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Abstract 
Crohn’s disease (CD), one of the main forms of Inflammatory Bowel Disease (IBD), is a 

complex disorder characterised by chronic inflammation of the gastrointestinal (GI) 

tract. The aetiology of CD involves genetics and environmental factors that trigger an 

abnormal immune response to intestinal bacteria. Genome-wide association studies 

have strongly linked genes involved in autophagy, such as ATG16L1, to CD. Autophagy is 

a cellular degradation process that clears intracellular bacteria and regulates 

inflammatory responses. Recent studies suggest that enhancing autophagy in CD 

patients may be therapeutically beneficial. The aim of this study was to characterise the 

mechanism of action of a panel of commonly used IBD drugs in the context of autophagy 

and autophagy-related pathways, such as the unfolded protein response (UPR) and 

apoptosis.  

Modulation of autophagy was assessed in vitro, and in peripheral blood mononuclear 

cells (PBMCs) and GI biopsies from paediatric IBD patients. Several complimentary 

techniques to monitor the autophagy marker LC3 and master regulator of autophagy, 

mechanistic target of rapamycin (mTORC1), were used. Varying stages of apoptosis were 

assessed using a range of techniques and activity of UPR mediators was measured using 

RT-qPCR and western immunoblotting. The clearance of CD-associated adherent-

invasive E. coli (AIEC) was assessed using gentamicin protection assays, and pro-

inflammatory cytokines were monitored by RT-qPCR.  

Our results reveal that the immunosuppressant drug azathioprine is a strong inducer of 

autophagy and this response was independent of apoptosis. Azathioprine induced 

autophagy via inhibition of mTORC1 and up-regulation of the UPR. Azathioprine also 

enhanced the clearance of intracellular AIEC and dampened pro-inflammatory cytokine 

responses. Furthermore, azathioprine induced autophagy in paediatric patient samples, 

and this response was more pronounced in patients harbouring the CD-associated 

ATG16L1 variant. A better understanding of IBD drug mechanism of action can 

contribute to patient stratification for the development of a more personalised 

therapeutic approach. 
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LC3B  Microtubule-associated proteins 1A/1B light chain 3B   

LKB1  Liver Kinase B1 

LMP  Lysosomal Membrane Permeabilisation 

LPS  Lipopolysaccharide 

LRRK2  Leucine rich repeat kinase 2  

MΦ1  IFN-γ induced macrophages 

MΦ2  IL-4-induced macrophages 

MΦind  Anti-TNF-induced macrophages 

MAMP  Microbial associated molecular pattern  

MAP  Mycobacterium avium subspecies paratuberculosis 

MAPK   Mitogen-activated protein kinases 

Mbtps1 Membrane-bound transcription factor peptidase S1P-encoding gene 

MCL1  Myeloid cell leukaemia sequence 1 

MDP  Muramyldipeptide 

MEC  Mammary Epithelial Cells  

MHC  Major histocompatibility complex  

MIF  Macrophage migration inhibitory factor 

MIR  miRNA 

miRNA  microRNA 

MMR  Mismatch repair 

MOI  Multiplicity of Infection 
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MOMP  Mitochondrial Outer Membrane Permeabilisation 

MP  Monocyte-DC progenitor 

mRNA  Messenger RNA 

mtDNA  Mitochondrial DNA 

mTORC1 Mechanistic Target of Rapamycin Complex 1 

MUC2  Mucin 2 

Nbr1  Neighbour of Brca1 Gene 1 

NDP52  Nuclear Domain 10 Protein 52 

NFAT1  Nuclear factor of activated T cells  

NF-κB   Nuclear factor kappa-light-chain-enhancer of activated B cells 

NHS   National Health Service 

NIX  NIP3-like protein X 

NK  Natural killer 

NKP  NK cell Progenitor  

NlpI   New lipoprotein I 

NLR  Nod-like receptor 

NOD2  Nucleotide-binding oligomerisation domain-containing protein 2 

NR1D1  Nuclear Receptor Subfamily 1 Group D Member 1 

OA-FLS  Osteoarthritis fibroblast-like synovial 

OMV  Outer membrane vesicle 

OSCC  Oral squamous cell carcinoma 

PAMP  Pathogen Associated Molecular Pattern 

PARK2   Parkinson Juvenile Disease Protein 2 

PBMC  Peripheral blood mononuclear cell 

PBS  Phosphate Buffered Saline 

PBST  PBS + 0.1% Tween 20  

PDI  Protein disulphide isomerase 

PE  Phosphatidylethanolamine 

PERK  Protein Kinase RNA-like Endoplasmic Reticulum Kinase 

PFA  Paraformaldehyde 

PHB  Prohibitin 1 

PI   Propidium Iodide  
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PI3K  Phosphatidylinositide 3-kinases 

PI3P  Phosphatidyl inositol triphosphate 

PINK1  PTEN-induced putative kinase protein 1 

PKA  Protein Kinase A 

PKD  Protein Kinase D 

PMA  Phorbol myristate acetate 

PML  Promyelocytic leukaemia 

PRAS40  Proline-rich Akt substrate of 40 kDa 

PRR  Pattern recognition receptor 

PT  Permeability transition 

PUMA   p53 Upregulated Modulator of Apoptosis 

PVDF  Polyvinylidene difluoride 

PTP   Permeability Transitions Pores 

R702W  p.Arg702Trp   

RAC1  Ras-related C3 botulinum toxin substrate 1  

RAPTOR  Regulatory-associated protein of mTOR 

RAW  Ralph and William’s cell line 

Rb   Rabbit  

RBC  Red Blood Cell 

REC   Research Ethics Committee 

RFP  Red Fluorescent Protein  

RGS19   Regulator Of G Protein Signaling 19 

Rheb  RAS homologue enriched in brain 

RIDD  Regulates IRE1-dependent decay 

RIPK-2  Receptor-interacting serine-threonine kinase 2 

ROS  Reactive oxygen species 

RPM   Revolutions per minute 

RPMI  Roswell Park Memorial Institute 

(p-)rpS6 (Phosphorylated) S6 ribosomal protein 

RT   Room temperature  

RT-qPCR Quantitative reverse transcription PCR  

S1P  Site 1 Protease  
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S2P  Site 2 Protease 

S6K  S6 ribosomal protein kinase 

SASP  Salicylazosulfapyridine 

SCC  Squamous cell carcinoma 

SDS-PAGE  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

SE  Standard Error 

siRNA   Small interfering RNA  

SLR  Sequestosome 1/p62-like receptors 

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 

SNP  Single nucleotide polymorphism  

SOD1  Superoxide dismutase-1 

SSC  Side scatter 

ssDNA  Single stranded DNA 

STING  Stimulator of interferon genes 

Syk  Spleen tyrosine kinase 

T300A  Threonine to alanine at position 300 

T3SS  Type 3 secretion system  

TCA   Tricarboxylic acid 

TCP  T cell Progenitor  

TdT   Terminal deoxynucleotidyl transferase  

TE  Tris-EDTA 

TFEB  Transcription factor EB  

TGF  Transforming growth factor 

TGM2  Transglutaminase 2 

TLR  Toll-like receptor 

TMEM  Transmembrane protein 

TNF  Tumour Necrosis Factor  

TNFR1  TNF-Receptor 1 

TNP  T cell and NK cell progenitor 

TPMT  Thiopurine methyltransferase 

TRADD  TNFR1-Associated Death Domain  

TRAF2   TNF receptor-associated factor 2 
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TRAILR  TNF-Related Apoptosis-Inducing Ligand Receptor 

Treg  Regulatory T cell 

TSC  Tuberous Sclerosis Complex 

TUNEL   TdT dUTP Nick-End Labeling 

UA  Ursolic acid 

UC   Ulcerative colitis  

ULK  UNC51 like Ser/Thr kinases 

UPR  Unfolded Protein Response 

UVEC  Umbilical vein endothelial cells 

UVRAG  UV-irradiation resistance-associated gene 

VMP1  Vacuole membrane protein 1 

Vps  Vacuolar protein sorting 

XBP1  X-box binding protein 1 

XOD  Xanthine Oxidase 

ZFPM1  Zinc Finger Protein, FOG Family Member 1 

ZKSCAN3 Zinc Finger With KRAB And SCAN Domains 3 

 

  



 
 

12 

1. Introduction  
1.1 Inflammatory Bowel Disease  
Inflammatory Bowel Disease (IBD) is characterised by chronic inflammation of the 

gastrointestinal (GI) tract and encompasses Crohn’s disease (CD), ulcerative colitis (UC) 

and colonic IBD, type unclassified (IBDU). The incidence rate for IBD is approximately 50-

200 per 100,000 persons per year in Western countries (Gasparetto and Guariso, 2013) 

and prevalence exceeds 0.3% in North America, Oceania and many counties in Europe 

(Ng et al., 2017). In the UK, a recent National Health Service (NHS) review revealed a 

prevalence of up to 400 in 100,000 persons (NHS, 2013). Furthermore, in newly 

industrialised countries in Africa, Asia and South America, the incidence of IBD has been 

steadily rising since 1990 (Ng et al., 2017). The survival rate for CD is 93.7% at 15 years, 

but morbidity is a major issue and CD patients have 4-20 times more risk of developing 

colon cancer compared to the general public (Diefenbach and Breuer, 2006). Several 

reports have shown that mortality is not affected by UC; however, a recent study of a 

large Danish cohort over a 30 year time-period revealed that UC patients have 10% 

increased risk of mortality, while CD patients have a 50% increased risk (Kassam et al., 

2014). UC patients have a more pronounced risk of colon cancer compared to CD 

patients with an annual incidence of 1% in patients diagnosed for more than 10 years 

(Diefenbach and Breuer, 2006).   

CD is distinguished from the other main IBD subtype, UC, due to the presence of 

submucosal or transmural inflammation and ulcers that occur in patches at any location 

along the digestive tract (Gasparetto and Guariso, 2013). UC is localised to the colon and 

inflammation is limited to the mucosa and epithelial lining of the GI tract (Fakhoury et 

al., 2014). Patients can also be diagnosed with IBDU, when a conclusive distinction 

between CD and UC cannot be made.  

The clinical presentation of IBD occurs as periods of relapse and remission and 

commonly includes abdominal pain, chronic diarrhoea, weight loss, lethargy, fever, 

nausea, vomiting and extraintestinal manifestations such as arthritis (Fakhoury et al., 

2014). Diagnosis is usually established from endoscopic, histological and radiological 

findings (Fernandes et al., 2016). At present there is no cure for IBD, and medications 

such as corticosteroids, aminosalicylates, thiopurines, immunomodulators and 
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biological agents are aimed at inducing and maintaining remission of disease by 

modifying inflammatory processes (Neurath, 2017). A recent review estimated IBD 

treatment costs of £720 million per year (NHS, 2013), with roughly a quarter of these 

costs directly attributed to drug treatments (Bassi et al., 2004).  

 

1.1.1. Paediatric IBD 
Paediatric IBD is the diagnosis of the disease before the age of 17, with early-onset IBD 

being diagnosed before the age of 10 and very early onset IBD in children younger than 

6 years old (Ashton et al., 2017). The occurrence of complications leading to surgery is 

more common in paediatric patients and other issues such as growth impairment and 

psychological stress are also factors involved with childhood CD (Dienfenbach and 

Breuer, 2006). The Paris classification was adapted from Montreal classification for the 

phenotypic assessment of paediatric IBD, with the main distinction between these 

systems being the consideration of age and growth failure (Levine et al., 2011). It has 

been estimated that 25-30% of CD patients are <20 years of age (Dienfenbach and 

Breuer, 2006) and the incidence of paediatric IBD is rising worldwide. One study 

investigating Scotland-wide trends showed a 76% increase in paediatric IBD diagnosis 

from 4.75/100,000/year between 1990-1995 to 7.82/100,000/year between 2003-2008 

(Henderson et al., 2012). This study also found that the mean age of diagnosis decreased 

from 12.7 years to 11.9 years. Furthermore, in Canada, early-onset IBD incidence has 

risen by 7.4% per year between 1994-2009 (Benchimol et al., 2014). 

Paediatric IBD more often involves genetic susceptibility and is often associated with 

rapid progression and a more severe outcome (Marcuzzi et al., 2013). More than 200 

genes have been associated with early-onset IBD (Ashton et al., 2017) and rare 

monogenic disorders are more common, especially in very-early onset IBD (Uhlig et al., 

2014). Furthermore, exclusive enteral nutrition, which is a treatment involving a 

controlled diet of basic nutrients, is very effective in paediatric IBD, suggesting an 

important role for diet and gut microbiota in early-onset IBD (Heuschkel, 2009; 

Kaakoush et al., 2015). Due to the distinct characteristics of childhood IBD, the 

continuation of studies solely focusing on paediatric cases is imperative for 

improvements in understanding and treatment of the disease.  
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1.1.2. Aetiology of Crohn’s Disease  
The aetiopathogenesis of IBD is multifactorial in nature, with genetic predisposition, 

environmental triggers and a dysregulated immune response to intestinal microflora all 

contributing (Boyapati et al., 2015). The environmental risk factors include smoking, 

appendectomy, diet, pollution, antibiotics and stress (Gasparetto and Guariso, 2013). 

