable and geographically transferable (Ortlzar and

Willumsen, 2001).
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A number of studies found spatial transferability of models satisfactory (Wilmot
1995; Supernak, 1979, 1981). Supernak (1979, 1981) reported the successful
transferability of the personal-category trip generation model, both for Polish and
American conditions. Rose and Koppelman (1984) examined the transferability
of a discrete choice trip generation model, allowing for adjustment of modal
constants using local data, and concluded that context similarity appeared to be
important determinant of model transferability; also, because their results
showed considerable variability, they caution that great care must be taken to

ensure that the transferred model is usable in the new context.

Agyemang-Duah and Hall (1997) investigate the performance of a directly
transferred ordered response model (without updating the transferred
coefficients) and assess the effectiveness of a technique for revising the constant
terms and scalars in the model by using small-sample data from the region to
which the model is to be applied. The analysis focuses on shopping trip
generation in Metropolitan Toronto. The results of this spatial transferability
analysis show that a directly transferred ordered response model performs
reasonably well in predicting the aggregate shares in the application (new)
context. Revising the constant terms and the scalars in the model substantially

improves the predictive ability of the transferred model.

On the other hand, Smith and Cleveland (1976) and Daor (1981) found spatial
transferability unsatisfactory. Cotrus et al. (2005) indicate that in order for trip
generation models to be transferable they need to account for variables not
included in the current models: income, land use and spatial structure, the
economy, the transportation system and accessibility, more detailed socio-
economic and life cycle variables. If we could estimate a perfect disaggregate
model accounting for all factors that affect trip generation and with appropriate
segmentation, it would likely be transferable. With this data lacking, models are
not transferable, because unobserved variables affect coefficients of observed
variables with which they are correlated. They point out that household survey
conducted on a regular basis will be more useful if the design stays constant.

Differences in the structure, variables, range, investigation period, definition of
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the variables, and database structure affect the transferability of the estimated

models.

2.4 THE GAPS IN CURRENT TRIP GENERATION TECHNIQUES

As discussed above, although in regression analysis there are statistical tests for
the goodness of fit of the models, the assumption of linearity of each of
independent variables with the dependent variable is restrictive. Furthermore, the
lack of built-in upper limits for trip rates as the values of the explanatory
variables increase, and the possibility of predicting negative trips, both mean that
regression models are not wholly suitable for trip generation analyses
(Agyemang-Duah and Hall, 1997; Péez et al., 2006). The assumption that the
number of trips is approximately continuous can be questioned when typical
values of the number of trips are relatively low (Piez et al., 2006). The link
between number of trips and covariates in a linear regression, while it may be
based on hypothetical ideas about the process of trip generation, lacks a
behavioural justification such as supported by the theory of random utility (e.g.
Ben-Akiva and Lerman, 1985). A number of research investigations have been
carried out which demonstrate the importance of including behaviour data and
modelling approaches for the prediction of trip generation. For example
Vickerman and Barmby (1985) investigated the use of behaviour approach and a
choice model to investigate trip generation. Bhat (1999) investigated the use of
repeated choice observations models in analysing evening commuting trips.
Golob (2000) developed a simultaneous model of household activity
participation and trip chaining. Wallace et al. (2000) investigated the effects of
travellers and trip characteristics on trip chaining, with implications for
transportation demand management strategies and Misra et al. (2003) used a

continuous time representation and modelling framework for the analysis of

nonworker activity-travel pattern,

Other forms of the model include the Poisson distribution which assumes that the
variance is constrained to be equal to the means; this would be too restrictive for

the data that are characterised by over-dispersion or under-dispersion. Also to
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generate the Poisson form for the probability function, the events must have
occurred independently through time. In Tobit models, non-travellers can be
underestimated. Ordered probit model is also suitable for modelling trip
generation, however, the complexity of calculations of the model makes it not
very attractive. Alternatively, classical category analysis, is undermined by the
large sample sizes required to calibrate reliable trip rates as well as the absence
of statistical tests for the overall goodness of fit of the models. MCA methods
provide further developments of the principles of category analysis despite the
heavy reliance on large amount of data. Logistic regression techniques have been
investigated in this study for simplicity and ease of estimation. Moreover,
insufficient empirical evidence exists to confirm that any one model form is

superior to another in trip generation modelling.

Logistic models have been widely used to model travel behaviour choices such
as mode, departure time, destination, route and residential location choice and
commute behaviour. For examples, Bhat (1998b) studied mode and departure
time for urban shopping trips and Wen and Koppelman (2001) investigate inter-
city travel mode choice. Small (1982) modelled the arrival time of car
commuters and Abkowitz (1981) modelled departure time choice for the
commute to work. Freedman and Kern (1997, investigated workplace and
residential location decisions and Sermons and Koppelman (2001) also
investigated residential location choice and commute behaviour. Finally,
Hensher and Greene (2003) analysed urban commute travel route choice and
Rizzi and Ortizar (2006) examined interurban route choice. For more

discussions of the logistic models, see Chapter 4.

However, very limited applications of logistic regression in trip generation
modelling have been reported (see for example Daly, 1997). Logistic regression
can be used to model trip generation using binary logit models (whether or not an
individual will make a trip), or multinomial logit models (probability of making
{0, 1, 2 or more trips}, or probability of making {infrequent, frequent, very
frequent trips}, etc.). This way, one can investigate the frequency of trips
combined with the number of trips made by each individual or household.

Logistic regression overcomes the restrictive assumption of ordinary least
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squares regression (Garson, 2002) that is the assumptions of linearity between
the dependent and independent variables. This technique can be used to model
relationships between the response variables which are binary or categorical,
with more than two categories and several explanatory variables which may be

categorical or continuous.

Utilising discrete choice framework to model trip generation, the number of trips
(or the trip frequency) are treated as a set of mutually exclusive and collectively
exhaustive categorical variables, incorporating built-in upper ana lower limits.

The estimates of the model show underlying probabilities for actual number of
trips, which cannot be a negative number, whereas the linear regression model
only gives the expectation and variance of the number of trips, as the dependent
variable would be a continuous variable. In addition, the model provides a
behavioural framework that directly links the number of trips to utility-based
consumer and decision making theory. This research considers investigates the
development of trip generation models using logistic regression analysis and also
incorporating policy sensitive measures such as road user charging and parking

fees.

Accessibility of the transport system has been investigated. A number of
researchers have calibrated functions to represent transport accessibility (for
example see Leek and Huzayyin 1979). However, most of the investigated
functions included mainly factors which are representing the level of service of
the transport system such as frequency of buses, travel time distances. Transport
policies and their impacts on the accessibility have not been much investigated at
the trip generation stage. Impacts of transport policies however have been
investigated at other travel choice decisions such as mode, route and destination
choices. A major disadvantage of this is that the changes to the network are
basically assumed to not have any effects on trip production and trip attractions.
This assumption may hold for compulsory trips, but it may not be so in case of

discretionary trips.
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2.5 SUMMARY

This chapter discusses some basic definitions in the trip generation modelling.
The main factors which affect trip generation have been reviewed. These include
various socio-economic characteristics of the trip makers residing in the area, the
physical characteristics of the area, and transport infrastructure and transport
services / accessibility (this is discussed in Section 3.4). Also a discussion of the

approaches of data aggregation in trip generation modelling is presented.

Section two reviews the two most commonly used techniques of trip generation
modelling (i.e. linear regression analysis and category analysis). For regression
analysis, it covers the assumptions, statistics and models development, as well as
the comparison of the effects at different types of aggregation (zonal, household
and personal) and its advantages and disadvantages. For category analysis, the
classic model and its advantages and disadvantages, the improvements and
personal-category model are discussed. The new class of MCA methods which
overcome a number of limitations of the classical MCA model have also been
overviewed. Also, the temporal and geographic transferability of the trip
generation models is discussed and other trip generation techniques that have .

appeared in the literature are briefly described.
Finally, the gaps in current trip generation techniques and the main aim of this

study are presented. We briefly introduce logistic analysis and its applications in

travel choice models and their potential use in trip generation modelling.
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CHAPTER3 MODELLING ACCESSIBILITY IN TRIP
GENERATION MODELS: LITERATURE REVIEW

3.1 INTRODUCTION

This chapter reviews the main approaches for modelling transport accessibility
and its application in trip generation models. Section 3.2 discusses the concept of
accessibility and the factors that influence it. Section 3.3 reviews the different
approaches to accessibility measures in the literature. In Section 3.4, a discussion
of how transport accessibility has been included in the trip distribution, modal
split and trip assignment stages of the classic four stage transport model is
presented, while Section 3.5 reviews how different accessibility measures have
been incorporated into trip generation models. Section 3.6 gives a general
discussion of accessibility and its appropriateness for inclusion in trip generation
modelling. Finally, Section 3.7 discusses the gaps in earlier research and

approaches for treating transport accessibility measures.

3.2 CONCEPT OF ACCESSIBILITY

Accessibility is a concept used in a number of fields such as transport planning,
urban planning, geography and marketing. Typically, accessibility refers to the
“ease” with which desired destinations may be reached and is frequently
measured as a function of the available opportunitiecs moderated by some
measure of impedance (Niemeier, 1997). Opportunities may be expressed as
employment levels and retail or non-retail square footage depending on the

application; impedance is usually denoted by travel time or possibly distance.

The types of opportunities depend upon whether origins or destinations are being
considered (Halden et al. 2000). Origin accessibility considers the opportunities
available to an individual or a business, thus the opportunity term is based upon
the land use at alternative destinations. Destination accessibility considers the

catchments for a destination, thus the opportunity term is based upon the land
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uses (i.e. employment, education, health, shopping, etc.) and the type of person

or traveller at alternative origins. .-

Halden et al. (2000) point out that all accessibility measures relate to specific
locations, origin or destination, and include representation of defined
opportunities and a separation element between these opportunities and the
locations. Generally, accessibility measures consist of four different components:
land-use component, temporal and individual components, and transport

component (Geurs and Ritsema van Eck, 2001).

3.2.1 The land-use component

The distribution of opportunities in space influences the level of accessibility
(Geurs and Ritsema van Eck, 2001). For example, if all jobs and dwelling are
equally distributed over a certain area or clustered in the (city) centre of a given
area, there will be different impacts on people’s level of job accessibility. The
land-use component of accessibility can be split into two elements: the spatial
distribution of supplied destinations and their characteristics (such as location of
offices, capacity) and the spatial distribution of the demand for activities and
their characteristics (such as locations of dwellings). Both the distributions of
supplied opportunities and the demand for opportunities can influence

accessibility,

The types of opportunities include (Halden et al. 2000): (1) employment,
education and training, e.g. employment locations, jobs centres and colleges,
etc.; (2) health and social, e.g. hospitals and social security offices, etc.; and (3)

shopping and leisure, e.g. shopping centres and cinemas, etc.

In handling the land-use component of accessibility the demarcation of the
research area must be decided. Halden et al. (2000) indicate that the extent of the
zoning system and the level of detail will depend upon the policy issues being

examined and how much effort can be afforded on the analysis. For example,
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strategic transport improvements require a wide geographical coverage and a

fairly coarse zoning system may be adequate.

3.2.2 The temporal component

The temporal component of accessibility involves the availability of activities at
different times of day or weeks, seasons, years, etc. and the times in which
individuals participate in specific activities (Geurs and Ritsema van Eck, 2001).
It originates in the space-time studies of the urban activity system from
Giigerstrand (1970) and Chapin (1974). The time component and land-use
component of accessibility are interdependent because individuals can only be at
one location at a given time and travel consumes time. In potential accessibility
measures, the temporal component is usually implicitly dealt with by varying the

transport component throughout the day.

3.2.3 The individual component

The characteristics of individuals play an important role in the level of access to
social and economic opportunities. Three groupings of determinants are often
identified: needs, abilities and opportunities (Vlek and Steg, 1996). Geurs and
Ritsema van Eck (2001) summarize that: (1) needs for travel and access to
opportunities depend on their characteristics, such as age, income, and household
situation; (2) abilities of people are related to level of physical capacity (e.g.
cognitive, intellectual or physical disabilities) and to specific skills needed to
access a transport mode (e.g. qualifications to drive a car); and (3) opportunities
of people are related to income and travel budgets. In general, the individual
component of accessibility is incorporated into accessibility measures by
stratifying the population according to a selection of relevant characteristics (e.g.

- age, gender).
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3.2.4 The transport component

In general, the transport component of accessibility consists of three elements
(Geurs and Ritsema van Eck, 2001): (1) the supply of infrastructure, its location
and characteristics (e.g. maximum travel speed, public transport timetables,
travel costs); (2) the demand for passenger and freight travel, and (3) the.
characteristics of resulting infrastructure use, ie. the outcome of the
confrontation between infrastructure supply and travel demand, resulting in the
spatial distribution of road traffic, and the travel time, costs and effort to reach a

destination.

Deterrence functions, including barriers to accessibility, can be measured as
© time, travel cost, distance, or generalised cost/time (Halden et al. 2000). They
aim to represent each factor or barrier perceived by each population group. This
must include the relative deterrent effect of different types of travel and the costs
associated with each, including issues such as the greater deterrent effect of time
waiting for a vehicle when compared with the same time spent travelling in a
vehicle. It is usually helpful to look separately at the deterrence functions for car
available and non-car available trips. This is because many trips involve a
combination of several modes and for non-car available trips the car options need

to be excluded from the calculation.

The deterrence factors affecting travel (or access without travel) for people to
activities include (Halden et al., 2000): (1) transport availability, physical
acceséibility, affordability and acceptability, etc.; (2) other extrancous factors
such as topography, severance, crime and fear of crime; and (3) information and
personal knowledge, skills, willing to travel, etc. These generic categories can be
used as a guide to identify factors for the deterrence function. For example,
deterrence factors affecting public transport use can be categorized into: (1) time
factors, e.g. travel time, scheduling of activities and transport services, and time
budgets; (2) cost factors, e.g. public transport fares, (3) reliability; (4) security;
(5) quality; and (6) information and booking.
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In terms of the mathematical formulation of the deterrence functions, Geurs and

Ritsema van Eck (2001) summarize the forms of distance decay functions that

have been used in most of accessibility studies:

1. A negative power or reciprocal function (i.e. F(d,) =d™), where d is the

distance and « is a constant, which has, for example, been used by
Hansen (1959), Patton and Clark (1970), Davidson (1977) and
Fotheringham (1982).

A negative exponential function (i.e. F(d,,):e"” ), where B is a
constant, which has, for example, been used by Wilson (1971), Dalvi and
Martin (1976), Martin and Dalvi (1976) and Song (1996).

A modified version of the normal function (i.e. F (d0)=100‘e“’" “),
where u is a constax‘xt. This function has, for example, been used by
Ingram (1971) and Guy (1983).

A modified logistic function (i.e. F(d,) =1+¢"""’), where a and b are

constants (Bewley and Fiebig, 1988). This function has been used by
Hilbers and Verroen (1993).

The choice of which specific distance decay function to use depends on (a) the
specific characteristics of the function and (b) the study area and the nature of the
empirical data (Geurs and Ritsema van Eck, 2001). For example, Hilbers and

Verroen (1993) indicate that the following aspects were relevant in their studies:

1.

The steepness of the function. A negative and a negative exponential
function decay very rapidly, suggesting a strong sensitivity to short
distances. From a behavioural point of view, a very strong decay at short
travel distances or times does not seem realistic, i.e. the perception of
distance will probably not be very different between a 3-minute and a 6-
minute trip. Fotheringham (1982) states that a power function gives a
more accurate description of the perception of distance at an interurban
level than an exponential function, which may be more accurate on an
intra-urban level. Hilbers and Verroen (1993) state that, in general, a

conventional logistic function will give a better behavioural explanation

of distance decay because of its S-shaped form.
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2. The functions’ point of inflection. Some functions (such as the
conventional logistic function) have a fixed point of infection halfway the
maximum trip likelihood and this implies that the perception of distance
is assumed to be the same for short and long travelling distances.

3. The value of the trip likelihood at zero distance. For the estimation of the
trip likelihood it is necessary that the function reaches the maximum trip

likelihood when the distance is zero.

In summary, the accessibility of a location is influenced by and interacting with
four components (Geurs and Ritsema van Eck, 2001): land-use, transport, the
individual and the temporal components. Accessibility is a location factor for
inhabitants and firms (i.e. land-use component) which influences travel demand
(transport component), people’s economic and social opportunities (individual

component) and the time needed for activities (temporal component).

Each trip has other characteristics which make the generalisation for the purpose
of analysis difficult (Halden et al. 2000). For example, the reason for not making
a walking or public transport trip may be the need to carry goods, the weather,
the perceived quality of the route, including personal security and safety
considerations, or simply a lack of knowledge of available options. These factors
can be affected by transport policy decisions, so it is desirable if appraisal can
take account of them in a meaningful way. To ensure a robust approach,
calibration against observed behaviour should provide a firm foundation on
which to build. Also, as travel patterns are not static, observations of travel
behaviour should ideally take account of trends in trip making rather than simply

observed demand.

3.3 REVIEW OF ACCESSIBILITY MEASURES

This section gives an overall review of different approaches to accessibility
measures which can be classified to a number of classes. For example, for

practical application purposes, Halden et al. (2000) classify accessibility into
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three generic but overlapping types of indicators: simple indicators, opportunity

indicators and value or utility indicators (also see Handy and Niemeier, 1997).

3.3.1 Simple indicators

With simple indicators, the representation of transport and/or opportunities
within the accessibility equation is simplified by defining threshold measures of
the travel cost, time, etc., required to reach a given number of opportunities.
Simple measures are fairly easy to understand and are most useful for local
walking and cycling trips including assessing access to public transport services.
The disadvantage however, is mainly the limited scope of these measures. The

commonly used indices categorised under simple indicators include:

3.3.1.1 Catchment/contour indices

Catchment/contour indices count the number of people, jobs, shops etc., within a
threshold travel cost (distance, time etc.) from a defined location. They are used
for a wide variety of planning purposes for both land use and travel infrastructure
and are often used by developers to consider the potential commercial viability

of a potential development location.

3.3.1.2 Access to public transport

Rather than looking at transport network accessibility to destinations, they
indices measure walking access time to the public transport services. Walking
time or distance thresholds to public transport services are set and summed
across all the available services. The quality of public transport being accessed is
categorised on a scale which takes account of service frequency, type of service
(i.e. rail/bus/light rail etc.) and service reliability. Although of limited scope, the
simplicity of this approach has proved attractive and the calculation and mapping
procedures have been automated and marketed by various organisations (LPAC,

1994).
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3.3.1.3 Peripherality indices/rural accessibility

These identify thresholds in terms of cost, distance, time etc., from defined types
of opportunities. These are usually calculated from major centres of population
such as towns or cities or public services such as hospitals, but have also been
used to study accessibility to transport networks including the European

Community Trans European Networks.

3.3.1.4 Time space geographic measures

These measures simplify travel behaviour and choice in terms of the
opportunities available within a limited time budget. The threshold is therefore
the travel time available for a particular individual or group. These are widely
used in logistics planning for freight but are equally applicable to people

accessibility issues.

Developed by Hagerstrand (1970) within the space-time framework, the
constraint-oriented approach is based on the fact that individual accessibility has
both spatial and temporal dimensions. This approach considers the temporal
dimension of activities which leads to indicators that account for the individuals’
time constraints and the recogniiion of multipurpose activity behaviour by a
space-time prism. However, Wang (1996) points out that this approach is not
realistic as it assumes a constant speed in all directions and variable speed makes
the model exceedingly burdensome to handle, and also the activity schedules are

usually incomplete and do not cover the whole spectrum of activities

An example of the simple measures, given by Halden er al. (2000), is discussed
here. The accessibility measure for a location (/) is calculated as the sum of the

opportunities available at alternative locations () within defined threshold:

4=;Q%
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Where A; is the accessibility measure for a location #; 0 are the opportunities
available at locations j; & =1 if the opportunities are within the threshold, and 0

otherwise.

3.3.2 Opportunity indicators

Opportunity indicators sum all the available opportunities and weight them by a
measure of deterrence based upon how easily the opportunities can be reached.
Opportunities also have the benefit of being easy to understand since, like the
simple measures, they are expressed in terms of number of jobs or number of
people for example. They have many potential uses including: the comparison of
accessibility changes for different population groups, the identification of the
catchments for destination, and the comparison of accessibility for car available

and non-car available trips. The following sections briefly review a number of

examples of opportunity indicators.

3.3.2.1 Hansen indices - the potential to opportunities or the gravity approach

The simple measures above are all special forms of Hansen indices incorporating
thresholds to simplify data or analysis requirements. Hansen indices have had
wide application within research and are used within transport models to estimate

trip distribution (Halden et al., 2000).

Indicators based on spatial opportunities available to travellers are among the
first attempts to address the behavioural aspects of travel. The potential to
opportunities ot the gravity approach is the most utilised technique among
accessibility indicators (see, Dalvi and Martin, 1976; Linncker and Spence, 1991;
Geertman and Ritsema Van Eck, 1995; Bruinsma and Rietveld, 1998; Brunton
and Richardson, 1998; Kwan, 1998; and Levinson, 1998)). An early attempt was
made by Hansen (1959), who claimed that accessibility is the "potential of
opportunities for interaction” or literally "a generalization of population-over-
distance relationship". The concept of potential to opportunities is closely

associated with the gravity models based on the interaction of masses and has
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been extensively discusséd by Rich (1978). Advantages of Gravity or
Opportunities measures include ease of comprehension and ease of calculations
and the ability to differentiate between locations. Also, they are less demanding
on input data than other indicators that reflect behavioural aspects. Some
disadvantages of this class of indicators are their sensitivity to the choice of

demarcation area and their deficient treatment of travellers with dispersed

preferences.

3.3.2.2 Shimbel measures

This is a specific case of the Hansen indices in which all specified opportunities

are assumed to have the same weighting,

Graph Theory measures (Garrison, 1960; Muraco, 1972; Vickerman, 1974)
consider the degree of node (i.c. the number of links incident to each node) or the
associated number (i.e. the number of links in the shortest path from a particular
node to its most remote mode which is taken as a reference point, Kdnig, 1936).
Shimbel (1953) suggested a measure to overcome the problem of taking the most
remote node as a reference point, and this measure takes account of all possible
destinations for each node. The Shimbel measure is simply the sum of the cost
(e.g. time, etc.) to each of the opportunities and it indicates the accessibility of

each node with respect to its linkage to all other nodes in the network.

3.3.2.3 “Economic potential” measures

Where the opportunities being considered in the Hansen index are regional
incomes and the deterrence function is measured in distance, the accessibility
index is sometimes described as the economic potential of a location (Keeble ef

al., 1982).

Here is an example of the opportunity measures given by Halden er al. (2000).
The opportunity measure for a location (/) is calculated as the sum of the
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opportunities available at locations (j) multiplied by a deterrence function based

upon the travel time between i and j:
4,=Y0,exp(-11,)
J

Where

A; is the accessibility measure for a location i;

O, are the opportunities available at locations j;

exp(-A¢;) is the deterrence function;

t; is the travel time between i and j; and

A is the factor for correction sensitivity to travel time, where a higher value
means that travel time is more of a deterrent. The calibration of 4 is usually
undertaken as part of the trip distribution stage. However, even without location
calibration the accessibility analysis can still be useful, since default values of 4

can be used to give meaningful results (Halden et al., 2000).

3.3.3 Value or utility based indicators

Value nieasures seek to define the attractiveness of the available opportunities to
represent their value as a transport choice. They are expressed in generalised
time or cost so findings can be more difficult to interpret. However, by providing
a direct measure of the value of transport systems they could be powerful

appraisal tools.

These indicators measure the value to a group of the choices available to them.
The main difference with the opportunity measures is that additional
opportunities only provide an increase in accessibility if they provide some
additional value. If there is already a surfeit of opportunities available, adding

more opportunities will result in little change in the index.

Utility-based indicators have their roots in travel demand modelling. Ben-Akiva

and Lerman (1979) states: "accessibility logically depends on the group of
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alternatives being evaluated and the individual traveller for whom accessibility is
being measured." In that sense, the shortcoming of gravity-based indicators
becomes obvious, as all individuals within the same zone will experience the
same amount of accessibility, regardless of the differences between their
perceived utility of alternatives. Ben-Akiva and Lerman (1979, 656) continue:
“for any single decision, the individual will select the alternative which
maximises his/her utility." The measure of accessibility defined in this way is in
monetary units, which enables the comparison of different scenarios. Williams
(1977) noted that utility-based accessibility is linked to consumer welfare. By
definition, a person’s consumer surplus is the utility, in money terms that a
person receives in the choice situation (Jong et al., 2005). The consumer surplus
associated with a set of alternatives is, under the logit assumptions, relatively
easy to calculate. If the unobserved component of utility is independently and
identically distributed extreme value and utility is linear in income, the expected
utility becomes the log of the denominator of a logit choice probability, divided
by the marginal utility of income, plus arbitrary constants, this is called the
‘logsum’, McFadden (1975) and Small and Rosen (1981) showed how this
measure can be derived in the discrete choice situation for the multinomial logit
(MNL) model when income effect is not present. The advantage of this approach
is that it is supported by relevant travel behaviour theories. Some disadvantages
include the demand of extensive data on locations and individuals' travel

behaviour and their choice sets.

Another utility-based accessibility measure is the activity-based accessibility
measure (ABA, Dong e al., 2006), which measures accessibility to all activities
in which an individual engages, incorporating constraints such as scheduling, and
travel characteristics such as trip chaining. The ABA is an extension of the
logsum accessibility measures frequently derived from joint destination and
mode choice models. Compared with more traditional measures of accessibility it
is successful in (a) capturing taste heterogeneity across individuals; (b)
combining different types of trips into a unified measure of accessibility; and (c)

reflecting the impact of scheduling and trip chaining on accessibility.
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3.3.4 An alternative accessibility measure — stated preferenée (SP)

accessibility measure

Ortizar et al. (2000) review the access measure with a microeconomic base and
propose an alternative measure, in the perspective of approaching what the
individuals perceive as access. Stated preference tools with their ability to
manage the set of available alternatives, not only in terms of definition, but also
in relation to the variation of the relevant attributes considered, are used to
collect the data specifically focused on the problem of access perception. An
access perception model was developed using multinomial logit modelling
techniques and the study considered explicitly the full set of household members
as decision makers. The variables used included travel time to work and to study
by an individual, walking distance to the nearest underground station or bus stop,
value of the house rental, number of workers and students in the household, and
frequency of trips to work and to study. It was concluded that this measurement
instrument was capable of discriminating between location effects in terms of the
included variables. The parameters from this method can be taken as referential
for evaluation purposes or as a comparison with those parameters calibrated from

actual location-choice data including other location characteristics.

3.3.5 Some issues in the specification of accessibility measures

Handy and Niemeier (1997) discuss a number of interrelated issues that need to
be resolved in the specification of the accessibility measure, regardless of the
class of measure: the degree and type of disaggregation, the definition of origins

and destinations, and the measurement of attractiveness and travel impedance.

The question of disaggregation is particularly important and has multiple
dimensions. The most fundamental dimension is spatial disaggregation.
Typically, accessibility is measured by zone, thus grouping individuals and
household by proximity. The smaller the zone, the greater the disaggregation. All
else being equal, smaller zones should result in more accurate estimates of
accessibility for the individuals and households in the zone, as accessibility can

vary greatly across small distances. Accessibility can also be measured
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separately for each household or individual, an approach which emphasizes the

individual or household as the decision-making unit (Hanson and Schwab, 1987;

Guy, 1983).

Accessibility measures can also be disaggregated according to socio-economic
characteristics; this is important given that different segments of the population
care about different sets of opportunities and may evaluate them differently
(Wachs and Kumagai, 1973; Niemeier, 1997). In general, some differentiation of
individuals and households by selected characteristics should result in more

accurate accessibility measures.

The purpose of the tri;; or the type of opportunity represents another dimension
of disaggregation. At the most aggregate level, accessibility to employment
regardless of type is measured as employment serves as an indicator of overall
activity. Finer levels of disaggregation distinguish between work and non-work

opportunities (Guy, 1983; Hanson and Schwab, 1987).

The second issue that arises in developing accessibility measures is the origin
and destination of the accessibility measure, i.e., the question of from where and
to where accessibility will be measured. Usually home-based indicators are used.
Thus, accessibility is measured for a resident who begins or ends his or her trip at
home. Given the increasing importance of non-home-based trips, the

appropriateness of a home-based measure must be revaluated (Lerman, 1979).

The set of potential destinations to include must also be determined. The desired
level of disaggregation with respect to types of opportunities is the first criterion
by which destinations are screened; for example, if the intent is to measure
accessibility to shopping, then only shopping destinations should be included.
But the set of destination opportunities to include also depends on assumptions
as to the perceived choice set, in other words, the set of potential destinations
that residents perceive to be available to them (Morris et al., 1979). Researchers
must ensure that the destination opportunities used in any accessibility measure
reflect the needs of residents (Voges and Naude, 1983). Research on activity-

based modelling points to the need for careful definition of choice sets and
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suggests that spatial and temporal constraints must be considered so that the

focus is on ‘constrained-choice sets’ (Ben-Akiva et al., 1987; Hanson and

Schwab, 1986; Jones et al., 1983).

The measurement of travel impedance presents yet another specification issue to
resolve. Distance or time, common measures of impendence, can be estimated by
straight-line distance (Baxter and Lenzi, 1975), network models (Sherman et al.,
1974) and field surveys (Wickstrom, 1971). If travel time is used, a choice must
be made as to whether uncongested (or, off-peak) or congested (or peak) times
will be used. The use of a generalized transport cost function, incorporating both
time and monetary costs, is often an improvement over the use of time alone.
Difference in travel time and cost by mode must also be addressed. One
approach is to calculate accessibility separately for different modes — car
accessibility and public transport accessibility. A more challenging approach is
to incorporate car and public transport travel times as well as the opportunity to

travel by other modes into one measure of accessibility.

The final specification issue surrounds the measurement of the attractiveness of
an opportunity. This may simply be the existence of a particular opportunity, as
measured by the number of establishments, or it may be either its physical or its
economic size, as measured by area or employment, for example. Research on
shopping behaviour shows that many characteristics of a potential destination
(such as the quality and price of products or the quality of service), are important
for destination choice (Bucklin, 1967; Guy and Wrigley, 1987).

3.4 ACCESSIBILITY IN THE FOUR-STAGE MODEL

This section discusses how accessibility has been included in the classic four
stage transport model except the first stage - trip generation, which will be

discussed in a later section.
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3.4.1 Trip distribution and accessibility

Changes in network costs involve important changes in relative transport prices.
The cost element may be considered in terms of distance, time or money units. In
trip distribution, usually, the generalized cost of travel is used to combine all
main attributes related to the disutility of a journey and it is typically a linear
function of the attributes of the journey weighted by coefficients which attempt
to represent their relative importance as perceived by the traveller. If the
generalized cost is measured in money units then the time coefficients are
sometimes interpreted as values of time as their units are money/time. The
generalized cost of travel represents an interesting compromise between
subjective and objective disutility of movement. It is meant to represent the
disutility of travel as perceived by the trip maker; in that sense the value of time

should be a perceived value rather than an objective, resource-based, value

(Ortizar and Willumsen, 2001).

3.4.2 Modal split and accessibility

Different accessibility measures have been used in modal split models (Bruton,
1985). In the trip-end modal split models developed in the early 1960s, such as
the Puget Sound and the South-eastern Wisconsin Regional Land Use
Transportation Study, accessibility indices were used as a measure of the quality
of service provided by the alternative modes of transport. These indices measure
the ease with which activity in one area can be reached from a particular zone on
a specific transportation system. For example, the accessibility from zone / to
zone j is defined as the product of trip attractions in zone j multiplied by the
friction factor for the zonal interchange. These products are then summed from
zone i to all other zones in the area to obtain the accessibility index for zone i.
The friction factor is derived from door-to-door travel time, which, for motor
vehicles, includes walking at origin and destination, ‘unparking’ and parking
time, and driving time, while, for public transport, includes walking and waiting
time at origin; time spent travelling on the vehicle; changing time between

vehicles where applicable, walking time at destination.
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3.4.3 Traffic assignment and accessibility

The basic premise in assignment is the assumption of a rational traveller, i.e. one
choosing the route which offers the least perceived (and anticipated) individual
cost (Ortlizar and Willumsen, 2001). In route choice, two factors are commonly
considered: time and monetary cost. Monetary cost is often deemed proportional
to travel distance. The majority of traffic assignment programs allow the user to
allocate weights to travel time and distance in order to represent drivers’
perceptions of these two factors. The weighted sum of these two values then
becomes a generalised cost used to estimate route choice. In the case of public-
transport assignment the generalized cost of travelling may include the in-vehicle
travel time, the walking time to and from stops (stations), the waiting time at
stops, the interchange time, an intrinsic ‘penalty’ or resistance to interchange

which is measured in time units, fare charged to travel.

From the above sections we see that accessibility measures have been
incorporated in trip distribution, modal choice and trip assignment models. Any
- change in the transport network (such as transport infrastructure, level of service

of public transport) could be reflected in the change at these stages.

3.‘5 ACCESSIBILITY IN TRIP GENERATION MODELS: LITERATURE
REVIEW

This section discusses some previous work, which attempts to model impacts of
different accessibility measures on trip generation modecls. An overview of the
accessibility measures for private transport and public transport is presented in
Table 3.1 and Table 3.2. In most of these attempts the modellers consider
characteristics of public transport services and transport infrastructures/
networks. Impacts of transport policies on accessibility measures have not been
considered however. More detailed discussions of these measures are given in

the following sections.

Mansfield (1969) incorporated journey time and money cost of travel variables in

his linear regression model of recreational trip generation to a single destination
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(the Lake District). The purpose of the study was to investigate how the demand
for pleasure journeys was affected by changes such as a reduction in journey
times consequent on the opening of a new motorway. It showed that the demand
for recreation trips appears highly elastic with respect to changes in total travel

costs (money costs and the value of journey time).

Two accessibility measures proved to have a significant effect on trip generation;
the first was named ‘accessibility index’ and used the reciprocal of the total
minimum travel time from one zone to other zones to express the efficiency of
the highway service. The second was the ‘transit accessibility measure’ which
used the sum of the transit service frequency available at the zone. Both
measures were used in the trip generation stage of the Baltimore Metropolitan
Area Transportation Study (Wilbur Smith and Associates, 1964). However,
Leake and Huzayyin (1979) argue that the measure of transit accessibility does
not reflect the distribution (length of routes) operating in each zone, and also the
measure does not make any reference to zone size and hence cannot distinguish

between zones of different shape and area.

A public transport accessibility measure was developed in the London Traffic
Survey (1966) to the off-peak frequency of buses (its square root) in a zone and
the square root of the area (to compensate for the unequal size of the zones). This
measure was tried in the trip generation phase of the study, but did not
significantly improve the trip generation relationships that were established.
Leake and Huzayyin (1979) point out that although this measure takes into

account zone size (area), it does not reflect route length in each zone.

Singer (1973) adopted a doubly constrained gravity model which uses a
combined generation and distribution function. Daly (1997) indicates that
although the doubly constrained gravity form uses a theoretically correct
functional formulation, it effectively links the elasticity of the trip generation

model rigidly to that of the distribution model, a constraint which cannot be

accepted on behavioural grounds.

94



Table 3.1 Overview of private transport accessibility measures in trip

generation modelling

Private Transport
Accessibility Measure

Applications and
Conclusions

References

Total travel costs — money costs
and value of journey time

The reciprocal of total travel
time from one zone to the others

The total travel distance or time
between zones

Relative accessibility and
stratification of zones according
to location

Attraction-accessibility index
(number of establishments,
squared (l/d.'jz) deterrence
function)

Gravity-type index - combining
destination attractiveness and
travel time (at zone level)

A function of the size of the
attraction / and the separation of
zone i from all other zones ;

Doubly constrained gravity
model using a combined
generation-distribution function

A ‘logsum’ from a choice model
over the possible modes and
destinations

The ‘logsum’ of destination
choice

Highly elastic for
recreational trips to a single
destination

Significant
Little improvement

Adds little to the statistical
strength of zonal regression
trip production and
attractions equations

It is the most satisfactory;
however, accessibility did
not play a clear role in
explaining trip rates in OLS
model

Not significant in ordered
response model of
household shopping trip
generation

Person trip attractions

Links the elasticity of trip
generation to trip
distribution

Significant correlation
obtained for only one of the
two areas studied by zonal
regression models

Using the hierarchical
structure and statistically
significant coefficients
obtained

Mansfield, 1969

Wilbur Smith and
Associates , 1964

Leake and Huzayyin,
1979

Nakkash and Grecco,
1972

Vickerman, 1974

Agyemang-Duah and
Hall, 1997

Freeman, 1976

Singer, 1973

LGORU, 1975

Cambridge
Systematics Europe,
1981; HCG and TOI,
1990 ; Cohner al.,
1996




In his shopping trips study with data from Oxford, Vickerman (1974) used one
Shimbel accessibility measure (in terms of distances and bus travel time), two
accessibility indices for levels of bus service (one is the average off-peak bus
frequency to the City Centre and the other is bus-miles per hour available in each
zone, standardised by zonal population to allow for different zone sizes and also
to reflect the demand on available services, thus indicating the standard of
comfort), and a combined attraction-accessibility index; this uses the number of
establishments and the squared (1/d;) deterrence function. The index is summed
for each origin zone over all zones, including the origin zone, so that the strong
influence of the home zone is included; the distance for the home zone was taken

as the average internal distance to the zone centroid.

Table 3.2 Overview of public transport accessibility measures in trip

generation modelling

Applications and
Conclusions

Public Transport
Accessibility Measure

References

Baltimore
Metropolitan Area
Transportation
Study, 1964

Sum of the transit service Significant

frequency

London Traffic

Not significant
Survey, 1966

Off-peak frequency of buses
(its square root) in a zone and

the square root of the area

Shimbel measure in terms of
distances and bus travel time;
Average off-peak bus
frequency to the City Centre;
Bus-miles per hour in each
zone standardised by zonal
population

Accessibility did not play
a clear role in explaining
trip rates in OLS model.

Vickerman, 1974

Public transport: service
frequency and zonal coverage
by bus routes;

A composite measure for both
private and public transport

Significant
improvements when
modelling public
transport and ‘all modes’
trips; greatest impact for
home-based ‘other’
purposes (non work) trips

Leake and
Huzayyin, 1979
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Vickerman (1974) concluded that in many respects the attraction-accessibility
associated with the spatial interaction model is the most satisfactory, particularly
if it can be calibrated in a form constrained only at the production end and using
exogenous attraction weights related to consumer expenditure and choice range
at the destination. He rejected the doubly constrained gravity model, preferring to
model trip generation as an explicit step separate from spatial interaction. Based
on linear regressions on data from Oxford, the results showed that accessibility
did not play a clear role in explaining trip rates, although some significant results
were found. Wilson (1971) suggested that different forms of spatial interaction
models might be appropriate for different trips purposes. For example, a model
of journey to work would consider the number of workers resident at the origin
zones and the number of jobs at the destination zones, and a model of journey to
shop would consider the purchasing power of the residents at origin zones and a

measure of the attractiveness of shops at the destination zones.

Agyemang-Duah and Hall (1997) used an accessibility index in an ordered
response model of household shopping trip generation. The accessibility index
~ was a single factor combining destination attractiveness, measured as the number
of retail shopping employees in each zone, and travel time. This factor was
calculated at the level of the traffic zone and the exponential function was used
as deterrence function. They obtained a negative sign (i.e. counterintuitive) of the
estimated coefficient of the accessibility index (Ortizar and Willumsen, 2001
report negative signs of similar accessibility measures used in regression
models). It is pointed out that a possible cause is that the number of vehicles
owned by a household and the accessibility index are not truly independent.

In LGORU (1975), accessibility was incorporated into a zonal linear regression
model of trip generation for two small rural areas with an accessibility measure
calculated as a ‘logsum’ from a choice model over the possible modes and
destinations available for travel from the origin zones. However, a significant

correlation was obtained for only one of the two areas studied.
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Nakkash and Grecco (1972) examined the effect of accessibility on both trip
production and attractions using Hanson accessibility. Regression models were
developed based on zonal variables and two considerations were introduced: (1)
the concept of relative accessibility, and (2) stratification of zones according to
location. The equations developed indicated that for home-based productions the
inclusion of accessibility variables and stratification by location made virtually
no improvement over those not incorporating such aspects. However, when
relative accessibility was excluded, and stratification by location included, there
was a general improvement in the model. Similar results were obtained for the
trip attraction equations, but the effects were much stronger. It was concluded
that the use of this index added little to the statistical strength of the regressions.

Kitamura (1991) expressed concern that the above aggregate, zone-level
accessibility measures would be problematic due to too little variation between
zones (and no variation within zones) and that they are two insensitive to detect

the effect of accessibility on trip frequency.

Freeman (1976) indicated that the Hanson accessibility index can be seen to be
associated with the production end of trips and is suitable for the analysis of
person trip productions and not suitable for the analysis of person trip attractions.
He advised that the index required for person trip attractions should be a measure
of the accessibility to activities in zone 7 from all other zones j and should be
defined as a function of the size of the attraction i and the separation of zone i
from all other zones j. In situations of large zone sizes the accessibility of a zone
to itself i.e. intra-zonal accessibility can be taken into account. The relative
attraction accessibility of a zone can be calculated using the attraction
accessibility in the zone divided by the sum of attraction accessibilities in all
zones. By allocating personal trip attractions to zones on the basis of zonal
relative attraction accessibility, the number of person trips attracted to any zone

may be obtained.

Leake and Huzayyin (1979) point out the weaknesses of the Graph Theory
measure: (1) ‘distance’ between nodes should be measured in terms of real travel

distance, or generalized cost, not links in the path between them which has no
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sound logical basis (Muraco, 1972; Vickerman, 1974); (2) these measures cannot
reflect public transport levels of service in terms of service frequency; (3) it is
very‘ difficult to produce a combined measure based on the Graph Theory
approach to reflect all modes of transport (Vickerman, 1974); and (4) they
principally measure nodal accessibility of the network and are difficult to modify

for measuring household accessibility.

Leake and Huzayyin (1979) summarize the weaknesses of the activity-
accessibility measures: First, problems associated with the determination of the
power of the travel resistance term incorporated in these measures: a) there is a
prior need to calibrate a ‘gravity-type’ trip distribution model in order to
determine the power of the travel resistance term; b) alternatively, an arbitrary
travel resistance function may be used; c¢) the assumption of a stable travel
resistance has to be made to enable future accessibilities (Nakkash, 1969).
Secondly, problems associated with the activity measure: a) as the suggested
measure of activity (employment, labour force, shopping floor area, etc.) may be
one of the socio-economic variables of the trip generation model, the potential
for high inter-correlation between the accessibility measure and one or more of
the socio-economic variables is likely to exist (Vickerman, 1974); b) as different
types of activity measure are recommended for different trip purposes, this may
result in the difficulty to establish an accurate accessibility measure for use in

trip generation equations modelling combined trip purposes.

Practically, it is impossible to establish the activity-accessibility measure at the
household level, since the determination of appropriate travel resistance
functions would necessitate calibrating a gravity trip distribution model at this
disaggregate level, as against the normal practice of calibrating at the zonal level.
Furthermore, measures determined at a zonal level should not be used in a

disaggregate trip generation model (Doubleday, 1976; Huzayyin, 1978).

Leake and Huzayyin (1979) proposed transport accessibility measures for private
transport and public transport respectively and a composite accessibility for both
of them. They pointed out that the efficiency of the private transport system
depends primarily on the layout of the road network (network structure) and the
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ease/difficulty of travel on its various links. Private transport accessibility is then
based on either the travel distance (total shortest route travel distance between
zones) or travel time (minimum total travel time between zones). When revised,
they can reflect the structure of the road network. Public transport accessibility
should reflect the level of service provided by the public transport system in
terms of frequency (bus/hr) and coverage by bus routes. So it considers the
number of public transport routes, the number of modes, the length of each route,
and the frequency of each mode. Also it can consider the area of the zone. By
combining a selected private transport accessibility measure with one of the

public transport accessibility measures, a composite measure can be formed.

The results from the above research indicate that the greatest impact of
accessibility always occur in the case of home-based ‘other purposes (non work)’
trips. This shows the sensitivity of this category of trip productions to the
characteristics of the urban transport system. This research has shown that for
certain trip types the introduction of an accessibility measure can result in
significant improvements in the explanatory power of a trip production model.
This was particularly noticeable when modelling public transport and “all modes’

trips. However, little improvement was obtained when modelling private trips.

Leake and Huzayyin (1979) conclude that many failures to improve significantly
the explanatory power of trip generation models by introducing an accessibility
measure may have been due to unsatisfactory accessibility measure formulations,

inadequate data, or a combination of both.

Daly (1997) also investigated an accessibility measure by calculating the logsum
of destination choice in an integrated trip generation, mode and destination
choice model using the hierarchical logit modelling structure. A number of
applications of this approach have been developed including Cambridge
Systematics Europe, 1981; HCG and TOI, 1990 and Cohn et al, 1996. A
coefficient of accessibility was also introduced in the Norwegian National long-
distance tour generation Model (HCG and TOI, 1990), with a coefficient value
ranging from 0.07 to 0.33 for the modelled five trip purposes. In the ‘ProMise’
model developed for Netherlands Railways (Cohn et al., 1996), statistically
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significant coefficients for accessibility were calibrated in the tour generation
models for the ‘optional’ travel purposes, i.e. non work, business or educational
travel. Logsum coefficients ranging from 0.03 to 0.11 were obtained for 0, 1+

and stop-go models.

3.6 GENERAL DISCUSSIONS OF ACCESSIBILITY MEASURES AND
ITS APPROPRIATENESS FOR INCLUSION IN TRIP GENERATION

MODELLING

3.6.1 Introduction

Leake and Huzayyin (1979) outlined the basic requirements of an accessibility
measure when used in a trip generation model as: (1) it should be easy to
understand and logically expressed; (2) it should reflect the efficiency of private
transport and the service levels provided by public transport; and (3) two
different sets of accessibility measures are required for private transport and
public transport which should be possible to combine into one measure
representing accessibility by all modes of transport for use in trip generation

models.

They further claim that any accessibility measure to be introduced into a trip
generation model should be in harmony with the used trip generation modelling
technique:

1. The measure should be capable of accurate calculation, i.c. no errors to
satisfy one of the assumptions of the least squares method;

2. The accessibility measure should not be highly correlated with any of the
socio-economic variables;

3. The accessibility measure should be capable of being established at both
the zonal and household levels so that it can be included in a trip
generation model calibrated at either level of aggregation;

4. The measure should be capable of reflecting accessibility for each of the

traditional trip purposes as well as any combination of trip purposes.
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It should be noted however, that these requirements mainly consider factors and
attributes which represent existing characteristics of the transport system. New
policies implemented have not been considered by almost all the researchers who
investigated accessibility in trip generation models. Moreover, the perceived
levels of service by the users have not been considered. It should be noted the
other travel choice models, the perceived levels of service of the transport system
are often used as well as or instead of the actual level of service because of their
importance (Ortizar and Willumsen, 2001). The advantage of using actual
characteristics of the transport system is that data is easier to collect and it is
more convenient. The disadvanta.ge, however, is that the actual characteristics of
the transport system could be differently perceived than the actual characteristics
and also differently perceived by different types of users. In addition, in all
previously investigated accessibility indicators, there was no inclusion of policy
variables (for example road pricing, parking pricing, etc.) The following section

discusses the gaps in previous approaches.

3.6.2 Gaps in previous approaches

As discussed above, although the impacts of various transport policies such as
pricing, public transport and management measures have been investigated at the
trip distribution, modal choice and route choice stages, these have not been

applied at the trip generation stage.

The Hanson accessibility measure and the Freeman attraction accessibility
measure consider the opportunities in zones and the travel impedance between
zones. The Leake and Huzayyin accessibility measures consider the layout of the
road network, the ease/difficulty of travel, and the level of service by the public

transport system in terms of service frequency.

Transport system characteristics only are included in terms of the “observed”
characteristics of the public transport services as well as transport
infrastructures/network in most models. How people really think and their

perceptions and experiences that underlie attitudes, beliefs and consequent
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behaviour are not considered. Although accessibility is determined by patterns
of land use and by the nature of the transportation system, two people in the
same place may evaluate their accessibility differently, as wants and tastes vary

(Handy and Niemeier, 1997).

Also, transport policies such as pricing measures and their impacts have not been
considered in any previous research. Some policies have been considered as
opportunities (i.e. policies aim at increasing trip generation to/from specific
zones, such as public transport measures, pedestrianisation etc.), while others can
be seen as impedance as they may reduce some types of trip generation (e.g.
pricing measures). Thus when transport policies are introduced they would

impact on accessibility as well as trip generation.

Therefore the general requirements for a transport accessibility measure could be
summarised as:
1. The measure should be capable of accurate calculation;
2. The measure should not be highly correlated with any of the socio-
economic variables; ‘
3. The measure should be capable of reflecting accessibility for each of the
trip purposes;
4. Variables which reflect perceived level of service of transport systems
should be included in the measure;
5. Policy variables which reflect further characteristics of the transport

systems should be included in the measure.

In this research, journey times and public transport cost are included for work
trip generation models in Chapter 6. Policy measures such as parking cost and
congestion charge have also been investigated in trip gencration modelling (see
Chapter 7 and Chapter 8 respectively). Finally, a perceived public transport
accessibility measure taking account of people’s opinions and perceptions of
public transport services and its impacts on trip generation modelling has been

investigated (see Chapter 9).
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3.7 SUMMARY

This chapter first introduces the concept of accessibility which is related to
spatial distribution of land use, the transport infrastructure and public transport
services, temporal and individual factors. Different approaches of travel

impedance can be suggested to reflect the sensitivity to the distances.

With simple indicators, the representation of transport and/or opportunities
within the accessibility equation is simplified by defining thresholds (e.g.
number of relevant opportunities within a given travel cost or time). Opportunity
indicators sum all the available opportunities and weight them by a measure of
deterrence based upon how easily the opportunities can be reached. Value
measures seek to define the attractivgncss of the available opportunities to

represent their value as a transport choice.

Accessibility has been included in trip distribution, modal choice and route
choice models of the classic four stage transport models, where usually a
generalized cost function including a measure of accessibility, is used. This
function can easily reflect the changes to the transport network which are caused
by the introduction of transport policies. When transport policies are introduced
they would impact on trip generation as well as the other stages of the transport
model. These types of impacts have not been widely explored at the trip

generation stage in previous research.

In this chapter, a review of how accessibility measures have been incorporated in
trip generation models is presented. The results from the studies that
incorporated different measures and the strengths and weakness of these
measures were discussed. In Chapters 7 and 8 respectively, policy measures such
as parking cost and congestion charge have been investigated in trip generation

modelling.
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CHAPTER 4 MODELLING TECHNIQUES OF TRIP
GENERATION

- In this chapter, generalised linear models which unify diverse statistic techniques
(e.g. linear regression and logistic regression) and their suitability for different
response variables and explanatory variables are discussed. Also, the logistic
reéression technique for trip generation is reviewed including choice theories,
different types of discrete choice models, joint estimation of revealed preference
(RP) and Stated Prcférence (SP) data, and methods to evaluate the performance
of models. Finally, the suitability of using logistic regression in modelling trip

generation is discussed.

4.1 GENERALIZED LINEAR MODELS

The term ‘Generalized Linear Model’ (GLM) is due to Nelder and Wedderbum
(1972), who showed how linearity could be exploited to unify apparently diverse
statistical techniques. Generalized linear models are specified by three
components (Agresti, 1990): a random component, which identifies the
probability distribution of the response variable; a systematic component, which
specifies a linear function of explanatory variables that is used as a predictor; and
a link describing the functional relationship between the systematic component

and the expected value of the random component.

The random component of a GLM considers independent observations Y = (Y,
..., Yn)' from a distribution in the natural exponential family. That is, each

observation Y; has a probability density function, or mass function, of the form

f(yl;gl)= a(yvy)(yt)eprﬁg(gi)]

This family includes several important distributions as special cases, including
the Poisson and binomial. The value of the parameter 6, varies for i = 1, ..., N,

depending on values of the explanatory variables. The term Q(6) is called the
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“natural parameter” of the distribution. The systematic component of a GLM

relates a vector 77 = (#,,...,77, )’ t0 a set of explanatory variables through a linear

model:
n=Xp

Here X is a matrix of values of the explanatory variables for the N observations,

and # is a vector of model parameters. The vector 5 is called the linear predictor.

The third component of a GLM is a link between the random and systematic
components. Let y; = E(Y)), i = 1, ..., N. Then p; is linked to »; by n;, = g(u),
where g is any monotonic differentiable function. Thus the model links expected

values of observations to explanatory variables through the formula

gw)=>Bx, i=1,.,N
J

The function g(u) = u gives the identity a link #; = 4, specifying a linear model
for the mean response. The link function that transforms the mean to the natural

parameter is called the canonical link. For it, g(u,) = 0(6)), and O(6)) = Z Bix.

In summary, a GLM is a linear model for a transformed mean of a variable

having distribution in the natural exponential family.
Both linear regression and logistic regression are special cases of Generalised
Linear Models (Dobson 2001). Linear regression is the standard method for

relating a continuous response variable to several continuous explanatory (or

predictor) variables. Linear models have the form
EX)=p=xTB; Y, ~Nu,6
where 11, ..., Yy are independent random variables. The link function is the

identity function, i.e., g{1,)=,. The model is usually written as
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y=XB+e

e
where e=| : | and the ¢’s are independently, identically distributed random

en

variables with e; ~N(0, 8°) fori=1, ..., N.

In this form, the linear component u = X8 represents the ‘signal® and e represents
the ‘noise’. Multiple linear regression, analysis of variance (AVOVA) and
analysis of covariance (ANCOVA) are all of this form, and together are called
general linear models. Multiple linear regression is used to analyse one
continuous response variable and multiple explanatory variables. ANOVA is
used for a continuous response variable and categorical or qualitative
explanatory variables (factors). And ANCOVA is used when at least one of the

explanatory variables is continuous. For details about linear regression, see Neter
etal. (1996).

Logistic regression is used to model relationships between a response variable
which is binary or categorical, with more than two categories, and several
explanatory variables which may be categorical or continuous. The link function

for logistic regression is

g(m) =log{ = /(1- n)}
where r is the response probability.

Binary logistic regression is used for binary response variables. Multinomial
logistic regression is used for responses with more than two nominal categories;
ordinal logistic regression, for ordinal categories, is also included in logistic
regression. For details about logistic regression, see Hosmer and Lemeshow

(2000) and Agresti (1990).

A summary of the main methods of statistical analysis for various combinations

of response and explanatory variables is shown in Table 4.1.
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Table 4.1 Major methods of statistical analysis

Response Explanatory Variable Methods
Nominal, >2 categories Analysis of variance
Continuous Nominal & some continuous | Analysis of covariance
Categorical &continuous Multiple regression
Binary Categorical & continuous Logistic regression
Nominal with >2 | Nominal Contingency tables
categories Categorical & continuous Nominal logistic regression
Ordinal Categorical & continuous Ordinal logistic regression

Source: Edited from Dobson (2001)

4.2 CHOICE THEORIES AND UTILITY MAXIMISATION

Most of the current discrete choice models are based on utility maximisation
concepts. Discrete choice models essentially deal with the decision making
process of a decision maker who is faced with a number of mutually exclusive
alternatives (Ben-Akiva and Lerman, 1985). Therefore, four elements are defined
in the choice process: 1) decision maker; 2) alternatives; 3) attributes of
alternatives; and 4) decision rule. The decision maker can be an individual, a
household, a company or any other decision-making unit. The alternatives, which
are referred to as the ‘choice set’, are the set of alternatives available to the
decision making from which to choose in the context of mode choice, car
purchase choice, etc. Usually there are two general types of choice sets: for one
type the choice set is continuous such as in the case of “commodity bundles™
(e.g. the set of the amounts of milk, bread and butter) and for the other it is

discontinuous where the choice set is three television sets denoted A, B and C.

To fit within a discrete choice framework, the set of alternatives needs to exhibit
three characteristics (Train, 2003): first, they must be mutually exclusive from

the decision maker’s perspective, i.e. choosing one alternative necessarily
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implies not choosing any of the other alternatives. Second, the choice set must be
exhaustive; in that all possible alternatives are included (i.e. the decision maker
necessarily chooses one of the alternatives). Third, the number of alternatives

must be finite (i.e. the researcher can count the alternatives and eventually be

finished counting).

The first and second criteria are not restrictive. Usually an appropriate definition
of alternatives can assure that they are mutually exclusive and that the choice set
is exhaustive. For example, a set of alternatives might not be exhaustive because
the decision maker has the option of not choosing any of them. But if an extra
alternative, defined as ‘none of the other alternatives’ is added, then this
expanded choice set is exhaustive. The above two conditions can be often
satisfied in several different ways. The appropriate specification of the choice set
in these situations is governed largely by the goals of the research and the data

that are available to the researcher.

The third condition, that the number of alternatives is finite, is restrictive and this
is the defining characteristic of discrete choice models and distinguishes their
realm of application from that for regression models. With regression models, the
dependent variable is continuous, which means that there are an infinite number
of possible outcomes. When there are an infinite number of alternatives, discrete

choice models cannot be applied.

4.3 RANDOM UTILITY THEORY

Random utility theory (Domencich and McFadden, 1975; Williams, 1977;
Manski, 1977) is the most commonly used theoretical basis of the decision rule
theories. In the random utility approach, it is assumed that an individual's
preference among available alternatives can be represented with a utility
function. The individual (1) has a choice amongst several possible alternatives
(/). Random utility theory assumes that each individual obtains some utility from

each alternative U, , i = 1, ..., J. Moreover, the individual is assumed to choose

the alternative, which maximises his/her utility. Thus, the behavioural model is,
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that an individual »n will choose alternative i if and only if the utility of

alternative i is greater than the utility of each other alternative in the choice set:
Uu,>U,Vj#i

However, the modeller does not possess complete information about all the

elements considered by the individual making a choice, therefore, U, is assumed

to be represented by two components:

U, =V, +¢,

where V, is the deterministic (observable) element of the utility which is a
function of the measured attributes; and &, is the random term (unobservable

element) of the utility which accounts for the unobserved attributes of
alternatives, unobserved taste variations, measurement errors and imperfect

information,

The probability of an individual choosing alternative i is simply the probability
that the utility of that alternative is greater than the utility for any other

alternative.
P, =Prob(U, > U, )Vk#i
That is

P =Prob(e, <&, +V,=V,)Vk #i

The residues & are random variables with a certain distribution which can be

denoted by f(€) = £(&,,0s6x) -
Different discrete choice models are obtained from different specifications of this
density fe), that is from different assumptions about the distribution of the

unobserved portion of utility (Train, 2003). Logit, by far the most widely used
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discrete choice models, is derived under the assumption that ¢; is independent
and identically distributed (IID) extreme value for all / and the critical part of the
assumption is that the unobserved factors are uncorrelated over alternatives, as

well as having the same variance for all alternatives.

4.4 THE LOGISTIC REGRESSION MODELS

4.4.1 Introduction

The logistic regression model originated from the odds concept in gambling
contexts. Widely used by professional gamblers, the odds is the expected number
of times an event will occur to the expected number of times it will not occur.
Odds of 4 means 4 times as many occurrences as non-occurrences. Odds of 1/5
means that we expect only one-fifth as many occurrences as non-occurrences.
There is a simple relationship between probabilities and odds. If p is the
probability of an event and O are the odds of the event, then

_p _Probability of event
l1-p Probability of no event

Logistic regression is popular in part because it enables the researcher to
overcome many of the restrictive assumptions of ordinary least squares (OLS)
regression (Garson, 2002): it does not assume a linear relationship between the
dependent and the independent variables; the dependent variable need not be
normally distributed (but does assume its distribution is within the range of the
exponential family of distributions, such as normal, Poisson, binomial, gamma);

and normally distributed error terms are not assumed.

Logistic regression analysis has been widely used in mode choice, route choice
and destination choice of the traditional four-stage transport models and other
transport models such as car ownership model and departure time choice.

However it has not been much investigated in trip generation modelling.
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The main types of logistic regression are discussed in the following sections. See

Hosmer and Lemeshow (2000) and Train (2003) for the further details.

4.4.2 Binary logistic regression

Binary choice models deal with a special case where the choice set contains
exactly two alternatives. Of the binary choice models, the binary logit model

arises from the assumption that &, = £, — ¢, is logistically distributed. Under this

assumption, the choice probability for alternative i is given by:

1 e

(i) = 1+

e +e"
V, and ¥, can be linear in their parameters where

Vi=p+ZBX

where X are the independent variables representing the attributes, and J's are

unknown parameters that need to be estimated.

4.4.3 Multinomial logit (MNL) model

The multinomial logit (MNL) model is the simplest and most popular practical
discrete model and it is used for cases where the choice set has more than two
alternatives, he MNL model assumes that the error terms are independently,
identically Gumbel distributed across cases (also known as type I extreme value)

which results in a simple and elegant closed-form model (Domencich and

McFadden, 1975).
The MNL model is derived through the application of utility maximisation

concepts to a set of alternatives from which one, the alternative with maximum

utility, is chosen. A general expression for the multinomial logistic regression is:
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Where
P(Y = ilx) is the probability that an individual will choose alternatives i;

V, is the deterministic component of the utility of alternative i for the individual;

and k is the number of alternatives.

Bhat (2000) summarizes the three basic assumptions that underlie the MNL
formulation. The first is that the random components of the utilities of the
different alternatives are independent and identically distributed (IID) with a type
I extreme-value (or Gumbel) distribution. The assumption of independence
implies that there are no common unobserved factors affecting the utilities of the
various alternatives. This assumption is violated when some common underlying
unobserved factors impact on the alternative utilities and this has implications for
competitive structure. The second assumption of the MNL model is that it
maintains homogeneity in responsiveness to attributes of alternatives across
individuals (i.e. an assumption of response homogeneity). More specifically, the
MNL model does not allow sensitivity (or taste) variations to an attribute (e.g.
travel cost or travel time in a mode choice model) due to unobserved individual
characteristics which, however, can and generally affect responsiveness. Ignoring
the effect of unobserved individual attributes can lead to biased and inconsistent
parameter and choice probability estimates (Chamberlain, 1980). The third
assumption of the MNL model is that the error variance-covariance structure of
the alternatives is identical across individuals (i.e. an assumption of error
variance-covariance homogeneity). This assumption may not be appropriate if
the extent of substitutability among alternatives differs across individuals. Error
variance-covariance homogeneity implies the same competitive structure among

alternatives for all individuals, an assumption that is generally difficult to justify.

The MNL models satisfy the axiom of independence of irrelevant alternatives

(IIA) which can be stated as: where any two alternatives have a no-zero
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probability of being chosen, the ratio of one probability over the other is
unaffected by the presence or absence of any additional alternative in the choice
set (Luce and Suppes, 1965). This property holds that for a specific individual
the ratio of choice probabilities of any two alternatives is entirely unaffected by

the systematic utilities of any other alternatives which can be shown as:

PU) _€" _ v
P@i) €"

When IIA reflects reality (or an adequate approximation to reality), considerable
advantages are gained by its employment (Train, 2003). First, because of the IIA,
it is possible to estimate model parameters consistently on a subset of
alternatives for each sampled decision maker. Since relative probabilities within
a subset of alternatives are unaffected by the attributes or existence of
alternatives not in the subset, exclusion of alternatives in estimation does not
affect the consistency of the estimator. Another practical use of the IIA property
arises when the researcher is only interested in examining choices among a
subset of alternatives and not among all alternatives, and this would save the

researcher considerable time and expense developing data on other alternatives.

The MNL model has the property of uniform cross elasticities ~ that is, the cross
elasticities of all alternatives with respect to a change in an attribute affecting
only the utility of alternative j are equal for all alternatives i #j. For the linear-in-
parameters multinomial logit model, the convenient form which is known as the
incremental logit can be used to predict changes in behaviour on the basis of the

existing choice probabilities of the alternatives and changes in variables.

The specification of a multinomial logit model consists of a number of distinct
steps. First, universal choice set C need to be defined for problem under study
which may require some judgements about which alternatives can be ignored. -
The next step is to define the choice set for each individual and this is generally

done by applying reasonable judgements about what constitutes the feasibility of
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an alternative in any particular situation. And finally, the particular variables

entering into the utility functions must be defined.

Another issue of specification is about the functional form. Although the linear
function is probably adequate in ‘many contexts, there are others such as
destination choice where non-linear functions are deemed more appropriate
(Foerster, 1981; Daly, 1982). In the literature three approaches have been
proposed: 1) the use of conjoint analysis in real or laboratory experiments to
determine the most appropriate form of the utility form (Lerman and Louviere,
1978); 2) the use of statistical transformation, letting the data ‘decide’ to a
certain extent (Gaudry and Wills, 1978); and 3) the constructive use of
econometric theory to derive functional form (Train and McFadden, 1978; Jara-
Diaz and Farah, 1987) and the final form can be tied up to evaluation measures
of user benefit. In general, non-linear forms imply different trade-off to those
normally associated with concepts such as the value of time (Bruzelius, 1979)
and model elasticities and explanatory power may vary dramatically with

function (Orttizar and Willumsen, 2001)

The closed form of the MNL models makes it straightforward to estimate,
interpret, and use. As a result, the MNL models has been used in a wide variety
of travel and travel-related choice context, including mode, destination, car
ownership, and residential location as well as choices in non-travel contexts. The

MNL mode is one of the main techniques used in this study.

4.4.4 The nested logit model

. The nested logit model is closed-form model, which relaxes the assumption of
independent and identically distributed random-error terms in the MNL models
to provide a more realistic representation of choice probabilitics. It was the first
closed-form alternative to the MNL and have been the most widely used

alternative (Williams, 1977; Daly and Zachary, 1978).
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Ortizar (2001) and Carrasco and Ortdzar (2003) review the development of the
“nested logit (NL) model. Ortizar (2001) mentions several authors whose work
predates the model’s actual theoretical formulation Wilson (1969, 1974),
Manheim (1973) and Ben-Akiva (1974) all used intuitive versions that —
although based on concepts such as marginal probabilities and wtility
maximization — did not have a rigorous construction of the functional forms and
a clear interpretation of all the model parameters. Domencich and McFadden
(1975)l generated structured models of nested logit form which had an incorrect
definition of ‘composite utilities’. It was Williams (1977) who first made an
exhaustive analysis of the NL properties, especially composite utilities (or
inclusive values), showing that all previous versions had important
inconsistencies with microeconomic concepts. He also reformulated the NL, and
introduced structural conditions associated with its inclusive value parameters,
which are necessary for the NL's compatibility with utility maximizing theory.
With these, he formally derived the NL model as a descriptive behavioural model
completely coherent with basic micro-economic concepts. Other authors, whose
seminal work completed the fundamental theoretical development of the NL, are
Daly and Zachary (1978), who worked simultaneously and totally independent
from Williams, and McFadden (1978, 1981) who later generalized the work of
both Williams and Daly and Zachary.

The nested logit (NL) model, which was further developed and applied by
(Ortizar, 1983; Hensher 1986; Daly 1987; Bierlaire et al. 1997; Koppelman and
Wen 1998; Hensher and Greene 2002), is an extension of the multinomial logit
model and it allows dependence or correlation between the utilities of
alternatives in common groups (Williams, 1977; Daly and Zachary, 1978;
McFadden, 1978). Derivation of the nested logit model is based on the same
assumptions as the MNL model (Koppelman and Sethi, 2000), except that
correlation of error terms is assumed to exist among predefined groups of
alternatives. Such error correlations arise if an unobserved factor influences the
utility of all members of the group. The nested logit model can be written as the

product of a series of MNL choice models defining each level in a tree structure.
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To be consistent with utility maximisation, the structural parameters at the
highest level and the ratios of the structural parameters at each lower nest are
bounded by zero and one. The estimated parameters at each node represent the
ratio between the structural parameter at that node and at the next higher node in
the tree. A value of one for any ratio of structural parameters implies that the
alternatives in that nest are uncorrelated and can be directly connected to the next
higher node. If all structural parameter ratios equal one, all the alternatives can

be directly linked to the root of the tree; i.e., the structure collapses to the MNL.

The nested logit model, by allowing correlation among subsets of utility
functions, alleviates the IIA problem of MNL in part. The model is suitable to
use with correlated alternatives in a number of situations. Examples include,
model choice models, where there are similarities between public transport
alternatives (see for example, Forinash and Koppelman, 1993), car ownership
models, where there may be similarities between types of vehicles for purchase

(see for example, Mohammadian and Miller, 2003).

Other forms of models include the ordered logit models where the potential
responses are ordered. For example, the rating of books from 1 to 7, where 1 is
the worst you have ever read and 7 is the best and 6 is higher than 5, which is
higher than 4. A standard logit model could be specified with each potential
response as an alternative. However, the logit model’s assumption of
independent errors for each alternative is inconsistent with the fact that the
alternatives are ordered: with ordered alternatives, one alternative is similar to

those close to it and less similar to those further away (Train, 2003).

The ordered nature could be handled by specifying a nested logit, mixed, or
probit model that accounts for the pattern of similarity and dissimilarity among
the alternatives, However, such a specification, while it might provide fine
results, does not actually fit the structure of the data, as the traditional derivation
for these models starts with a specification of the utility associated with each

alternative. For more discussions of these types of models see Pédez et al. (2006).
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4.5 MIXED RP/SP MODELS FOR MODEL ESTIMATION

4.5.1 Introduction

Before any realistic modelling process can be implemented, data must be
collected or obtained on the characteristics of the transportation system to be
modelled as well as the characteristics of the users. The data requirements and
the choice of data types depend upon the objectives of the study, the time and
resources available, and the characteristics of the study area. There are a number
of data types/ sources which could be used to estimate choice models. In this
research a number of data types have been utilised including national and
household surveys, stated preference (SP) and revealed preference (RP) data as

discussed in 4.10.