1.1.2.1. CD-associated NOD2 variants 

Nucleotide-binding oligomerisation domain-containing protein 2 (NOD2) was the first 

gene to be linked to CD susceptibility in 2001 (Hampe et al., 2001; Hugot et al., 2001; 

Ogura et al., 2001a). NOD2 is a member of the Nod-like receptor (NLRs) family of pattern 

recognition receptor (PRR). NOD2 is located in the cytosol and plasma membrane of 

white blood cells and intestinal epithelial cells and recognises the bacterial wall 

component muramyldipeptide (MDP) to induce innate immune responses (Marcuzzi et 

al., 2013). Membrane recruitment of NOD2 is essential for responses to MDP (Barnich 

et al., 2005). Upon activation, NOD2 recruits receptor-interacting serine-threonine 

kinase 2 (RIPK-2), which leads to the activation of NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B cells) and MAPK (mitogen-activated protein kinases)/ERK 

(extracellular signal-regulated kinases) pathways (Homer et al., 2010; Ogura et al., 

2001b). This induces the release of cytokines and chemokines for immune cell 

recruitment and the release of host defence peptides (Marcuzzi et al., 2013). Therefore, 

NOD2 and the subsequent signalling pathways play a key role in the innate immune 

system and regulating inflammatory responses.  

The CD-associated NOD2 variants, which are found in roughly one third of Crohn’s 

patients (Niess et al., 2012), disrupt binding to MDP and normal immune responses 

initiated by this receptor (Hugot et al., 2001). The NOD2 variant can also have “gain-of-

function” actions by actively suppressing the transcription of anti-inflammatory 

cytokine, interleukin (IL)-10 (Muzes et al., 2013). Three CD-associated NOD2 variants 

exist, two of which contain a single-nucleotide polymorphism (SNP) (p.Arg702Trp 

(R702W) and p.Gly908Arg (G908R)) and the last is a frame-shift mutation 

(p.Leu1007fsX1008 (L1007fs)) (Hampe et al., 2001; Hugot et al., 2001; Ogura et al., 

2001a). Heterozygosity for the NOD2 variant can increase the risk of CD from 1.5 to 4.5-
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fold, whereas the presence of homozygous variant alleles increases the risk to between 

20- to 40-fold (Ahmad et al., 2002; Brant et al., 2003; Lesage et al., 2002). The NOD2 

L1007fs variant has also been associated with increased risk of early-onset CD 

(Pranculienė et al., 2016).  

1.1.2.2. Genome Wide Association Studies 

A genome-wide association study (GWAS) compares allele frequency of thousands of 

SNPs between cases and controls, to identify SNPs that are associated with disease 

susceptibility. Several GWAS’s and meta-analyses have been undertaken for IBD, and 

have identified SNPs in three distinct categories, including autophagy, the IL-23/IL-17 

axis and failure to suppress aberrant immune responses (Verstockt et al., 2018). A meta-

analysis of 15 international GWAS’s identified 163 IBD susceptibility loci; of which 110 

were shared between CD and UC, 30 were specific to CD and 23 were specific to UC 

(Jostins et al., 2012). A more recent GWAS has increased the number of IBD susceptibility 

loci to 241, with most of the loci inferring susceptibility for both CD and UC (Lange et al., 

2017) and another study has found four genome-wide significant loci associated with 

IBD prognosis (Lee et al., 2017).  

In 2007, GWAS confirmed the previously recognised association with NOD2, but also 

identified autophagy-related protein 16L1 (ATG16L1), associated specifically with CD 

(Hampe et al., 2007; Rioux et al., 2007). The CD-associated ATG16L1 SNP (rs2241880) 

causes a single amino acid change from threonine to alanine at position 300 (T300A) 

(Hampe et al., 2007), and is present in up to 30% of CD patients (Hampe et al., 2007; 

Rioux et al., 2007). Heterozygous presentation of the ATG16L1 T300A allele increases 

risk of CD by 1.4-fold, whereas homozygous T300A genotype increases risk of CD by 1.9-

fold (Zhang et al., 2009). In paediatric CD patients, homozygous ATG16L1 T300A alleles 

increased risk of disease by 3-fold (Amre et al., 2009). ATG16L1 T300A has also been 

associated with increased risk of complicated fistulating disease (Salem et al., 2015).  

Additionally, the autophagy genes Immunity-related GTPase family M protein (IRGM) 

and leucine rich repeat kinase 2 (LRRK2) have been associated with CD susceptibility 

(Barrett et al., 2008; Franke et al., 2010; Parkes et al., 2007), with IRGM risk variant also 

being identified in a cohort of early-onset CD (Pranculienė et al., 2016). These genetic 

studies have led to an increase in research linking autophagy dysregulation to CD 

pathogenesis. 
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Genetic studies have also identified association with endoplasmic reticulum (ER) 

stress/Unfolded Protein Response (UPR) genes in IBD. Genetic association with the 

transcription factor x-box-binding protein 1 (XBP1), a key component of the UPR, was 

identified with both CD and UC (Kaser et al., 2008). Furthermore, Anterior gradient 2 

(AGR2), which is a member of the ER protein disulphide isomerase (PDI) family, has been 

associated with IBD (Zheng et al., 2006). 

Interestingly, recent advances have been made in investigating the epigenome in IBD. 

An integrative epigenome-wide analysis identified 439 differentially methylated 

positions (DMPs) and 5 differentially methylated regions (DMRs) in IBD, which related 

to underlying genotype and revealed differing gene expression profiles in specific cell 

types (Ventham et al., 2016).  

 

1.1.2. Intestinal Microbiota, Microbial Dysbiosis 
and CD-associated pathogens  

The intestinal microbiota is integral to GI homeostasis. Commensal and symbiotic 

bacteria provide protection against pathogens, possess anti-inflammatory properties 

and are also involved in immune system maturation, within the intestine and 

systemically (Elson and Cong, 2012). Commensal bacteria competitively colonise the GI 

tract to prevent pathogen expansion in a process known as colonisation resistance 

(Buffie and Pamer, 2013), and can also produce metabolites that are toxic to certain 

pathogens (Kamada et al., 2012).  

In IBD, dysregulated immune responses can be in response to commensal microflora or 

specific microorganisms that are associated with IBD. However, it is unclear whether 

alterations in intestinal microbiota contribute to the cause, or the effect, of IBD. 

Nevertheless, there is an increased abundance of mucosa-associated bacteria (Png et 

al., 2010; Schultsz et al., 1999), with the largest population of bacteria found in terminal 

ileum and colon (Carrière et al., 2014), which is the most common location for lesions in 

CD (Dorn et al., 2004). Microbial dybiosis (altered microbiota composition) is also 

associated with IBD (Fujimoto et al., 2013; Nishino et al., 2018; Takahashi et al., 2016). 

Microbial dysbiosis in IBD is characterised by reduced microbial diversity (Walker et al., 

2011) or a decrease in commensal bacteria, such as Faecalibacterium (F.) prausnitzii, 
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Blautia faecis, Roseburia inulinivorans, Ruminococcus torques, and Clostridium lavalense 

(Fujimoto et al., 2013; Takahashi et al., 2016). This causes increased susceptibility to 

pathogens, such as Bacteriodetes and Proteobacteria (Frank et al., 2007). Furthermore, 

the commensal bacteria decreased in IBD patients can have anti-inflammatory 

properties (Frank et al., 2007). For instance, F. prausnitzii can enhance production of 

anti-inflammatory cytokine IL-10 and reduce pro-inflammatory cytokines IL-12 and 

interferon gamma (IFN-γ) (Sokol et al., 2008). Decreases in F. prausnitzii are associated 

with CD recurrence after surgery (Walker et al., 2011).  

IBD pathogenesis cannot be attributed to one specific bacterial species, as one strain 

that may be detrimental to one host genotype could be beneficial to another (Elson and 

Cong, 2012). A recent study has identified a microbial signature for CD, with eight 

microbial groups specifically altered in CD (Pascal et al., 2017). This microbial signature 

was used with high sensitivity and specificity for the detection of CD patients versus 

healthy controls and UC patients, meaning it can potentially be used as a 

microbiomarker. However, some specific bacterial strains have been associated with the 

disease including Mycobacterium avium subspecies paratuberculosis (MAP), Yersinia, 

Listeria and Helicobacter (Carrière et al., 2014).  

The role of Escherichia (E.) coli in CD aetiopathogenesis has been extensively explored. 

A specific pathovar has been described in CD known as Adherent Invasive E. coli (AIEC). 

AIEC are highly prevalent in the ileal mucosa of CD patients (Boudeau et al., 1999; 

Darfeuille-Michaud et al., 2004, 1999; Frank et al., 2011; Martin et al., 2004; Thomazini 

et al., 2011) and have an increased ability to adhere and invade intestinal epithelial cells 

(IECs) (Boudeau et al., 2001, 1999; Martin et al., 2004). AIEC isolated from CD patients 

have been shown to induce IL-8 and Chemokine (C-C motif) ligand 20 (CCL20) secretion 

in IEC cell lines and promote Dendritic cell (DC) migration (Eaves-Pyles et al., 2008). 

Furthermore, AIEC strains are able to survive and replicate in human macrophages 

(Bringer et al., 2006, 2005; Cieza et al., 2015; Lapaquette et al., 2012; P. Lapaquette et 

al., 2010; Negroni et al., 2016; Sadabad et al., 2015; Vazeille et al., 2015), causing 

prolonged inflammatory responses involving the release of Tumour Necrosis Factor 

(TNF)-α (Bringer et al., 2012; Glasser et al., 2001). The bacteria reside in low pH 

phagolysosomal compartments within macrophages (Bringer et al., 2006) and the 

increased levels of TNF-α in turn enhances intracellular replication of AIEC (Bringer et 
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al., 2012). AIEC persistence within intestinal macrophages and prolonged pro-

inflammatory signalling causes continued recruitment of immune cells, ultimately 

resulting in granuloma formation, which is a distinctive feature of CD (Meconi et al., 

2007). Accordingly, E. coli DNA has been detected in 80% of CD granulomas (Ryan et al., 

2004). 

Identifying key virulence factors of AIEC has allowed for further understanding of its 

aetiopathogenesis in CD. Some of these adaptions allow AIEC to subvert host immune 

defences such as autophagy. The type 1 pili system facilitates AIEC adhesion by binding 

carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) on eukaryotic 

cells, which is also vital for perturbation of host defences to allow AIEC invasion 

(Boudeau et al., 2001; Dreux et al., 2013). Interestingly, ileal expression of CEACAM6 is 

increased in CD and CEACAM6 variants have been identified in IBD patients (Glas et al., 

2011). Additionally, the ibeA virulence gene was identified as a key component for AIEC 

invasion into IECs, survival in macrophages and inflammatory responses in murine 

intestine (Cieza et al., 2015). The high-temperature requirement A (HtrA) gene encoding 

stress protein HtrA is also essential for replication in macrophages as it enables AIEC 

survival in low-pH vacuoles of phagocytic cells (Bringer et al., 2005). Furthermore, 

lipoprotein, NlpI (new lipoprotein I), Flagella protein, YfgL, and outer membrane vesicles 

(OMVs), including OmpC and OmpA, are vital for AIEC adhesion and invasion capacities 

(Barnich et al., 2004, 2003; Rolhion et al., 2007, 2005). Analysis of E. coli isolates from 

paediatric CD patients compared to non-IBD patients revealed a higher abundance of 

AIEC and an increased incidence of genes encoding virulence factors K1, fyuA and ibeA 

in AIEC isolated from CD patients (Conte et al., 2014).  

 

1.1.3. Intestinal Epithelial Barrier in CD 
The epithelial barrier of the GI tract is composed of a number of different IECs organised 

into crypts and villi (Figure 1.1). The primary purpose of the intestinal epithelial barrier 

is to segregate the microbiota in the lumen from the host immune cells in the lamina 

propria, thus preventing unnecessary inflammatory responses. To reinforce barrier 

integrity, multi-protein complexes, including tight junctions, adheren junctions and 

demosomes, form between IECs to prevent paracellular permeability (Dupaul-Chicoine 

et al., 2013). Pro-inflammatory cytokines that are often overexpressed in IBD, such as 
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TNF-α and IFN-γ, can disrupt tight junctions and induce IEC apoptosis, causing epithelial 

barrier permeability (Marini et al., 2003). Increased intestinal permeability is a 

prominent feature of active CD that is reduced during remission phases (Benjamin et al., 

2008).  