Revealed preference data (RP) and stated preference (SP) data have been widely
utilised and used to calibrate travel choice models. Generally, stated preference
data are analysed in the same way as revealed preference data, that is, using
discrete choice analysis. However, SP data is different from RP data because
usually respondents evaluate more than one choice scenario and thus contribute
more than one observation. Therefore, because a number of observations are
taken from each respondent in an SP choice study assuming independence
between observations will be a weak approximation. In the case of RP data, only
one observation is taken from each respondent, hence, it is fair to assume that
there is independence between observations. Revealed preference and stated
preference data are subject to different types of errors and hence it is unlikely
that both sources of data will have the same distribution for the error term,
Stated preference data may not be valid for prediction but could be useful for
identifying and estimating underlying preferences that determine actual
behaviour (Morikawa, 1989). Hence, there are strengths and weaknesses
associated with both sources of data, and it may be desirable to combine the
stronger features of RP and SP data. This may lead to improvements in the

modelling exercise and provide a deeper understanding of choice behaviour.
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4.5.2 Mixed RP/SP models

Mixed revealed breference (RP) and stated preference (SP) models which use RP
and SP data have been used in many transport demand analyses (Cherchi et al.,
2005; Espino et al., 2006). RP data are based on individual choices and allow the
analyst to characterise actual travel behaviour. SP data are based on individuals’
stated behaviour under hypothetical scenarios and are useful when the problem is

to examine the demand for new alternatives or measure the effect of latent

variables.

There are advantages and limitations to each type of data (see for example
Ortizar and Willumsen, 2001). Revealed preference data have the advantage that
they reflect actual choices. However, such data are limited to the choice
situations and attributes of alternatives that currently exist or have existed
historically and they are not available for new situations. The advantage of stated
preference data is that experiments can be designed to contain as much variation
in each attribute as the researcher thinks is appropriate. The limitations of stated
preference data include that there is no guarantee that people would do what they

say they would actually do if they are faced with the choice situations presented

to them,

The combined use of both types of data allows to exploit their respective
advantages and to overcome their specific limitations (Ben-Akiva and Morikawa,
1990; Bradley and Daly, 1997; Louviere et al., 2000). Stated preference data
provide the needed variation in attributes, while revealed preference data ground
the predicted shares in reality.

)

There have been many examples of application of mixed RP/SP models
(Brownstone et al., 2000; Bhat and Castelar, 2002; Cherchi and Ortizar, 2002,
2006a, 2006b; Espino et al., 2006). Brownstone et al. (2000) used myixed Iogii
models of stated and revealed preferences for alternative-fuel vehicles. Bhat and
Castelar (2002) used a unified mixed logit framework to analyse cohgestion
pricing in the San Francisco Bay area. Cherchi and Ortuzar (2002) investigate

incorporating interaction effects in mixed RP/SP models, and they further

119



investigate how to fit mode specific constants in the presence of new options in
RP/SP models (Cherchi and Ortlzar, 2006a). Cherchi and OrtGzar (2006b)
estimate income, time effects and direct preferences in a multimodal choice
context using mixed RP/SP models. Espino et al. (2006) analyse demand for

suburban trips using a mixed RP/SP model with latent variables and interaction

effects.

The mixed use of RP/SP data to estimate choice models requires that the
variances of the error terms in RP and SP are equal; the quotient between those
variances is known as “scale parameter” and denoted by A (Ben-Akiva and
Morikawa, 1990). Bradley and Daly (1997) proposed an estimation method
based on the construction of an artificial nested logit (NL) structure (also see
Louviere et al, 2000) where RP alternatives are placed just below the root and
each SP alternative is placed in a single-alternative nest with a common scale

parameter A. The following sections summarise this method.

4.5.3 Comparisons of preference data
4.5.3.1 Conceptual framework

Louviere et al. (2000) show that the scale factor, which is inversely related to the
error variance, is a measure of the statistical information contained in preference
data. Therefore, they develop a conceptual framework based upon RUT to
compare differences in choice or preference data sources. In this approach, it is
assumed that the sample of respondents in a survey make choices from
experimentally designed pairs of alternatives, each of which describe a product
or a choice. The associated design matrix in this case is assumed to be X,. Now
assume that a second source of preference or choice data is also available. An
example of this could be a reporting of a different independent sample of
respondents on their last purchases from the choice options and the attributes
associated with each option. The associated design matrix in this case is

assumed to be X, . Further assume that X, and X, have some common attributes

(X, X,,) while other attributes are alternative specific (Z,, Z,). Figure 4.1
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below shows a representation of this framework (also see Louviere er al. (2000)

for more discussions of the approach).

Choice Choice
elicitation elicitation
procedure 1 procedure 2

Choice Choice

Figure 4.1 Conceptual framework for preference data comparison

(Louviere et al., 2000)

4.5.3.2 Preference regularities

Louviere et al. (2000) represented the consumer behavior and the preference
measurement using the concept of preference regularities ( PR ). They claim that
the existence of PR should be evaluated on the basis that the marginal common
utility partworths measured in each source be equal to a multiplier for all
common attributes. They developed a formal definition of this PR and illustrated
how it could be applied to different data sources. They also proposed a basic test
for the existence of preference regularities which is a generalization of the

likelihood ratio test. A simple graph of marginal utilities (or parameter values
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(where utility functions are linear in the parameters) is plotted which could be
used as a simple exploratory analysis tool to investigate the appropriateness of

combining both data types.

Figure 4.2 graphically illustrates a proportionality condition that underlies the
definition of PR in the two data sources. That is, if preference regularity holds
between the two data sources, the marginal common utilities should be linearly
related with a positive slope. Then, the graphic of the estimated parameters
should plot as a straight line intersecting the origin (the slope is equal to A/ A,
i.e. the ratio of error variance of set 2 to that of set 1). The ‘cloud’ of points
should occupy quadrants I and 11, but not Il and IV of the graph. If the cloud of
points is too dispersed or too many parameters have opposite signs in the data
sources (implying points in quadrants Il and V), therefore this provides evidence

that parameter equality between data sets are less likely.

A key issue in the proposed approach is the recognition of the fact that it is not
the absolute magnitudes of common utilities per se that matters in comparing
multiple measures, but rather the comparability of the implied sensitivity of the
measures to changes in attribute levels. If the two preference data sets contain the
same underlying preference structure, but differ significantly in the magnitudes
of random error, the two sets of estimated parameters will appear to differ

significantly in absolute magnitude (Louviere et al., 2000).

¢)V|(X-.B,V3X !

aV.(X,.B VX,

v

Figure 4.2 Preference regularity hypothesis generation by definition PR
(Louviere et al., 2000)



Further statistical tests that take into account the errors in the estimates could
also be used to make references about preference regularities (see Louviere et al.,

2000 for further discussions).

4.5.4 Mixed RP/SP model estimation

There are a number of procedures or approaches for mixed RP/SP model
estimation including a manual method using existing MNL software and the NL
 trick method. Firstly, the manual method, originally proposed by Swait and
Louviere (1993), estimates the desired model parameters and the relative SP
scale factor by manual search. This process first defines a range of values of A*°
within which one expects the log likelihood function to be maximised, and then
implements a one dimensional search to obtain an estimate of the relative scale
factor of the SP data, and the estimates of A% are obtained from the model
solution that maximises the value of the log likelihood function. This method

trades-off statistical efficiency for ease of implementation.

Secondly, a full information maximum likelihood (FIML) method which
estimates model parameters and relative scale factor(s) simultancously and
optimise with respect to all parameters. Bradley and Daly (1992) and Hensher
and Bradley (1993) proposed an artificial tree structure (i.c., the NL trick) to
obtain an estimate of the scale factor of one data set relative to that of the other.

The artificial trees can be extended to multiple data sources.

In the NL trick approach, the joint estimation of a choice situation using two
types of data involves a choice outcome associated with the RP data and a
number of choice outcomes associated with the SP data. The hierarchical
structure (Hensher and Bradley, 1993), given in Figure 4.3, ensures that each of
the parameter estimates associated with the SP data are scaled by the ratio of the
variances. The different thetas on each dummy node are constrained to take the
same value, a requirement for the scaling conditions. Different theta’s can be

allowed for each additional type of SP data sets.
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Dummy alternative

RP1 RP2 RP3 RP4 SP1 SP2 SP3 SP4 SPS

Figure 4.3 The estimation structure (Hensher and Bradley, 1993)

In a recent review by Hensher er al. (2008), they investigate the mixed RP/SP
modelling using the nested logit ‘trick’. In the approach, the modelling strategy
assumes that the observations are independent, a condition of all GEV models.
However, this condition is not strictly valid within a stated preference
experiment with repeated choice sets and between each SP observation and the
single RP data point. Hensher er al. (2008) suggest the replacement of the NL
‘trick” method with an error components model that can accommodate correlated
observations as well as reveal the relevant scale parameter for subsets of
alternatives. Such a model can also incorporate *‘state’” or reference dependence

between data types and preference heterogeneity on observed attributes.

In some choice situations however, where there is no problem of repeated
observations from the same respondents, one can possibly still use the NL trick
model as discussed above. For example, in cases where the SP data is simply one
observation to indicate potential future behaviour as the case of the SP data set

used in this research (see Section 8.3 for further discussion).

A second potential source of error in the NL trick model is the state or reference
dependence that is mainly resulting from preference heterogeneity between data
types, which is possible to be positively or negatively affecting the preferences

and hence the responses. A positive effect maybe a result of habit persistence
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while a negative effect could be the result of frustration with the inconvenience
associated with the introduction of new policy measures (see Hensher ef al.,
2008 for further discussion). In the case where the impact of the reference
dependence might be negative, the implications of the reference dependence is

less severe in the models.

In Chapter 8 of this thesis a mixed RP/SP model is calibrated using the NL trick
approach. That was because the SP data consists of one response from each
individual and therefore there was no problem of repeated observations. In
addition, the impacts of the reference dependence is expected to be negative, if

any, which would then results in less errors in the model.

4.6 THE METHOD OF MAXIMUM LIKELIHOOD

The most commonly used method of estimating the parameters of a logistic
regression model is the method of maximum likelihood (Ryan, 1997). Maximum
likelihood (ML) is based on the idea that although sample could originate from
several populations, a particular sample has a higher probability of having been
drawn from a certain population than from others (Ortizar and Willumsen,
2001). Therefore the ML estimates are the set of parameters which will generate

the observed sample most often.

To illustrate this idea a sample of n observations of a given variable
Z={2,,.,Z,} drawn from a population characterised by a parameter 6 (mean,
variance, etc.). As Z is a random variable it has associated a density function
f(Z16) which dependent on the values of 6. If all of the values of Z in the

sample being independent, the joint density function can be written as
/(2.,2,,..2,16)= 1(2,16)/(2,16)../(2, 19)

The usual statistical interpretation of this function is with Z as variables and 6
fixed. Inverting this process, the precious equation can be interpreted as a

likelihood function L(); maximising it with respect to @, the result is called
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maximum likelihood estimate because it corresponds to the parameter value
which has the greatest probability of having generated the observed sample.
Maximum likelihood can easily be extended to situations where the population is

characterised by several parameters.

Suppose a sample of Q individuals is randomly obtained, for which their choice

(0 or 1) and the value of x , for each available alternative is observed, so that

individual g is observed to choose alternative i.

As the observations are independent the likelihood function is given by the

product of the model probabilities that each individual chooses the option they

actually selected:

L(0)= PPy PRy

Defining the following dummy variable: g, =1 if A4, was chosen by ¢; 0

otherwise. The above expression may be written more generally as

16)=1T I1(e, )

g=l A, eAlq)

To maximise this function we differentiate partially with respect to 6 and equate
it to 0. We normally maximise /(6), the natural logarithm of L(6), which is
more manageable and yields the same optima. Therefore, the function we seek to

maximise is (Orttzar 1982):

1(9)= log L(6) = i Zgn log P,

9ol 4,e4(9)

When /(6) is maximised, a set of estimated parameters is obtained which is

asymptotically distributed.
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There are two reasons for this popularity of maximum likelihood (Allison, 1999):
First, ML estimators are known to have good properties in large samples. Under
fairly general conditions, ML estimators are consistent, asymptotically efficient,
and asymptotically normal. Consistency means that, as the sample size gets
larger, the probability that the estimate is within some small distance of the true
value also get larger. No matter how small the distance is or how high the
specified probability is, there is always a sample size that yields an even higher
probability that the estimator is within that distance of the true values. One
implication of consistency is that the ML estimator is approximately unbiased in
large samples. Asymptotic efﬁciency is that, in large samples, the estimates will
have standard errors that are, approximately, at least as small as those for any
other estimation method. And, finally, the sampling distribution of the estimates
will be approximately normal in large samples, which means that you can use the

normal and chi-square distributions to compute confidence intervals and p-

values.

The other reason for ML’s popularity is that it is often straightforward to derive
ML estimators when there are no other obvious possibilities. One case that ML

handles very nicely is data with categorical dependent variables.

The method of maximum likelihood will generally perform well for large sample
sizes. But for small data sets or data sets in which the average value of Y is close

to zero or one, it can produce poor results, or even fail to converge (Ryan, 1997).

4.7 EVALUATING THE PERFORMANCE OF THE LOGISTIC MODELS

The criteria used to evaluate the performance of each model are as follows: 1)
the sign of the coefficient (is it as anticipated); 2) the t-ratio for the coefficient (is
it significant at the 95% confidence level?); 3) calculation of a likelihood ratio

test; and 4) inspection of p?values for model goodness of fit.
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4.7.1 Statistical significance of the coefficients

For discrete choice models the t-statistic is generally used to test significance for
a single coefficient in a model. Sufficiently large values of t (typically bigger
than 1.96 for 95% confidence levels) lead to the rejection of the null hypothesis
and hence to accepting that the attribute has a significant effect. In discrete
choice models t-statistics are asymptotic results (not exactly t-test), which imply

that the test are only valid for very large samples.

4.7.2 Sign of the coefficient value

An informal test is to examine the sign of the coefficient estimates to judge
whether it conforms with a priori notions or theory. Current practice
recommends to include a relevant policy variable with a correct sign even if it
fails any significance test and the reason is that estimated coefficient is the best
approximation available for its real value and the lack of significance may just be

caused by lack of enough data.

4.7.3 The likelihood-ratio (p*) index

The asymptotic rho-squared (p?) index, which varies between 0 and 1, similar

to R? in linear regression, can be used to measure the goodness of fit for the

model. It is noted that value of p? of between 0.2 and 0.4 are considered
extremely good fits. The adjusted likelihood ratio index P (rho-squared bar)

can be used to overcome the shortcoming that p? will always increase or at least

stay the same whenever new variables are added to the utility functions.

4.7.4 Likelihood ratio test

The likelihood-ratio test is used in the same way that F test is used in regression
models for joint tests of several parameters. It uses the ratio of the maximised

value of the likelihood function for the full model (L;) over the maximised value
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of the likelihood function for the simpler model (Lo). The likelihood-ratio test

statistic equals:
-znog(%}-z[:og<Lo)-nog(L.)1=—z(L.,-zq)

This log transformation of the likelihood functions yields a chi-squared statistic

with K degrees of freedom.

4.8 THE CHARACTERISTICS OF TRIP GENERATION AND THE
SUITABILITY OF LOGISTIC REGRESSION FOR MODELLING

TRIP GENERATION

In trip generation models, the response variable is the number of trips that people
make which can range from zero to n. If n is large, the response variable can be
seen as continuous and multiple linear regression can be applied with the prior
assumption that there is a linear relationship between the response variable and

the explanatory variables (Ortizar and Willumsen, 2001).

However, n often is not very large. When n equals to one that is people choose
making a trip or not, binary logistic regression may be preferable (Daly 1997).
When 7 is larger than one, but limited (usually it is), that is people have several
trip frequency choices, multinomial logistic regression can be applied as these
choices are mutually exclusive from the traveller's perspective, i.c. the traveller
chooses only one alternative; they are exhaustive i.c. all possible alternatives are
included; and thé number of alternatives is finite. When some transport policy is
introduced, it would impact on trip frequency and it is important to investigate

the change of trip frequency as well as the number of trips.

In trip generation modelling, the explanatory variables can be categorical (e.g.
employment status, sex, type of dwelling) and continuous (e.g. income, age) and
it is convenient to include both categorical and continuous explanatory variables

in logistic regression.
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While in linear regression models, the response variable is the number of trips, in
logistic regression models the probability of an individual / household making a
trip(s) is investigated and the total number of trips an individual / household
makes can be obtained by the summation of the trip frequencies multiplied by

their corresponding probabilities.

Discrete choice models, by treating the number of trips (or the trip frequency) as
a set of mutually exclusive and collectively exhaustive categorical variables,
incorporate built-in upper and lower limits. The models also provide a
behavioural framework that directly links the number of trips to utility-based

consumer and decision-making theory.

Some earlier attempts have been made to model trip generation / frequency using
discrete choice models where the concept of trip frequency choice is introduced
and the dependent variable is the probability of making the actual number of
trips. As discussed in Chapter 2, Sheffi (1979) developed a nested-alternative-
logit model in a disaggregate utility maximization framework for estimating
probabilities of trip frequencies by elderly individuals. Barmby and Doornik
(1989) and Jang (2005) used a count data / negative binomial model to estimate
trip frequency. Daly (1997) proposed the use of a binary logistic model to
estimate the probability that an individual will choose to make a trip and the use
of a hierarchical structure, representing an indefinite number of choices, to model
choice of frequency with what he called a ‘stop-go’ model. He and colleagues
have made several applications of this approach in Europe (Bradley and Daly,
1997). The logistic regression models considered in this research include binary,

multinomial (MNL) and nested logit (NL) models.
4.9 SOFTWARES FOR LOGISTIC REGRESSION

There are a number of software packages available for logistic regression
modelling such as Alogit (Daly, 1992), SPSS, STATA, SAS and LIMDEP. For a
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discussion of some of these software packages see McDermott (1995). Alogit

and SPSS are mainly used in this research.

4.10 SUMMARY OF SECTION, GAPS IN RESEARCH AND
KNOWLEDGE IN TRIP GENERATION MODELLING AND

STRUCTURE OF THESIS

In this section, a summary of the research knowledge and the identified gaps in

trip generation analysis and modelling are discussed.

From the discussions presented in the last three chapters, it is clear that trip
generation analysis and modelling are currently carried out using revealed
preference socio economic data and using two main approaches; linear
regression and category analysis. In linear regression analysis, the assumption of
linearity of the independent variables with the dependent variables, the lack of
built-in upper and lower limits to the number of trips, and the assumption that the
number of trips is approximately continuous can all be questioned and could

potentially lead to unreasonable predictions of trip generation (Péez et al., 2006).

Similarly, most of category analysis trip generation models employ the basic category
analysis techniques (CA and MCA_1) despite their apparent weaknesses. Although there
have beén further more recent advances in Multiple Classification Analysis techniques
(MCA_2, MCA_3 and MCA_4, Guevara and Thomas, 2007), these have not been
widely tested empirically. Using these techniques including the improved multiple
classification analysis (MCA) methods, the large sample size required to calibrate the
trip rates as well as the absence of statistical tests for the goodness of fit of these models

undermines their adequacy. Logistic regression overcomes many of the restrictive
assumptions of ordinary least squares regression and category analysis. This
approach has been widely used to model other travel choices such as choice of
mode, route choice, departure time choice and other travel choices. However, not
many applications in trip generation modelling have been reported (Cohn et al.,

1996; Daly, 1997).
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The lack of a behavioural justification in trip generation such as supported by the theory
of random utility has been investigated and a large number of investigation attempts
have been reported to date to include behavioural dimensions in modelling trip
generations. For example, Vickerman and Barmby (1985) investigated the use of
behaviour approach and a choice model to investigate trip generation. Bhat (1999)
investigated the use of repeated choice observations models in analysing evening
commuting trips. Golob (2000) developed a simultaneous model of household activity
participation and trip chaining. Wallace et al. (2000) investigated the effects of travellers
and trip characteristics on trip chaining, with implications for transportation demand
management strategies and Misra et al. (2003) used a continuous time representation and

modelling framework for the analysis of non worker activity-travel pattern.

Moreover, one of the main criticisms of trip generation models is the absence of any
variables that represent transport policies that no doubt affect the trips generated (e.g.
public transport, pricing and parking policies). Schmocker et al. (2005) studied the
changes in the frequency of shopping trips in response to a congestion charge in London
and the and found that within the sample surveyed the congestion charging scheme had
caused a significant number to shop less often in central London and only a few to shop
more often in the Oxford Street area. Kelly and Clinch (2006) investigated the
potential impact of parking-pricing on trip generation by purpose and the results
show there is no differential effect of a price change on business relative to non-
business trips in the short run at the lower levelé of increase in non-street parking
price. However as the prices increases, significant results emerge; the users
making trips for business purposes are less likely to cease parking in the area as a
result of a price change relative to those making non-business trips. These policies
are increasingly being considered as management tools in most world cities, and their
impacts are always considered in mode, route, destination and departure time
choices. Not many investigations of their impacts on trip generations have been reported

though.

Most trip generation models are calibrated from aggregate revealed preference data
despite the growing applications of other sources of data such as stated preference
especially in travel demand forecasting, mainly because of the nature of trip generation
models‘(OrtL’lzar and Willumsen, 2001; Daly and Miller, 2006; and Kouwenhoven, et
al., 2006). SP techniques offer the opportunity to modellers to test impacts of policy

132



measures on trave!l behaviour. So in principle there is no reason why these techniques
cannot be used in trip generation modelling, especially if logistic regression analysis is
used. It would be very useful to use stated preference techniques to investigate impacts

of transport policies on trip generations as well as other choice models.

Finally, although accessibility of the transport system has been recognised and
investigated in previous trip generation models as a function of the available
opportunities or impedances (such as distance, travel time or cost), these were all
variables representing the characteristics of the transport system but not the
perceived level of service of the system (Ortizar and Willumsen, 2001; Daly,
1997).

In summary, trip generation analysis, unlike the rest of travel choice analysis, has
limitations in terms of the techniques (conventional techniques), data used (only
revealed preference data) and type of variables (only socio-economic variables).
These limitations have been rccdgnised in the literature and acknowledged to

impair the efficiency of trip generation models to produce accurate predictions.

The main aim of this research has been to investigate possible methodologies to
improve performance of trip generation modelling (see further discussions in
Chapter 1). In order to achieve this aim a number of objectives have been defined

as discussed below:
1. Examine appropriateness of logistic regression analysis for modelling trip

generation

2. Investigate, analyse and compare trip generation models using logistic
regression, linear regression and category analysis including more recent
multiple classification analysis techniques

3. Investigate and calibrate trip generation models which include transport
policy measures

4. Explore the use of stated preference data (SP) to calibrate trip generation
models

5. Investigate trip generation models with enhanced transport accessibility

functions
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The rest of the thesis is structured as follows. In Chapter 5, a number of data sets
have been identified and analysed to carry out the investigations. The
methodology adopted to model trip generation using logit analysis as well as the
calibrated work trip models are presented in Chapter 6. Calibrations of trip
generation models using the conventional (linear regression and category
analysis including multiple classification) models are presented in Chapter 7.
Predictions from all the models and analysis and comparisons of the results are
presented in Chapter 8. A data set from Edinburgh Household Survey has been
used to calibrate linear and logistic regression models of trip generation
(shopping trips), taking into .account parking costs as transport policy measure.
These results are presented in Chapter 9. An SP data from Edinburgh Household
Survey is used to calibrate mixed RP/SP logistic regression models for trip
generation taking account of introducing road user charging as a policy measure,
and presented in Chapter 10. A public transport accessibility measure is
calibrated as a function of the distance from the city centre and the perceived
level of service of the public transport system by the users which is discussed in
Chapter 11. A discussion of the results of the research is summarised in Chapter

12 and the research is concluded in Chapter 13,
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CHAPTER S DESCRIPTION AND PRELIMINARY
ANALYSIS OF DATA USED IN THE STUDY

5.1 INTRODUCTION

The main objectives of this research are to calibrate and compare trip generation
models including logistic regression analysis and to investigate impacts of
including transport policies and transport accessibility in trip generation models

(see Chapter 1).

Therefore the data needed had to include the following information:
1. Trip generation patterns
2. Socio-economic characteristics
3. Transport policies and their impacts on trip generation
4

. Transport accessibility and its impact on trip generation

It was initially planned to collect the data for this research using a specifically
designed questionnaire. A detailed questionnaire was designed to be carried out
to collect data from a small sample in Edinburgh to investigate potential impacts

of transport policies on shopping trip generation activities in Edinburgh.

The aim of the travel survey was to investigate travel to shopping and to test the
impacts of various transport policies that include parking management, parking

pricing, congestion charging and improvement of public transport on the number

of shopping trips.

A questionnaire (See Appendix 1) was designed which consists of the following
four sections:
(1) Travel survey for shopping trips in Edinburgh;
(2) People’s attitudes on transport and transport policies;
(3) The potential impacts of such policies on shopping trips to the city centre;
and

(4) Socio economic information of household and individual.
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The questionnaire was sent out to be piloted. Unfortunately however, in addition
to the low response rate, the majority of the returned questionnaires were
incomplete. It became obvious then that the collection of enough data to carry
out the analysis of this research would be very difficult. The alternative was to
use data from existing surveys such as the National Travel Survey (NTS), the
Edinburgh Household Survey (HS), the Scottish Household Survey (SHS) or the
Edinburgh Shoppers’ Survey. It was not possible to use only one set of these data

since each of them has its limitations as well as its advantages as discussed

below.

The National Travel Survey is a household survey of travel covering residents of
Great Britain (GB) and include information on the purpose of each trip made, the
modes of transpén used, the timing of the trip, and the origin and destination,
demographic data, such as age, sex, and other information relevant to travel such
as income, employment status, ownership of cars and other vehicles, details of
driving licences and the availability of local public transport. More discussions
of this survey are included in the following sections. The information is collected
on a national level and therefore does not reflect regional characteristics.
However, this very large data set allowed the calibration and analysis of the trip
generation models using the three techniques (logistic regression, linear

regression and category analysis) as discussed in Chapters 6, 7 and 8.

The Edinburgh Household Survey (HS) included information on the socio
economic data and the impacts of congestion charging on shopping behaviour in
the city centre. More discussions of this survey are included in the following
sections. The availability of this data allowed the calibration of trip generation
models which include transport policies (in this case parking charges and

congestion charging). See Chapters 9 and 10 for discussions of these models.

The Scottish Household Survey (SHS) data is a continuous survey based on a
sample of the general population in private residences in Scotland (Hope, 2002).
The aim of the survey is to provide representative information about the

composition, characteristics and behaviours of Scottish houscholds, both
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nationally and at a more local level. The sample is being drawn from the small
user file of the Postcode Address File (PAF). As part of the main questionnaire, a
travel diary collects information about personal travel on the day prior to the
interview. One randomly chosen adult per household in the sample is selected to
complete the travel diai'y. There were 686 individuals available in Edinburgh for
their travel information from Monday to Friday. This data was not used however
in the analysis since it did not provide any information on the impacts of
transport policies on the frequency of shopping trips while the Edinburgh
Household Survey did.

Finally, the Edinburgh Shoppers’ Survey was principally designed to provide a
snapshot of spending patterns in the City Centre. More discussions of this survey
are included in the following sections. As it was a survey of all visitors to the
City Centre, it included tourists, day visitors and those who go there for work, as
well as shoppers. This survey provided information on the perceived accessibility
to travel to and from the central area of Edinburgh. This information was used to

calibrate a trip generation/ accessibility model as presented in Chapter 11.

5.1 NATIONAL TRAVEL SURVEY DATA

Part of the data used in this research was taken from the National Travel Survey
(NTS, Kershaw et al., 2001). This is a household survey of travel covering
residents of Great Britain (GB) where every houschold member in the sample is
asked to keep a seven-day diary of all personal travel within GB. Parents are
asked to keep the diary for young children. Diary details include the purpose of
each trip made, the modes of transport used, the timing of the trip, and the origin
and destination. The household member are also interviewed to provide
background demographic data, such as age, sex, and other information relevant
to travel such as income, employment status, ownership of cars and other

vehicles, details of driving licences and the availability of local public transport.

The NTS is based on a random sample of private houscholds. First, postal sectors
are chosen and these are ‘stratified” so that the sample is representative at the

regional level by car ownership and social-economic group. Then households are
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chosen at random in each of these sectors. This results in a ‘clustered’ sample,
which is necessary to reduce the costs of interviewers’ travelling time. Survey
takes place throughout the year starting on a random, but pre-determined, day of
the week. The data used for‘ this analysis were from the 2002/2004 surveys
where there were 23,817 households covering the whole UK. In total there are
55,552 individuals, of which 61.6% belong to the 16-64 age group. In a week,
these individuals make 903,826 trips with different purposes.

This study investigates work trips (i.e. commuting and business) per household
in a day (Wednesday), therefore only those households with at least one worker
were chosen (i.e. 1,4091 households). Furthermore, as the dataset represented the
whole of the UK and there are large variations in household characteristics, only
urban areas of 50,000-250,000 residents (i.e. 2,706 households) were used to
obtain more homogeneous data with fewer variations. Some general statistics of
the whole dataset and the selected dataset are presented here which include

journey purposes, household size, car ownership and houschold income.

S.1.1 The distribution of trips by journey purpose

Table 5.1 presents the distribution of trips from the NTS (1996-1998 and 2002-

2004) by journey purpose.

Table 5.1 National Travel Survey trips by journey purpose

Journey Purpose 1996/98 NTS data  2002/04 NTS data
(%) (%)
Commuting 18.0 16.7
Business 4.1 3.7
Education 55 5.8
Shopping 3.5 8.8
Non-food shopping 16.8 10.4
Personal business 6.9 9.0
Visit friends at private places 14.0 12.2
Entertain-public places 4.0 5.l
Escort education 3.8 4.1
Escort shopping 3.3 3.8
Other 20.1 20.4
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In the 2002-2004 survey, commuting and business trips accounted for about
20.4% of trips, which shows a reduction of 1.7% from the 1996-1998 survey
(22.1%). Education trips represented 5.5% and 5.8% of all trips in the two
datasets respectively while travelling to shopping trips accounted for 20.3% and
19.2% of all trips (that is shopping plus non food shopping trips). Although there
is no big change for the total number of shopping trips, it shows a shift of the
different types of shopping, i.e. a 5.5% increase in food shopping and a 6.4%
decrease in non-food shopping. Other significant changes are trips for personal
business which had an increase of 2.1% and visit friends at private places which
had a decrease of 1.8%. In this research trip generation models for commuting

and business trips have been investigated.

5.1.2 Number of workers in household

Table 5.2 and Table 5.3 present the number of people employed in the household
in the 2002-2004 NTS dataset (n=20,214) and in the sample used for model
calibration in this study (n=1,979) respectively. In the complete dataset (Table
5.2), about 30.3% of the households have no workers, 29.6% of households have
one worker, either in full time or part time employment, and 40.2% have two or

more workers, either in full time or part time employment.

Table 5.2 Number of workers in houschold in the complete NTS survey

(n=20,214)

No. of Workers in Full Time Part Time All
the Household (%) (%) (%)
None 38.2 73.4 30.3

1 38.3 23.7 29.6

2 20.1 2.7 32.7

3 34 0.2 7.5
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Table 5.3 Number of workers / household in the data used for model

calibration (n=1,979)

No. of Workers in Full Time Part Time All

the Household (%) (%) (%)
None 11.2 62.5 0

1 54.8 33.2 43.3

2 29.2 3.8 45.5

3 4.8 0.5 11.2

In the sample used for model calibration, about 11% of the households have no
full time workers, 54.8% have one full time worker and 34% have 2+ workers.
37.5% have at least one part-time worker. As this study investigates the work trip
generation and as workers’ status (full time / part time) could have a different
impact on the number of work trips, the number of full time and part time

workers will be included separately in the trip generation models of Chapter 6.

5.1.3 Number of children in the household

Table 5.4 presents the distribution of the number of children in the selected
survey data. The table shows that 61.7% of households have no child.
Households with one child represent about 16.2% of the sample and about 20.6

% of households have two or more children.

Table 5.4 Number of children in the selected sample data (n=1,979)

Number of Children Percentage
0 61.7
1 16.2
2 15.6
3 5.0
4 or more 1.5
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S.1.4 The distribution of car ownership

Table 5.5 presents the distribution of car ownership in the complete NTS dataset
and in the sample used for model calibration. In the first case about 20.4 percent
of households do not have access to a car, 46.8% have one car and about one
third had two or more cars. While for those with at least one worker, only 10.2%
has no car and over 40% have two or more cars. It should be noted that 8.4% of
selected data has one or more company cars. Car ownership is one of the main
variables which affect trip generation. It is well established that as car ownership

increases, the number of trip generations increase.

Table 5.5 Car ownership for the whole dataset (n=20,214) and the selected

data for model calibration (n=1,979)

Gar.Oyiershin Complete NTS Selected Data
(2002/2004) Dataset (%) (%)
0 20.4 10.2
| 46.8 49.3
2 27.9 34.2
3+ 4.9 6.4

5.1.5 The distribution of household income

Table 5.6 presents the distribution of household income. 30.7 percent of
households® annual income is less than £19,999 and 27 percent over £40,000.

The other 42.3% of households have income between £20,000 and £39,999.

Table 5.6 Household income

Household Income Percentage
Less than £19,999 30.7
£20,000-£39,999 42.3
£40,000 and over 27.0
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Similar to car ownership income contribute positively to the increase in the
number of trips, and therefore is included in trip generation models which are

calibrated in this study.

S22 HOUSEHOLD SURVEY AND SHOPPERS’ SURVEY IN
EDINBURGH

Another source of data used in this study was gathered as part of the Household
Survey and Shoppers’ Survey (ECCM, 2004) by DTZ Pieda consultants, who
investigated shopping trips in Edinburgh and the impacts of implementing a

congestion charge on these trips.

The Edinburgh Household Survey (HS) (ECCM, 2004) included information on
the socio economic data including age, gender, car ownership and social grade,
mode of travel for shopping and location of residence. Respondents were also
asked to report on their non-food shopping trip frequency into the city centre in a
week and the parking costs. The Household Survey examined the effect of
congestion charging on shopping behaviour in the city centre catchments® area of
Edinburgh.

The Shoppers’ Survey on the other hand was principally designed to provide a
snapshot of spending patterns in the City Centre. As it was a survey of all visitors
to the City Centre, it included tourists, day visitors and those who go there for

work, as well as shoppers.

The Shoppers’ Survey was conducted on weekdays between 7am and 6.30pm
from 31 May to 11 June. A total of 1,000 randomly selected shoppers were
interviewed on a sample of days and times throughout this period. The houschold
survey was conducted by telephone interview from 14™ June to 2" July 2004
with a total of 1,199 interviews. The survey was a representative quota sample of
houscholds in three areas: 1) the Edinburgh city centre, 2) the area of Edinburgh
between the two proposed cordons, and 3) the Edinburgh “hinterland”,

comprising of Midlothian, West Lothian, East Lothian and part of Fife.
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The general statistics of the two surveys are presented in the following sections.

For more details of the survey, see ECCM (2004).

5.2.1 Household survey

In the household survey, respondents were asked to report on their non-food
shopping trip frequency into the city centre in a week. Also they were asked
about the mode of transport for shopping, and their perception of the potential

impacts of introducing congestion charge on shopping trips.

3.2.1.1 Shopping trip frequency

The frequency of shopping trips to the city centre was investigated in the
household survey. Table 5.7 shows the frequency of shopping visits for all
respondents and for car users only. About 10% of all the respondents in the
survey reported that they shop in the city centre daily or at least 4-6 times a
week. About 41% of all respondents stated that are regular shoppers (i.e. they
shop at least once a week). On the other hand, about 35% of all respondents
reported shopping trip frequency of fortnightly or monthly with 22% of

respondents saying that they shop less than once a month in the city centre.

Table 5.7 Frequency of visits to the city centre for non-food shopping for all

users (n = 895) and car users only (n = 240)

Frequency All Users (%) Car Users (%)
Daily 7.4 7.5
4-6 times a week 3.1 1.7

2-3 times a week 12.0 7.1
Weekly 19.4 19.1
Fortnightly 16.8 16.7
Monthly 18.9 19.2
Less than once a month 22.1 28.7
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Similar percentages of car users and all users reported daily shopping trips to city
centre (7.5%). A smaller percentage of car users than all users reported frequent
shopping trips to city centre (1.7% of car users), while a higher percentage of
shoppers reported less frequent shopping trips. These frequencies were then

combined into three categories: very frequent, frequent and infrequent.

5.2.1.2 Gender of the respondent

The gender of respondents is another relevant variable to trip generation and has

been included in the model analysis in this study.

Table 5.8 below represents the percentage distribution of the respondents
according to gender. From the table, 57.2 % of those in the Household Survey

are female and 42.8% are male.

Table 5.8 Gender of the respondents (n = 884)

Gender Percentage
Female 57.2
Male 42.8

3.2.1.3 Age of the respondent

According to age, the respondents are divided into three groups as shown in
Table 5.9: 29.2% of respondents are in the age group of 16-34. About 35% of
respondents are in age group 35- 54% while 35.1% of them are in the age group

of 55 and over. This factor has also been included in the trip generation models.

Table 5.9 Age of the respondent (n = 884)

Age Group Percentage
16-34 29.2
35-54 35.7

55 and over 39.1
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5.2.1.4 Car ownership of the respondent’s household

Car ownership is one of the important variables in most trip generation models.
From the survey data (Table 5.10) it appears that over one third of the
respondents’ households own no car (35.9%), 40.8% have one car and 23.3%
own two or more cars. It should be noted here that those who own no cars would
be expected to make more shopping trips to the city centre than those with cars
because of the cost of parking, the traffic congestion time spent searching for a

parking space, etc.

Table 5.10 Car ownership of the respondent’ household (n = 884)

Car Ownership Percentage
0 35.9
1 40.8
2+ 23.3

3.2.1.5 Mode of transport for shopping into the city centre

As shown in Table 5.11, public transport is the main mode of transport for
travelling into the city centre for shopping, with nearly 60% taking the bus or the
train. However, about 27% of shoppers drive to the city centre and 15% walk. As
discussed later on, it was found that those who drive are the most likely to reduce
their shopping trips to the city centre if congestion charging was introduced,

while those who use public transport show the least change in trip frequency.

Table 5.11 Normal mode of transport into the city centre (n = 895)

Mode of Transport Percentage
Public transport (bus, train and taxi) 57
Car/van 26.6
Walking and cycling 15.8
Other 1.0
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3.2.1.6 Factors affecting the level of accessibility of city centre for shopping trips

People were also asked in the survey to report on the reasons which would
encourage them to shop more in the city centre. Table 5.12 shows respondents’
preferences for various transport policies. Of the respondents surveyed, more
than 38% of car users stated that cheaper and/ or more accessible parking spaces
would encourage them to do more shopping trips into the city centre, while about
15% stated that public transport improvements would encourage more shopping
trips. Only 7% of car users considered traffic congestion to be a major problem
for them. Of those who do not visit the city centre for shopping (300
respondents), 16% stated that improved parking prices and accessibility would
encourage more shopping trips to the city centre, while only 7% thought traffic
congestion was a major concern. From the results, access to cheaper/ easier
parking and good public transport seem to be important to encourage more
shopping in the city centre. t is also clear that traffic congestion in the city centre

does not appear to represent a major problem to the majority of users.

Table 5.12 Factors that would encourage people to shop in the city centre

more often
Response Option Total Car users  PT users Those who
(transport related) (n=1199) (n=240) (n=510) don’t visit
' - % % % (n =300) %
Cheaper/free parking 11.2 27.9 Dt 10.0
More car parking /g 27.1 4.9 10.7
easier parking
Better public transport 12.7 14.6 13.7 11.0
Less traffic congestion 7.9 7l 8.8 7.0
Nothing 47.0 354 46.3 57.3

Adopted from ECCM (2004).

3.2.1.7 Impact of the congestion charge and transport improvements

Interviewees were asked firstly to express their stated intention for their future
shopping trip generation and the impacts of introducing congestion charging only

in Edinburgh. Also they were asked to express the perceived impacts on
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shopping trips if congestion charging was combined with each of the following:
a) improved public transport into and out of the city and b) more park and ride
facilities would be provided and would be situated outside the cordon. This was
to investigate the preferences of the users and to optimise any possible
investments for improving the transport system. Table 5.13 shows the reported

results from the survey.

It is clear from the table that the transport improvements, and public transport
improvements in particular, would have a marked effect on people’s spending
compared to the baseline scenario (congestion charge with no transport
improvement), with sizeable proportions of people saying that they would spend
more in the city centre and a dwindling of the percentages of those who would
have spent less or gone elsewhere. This shows the significance of these transport
infrastructure improvements to people living in Edinburgh and the surrounding
areas in encouraging them to visit the city centre on a more frequent basis.
However about 80% of respondents said that they would visit the city centre and
spend the same amount of money if congestion charging is introduced with

slightly lower percentage when public transport is improved.

Table 5.13 Impact of the congestion charge with and without transport

improvements (n = 895)

Twm‘ N(l)'t With With More
Response Option I ikl ¢ Improved PT  Park & Ride
mpr(:;emen % Facilities %
0
Would visit the city centre 16 15.5 92
and spend more
Would visit the city centre 10.3 3.4 3.1
and spend less
Would visit elsewhere 4.9 1.1 1.5
WOLfld visit the city centre 73 11 0.9
outside the charge period
Would visit the city centre 80.7 78.1 84.8
and spend the same
Don’t know/No answer 0.4 0.9 0.8

Source: ECCM (2004)
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Table 5.14 replicates these results for those that normally travel into the city
centre by car only. Compared with the results with no transport improvement,
transport improvements would have a considerable impact on car users’ decision
to shop in the city centre, with fewer saying that they would visit the city centre
and spend less and much more saying they would visit the city centre and spend

more, or spend the same.

5.2.2 Shoppers’ survey

In the Shoppers’ Survey, respondents were asked to express the reasons for being
in the city centre and to report on the frequency of non-food shopping trips in the

city centre per week. The analysis of these two questions is given in the

following sections.

Table 5.14 Impact of the congestion charge with transport improvements —

those that travel in normally by car for shopping only (n = 238)

it o, With With More
Response Option I hetriLod ¢ Improved PT Park & Ride
e % Facilities %
0
Would visit the city centre
3
and spend more 0.8 17.2 ke
Would visit the city centre 23.9 9.7 8.4
and spend less
Would visit elsewhere 13.0 34 3.8
Would visit the city centre "
. 2 34
outside the charge period 6.3 4
Would visit the city centre 56.3 64.3 7.3
and spend the same
Don’t know/No answer 0.4 1.3 0.8

Source: ECCM (2004)
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5.2.2.1 Reasons for being in the city centre

Table 5.15 provides details of the purpose of the journeys they were observed to
be doing when they were interviewed in the Shoppers’ Survey. Of all the people
interviewed in the Shoppers’ Survey (n=1000), just over 20% of them were
shopping in the city centre for groceries or other items. Many people (28%)
were in the city centre because they worked there and over one-third (34.4%)
were visiting the city. If only the people from Edinburgh and Fife were included
(n=624), 28.4% of them were for shopping purposes and about 40% worked
there. Of the 208 shoppers who were shopping in the city centre, 132 of them
who answered all the questions in the survey are used in the study and the

following sections present some general statistics about them.

5.2.2.2 Gender of the shoppers

Of the 132 shoppers, 78.8% of them are female, while only 21.2% are male.

Table 5.15 Reasons for being in the city centre (n = 1,000)

Those from
Reason Al(lnl::sggg)d ::/nts Edinburgh and
3 g Fife (n=624) %

Shopping for groceries 33 5.0
Shopping for other items 17.5 234
Using services, such as bank, 5.1 7.5
travel agents, restaurant etc.
Passing through/ window 5.0 6.7
shopping
Work 28.2 39.3
Visiting Edinburgh for the day 12.4 6.7
Visiting Edinburgh as a tourist 22.0 2.2
(includes an overnight stay)
Other 6.9 9.6
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J3.2.2.3 Car ownership of the shoppers’ households

Of the 132 shoppers, 54.5% do not own a car, while 30.3% own one car and only

15.2% of them own two or more cars.

5.2.2.4 Age group of the shoppers

25.0% of the shoppers are in age group 16-25, 37.9% are in 26-54 and 37.1% of

them belong to age group 55 and more years old.

3.2.2.5 Expenditure per non-food shopping trip

Table 5.16 presents the expenditure of the non-food shopping trip at the city
centre on the day of the interview. About 29.5 percent of the shoppers did not

spend any money while one half of them spent over thirty pounds.

5.2.2.6 Shopping trip frequency

15.9 % of those in the Shoppers® Survey shop in the city centre daily or at least
4-6 times a week. 54.5% are regular shoppers (at least once a week) while only
17.4% of them shop less than once a month. Table 5.17 shows the frequency of

Visits.

Table 5.16 The expenditure per non-food shopping trip (n =132)

Expenditure (pounds) Percent
0 29.5
1-30 20.5
31-90 27.3
over 91 22.7

Table 5.17 Frequency of visits to the city centre for non-food shopping in the

shoppers’ survey (n =132)
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Frequency Percent
Daily 7.6
4-6 times a week 8.3
1-3 times a week 38.6
Fortnightly 10.6
Monthly 17.4
Less than once a month 17.4

5.2.2.7 Investigation of public opinions of the public transport services

Respondents in the survey were asked to evaluate current public transport
services to and from the city centre. As it is shown in Table 5.18, 58.3% of
shoppers thought public transport services are very good or good and 12.3%
thought the service is poor or very poor. About 30% of the respondents thought

the service was adequate.

Table 5.18 Opinion of current public transport services (n=132)

Response Option Percentage
Very good 18.9
Good 394
Adequate 29.5
Poor 6.1
Very poor 6.1

5.3 SUMMARY

This chapter describes the three surveys and some general analysis of cach of
them. The data from each survey is used in a different application as discussed in
later chapters of this thesis. National Travel Survey data (the commuting trips of
the household in a day) were used in Chapters 6, 7 and 8 to model the
commuting trips of the household using different techniques of trip gencration.
The three techniques of trip generation (linear regression analysis, category
analysis and logistic analysis) - are used to calibrate the models and the results
from the estimations are compared. The Houschold Survey data in Edinburgh is

used in Chapter 9 to model the frequency of non-food shopping trips of an adult
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in a week to the city centre in Edinburgh. Linear and logistic regression analyses
are used to investigate how social-economic factors, transport policy factors and
hence transport accessibility would affect the shopping trips to the city centre.
The stated preference data from the Household Survey was also used to model
and investigate impacts of introducing congestion charging in the city centre of
Edinburgh, in Chapter 10. Finally Shoppers’ Survey data were used to
investigate the impact of perceived accessibility of transport on shopping trips in

Chapter 11
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CHAPTER 6 METHODOLOGY FOR MODELLING TRIP
GENERATION USING LOGISTIC REGRESSION

6.1 INTRODUCTION

Chapter 5 described the three datasets which have been used for trip generation
modelling: the National Travel Survey (NTS) data, the Household Survey (HS)
and the Shoppers’ Survey (SS) in Edinburgh. In this chapter, the methodology
for modelling trip generation using logistic regression is firstly explained. Then,
the NTS data are used to calibrate trip generation models for work trips using
three techniques of logistic regression analysis, and these are: binary logit,
multinomial logit and nested logit models. The results are assessed and compared

with other models in the next chapters.

6.2 THE DATA SET

It should be reported here that initially the analysis was carried out using work
trips per household in a weekday (Monday) for the modelling using three years
NTS data (1996-1998). That data contained 5,125 households’ records which had
at least one worker in the household. However, that dataset represented the
whole of the UK and therefore large variations in household characteristics were
found. For example variations in car ownership, income, household structures
between different regions and between urban and rural arcas and other factors
which affect overall average trip rates. For these reasons the resulting models
were, mostly, very insignificant in terms of their statistical performance (i.e. the

t-values and the overall statistical significance of the models).

Therefore, a new data set was acquired in order to improve the models’
estimation. This was made possible by the releasc of an extra national travel
survey data set; that is data for the years 2002 to 2004. Furthermore, this data
was then disaggregated by geographical areas as presented in Table 6.1. An

urban area is usually considered to be an area that is relatively built up and its
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residents are usually regarded as being town or city dwellers. Based on the
definition of urban areas at the time of the 2001 Population Census we took that
an urban area was any continuously built-up area, of at least 20 hectares and with

at least 1,500 residents.

To obtain more homogeneous data with fewer variations, only urban areas of
50,000 —250,000 residents were used. Each household should have at least one
worker in order to be selected for the analysis and investigation of trip generation
models. That is, a total of 2,706 households were selected for the analysis which
represents 19.2% of the total households in the NTS dataset. It should be noted
here that although the selection of this dataset should reduce the variability
observed in household characteristics, it will not eliminate all variations since
these urban areas are spread out through the whole of the UK, and thus will have

various types of households with different characteristics.

Table 6.1 NTS data (2002-2004) and types of areas

Geographical Areas g:z::;lgi Percent

Inner London 643 4.6
Outer London b/u area 1,315 9.3
West Midlands b/u area 516 3.7
G. Manchester b/u area 570 4.0
W. Yorkshire b/u area 321 2.3
Glasgow b/u area 102 0.7
Liverpool b/u area 162 1.1
Tyneside b/u area 182 3
Urban over 250K 1,807 12.8
Urban 100K to 250K 1,703 12.1
Urban 50K to 100K 1,003 7.1
Urban 25K to 50K 1,010 7.2
Urban 10K to 25K 1,674 11.9
Urban 3K to 10K 1,100 7.8
Rural 1,983 14.1

Total 14,091 100.0

For the work on this chapter, 73.1% of the sample (1,979 houscholds) were
randomly selected and used to calibrate the models by cach of the three

techniques. The calibrated models were then used to predict trip generation for
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the rest of the 26.9% of the data set (i.c. 727 households). The factors considered
in this analysis include the number of full time and part time workers in the
household, car ownership, household income, number of company cars and
number of children in the household. As discussed in the next section. These are
some of the typical variables which have been used previously in the literature

for modelling trip generation (see for example Ortazar and Willumsen, 2001).

6.2 DESCRIPTION OF THE VARIALBES

In this section, a trip generation model for work trips per household in a typical
working weekday (in this case Wednesday is selected) is calibrated using logistic
regression analysis. The descriptions of the variables which are used in these
models are given in Table 6.2. As shown in the table, the variables include the
number of workers (full time and part time) in the household, car ownership,

household income, the number of children and number of company cars in the

household.

Table 6.2 Description of variables used in work trip generation models

Variables Description

WORKER_FT A continuous variable: describes the number of full-time
workers in the household (see Section 5.2.2).

WORKERI_FT A dummy variable: takes the values of | if there is one
full-time worker in the household, 0 otherwise.

WORKER2+ FT A dummy variable: takes the values of 1 if there are two or
more full-time workers in the household, 0 otherwise.

WORKER_PT A continuous variable: describes the number of part-time
workers in the household (see Section 5.2.2).

CA_WORKER_P A dummy variable: takes the values of | if there part time
T workers in the houschold, 0 otherwise (included in
MCA_3).
WORKER2+ A dummy variable: takes the values of 1 if there are two or
more full time/part time workers in the household, 0
otherwise (included in MCA_3).

CAR A continuous variable: describes the number of cars in the
household.




CARI1 A dummy variable: takes the values of 1 if the household
owns one car, 0 otherwise.

CAR2+ A dummy variable: takes the values of 1 if the household
owns two or more cars, 0 otherwise.

COM_CAR A dummy variable: takes the values of 1 if the household
has one or more company cars, 0 otherwise.

INCOME_MH A dummy variable: takes the values of 1 if the annual
household income is £20,000-£39,999, or £40,000 and

over.

CHILD A continuous variable: describes the number of children in
the household.

In general, the number of workers in the household is expected to have a positive
relationship with the number of work trips in a trip generation model. The
number of full time workers in the household was tested as a continuous variable
(WORKER_FT) and as two dummy variables to represent the three catcgories'of
full time workers in the household (0, 1, and 2 or more full time workers in the
household). The number of part time workers is entered as a continuous variable
(WORKER_PT). Car ownership and household income have also been included

in the models and are expected to have positive impacts on the trips to work.

The annual household income is a relevant and important variable in the analysis
and prediction of household trip generation models. In this analysis household -

income has been tested as a dummy variable (Medium/High) to represent two

income groups (Low or Medium/High).

Car ownership was tested as both a continuous variable and as a dummy variable
in the models. In the multinomial logit and nested logit models, the number of

cars was entered as a continuous variable,

The number of children (CHILD) is included as a continuous variable in the trip
generation models. This variable is expected to have a negative impact on the
number of work trips. Finally, the availability of company cars is included as a

dummy variable which takes a value of 1 if the houschold has one or more
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company cars and 0 otherwise. The variable is expected to have a positive sign in

the models.

The following section summarises the methodology for using the logistic
regression analysis to model ﬁip generation. The logit models have been used to
predict the probabilities of making a certain number of trips (i.e. trip frequency)
in a certain time period which would allow the calculations of the number of

trips generated in each household as discussed in the following sections.

6.3 THE METHODOLOGY FOR MODELLING TRIP GENERATION
USING LOGISTIC REGRESSION TECHNIQUES

In this section, the appropriateness of using logistic analysis modelling for trip
generation is investigated. The probabilities of a household making j work trip(s)
are modelled using the typical independent variables often used in trip generation
models. Three different types of logistic regression models are calibrated in this
section: three binary logit models, one multinomial logit (MNL) model and one
nested logit (NL) model. The methodology of how to model trip generation using
each of the three modelling approaches is discussed below. The models are
analysed and compared in terms of statistical significance and their prediction of

trip generation in later sections.

6.3.1 Modelling trip generation using binary logit models
6.3.1.1 Model specifications

As discussed earlier in Section 4.4.2, binary logit analysis is suitable to model
individual level choice data, when two alternatives are available. Typically, the
dependent variable is a choice while the independent variables are relevant
factors which may affect that choice. In choice situations where the dependent
variable is a discrete one, the process is straightforward. In trip generation
analysis however, where the dependent variable is the trip generation, the model

structure is different in this case.
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nge we assume that the dependent variable is a binary variable to represent the
household making work trips or not. In the models, alternative 1 represents no
work trips in a household per day and alternative 2 represents one or more work
trips in the household per day. This seems to be a logical manner to represent trip

making using a binary logit modelling specifications.

6.3.1.2 Utility function

The binary logistic regression models are calibrated as shown in Table 6.6. The
variables used in these models are the number of workers in the household, car
ownership, household income, the number of children in the household and the
number of company cars in the household. In the first model (BLM_I) the
number of full time workers and the number of cars in the household were
included as continuous variables. In the second model (BLM_2) the number of
full time workers in the household has been included as a continuous variable
and number of cars as two dummy variables to represent the three levels of car
ownership (0, 1, and 2+ cars). In the third model BLM_3 the number of full time
workers in the household has been included as three dummy variables to
represent the three levels of number of full time workers (0, 1, and 2+ workers).
On the other hand, the number of cars in the household was treated as a

continuous variable, In all the three models, alternative 1 was used as the

reference, hence its utility ¥, =0.

6.3.2 Modelling trip generation using multinomial logit (MNL) model
6.3.2.1 Specification of the model

The multinomial logit (MNL) model is one of the most popular choice models
and it is used to analyse individual choices when the dependent variable is a
discrete multi criteria variable which relates to a number of independent
vafiables. In modelling trip generation using the MNL model, we assume that the
probability of a household making a certain number of work trip(s) is a function

of a number of independent variables. In this research, a number of trials for the
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structure of the model and for the allocation of variables to each utility have been
carried out. The best fit of the models was obtained with the trips assigned as
follows: {0 trips, 1-2 trips, 3 or more trips}, with the structure presented in
Figure 6.1. This is compatible with Daly (1997) in his pioneering work on
improved methods for trip generation which states that the change from 0 to
making a trip (or moré) is the most crucial choice, and the choices of making
more than 1 trip are less important, which would suggest that the best structure is

that such as in the stop-go mode as adopted in this analysis.

0 1-2 3+
MNL model structure
Figure 6.1 The structure for the MNL trip generation model

The following logistic formula has been used for the MNL model:

8/(’)

P(Y = jlx) = — (6.1)

h(x)
Z;e

& (x)= Bio + BuXs + BiaXs +.oe (6.2)

Where

P(Y = jlx) is the probability of household making j work trip(s), f = 0, 1-2, and
3+

&) is the utility equation of j=k;

x,’s include the number of workers (full time and part time), car ownership,

household income, number of company cars, and the number of children as
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described in Table 6.1. Table 6.3 below shows the trip frequency distributions of

the households.

Table 6.3 Trip frequency distributions

Percentage of
Trip Frequency Number of Percentage of Households in
Households Households Accumulated
Categories
0 354 17.9
1 140 7.1 e
2 778 39.3 39.3
3 145 7.3
4 352 17.8 35.7
5+ 210 10.6
Total 1,979 100 100

The results of the MNL model estimates which give the most statistically
significant results are presented below. As shown in Figure 6.1, in the MNL

model, the options are structured as 0, 1-2 and 3+ work trips per household.

6.3.2.2 The utility functions of the MNL models

The utility functions of the alternatives in the model are presented in Table 6.4.
In the MNL model, the option ‘0 trips’ has been assigned as the reference case
(¥, =0 in Table 6.4). The number of full time workers in the houschold has been
treated as a continuous variable which is included in the utility functions of
options 2 and 3, each with an alternative specific coefficient. The number of part
time workers in the household, number of children and number of cars have been
treated as continuous variables and are included in the utility function of option
3. The availability of a company car and income has been treated as dummy
variables and are included in the utility function of option 3. The income variable

represents two categories (low and medium/ high).
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Table 6.4 Utility functions for the MNL models

oy g i Coefficients to
Utility Function Variables be Estimated

V,=0

0!—2‘ ().h ’
WORKER _FT grorkes fi
WORKER_PT =2

Vi, =0, +0"*"WORKER _FT

)

Vi, =05, + 63" "WORKER _FT CHILD 057
+0)*-P'WORKER _PT INCOME_MH grorker

ome mh CAR income mh
+ 605" -"" INCOME _ MH COM CAR 0y, y

child car
g5 5 Oy, »

gom-car
3+

+0;""CHILD + 652" CAR
+05"-“"COM _CAR

6.3.3 Nested logit (NL) model
6.3.3.1 Model specifications

When the IIA property of MNL is violated (i.c. when there are shared
unobserved components associated with different choices or alternatives, the
utilities of the elements of the corresponding multidimensional choice set cannot
be independent), the modeller should consider alternative specifications such as
the nested logit or multinomial probit models. Multinomial probit is an extension
of probit models to more than two alternatives. Unfortunately, they are difficult
to estimate when the number of alternatives is more than two. The nested logit
model on the other hand allows subsets of alternatives to share unobserved

components of utility, while using the MNL modeling specifications.

A nested logit model was also calibrated with the nested structure shown in
Figure 6.2. In this case, trip makers are being assumed to be trading off between
making no trips against making 1 or more trips. Then, at the sccond level, a trade

off between 1-2 trips against 3 or more trips is assumed.
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1-2 3+

NL model structure

Figure 6.2 The structure for the NL trip generation model

6.3.3.2 The utility function

The utility functions of the alternatives in the NL model are presented in Table
6.5. As shown in the table, the number of full time workers in the household has
been treated as a continuous variable which is included as the only common
attribute inside the nest alternatives (that is the options of making 1 or more trips,
see Figure 6.1). The number of part time workers in the houschold (continuous
variable), number of cars (continuous variable), income (dummy variable) and
availability of company cars (dummy) are all included as attributes that vary
inside the nest and are included in the utility function of option 3. The number of
children has been treated as a continuous variable and is included as the only
attribute in the option at the higher level of the nested structure (i.e. making 0
trips). The results of the calibration for the NL model, i.c. the coefficient
estimates, the t-values, the initial and final likelihood, the p2 and the logit utility

parameters are presented in the following section.
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Table 6.5 Utility functions for the NL model

Variables Coefficients
Utility Function to be
Estimated
V, = 0" CHILD
- ()‘ . ()(’N/l/ .
Vi, =0""*“"WORKER _FT WORKER_FT v
WORKER PT Tk s
CHILD worker_pt
V,, =0, +0"™"“"WORKER FT INCOME_MH oy, :
workes bt CAR Q!neome mh :
+ 03+ -P"WORKER . PT COM_CAR -:,:” .
+0y-"" INCOME _ MH 6.7 O
();l:’" war

+ 05" CAR + 02"-“"COM _ CAR

6.4 RESULTS OF MODELING TRIP GENERATION USING LOGISTIC
REGRESSION

6.4.1 Binary model

The results obtained from the calibration of the binary logistic regression models

are shown in Table 6.6.

Table 6.6 Logistic regression model of work trip generation in a household

Coefficient (t-test)
Variables (option)
BLM_1 BLM_2 BLM_3

Constant (2) - -0.054 (-0.3) -0.394 (-1.8)

WORKER_FT(2) 1.045 (10.0) 1.067 (8.2) -
WORKERI_FT(2) - - 1.588 (7.7)
WORKER2+_FT(2) - - 2.254 (8.3)
WORKER_PT(2) 0.181(1.7) 0.202 (1.7) 0.313(2.3)
CHILD(2) -0.159 (-2.9) -0.161 (-2.8) -0.201 (-3.4)
INCOME_MH(2) 0.325 (2.3) 0.335(2.4) 0.300 (2.0)
CAR(2) 0.145 (1.6) - 0.172 (1.8)

CARI1+(2) . 0.224 (1.2) -
COM CAR(2) 0.301 (1.1) 0.338 (1.2) 0.248 (0.9)

163




Initial log-likelihood  -1371.7383 -1371.7383 -1371.7383
Likelihood -929.5130 -929.5130 -929.5130
constants only -
Final log-likelihood -840.6181 -840.9474 -836.8466
p3(0) 0.3872 0.3869 0.3899
pX(c) 0.0956 0.0953 0.0997
n 1,979 1,979 1,979

The options used in modelling:
1 = No work trip per household per day

2 = One or more work trips per household per day

From the table, the overall goodness of fit of these models is good with £%(0)
being 0.3872, 0.3869 and 0.3899 respectively. However, some of the
independent variables ‘are not statistically significant at the 95% level of
significance. For example the company car variable (COM-CAR) which might
be due to correlation with income. However, it is decided to keep this variable in
the model since it is a relevant one and also it shows statistical significance in the
other models (i.e. linear regression and MCA_3 models). It should also be noted
here that there might be a problem in the statistical significance of some of the
variables because the proportion of households who are making O trips in a

typical working day in the sample is much lower than that that are making one or

more trips (see Table 6.3).

From Table 6.6, it can be seen that the number of workers and car ownership
have positive impacts on households making work trips (positive coefficients of
WORKER and CAR in utility two). Similarly, number of company cars in the
household also has a positive coefficient in the model, as expected, although it
has a lower t-value. The household income has a positive impact on households
making work trips. On the other hand, number of children in the household has a

negative impact on work trips as expected (negative coefficients of CHILD).

To further investigate the results from these models, the relative importance of
each variable is obtained. The mean value (m) of each independent variable is
calculated from the survey data (i.e. the average value of each variable). The
mean value is then multiplied by the coefficient of the corresponding variable to

work out a relative importance value for each variable.
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The mean values, the relative importance values (m*coefficient) of BLM 1,
BLM_2 and BLM _3 are presented in Table 6.7. It appears from this table that the
number of workers in the household is one of the most important variables in the
model. That is, relative values of 1.345 and 1.374 are obtained in the table below
for models BLM_1 and BLM_2 respectively. In model BLM 3 a combined
value of over 1.538 is resulted from both categories of the dummy variable
representing number of full time workers in the household. Car ownership,
income (BLM_1 and BLM_2) and number of children (BLM_2) come next as
the most relatively important variables. Of the three binary logit models, BLM_3
has the best p?(0) and will be used in Section 8.5 for model estimation and

comparison.

Table 6.7 Relative importance of each variable in the binary logit models

Relative Importance of Variables
4 3
Variables (option) )
BLM_1 BLM_2 BLM_3
Constant - -0.054 -0.394
WORKER_FT(2) 1.345 1.374 -
WORKERI1 _FT(2) - - 0.871
WORKER2+ FT(2) - : 0.767
WORKER_PT(2) 0.076 0.085 0.132
CHILD(2) -0.109 -0.110 -0.138
INCOME_MH(2) 0.225 0.232 0.208
CAR(2) 0.198 - 0.235
CARI+(2) - 0.201 -
COM CAR(2) 0.025 0.028 0.021

6.4.2 MNL model

The results of the calibration for the MNL model are presented in Table 6.8. As
shown in the table, all the variables have the correct signs and are statistically

significant at the 95% level of significance with p*(0) being 0.215.
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Table 6.8 MNL model of work trip generation in a household

Variables 0 trip 1-2 trips 3+ trips
Constant - 0.286 (2.4) -3.198 (-14.4)
WORKER_FT - 0.681 (6.2) 2.258 (15.5)
WORKER_PT - - 1.134 (9.8)
CHILD - - -0.334 (-5.4)
INCOME_MH - - 0.488 (3.2)
CAR - - 0.264 (3.1)
COM CAR - - 0.443 (2.3)
Initial log-likelihood -2174.154
Log-likelihood with 22042.140
Constants only
Final log-likelihood -1706.560
p*(0) 0.215
p(c) 0.164
N 1,979

Table 6.9 below shows the relative importance of each variable for each category
of number of trips. From the table it appears that the variables used in this model
are statistically significant and have impacts on the number of trips. However,
the constant is also statistically significant and has a relatively high important
role in prediction. A likelihood ratio test shows that the model with all the
independent variables is more statistically significant than the model with
constant only, i.e. -2%(-2042.140-(-1706.560)) = 671.16 > 14.067. Similar to the
previous models, the number of full time workers has an important role to play in

the prediction of number of trip generation in this model.

Table 6.9 The relative importance of each variable in the MNL model

Variables 0_1 trip 2 trips 3+ trips

Constant - (0.286) (-3.198)
WORKER_FT - 0.877 2.907
WORKER PT - - 0.478
CHILD . - -0.229
INCOME_MH - - 0.338
CAR - - 0.361
COM CAR - - 0.037
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6.4.3 Nested Logit Model

The results of the calibration for the NL model, i.e. the coefficient estimates, the
t-values, the initial and final likelihood, the p* and the logit utility parameters are

presented in Table 6.10.

Table 6.10 NL model of work trip generation in a household

Variables 0 trip 1-2 trips 3+ trips
Constant - - -2.044 (-13.6)
WORKER_FT - 1.021 (3.6)
WORKER_PT - - 0.267 (3.1)
CHILD 0.156 (2.8) - -
INCOME_MH - - 1.107 (8.3)
CAR - - 0.558 (7.5)
COM CAR - - 0.246 (1.4)
Theta 0.978 (5.0)
Initial log-likelihood -2174.154
Final log-likelihood -1851.105
p%(0) 0.149
p(c) 0.094
N 1979

From Table 6.10, all the variables of the model are statistically significant at 95%

level (except the company car variable as discussed before) and have the

expected signs.

Table 6.11 shows the relative importance of each of the variables using the
calibrated NL model. Similar to the results obtained from the MNL model, it
appears that as in the previous models the number of full time workers has the
highest relative importance amongst all independent variables, followed by

income and car ownership.
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Table 6.11 The relative importance of each variable in the NL model

Variables 0 trip 1-2 trips 3+ trips
Constant - - (-2.044)
WORKER_FT - 1.314
WORKER_PT - - 0.113
CHILD 0.107 - -

INCOME_MH - - 0.767
CAR - - 0.763
COM CAR - - 0.021

6.5 DISCUSSIONS OF THE RESULTS AND SUMMARY

One of the main aims and novelties of this research has been to develop a
methodology for adopting logistic regression analysis to model trip generation.
The methodology for modelling trip generation using the three logistic modelling
approaches has been explained in this chapter. Trip generation has been
successfully modelled using the binary, MNL and NL modelling approaches and

the results obtained are both statistically significant and logical.

While three modelling approaches provided an appropriate way to model trip
generation for work trips in this analysis and their results were all statistically
significant, the MNL structure performed much better than the nested logit
model. This might be because mathematically, the nested structure allows
subsets of alternatives to share unobserved components of utility, to overcome
the problem of violating the IIA property in the MNL model. Because of the
limited data available in this research, it was not very straight forward to identify
shared or common unobserved components of the utilities. To further assess the
results obtained from using logistic analysis in modeling trip generation, these
results need to be compared with results obtained from conventional trip

generation models.

Therefore, in Chapter 7 the NTS data are used to calibrate trip generation models for
work trips using the conventional trip generation model; that is the lincar

regression and category analysis including multiple classification analysis
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(MCA). The analysis and comparisons of all model results are also presented in
Chapter 8. The performance of the trip generation models using logistic

regression is compared with the conventional trip generation models (i.e. linear

regression and category analysis).

Moreover, it should be noted that considering the overall performance of the
model, the NL (as shown in Table 6.10) model does not make any improverhcnts
to the MNL model (as shown in Table 6.8) with pz(O) a reduction from 0.215 to
0.149. The theta parameter has an acceptable value of 0.978 which suggests that

the MNL is most appropriate in this case.
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CHAPTER 7 MODELLING WORK TRIP GENERATION
USING CONVENTIONAL MODELLING APPROACHES

7.1 INTRODUCTION

Chapter 6 described the estimation of trip generation models using logistic
regression. In order to be able to assess these models, they should be compared
with trip generation estimates from conventional models. These are linear
regression models and category analysis models. It is often argued in the
literature that the linear regression models are superior to the category analysis
results because of the known limitations of the later (Ortuzar and Willumsen,
2001). Techniques of multiple classification analysis however provide significant
improvements of the results of trip generation over the classical category analysis
(Gucvara'and Thomas, 2007). Therefore, an extensive investigation and analysis
of the data using multiple classification analysis techniques has been conducted
in this chapter to include the up to date methodological development in this

method.