At the bottom of crypts, pluripotent progenitor cells proliferate and differentiate into 

distinct intestinal epithelial cell types including goblet cells, Paneth cells, absorptive 

cells, enteroendocrine cells, M cells, cup cells and Tuft cells (Figure 1.1) (Coskun, 2014). 

These cell types play very distinct roles in intestinal homeostasis and constant renewal 

of these cells, through stem cell differentiation, is key to maintain this. In IBD, genes to 

enable effective differentiation of these cells are aberrantly expressed (Ahn et al., 2008; 

Coskun et al., 2012; Zheng et al., 2011). 

Goblet cells generate mucous and highly glycosylated mucin proteins that form a tight 

layer to prevent bacterial cell adhesion to the intestinal epithelium. The Muc2 gene 

encodes the main mucin protein produced by goblet cells. In Muc2-deficient mice, there 

is diminished mucosal layer formation and elevated pro-inflammatory cytokine 

production, which culminate in spontaneous colitis (Sluis et al., 2006). Furthermore, in 

IBD, genetic risk loci in Muc1 and Muc19 have been identified (Franke et al., 2010; Jostins 

et al., 2012). Moreover, in CD patients, goblet cell depletion can occur, which depletes 

mucus layer protection against bacterial adhesion (Elson and Cong, 2012).  

Paneth cells are found in the base of crypts of the small intestine and function to release 

host defence peptides, including defensins, into the mucous layer (Figure 1.1) 

(Henderson et al., 2011).  This controls microbiota growth and prevents interaction of 

microbes with IECs (Coskun, 2014). NOD2 is highly expressed in Paneth cells (Ogura et 

al., 2003), and NOD2 variants cause abnormal Paneth cell functions (Wehkamp et al., 

2004). This includes decreased NF-κB signalling (Bonen et al., 2003) and diminished 

granule exocytosis of α-defensins, which is a key factor in CD pathogenesis (Wehkamp 

et al., 2004). Furthermore, NOD2 knock-out (k/o) mice were more susceptible to 

infection and death caused by Listeria monocytogenes, due to decreased α-defensin 

production (Kobayashi, 2005). Therefore, the formation of a protective mucous layer 

containing host defence peptides is vital for intestinal homeostasis, and dysregulation 

of this protective feature is a key factor of CD pathogenesis. 
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If pathogens are able to interact with the epithelial barrier, IECs are capable of eliciting 

innate immune responses, due to their expression of PRRs, NLRs and toll-like receptors 

(TLRs) (Dupaul-Chicoine et al., 2013). NLRs and TLRs, can mount a strong innate immune 

response when in contact with Pathogen Associated Molecular Patterns (PAMPs). This 

response involves inflammatory signalling to promote host defence peptide production 

and maturation of antigen-presentation cells, ultimately to resolve infection (Henderson 

et al., 2011). To prevent excessive immune activation, TLRs are primarily expressed at 

basolateral sides of IECs at the base of crypts and are specifically upregulated during 

inflammation (Cario and Podolsky, 2000; Gewirtz et al., 2001).  

 

Figure 1.1: Intestinal Epithelial Barrier 

The epithelial barrier is structured into crypts and villi and separates microbiota in the 
lumen from the lamina propria. The epithelial barrier is composed of intestinal epithelial 
cells: enterocytes, Paneth cells, goblet cells, enteroendocrine cells and intestinal stem 
cells. Goblet cells secrete mucous to form the mucosal layer and Paneth cells release 
host defence peptides into the mucosal layer. Immune cells including T cells, B cells, 
natural killer (NK) cells, macrophages and dendritic cells (DCs) reside within the lamina 
propria.  
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1.1.4. Intestinal and Systemic Immune cells in CD 
Intestinal immune cells in the lamina propria provide vital protection from pathogens 

that have crossed the epithelial barrier. The adaptive immune cells, T and B cells, in the 

lamina propria represent the majority of lymphoid cells in the body (Figure 1.1) (Elson 

and Alexander, 2015). Furthermore, there is an abundance of innate immune cells 

including macrophages and dendritic cells (Figure 1.1).  

1.1.4.1. Haematopoiesis and Immune cell subsets 

Haematopoiesis and differentiation of peripheral blood mononuclear cells (PBMCs), as 

described by Rieger and Schroeder (2012), is shown in Figure 1.2. Common myeloid 

progenitor (CMP) cells and common lymphoid progenitor (CLP) cells are derived from 

multi-potent stem cells. From CLP cells arise T cells, NK cells and B cells that differentiate 

from their respective progenitors, and plasmacytoid DCs. From CMP cells, granulocyte 

progenitors (GP) produce basophils, neutrophils and eosinophils, and monocyte-DC 

progenitors (MP) differentiate to monocytes or myeloid DCs. Monocytes differentiate 

into macrophages within tissue (Furth and Cohn, 1968) and can differentiate into 

myeloid DCs while in circulation (Romani et al., 1994).   

Monocyte sub-sets are categorised by their expression of the surface markers CD14 and 

CD16, and nomenclature used is described in Ziegler-Heitbrock et al., (2010), as shown 

in Table 1.1. Classical monocytes express high levels of CD14 and do not express CD16, 

so are referred to as CD14++CD16- or CD14highCD16-. Monocytes that express high levels 

of CD14 but also express CD16, CD14++CD16+ or CD14highCD16+, are known as 

intermediate monocytes. Finally, low expression of CD14 and the presence of CD16 

denotes non-classical monocytes, which is referred to as either CD14+CD16++ or 

CD14lowCD16++. Classical monocytes are professional phagocytes with an anti-

inflammatory phenotype, whereas intermediate monocytes are extremely 

inflammatory and expand in a wide range of inflammatory diseases. Non-classical 

monocytes patrol vessel walls and are generally considered anti-inflammatory; 

however, they can mount highly pro-inflammatory responses (Cros et al., 2010).  
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Figure 1.2: Peripheral Blood Mononuclear Cell Haematopoiesis  

CMP Common Myeloid Progenitor, CLP Common Lymphoid Progenitor, RBC Red Blood 
Cell, GM Granulocyte-macrophage Progenitor, TNP T cell NK cell Progenitor, BCP B cell 
Progenitor, MP Monocyte-DC Progenitor, GP Granulocyte Progenitor, TCP T cell 
Progenitor, NKP NK cell Progenitor, DC Dendritic cell.  
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Table 1.1: PBMC population and their role in IBD 

PBMC populations and monocyte subsets are shown, with basic immune function. 
Aberrant functions of PBMC populations has been linked to IBD pathogenesis (Erokhina 
et al., 20181; Grip et al., 20072; Janssen et al., 20123; Koch S. et al., 20104; Nedjic et al., 
20085; Ng et al., 20096; Oka et al., 20147; Olson et al., 20048; Shale et al., 20139; Steel et 
al., 201010; Timmermans et al., 201611) 

 

 

1.1.4.2. Myeloid cells in CD 

In the intestinal environment myeloid cells are prominently tolerogenic. In a healthy gut 

environment, macrophages are usually refractory to inflammatory stimulation, but do 

retain phagocytic and bactericidal capabilities (Smythies et al., 2005). The primary 

function of the antigen presenting cells (APCs), DCs, in the gut is to prime naïve T cells 

to induce differentiation to either effector or regulatory T cells phenotype.  

IBD-associated loci are enriched for genes that regulate monocyte differentiation and 

activation (Baillie et al., 2017), and CD has been linked to the systemic expansion of the 

pro-inflammatory, intermediate monocyte subset (Grip et al., 2007; Koch et al., 2010) 

(Table 1.1). In the intestine, pro-inflammatory macrophages become the most 
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prominent immune population during CD (Zigmond et al., 2012). These macrophages 

upregulate TLRs and NOD2, to become more permissive to bacterial-induced responses 

(Zigmond et al., 2012), produce excessive amounts of pro-inflammatory cytokines and 

contribute to IL-17-associated effector T cell responses (Kamada et al., 2008). CD-patient 

derived macrophages are more susceptible to AIEC infection, and exhibit more 

pronounced inflammatory responses (Vazeille et al., 2015). 

DCs are known to accumulate in the intestinal mucosa of IBD patients, as well as in 

experimental murine models of colitis. A pro-inflammatory subtype of DCs that express 

E-cadherin, can promote intestinal inflammation and are preferentially expanded in 

inflamed colon (Siddiqui et al., 2010). Furthermore, during T-cell-induced colitis, pro-

inflammatory DCs expand to prime effector T cells (Rivollier et al., 2012) and inhibition 

of DC-T cell interaction can prevent the experimental colitis (Uhlig et al., 2006).  

1.1.4.3. T cells in CD 

Intestinal homeostasis is largely dependent on balances between effector T cells and 

regulatory T cells. In the normal gut this balance is shifted towards Treg function (Elson 

and Alexander, 2015) that can restrain effector T cell function, dampen innate immune 

cell activities (Li and Flavell, 2008) and promote effective immunoglobulin (Ig)A 

production, which is vital for mucosal surface homeostasis (Cong et al., 2009). In CD 

effector T cells, mainly CD4+, and in particular, Th1 (IFN-γ) and Th17, are expanded with 

enhanced activity (Cader and Kaser, 2013). Th17 cells are activated by IL-23 derived from 

DCs and intestinal macrophages in CD (Becker et al., 2003; Kamada et al., 2008), and 

produce high levels of pro-inflammatory cytokines (Littman and Rudensky, 2010). These 

effector cells expand at the expense of Treg populations, therefore, results in expansion 

of other effector T cells that are repressed by Tregs (Cader and Kaser, 2013). Although 

Th1 cells are strongly associated with CD pathogenesis, exacerbated Th2 cell responses 

in mice also resulted in spontaneous colitis (Kabat et al., 2016).  

1.1.4.4. B cells in CD 

When DCs detect pathogens, presentation of antigens to B cells in the lamina propria 

promotes production of IgA. IgA helps to maintain commensal microbiota, as it prevents 

exposure of microbial antigens to the systemic immune system, which reduces systemic 

inflammatory responses to commensal bacteria (Konrad et al., 2006). In IBD B cells have 
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a conflicting role as they can have regulatory or pathogenic functions. Malfunctioning B 

cells within the intestine during IBD can produce high levels of anti-self (Mizoguchi and 

Bhan, 2012) and anti-microbial antibodies (Lodes et al., 2004), and there is a serological 

shift from IgA- to IgG-dominant responses (Brandtzaeg et al., 2006). In one study, CD 

clinical activity correlated with elevated activation of B cell with higher expression of 

TLR2 and IL-8 (Noronha et al., 2009). Furthermore, B cells can block Treg function (Olson 

et al., 2004) and are key to the formation of granulomas, particularly in paediatric CD 

patients harbouring NOD2 SNPs (Janssen et al., 2012; Timmermans et al., 2016). In 

contrast, decreases in specific B cell populations have been associated with IBD, such as 

IgM+ memory “natural effector” B cells (Sabatino et al., 2005; Timmermans et al., 2016) 

and IL-10 producing regulatory B cells (Bregs) that control pro-inflammatory cytokine 

production from monocytes and T cells (Oka et al., 2014; Zheng et al., 2017). Therefore, 

IBD pathogenesis is linked to imbalances in B cell populations and a lack of regulation of 

B cell functions.  

1.1.4.5. NK cells in CD 

Intestinal NK cells are phenotypically similar to “helper” NK cells and are important for 

anti-pathogen responses and maintaining intestinal homeostasis (Yadav et al., 2011). NK 

cell activities are generally reduced in IBD, although pro-inflammatory cytokine 

stimulation of NK cells can promote TNF-α and IFN-γ production and cytolytic activities 

in IBD (Yadav et al., 2011). Increases in NK cells expressing high levels of CD16+ (Steel et 

al., 2010) or activation marker Human Leukocyte Antigen – antigen D Related (HLA-DR) 

(Ng et al., 2009) has been associated with IBD. These populations have a less mature 

phenotype, have high cytolytic activity and produce high levels of IFN-γ, which 

subsequently enhances activation of T cells (Burt et al., 2008; Erokhina et al., 2018). The 

expansion of this inflammatory subset of NK cells has a vital role in IBD pathogenesis.  

 

1.2.  Autophagy  
Autophagy is an intracellular process that degrades excessive, damaged or aged proteins 

and organelles to maintain cellular homeostasis (Yang and Klionsky, 2010). This pathway 

differs from the ubiquitin proteasome system, which degrades only single targeted 

proteins (Van Limbergen et al., 2009). Autophagy affects many essential cellular 
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processes including development, differentiation, survival, senescence and innate and 

adaptive immunity; with dysregulated autophagy linked to a multitude of diseases 

(Levine and Kroemer, 2008).  

Autophagy can be categorised into macro-, micro- and chaperone-mediated autophagy 

(CMA) depending on the route of delivery of cargo to the lysosome and the main 

physiological functions. CMA is the process by which the cytoplasm is directly engulfed 

and degraded by the lysosome (Orenstein and Cuervo, 2010); while microautophagy 

engulfs specific cytosolic proteins by inward vesicle budding (Mijaljica et al., 2011).  

Macroautophagy (hereafter referred to as autophagy) is the most prominent type of 

autophagy implicated in disease pathogenesis, and involves the formation of 

autophagosomes to mediate its functions. It is usually active at a basal level to maintain 

homeostasis, and varying stimuli enhance this activity. Non-selective (canonical) 

autophagy is stimulated by cellular stresses, such as nutrient or growth factor 

deprivation; whereas selective autophagy is directed towards specific target cargo 

(Lamb et al., 2013). Selective autophagy uses cargo receptors and adaptor proteins to 

associate cargo with the autophagosome machinery (Birgisdottir et al., 2013), and can 

be further classified based on the target proteins, lipids and/or organelles. For example, 

aggrephagy is the degradation of aggregated proteins (Lamark and Johansen, 2012), 

mitophagy targets damaged mitochondria (Narendra et al., 2008) and xenophagy 

degrades bacteria (Baxt et al., 2013) and viruses (Kim et al., 2010). 

 

1.2.1. Autophagosome biogenesis 
When autophagy is initiated, the isolation membrane, an expanding lipid bilayer, forms 

a double membrane vesicle (the autophagosome) around the cargo to be degraded 

(Figure 1.3). This isolation membrane, originally known as the phagophore, is often 

derived from ER membranes (Lamb et al., 2013). The mature autophagosome then fuses 

with a lysosome to form an autophagolysosome, in which lysosomal enzymes degrade 

the inner membrane and cargo (Figure 1.3). The process of autophagy is controlled by 

the coordinated activity of 37 ATG proteins in yeast, but the core ATG proteins, which 

are conserved in mammalian cells, are much fewer (Lamb et al., 2013). 
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Figure 1.3: Autophagy Pathway and Autophagosome Biogenesis 

During the initial stages of autophagy, the isolation membrane forms a double 
membrane vesicle (the autophagosome) around the cargo to be degraded. ULK complex 
(ULK1-ULK2-ATG13-FIP200-ATG101) and Beclin 1 (Vps34-Vps150-Beclin1) complex, 
through interaction with ATG14, recruit autophagy proteins and complexes to the 
autophagosome membrane. ATG12 is conjugated to ATG5 and forms a complex with 
ATG16L1 (ATG16L1 complex). The ATG16L1 complex is proposed to specify the site of 
LC3 lipidation for autophagosome formation. LC3 is conjugated to PE to form lipidated 
LC3-II and is associated with the autophagosome outer membrane. Upon 
autophagosome closure, LC3 localises to the inner membrane and other autophagy 
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proteins and complexes dissociate for recycling. The mature autophagosome then fuses 
with a lysosome to form an autophagolysosome, in which cargo are degraded by 
lysosomal enzymes and subunits are recycled.  

 

Autophagy initiation requires the ULK complex, which consists of UNC51 like Ser/Thr 

kinases (ULK)1 and ULK2, ATG13, FAK family kinase interacting protein of 200 kDa 

(FIP200) and ATG101 (Alers et al., 2012). Under normal conditions in mammalian cells, 

ULK complex is bound and inhibited by mTORC1 (Mechanistic Target of Rapamycin 

Complex 1) complex (Wirth et al., 2013) and mTORC1 also phosphorylates ULK1 and 

ATG13 to inhibit the ULK complex (Fujita et al., 2008). Inactivation of mTORC1, during 

nutrient deprivation, allows kinase activity of ULK1 and ULK2 for phosphorylation of 

substrates FIP200 and ATG13, and thus activation of the ULK complex (Wirth et al., 

2013). The ULK complex then localises to the site of autophagosome formation and is 

vital for recruitment and activation of other autophagy machinery proteins and 

complexes (Figure 1.3) (Chan et al., 2009; Ragusa et al., 2012). 

Formation of the class III phosphatidylinositide 3-kinases (PI3K) complex (Beclin 1 

complex), which is composed of vacuolar protein sorting (Vps)34, Vps150 and Beclin1 is 

also key to initiation of autophagosome formation (Figure 1.4). Interaction of the Beclin 

complex with ATG14 is important for recruitment of autophagy proteins to the 

autophagosome membrane during early stages of the pathway (Figure 1.3) (Suzuki et 

al., 2007). Furthermore, when in this complex Vps34, generates phosphatidyl inositol 

triphosphate (PI3P), which is required for ATG protein recruitment and phagophore 

elongation, in the initial steps of autophagy (Devereaux et al., 2013). 

During expansion of the isolation membrane, the microtubule-associated proteins 

1A/1B light chain 3B (LC3B) precursor is converted by ATG4 into LC3-I and is then 

conjugated with phosphatidylethanolamine (PE) to form lipidated LC3-II by Atg7 and 

Atg3 (Figure 1.3) (Lamb et al., 2013). Simultaneously, ATG5 and ATG12 conjugate and 

form a complex with ATG16L1, known as the ATG16L1 complex, on the isolation 

membrane (Figure 1.3) (Fujita et al., 2008). The ATG16L1 complex is proposed to specify 

the site of LC3 lipidation for autophagosome formation (Fujita et al., 2008).  

Prior to autophagosome closure ATG proteins associated with the membrane dissociate 

and are recycled, except for LC3-II that becomes localized to the inner membrane of the 



 
 

29 

autophagosome (Figure 1.3) (Lamb et al., 2013). Autophagosome fusion with the 

lysosome forms the autophagolysosome for cargo degradation and the degraded cargo 

then re-enters the cytosol through membrane permeases for macromolecule synthesis 

and metabolism (Figure 1.3) (Glick et al., 2010; Muzes et al., 2013; Van Limbergen et al., 

2009).  

 

1.2.2. Autophagy regulatory pathways 
Autophagy is largely regulated, but not exclusively, by the mTORC1 and Beclin1/B cell 

lymphoma 2 (Bcl-2) signalling pathways (Figure 1.4). The mTORC1 pathway plays a 

central role in the inhibition of autophagy, for example blocking mTORC1 activity with 

the small macrolide antibiotic rapamycin stimulates autophagy. The small GTP 

(guanosine triphosphate)-ase, Rheb (RAS homologue enriched in brain), constitutively 

enhances mTORC1 activity (Huang and Manning, 2009). Upon nutrient deprivation, AMP 

(adenosine monophosphate) activated protein kinase (AMPK) detects an imbalance in 

AMP to ATP (adenosine triphosphate) ratio and phosphorylates the tuberous sclerosis 

complex (TSC) to inactivate Rheb and relieve mTORC1 repression of autophagy (Dibble 

et al., 2012). AMPK can also directly phosphorylate mTORC1 subunit RAPTOR 

(regulatory-associated protein of mTOR) to induce mTORC1 inhibition (Gwinn et al., 

2008). 

Class I PI3K, Akt (protein kinase B) and MAPK/ERK signalling pathways are involved in 

the activation of mTORC1 and subsequent inhibition of autophagy (Lamb et al., 2013). 

When growth factors, such as insulin, are detected by Class I PI3K/Akt, phosphorylation 

of TSC2 occurs resulting in Rheb activation of mTORC1 (Inoki et al., 2002; Miyazaki et al., 

2010). Furthermore, Akt, in response to growth factor signalling can phosphorylate 

mTORC1 complex component, PRAS40 (proline-rich Akt substrate of 40 kDa), to relieve 

mTORC1 inhibition (Sancak et al., 2007). TSC2 phosphorylation can also be induced by 

the MAPK/ERK pathway in response to growth factors to achieve the same mTORC1 

activating result (Lamb et al., 2013).  

In contrast, when energy levels are reduced, class III PI3K Vps34 can act to induce 

autophagosome formation by forming the Beclin 1 complex (Devereaux et al., 2013). 

AMPK in response to starvation, can activate ULK1 through its phosphorylation at 
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distinct sites from mTORC1 phosphorylation (Egan et al., 2011; Kim et al., 2011). 

Activated ULK1 (Kim et al., 2013; Russell et al., 2013) and AMPK (Kim et al., 2013) then 

phosphorylate Beclin1 to promote formation of the Beclin 1 complex. Beclin 1 is bound 

to Bcl-2 during normal nutrient conditions but Bcl-2 dissociates to allow binding to Vps34 

during periods of nutrient starvation. This is stimulated by Beclin 1-interacting proteins, 

UVRAG (UV-irradiation resistance-associated gene) and AMBRA1 (Autophagy And Beclin 

1 Regulator 1) (Glick et al., 2010). 

 

 

Figure 1.4: Autophagy Regulatory Pathways 
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The central pathways in autophagy regulation are mTORC1 and Beclin1/Bcl-2. Class I 
PI3K via Akt, and MAPK/Erk signalling pathways phosphorylate TSC2 to promote Rheb-
dependent activation of mTORC1. When active, mTORC1 inhibits formation of the ULK 
complex, which is necessary for initiation of autophagy. Conversely, AMPK is involved in 
the inhibition of mTORC1 and stimulates autophagy via phosphorylation of ULK1 at sites 
distinct from mTORC1. UVRAG and AMBRA1 stimulate dissociation of Bcl-2 from Beclin 
1 via JNK-1-dependent phosphorylation of Bcl-2 (not shown). Bcl-2 is then free to inhibit 
apoptosis and Beclin 1 is free to bind Vps34-Vps150 to induce autophagy. The Beclin 1 
complex binds to ATG14 to induce further ATG protein recruitment and elongation of 
the isolation membrane in the initial stages of autophagy. Activated ULK1 and AMPK can 
also directly phosphorylate Beclin 1 for the induction of autophagy. 

 

1.2.3. Transcriptional Regulation of Autophagy  
Increased autophagy activity is accompanied by transcriptional changes in a wide range 

of autophagy-related proteins including ATG5 (Haim et al., 2015; Kovsan et al., 2011; 

Rodríguez-Muela et al., 2012), ATG12 (Kouroku et al., 2007), ATG7 (Bernard et al., 2015; 

Bernard and Klionsky, 2015; Vázquez et al., 2012), ATG16L1, LC3 (Kirisako et al., 1999; 

Mitroulis et al., 2010; Nara et al., 2002; Vázquez et al., 2012), ATG9 (Jin et al., 2014), 

ATG14 (Xiong et al., 2012), GABARAP (Gamma-aminobutyric acid receptor-associated 

protein) (Sandri, 2010), Bnip3 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 

3), Becn1 (Vázquez et al., 2012), PARK2 (Parkinson Juvenile Disease Protein 2), VMP1 

(Vacuole membrane protein 1) (Ropolo et al., 2007) and ULK1 (Klionsky et al., 2016). 

Transcriptional increases in many of these genes enables autophagy initiation, however, 

autophagy proteins that are primarily involved in autophagosome formation and 

maturation, such as LC3 and ATG5, are more likely to be up-regulated for replenishment 

of protein when autophagy flux is extensive or prolonged (Kouroku et al., 2007; 

Rouschop et al., 2010; Sandri, 2010).  

Several transcription factors have been implicated in the regulation of autophagy gene 

expression. FOXO (Forkhead box protein O) transcription factors (FOXO1 and FOXO3) 

have been shown to regulate autophagy gene expression (Mammucari et al., 2007; 

Xiong et al., 2012; Zhao et al., 2007) and GATA1 (GATA-binding factor 1) along with co-

regulator ZFPM1 (Zinc Finger Protein, FOG Family Member 1) increases transcription of 

autophagy components (Kang et al., 2012). Using promoter analysis assays, it has been 

shown that when transcription factor E2F1 (E2F Transcription Factor 1) binds to the LC3B 

promoter, expression of several autophagy genes was increased, resulting in increased 

autophagy flux (Haim et al., 2015; Kovsan et al., 2011).  
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Nuclear Receptor Subfamily 1 Group D Member 1 (NR1D1) (also known as Rev-erb-α) 

acts to repress transcription of ULK1, Bnip3, ATG5, PARK2/parkin and Becn1 (Woldt et 

al., 2013). ZKSCAN3 (Zinc Finger With KRAB And SCAN Domains 3) also transcriptionally 

represses autophagosome and lysosome biogenesis and is translocated to the nucleus 

upon stimulation of autophagy (Chauhan et al., 2013). This is thought to prevent 

excessive autophagy in response to stimuli.  