In this chapter, the NTS data are used to calibrate and compare trip generation
models for work trips using linear regression analysis and category analysis

techniques including multiple classification analysis.

The same data set which was used for the calibration of the logistic models
(Section 6.2) are also used in the current analysis. The same variables which
were used as independent variables in the logistic regression models were also
used in the linear regression. Three linear regression models have been calibrated

and compared in the following sections.

For the classical category analysis and the two multiple classification analysis
(MCA) models, only income, car ownership and total number of workers in the
household have been included in the models to maintain a manageable number of

categories. For the third MCA model however, there was no problem with

having as many categories as needed.
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7.2 LINEAR REGRESSION ANALYSIS

In this section, a trip generation model for work trips per household in a typical
working weekday (in this case Wednesday is selected) is calibrated using linear
regression analysis. The descriptions of the variables which are used in the linear
and logistic regression models are given in Table 6.2. As shown in the table, the
variables include the number of workers (full time and part time) in the
household, car ownership, household income, the number of children and

number of company cars in the household.

Similar to the discussion in Section 6.2 of the expected impacts of independent
variables on the dependent variable are discussed here. The number of full time
workers in the household was tested as a continuous variable (WORKER_FT) as
well as two dummy variables representing the three categories of full time
workers in the household (0, 1, and 2 or more full time workers in the
household). The number of workers in the household is expected to have a
positive relationship with the number of work trips. The number of part time
workers is entered as a continuous variable (WORKER_PT). Car ownership and
household income have also been included in the models and are expected to
have positive impacts on the trips to work. Household income has been tested as
a dummy variable (Medium/High) to represent two income groups (Low or
Medium/High). Finally, car ownership was tested as both a continuous variable

and as a dummy variable in the models.

The number of children (CHILD) is included as a continuous variable in the trip
generation models. This variable is expected to have a negative impact on the
number of work trips. Finally, the availability of company cars is included as a
dummy variable which takes a value of 1 if the houschold has one or more
company cars and 0 otherwise. The variable is expected to have a positive sign in

the models,
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Three linear regression models have been calibrated from this data. In the first
model, the number of full time workers, number of part time workers, and
number of children were included as continuous variables. Income, car
ownership and number of company cars in the household were included as
dummy variables. The second model is similar to the first model, except that
number of cars was tested as a continuous variable. In the third model the
number of full time workers was tested as dummy variables to represent the three
levels of number of full time workers (0, 1, and 2+ workers) and the rest of the

variables are similar to the second model.

Table 7.1 shows the coefficient estimates and the t-values for the linear
regression models estimated from the data set as discussed in the earlier section.
All the models include the number of full time and part time workers in the
household, car ownership, household income, the number of children in the

household and the number of company cars in the household.

Table 7.1 Linear regression models of work trip generation by a household

Variables LM-1 LM-2 LM-3
Constant 0.162 (1.2) 0.154 (1.6) 0.159 (1.1)
WORKER_FT 1.394 (24.5) 1.331 (22.4) -
WORKERI_FT - i 1.269 (9.1)
WORKER2+ FT £ . 2.657 (16)
WORKER_PT 0.803 (12.2) 0.752 (11.2) 0.692 (9.4)
CHILD -0.203 (-5.7) -0.204 (-5.7) -0.229 (-6.2)
INCOME_MH 0.214 (2.4) 0.170 (2.0) 0.209 (2.3)
CAR “ 0.199 (3.8) 0.294 (5.4)
CARI1+ 0.140 (1.2) - -
COM CAR 0.358 (2.8) 0.290 (2.2) 0.242 (1.8)
R 0.322 0.326 0.272
n 1979 1979 1979

From the table, it appears that all the variables have the correct signs and most of
them are statistically significant at the 95% level of significance. The R* values
of the three models are 0.322, 0.326 and 0.272 respectively, which are

reasonable. It should be noted here that the most significant R* value here is



obtained in the model which has continuous variables for the number of full time
workers and the number of cars in the household (LM-2). Therefore, this model
will be the selected linear regression model to be used later on in Section 8.5 for

the prediction and comparisons of trip generations using the three techniques.

The signs of the coefficients for full time and part time workers are positive as
expected. As the number of each of these types of workers increases, households
are observed to make more work trips. In fact the number of workers scems to be
a statistically significant variable in all models; as a continuous variable and also
as dummy variables. As the number of cars in a household increases, households
are expected to make more work trips (positive coefficients of CAR in model
LM-2 and LM-3). The dummy variables for car ownership (CAR1) in model
LM-1 are not statistically significant at 95% level; this might be due to a possible
correlation with income. The variable representing the presence of company cars
in the household has a positive impact on households making work trips (positive
and statistically significant coefficient of COM_CAR in model LM-1 and LM-2).
The variable representing the presence of children has a negative impact on
households making work trips (negative coefficient of CHILD) as expected. As
expected, household income has a positive impact on work trips and is

statistically significant in all the three models.

Similar analysis to that in Section 6.4.1, relative importance of variables is
carried out for these models as well. This is worked out by multiplying the mean
value by the coefficient of the corresponding variable and elasticitics (i.e. the
percentage change in the dependent variable with respect to a given percentage
change in the relevant independent variable) have been carried out. The elasticity

analysis is carried out as follows:

B {125 [ 222
0 0

In the linear regression model, if only one independent variable changes, the

change in the dependent variable (7-7,) with respect to the change in the
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independent variable (m—-m,) can be expressed as (m—m,)*coefficient. So the

above elasticity equation becomes:

- m—m, )* coefficien t m-m
Elasticity = ( o)* coeff . .
constant + Z m, * coefficien t m

. m, * coefficien t
constant + Z m, * coefficien t

The mean values, the relative importance values (m*coefficient) and elasticities

of LM-1, LM-2 and LM-3 are presented in Table 7.2, Table 7.3 and Table 7.4

respectively.

Table 7.2 The relative importance of each variable in LM-1

Relative
LM-1 Mean Values 4ig
Variables Coefficients of Variables lm‘[’)ortance glaeasticity
ariables
(m) (m * coefficient)
Constant 0.162 (1.2) - (0.162)
WORKER_FT 1.394 (24.5) 1.288 1.795 0.729
WORKERI_FT - 0.548 - .
WORKER2+_FT - 0.340 - =
WORKER_PT 0.803 (12.2) 0.422 0.339 0.138
CHILD -0.203 (-5.7) 0.684 -0.139 -0.056
INCOME MH  0.214 (2.4) 0.693 0.148 0.060
CAR - 1.368 - .
CAR2+ 0.140 (1.2) 0.898 0.126 0.051
COM_CAR 0.358 (2.8) 0.084 0.030 0.012
TOTAL - - 2.461

In all the three models, the estimates for the constants (0.162, 0.154 and 0.159)
are compared to the estimates for the rest of the variables in the model. As shown
in Table 7.2, in LM-1, the number of full time and part time workers has the
largest importance relative to the rest of the variables. In LM-2, the number of
workers (full time and part time), number of children and car ownership has the
most significant importance in the model (see Table 7.3). Finally in LM-3, Table
7.4 shows that income and the presence of company cars have relatively least

importance in the model while the rest of the variables are more significant (c.g.
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number of workers, car ownership and number of children has the most impacts

on work trip generation).

Table 7.3 The relative importance of each variable in LM-2

S Mear : Relative :
- mportance o 4P
Variables Coefficients “;ah.'% of \[’)ariables Elasticity
ariables (m *
(m) coefficient)
Constant 0.154 (1.6) - (0.1540
WORKER _FT 1.331 (22.4) 1.288 1.714 0.696
WORKERI1_FT - 0.548 - -
WORKER2+ FT - 0.340 - -
WORKER_PT 0.752 (11.2) 0.422 0317 0.129
CHILD -0.204 (-5.7) 0.684 -0.140 -0.057
INCOME_MH 0.170 (2.0) 0.693 0.118 0.048
CAR 0.199 (3.8) 1.368 0.272 0.111
CARI+ - 0.898 - -
COM_CAR 0.290 (2.2) 0.084 0.024 0.010
TOTAL - - 2.460

Table 7.4 The relative importance of each variable in LM-3

LM-3 Mean Relative
Variables Coefficients Valuesof  Importance of Elasticity
Variables Variables
(m) (m * coefficient)
Constant 0.159 (1.1) - (0.159)
WORKER_FT - 1.288 - -
WORKERI_FT 1.269 (9.1) 0.548 0.696 0.283
WORKER2+ FT  2.657 (16) 0.340 0.904 0.367
WORKER_PT 0.692 (9.4) 0.422 0.292 0.119
CHILD -0.229 (-6.2) 0.684 -0.157 -0.064
INCOME_MH 0.209 (2.3) 0.693 0.145 0.059
CAR 0.294 (5.4) 1.368 0.402 0.163
CARI+ - 0.898 - -
COM_CAR 0.242 (1.8) 0.084 0.020 0.008
TOTAL - - 2.461

From all the above results and discussions it appears that the most significant R’
(the R* values of the three models are 0.322, 0.326 and 0.272 respectively) value
here is obtained in the model which has continuous variables for the number of

full time workers and the number of cars in the houschold (LM-2). Therefore,
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this model will be the selected linear regression model to be used later on in
Section 8.5 for the prediction and comparisons of trip generations using the three

techniques.

7.3 CATEGORY ANALYSIS / CROSS-CLASSIFICATION
7.3.1 Category Analysis - the classical model

The second model of trip generation in this study is category analysis or cross-
classification model. As discussed in Section 2.3.2, category analysis is based on
estimating the trip production rates per household for a given purpose as a
function of household attributes. The method’s basic assumption is that trip
generation rates are relatively stable over time for certain household
stratifications. Therefore the art of this method is in defining the categories
although it is well recognised that it is not very easy to choose the best
categorisations of the selected variables (see Ortizar and Willumsen, 2001 for

more discussions).

The NTS data has been used to carry out this analysis. Three variables have been
identified to be included in the analysis: household income with three categories
(see Table 7.5), car ownership with two categories (< 1, and 2+ cars) and the
number of workers (including both full time and part time workers) in the
household with two categories (1, and 2+ workers). These are the three most
commonly used factors in studies of category analysis (see Wootton and Pick
1967 for more discussions on category analysis). It should be noted here that
although more variables have been included in the regression analysis, it was
deemed not very practical to use any more variables in this analysis since the
number of categories would have increased radically. Extensive trials and errors
procedures have been used to choose the best combinations or categorisations of
the selected variables and their levels. In total this yields 12 categories of
households as shown in Table 7.6. This categorisation has been adopted for the
basic category analysis model as well as the MCA_]1 and MCA_2 (sce Sections
7.3.2 and 7.3.3). However, for the MCA_3 model, further categorisation of the
data has been used (Section 7.3.4).
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Table 7.5 Household income groups

Code Household Income

Less than £19,999

£20,000 - £39,999
£40,000+

>

aw

Table 7.6 Number of households in each category

Household Income

No. of
No. of Cars
Workers A\ B C
i <l 403 248 37
2+ 55 89 25
<1 96 258 134
ot 2+ 53 243 338

In Table 7.6, of the 12 categories, 11 of them have more than 30 observations
and only one of them has less than 30 observations (1 worker, 2+ cars, high
income group). The lower number of observations of this category is due to the
fact that there are fewer households with one worker owning two or more cars
and with very high income, which is a common problem in category analysis

models.

Despite all the efforts to construct best groupings of categories, it is still clear
from the table that there are some variations between the categories. For
example, for households with 1 worker and 2+ cars there is generally lower
number of households in each income group than in other categories. Since the
trip rate depends on the number of households in each category as well as on the
number of trips made by each houschold, these variations will have impacts on
the average number of trips or the trip rates for each household calculated using

the category analysis method. In other words, these impacts might result in
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overestimation in some cases and underestimation in other cases of the trip rates

and/or the total number of trips for these categories.

The work trip rates per household for each household category have been worked
out from the NTS data as usual, i.e. the average trip rate within any specific
category is equal to the observed number of trips in that specific category of
households divided by the number of households in that category, or in equation

format (Ortizar and Willumsen, 2001):
1(h)=T(h)/ H(h)

Where:
1(h) is the trip rate per household by category h;

T(h) is the total number of trips in cell A; and
H(h) is the number of households in cell A.

Table 7.7 below presents the work trip rates by households’ categories. It appears
that in general the trip rate progression is logical and as expected (with the
exception of a couple of cells indicated with a **’). That is, in most of the cells
the trip rates increase as income increases on one hand and as car ownership and
number of workers per household increase on the other hand. It should be noted
here that the cells indicated with a ‘*’ have lower numbers of observations as

discussed earlier.

Table 7.7 Work trip rates by households’ categories (trips/HH/day)

Household Income

No. of
No. of Cars
Workers i B c
I <l 1.397 1.746 1.351*
2+ 1.345* 1.798 2.040
o <1 2.281 2.783 3.216
2+ 2.660 3.305 3.630

(*) Trip rate which does not logically follow on with the rest of the table.
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As well documented in the literature (see Stopher and McDonald, 1983; Ortizar
and Willumsen, 2001, etc) and as discussed earlier, in category analysis, unduly
large samples are usually required in order to guarantee good reliability of the
models. In addition, the unequal number of records in each cell could also lead to
inefficient estimation of trip rates. In these cases the cell values will vary in
reliability because of differences in the numbers of households being available
for calibration. To overcome this possible problem a number of enhanced
approachés known as multiple classification analysis have been applied and
reported in the literature (Stopher and McDonald, 1983; Ortizar and Willumsen,
2001; SECTRA 1998; Clark, 1996 and Guevara and Thomas, 2007). These
approaches estimate the cell values based on a grand mean derived from the

entire data set, and two or more class means which are derived from all data in

each class relevant to the cell in question.

Three Multiple Classification Analysis (MCA) approaches which have been
documented in the literature have been tested to investigate their impacts on trip
generation estimation and are referred to here as MCA_1, MCA_2 and MCA_3.
Some background discussions of these approaches are given in Section 2.3.2, but
see also Guevara and Thomas (2007) for a very thorough discussion of these
approaches. The three approaches have been applied in this study for estimating
trip generation using the same data set used in the regression analysis methods,

as discussed below.

7.3.2 Multiple Classification Analysis-1 (MCA_I)

As discussed, the method is based on estimating the cell values from a grand
mean derived from the entire data set, and two or more class means which are
derived from all data in each class relevant to the cell in question. In equation

form the trip rate in each cell is calculated as follows:
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Where

{., is the trip rates for a income-worker-car category (iwm); f is the total

wm

average; /, is the average number of trips of households of income i; 7, is the

average number of trips of households of worker w and car m.
Table 7.8 shows the trip rates which resulted from applying MCA_1.

Table 7.8 Work trip rates by household categories (trips/HH/day) using

MCA_1
Houschold Income
No. of
Woikors No. of Cars
A B C

1 <l 0.702 1.582 2.354

2+ 0.868 1.748 2.520

ot <1 1.985 2.865 3.636
2+ 2.606 3.486 4,257

From the table, it is clear that the trip rate patterns produced from this approach
are logical and positively proportionate to the increase in income, car ownership
and number of workers per household. The problem of not having a sufficiently
large number of observations in each cell of the classical category analysis
method, i.e. as in Table 7.7 has apparently been overcome by using this analysis.
However, as reported in the literature (Guevara and Thomas 2007) the results
from this method might still have a problem of trips overestimation that occurs at
the higher income groups (income group C in Table 7.8) and underestimation
that occurs at the lower income groups of household categories (income group A
category). See also Table 8.3 and Table 8.6 and the discussion in Section 8.5
later in the section which shows that some of the estimated trip rates vary by

about 40% difference from the observed values.

7.3.3  Multiple Classification Analysis-2 (MCA_2)

To estimate the household work trip rates using the MCA_2, a weighted average

factor is applied to correct for the biases which result from the unequal number

180




of observations by each category (see more discussion of the method in Section
2.3.2). The trip rate for each category is calculated using the following formula

adopted from Guevara and Thomas (2007):

A H WM H A | l‘[ H
""‘"” = Z ( e Jl:’wmv"/H: +ZZ(_J‘JL’:-MV”/II‘.M —Z"h/[[
=\ A T\ H

h=1 w

Where
lh

wm

=1 if household 4 belongs to category iwm and zero otherwise;
W, M, I and H correspond to the total number of worker clusters, car clusters,

income clusters and household respectively;

H,, corresponds to the number of households of worker w and car m;
H, corresponds to the number of households of income /;

v" corresponds to the observed trips generated by houschold A.

This method has also been applied to the same data set and the results have been
compared and assessed. Table 7.9 shows the trip rates which resulted from
applying MCA_2. From the table, it is clear that the trip rate patterns produced
from this approach are also logical and positively proportionate to the increase in
income, car ownership and number of workers per houschold. The problem of
having an unequal number of observations in each cell has been partly overcome
by using this analysis. In addition, the trip rate estimates from this method seem
to slightly overcome the problem of overestimation and underestimation that

occurs at the higher/lower income groups as discussed in Section 6.3.2 above.

Table 7.9 Work trip rates by household categories (trips/HH/day) using

MCA 2
No. of NS Household income
workers 5 B p
1 <l 1.087 1.577 1.672
2+ 1.279 1.769 1.864
o <l 2.301 2.791 2.885
2+ 2.749 3.239 3.334
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7.3.4 Multiple Classification Analysis-3 (MCA_3)

Finally, the third modified method MCA_3, which is also well illustrated by
Guevara and Thomas (2007), has been applied to the data in order to investigate
and compare the resulting trip rates from applying this approach. The method is
based on estimating the household trip rates using least square regressions where
the independent variables are all dummy variable; one for each of the categories
of the strata variables. It should be noted here that in this model, unlike the
classic category analysis model, it was decided to use as many cells as there are
that could be tested for groupings similar to the variables used in regression
analysis. The equation used here, adopted from that of Guevara and Thomas

(2007) is:

Vi =Bo+ 2B+ DBy la DB et D Bl

izl w_fiz0 w_pr#0 me0 _1

h h th
T Zﬂcom_carlmm_car + Zﬂchll‘lldul.l té&

com_car#0 child#0

Where IBO 4 ﬂl ’ ﬂw_ﬁ ’ ﬂw_pl ’ pm ’ ﬂmm”mr ’ and /}rluld are COCfﬁCicntS to bC

estimated; £”is the error.

Table 7.10 The coefficients of Multiple Classification Analysis-3

- Variables : "MCA_3
Constant 0.394 (2.8)
WORKERI1_FT 1.266 (9.1)
WORKER2+_FT 2.697 (15.7)
CA_WORKER_PT 0.835(9)
CAR2+ 0.297 (3.6)
COM_CAR 0.228 (1.7)
CHILD -0.520 (-6.7)
INCOME_M 0.256 (2.7)
INCOME H 0.346 (2.9)
R 0.263
n 1979




Table 7.11 Work trip rates by HH categories (trips/HH/day) using MCA_3

No. of PT Nl(;:l‘ of No. of No. of No. of Household income
workers Ll cars | company car | children A B C
" 0 0394 | 0.650 | 0.740
B I+ 20.126 | 0.130 | 0.220
= 1 0 0.622 | 0.878 | 0.968
0 1T 0.102 | 0.358 | 0.448
2 0 0.691 | 0.947 | 1.037
if T 0.171 | 0.427 | 0.517
1 0 0919 | 1.175 | 1.265
T 0399 | 0.655 | 0.745
5 0 1.660 | 1.916 | 2.006
il 1+ 1.140 | 1.396 | 1.486
= 1 0 1.888 | 2.144 | 2.234
i I+ 1368 | 1.624 | 1.714
0 : 0 1957 | 2213 | 2.303
o I+ 1437 | 1.693 | 1.783
| 0 2.185 | 2.441 | 2.531
1+ 1665 | 1.921 | 2.011
" 0 3.001 | 3.347 | 3.437
e 1+ 2571 | 2.827 | 2917
> : 0 3319 | 3.575 | 3.665
> I+ 2799 | 3.055 | 3.145
g 0 3.388 | 3.644 | 3.734
i 1+ 2868 | 3.124 | 3.214
1 0 3616 | 3.872 | 3.962
I+ 3.096 | 3.352 | 3.442
" 0 1229 | 1.485 | 1.575
o I+ 0.709 | 0965 | 1.055
= : 0 1457 | 1.713 | 1.803
" 1+ 0937 | 1.193 | 1.283
g 0 1.526 | 1.782 | 1.872
- I+ 1.006 | 1.262 | 1.352
: 0 1.754 | 2.010 | 2.100
I+ 1234 | 1.490 | 1.580
0 0 2.495 | 2.751 | 2.841
el I+ 1975 | 2.231 | 2.321
= ; 0 2723 | 2979 | 3.069
, I+ 2203 | 2.459 | 2.549
I+ " 0 3792 | 3.048 | 3.138
5 T+ 2272 | 2.528 | 2.618
: 0 3.020 | 3.276 | 3.366
I+ 2500 | 2.756 | 2.846
5 0 3.926 | 4.182 | 4.272
i I+ 3.406 | 3.662 | 3.752
= 0 4154 | 4.410 | 4.500
- : I+ 3.634 | 3.890 | 3.980
0 4223 | 4479 | 4.569
ot ¢ v 173703 | 3.959 | 4.049
0 4451 | 4.707 | 4.797
' 1+ 3931 | 4.187 | 4.277
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The resulting trip rates from MCA_3 are presented in Table 7.11. From the table,
it is clear that the trip rate patterns produced from this approach are also logical
and positively proportionate to the increase in income, car ownership and

number of workers per household.

Table 7.12 below shows the number of observed trips as well as the predictions
using category analysis and the three MCA models. It also shows the overall
percentage differences and the Residual Sum of Squares (RSS) for each model.
From the table, it appears that the MCA_2 model produces the lowest overall
differences between the predicted and observed number of trips. However, when
considering the RSS of each model prediction the MCA 3 model appears to give
the best results. Only the results obtained from the basic category analysis and
MCA_3 models will be used in the final comparisons of the predictions of the
models in Section 8.5 below. It should be noted here that a further model, called
MCA_4 (Guevara and Thomas, 2007) has also been developed but not used in
this study. Category Analysis is the conventional category analysis technique
and this is taken as the base for the analysis of RSS in the table below. From the
table, it seems that MCA_1 produces the largest sum of errors in the family of
category analysis (11.1% higher than that obtained from the base CA technique).
The MCA_2 does not provide any improvement of the RSS (0.1%) while the
MCA_3 produces the least RSS values (-7.7%) than the base CA method.
Therefore, the MCA_3 has been recommended to be used as the best technique

in this family.

Table 7.12 Comparison of work trips estimated by CA and MCAs

Work Trips s RSS -
Models Difference  RSS  Diff from
Predicted Observed (7 CA %
CA 1,785 590342 1,904 -
MCA 1 1,786 e S0GAY) 2016 1%
MCA 2 1,673 ’ $3¢:3.07) 1905  0.1%
MCA 3 1790 64(371) 1758 7.7%
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7.3.5 Summary of the section

An extensive amount of analysis and modelling of trip generation using category
analysis and the most up to date approaches of multiple classification analysis
(three methods) have been carried out in this chapter. Firstly, the basic category
analysis approach has been implemented. The resulted trip rates were in general
logical and as expected. However, few of the resulted trip rates were illogical and
did not follow the expected trend in trip rate progression. That is, trip rates
increase as income increases on one hand and as car ownership and number of
workers per household increase on the other hand. Three improved multiple
classification analysis approaches have been tested to investigate their impacts
on trip generation estimation. The first method which is based on estimating the
cell values from a grand mean derived from the entire data set, and two or more
class means which are derived from all data in each class relevant to the cell in
question. The trip rate patterns produced from this approach are logical and
positively proportionate to the increase in income, car ownership and number of
workers per household. The problem of not having large number of observations
in each cell in the classical category analysis method has been overcome by
using this analysis. However, the results from this method still have a problem of

trips overestimation/ underestimation that occurs at the higher/lower income

groups.

To estimate the household work trip rates using the MCA_2, a weighted average
factor is applied to correct for the biases which result from the unequal number
of households in each category. The trip rates for each category were calculated
which were logical and positively proportionate to the increase in income, car
" ownership and number of Workers per houschold. The problem of having
unequal number of observations in each cell was overcome by using this
analysis. Finally, the third modified method MCA_3 has been applicd to the data
to investigate the resulting trip rates from applying this approach. The method is
based on working out estimation of the household trip rates by estimating least
squares regressions with the independent variables being all dummy variable;
one for each of the categories of the strata variables. The trip rates resulting from

this method are found to be superior to the values obtained by MCA_2.
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7.4 DISCUSSIONS OF THE RESULTS

In this chapter, firstly trip generation models using conventional approaches have
been calibrated using data from the National Travel Survey (NTS). These are the
linear regression analysis and category analysis including the up to date
methodological development of this approach (i.e. multiple classification
analysis). Three linear regression models, a category analysis mode! and three
multiple classification analysis models have been calibrated. In linear regression
analysis, LM-2 (which includes number of workers and car ownership as
continuous variables as well as number of part time workers, number of children,
availability of company car and HH income) has shown the best performance
amongst the linear regression models. This model is therefore selected to be used
in the analysis and comparisons of model performance in Section 8.5. In multiple
classification analysis, the MCA_3 (see Section 7.3.4 ) has shown the best
performance amongst the approaches of this technique. Therefore, in the final
analysis and comparisons of the models, results from category analysis and
MCA_3 have been included. The results show that the most significant R? for the
linear regression models (R = 0.326) obtained in the model which has
continuous variables for the number of full time workers and the number of cars
in the household (LM-2). Therefore, this model will be the selected linear
regression model to be used later on in Section 8.5 or the prediction and

comparisons of trip generations using the three techniques.

From the analysis of the category analysis results, it appears that MCA_l
produces the largest sum of errors in the family of category analysis (11.1%
higher than that obtained from the base CA technique). The MCA_2 does not
provide any improvement of the RSS (0.1%) while the MCA_3 produces the
least RSS values (-7.7%) than the base CA method. Therefore, the MCA_3 has

been recommended to be used as the best technique in this family.
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CHAPTER 8 PREDICTION OF TRIP GENERATION
USING THE CALIBRATED MODELS

8.1 INTRODUCTION

As mentioned previously, the aim of this work has been to investigate the
appropriatenesé of using logistic regression in trip generation modelling. The
methodology adopted to apply these techniques (i.e. binary, MNL and NL
models) to modelling trip generation as well as the results of models have been
explained and presented in Chapter 6. Chapter 7 calibrated trip generation
models using conventional techniques (i.e. linear regression and category
analysis). In this chapter, the prediction of trip generations using all the

calibrated models in Chapters 6 and 7 are analysed and compared.

About 73.1% of the NTS data set was used to calibrate each of the above models
while the remaining 26.9% of the data was left as a validation sample to predict
trip rates using the calibrated models as discussed in Chapter 6. The prediction
techniques of the trip generation using each of the approaches (logistic
regression, linear regression and category analysis) are discussed below. A
comparison of the estimated predictions using each of the three approaches is

then discussed in Section 8.5.

82 PREDICTION OF TRIP GENERATIONS USING LOGISTIC
REGRESSION

To use the binary logit model for prediction, an overall weighted average of the
trips (7) is calculated. This weighted average of the trips is obtained using the
total number of trips made by all households who make at least one work trip

divided by the number of the households. In this case:

e 1*140+2%778 +3%145+4*352+5*58+...+10*10+11*1+11*2 =2.997
140 +778145+352+58+93+24 +18+4 +10+1+2
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Then this overall weighted average is multiplied by the probability of making 1+
work trips in the household which will give the expected number of work trips

per household.

When using the MNL and NL models in prediction, to calculate the expected
number of work trips per household 7, a summation of the j trip(s) multiplied by

their corresponding probabilities is carried out as below:

r=3j*p(r=))

J=0

The categories used for trip frequencies in the MNL and NL models are 0, 1-2,
and 3+ work trips per household as discussed above. The trip frequencies and
their corresponding number of trips in the data set used for model calibration are

shown in Table 8.1.

Table 8.1 Trip frequency distributions

Tripfrequency  NUMPCLOl | rip frequency  oen of

0 354 7 24

1 140 8 18

2 778 9 4

3 145 10 10

4 352 g '

5 58 12 2

6 93 Total 1,979

In this case, the number of households who make 1 trip is 140 and the number of
households making 2 trips is 778, and so on. Therefore, for j=1-2, the weighted

average number of trips is calculated as below:

- 1*140+2*778
140+778

=1.847  forj=1-2
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Similarly, for j=3+, the weighted averages number of trips are calculated as

below:

= 3*%1454+4*352+5%58+...+10*%10+11*1+11*2 .
= =4489  forj=3+
1454+352+58+4+93+24+18+4+10+1+2

To use the NL model for estimation, we need to work out the probabilities of
making j trips. These are worked out by firstly, computing the conditional

probabilities from the lower nests (see Figure 6.2) as below:

e (™

Pl-2/3+ = e"x-a +ey,’

eh

P, =——
0/1+ eyo +ey|.

where
' ) 1),
V. =0X,+6 lx{e(;)m + e(a)h' ]

Then, the modelled probabilities of each option can be computed as the product
of the marginal probability of choosing the composite alternative and the

conditional probability of choosing the option in the lower nest:

Po = R)/l-b
F,= (=)
A, =q "Pn-zm)(l "171)

For logit models, the total number of estimated trips is then obtained by the

summation of the expected work trips of each household.
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8.3PREDICTION OF TRIP GENERATIONS USING LINEAR
REGRESSION

Using linear regression analysis for predicting trip generation is a straightforward
process. Using the calibrated equations of the linear trip generation models, the
total number of predicted trips was calculated for the 26.9 % of the data using the
values of the independent variables. It should be mentioned here that the trip
generation prediction in this section is based on the model (LM-2) estimates

since it was the best model obtained as discussed.

8.4 PREDICTION OF TRIP GENERATIONS USING CATEGORY
ANALYSIS

For the category analysis and MCA_1 and MCA_2 models, this data (i.e. the
26.9% of the NTS data set) was categorised into the same 12 categories as
presented in Table 8.2 and was used to predict trip rates using the calibrated
models (CA, MCA_1 and MCA_2) in order to assess their performance. For
MCA_3, the data was categorised into 144 categories (see Table 7.11) and was

used to predict trip rates using the MCA_3 model.

Table 8.2 Number of houscholds in each category in 26.9% of the NTS

Household Income

No. of
No. of Cars Total
Workers A B C
1 <] 135 104 12 251
2+ 22 36 10 68
2+ <l 28 111 49 188
2+ 14 95 111 220
Total 199 346 182 727

8.5 COMPARISONS OF THE TRIP PREDICTIONS USING THE THREE
TECHNIQUES OF TRIP GENERATION

Trip generation predictions using the three models were then investigated and

compared. Table 8.3 presents a comparison of the observed number of trips with
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the trip prediction for the 727 households using the three types of methods (i.e.
linear regression analysis, category analysis and logit models). It should be
mentioned here that the trip generation prediction using linear regression was
based on model LM-2 since this was the best model obtained as discussed. The
predictions using the basic category analysis method provide a basis for the
comparisons as well as the results from MCA 3. In terms of the logistic
regression the predictions using the three techniques are included (the binary
logit model, the MNL model as well as the nested logit model). The results are

presented in the following table.

Table 8.3 Comparison of work trips estimated by the three sets of models

Work Trips RSS -

Models Diff (%) RSS Diff from

Predicted Observed MNL %
LM 2 1,798 72 (4.2) 1,731 1.1
CA 1,785 59 (3.4) 1,904 11.2
MCA_3 1,790 1.726 64 (3.7) 1,758 2.6
BLM 3 1,798 ' 72 (4.2) 2,037 18.9

MNL model 1,795 69 (4.0) 1,713 -

NL model 1,800 84 (4.9) 1,942 13.4

As shown in the table, the total numbers of work trips predicted by all the models
are quite similar and similar to the observed number of work trips. However, that
does not necessarily indicate perfect predictions by the models. For example
when a higher prediction than the observed value is added up to a lower
prediction than the observed value, the overall difference in this case might be
misleading. So even if the predicted total is very close to the observed total, it
does not necessarily indicate perfect prediction. Therefore the residual sum of

squares is calculated to further investigate the results.

The Residual Sum of Squares (RSS) (or Error Sum of Squares) for each model is
calculated in order to test for the accuracy of the models. RSS can be obtained

as Y (y,-5)", where y, is the observed value and J, is the predicted value.

Table 8.3 presents the predicted against observed number of trips by each model,

the overall % difference and the RSS in each case. Based on the percentage
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difference between the observed and predicted, it seems that the category
analysis model produces the lowest overall differences between the predicted and
observed number of trips. However, when considering the RSS of each model
prediction, the results show that the least RSS values have been obtained from
MNL model with a value of 1,713, making it outperforms all the other models
(Table 8.3). This is followed by the linear regression model (LM-2) and lastly,
the MCA_3 models with their RSS value 1.1% and 2.6% higher than that of the
MNL model. The RSS results of conventional category analysis, the binary logit
model and NL model are 11.2%, 18.9% and 13.4% greater than that of the MNL
(the best performing model) respectively. While the MNL model shows best
performance amongst the logistic regression models, the binary logit model
shows worst results. This might be because of the aggregation of travellers into
{making O trips or making 1 or more trips} categories and the fact that the

number of travellers who are making 0 trips are very low in the sample.

In addition to the above comparisons, disaggregate validation tests by several
market segmentations, including household income groups, car ownership levels
and number of full time workers were conducted. Tables 8.4 — 8.6 below present
the observed and predicted work trips per household by household income, car

ownership and number of full time workers respectively.