A major hub of transcriptional regulation of both autophagosome and lysosome 

biogenesis is the CLEAR (coordinated lysosomal expression and regulation) network 

(Palmieri et al., 2011; Sardiello et al., 2009; Settembre et al., 2011). Transcription factor 

EB (TFEB) is central to the control of CLEAR, and is regulated via phosphorylation by 

MAPK1/ERK2 and mTORC1 pathways (Martina et al., 2012; Settembre et al., 2012, 

2011). mTORC1 phosphorylates TFEB on lysosome surfaces to prevent nuclear 

translocation and subsequent activation of autophagy genes (Settembre et al., 2012). 

This network highlights the concomitant transcriptional regulation of both lysosomes 

and autophagosomes to promote an effective degradative process. Although post-

translational modifications of autophagy proteins and formation of complexes is central 

to autophagy initiation and regulation, these studies show that there are key points of 

transcriptional regulation within the autophagy pathway. 

 

1.2.4. Autophagy and Cell Death are intrinsically 
linked  

Cell death can be mediated by several different pathways and cell death modalities can 

be distinguished by morphological classification as well as biochemical pathways. 

Necrosis is a detrimental form of cell death that is not regulated by the cell and 

culminates in cell membrane rupturing and uncontrolled release of Damage Associated 

Molecular Patterns (DAMPs). In contrast, programmed cell death, including apoptosis 

and autophagic-cell death (ACD), is a highly regulated process. Apoptosis is essential for 

the removal of unwanted, damaged or infected cells through their controlled 

dismantling, which is integral to cellular suicide. Autophagy can interact with apoptosis 

in several context-dependent processes. Distinct from these interactions is ACD, which 

is strictly defined as cell death mediated by increased autophagic flux, with inhibition of 

autophagy preventing cell death (Pattingre et al., 2005). 
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1.2.4.1. Apoptosis   

Apoptosis is identified, morphologically, by nuclear condensation and fragmentation, 

followed by plasma membrane blebbing. Extrinsic apoptosis eliminates abnormal cells 

based on aberrant development or tumorigenic qualities (Figure 1.5) (Mariño et al., 

2014). The extrinsic pathway is triggered upon ligation of death receptors, such as TNF 

receptor 1 (TNFR1) or TNF-related apoptosis-inducing ligand receptor (TRAILR) (Mariño 

et al., 2014). Once activated, these receptors recruit pro-apoptotic proteins to stimulate 

lysosomal membrane permeabilisation (LMP) that releases cathepsin proteases into the 

cytosol, resulting in general proteolysis and caspase-independent apoptosis (Boya and 

Kroemer, 2008). Recruitment of caspase 8 during extrinsic apoptosis proteolytically 

activates downstream caspase cascades, causing caspase-dependent cell death and also 

truncates the BH3 (Bcl-2-Homology 3)-only protein, BID (BH3-Interacting Domain Death 

Agonist) to activate intrinsic apoptosis (Mariño et al., 2014). 

Intrinsic apoptosis occurs in response to cytotoxic stress, exposure to xenobiotics, 

mitochondrial damage and general developmental cues (Figure 1.5). The defining 

process of intrinsic apoptosis is Mitochondrial Outer Membrane Permeabilisation 

(MOMP). Upon activation of BH3-only proteins by caspase 8 or p53 in response to DNA 

damage (Vousden and Lane, 2007), pro-apoptotic proteins Bcl-2-associated X protein 

(BAX) and Bcl-2 antagonist or killer (BAK) are recruited to the mitochondria to induce 

MOMP (Adams and Cory, 2007; Galonek and Hardwick, 2006; Kroemer et al., 2007). Due 

to the permeabilisation of the mitochondria, cytochrome c is released to induce 

caspase-dependent apoptosis, and Apoptosis Inducing Factor (AIF) and Endonuclease G 

are released to cause caspase-independent apoptosis (Kroemer and Martin, 2005). 

Caspase-independent apoptosis is characterised by reactive oxygen species (ROS) 

production, DNA damage, proteolysis and chromatin condensation. 
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Figure 1.5: Extrinsic and Intrinsic Apoptosis pathways  

Extrinsic apoptosis is triggered by binding of receptors TNFR1 and TRAILR to induce 
lysosomal membrane permeabilisation (LMP), which releases cathepsin proteases, 
causing general proteolysis and caspase-independent apoptosis. Extrinsic apoptosis 
receptors also activate caspase 8 to induce caspase-dependent apoptosis and intrinsic 
apoptosis. Intrinsic apoptosis is characterised by mitochondrial outer membrane 
permeabilisation (MOMP), facilitated by BH3-only proteins that localise to the 
mitochondria when caspase 8 and p53 are activated. MOMP releases cytochrome c for 
caspase cleavage and AIF and endonuclease G for caspase-independent apoptosis.   

 

1.2.4.2. Interactions of Autophagy and Apoptosis  

In response to cellular stress, autophagy often precedes apoptosis in an attempt to 

promote survival, which can involve autophagy actively suppressing apoptosis. 

However, when cellular stress is prolonged and/or more intense the cell will undergo 

apoptosis to protect neighbouring cells. In this instance autophagy can act to initiate 
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apoptosis and active apoptosis can then suppress cytoprotective autophagy to 

accelerate cell death.  

Beclin 1 was originally identified as an interacting protein with Bcl-2 (Liang et al., 1998), 

the anti-apoptotic protein that inhibits autophagy when it is in complex with Beclin 1 

(Maiuri et al., 2007; Pattingre et al., 2005). In response to nutrient deprivation, c-Jun N-

terminal kinase (JNK)-1-mediated phosphorylation of Bcl-2 occurs, causing the 

dissociation of the Beclin 1-Bcl-2 complex and induction of autophagy (Wei et al., 2008). 

Under these conditions Bcl-2 will bind to and inhibit pro-apoptotic proteins, including 

BAX and BAK, to promote survival. However, during periods of prolonged nutrient 

deprivation, extensive levels of Bcl-2 phosphorylation prevents Bcl-2 from binding to 

pro-apoptotic proteins (Bassik et al., 2004; Wei et al., 2008). Cells and mice expressing 

Bcl-2 with mutant phosphorylation sites are resistant to autophagy and apoptosis 

induction in response to stress (He et al., 2012). Therefore, Bcl-2 phosphorylation can 

act as a switch between autophagy and apoptosis (Wei et al., 2008). 

Due to the Beclin 1-Bcl-2 interaction, induction of pro-apoptotic signalling can also 

induce autophagy. One of the mechanisms by which BH3-only proteins, induce 

apoptosis is by neutralizing anti-apoptotic Bcl-2 family proteins, Bcl-2 and MCL1 

(Myeloid cell leukaemia sequence 1), which indirectly enhances autophagy by disrupting 

inhibitory interactions of Bcl-2 and MCL1 with Beclin1 (Mariño et al., 2014). 

Furthermore, Death-Associated Protein Kinase (DAPK), which has varying pro-apoptotic 

effects, can also promote autophagy through phosphorylation of Beclin 1, which inhibits 

interaction with Bcl-2 (Choi et al., 2013; Zalckvar et al., 2009). DAPK also triggers protein 

kinase D (PKD) phosphorylation of Vps34 to promote formation of the Vps34-Vps15-

Beclin1 complex for autophagy induction (Eisenberg-Lerner and Kimchi, 2012).  

p53 can also act to initiate both autophagy and apoptosis in response to DNA damage. 

Cytosolic p53 constitutively represses autophagy by interacting with FIP200, thus 

inhibiting the ULK complex that is essential for autophagosome formation (Tasdemir et 

al., 2008). Upon DNA damage, p53 translocates to the nucleus and mitochondria, which 

prevents inhibitory interaction with FIP200 (Tasdemir et al., 2008). In the mitochondria 

p53 interacts with cyclophin D to cause formation of permeability transitions pores (PTP) 

(Vaseva et al., 2012). PTP activates autophagic clearance of mitochondria (mitophagy), 

but if PTP reaches a critical threshold MOMP occurs, triggering intrinsic apoptosis 
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(Galluzzi et al., 2012; Youle and Narendra, 2011a). Furthermore, when translocated to 

the nucleus p53 up-regulates expression of genes for pro-apoptotic as well as pro-

autophagic proteins (Riley et al., 2008). The co-regulatory capacity of these pathways 

can be explained by the concept of pre-mortem autophagy, as the signalling pathways 

induce autophagy when cellular stress is more modest and then induce apoptosis if the 

cellular stress is prolonged.   

Autophagy can also inhibit apoptosis in its attempts to promote cell survival. Mitophagy 

plays an important role in preventing apoptosis, as removal of damaged mitochondria 

prevents release of mitochondrial activators of intrinsic apoptosis. Furthermore, 

autophagy can also selectively degrade pro-apoptotic proteins, such as caspase 8 and 

BAX, to attenuate cell death (Amir et al., 2013; Hou et al., 2010). Autophagic inhibition 

of apoptosis is an attempt to restore homeostasis and promote survival in cells exposed 

to low levels of stress. 

When autophagy is not capable of restoring homeostasis in response to cellular stress, 

apoptosis is essential to protect neighbouring cells. To accelerate apoptosis it is 

pertinent that autophagy is inhibited. This can be achieved by caspase digestion of 

essential autophagy proteins, such as ATG3 (Oral et al., 2012), Beclin1 (Luo and 

Rubinsztein, 2010; Wirawan et al., 2010) and AMBRA1 (Pagliarini et al., 2012). 

Furthermore, the fragments of caspase-digested autophagy proteins, such as Beclin 1 

(Wirawan et al., 2010), ATG5 (Yousefi et al., 2006) and ATG4D (Betin and Lane, 2009) 

can acquire pro-apoptotic functions. A carboxy-terminal fragment of Beclin 1 can 

localise at the mitochondria to induce cytochrome c release through mitochondrial 

permeabilisation (Wirawan et al., 2010). The complex relationship between autophagy 

and apoptotic cell death highlights the need to monitor cytotoxicity when investigating 

autophagy. 

1.2.4.3. Autophagic-Cell Death (ACD) 

A rheostat model proposed by Pattingre et al. (2005) suggests that when autophagy 

exceeds physiological levels then autophagic-cell death can occur due to over-digestion 

of essential cellular components. ACD is defined as cell death mediated by autophagy in 

which suppression of autophagy prevents cell death, as opposed to cell death 

accompanied by autophagy flux. This phenomenon has mostly been described in model 
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organisms such as nematodes (Erdélyi et al., 2011) and Drosophila melanogaster 

(Denton et al., 2009), but there is some evidence in mammals. For example, cell death 

induced by overexpression of the RAS oncogene (Byun et al., 2009; Elgendy et al., 2011), 

hypoxia (Koike et al., 2008) or influenza virus infection increased ATG5, ATG7 or Beclin 

1 levels (Sun et al., 2012). 

 

1.2.5. Xenophagy: Autophagic Degradation of 
Microorganisms  

Xenophagy (a specific type of autophagy that degrades microorganisms) is central to 

innate immune response. It can target and degrade intracellular pathogens, stimulate 

the production of host defence peptides, regulate pro-inflammatory signalling and 

present antigens to initiate the adaptive immune response (Deretic et al., 2013). This 

process is particularly important for the bacterial handling of certain pathogens that can 

elude phagocytic vacuoles, such as Listeria monocytogenes, as well as bacteria that 

remain in intracellular vacuoles such as Salmonella enterica (Travassos et al., 2010). 

Interestingly, antibiotic-induced microbial dysbiosis in the gut has been shown to 

enhance expression of autophagy genes (Singh et al., 2017).  

During infection, microorganisms are detected via PAMPs by PRRs located on the 

surface or within the cytosol of host cells. PRRs involved in xenophagy include the NLRs, 

TLRs and sequestosome 1/p62-like receptors (SLRs) (Delgado et al., 2009). NLRs are 

primarily cytosolic but have been described at the plasma membrane (Barnich et al., 

2005). NLRs including NLRP3, NLRP4, NLRP10, and NLRC4 can be found in complexes 

with Beclin1, but their mechanism in autophagy regulation has yet to be fully elucidated 

(Jounai et al., 2011). NOD1 and NOD2 can initiate autophagy in response to muramyl 

peptides in bacterial walls, which will be discussed further in Section 1.3.2.  