Table 8.4 Observed and predicted work trip rates per household by

household income

Household Income
Total

Income_L Income_M Income_H (n=727)
(n=199) (n=346) (n=182)
Trip % Trip % Trip % Trip %
Rate Diff Rate Diff Rate Diff Rate Diff
Observed 1.698 2.405 3.055 2.374
LM 2 | 1.626 -43 2537 55 3279 73 2473 42
CA 1.604 -55 2512 45 3281 74 2456 3.5
MCA 3| 1.598 -59 2520 48 3298 9.0 2462 3.7
BLM 3 | 2,102 237 2572 70 2695 -12 2474 42
MNL 1.729 1.8 2535 54 3155 33 2470 40
NL 1.673 -1.0 2673 1.1 2984 -23 2477 43

Predicted




Table 8.5 Observed and predicted work trip rates per household by car

ownership

Car Ownership Total

0 (n=80) 1(n=359)  2(n=253) 3+ (n=35) (u=727)

Tip % Trip % Trp % Trip % Trip %
Rate Diff Rate Diff Rate Diff Rate Diff Rate Diff

Observed | 1.875 2.164 2.597 4.057 2.374

LM_2 | 1718 -84 2208 20 2857 100 4.146 22 2473 4.2

g CA 1849 .14 2142 -1.0 2978 147 3295 -188 2456 3.5
S MCA_3 | 1854 -1.1 2169 02 2916 123 3.586 -11.6 2463 3.7
'§ BLM_3 | 2,141 142 2424 120 2611 05 2759 -320 2474 42
- MNL |1.888 07 2242 36 2808 8.1 368 9.1 2470 4.0
NL 1707 9.0 2257 43 2896 11.5 3470 -145 2477 43

Table 8.6 Observed and predicted work trip rates per household by number

of full time workers

Number of Full Time Workers

Total
0 (n=73) 1(m=396) 2(@m=219) 3+ (n=39) (u=727)
Tip % Tip % Trp % Trp % Tip %
Rate Diff Rate Diff Rate Diff Rate Diff Rate Diff

Observed | 1.151 2.010 3.055 4.538 2374
LM_2 | 1.109 -36 2007 -02 3293 7.8 5164 138 2473 4.2
2 CA 1613 402 2112 50 3211 51 3292 -27.5 2456 3.5
S MCA3 [ 1115 -3.1 2031 1.0 3471 13.6 3700 -185 2463 3.7
T BLM.3 | 1533 332 2478 233 2728 -107 2764 -39.1 2474 4.2
& MNL [1337 162 2072 3.1 3247 63 4261 -6.1 2470 40
NL 1444 250 2358 17.3 2904 -49 3218 -29.3 2477 4.3

Firstly, it is observed that in general the accuracy of the predictions scems to

improve with increasing category sample size. For example, the least differences

of observed and estimated trip rates per houschold when analysed for the

different income groups, are obtained for the medium income group which has
the highest number of households (n=346) in Table 8.4. Higher differences

between observed and estimated values are obtained when sample sizes are

lower. Similarly, category 2 of car ownership which has the largest sample size

(n=359) show the least difference between observed and estimated trip rates per
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household by car ownership between all car ownership categories (Table 8.5).
The same observations are obtained when investigating the difference of
observed and estimated trip rates per household by number of full time workers;

as the saxhple size decreases the predictions become less accurate (Table 8.6).

Secondly, Table 8.4 show that the linear regression and category analysis, as well
as MCA_3 model results underestimate values of work trips in relation to the
observed values at lower income categories and overestimate values at the higher
income categories with the exception of BLM, see also the discussion by

Guevara and Thomas (2007).

Investigating the differences between observed and predicted work trip rates per
household by car ownership categories shows a similar picture to that using
income groups, which is an overestimation of trip rates at lower car ownership
categories and underestimation at higher car ownership categorics, except for the
highest car ownership category which has a very small number of observations,

which might have affected the accuracy of prediction in this category.

Finally, when investigating the observed and predicted work trip rates per
household by number of full time workers it is clear that the small sample size of

some categories affect the accuracy of prediction of that category.

As shown in the tables above and in Figure 8.1 and Figure 8.2, the predicted
number of work trips per household by the LM-2, MNL and the MCA_3 models

are the closest to the observed ones.
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Figure 8.1 The percentage difference between observed and predicted work

trip rates per household by household income
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Figure 8.2 The percentage difference between observed and predicted work

trip rates per household by car ownership

8.6 DISCUSSIONS OF THE RESULTS AND SUMMARY

In this chapter, the prediction of trip generations using all the calibrated models

in Chapters 6 and 7 are analysed and compared. The resulting models are mostly

statistically significant at 95% level with all the independent variables have the
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logical signs. As shown in the Table 8.3, the total numbers of work trips
predicted by all the models are quite similar and similar to the observed number
of work trips. However, that does not necessarily indicate perfect predictions by
the models. For example when a higher prediction than the observed value is -
added up to a lower prediction than the observed value, the overall difference in
this case might be misleading. So even if the predicted total is very close to the
observed total, it does not necessarily indicate perfect prediction. Therefore the

residual sum of squares is calculated to further investigate the results.

The Residual Sum of Squares (RSS) (or Error Sum of Squares) for each model is

calculated in order to test for the accuracy of the models. RSS can be obtained

asy (v, -5 ), where y, is the observed value and J, is the predicted value.

When considering the RSS of each model prediction, the results show that the
least RSS values have been obtained from MNL model with a value of 1,713,
making it outperforms all the other models (Table 8.3). This is followed by the
linear regression model (LM-2) and lastly, the MCA_3 models with their RSS
value 1.1% and 2.6% higher than that of the MNL model. The RSS results of
conventional category analysis, the binary logit model and NL model are 11.2%,
18.9% and 13.4% greater than that of the MNL (the best performing model)
respectively. While the MNL model shows best performance amongst the
logistic regression models, the binary logit model shows worst results. This
might be because of the aggregation of travellers into {making O trips or making
1 or more trips} categories and the fact that the number of travellers who are

making O trips are very low in the sample.

In addition to the above comparisons, disaggregate validation tests by several
market segmentations, including household income groups, car ownership levels
and number of full time workers were conducted. Tables 8.4 — 8.6 present the
observed and predicted work trips per houschold by houschold income, car

ownership and number of full time workers respectively.

From the results of the models, it seems that in general the accuracy of the
predictions seems to improve with increasing sample size of the category. The

estimated trip generation rates for work trips are gencrally lower than the
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observed values at lower income categories and are overestimated at higher
income categories. The only exception to this pattern is the estimations using the
binary logit model which show reverse patterns. Other logistic regression models
(i.e. the MNL models) show very moderate or small overestimation of work trips

for all income groups, which constitutes an advantage of these models.

8.6.1 Potential improvements in trip generation modelling using logistic
regression

One of the main objectives of this research has been to develop a methodology
for adopting logistic regression analysis to model trip generation. The
methodology for modelling trip generation using logistic regression is explained
in Section 6.3. It is a considerable achievement to devise the methodology to use

each of the three logistic modelling approaches to model trip generation.

Then, the NTS data are used to calibrate trip generation models for work trips
using three techniques of logistic regression analysis, these are: binary logit,

multinomial logit and nested logit models.

The ability to use logistic regression analysis to model trip generation would
provide a way forward to overcome some of the strong assumptions implied by
the other conventional techniques. For example, in linear regression analysis, the
assumption of linearity of each of the independent variables with the dependent
variables is a strong restrictive. Also, the lack of built-in upper and lower limits
to the number of trips could potentially lead to unreasonable predictions, or could
result in negative number of trips when the covariate values are relatively low.
The assumption that the number of trips is approximately continuous can also be
questioned especially where the number of trips are low. The lack of a
behavioural justification in trip generation such as supported by the theory of
random utility for example is also a drawback of this stage. All of these
restrictions of linear regression techniques can be overcome by using logistic

regression,
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Although multiple classification analysis (MCA) methods provide improved
- techniques to overcome some of the shortcomings of category analysis approach,
these methods are largely suffer from same limitations of category analysis. The

use of logistic regression would provide a more flexible approach than MCA.

Logistic regression has been widely used to model other travel choices such as
mode, route, departure time and other choices. However, not many applications
in trip generation modelling have been reported. The problem is that typically in
logistic regression analysis the dependent variable is a choice while the
independent variables are relevant factors which may affect that choice. In
choice situations where the dependent variable is a discrete one, the process is
straightforward. In trip generation analysis however, where the dependent
variable is the trip generation, the model structure is neither typical nor straight
forward. The dependent variable has to be defined in a logical way as a

probabilistic function of a number of independent variables.

8.6.2 Summary

The NTS data have been used to calibrate trip generation models for work trips
using logistic regression, linear regression and category analysis and the results
of model predictions are compared. The results provide strong evidence the
appropriateness of using logistic regression analysis for trip generation
modelling. Based on the RSS of each model prediction, it appears the results
from the MNL model outperform that of all the other models. This is followed by
the linear regression model (LM-2) and the MCA_3 model.

In addition, the results in this research support those obtained by Guevara and
Thomas (2007) that MCA_1 method, which is most commonly used in
applications of trip generation modeling, is the least accurate model in the family
of MCA. MCA_2 method also produced no accurate results compared to
MCA_3 which proved to be the most accurate method, and therefore should be

recommended for use as the preferred category analysis method.

198



CHAPTER 9 MODELLING TRIP GENERATION WITH
" PARKING COSTS FOR SHOPPING TRIPS

9.1 INTRODUCTION

In Chapter 6, the NTS data was used to calibrate household work trip generation
models using linear regression analysis, category analysis including multiple
Classification Analysis (MCA) and logistic analysis. Parking costs are included
in the models as a factor which is representing transport policies. In this Chapter
the Edinburgh Household Survey (HS) data have been used to calibrate trip
generation models for shopping trips also including parking costs. Models were
calibrated using linear regression analysis and logistic regression analysis
techniques. Logistic analysis techniques include binary logit, MNL and NL
models. Results of modelling trip generations for different segments of the
shoppers based on mode of travel are also presented.

The weekly non-food shopping trip frequencies in the houschold survey in the
city centre were investigated. Firstly, the factors considered in the models are
investigated in Section 9.2. Trip generation models are calibrated and presented

in Section9.3 and Section9.4.

9.2 INVESTIGATION OF THE FACTORS AFFECTING SHOPPING
TRIP GENERATION

Based on a general analysis of the survey data (Section 5.3), the following
variables were defined as important factors which affect shopping trip

generation:

1. Mode of travel into the city centre for non-food shopping: The mode of travel
to the city centre for non food shopping trips is considered to be an important
factor which affects the trip generation and its frequency. The different
modes of travel were categorised into three groups (sce Table 5.10): car or

van, public transport (i.e. bus, train or taxi) and walking or cycling. This
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categorisation is based on the fact that using the bus, train or the taxi to travel
to the city centre would involve paying travel costs but not parking costs,
while driving a private car/ van would involve paying parking cost but not
fare. In addition, in the questionnaire, the bus, train and taxi costs were
investigated as a one category. It should also be mentioned that there were
only 5 respondents out of 884 in the survey data using taxis, therefore it
seemed logical to exclude the taxi trips from the analysis (see Table 5.11 for
the number of respondents in each category). Therefore, the train and bus
were considered as one category in this study and referred to as public

transport. While the private car/van was considered as a private mode.

. Personal attributes: age, gender, car ownership and social grade. This set of
socio economic variables has been widely investigated in the literature and

identified for their impacts on trip generation (see Section 5.2 for discussion

of the general analysis).

. Location of residence: This variable has also been previously investigated in
the literature and identified as an important variable to affect trip generation
(see for example Sharpe ef. al., 1958, Goulias et al., 1990, Cotrus et al,
2005).

. Characteristics of the transport system: These types of factors have generally
been considered for their impacts on the mode choice dut not on trip
generation. In this study, accessibility of the transport system and its impacts
on trip generation models has been identified as an under researched area.
Therefore parking cost has been included to represent transport accessibility
in the trip generation models. Parking cost is the only relevant variable in the
data set which could have been used here to represent transport accessibility
since the déta set lacks level-of-service variables. Table 9.1 presents the

variables that have been considered in this analysis.
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Table 9.1 Description of the variables included in trip generation models

Variables Description

CAR A dummy variable: takes the value of 1 if the respondent
normally travels into the city centre for non-food shopping by
car or van, 0 otherwise.

PT A dummy variable: takes the value of 1 if the respondent
normally travels into the city centre for non-food shopping by
bus or train, 0 otherwise.

CARO A dummy variable: takes the value of 1 if the respondent’s
household owns no car, 0 otherwise.

AGEI A dummy variable: takes the value of 1 if the respondent’s age
is 16-34, 0 otherwise.

AGE2 A dummy variable: takes the value of 1 if the respondent’s age
is 35-54, 0 otherwise.

SOCI1 A dummy variable: takes the value of 1 if the respondent’s
social grade is upper middle class (A) or middle class (B), 0
otherwise.

SOCI2 A dummy variable: takes the value of 1 if the respondent’s
social grade is lower middle class (C1) or skilled worker (C2), 0
otherwise.

SOCI12 A dummy variable: takes the value of 1 if the respondent’s

social grade is upper middle class (A), middle class (B), lower
middle class (C1) or skilled worker (C2), 0 otherwise.

LOCAI A dummy variable: takes the value of 1 if the respondent’s
location is city centre, 0 otherwise.

LOCA2 A dummy variable: takes the value of 1 if the respondent’s
location is inter-cordon area, 0 otherwise.

LOCAI12 A dummy variable: takes the value of 1 if the respondent’s
location is city centre or inter-cordon area, 0 otherwise.

GENDER A dummy variable: takes the value of 1 if the respondent is a
male, 0 female.

PARKCOST A continuous variable: describes the parking cost of a non-food
shopping visit travelling to the city centre.

It should be noted here that only those respondents who are over 16 years of age

were included in the survey, so when both AGE1 and AGE2 are zero that would




mean that the respondent falls in the age group of more than 54. Also, in the
social grades there is no ‘high class’, so when both SOCI1 and SOCI2 are zero, it

means that the respondent falls in the social class group of “unskilled worker”.

Table 9.2 below shows the frequencies of shopping trips to the city centre by
different modes of travel in the survey and the number of respondents in each
category. As the trips considered here were non-food shopping trips to the city
centre, those who walk (or cycle) are observed to make more frequent trips (an
average of 2.25 shopping trips per week) than those by other modes (an average
of 1.117 shopping trips per week for car users and 1.139 for public transport
users). Therefore, in this case the private car/van and public transport modes are

expected to have a relatively negative effect on the trip frequency.

Table 9.2 The weekly shopping trip frequencies to the city centre by mode

Average Frequency of  Number of Respondents

yocecLit rauspart Weekly Shopping Trips (%)
Car 1.117 237 (27.0)
Public transport 1:133 505 (57.5)
Walked/cycling 2.250 137 (15.6)
Total 1.307 879

People who live in the city centre and inter-cordon zone and who belong to the
upper middle class and middle class are expected to make more shopping trips to
the city centre than others in the same class who live outside the city centre.
Parking cost is expected to have a negative impact on the trips by car. That is as
the cost of parking increases the number of trips by car generated to the city

centre would decrease.

From the survey data (see Chapter 5), it is clear that people in age group one (i.c.
16-34) were observed to make more shopping trips to the city centre than other
age groups (see Table 9.3). Slightly more shopping trips were also observed for

male than female (Table 9.4).




Table 9.3 Shopping trip frequencies to the city centre by age group

Average Frequency of Number of Respondents

QueSIoup Weekly Shopping Trips (%)
16-34 1.522 258 (29.4)
35-54 1.291 315 (35.8)

55 and more 1.142 306 (34.8)
Total 1.307 879

Table 9.4 Shopping trip frequencies to the city centre by gender

Gender Average Frequency of Number of
Weekly Shopping Trips Respondents (%)
Male 1.396 376 (42.8)
Female 1.241 503 (57.2)
Total 1.307 879

In the next sections the data from Edinburgh household survey is used to

calibrate trip generation models.

9.3 LINEAR REGRESSION TRIP GENERATION MODELS

Trip generation models were calibrated using (i) logistic regression analysis
techniques and (ii) linear regression analysis. As discussed carlier, the mode of
travel to the city centre for a shopping trip has an influence on the trip generation
of this trip. Therefore in this analysis, the mode of travel was firstly considered
as a factor in the trip generation model for all the respondents (Model _1-a) for all
users (including car, public transport, walking and cycling users). Secondly, a
model with interaction effects of the location (LOCA1 & LOCA?2) with the mode
of travel (Car & PT) (Model-1-b). Separate models were then calibrated for each
of the car users and public transport users since these two categories represent
about 85% of all users. The modelling process was carried out using lincar
regression analysis then using logistic regression analysis. In all cases, the
number of shopping trips to the city centre was modelled as a function of socio-
economic variables, location, mode of transport used as well as some policy

factors. The results were then discussed and compared.




Table 9.5 presents the estimated coefficients, their t-values, the R? and the
number of observations in each model. As shown in the table, in total 879
observations were included in the analysis for the model for all users (Model-1-a
& b), of which 237 were car users (Model-2) and 505 were public transport users

(Model-3).

Table 9.5 Linear regression trip generation models

Coefficient (t-test)
A  Todeliiial | Modeldob. | Model2 . Model-3

(all users) (all users)  (car users) (PT users)
Constant 0.590 (2.0) 0.131 (0.7) -0.238(-0.7)  0.085 (0.4)
CAR -0.344 (-1.4) - - -
PT -0.500 (-2.4) - - -
CARO 0.308 (2.1) 0.322 (2.2) - 0.334 (2.0)
AGEI 0.430(2.7)  0.446(2.8) 1.009(3.2)  0.445(2.7)
AGE2 0214 (1.4) 0.225(1.5) 0.701 (2.5) -
SOCI1 0.202 (1.1) 0.218(1.2) - 0.441 (2.0)
SOCI2 0.386 (2.3) 0.396 (2.4) - 0.555(2.9)
SOCI12 - - 0.292 (1.0) -
LOCAI 1.257 (6.8) 1.719 (7.9) - 1.310 (5.6)
LOCA2 0.603 (4.0) 0.487 (3.0) - 0.419 (2.5)
LOCAI2 - - 1.167 (5.0) -
PARKCOST -0.022 (-0.5)  -0.022 (-0.6) -0.028 (-0.7) -
CAR*LOCALI - -0.590 (-1.7) - -
CAR*LOCA2 - 0.585(2.4) - -
PT*LOCAI - -0.430 (-1.5) - -

R* 0.113 0.117 0.135 0.094
n 879 879 237 505

From the above table it appears that all coefficients have correct (i.c. as expected
signs). However the values of R’ are very low, suggesting that the relation might
not be linear. The negative signs of the CAR and PT variables indicate that car
users and public transport users make relatively less shopping trips as discussed
above. In addition, from the table there are evidences to suggest that there are
significant variations and differences between car users and public transport’s

users’ attitudes and behaviour (different values of the coefficients).

It also appears that people living in the city centre and inter-cordon zone make

more shopping trips to the city centre (the positive sign of the LOCAIL, LOCA2
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and LOCA12 variables in the three models (Model-1-a, Model 2 & Model 3).
Moreover, from Model-1-b it is also clear that those who live in central locations
(LOCA1) make less shopping trips by each of the car or public transport (-ve
sign of CAR*LOCA1 and PT*LOCAL1) in Model-1-b. On the other hand, those
who reside outside the city centre tend to make more trips by car (+ve sign of
CAR*LOCA2). People in the age group of 16-34 make more shopping trips to
the city centre than people in other age groups (positive sign of AGE1 in all the
models). People in the age group between 35 and 54 have a positive impact on
making shopping trips to the city centre for all users and car users (positive sign
of AGE2).

From the results it emerges that the upper middle class and middle class
respondents make more trips (positive signs of SOCI1, SOCI2 and SOCI12).

PARKCOST is the only variable in the model which reflects impacts of transport
policies as discussed earlier. The negative sign of the coefficient is logical and as
expected. This is encouraging to suggest that more transport policy measures

’ should be investigated and included in trip generation models.

To further analyse these results the values to indicate the importance of each
variable (i.e. the product of the coefficient and the mean value of the variable as
discussed in Section 7.2) and their elasticities have been calculated for three

models (Model-1-a, Model-2 & Model-3) and presented in Table 9.6 below.

From the table it appears that for all users locations play an important role in the
trip generation model. Also those who use public transport scem to make more
frequent shopping trips. People in social class 2 tend to make higher number of
trips too. It should be noted here that the relative value of the constant is

relatively high which suggests some deficiencies of the model.
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Table 9.6 Relative importance of each variable in linear trip generation

models
Model-1-a Model-2 Model-3
Variables (all users) (car users) (PT users)
M*Coeff. Elasticity M*Coeff. Elasticity M*Coeffl. Elasticity

Constant 0.590 -0.238 0.085
CAR -0.093 -0.071 - - - -
PT -0.288  -0.220 - - - -
CARO 0.110 0.084 - - 0.152 0.134
AGEI1 0.126 0.097 0.259 0.232 0.146 0.129
AGE2 0.077 0.059 0.308 0.276 - -
SOCII 0.067 0.051 - - 0.131 0.116
SOCI2 0.163 0.124 - - 0.216 0.191
SOCI12 - - 0.240 0.215 - -
LOCAI 0.324 0.248 - - 0.197 0.174
LOCA2 0.245 0.187 - - 0.206 0.182
LOCA12 - - 0.615 0.551 - -
PARKCOST -0.015 -0.012  -0.068  -0.061 - -
TOTAL 1.306 - 1.116 - 1.132 -

9.4 LOGISTIC REGRESSION TRIP GENERATION MODELS

In this section, we present the trip generation models for shopping trips in
Edinburgh calibrated using logistic regression analysis. Binary logit models as
well as MNL and NL models were calibrated. In this analysis, the frequency of
weekly shopping trips was used to form the discrete options of the choice sets
available to the shoppers. Table 9.7 shows the shopping trip frequency of all
users and for car users only respectively. From the table it appears that of all
respondents, 22.6% make very frequent trips and 57.8% make infrequent trips,
while for car users only, the percentages are 16.3% and 64.6% respectively. This
categorisation of the trip frequencies has been used as the basis to construct the

discrete options in the logit models.

Firstly, binary logistic models were calibrated for trip generation models with
two discrete options: respondents who make less than one shopping trip a week
and respondents who make one or more shopping trips per week. Secondly,

MNL and NL models were calibrated with three options, i.e., respondents




making infrequent trips (less than once a week), respondents making frequent
trips (weekly trips) and respondents making very frequent trips (2-7 trips a

week). The models are presented and discussed in the following sections.

Table 9.7 Frequency of visits to the city centre for non-food shopping for all

users (n = 879) and car users only (n =237)

Frequency Respo:(:len ts % Car Users %
Daily 7.4 7.5
Very Frequent | 4-6 times a week 3.2 22.8 1.7 16.3
2-3 times a week 12.2 7.1
Frequent Weekly 19.4 194 | 19.1 19.1
Fortnightly 16.8 16.7
Infrequent Monthly 18.8 578 | 19.2 | 64.6
Less than once a month 22.2 28.7

9.4.1 Binary logit models for shopping trips

As discussed, binary logit models were calibrated for trip generation models.
Three models were calibrated; a model for all users (Model-4), a model for car
users (Model-5) and a model for public transport users (Model-6). The utility

functions for Model-4, Model-5 and Model-6 are as presented in Table 9.8.

The coefficient estimates for the above models were calibrated using the
ALOGIT software (Daly, 1992) as shown in Table 9.9. As shown in Table 9.9,
all coefficients have the correct signs and there are evidences that car users have
different attitudes and behaviour than public transport users (i.c. different
coefficients of the variables used in the model). The positive sign of AGEI
(people of age 16-34) in utility 2 indicate that this age group is more likely to
make more trips (Model-4, Model-5 and Model-6). The negative sign of the
PARKCOST in utility 2 indicates that fewer trips are expected as parking costs
increase. Moreover, from the models it is confirmed that car users and public
transport users make relatively less shopping trips (positive signs of CAR and PT

in utility 1 in Model-4) as discussed before.



Table 9.8 The utility functions for Model-4, Model-5 and Model-6

Variables Coefficients to

Model Utility Function y
Y (see Table 9.1)  be estimated
Model 4 ¥, =4, CAR+6,,PT CAR, PT 0,1 6.,
V, = constant, +6,,, AGE] AGEl, CARO, constant,, 0., ,
SOCI12, 1 Toae
+ 0 CARO + 6,0, SOCT12 LOCAIl, Ouro » iz >
+6,,q LOCAL + 6, ,,LOCA2 LOCA2, O+ Our
40, 4eou PARKCOST ARHCORY
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People in social groups 1 and 2 are more likely to make one or more shopping
trips to the city centre (positive coefficients of SOCI1 and SOCI2 in utility 2 for
Model-5 and Model-6). People who live in the city centre or inter-cordon zone
are more likely to make one or more shopping trips to the city centre (positive
coefficients of LOCAl and LOCA2 in utility 2 for Model-4, Model-5 and
Model-6). The respondents from households with no cars would make more
frequent shopping trips to the city centre (positive coefficient of CARO in the
utility 2 in Model-4 and Model-6). This is possibly because people with cars
might decide to go shopping at other locations than the city centre to avoid
parking charges, while non-car owners would more frequently go to the city
centre for their shopping trips. Male respondents are observed to make more
frequent shopping trips than female respondents (positive coefficient of

GENDER in utility 2 in Model-5).




In order to further investigate these results, the relative importance of each of the
variables, in a similar way to the previously presented approach in Table 9.6, has
been calculated here and presented in Table 9.10. These values have been
calculated as the product of the coefficient and the mean value of the variable.
From the table, it appears that constant has a relatively high value to the rest of
the variables. As expected the location, the public transport mode of travel

variables have positive influence on the frequency of trip generation to the city

centre.

Table 9.9 Binary logit models of shopping trip generation to the city centre

Coefficient (t-ratio)

Variables (option) Model-4 Model-5 Model-6

(all users) (car users) (PT users)
Constant (2) -0.925 (-2.8) -1.734 (-4.6) -1.538 (-5.4)
CAR (1) 0.319(1.1) - -
PT (1) 0.593 (2.5) . .
AGE1 (2) 0.579 (3.6) 0.395 (1.2) 0.799 (3.9)
CARO (2) 0.280 (1.6) . 0.345 (1.6)
SOCI1 (2) : . 0.478 (1.7)
SOCI2 (2) . 0.344 (1.1) 0.316 (1.3)
SOCI12(2) 0.240 (1.3) - -
LOCALI (2) 1.343 (6.1) 1.854 (4.6) 1.335 (4.5)
LOCA2 (2) 0.710 (4.0) 1.548 (4.4) 0.350 (1.6)
GENDER(2) “ 0.369 (1.2) -
PARKCOST (2) -0.115 (-2.1) -0.125 (-2.1) -
Initial log-likelihood -609.276 -164.276 -350.039
Final log-likelihood -546.120 -134.978 -316.274
p*(0) 0.104 0.178 0.097
p(c) 0.088 0.124 0.062
n 879 237 505

The options used in the models:
1 = less than once a week

2 =One and more trips a week




Table 9.10 The relative importance of the variables in the binary logit

models
Variables Model-4 Model-5 Model-6
(option) (all users) (car users) (PT users)
Constant (2) -0.925 -1.734 -1.538
CAR (1) 0.086 - -
PT (1) 0.341 - -
AGEl (2) 0.170 0.102 0.261
CARO (2) 0.100 - 0.157
SOCII (2) . . 0.142
SOCI2 (2) - 0.164 0.123
SOCI12(2) 0.181 - -
LOCAI1 (2) 0.346 0.367 0.200
LOCA2 (2) 0.288 0.509 0.172
GENDER(2) - 0.168 -
PARKCOST (2) -0.079 -0.305 -

9.4.2 MNL and NL models for shopping trips

Shopping trip generation models using three options: infrequent shopping trips
(i.e. less than once a week); frequent (weekly) and very frequent (2-7 trips a
week) were also calibrated. It might be argued however, that the frequent and
very frequent shoppers are more similar and that they are different than those
who are infrequent travellers. For this reason, two models forms were tested;
firstly the standard MNL model, where the three options were considered as
independent and then the Nested Logit model (NL) to investigate any correlation
between the frequent and very frequent users. The structures of the two models
are shown in Figure 9.1. It is noted here that the best NL. model was obtained by
nesting the two groups of respondents (frequent and infrequent) together at the
lower level while the ‘very frequent’ group is considered at the higher level. This
is interesting since the trips’ frequencies are more similar for respondents in the
first two groups of travellers than those who make very frequent trips (see also

Table 9.7).



Very Frequent

Infrequent Frequent Very frequent Frequent Infrequent

The MNL model structure The NL model structure

Figure 9.1 The structures for the MNL and NL trip generation models

The MNL coefficient estimates of the variables were calibrated using the
ALOGIT software (Daly, 1992). Furthermore the coefficients of the NL and the
theta parameter for the model were also calibrated using the ALOGIT.

The utility functions, the variables used in the models and their coefficients for
Model-4, Model-5 and Model-6 are as presented in Table 9.11. It is noted here
that the allocation of these variables to each utility function has been mainly
done based on the statistical significance of the model outcomes. Therefore there
were a number of trials and errors before deciding on the final models structure

presented here,

Table 9.12 shows the estimates of the coefficients for the MNL model (Model-7)
and the NL model (Model-8). As shown in Table 9.12, all the cocfficients have
the correct signs and the p? values have improved from those calibrated from the
binary logit model (Table 9.9). The negative sign of the AGE1 (people of age 16-
34) indicates that this age group is less likely to make more trips (Model-7 and
Model-8). The negative sign of the PARKCOST indicates that fewer trips are

expected to be made to the city centre as parking costs increase. Moreover, from
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the models it appears that car users make relatively less shopping trips than the

users of the other modes (negative sign of CAR in both models).

Table 9.11 The utility functions for Model-7 and Model-8

Variables CoefTicients to

Utility Function (see Table 9.1) bt aitionatad
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People in social groups 1 and 2, and those who live in the city centre or inter-
cordon zone, are more likely to make one or more shopping trips to the city
centre (positive coefficients of SOCI1, SOCI2, LOCAI and LOCA2 in the two
models). Similar to the results which were obtained from the binary logit model,
the respondents whose households have no cars seem to make more frequent
shopping trips to the city centre (positive coefficient of CARO in the models),
since they make all or most of their shopping within the city centre. On the other
hand the car owners would probably drive to out with the city centre to other
locations for their shopping in order to avoid parking charges. Male respondents
are observed to make more frequent shopping trips than female respondents

(positive coefficient of GENDER).

From the table, the coefficients estimates and the final likelihood values are very
similar in each of the MNL and NL models. The one difference here is the CARO
variable which is incorporated as the common factor in the NL model in both
options of the nest (options 2 and 3). Moreover the Theta parameter is close to |

and not statistically significant at the 95% level (i.c. not statistically different

(5]
(5]



from 0). This would suggest that the MNL structure is sufficient and there is no
added value in this case for suggesting the nested structure. The results from the
Likelihood ratio tests also support these findings (i.e. Final Likelihood values for

each of the models are -792.5656 and -792.5655 respectively with 1 degree of

freedom).

Table 9.12 MNL and NL models of shopping trip generation the city centre

Coefficient (t-ratio)
Variables (option) Model-7 Model-8
(MNL, all users) (NL, all users)
Constant (2) -1.437 (-6.1) -1.438 (-6.1)
Constant (3) -2.022 (-5.9) -2.129(-54)
PT (1) 0.540 (2.9) 0.539 (2.8)
AGEI (1) -0.560 (-3.5) -0.597 (-2.9)
CARO0(2) 0.311(1.6) 0.269 (1.6)
LOCA1 (2) 0.826 (3.3) 0.830(3.3)
LOCA2 (2) 0.531 (2.5) 0.530 (2.5)
GENDER(2) 0.173 ( 1.0) 0.179 (1.0)
PARKCOST (2) -0.162 (-2.4) -0.166 (-2.5)
CAR (3) -0.499 (-1.8) -0.439 (-1.5)
CARO(3) 0.243 (1.2) 0.269 (1.6)
SOCII1 (3) 0.366 (1.5) 0.384 (1.6)
SOCI2 (3) 0.502 (2.2) 0.519 (2.3)
LOCAI (3) 1.869 (7.0) 1.852(7.0)
LOCA2 (3) 0.988 (4.0) 0.971 (3.8)
PARKCOST (3) -0.081 (-1.3) -0.076 (-1.1)
THETA - 0.8583 (1.8)
Initial log-likelihood -965.6802 -965.6802
Final log-likelihood -792.5656 -792.5655
p%(0) 0.1793 0.1793
p*(c) 0.0737 0.0737
n 879 879
The options used in the models:
1 = infrequent (less than once a week)

2 = frequent (weekly)

3 = very frequent (2-7 trips a week)
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9.5 SUMMARY

Linear regression analysis and logistic analysis (binary, MNL and NL models)
have been used to calibrate shopping trip generation models including parking
costs to represent a transport policy measure. The coefficient estimates of the
variables used, the statistical significance and the overall goodness of fit of MNL
and NL models are very similar. The nested logit model structure did not seem to
provide any improvements of the goodness of fit over those obtained from the
MNL model. Hence it has been concluded that there is no obvious evidence of
correlation between frequent and very frequent travellers in this data set, as

implied by the nested logit structure.

The results from the models presented in this chapter suggest that policy
measures which would be implemented in the city centre should have an impact
on the frequency of the shopping trips. For example, in this case the increase in
parking costs result in people making less frequent trips to the city centre. While
this type of measures seems logical and obvious to be included in trip generation
models, there is still a lack of including such measures explicitly in current trip
generation models, hence this analysis. In this data set, there are no other policy
measures/variables for further investigations. For example parking duration,
parking supply, bus lanes and other measures would present interesting transport
policy measures which could be investigated, compared and included in trip
generation models. Therefore, further investigations and inclusion of such
measures would be recommended. Also there is evidence that socio economic

variables such as age and social class also have impacts on the frequency of

shopping trips in the city centre.
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CHAPTER 10 MODELLING TRP GENERATION WITH
PARKING COSTS AND CONGESTION CHARGING

In this chapter, the potential impacts of congestion charging as well as parking
costs on trip generation of shopping trips in Edinburgh are investigated using
logistic regression. Although the introduction of congestion charging seems to
have mostly negative impacts ('m shopping trips, because of the inconvenience
and the increase in the overall cost of shopping, the results show that there might
be some positive impacts of congestion charging. This is mainly because the
introduction of congestion charging would result in less congestion as well as

improvements of the public transport system and hence, an increase in some

shopping trips. |

In this chapter, two sets of models were calibrated by segmenting the shoppers
according to the mode they use. Firstly, models were calibrated for all users and
secondly models for car users. Stated Preference (SP), Revealed Preference (RP)

and mixed RP/SP models were investigated and assessed.

101 CONGESTION CHARGE SCHEME IN EDINBURGH

Congestion charging as well as parking management measures are increasingly
considered as traffic demand management (TDM) tools in the UK as well as in
most world cities (Litman, 2004; European Commission, 2004). In London, a
congestion charging scheme was implemented in February 2003 to control traffic
congestion into the city (Banister, 2003). Under this scheme vehicles inside a 22-
square kilometre zone enclosing the core shopping, government, entertainment
and business districts between 7:00 and 18:30 on weekdays have been charged a
£5 daily fee (£8 since July 2005), unless they are eligible for a resident discount
or are exempted from the charges (Schmdcker, 2006).

Recently, the City of Edinburgh had plans to introduce congestion charging in

the form of a double cordon as a policy to reduce traffic in the central arcas.
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Although the scheme was abandoned following a public referendum (CEC,
2005), a number of research studies and investigations have been carried out to
assess the appropriateness of the scheme and the related policies (MVA

Consultancy, 2004; Farrell, 2005).