TLRs are plasma membrane bound PRRs, central to innate immunity, and have been 

implicated in the stimulation of autophagy. Different TLRs are stimulated by different 

PAMPs and it has been found that ligands for TLR4 and TLR7, which are 

lipopolysaccharide and single-stranded DNA respectively, provoke the greatest 

autophagy response (Van Limbergen et al., 2009). TLR-mediated autophagy can be 

mediated via disruption of the Beclin1-Bcl-2 complex (Shi and Kehrl, 2008). 
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SLRs or autophagy receptors can target cytosolic pathogens to initiate autophagy (Nys 

et al., 2013). There are five main SLRs including sequestosome 1/p62, NBR1 (Neighbor 

of BRCA1 gene 1) (Kirkin et al., 2009), NDP52 (Nuclear Domain 10 Protein 52) (Thurston 

et al., 2009), the NDP52-like receptor calcoco3 (Calcium-binding and coiled-coil domain-

containing protein 3) (Newman et al., 2012), and optineurin (Wild et al., 2011). SLRs can 

bind ubiquitin tags on invading pathogens (Dupont et al., 2009; Thurston et al., 2009; 

Wild et al., 2011) or galectin, which binds galactose residues exposed on damaged 

phagosomes (Li et al., 2013; Thurston et al., 2012). SLRs have another binding motif, the 

LC3-interacting region (LIR), which allows direct interaction with the autophagy 

machinery (Johansen and Lamark, 2011). The activity of SLRs can be enhanced by cargo 

adaptors. For instance, the adaptor, autophagy-linked FYVE protein (ALFY) can bind 

ubiquitinated pathogens via p62 and promote association with the autophagy 

machinery through binding to ATG5 (Filimonenko et al., 2010).  

 

1.2.6. Mitophagy: Autophagic degradation of 
mitochondria 

Mitophagy is the autophagic degradation of damaged or excessive mitochondria. This 

process is required for turnover of mitochondria, adjustment of mitochondria quantity 

in response to alterations in metabolic requirements and during developmental stages, 

for example red blood cell differentiation (Youle and Narendra, 2011b). Loss of 

autophagy proteins ATG5 or ATG7 leads to accumulation of damaged mitochondria and 

enhanced ROS production (Mortensen et al., 2010; Saitoh et al., 2008; Stephenson et 

al., 2009).  

The main mediators of mitophagy are E3 ligase parkin and PTEN-induced putative kinase 

protein 1 (PINK1). PINK1 is degraded by proteolysis in healthy mitochondria; however, 

when mitochondrial inner membrane potential decreases in damaged mitochondria, 

PINK1 proteolysis is inhibited (Narendra et al., 2010). This causes PINK1 accumulation in 

damaged mitochondria, which subsequently recruits parkin to the mitochondrial 

membrane from the cytosol (Narendra et al., 2008). PINK1 binding and phosphorylation 

of parkin activates its E3 ubiquitin ligase activity (Sha et al., 2010). Parkin then 

ubiquitinates substrates embedded in the outer mitochondrial membrane, which are 

then bound by ubiquitin-binding adaptor proteins p62 and histone deacetylase 6 
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(HDAC6) (Geisler et al., 2010; Lee et al., 2010; Okatsu et al., 2010). These adaptor 

proteins then transport the ubquitinated mitochondria to autophagosomes for 

mitophagy initiation. Pink1 and parkin variants dramatically reduce parkin recruitment 

to mitochondria and inhibit mitochondrial degradation (Geisler et al., 2010; Lee et al., 

2010; Narendra et al., 2010). NIP3-like protein X (NIX) can also promote parkin 

translocation to the mitochondria to induce mitophagy in human red blood cells and 

mouse embryonic fibroblasts (Ding et al., 2010).  

 

1.3. Autophagy and Crohn’s Disease 
Breakdown of autophagic homeostasis has been linked to several diseases, including 

neurodegenerative diseases, cancer and infectious diseases (Levine and Kroemer, 2008). 

Part of autophagy’s homeostatic function is its ability to limit inflammation by degrading 

pathogens, controlling NF-κB signalling and pro-inflammatory responses, and activating 

effective adaptive immune responses (Van Limbergen et al., 2009). Loss of this 

inflammatory regulation has been linked to the chronic GI inflammation observed in CD.  

Several studies have shown impaired autophagy responses in a range of cell types 

derived from CD patients including dendritic cells, lymphoblastoid cells and PBMCs 

(Plantinga et al., 2011; Cooney et al., 2010; Homer et al. 2010). Moreover, functional 

studies have linked dysregulated autophagy in CD to major CD-associated genetic 

variants including NOD2, ATG16L1, IRGM and LRRK2.  

 

1.3.1. ATG16L1 variant linked to CD 
In 2007, the first autophagy gene, ATG16L1, was linked to CD susceptibility, followed by 

the identification of variants in autophagy genes IRGM and LRRK2 (Franke et al., 2010; 

Hampe et al., 2007). ATG16L1 is widely expressed in intestinal epithelial cells and is also 

expressed in macrophages and lymphocytes (Muzes et al., 2013; Rioux et al., 2007). 

Interestingly, it has recently been suggested that CD-associated ATG16L1 T300A acts as 

a dominant negative variant by interacting with the function of WT ATG16L1 allele in 

macrophages from heterozygous mice (Gao et al., 2017). 
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Mice with the CD-associated ATG16L1 T300A SNP do not spontaneously develop 

intestinal inflammation, but do show evidence of Paneth cell and Goblet cell dysfunction 

(Cadwell et al., 2010, 2008; Lassen et al., 2014). This is also observed in Paneth cells from 

patients homozygous for the T300A allele (Cadwell et al., 2008). Paneth cells and Goblet 

cells are vital for intestinal homeostasis; therefore, their aberrant function is an integral 

component of CD pathogenesis. Furthermore, in ATG16L1 deficient mice, macrophage 

function is disrupted leading to increased ROS production, impaired mitophagy, 

decreased microbial clearance and reduced antigen processing (Zhang et al., 2017). 

In mice with ATG16L1 T300A knock-in there are slight decreases in basal levels of 

autophagy but xenophagy levels are significantly inhibited (Lassen et al., 2014). 

Furthermore, in IEC cell lines transfected with the T300A SNP, impaired capture of 

Salmonella within autophagosomes is observed (Kuballa et al., 2008). Therefore, the 

ATG16L1 T300A variant decreases the capacity for antibacterial autophagy, despite 

minimal effect on non-selective autophagy. 

The ATG16L1 protein has two functional regions. The N-terminal region is vital for 

autophagy activity, as it is responsible for LC3 conjugation. The C-terminal contains the 

WD40 domain that is crucial for unconventional autophagy, such as xenophagy. A recent 

study has shown that the T300A SNP inhibited xenophagy in cells, but not basal or 

rapamycin-induced autophagy, which was due to impaired binding of adaptor protein, 

transmembrane protein (TMEM) 59, to the WD40 domain (Boada-Romero et al., 2016). 

Recent functional studies, using a T300A knock-in mouse model, have demonstrated 

that this SNP creates a caspase cleavage site, making ATG16L1 more susceptible to 

caspase-3-mediated degradation (Lassen et al., 2014; Murthy et al., 2014). The 

enhanced caspase cleavage did not affect the N-terminal region, but disrupted the 

functions of the WD40 domain. This meant that canonical (non-selective) autophagy 

activity was maintained, but WD40-mediated xenophagy was impaired (Boada-Romero 

et al., 2016). Therefore, the preferential disruption of xenophagy by the T300A SNP is 

due to loss of function in the WD40 domain in the C-terminal of ATG16L1.  

ATG16L1 is post-transcriptionally inhibited by miRNA, MIR142-3p, which leads to 

attenuated starvation- and MDP-induced autophagy (Zhai et al., 2014). Dysregulated 

miRNAs have been implicated in CD pathogenesis (Cao et al., 2017; F. Wu et al., 2010; 

Wu et al., 2011). Due to its link to ATG16L1 and autophagy, MIR142-3p may have a role 
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in CD pathogenesis. Therefore, in CD, decreased translation of ATG16L1 due to 

dysreguated miRNA could generally impair autophagy activity, and not specifically 

xenophagy. 

 

1.3.2. Implications of impaired NOD2-ATG16L1 
interactions in CD pathogenesis 

The immunoregulatory properties of NOD2 have been linked to autophagy. CD 

susceptibility is heightened when ATG16L1 and NOD2 variants present in combination 

causing synergistic genetic epistasis (Rioux et al., 2007; Weersma et al., 2009). This 

implies a significant interaction between these proteins in the autophagy pathway. 

Cells harbouring CD-associated NOD2 variants and/or the ATG16L1 T300A SNP exhibit a 

number of disrupted functions linked to autophagy and have similar phenotypes, 

suggesting that NOD2-ATG16L1 functionally intersect. Paneth cell abnormalities causing 

reduced antibacterial processes were found in CD patients with NOD2 or ATG16L1 

variants (Homer et al., 2010). In IECs and DCs that harbour the NOD2 L1007f/s or 

ATG16L1 T300A variants, MDP-induced autophagy is diminished, leading to ineffective 

killing of pathogens such as Salmonella typhimurium, Shigella flexneri and AIEC (Cooney 

et al., 2010; Homer et al., 2010). Furthermore, in monocytes from CD patients with CD-

associated ATG16L1 and NOD2 variants, deficient autophagy led to increased 

accumulation of bacterial products and enhanced pro-inflammatory responses 

(Wolfkamp et al., 2014).  

A functional interaction between these proteins has been observed, as NOD2 recruits 

ATG16L1 to the site of bacterial entry at the plasma membrane to initiate autophagy 

(Travassos et al., 2010). The CD-associated NOD2 variant failed to recruit ATG16L1, 

which led to impaired formation of a phagophore around the invading bacteria 

(Travassos et al., 2010). Therefore, there is a strong link between impaired NOD2-

ATG16L1 interactions, caused by CD-associated mutations, and defective autophagy. 

This can ultimately lead to decreased bacterial clearance, causing persistent infection 

and excessive pro-inflammatory responses that are characteristic of CD. 
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1.3.3. IRGM variants and CD pathogenesis  
A deletion polymorphism immediately upstream of IRGM causes IRGM to segregate into 

CD risk variant (deletion) and protective variant (no deletion) (McCarroll et al., 2008; 

Parkes et al., 2007). Subsequently it has been shown that miR-196, which is 

overexpressed in the inflammatory intestinal epithelia of individuals with CD, 

downregulates the IRGM protective variant but not the risk-associated variant (Brest et 

al., 2011). Irgm1-deficient mice also exhibit abnormalities in Paneth cells, accompanied 

by increased susceptibility to inflammation in the colon and ileum (Liu et al., 2013).  

Functionally, the loss of IRGM protective variant expression compromises autophagy 

responses to intracellular bacteria (Brest et al., 2011). Interestingly, a recent study has 

placed IRGM in a central role for the orchestration of core autophagy machinery as it 

regulates the formation of a complex containing NOD2 and ATG16L1 that is necessary 

for the induction of xenophagy (Chauhan et al., 2015). The interaction of IRGM with 

NOD2 also stimulates phosphorylation cascades involving AMPK, ULK1 and Beclin1 that 

regulate autophagy initiation complexes (Chauhan et al., 2015).  

 

1.3.4. LRRK2 variants and CD pathogenesis  
LRRK2 regulates the autophagy pathway via Beclin1 and independently of mTORC1 

(Manzoni et al., 2016). LRRK2 involvement in autophagy regulation has mainly been 

investigated in the context of Parkinson’s disease (Roosen and Cookson, 2016); 

however, the LRRK2 locus has been associated with CD in GWA studies (Barrett et al., 

2008; Franke et al., 2010). LRRK2 variants have been shown to affect autophagy activity, 

as well as age of onset and disease location in CD patients (Hui et al., 2018). LRRK2 

deficiency confers enhanced susceptibility to experimental colitis in mice, which was 

associated with enhanced nuclear localisation of the transcription factor nuclear factor 

of activated T cells (NFAT1), important for regulating innate immune responses (Liu et 

al., 2011). LRRK2 can also enhance NFκB-dependent transcription, while small 

interfering RNA (siRNA) knockdown of LRRK2 in murine Ralph and William’s cell line 

(RAW) 264.7 macrophage-like cells interferes with ROS production and bacterial killing 

(Gardet et al., 2010).  
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1.3.5. AIEC, CD and autophagy 
Defects in autophagy have been linked to AIEC persistence in macrophages (Lapaquette 

et al., 2010, 2012; Sadabad et al., 2015) and enhanced expression of TNF-α, IL-1β and IL-

8 in response to AIEC (Negroni et al., 2016). Furthermore, in IECs and DCs with CD-

associated NOD2, ATG16L1 and IRGM variants, there were diminished autophagy 

responses to AIEC infection, causing unsuccessful clearance of the intracellular bacteria 

(Brest et al., 2011; Cooney et al., 2010). 

Various bacterial strains can perturb autophagy responses, such as Listeria 

monocytogenes and Shigella flexneri that can block recruitment of Beclin1 and ATG7 to 

the autophagosome (Birmingham et al., 2007; Ogawa et al., 2005), and Salmonella that 

can deubiquitinate autophagy proteins to inhibit autophagosome formation and 

maturation (Mesquita et al., 2012). The AIEC strain LF82 can escape autophagy in IECs 

(Lapaquette et al., 2010), and AIEC were able to survive in neutrophils by disrupting 

autophagy flux, which exacerbated IL-8 production (Chargui et al., 2012). In human 

intestinal epithelial T84 cells and in mouse enterocytes, AIEC infection upregulated 

miRNA (MIR) 30C and MIR130A via NFκB activation, which decreased levels of ATG5 and 

ATG16L1 (Nguyen et al., 2014). This resulted in inhibition of autophagy, which 

augmented AIEC replication and pro-inflammatory responses. In ileal biopsies from CD 

patients, increased MIR30C and MIR130A levels correlated with decreased ATG5 and 

ATG16L1. The enterohaemorrhagic strain of E. coli (O157:H7) can also inhibit autophagy. 

The type 3 secretion system (T3SS) in E. coli O157:H7 translocates Tir protein into host 

cells to act as a receptor for bacterial adhesion (Xue et al., 2017). Tir then activates 

protein kinase A (PKA) to facilitate adhesion and inhibit autophagy via suppression of 

ERK1/2 and enhanced PI3K/Akt signalling. PKA can also phosphorylate ATG13 protein to 

cause dissociation from the autophagosome (Stephan et al., 2009).  

Defective autophagy can be caused by host genetic variants in key autophagy proteins, 

as well as AIEC modulation of host defences. Regardless of the cause, deficient 

autophagy results in enhanced survival of intracellular AIEC and augmented pro-

inflammatory responses in CD.  
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1.3.6. Autophagy control of cytokines in CD  
The increased levels of pro-inflammatory cytokines observed in CD patients has also 

been linked to autophagy dysregulation. Autophagy removes endogenous damage 

signals, such as ROS, and damaged organelles, such as the mitochondria, which 

decreases basal levels of inflammasome activation (Nys et al., 2013). This indirectly 

inhibits inflammasome activation of caspase 1, which converts pro-IL-1β to IL-1β and 

matures IL-18 (Shi et al., 2012). Caspase-1 in inflammasomes can also induce a process 

called pyroptosis in macrophages (Suzuki et al., 2007). Pyroptosis is a process in which 

immune cells affronted with infection will swell and burst to release cytokines. 

Autophagy has the capacity to directly eliminate active inflammasomes (Shi et al., 2012) 

and can protect the cells from pyroptosis (Suzuki et al., 2007). This suggests that 

pyroptosis could occur more readily in response to infection in cells from CD patients 

with defective autophagy.  

NOD2 and ATG16L1 proteins also regulate pro-inflammatory cytokine production. The 

T300A SNP was associated with augmented IL-1β, IL-6 and IL-18 production in response 

to bacterial infection and NOD2 ligands in PBMCs from CD patients (Glubb et al., 2011; 

Salem et al., 2015) and healthy donors (Plantinga et al., 2011), and in ATG16L1-deficient 

or T300A knock-in mice (Lassen et al., 2014; Saitoh et al., 2008). One study revealed that 

ATG16L1 regulates NOD2-mediated cytokine release by interfering with poly-

ubiquitination and recruitment of RIPK-2 (Sorbara et al., 2013). Therefore, when bound 

to NOD2, ATG16L1 acts as a modulator of NOD2 activity, shifting the balance between 

autophagy and cytokine production. Loss of functional ATG16L1 shifts NOD2 activity 

towards RIPK-2-mediated pro-inflammatory signalling (Plantinga et al., 2011). 

 

1.3.7. Autophagy involved in adaptive immune 
responses in CD 

Autophagy is required for presentation of antigens derived from degraded bacterial 

components to the adaptive immune system (Deretic et al., 2013). Autophagosomes 

containing degraded peptides can fuse with the multivesicular major histocompatibility 

complex (MHC)-loading compartments for processing of the antigen (Cooney et al., 

2010), which is then presented on the surface of the cell to activate adaptive immune 

cells.  
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As DCs are APCs they have an important role in appropriate activation of adaptive 

immune responses. Autophagy-deficient monocyte-derived DCs from paediatric CD 

patients expressing the NOD2 L1007f/s or ATG16L1 T300A variants have disrupted 

antigen sampling and processing (Strisciuglio et al., 2013), and antigen presentation via 

MHC II (Cooney et al., 2010). Furthermore, autophagy-deficient DCs present cytoskeletal 

defects, which reduce mobility (Wildenberg et al., 2017). Impaired migration can be 

linked to decreased antigen sampling, resulting in inadequate development of immune 

self-tolerance (Wildenberg et al., 2017). These studies might suggest that autophagy 

defects in DCs would lead to decreased T cell activation. In contrary, knockdown of 

ATG16L1 in DCs enhanced T-cell proliferation in a co-culture environment (Strisciuglio 

et al., 2013). This could be due to autophagy’s role in destabilizing the synapse between 

DCs and T cells. This is highlighted in cells from CD patients with the ATG16L1 risk allele, 

as there is increased T cell activation due to hyper-stable immunological synapses with 

DCs (Wildenberg et al., 2012). It appears there is a culmination of factors regarding 

antigen-presentation that link autophagy deficiency in DCs to the development of IBD. 

Firstly, insufficient antigen sampling and processing could impair appropriate activation 

of adaptive immune responses to resolve infections, and also impede development of 

self-tolerance. However, when antigen presentation is able to occur, lack of autophagy 

means there is over-activation of T cells due to hyper-stability of immunological 

synapses, and reduced mobility could cause DC inability to egress from inflamed 

peripheral tissue and lymph nodes. 

Autophagy within T cell populations is also directly related to IBD pathogenesis. In mice 

with a ATG16L1 deletion specifically in T cells, decreased autophagy caused impaired 

Treg survival and exacerbated inflammatory Th2 responses, resulting in spontaneous 

colitis (Kabat et al., 2016). On the other hand, Treg populations can be expanded by 

treatment with autophagy inducer rapamycin (Kabat et al., 2016) or enhancing 

autophagy by increasing ATG16L1 transcription through knock-down of inhibitory 

miRNA, miR-142-3p (Lu et al., 2018). Autophagy can also help maintain T cell 

homeostasis and tolerance in the thymus. One study found that in ATG5 knockout mice, 

T cell selection in the thymus was altered and this disrupted the generation of a self-

tolerant T-cell repertoire, which resulted in severe colitis (Nedjic et al., 2008). Therefore, 

the role of T cells in CD is associated with imbalances between regulatory and effector 
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T cells (Shale et al., 2013) and a lack of immune self-tolerance, both of which are related 

to autophagy defects.  

Although a direct link between autophagy in B cells and IBD has not been made, 

autophagy is essential for normal B cell differentiation, survival and functioning (Miller 

et al., 2008). In an ATG5 knockout mouse model, autophagy was essential for survival of 

peripheral B cells, plasma cell development and survival, and humoral responses (Arnold 

et al., 2016). Humoral production of IgA is a key feature of intestinal mucosa, which 

suggests that autophagy may play a role in maintenance of IgA in mucosal layers. As 

aberrant B cell responses have been linked to CD pathogenesis, lack of autophagy may 

be pivotal to this.   

 

1.3.8. Mitophagy and CD  
Mitochondrial damage has been implicated in IBD pathogenesis (Novak and Mollen, 

2015), with a recent study determining that mitochondrial DNA (mtDNA), which can act 

as a pro-inflammatory DAMP, was elevated in plasma samples from patients with active 

IBD (Boyapati et al., 2018). Furthermore, analysis of GWAS’s revealed that ~5% of IBD 

susceptibility genes identified had a direct role in regulation of mitochondrial 

homeostasis (Ho et al., 2018).  

Failure in mitochondrial regulation in IBD can be, in part, attributed to deficient 

autophagy responses, as defective autophagy can cause accumulation of ROS and 

damaged mitochondria (Saitoh et al., 2008). IRGM, which can be dysfunctional in CD, 

plays an integral role in mitophagy and localizes to mitochondrial membrane (Singh et 

al., 2010). Furthermore, the mitochondrial protein prohibitin 1 (PHB) can modulate 

autophagy via ROS signalling (Kathiria et al., 2012), and is decreased in active IBD and 

animals with experimental colitis (Hsieh et al., 2006; Theiss et al., 2007). Finally, the 

SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) gene has also been associated with 

IBD (Franke et al., 2010) and is key for promotion of mitophagy by facilitating transport 

of damaged mitochondria to autophagosomes (Novak and Mollen, 2015).  

Mitochondria are the most abundant source of ROS in the cell, and ROS levels are 

enhanced when damaged mitochondria accumulate due to lack of mitophagy (Novak 

and Mollen, 2015). Increased ROS has been found in intestinal epithelium of IBD patients 
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(Novak and Mollen, 2015) and there are reductions in antioxidant levels in IBD patients 

(Geerling et al., 2000). ROS can exert DNA damage and lipid oxidation, and mitochondria 

are also a major target of deleterious effects of oxidative stress.  Therefore, it is unclear 

whether increased ROS in IBD is part of the cause or effect of the disease. 

 

1.4.  ER-stress and the Unfolded Protein 
Response  

ER stress is caused by an accumulation of unfolded and misfolded protein in the ER and 

the UPR is activated to resolve ER stress. To reduce the accumulation of 

unfolded/misfolded proteins the UPR promotes protein re-folding, inhibits protein 

synthesis and induces degradation of unfolded and misfolded proteins through ER-

associated protein degradation (ERAD) and autophagy (Figure 1.6). If these survival 

mechanisms are unsuccessful the UPR will induce apoptosis, as reviewed by Sano and 

Reed (2013). The three major regulators of the UPR are the ER-membrane resident 

proteins PERK (protein kinase RNA-like endoplasmic reticulum kinase), inositol-requiring 

transmembrane kinase endonuclease 1 (IRE1) and activated transcription factor (ATF) 6. 

In an inactive state these proteins are bound to the binding immunoglobulin protein 

(BiP), also known as glucose regulated protein 78 (GRP78) (Cao, 2015). When misfolded 

proteins accumulate during ER stress, BiP binds the misfolded proteins and dissociates 

from the ER-membrane resident proteins to allow their transition to active state (Cao, 

2015).  

PERK inactivates elongation initiation factor 2 (EIF2) via phosphorylation, which 

causes inhibition of general protein synthesis (Guan et al., 2014) and specific up-

regulation of activated ATF4 (Vattem and Wek, 2004). ATF4 transcriptionally up-

regulates several UPR genes including CCAAT/enhancer-binding protein (C/EBP) 

homologous protein (CHOP) (Figure 1.6) (Harding et al., 2000; Nishitoh, 2012). CHOP is 

also a transcription factor that regulates several UPR genes and under conditions of 

prolonged ER stress can promote pro-apoptotic gene expression (Harding et al., 2000; 

Nishitoh, 2012).  

IRE1 exists in two forms: IRE1 that is ubiquitously expressed and IRE1β that is only 

expressed in the GI tract and lung epithelial cells (Wang et al., 1998). During ER stress, 

IRE1 is activated through dimerization and auto-phosphorylation (Shamu and Walter, 
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1996; Tirasophon et al., 2000). The IRE1 RNase domain is essential for creating 

transcriptionally activate X-box binding protein 1 (XBP1) messenger RNA (mRNA) via 

splicing, which acts as a transactivator of UPR genes (Figure 1.6) (Calfon et al., 2002; Lee 

et al., 2003, 2002; Yoshida et al., 2001). IRE1 endoribonuclease activity also facilitates 

degradation of specific mRNA in a process known as RIDD (regulated IRE1-dependent 

decay) (Hollien, 2006).  

ATF6 translocates to the Golgi apparatus once released from its complex with BiP (Shen 

et al., 2002). This allows cleavage by site 1 and site 2 proteases (S1P and S2P), which 

releases the transcriptionally active cytoplasmic domain of ATF6 (ATF6-N) that induces 

UPR-associated genes (Figure 1.6) (Haze et al., 1999; M. Li et al., 2000; Ye et al., 2000). 