The continual increase of car ownership and usage has lead to increased traffic
congestion and associated problems in Edinburgh. Although traffic levels have
stabilised in the city centre due to a variety of reasons, such as the transport
policies pursued in recent years (e.g. Greenways, parking controls and the
closing of traffic. on Princes Street) and other reasons, such as the location of
business and activities away from the’city centre, traffic levels have worsened in
areas outside of the centre (Farrell, 2005). Traffic forecasts based on current
trends and current levels of public transport investment show that traffic levels
will increase by over 20% in Edinburgh between 2001 and 2021 (City of
Edinburgh Council, 2002). It was recognised that there was a need for some form

of traffic restraint if this forecasted increase in traffic was to be avoided.

The purpose of the congestion charge in Edinburgh was primarily to reduce
congestion in the city and, secondly, to fund transport infrastructure
improvements. It was planned to introduce the congestion charge in 2006 if the
support of the local population was achieved in the public referendum and

Scottish Ministers had approved the scheme.

Based on the plans, the cost to motorists coming into the city during the period at
which the ‘congestion charge would be operational was £2. This would be a one
off daily charge irrespective of how many times a motorist crossed a cordon
during a day. The congestion charge would apply during weekdays (Monday to
Friday) only. Motorists would pay for crossing either of the two proposed
cordons in the inbound direction only. There would be a city centre cordon
operating between 7am and 6.30pm and an outer cordon, inside the Bypass,
operating between 7am and 10am only (sece ECCM, 2004 for more details of the

scheme).
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Another study, of the impacts of congestion charging in Edinburgh on departure
time choice (Farrell, 2005), investigated and modelled departure time patterns as
- a result of the proposed scheme. The proposed scheme for Edinburgh was
different from the London scheme in some aspects (Farrell, 2005). The London
Scheme is an area-licensing scheme, which means that a charge is applied if a
vehicle is within the charging zone even if it is moved only a short distance. For
the Edinburgh scheme, a charge would only be applied if a vehicle crossed into
the charging zone. Another difference between the two schemes is the level of
charging; the charge was £5 (now £8) in London but would have been only £2 in
Edinburgh. Saunders (2004) recognised that £2 was a modest charge that was not
high relative to the overall cost of travel. Nevertheless, it was also claimed that
the charge would be adequate in terms of affecting congestion and making
available revenues for public transport. Interestingly, there have been a large
number of studies and data collected in Edinburgh to investigate various impacts
of the proposed congestion charging scheme (for example Farrell, 2005,
Saunders, 2004 and ECCM, 2004).

10.2 POTENTIAL IMPACTS OF CONGESTION CHARGE ON
SHOPPING FREQUENCY

In this section the data collected during the ECCM study has been further
investigated to assess the impacts of congestion charging in Edinburgh on the

frequency of shopping trips. For further discussion on this survey see section 5.3.

Figure 10.1 and Figure 10.2 show the stated current frequency of shopping trips
for all users and car users “before” and “after” the introduction of congestion
charge. The frequency of visits to the city centre for non-food shopping for the
shoppers have been reported (see Section 5.3) and categorised in this section as
three categories: not frequent, frequent or very frequent. From Figure 10.1 it is
clear that about 58% of respondents were observed to make not very frequent
shopping trips in the before case. This percentage would have increased to over
62% if congestion charging would have been introduced in Edinburgh. The very
frequent, as well as the frequent shoppers (i.e. for shoppers who make 2-7
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shopping trips per week and those who make weekly trips) would have dropped
in the after case to 20.4% and 17.3% from 22.6% and 19.7% in the before case

respectively.

For all users, the changes in frequency are not very significant as discussed
above (i.e. the change in frequency of shopping trips for all users range from
2.2% to 4.4%). However, as shown in Figure 10.2, the changes in frequency of
shopping trips for car users are more significant with “very frequent shoppers™
reducing the frequency of shopping trips by about one third (from 16.3% to
10.5%) and with “frequent shoppers™ reducing their shopping trips frequency
from 19.2% to 15.1%.

Therefore it appears that on one hand, the car users are less frequent shoppers
into the city centre than other groups. On the other hand, they would have been

more affected by the introduction of congestion charging into the city centre and

hence more perceptibly responding to it.

Not frequent (less than Frequent (weekly) Very frequent (2-7 trips
once a week) a week)

@ Before policy change B After policy change

Figure 10.1 Frequencies of shopping trips before and after— all users
(n=890)

Moreover, in the survey, respondents were asked to report on their perceived

attitudes towards the introduction of congestion charging in the city centre in
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terms of shopping trips (i.e. reduction or increase in trip frequency). Figure 10.3
shows the perceived impacts of congestion charging on shopping trips. As shown
in the figure, most shoppers appear not to be affected by the introduction of
congestion charging (about 83%). However, of those who use the car (27.0% of
the shoppers), about 37% said they would spend less or go elsewhere, whereas
for over 90% of public transport users, the charge would make no difference.
Therefore, the public transport users would be far less affected by the scheme as

expected. Therefore, the segmentation of the data based on the mode used would

be reasonable in this case.

80% 5%
70% |
60% -
50%
40%
30%
20% |
10% }
0%

Not frequent (less than Frequent (weekly) Very frequent (2-7 trips
once a week) a week)

O Before policy change B After policy change

Figure 10.2 Changes in shopping frequency — car users only (n=239)
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Figure 10.3 Changes in shopping frequency — all users (n=895), car users

(n=237) and public transport users
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Although this is not a case of multiple responses from each respondent on some
future policies (i.e. as in a typical SP scenario), these reported responses have
been used in this study as “stated preference” information on the likely impacts
of the introduction of congestion charging on the frequency of trips into the city

centre as discussed below.

10.3 MODELLING SHOPPING TRIP GENERATION AFTER
INTRODUCING THE CONGESTION CHARGE USING MIXED

RP/SP MODELS
10.3.1 Introduction

In section 7.3, trip generation models for shopping trips in Edinburgh were
calibrated using logistic regression analysis. In the survey, respondents were
asked to report the perceived impacts of the introduction of congestion charging
in the city centre on shopping trips, in terms of reduction in trip frequency or
increase in trip frequency. The impacts of introducing congestion charging in the
city centre on the frequency of shopping trips have therefore been modelled in an

SP and a mixed RP/SP models.

The reported responses have been used in this study as “stated preference” data
to indicate the potential frequency of shopping trips to the city centre after the
introduction of congestion charging. In this case however, there is only one
response from each respondent (i.e. not multiple responses as in a typical SP
exercise). The disadvantage of this is that not much information will be gained
(only one response). However, one possible advantage could be that there will be
no errors associated with repeated responses. Moreover, in this specific case,
there is no effects of incorporated *‘state”* or reference dependence between data
types and preference heterogeneity on observed attributes in the model (sce
further discussion on these in Section 4.5). These are the two sources which
cause most of the uncertainty/ errors in the joint RP/SP models as discussed in
literature (see Hensher et al, 2008). Therefore, at least in theory the calibration of
the mixed (RP and SP) models could well be implemented using NL trick model
(see discussions in Section 4.5.4 and Hensher and Bradley, 1993).
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10.3.2 Joint estimation of RP/SP trip generation models

In this section, modelling trip generation of shopping trips is carried out which
includes the potential impact of introducing a road pricing scheme. The data used
in this section was obtained from the ECCM Household Survey (see Section
5.3). The data includes a revealed preference section which contains information
about shopping trips, socio economic and location characteristics of the
respondents. It also contains information on the perceived or reported shopping

trips patterns before and after congestion charges are introduced in the city.

As discussed above, there is only one SP response from each individual, which is
not the typical SP design. However, in the absence of any other more appropriate
SP data, it was decided to use this single statement as to represent potential
behaviour regarding shopping trips with congestion charging and to calibrate
mixed RP/SP models. These models have been calibrated to investigate the
potential impacts of congestion chafging on the frequency of shopping trips to
the city centre of Edinburgh, for all users and for car users respectively as shown

in Table 10.3.

Table 10.1 presents the description of the variables. In these models it was
assumed that the congestion charging value was £2.00, applicable to car users
who were not residents of the central area. This congestion charging value was

added to the parking charging costs that was reported by the users.
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Table 10.1 Variable description for the shopping trip generation models

Variables

Description

CAR

PT

CARO

AGE]l

AGE2
SOCI1
SOCI2
LOCALl
LOCA2
LOCA12
GENDER
PARKCOST

PARK_CC

CCOSTLY

INCONVEN

LESSCONG

EASIGF

PTIMPROV

Dummy variable: takes the value of 1 if respondent normally
travels into the City Centre for non-food shopping by car or van, 0
otherwise.

Dummy variable: takes the value of 1 if respondent normally
travels into the City Centre for non-food shopping by bus and train,
0 otherwise.

Dummy variable: takes the value of 1 if respondent’s houschold
owns no car, 0 otherwise.

Dummy variable: takes the value of 1 if respondent’s age is 16-34,
0 otherwise.

Dummy variable: takes the value of 1 if respondent’s age is 35-54,
0 otherwise.

Dummy variable: takes the value of 1 if respondent’s social grade is
upper middle class (A) or middle class (B), 0 otherwise.

Dummy variable: takes the value of 1 if respondent’s social grade is
lower middle class (C1) or skilled worker (C2), 0 otherwise.
Dummy variable: takes the value of 1 if respondent’s location is
City Centre, 0 otherwise.

Dummy variable: takes the value of 1 if respondent’s location is
inter-cordon area, 0 otherwise.

Dummy variable: takes the value of 1 if respondent’s location is
City Centre or inter-cordon area, 0 otherwise.

Dummy variable: takes the value of 1 if respondent is a male, 0
female.

Continuous variable: describes the parking cost of a non-food
shopping visit travelling to the City Centre,

Continuous variable: describes the parking cost of a non-food
shopping visit travelling to the City Centre, plus the £2 congestion
charge for those car users who lives outside the central area.
Dummy variable: takes the value of 1 if respondent says the
congestion charge is very costly, 0 otherwise.

Dummy variable: takes the value of 1 if respondent says the
congestion charge is inconvenient, 0 otherwise.

Dummy variable: takes the value of 1 if respondent says it would
be less congested if congestion charge is applied, 0 otherwise.
Dummy variable: takes the value of 1 if respondent says it would
be easier to go and from the city centre if congestion charge is
applied, 0 otherwise.

Dummy variable: takes the value of 1 if respondent says public
transport would improve if congestion charge is applied, 0
otherwise.




The expected impacts of these variables (Table 10.1) are as discussed earlier in
Section 9.2. The variable which combines the parking cost and the £2 congestion
charge for car users who live outside the central area, is used to reflect the
introduction of congestion charge and is expected to have a negative impact on

shopping trips by car.

Figure 10.4 shows the artificial tree structure used in this mixed RP/SP model.

For more details about this estimation method see discussions in Section 4.5,

M [
1 2 3 4
Infrequent Frequent Infrequent Frequent
(RP) (RP) (SP) (SP)

Figure 10.4 Artificial tree structure for mixed RP and SP estimation

In a mixed RP/SP model, we can have the following utility functions for a certain

alternative 4, (Ortazar and Willumsen, 2001):

UF =6XF +aY]" +¢,

HUSF = pl0xS" + 92" +1,)

where @, ¢ and @are parameters to be estimated; X*" and X** are common

attributes (of both alternatives and individuals) at the RP and SP levels

respectively; Y**and Z°° are attributes which only belong to the RP or SP scts

respectively; u is the scale coefficient; and £, n are errors.

Prior to estimate the mixed RP/SP model, the RP only and SP only models nced

to be estimated each of which includes all the independent variables to decide
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which attributes to be included as specific or common (the X set, as opposed to
the Y and Z sets), see further discussion of this in Section 4.5. In this case, an RP
only (Model-1) and an SP only (Model-2) models were calibrated and assessed.
Table 10.3 shows the estimation results of the two individual models (RP and
SP). These two models were then tested for the allocation of the independent
variables in the combined model, using a procedure to investigate parameter

equality in the two data sets suggested by Louviere et al (2000) and discussed in

Section 4.5.

In this procedure a graph is plotted for the parameters’ vectors obtained from the
RP against those estimated from SP models (Figure 10.5). In this case, the graph
of the RP parameter vector against the other (i.e. SP) produces a cloud of points
passing through the origin of the graph with positive slope equal to the ratio of
error variance of set 2 to set 1). From the figure, we can assume that the two
sources of data produce the same utilities but potentially different scale. In this
case, a combined model will have the variables (AGEl SOCI2, GENDER)
included as common variables, while the variables (CAR, PT, CARO, SOCII,
LOCA1, LOCA2 and PARKCOST) are best included as RP specific and the
variables (CAR, PT, CARO, SOCII, LOCAI, LOCA2 and PARK_CC) are SP

specific.
1.2 — .
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Figure 10.5 Parameter plot for data combination (all users)



Table 10.2 The utility functions for RP, SP and mixed RP/SP models for all

users
Yariables Coefficients
Model Utility Function e
R abis) Estimated
Model 1 V,=6;"CAR +6]' PT constant,
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The utility functions for Model-1 (RP model), Model-2 (SP model) and Model_3
(mixed RP/SP model) are given in Table 10.2. The coefficients of the RP, SP and

mixed RP/SP models for all users are presented in Table 10.3.

As shown in Table 10.3, all the variables have the logical signs and most of them
" are statistically significant at 95% level. It appears that car users and public
transport users make relatively less frequent shopping trips (positive signs of
CAR and PT) as discussed before in Section 9.3. The coefficient of “congestion
charging plus parking costs” is statistically significant at 95% level with a logical
sign (negative sign). This implies that as the value of congestion charging plus
parking costs increases, lower frequencies of shopping trips at the central area
are expected; a result which is mainly applicable to the car users. The t-values in
the three models are comparable, although it is difficult to draw specific
conclusions on these values since the number of observations is different in the
joint model. For the mixed RP/SP model, the results show a statistically
significant scaling parameter of 1.099 suggesting that the SP data have less
random noise than the RP data. This result could also be reinforced by the higher
£(0) of the SP model.

These results are encouraging in terms of the utilisation of logistic regression
techniques and mixed logit in trip generation modelling Further investigations
and applications however are still needed in this arca. It should be mentioned
here that the quality of data is a crucial factor for obtaining good quality models.
That is in particular important when combining more than one type or source of

data, for example in the joint estimation of RP/|SP models.

Similarly, trip generation models (i.e. RP, SP and Joint RP/SP models) for the
car users were calibrated. A graph is plotted for the parameters estimated from
the RP against the parameters estimated from SP models for the car users (Figure
10.6). From the figure, it appears that the variables (AGE1, SOCI2, LOCAI and
PARKCOST) are best included as RP specific, the variables (AGEl, SOCI2,
LOCAl and PARK_CC) are SP specific while the variables (LOCA2 and

GENDER) are included as common variables.
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Table 10.3 Mixed RP/SP models for shopping trip generation for all users

Variables (option) Model-1 Model-2 Model-3
(RP) (SP) (Mixed RP/SP)
Constant (2) -1.009 (-3.0) 5 -0.807 (-3.1)
Constant (4) - -0.813 (-2.4) -1.006 (-3.2)
CAR (1) 0.283 (1.0) - 0.214 (0.9)
CAR (3) - 0.566 (1.7) 0.327 (1.5)
PT (1) 0.567 (2.4) - 0.646 (3.7)
PT (3) . 0.825 (3.5) 0.630 (2.8)
AGEI (2,4) 0.562 (3.4) 0.621 (3.7) 0.568 (4.2)
CARO (2) 0.282 (1.6) - 0.230 (1.6)
CARO (4) - 0.416 (2.4) 0.426 (2.5)
SOCII (2) 0.228 (1.0) - 0.195 (1.1)
SOCI1 (4) . 0.145 (0.7) 0.161 (1.0)
SOCI2 (2,4) 0.264 (1.3) 0.318 (1.6) 0.278 (2.0)
LOCA1 (2) 1.347 (6.2) - 1.225 (6.6)
LOCALI (4) . 0.998 (4.5) 1.113 (3.4)
LOCA2 (2) 0.699 (3.8) - 0.621 (3.7)
LOCA2 (4) b 0.496 (2.6) 0.537 (2.6)
GENDER(2,4) 0.134 (0.9) 0.156 (1.0) 0.138(1.3)
PARKCOST (2) -0.120 (-2.2) : -0.225 (-4.3)
PARK CC (4) - -0.159 (-2.5) -0.103(-2.2)
u - - 1.099 (3.9)
Initial log-likelihood -608.583 -608.583 -2434.333
Likelihood " i 2396.913
constants only
Final log-likelihood -545.310 -521.651 -2280.213
pA(0) 0.104 0.143 0.063
p(c) 0.088 0.103 0.049
n 878 878 1,756

The options used in modelling:

1= infrequent (RP) - less than once a week

2 =frequent/ very frequent (RP) - one and more trips a week
3 = infrequent (SP) - less than once a week

4 = frequent/ very frequent (SP) - one and more trips a week
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Figure 10.6 Parameter plot for data combination (car users)

The coefficients of the RP, SP and mixed RP/SP models for car users are

presented in Table 10.4.

Table 10.4 Mixed RP/SP models for shopping trip generation for car users

Variables Model-4 Model-5 Model-6

(Option) (RP) (SP) (Mixed RP/SP)
Constant (2) -1.734 (-4.6) . -1.281 (-3.6)
Constant (4) - -1.519(-3.4)  -2.499 (-3.8)
AGEIl (2) 0.395 (1.2) - 0.491 (1.6)
AGEI (4) ; 0.619 (1.8) 0.636 (1.5)
SOCI2 (2) 0.344 (1.1) - 0.422 (1.5)
SOCI2 (4) . 0.380 (1.2) 0.365 (1.0)
LOCAI1 (2) 1.854 (4.6) - 1.783 (4.9)
LOCALI (4) . 0.877 (2.0) 1.612 (3.0)
LOCA2 (2, 4) 1.548 (4.4)  1.129(3.0) 1.484 (4.6)
GENDER(2,4) 0.369 (1.2)  0.345(1.1) 0.411(1.7)
PARKCOST (2)  -0.125(-2.1) ; -0.327 (-5.2)
PARK CC (4) : 0.191 (-2.7)  -0.046 (-0.7)
n . ; 0.822 (3.2)
Initial likelihood -164.276 -164.276 -657.104
Final likelihood -134.978 -121.828 -576.289
PX0)) 0.178 0.258 0.123
p(c) 0.124 0.092 0.066
n 237 237 474

The options used in modelling:

1 = infrequent (RP) - less than once a week

2 = frequent/ very frequent (RP) - one and more trips a week
3 = infrequent (SP) - less than once a week

4 = frequent/ very frequent (SP) - one and more trips a week

(3%
o
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All the variables which have been included in the three models have the logical
signs and most of them are statistically significant at 95% level, apart from the
coefficient of the variable representing parking plus congestion costs in the
combined model. However, the results show that the coefficient of congestion
charging plus parking costs is statistically significant at 95% level with a logical
sign (negative sign) for car users. As before, this implies that as the value of
congestion charging increases, lower frequency of shopping trips at the central
areas are expected for car users. For the mixed RP/SP model, the results show a
scaling parameter of 0.822 suggesting that the SP data have more random noise

than the RP data.

104 FACTORS AFFECTING THE CHANGE OF SHOPPING
FREQUENCY TO THE CITY CENTRE

In this section a MNL model is used to investigate how people’s social economic
status will impact on the change of shopping frequency if a congestion charge

was applied.

In the model,'the dependent variable is the change of shopping frequency defined
as below:

1 = to reduce shopping frequency (may shop less or go somewhere else);

2 = not to change; and

3 = to increase their shopping frequency (may shop over other time or change

mode).

See Table 10.1 for the variables used in this section. In the Houschold Survey, a
question was asked why the respondents would increase or decrease their
shopping trips if the congestion charge was introduced. The results from this
question are included in this analysis. Those who say the congestion charge is
very costly and that the congestion charge is inconvenient would be expected to
decrease their trips. On the other hand, for those who say it would be less
congested, it would be easier to go to and from the city centre, and as public

transport would improve if a congestion charge is applied this would be expected
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to increase their trips. The utility functions in the MNL model (MNL-7) are
shown in Table 10.5.

Table 10.5 The utility functions in MNL-7

Variables
e A (see Table 10.1 for  Coefficients to
G LG D definition of be estimated
‘ variables)
Vi =constant, +0,,,CAR+6,,,,CARO AGEl, CARO, constant,
+ 0, LOCA2+0,,,, CCOSTLY é‘égg :EZR constant,,
T emcanverrINCONVEN PARKCO,ST ()ulr ’ omr() ’
CCOSTLY‘ ()Imull ’ 0. costly
V=0 INCONVEN
LESSCONG. 0”1“!"\1‘" ()
Vy = constant, + 6,,,,,,, LESSCONG ~ EASIGF, lesscong * Vearig/ *
+0,,,, EASIGF PTIMPROVE (2
+6 pimpro TIMPROVE

Table 10.6 shows the results of the MNL model. All the coefficients in the model
have the correct signs with high values of p?. As shown in the table, people who
own no cars are less likely to reduce their shopping frequency (negative
coefficient for CARO in utility one in Model-7) and car users are more likely to
reduce their shopping frequency which is logical (positive coefficient for CAR in

utility one in Model-7).

From the model results, it appears that shoppers who live in the city centre and
inter-cordon zones are more likely to increase shopping trips (positive
coefficients for LOCA12 in utility one in Model 7). This indicates that
congestion charge would impact more on people living in the city centre and
inter-cordon zone. Age and social group have not been found to be statically

significant in the model.
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Table 10.6 MNL model — shoppers who would change their shopping

frequency
Model-7
(MNL - all users)
Variables
Coefficients Mean of the | Mean*Coeffic
(t-ratios) Variables ient
Constant (1) -4.261 (-10.2) - -
Constant (3) -5.608 (-9.5) - -
CAR (1) 0.533 (1.5) 0.270 0.144
CARO (1) -1.088 (-2.4) 0.361 -0.393
LOCAI12 (1) 1.419 (3.8) 0.665 0.944
CCOSTLY (1) 3.661 (10.4) 0.108 0.396
INCONVEN (1) 2.598 (6.3) 0.064 0.166
LESSCONG (3) 6.123 (7.0) 0.011 0.070
EASIGF (3) 3.055 (1.9) 0.007 0.021
PTIMPROV (3) 4.544 (4.1) 0.008 0.036
Initial likelihood -964.582
Likelihood with -385.308
constants only
Final likelihood -194.867
p*(0) 0.798
p(c) 0.494
N 878

The options used in modelling:

1 = to decrease

2 =same

3 = to increase

As well as the cost incurred by the congestion charging, from Table 10.6, it
seems that the shoppers to the city centre are also dissatisfied with the

inconvenience of the congestion charging system (positive coefficients for

CCOSTLY and INCONVEN in the utility 1 in Model-7).

On the other hand, it seems that there could be some positive impacts of
introducing congestion charging on the frequency of shopping trips to the city
centre since there will be less crowded / less congestion, it could be easier to go
to and from the City Centre. This is evident from the model (positive coefficients
of LESSCONG AND EASIGF COEFFICIENTS in utility 3 in Model-7).
Moreover, public transport will have improved levels of service which might

contribute to increasing frequency of shopping trips to the city centre. This is
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also evident from the model (positive coefficients of PTIMPROV in utility 3 in
Model-7).

To further investigate the results, the values of the relative importance of each
variable have also been worked out (Table 10.6). It is clear that the two constants
in this model are relatively large, and statistically significant. Moreover, the
location of the shoppers seems to have strong influence on shoppers® willingness
to change their shopping frequency. Similarly, car ownership and the
introduction of congestion charging in the city centre will also affect frequency
of shopping trips. These results again support the use and further investigations

of logistic regression in modelling trip generation and its applications.

10.5 SUMMARY

This chapter presents a further investigation of the utilisation of logistic
regression in trip generation modelling. Two sets of models were calibrated
using logistic regression techniques in this chapter to investigate impacts of the
introduction of transport policies (congestion charging and parking costs) in the
city céntre; firstly, models for all users and secondly for car users. Revealed
Preference (RP), Stated Preference (SP) and mixed RP/SP models were assessed
and compared. A variable to represent the congestion charge as well as parking

costs in the city centre is included in the models.

The results of the model estimations are mostly statistically significant at 95%
level. The calibrated models show that as a result of the introduction of
congestion charging, car users would tend to reduce the frequency of their
shopping trips to the city centre. Shoppers who are living outside the outer

cordon are less likely to reduce their shopping trips.

Although the introduction of congestion charging would have negative impacts
on shopping trips to the city centre as a result of the costs incurred as well as the
inconvenience experienced by the shoppers, it seems that there might be positive
impacts of congestion charging since it would result in less congestion as well as

improvements of the public transport system hence more shopping trips.

232



CHAPTER 11 MODELLING TRANSPORT
ACCESSIBILITY IN TRIP GENERATION MODELS

In Chapter 3, various transport accessibility measures that had been previously
used in models of trip generation were reviewed. As discussed, in most of those
studies, the characteristics of the transport system have been included in the
models but only in terms of the “observed” characteristics of the public transport
services as well as transport infrastructure/network (for example, time or
generalised cost functions). However, how people really think of the transport
system, their perceptions and experiences that underlie attitudes, beliefs and the

consequent behaviour were not considered in previous models.

In this chapter, measures of transport accessibility have been investigated for
inclusion in trip generation models taking into account not only the
characteristics of the transport system but also the perceived level of service of
the system experienced by the individual users. The measures have only been
investigated in the case of the public transport services but the approach could be
similarly applicable to private transport. A limited disaggregate data set, which
was collected from the Shopper Survey (SS) for shopping trips in Edinburgh as
described in Section 5.2, has been used to calibrate a trip generation model which
includes the accessibility parameters. The results are encouraging although the
very small sample size and the fact that the data was not collected for this type of
analysis prevented further investigations of the proposed methodology.

11.1 TRANSPORT ACCESSIBILITY MEASURES IN THIS STUDY

11.1.1 Introduction

Most of the transport accessibility measures reviewed in Chapter 3 included
opportunities and a deterrence function in the forms of time or generalized costs.
For example, an accessibility measure given by Hanson (1959) for a location (i)
is calculated as the sum of the opportunities available at locations (/) factored by

a deterrence function based upon the travel time between / and j. Another
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example is an accessibility measure for public transport given by Leake and
Huzayyin (1979) which uses service frequency and zonal coverage by bus routes.
More recent work in this area includes that of Daly (1997) who proposed as
accessibility measure for trip generation the logsum of the distribution model,
and Ortuzar et al. (2000) who applied stated preference tools and developed an

access model using multinomial logit modelling techniques. Further discussions

of those studies are given in Chapter 3.

In most of these models, transport system characteristics have only been included
in terms of the “observed” characteristics of the public transport services as well
as transport infrastructures/network, for example, travel time, cost of travel etc.
The perception of the users of the transport system has not been
reflected/included in these models. It might be possible to calibrate models
which include perception of the users of the transport systems to reflect the level
of transport accessibility. One main problem of using the users’ perception as a
factor in the model however, is that how to use the model for future prediction,
In other words, how the forecasting of the perception in the future would be

estimated.

11.1.2 Public transport accessibility to/from city centre

In this section, an illustration of public transport accessibility measures has been
developed in an attempt to reflect the level of service of public transport as
experienced and perceived by the users. The two factors that have been
considered here are the distance travelled from the origin to the city centre as
well as the perceived level of service of public transport as reported by the users,
The distance is included in order to represent the separation between all the
origins and the city centre and the perceived level of service of public transport is

included to represent the users® preferences.

An investigation of the distances travelled and the frequencies of shopping trips
to the city centre was carried out. Firstly, the investigation used the whole data
set. Then, the respondents were split into two groups based on the frequency of
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shopping trips: respondents who make less than a weekly shopping trip and those
who make one or more trips per week. The distances were categorised into seven
categories (0-1.0, 1.1-2.0, 2.1-3.0, 3.1-4.0, 4.1-6.0 and 6.1+ miles) which were
then combined into three categories (0-2.0, 2.1-4.0 and 4.1+ miles) because of
the very low number of respondents in each category. It should be mentioned
here that although this analysis of distances travelled and frequencies of trips is
based on these categories, what we used in the trip generation model was the
actual distance travelled (see Section 11.2). Table 11.1 shows the frequency of
the shopping trips for each category of the distances and the number of

respondents in that category (given in brackets in the table).

Table 11.1 Distance travelled and frequency of shopping trips

Distance Trip Frequency (number of respondents)
Travelled
{;‘i,lees) All data Less than once a One or more
(n=132) week trips (n=60) | trips/week (n=72)
Seven Three Seven Three Seven Three
categories [categories| categories [categories| categories [categories
0-1.0  [2.811(13)| 2.362 | 0.257(6) [ 0.248 | 5.000(7) 3,571 21)
1.1-2.0  [2.072(20)|] (33) | 0.238(6) | (12) [|2857(14) "
2.1-3.0 12164 24)] 2.240 | 0.243(8) | 0.257 [3.125(16) |3 3uq o)
3.1-40 [2348(17)] @D [0274() | (15 [3.800(10) """
4.1-6. - . 3.222 9
1-6.0 | 1.647 (20) 1.24] 0.357 (11) 0.242 9 ’ )
6.1-150 [1456(18)| " zor [0173(7) [ "33 [2:273(11) 2,560 (25)
>15.1  [0.642 (20) 0.189 (15) i 20005 |
Total 1.832 0.247 3.153

In general, it seems that lower shopping trip frequencies are observed as distance
increases which is logical. When investigating the whole data set, it seems that
the trip frequencies decrease as the distances increase in the case of three
distance categories. However, when looking at the detailed categories, the pattern

is not very clear, possibly because of the very small sample size.

When looking at the two groups (respondents who make less than a weekly
shopping trip and those who make one or more trips/week) again the pattern is

not very clear when investigating the detailed categories. Although the general



pattern remains (i.e. lower frequencies of the shopping trips as the distances
increase) for those who are observed to have made more than or equal to weekly
trips (n=72 respondents), it is not the case for the first group, those who are less
frequent shoppers. In that case the pattern is not consistent again maybe due to
the sample size which is 60 respondents split to three classes of 12, 15 and 33

respondents respectively.

Similarly, as the perceived level of service of the public transport increases, the
number of shopping trips increases (Table 11.2) for the whole data set and for the
higher frequencies of shopping trips data set. However, when the number of
respondents is low the pattern is inconsistent (for example there is a higher trip
frequency observed with a very poor perceived level of service because of the
small sample size of just eight respondents). On the other hand, for those who are
making less frequent trips (less than weekly), it seems that the pattern is not

clear, which is understandable.

These two variables; the distance travelled and the perception of public transport
have been investigated in the trip generation models to represent the accessibility
of the transport system and the perception of the users as discussed in Section
9.2. Two models were calibrated for the two groups of data sets as discussed

above, despite the small sample size.

Table 11.2 Perception of public transport and frequency of shopping trips

Percention of Trip Frequency (number of respondents)
Public
Less than once Weekl
Transport All_ data a week trips or more tilps
(n=132) (n=60) (n=72)
Very poor | 1.813 (8) 0.500 (1) 2.000 (7)
Poor 1.636 (8) [1.673 (55)[ 0.218 (5) |0.271 (26)] 4.000 (3) [2.931 (29)
Adequate  |1.653 (39) 0.273 (20) 3.105 (19) .
Good  [1.906 (52)[1.906 (52)[0.189 (22)[0.187 (22)3.167 (30)[3.167 (30)
Very good  [2.026 (25)[2.026 (25)]0.305 (12)[0.305 (12)/3.615 (13)[3.615 (13)
Total 1.832 0.247 3.153
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11.1.3 A measure of public transport accessibility

It is assumed here that the public transport accessibility to/from the city centre is
a function of the characteristics of the transport system to/from the city centre,

such as distance, fare, travelling/waiting times, etc., as well as the perceived level

of service of the public transport system.

A simple form of this function could be that transport accessibility is directly
proportional to how the public transport service is perceived by the users and
inversely proportional to the distance to/from the city centre, Thercfore, this can

be expressed as:

accy =« pi, {IR))

(11.2)

accl!

1
d!l

where

acc'is the public transport accessibility measure for individual k at origin /;
P!, is the perceived level of service of public transport by individual &; and
d, is the distance between the respondent’s home and the shopping location at

the city centre j.

If we consider a particular destination (for example, the city centre) and distances
from origins (i) which could be a zone or a houschold cte., using equation (11.1)
and (11.2), this combined transport accessibility measure for public transport

services could be expressed as:

Pl (11.3)
exp(4 *d,)

accl' =
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Where:
A is a parameter to be estimated. This parameter could be thought of as a

deterrence factor to represent the separation between all the origins and the city

centre. A higher value of A indicates that distance is more of a deterrent. The
exponential function is used for convenience since, unlike the power function for
example, it is bounded (Kanafani, 1983). That is, acc}' does not approach
infinity when d, approaches zero or increase quickly as d, decreases. The value
of the parameter A would be jointly calibrated in the model as well as other

parameters of the equation for trip generation. It should be noted that the above

relation could also be investigated using other forms.

11.1.4 Example illustrating transport accessibility measures in trip

generation models

To illustrate the calibration of the transport accessibility measures with an
example, let us assume an area with a number of origins and distances (¢.g. 0, §,
10 miles etc.) from the City Centre (which in this case represents the shopping
location). Further, assume that the perception of the level of service of public
transport is indicated using a 5 points scale ranging from 1 (lowest perceived
level of service) to 5 (highest perceived level of service). Table 11.3 shows the
calculation of the transport accessibility measures as discussed in Section 11.1.3

above using:

(1) The distance from each origin to the City Centre (d, )
(2) The perceived level of service of public transport ( pt, ); and
(3) A combined transport accessibility measure (acc]') as discussed carlier

in this section.
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Table 11.3 The calculation of public transport accessibility measures

Indicator of Public  Distance between Zones o Lf
Transport Services j and i (miles) ol o m
Pl d, (1=0.10)
1 0 1.00
1 5 0.61
1 10 0.37
5 0 5.00
5 5 3.03
5 10 1.84

It should be noted that the perceived level of service of public transport by
individuals is considered, in the model, as a continuous variable ranging from |
to 5, and then it is combined with the distances from each origin to the shopping
location. The lowest possible value for transport accessibility measure in this
case approaches 0 where the perceived level of service of public transport is at its

lowest value (i.e. pt,=1) and the distance between the origin and the city centre
is very large (i.e. d,>10 miles or s0). On the other hand, the maximum value of
this measure is 5 where the perceived level of service of public transport reaches
the highest value (i.e. pr,=5) and the distance between the origin and the city
centre is very small (i.e. the origin is within the city centre and @ =0). In this

way it is seen that, in general, as distance from the origin to the city centre
increases, the combined transport accessibility measure decreases. Similarly, as
the perceived level of service decreases, also the transport accessibility measure

decreases.

These accessibility measures were included in the linear trip generation models
that will be presented in Section 11.2 and the results show that they are

statistically significant at the 95% level of confidence.

11.1.5 Other possible accessibility measures

It should be noted here that distance is not only a possible measure to represent

the characteristics of a transport system but obviously it is an casy factor to
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measure. It is also possible, however, to use other factors instead of or as well as
distance. These factors could include costs, time, and so on. For example, one

can use costs and time instead of the distance as in the following equation:

= al 1.4
T = (A *C, + A *. +-) (1.4
Xpia, "L, +A4 7,

where
C, is the costs (e.g. public transport fare) from the respondent’s home to the

shopping location;
t, is the journey time from the respondent’s home to the shopping location; and

A, and 4, are specific coefficients associated with cost and time respectively.

But the calibration of this model would require data on costs and/or time of
travel between the origin and the shopping location (i.e. city centre) which were

not available in this current survey.

These forms of models could be further investigated in future rescarch. The

following section discusses the results for the transport accessibility measure.

112 SHOPPING TRIP GENERATION MODELS WITH TRANSPORT
ACCESSIBILITY MEASURES FOR PUBLIC TRANSPORT
SERVICES

The data used in this analysis were obtained from the Shopper Survey for
shopping trips in Edinburgh as discussed in Section 5.3 and Section 11.1.2. It
should be noted here that this data was not collected for the purpose of the
current investigation. Therefore, the results obtained are not too solid as
discussed earlier in this section. Morcover, the small sample size was also a
contributing factor to the less than ideal quality of the results. Data from
individuals whose main reason for the journey was shopping for groceries or
other items were used to calibrate the models. Tourists, and respondents who

work or use other services, were excluded from the data, since shopping in the
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city centre was not their main journey purpose. In total, there were 132
respondents included in the dataset, which is not a large sample for model
calibration to start with, but it was further grouped into two groups based on the
frequency of shopping trips as discussed in Section 11.1.2. The independent

variables in these models are presented in Table 11.4

Table 11.4 Independent variables in the shopping trip generation models

Variables : Description

EXPEND A continuous variable which describes the respondent’s
expenditure per shopping trip.

AGE2 A dummy variable which takes the value of 1 if respondent’s
age is in the 26-54 category, 0 otherwise.

AGE3 A dummy variable which takes the value of 1 if respondent’s
age is in the over 55 category, 0 otherwise.

GENDER A dummy variable which takes the value of | if respondent is
a male, 0 female.

CARI A dummy variable which takes the value of 1 if respondent’s
household owns one car, 0 otherwise.

INV_DIST A continuous variable which calculated as the inverse of the
distance between the respondent’s home and the shopping
location.

T A continuous variable which describes the respondent’s
perception of current public transport services to and from the
City Centre.

ACC A continuous variable which corresponds to the accessibility

as discussed in Section 9.1.3 and Equation 9.3.

The respondent’s expenditure per shopping trip would be expected to have a
negative effect on the trips. This is because the more any individual spends on
one shopping trip the less number of trips would be expected to be made by
him/her to the city centre. People in age group two (26-54) would be expected to
have a negative impact on the shopping trips as most of them should be in the
work force. On the other hand, people in age group three (55 and more) would be
expected to make more shopping trips. An increase in the distance between home

and shopping area should make the respondent make fewer shopping trips. When
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the respondent’s perception of public transport services is higher, the respondent
is expected to make more trips. The accessibility measure which combines the
distance and the respondent’s perception of public transport is expected to have a
positive impact on the trips. However, and as discussed, probably because of the
small sample size of the data and after many attempts, it was not possible to
calibrate a statistically significant model which included this combined function.
Therefore it was decided to only investigate the distance and the perception as

two independent variables in the model but not the combined function.

Two set of models were calibrated using the shopping trip data of this survey.
Firstly, basic trip generation models with the basic variables (i.e. expenditure,
gender, age and car ownership) as shown in Table 11.5. The first model in this
case (Model-1) was calibrated for the whole data set. Then the data was
classified into two sets based on the frequency of shopping trips (i.e. less than
weekly trips and equal to or more than weekly trips). Secondly, trip generation
models with the above variables as well as two extra variables (distance and
perception of public transport), which represent the transport accessibility in the
same way as discussed earlier in this chapter, were calibrated. In this case, also
three models were used: one for the whole data set, another for the less than
weekly shopping trips and another for the equal to or more than weekly shopping
trips. However, for the accessibility function itself, it was not possible to

successfully calibrate using this data set (Table 11.6).

Table 11.5 Linear regression trip generation models

. Model-2 Model-3

Variables Model-1 (<weekly) (>=weekly)
Constant 1.884 (4.4) 0.193 (4.1) 3.267 (5.6)
EXPEND -0.001 (-0.4) 2.90E-04 (1.2) 3.49E-03 (0.9)
AGE2 -0.467(-1.0) -0.010 (-0.2) -0.523 (-0.8)
AGE3 0.187(0.4) 0.051 (0.9) -0.200 (-0.3)
GENDER -0.195 (-0.5) 0.050 (1.0) -0.184 (-0.3)
CARI 0.620 (1.6) 0.052 (1.1) 0.048 (0.1)
R? 0.044 0.068 0.023
n 132 60 72




Table 11.6 Linear regression trip generation models with accessibility

variables
; Model-5 Model-6

Variables Model-4 (<weekly) (>=weekly)
Constant 0.876 (1.2) 0.246 (2.5) 1.394 (1.4)
EXPEND -0.001 (-0.5) 3.10E-04 (1.3) 1.38E-03 (0.4)
AGE2 -0.489 (-1.1) -0.028 (-0.5) -0.513 (-0.9)
AGE3 0.065 (0.1) 0.049 (0.9) -0.381 (-0.7)
GENDER -0.202 (-0.5) 0.053 (1.1) -0.184 (-0.3)
CARI 0.539(1.4) 0.049 (1.0) 0.112(0.2)
PT 0.096 (0.6) -0.019 (-0.8) 0.328 (1.6)
INV DIST 2.052 (3.1) 0.084 (1.1) 2.167 (2.3)
R* 0.119 0.093 0.134
n 132 60 72

From Table 11.5 it appears that most of the independent variables are not
statistically significant at 95% level. This may be due to the small sample size of
the data set used in this section. In addition, recall the discussion in Section 5.3,
there were some missing data in the survey and some assumptions about trip

patterns were made which might have affected the results.

However, from Table 11.6, it is shown that the three models including some Kind
of accessibility measure (i.e. the distance and the perception of the public
transport services) have coefficients with logical signs as well as a slightly
improved R’ values. The R’ values are all too low, suggesting that a lincar
relation may not warranted. This also could be partly due to other relevant
factors, such as income or cost of travel has not been included in the models. It is
noted here that with all the efforts it was not possible to obtain a more
statistically significant model with or without the accessibility function which

has been discussed in this chapter due to data problems.

From general inspection of the results in Table 11.5 and Table 11.6, it scems that
shoppers whose age group is 25-54 appear to be making less shopping trips than
other groups (negative sign for AGE2) in all the models. This could be because

people in this group are in employment and have less time for shopping. Car



owners (CAR1) seem to be more frequent shoppers than those who own no cars,

which could reflect the socio-economic status of the households.

From Table 11.6, the inverse of the distance from home to city centre
(INV_DIST) has a positive sign and is statistically significant at the 95% level;
this indicates that as distance decreases individuals make more trips to the city
centre. The respondents’ opinion of public transport services has a positive
influence on the number of shopping trips made (positive sign of PT in Table
11.6). This indicates that people makes more shopping trips to city centre by

public transport as the level of satisfaction increases.

The overall statistical performance of the models is poor. The signs of some of
the variables are not logical and would acquire further investigation using a
different data set. For example the EXPEND variable which appears to have a
positive sign where it is expected to have a negative sign. However the positive
outcome from this analysis is that there are evidences that the factors which
represent the accessibility of the transport system such as the distance from the
origin to the shopping centre as well as the perception of the users of the
transport system are both statistically significant and scem reasonable to include

in the model.

11.3 SUMMARY

Transport accessibility measures for public transport have been investigated and
included as independent variables in trip generation models using disaggregate
data. The approach appears to be logical and interesting. In this case, the distance
to the city centre has been the only relevant variable which could be used to
represent the accessibility of the transport system, The perceived quality of the
public transport services has also been included in the models to represent the

perception of the users.

Two sets of models have been calibrated. Firstly a set of models were calibrated

with the basic and conventional factors of trip gencration models only. In this
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case, a model was calibrated using the whole data set and two models were
calibrated classifying the frequency of shopping trips to less than weekly and
equal to or more than weekly trips. The second set of models includes variables
which are related to the accessibility of the transport system, in this case the
distance and the perception of the users of the transport system.

Although the approach seems rational and appealing the data set which has been

used to investigate this concept is not the most appropriate data, hence the results

are not statistically significant. Further work in this area is definitely needed.
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CHAPTER 12 DISCUSSIONS

121 WHY USING LOGISTIC ANALYSIS TO MODEL TRIP
GENERATION?

There are a number of reasons which justify the investigation and adoption of

logistic regression to model trip generation and also the inclusion of policy

factors in trip generation models. These include:

1.

The main approaches which are used in modelling and predicting trip
generations to date have had the least attention from modellers and
analysts of travel demand forecasting. Whilst there has been a huge
amount of research and investigations in the literature and mcthodologices
of mode, route, destinations and departure time choice modelling (sce for
example Garson, 2002, Ortazar, 1983; Bhat, 1995; Bhat, 1998a; Ortizar
and Willumsen, 2001, Bhat, 1998b; Saleh and Farrell, 2005, Yai et al.,
1997, Daly, 1997) there have been very little, if any advances on the
techniques and approaches of modelling trip gencration.

Moreover, since the four stages models are all dependent and related, it
does make sense to use similar techniques and principles of modelling of
the four stages. In reality, while mode choice modelling, destination
choice and route choice mostly employ logistic regression modelling, trip
generation still only employs category analysis and lincar regression
analysis techniques despite all the well recognised and documented
drawback of such techniques.

It has been well recognised and documented that policy and accessibility
factors do not only affect mode, destination and route choice but also trip
productions and attractions (see for example Hanson (1959), Freeman
(1976), Leake and Huzayyin (1979), Cohn et al., 1996; Daly, 1997 and
others). The inclusion of policy factors in trip generation therefore is
badly needed. Moreover, it has been acknowledged in the literature that
the main drawback of trip generation models is the lack of policy and

accessibility measures.

246



4. Trip generation is the first stage of the conventional four stage transport
model. Any errors in the prediction at this stage will thercfore be carried
over to other stages and affecting their accuracies. Therefore it is

important to investigate and improve the prediction and modelling of trip

generations.

The main aim of this research has been to investigate possible methodologies to
improve performance of trip generation modelling. In order to achicve this aim a
number of objectives have been defined and investigated as discussed in Chapter
1 and concluded in Chapter 13. This chapter presents a discussion of the main

findings and investigations of this thesis.

12.2 GAPS IDENTIFIED IN PREVIOUS RESEARCH

As discussed in Chapter 1, limitations in trip generation techniques and analysis
have been widely recognised in the literature, there have been various
investigations of alternative techniques. Logistic regression analysis, which has
been extensively used in other stages of travel demand modelling (mode, route,
destination and departure time choices), can overcome some of the limitations of
linear regression analysis (i.e. the assumption of lincarity of independent
variables with the dependent variable) and category analysis (i.c. the requirement
of large sample size). It can bring a potential improvement in the performance
over the conventional techniques and provide a behavioural framework that

directly links the number of trips to utility-based consumer and decision-making

theory.

In the meantime, fewer investigations have been focused on including variables
that represents transport policies in trip generation models which can afTect the
trips generated. As to the data used, most trip generation models are calibrated
from aggregate revealed preference (SP) data despite the growing applications of
other sources of data such as disaggregate stated preference data. SP techniques
offer the opportunity to modellers to test impacts of policy measures on travel
behaviour. Finally, this study will attempt to include both the physical
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characteristics of the transport system and the perceived level of service of the

system in the trip generation models.

A

12.3 DEVELOPING METHODOLOGY FOR USING LOGISTIC
ANALYSIS TO MODEL TRIP GENERATION

The logistic regression analysis for work trip generation using NTS data is
presented in Chapter 6. This includes binary, multinomial and nested logit
models. The results show that in principle logistic regression modelling can be used to
model trip generation. This approach will overcome some of the limitations of lincar
regression and category analysis methods as discussed. In the binary model, it is
assumed that the dependent variable is a binary variable to represent the
household making work trips or not. The MNL model assumes that the
probability of a household making a certain number of work trip(s) is a function
of a number of independent variables. The best fit of the models was obtained
with the trips assigned as O trips, 1-2 trips, and 3 or more trips. A nested logit
(NL) mode! was calibrated which assumes trip makers trade off between making

no trips against making 1 or more trips at the first level and at the second level

between 1-2 trips against 3 or more trips.

12.4 PERFORMANCE OF THE MODELS
12.4.1 The performance of logit models

The results in Chapter 6 show that all the calibrated logit models are all
statistically significant at a reasonable level of significance with an overall
goodness of fit. Bearing in mind the limitations of data (as discussed in Chapter
5), all the independent variables in the logit models have logical signs and most
of them are statistically significant. The MNL model shows the best p(0) result
than the NL model with p%(0) value equals to 0.215 while it is equal to 0.149 in
the NL model. The theta parameter in the NL model has an acceptable value of
0.978 which suggests that the MNL is most appropriate in this case. It was also
possible to model trip generation using binary logit models as discussed above.
Of the three binary models calibrated, BLM-3 has the best £(0) with a value of
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0.389 where the number of full time workers has been included as three dummy

variables and the number of cars was treated as a continuous variable.

12.4.2 The performance of category analysis and MCA models

Four techniques of the category analysis, including MCA have been investigated
using NTS data as discussed in Chapter 7. The results of the MCA analysis show
statistically significant models with logical signs of the independent variables.
Taking category analysis as the base for the comparison, and using the Residual
Sum of Squares (RSS) or Error Sum of Squares to assess the overall performance
of the models (Table 12.1), it appears that the results obtained from the MCA 1
model produce the largest sum of errors in the family of category analysis. That
is 11.1% higher than that obtained from the base CA technique. The MCA 2
model does not provide noticeable improvement of the RSS (0.1% higher than
that obtained from the base CA model) over the basic category analysis model.
However, the MCA_3 produces the most reliable model with least RSS values
(7.7% lower than that resulting from the base CA model). Therefore, the MCA 3

has been recommended to be used as the best technique in this family of models.

Table 12.1 Comparison of RSS of category analysis techniques

RSS - Diff from
Models RSS CA %
CA 1,904 .
MCA 1 2,116 11.1%
MCA_2 1,905 0.1%
MCA 3 1,758 -7.7%

12.4.3 The performance of linear regression analysis

Three linear regression models (LM-1, LM-2 and LLM-3) have been calibrated
from the NTS data and the R’ values of the three models are 0.322, 0.326 and
0.272 respectively. The most significant R value here is resulted in LM-2 which
has continuous variables for the number of full time workers and the number of

cars in the household. Therefore, this model was the selected as the best lincar



regression model to be used in Section 8.5 for the prediction and comparisons of

trip generation models using the three techniques.

12.4.4 Comparison of linear regression, category analysis and logistic

analysis models

In this section a comparison of the results obtained from the three modelling
approaches are discussed. The compared models are: the best linear regression
model (LM-2), the basic category analysis model (CA), the best multiple
classification analysis (MCA_3), the best binary logit model (BLM-3),
multinomial logit (MNL) and nested logit (NL) models. The analysis of the
predictions using these models (linear, category analysis and logit) is presented
in Chapter 8. Table 12.2 below shows the comparison of RSS of models from all
the three techniques. The results show that the least RSS values have been
obtained from the MNL model with a value of 1,713, making it best performing
model of all (Table 12.2). This is followed by the linear regression model (1LM-2)
and lastly, the MCA_3 models with their RSS value 1.1% and 2.6% higher than
that of the MNL model. The RSS results of conventional category analysis, the
binary logit model and NL model are 11.2%, 18.9% and 13.4% greater than that

of the MNL (the best performing model) respectively.

Table 12.2 Comparison of RSS of models from all the three techniques

Models RSS RSSNE;) ll‘ﬂ;/tmm
LM-2 1,731 1.1%
CA 1,904 11.2%
MCA 3 1,758 2.6%
BLM 3 2,037 18.9%
MNL model 1,713 -
NL model 1,942 13.4%

The results provide some evidence to support the appropriateness of using
logistic regression analysis for trip generation modelling. The results indicate
that LM2 and MNL are almost identical in their predictions of numbers of trips,

and that the difference in the RSS is 1%. As the lincar regression analysis is the



best known techniques so far for trip generation predictions, the result is
promising in consideration of the limitation of use of the logistic regression
analysis such as data suitability etc. Presumably if the data used was collected
specifically to calibrate this type of models the results might have been even
more convincing. Further research and investigations are still nceded still to
establish whether this improvement is worthwhile for its use in trip generation

prediction or not.

As mentioned before, using logistic regression would also have the added value
of allowing the prediction of the trip frequency as well as the number of trips.

The three MCA methods have been investigated and compared using NTS data.
The results of this research support those results obtained by Guevara and
Thomas (2007) that MCA_l model, which is most commonly used in
applications of trip generation modeling, is the least accurate in the family of
MCA. MCA_2 model did not produce accurate results compared to MCA_3
which showed the most accurate results. Thercfore, MCA_3 has been

recommended for use in practical applications as the preferred category analysis

method.

12.5 TYPES OF VARIABLES

To ignore the impacts of transport measures and policies at the trip generation
stage and only consider them at later choice decisions would be resulting in
inaccurate predictions at this, and all subsequent stages. This has been one of the
main criticisms of trip gencration models. While there are a lot of empirical
evidences that these schemes have resulted in a reduction of number of shopping
and other trips to the central areas, most current trip generation models still do
not include these types of variables. In Chapter 9, lincar and logistic regression
models of trip generation (shopping trips) have been calibrated using the
Edinburgh Housechold Survey data, taking into account parking costs as a

transport policy measure.
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To assess the improvements of the models as a result of including policy
measures (parking costs in this case), the liner regression trip generation model
for car users shows a 6% (Table 9.6) improvement in the prediction of trip
generation than the models without the parking costs. In the binary logit model
for car users (Table 9.9) this variable (parking costs) also shows statistical

significance (a negative sign and t-value = -2.1).

The results from the models suggest that policy measures which would be
implemented in the city centre should have an impact on shopping trip
generation. In this case, an increase in parking costs results in pcople making less

frequent shopping trips to the city centre.

12.6 DATA TYPES

Most trip generation models are calibrated from aggregate revealed preference
(RP) data despite the growing applications of other sources of data such as
disaggregate stated preference (SP) especially in travel demand forccasting,
mainly because of the nature of trip gencration models. SP techniques offer the
opportunity to modellers to test impacts of policy measures on travel behaviour,
Therefore, in principle there is no reason why these techniques cannot be used in
trip generation modelling, especially if logistic regression analysis is used. It
would be very useful to use stated preference techniques to investigate impacts

of transport policies on trip generations as well as other choice models,

In order to achieve this, the SP data from Edinburgh Houschold Survey is used to
calibrate mixed RP/SP logistic regression models for trip gencration taking
account of introducing road user charging as a policy measure as presented in

Chapter 10.

The results show that the model calibrated using SP data improves the p’(O)
results by 72% than the model calibrated using RP data (p*(0) increases from

0.258 to 0.178), which is a significant improvement.
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In addition, in this research the technique of mixed RP/SP in modelling trip
generation has been investigated. For the mixed RP/SP model, the results show a
scaling parameter of 0.822 suggesting that the SP data have more random noise
than the RP data. Although the results are not very statistically significant here

but again this has been a challenging achievement and further research should be

developed in this area.

The calibrated models show that as a result of the introduction of congestion
charging, car users would tend to reduce the frequency of their shopping trips to
the city centre, which is logical. Moreover, shoppers who are living outside the
outer cordon are less likely to reduce their shopping trips. However, the
introduction of congestion charging would have negative impacts on shopping
trips to the city centre as a result of the costs incurred. The results of the model

estimations confirm the potential of using stated preference data in trip

generation models.

12.7 THE ACCESSIBILITY FUNCTION

Accessibility of the transport system has been recognised and investigated in the
literature but has always been limited to variables representing the characteristics
of the transport system. Variables which represent the perceived level of service
of that system have not been investigated in previous rescarch, In this rescarch, a
public transport accessibility measure is calibrated as a function of the distance
from the city centre and the perceived level of service of the public transport
system by the users using the Shoppers’ Survey data. These results are presented

in Chapter 11,

The proposed accessibility measure (Mochb in Table 11.6) shows a logical
sign, i.e. when accessibility increases more trips are expected. Although the
approach seems rational and appealing, the results in this case are not statistically
significant. However it seems that at least there is evidence for the importance of

representing the accessibility of the transport system as well as the perception of
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the users of the transport system. Further work in this area is therefore

recommended.

12.8 SUMMARY

This research shows that logistic regression analysis is an appropriate technique
to model trip generation and underlines the importance and relevance of
including transport policy measures and accessibility in trip gencration models.
These two areas have been identified in the literature but not much researched. In
this research logistic regression analysis has been used to calibrate trip
generation models which also include policy measures. The results also confirm

the potential of using stated preference data in trip generation modelling.

As mentioned earlier, the results from logistic regression analysis only improve
slightly in RSS from that of linear regression model. Although logistic regression
analysis provides an alternative methodology to trip generation modelling, with
the limitations of the drawbacks of using the method such as data suitability,
further research and investigations are still needed to establish the level of
improvement of logistic regression analysis over lincar regression analysis in trip

generation prediction.

In addition, the investigations in this thesis confirm that MCA_l method, one of
the most commonly used techniques in trip generation models, is the least
accurate model in the family of MCA and that MCA_3 proved to be the most
accurate method. Therefore, MCA_3 should be recommended for use as the

preferred category analysis method. Next Chapter concludes the work.
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CHAPTER 13 CONCLUSIONS

13.1 INTRODUCTION AND GENERAL CONCLUSIONS

Trip generation is defined as the number of individual trips generated in a given
period of time. The purpose of this stage is to predict the total number of trips
which are generated from and attracted to each zone, as a function of its land-use
and socio-economic characteristics. Trip gencration analysis, however, has
limitations in terms of the techniques, data used and type of variables. These
limitations have been recognised in the literature and acknowledged that they

limit the efficiency of trip generation models to produce accurate predictions.

Firstly, trip generation analysis has been mostly carried out using linear
regression analysis and category analysis. Both approaches have their strengths
and weaknesses. Linear regression analysis is casy and simple techniques and
there are statistical tests for the goodness of fit of the model. However, the
assumption of linearity of cach of the independent variables with the dependent
variables is restrictive. Unreasonable predictions from the models can be
obtained as a result of the lack of built-in upper and lower limits to the number of
trips, or could result in negative number of trips when the covariate values are
relatively low. In addition, the assumption that the number of trips is
approximately continuous can be questioned when typical values for the number
of trips are relatively low. The link between number of trips and covariates in a
linear regression lacks a behavioural justification such as supported by the theory

of random utility (¢.g. Ben-Akiva and Lerman, 1985).

In category analysis on the other hand, the large sample size required to calibrate
the trip rates as well as the absence of statistical tests for the overall goodness of
fit of the models undermines this method reliability. Multiple classification
analysis (MCA) methods provide improved techniques to overcome some of the
shortcomings of category analysis approach, however still the main limitations of

. category analysis methods apply.
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Another main criticism of trip generation models is the absence of any variables
that represent transport policies and measures that affect the trips generated (e.g.
public transport, pricing and parking policies). The impacts of these policies are
always considered in mode, route, destination and departure time choices.
However, not many investigations of their impacts on trip generations have been
reported. Failing to include effects of transport measures and policics at the first
stage (TG), would certainly result in inaccurate predictions at all subsequent

stages.

Type of data used in trip generation models are mainly revealed preference data
despite the growing applications of other sources of data such as stated
preference. Stated preference techniques offer the opportunity to modellers to

test impacts of policy behaviour.

Logistic regression analysis which has been used in modelling other travel
choices such as mode, route and destination provides an appropriate approach
which could overcome many of the restrictive limitations of the current trip
generation techniques. However, to the knowledge of the author, not many

applications in trip generation modelling using logistic regression have been

reported to date.

13.2 ACHIEVING THE AIM AND OBJECTIVES OF THIS RESEARCH

The aim of this research is to investigate possible methodologies to improve
performance of trip generation modelling. In order to achieve this aim a number

of objectives have been defined as discussed below.

The first objective of this research has been to investigate appropriateness of

logistic regression analysis for modelling trip generation.

In order to do that, a number of data sets have been identified and analysed to

carry out the investigations. National Travel Survey (NTS) data has been used to
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calibrate trip generation models using logistic analysis. National Travel Survey is
a household survey of travel covering residents of Great Britain (GB) and
includes information on the purpose of each trip made, the modes of transport,
the timing of the trip, the origin and destination and demographic data. The
logistic regression models considered include binary logistic models,
multinomial logit (MNL) and nested logit (NL) models as presented in Chapter
6. In the binary model, it is assumed that the dependent variable is a binary
variable to represent the household making work trips or not. In the MNL model,
it is assumed that the probability of a housechold making a certain number of
work trip(s) is a function of a number of independent variables. A number of
trials for the structure of the model and for the allocation of variables to each
utility have been carried out. The best fit of the models was obtained with the
trips assigned as follows: {0 trips, 1-2 trips, 3 or more trips}. A nested logit (NL)
model was also calibrated with the nested structure. In this case, trip makers are
being assumed to be trading off between making no trips against making ! or
more trips. Then, at the second level, a trade off between 1-2 trips against 3 or

more trips is assumed.

The results of this analysis are very encouraging as an appropriate methodology
has been devised to model trip generation using cach of the three approaches of
logistic regression. The results show all the independent variables in the
calibrated models have logical signs and most of them are statistically

significant,

The second objective of this research is to investigate, analyse and compare irip

generation models using logistic regression, linear regression and category

analysis including multiple classification analysis.

The same data sct has been used to calibrate trip gencration models using the
conventional (lincar regression and category analysis) and presented in Chapter
7. A number of multiple classification analysis techniques which have been
recently developed (Guevara and Thomas, 2007) but not widely empirically
tested. Trip generation analysis of work trips have also been calibrated and
analysed using MCA (Chapter 7). The results also show statistically significant
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models with logical signs of the independent variables and a reasonable overall

goodness of fit of the model.

The real test of the models however, would be the accuracy of the predictions.
As discussed in Chapter 5, about 73% of the data was used to calibrate the
models and the 27% was used for model prediction. A comparison of the model
predictions using all techniques (that is linear regression, category analysis
including multiple classification analysis and logistic regression models (binary,
MNL and NL models)) were performed and the results are presented in Chapter
8. The results show that the MNL model outperformed all the other models,
followed by the linear regression model (LM_2) and MCA_3 models. These
three modelling approaches performed better than the other techniques (i.c.

binary logit and nested logit models).

These results provide strong evidence for firstly, the appropriateness of using
logistic regression analysis for modelling trip generation and sccondly, the
prediction of trip generation is best using the MNL model and linecar regression
analysis. Using logistic regression would also have the added value of allowing

the prediction of the trip frequency as well as the number of trips.

The three MCA methods have been investigated using NTS data. The results in
this research support those obtained by Guevara and Thomas (2007) that MCA_I
method, which is most commonly used in applications of trip gencration
modeling, is the least accurate model in the family of MCA, MCA_2 method
also produced no accurate results compared to MCA_3 which proved to be the
most accurate method, and therefore should be recommended for use as the

preferred category analysis method.

The third objective of this research is to investigate the impacts of including
Jactors 1o represents transport policy in the trip generation models on their

performance.

In order to investigate that, the Edinburgh Houschold Survey (HS) data has been
analysed to carry out the investigations. The survey included information on the
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socio economic data including age, gender, car ownership and social grade,
mode of travel for shopping and location of residence. Respondents were also
asked to report on their non-food shopping trip frequency into the city centre ina

week and the parking costs.

Linear regression and logistic analysis have been utilised to calibrate shopping
trip generation models. The results from the models (Chapter 9) suggest that
policy measures which would be implemented in the city centre should have an
impact on shopping trip generation. For example, in this casc an increase in
parking costs results in people making less frequent shopping trips to the city

centre.

In this research, the fourth objective is to investigate the use of stated preference

data for calibrating trip generation models.

In order to achieve this, the SP data from Edinburgh Houschold Survey is used to
calibrate mixed RP/SP logistic regression models for trip generation taking
account of introducing road user charging as a policy measure. These results are
presented in Chapter 10. The calibrated models show that as a result of the
introduction of congestion charging, car users would tend to reduce the
frequency of their shopping trips to the city centre. Shoppers who are living
outside the outer cordon are less likely to reduce their shopping trips. Although
the introduction of congestion charging would have ncgative impacts on
shopping trips to the city centre as a result of the costs incurred. The results of the
model estimations confirm the potential of using stated preference data in trip generation
models,

Finally, in this research therefore, the inclusion of transport accessibility

measure in trip generation models is investigated and analysed.

A public transport accessibility measure is calibrated as a function of the distance
from the city centre and the perceived level of service of the public transport
system by the users using the Shoppers® Survey data. These results are presented
in Chapter 11. Although the approach scems rational and appealing the data set
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which has been used to investigate this concept is not the most appropriate data,
hence the results are not statistically significant. However it scems there is
evidence that the factors which represent the accessibility of the transport system
such as the distance from the origin to the shopping centre as well as the
perception of the users of the transport system can affect trip generation and

hence seem reasonable to include in the trip generation models. Further work in

this area is needed.

13.3 RESEARCH NOVELTIES: ADDITION TO KNOWLEDGE

In this thesis a number of novel investigations and additions to the knowledge in
trip generation analysis and modelling have been carried out. Trip generation
.analysis has been under researched; most of recent research efforts in travel demand
forecasting have been concentrated in the other stages (mode, route, etc.). Therefore, the
techniques of trip generation modelling and the data types have not been developed a lot
over the past few decades. Despite the known limitations of linear regression analysis
and category analysis, limitations of variable types as well as limitations of revealed
preference data, not much attempts in using other techniques or data types have been
made. A number of additions to knowledge are reported in this thesis and are
summarised below:

1) This research defines a framework for modelling trip generation using
logistic analysis. This is an interesting rescarch matter, and could also
achieve improvements in trip generation predictions.

2) A number of multiple classification analysis techniques which have been
recently developed but not widely empirically tested, are used to calibrate
and analyse work trip gencration models. The results are assessed and
conclusions on the best techniques are derived.

3) Trip generation models including independent variables that represent
transport policies (such as parking pricing) have been calibrated. This is
another shortcoming of current trip generation models which have been
recently strongly recognised.

4) The use of stated preference data in investigating preferences and
attitudes in other stages (mode, route, ctc.) has shown great

improvements. However, trip gencration models mostly rely on the use of
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revealed preference data. In this thesis trip generation models have been
~calibrated using mixed SP/RP techniques.
5) Finally, the research also investigates modelling transport accessibility
into trip generation models by including a public transport accessibility
measure, which reflects the transport users® perceived levels of service of

public transport.

13.4 IMPLICATIONS OF THIS RESEARCH FOR POLICY AND
PRACTICE

From policy point of view, the main message of this work is that trip generation
models should include the impacts of policies implemented in order to obtain

realistic results. Results of models which do not include these policies should be

taken with care.

From practice point of view, the research shows that there are further
opportunities to improve trip generation models by using different types of data
such as stated preference data. Also, some techniques have shown better
performance in terms of the overall statistical significance of the models, and
these should be considered by the practitioners. Most specifically here, the
MCA_3 has been recommended to be used as the best technique in the family of

category analysis.

In addition, this research shows gaps in current techniques of modelling trip
generation. This underlines the importance of investigating the appropriateness
of modelling techniques in general. It should be noted that most modelling
approaches are developed for certain specific studies and situations, and they are
usually adopted to be used in other situations. Policy and decision makers have
to be careful when they are using and interpreting results from various models

and also when they are selecting modelling techniques and approaches.

Finally, logistic regression could provide an appropriate tool to trip generation
modelling. The applications of category analysis should be further enhanced to

261



take account of recent development (MCA_3 and MCA_4) which shows more

statistically significant results.

13.5 LIMITATIONS AND RECOMMENDATIONS FOR FURTHER
RESEARCH

In this research, logistic regression analysis techniques have been investigated
for modelling a number of trip generation models. A number of data sources
have been used including National Travel Survey and Edinburgh Houschold
Survey data. There were some limitations with this data. Further investigations
for the appropriateness of logistic analysis in trip gencration modelling using

other sources of data and journey purposes would be recommended.

While the policy conclusions which can be drawn from such an analysis are
clearly limited, however, the inclusion of policy factors and accessibility
measures in trip generation models are clearly important and deserves further
research. It is not very clear how this method of trip generation would be fully
adopted in practice, however, it is always the case that new applications and
commercial software packages become available much later than the theory. That
might explain why such methodology has not yet been adopted in practice so far
since there has been recognition of the limitations of the conventional trip

generation models for the last ten ycars or so.

Perceived transport accessibility measures have been limitedly investigated for
shopping trip gencration models using Shoppers’ Survey in the city of
Edinburgh. It was not possible to calibrate a statistically significant trip
generation model which includes an accessibility function because of the
limitation of data. In future rescarch, it is recommended that further transport
accessibility measures to be investigated for inclusion in trip generation models.
Distance and perceived level of scrvice of public transport are two possible

factors to represent accessibility. Other relevant variables may include time and

cost of the journey.
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The data used in this study, mostly National Travel Survey, is limited in terms of
quality and quantity. It is recommended therefore that further surveys and data

collection to be carried out for the calibration of trip generation models in order

to improve model performance.

Three methods of MCA analysis have been calibrated and analysed in this thesis.
There is however a further method in this family of techniques (i.e. MCA_4)

which could be investigated using the same data set and the results to be

compared.

Impacts of limited number of transport policies on accessibility and trip
generation have been investigated. Further rescarch and investigations of other

transport policies on trip generation are also recommended.

This investigation of using logistic regression model in trip gencration is very
attractive in principle, as it handles genecration and frequency of trips
simultaneously, The approach can further be enhanced to combine distribution
(i.c. choice of destination) and mode choice in one model. Further forms of
accessibility measures could also be investigated. The results of this investigation
however indicate that LM2 and MNL are almost identical in their predictions of
numbers of trips, and that the difference in the RSS is 1%. While this is a good
result given the limitations of data suitability to this type of analysis, it is
encouraging enough to carry out further research in this direction to investigate

appropriateness of logistic regression to trip generation modelling.

Finally, the continuing challenges which are faced with travel demand models
are derived mainly from the quality of the data. Data usually consists of a sample
of observations taken from a certain population on a limited number of their
attributes or characteristics. The less relevant the data to the investigated problem
the less reliable the results would be. In this rescarch, Nation Travel Survey
(NTS) and Houschold Survey (HS) data in Edinburgh were used to calibrate trip
generation models for work trips and shopping trips. The NTS data was very
aggregate with large variations (¢.g. in income and car ownership) which would

hinder the capture of greater amount of true behavioural variability in travel
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choices. In the HS on the other hand, data was vcr)" general (e.g. no information

on income or employment status was available).
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