Among the ATF6 upregulated genes are CHOP and XBP1 (Hirsch et al., 2014).  
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Figure 1.6: The Unfolded Protein Response 

BiP chaperone protein binds unfolded/misfolded proteins in the ER and dissociates from 
transmembrane receptors upon accumulation of the toxic proteins. The transmembrane 
receptors PERK, IRE1α and ATF6 become activated. PERK phosphorylates EIF2α, which 
downregulates global translation but specifically upregulates ATF4 and CHOP that 
upregulate UPR-associated genes. IRE1α splices XBP1 to its active form and ATF6 is 
cleaved by S1P and S2P to active ATF6-N, which both translocate to the nucleus to 
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upregulate UPR-associated genes. The main function of these UPR-associated genes is 
to increase protein refolding, inhibit synthesis of new protein and degrade 
unfolded/misfolded proteins through autophagy and ERAD.  

 

1.4.1. ER stress and UPR linked to Intestinal 
Inflammation and IBD  

Genetic studies have identified several ER-stress/UPR genes in association with IBD 

pathogenesis (McGuckin et al., 2010). XBP1 and Anterior gradient 2 (AGR2), which is a 

member of the ER PDI family, have both been identified as risk loci associated with IBD 

(Kaser et al., 2008; Zheng et al., 2006). There is evidence that ER-stress levels are 

enhanced in ileal and colonic biopsies from Crohn’s disease patients, as levels of BiP, 

chaperone protein Gp96, and spliced XBP1 are enhanced (Deuring et al., 2012; Kaser et 

al., 2008; Rolhion et al., 2010; Shkoda et al., 2007). In Ulcerative colitis increased BiP 

expression, enhanced levels of active ATF6 and ultrastructual evidence of ER stress were 

exhibited in colonic tissue (Heazlewood et al., 2008; Tréton et al., 2011). This link 

between aberrant ER stress responses and IBD can be elucidated further when 

considering the distinct cell types present in the intestinal epithelium. Cells that 

naturally secrete large amounts of protein, such as Paneth cells are more susceptible to 

ER-stress, therefore rely heavily on the UPR (Todd et al., 2008).  

Winnie mice are characterised by a missense mutation in Muc2, which causes 

abnormalities in intestinal goblet cells, leading to aberrant mucous production and 

spontaneous colitis. Winnie mice also exhibit severe ER stress in Goblet cells 

(Heazlewood et al., 2008), which causes up to four-fold increases in activated DCs in the 

colonic lamina propria, and aberrant adaptive immune responses with strong IL-23/Th17 

responses (Eri et al., 2011). Goblet cell abnormalities are also apparent in mice deficient 

in UPR transcription factor OASIS, which causes increased ER stress and susceptibility to 

DSS-colitis (Asada et al., 2012; Hino et al., 2014). 

As XBP1 is the most prominent IBD-associated loci, several studies have focused on IRE1-

XBP1 signalling in murine models. In mice with XBP1 deletion specifically in IECs (XBP1ΔIEC 

mice), spontaneous inflammation of the small intestine and increased susceptibility to 

DSS-induced colitis was observed (Kaser et al., 2008). In XBP1ΔIEC mice, increased ER 

stress, evidenced by elevated levels of BiP, and increased apoptosis of Goblet cells and 
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Paneth cells led to decreased host defence peptides and higher susceptibility to Listeria 

monocytogenes infection. Furthermore, XBP1 has been shown to suppress experimental 

colitis-associated cancer (Niederreiter et al., 2013), and was essential for efficient TLR-

mediated pro-inflammatory responses to infection in macrophages (Martinon et al., 

2010). These studies confirm that the XBP1 is necessary for protective functions of IECs 

and macrophages.  

Although the UPR primarily acts to maintain homeostasis, hyper-activation of certain 

UPR components can create a pro-inflammatory state. It was observed that in XBP1ΔIEC 

mice there was increased activation of IRE1, causing hyperactivation of NFκB, which 

was essential for spontaneous inflammation (Adolph et al., 2013). In contrary, IRE1β 

knock-out mice have enhanced sensitivity to DSS-induced colitis (Bertolotti et al., 2001). 

Furthermore, IRE1β knock-out mice exhibit Goblet cell abnormalities with exaggerated 

MUC2 accumulation, whereas IRE1 knock-out mice displayed normal Goblet cells 

(Tsuru et al., 2013). In murine Paneth cells IRE1 and IRE1β have distinct roles with 

overactivation of IRE1 driving CD-like ileitis, and IRE1β having a protective role 

(Tschurtschenthaler et al., 2017). 

Association between aberrant PERK-EIF2 and ATF6 pathways, and intestinal 

inflammation has also been observed. A mouse model expressing non-phosphorylatable 

EIF2 in IECs resulted in functional abnormalities in Paneth cells and increased 

susceptibility to Salmonella infection and DSS-induced colitis (Cao et al., 2014). ATF6 

deficient mice exhibit increased ER stress as detected by elevated levels of BiP, ATF4, 

CHOP and spliced XBP1, which ultimately resulted in enhanced sensitivity to DSS-

induced colitis (Cao et al., 2013). Additionally, hypomorphoic mutation in membrane-

bound transcription factor peptidase S1P-encoding gene (Mbtps1) that encodes S1P for 

cleavage of ATF6 causes enhanced susceptibility to DSS-induced colitis (Brandl et al., 

2009). Although there is less extensive evidence for the role of aberrant PERK-EIF2 and 

ATF6 pathways in IBD pathogenesis, their importance for appropriate ER stress 

responses in intestinal epithelium is apparent. 
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1.4.2. Autophagy and the UPR intersect: 
Implications in Crohn’s disease 

It is well known that the UPR can elicit an autophagy response in its attempts to relieve 

ER stress (Hart et al., 2012; Li et al., 2008; Ogata et al., 2006; Shimodaira et al., 2014; W. 

Wang et al., 2016). ER-stress-induced autophagy degrades misfolded proteins, 

aggregates and damaged organelles. There is also a distinct form of ER-stress-induced 

autophagy known as ER-phagy, that specifically degrades ER membranes and the 

autophagosomes are, at least in part, derived from the ER membrane (Song et al., 2017).  

A recent study has shown that ER stress can be mediated by the innate immune sensor, 

stimulator of interferon genes (STING), in response to cyclic-di-AMP (c-di-AMP), a vita-

PAMP in live gram-positive bacteria (Moretti et al., 2017). This process induces 

autophagy via mTORC1 inhibition and interferon responses that localize STING to 

autophagosomes, and ultimately inhibits macrophage cell death.   

Autophagy activity is high in Paneth cells (Adolph et al., 2013) to counterbalance high 

levels of ER-stress (Ogata et al., 2006), therefore ER-stress is a significant risk when the 

UPR or autophagy is not functional. Consistent with this, in Paneth cells of CD patients 

harbouring ATG16L1 T300A risk alleles, BiP and pEIF2α were highly expressed (Deuring 

et al., 2014). ATG16L1;XBP1ΔIEC mice develop similar phenotypic ileitis but earlier in life 

than ATG16L1ΔIEC mice, due to increased ER stress (Adolph et al., 2013; 

Tschurtschenthaler et al., 2017). ERAD can regulate the degradation of IRE1 to prevent 

accumulation of toxic IRE1 aggregates, however persistent ER stress will inhibit ERAD 

degradation of IRE1. When this occurs autophagy has an important role in the 

clearance of supramolecular clusters of IRE1. In ATG16L1ΔIEC mice, development of 

spontaneous CD-like ileitis is associated with defective autophagy resulting in toxic 

accumulation of IRE1 in Paneth cells (Tschurtschenthaler et al., 2017). In humans 

homozygous for ATG16L1 T300A, a similar accumulation of IRE1 was observed in 

intestinal epithelial crypts (Tschurtschenthaler et al., 2017). This has led to suggestion 

that the ATG16L1 T300A SNP may define a specific subtype of patients with CD, 

characterised by Paneth cell ER stress which correlates with bacterial persistence, and 

reduced antimicrobial functionality (Deuring et al., 2014). Furthermore, the synergistic 
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and compensatory relationship between the UPR and autophagy, which is 

contextualised by the CD-associated SNPs in ATG16L1 and XBP1, is also highlighted. 

Interestingly, a recent study has demonstrated a direct link between NOD1/2 and the 

IRE1 pathway in the context of ER-stress-induced inflammation (Keestra-Gounder et 

al., 2016). When activated the IRE1 kinase domain activates the JNK pathway and 

recruits TRAF2 (TNF receptor-associated factor 2) to the ER membrane to trigger NFκB 

signalling (Kaneko et al., 2003; Urano et al., 2000) and autophagy induction (Castillo et 

al., 2011; Ding et al., 2007; Ogata et al., 2006). In mouse and human cells, ER stress 

induced by chemical ER stress inducers or infection with Brucella abortus and Chlamydia 

muridarum increased inflammation and IL-6 production (Keestra-Gounder et al., 2016). 

This response was dependent on NOD1/2 and RIP2, but also on IRE1 kinase activity and 

TRAF2-induced NFκB signalling (Keestra-Gounder et al., 2016). This suggests there is a 

functional intersection between the IRE1 pathway and NOD1/2 signalling, which is 

facilitated by TRAF2.  

In a range of colonic cell lines, chemical ER stress inducers activated autophagy, 

regulated by enhanced CHOP expression, which also promoted the IRE1 pathway 

(Shimodaira et al., 2014). In endothelial cells IRE1-dependent splicing of XBP1 mRNA 

activated autophagy via up-regulation of Beclin-1 (Margariti et al., 2013). Contrary to 

expectations, XBP1 deletion in a familial amyotrophic lateral sclerosis (fALS) mouse 

model increased autophagy, which enhanced clearance of accumulated toxic superoxide 

dismutase-1 (SOD1) aggregates (Hetz et al., 2009). It was suggested that in this scenario 

autophagy is induced in a compensatory manner due to attenuated UPR. 

The UPR and autophagy also intersect at the PERK-EIF2-ATF4 pathway (Avivar-Valderas 

et al., 2013; Ji et al., 2015; Jia et al., 2015; Kouroku et al., 2007; Moon et al., 2016; Zhao 

et al., 2013). In an in vitro model of osteosarcoma, PERK induced autophagy via mTORC1 

inhibition, to promote survival in response to ER stress-conferred chemoresistance to 

apoptosis (Ji et al., 2015). Additionally, PERK mediated autophagy via AMPK-dependent 

inhibition of mTORC1, in response to extracellular matrix (ECM) detachment in 

mammary epithelial cells (MECs) (Avivar-Valderas et al., 2013). The main purpose of 

PERK signalling is to reduce protein synthesis and the inhibition of mTORC1 promotes 

this effect as mTORC1 pathway controls synthesis of ~15-20% of protein within the cell 
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(Laplante and Sabatini, 2012). This, therefore, has a dual purpose of inhibiting protein 

synthesis and inducing autophagy to degrade misfolded proteins. 

The PERK-EIF2-ATF4 pathway can also be involved in the transcriptional up-regulation 

of autophagy genes. Polyglutamine-induced ER stress was associated with increased 

LC3-I to LC3-II conversion, facilitated by pEIF2 up-regulation of ATG12 to promote 

ATG5-ATG12-ATG16L1 complex formation in mouse embryonic carcinoma cells 

(Kouroku et al., 2007). During amino acid deprivation ATF4 and CHOP can bind specific 

C/EBP-ATF Response Elements (CAREs), known as Amino Acid Response Elements 

(AAREs) and CHOP-Response Elements (CHOP-REs), either independently or bound 

together in heterodimers, to induce transcription of autophagy genes including 

ATG16L1, MAP1LC3B, ATG12, ATG3, Becn1, Sqmt1, Nbr1, ATG7, ATG10, ATG5 and 

Gabarap (B’chir et al., 2013). In other studies, hypoxia or ECM detachment can induce 

PERK-dependent autophagy, associated with up-regulation of MAP1LC3B, Becn1 and 

ATG5 via ATF4 and CHOP (Avivar-Valderas et al., 2011; Rouschop et al., 2010; Rzymski 

et al., 2010). This up-regulation of autophagy gene transcription by ATF4 and CHOP was 

shown to replenish autophagy proteins to promote survival during cellular stress 

(Rouschop et al., 2010). However, if the cellular stress is prolonged or intense the 

transcription factor CHOP can also act to up-regulate genes for apoptosis. This identifies 

yet another mechanism for regulating the relationship between autophagy and 

apoptosis in response to cellular stress.  

ATF6 has also been implicated mechanistically in autophagy induction. In response to 

cellular stress IFN-γ activates the Ask1 (Apoptosis signal-regulating kinase 1)/MAPK 

pathway, which phosphorylates ATF6 to allow its proteolytic activation (Gade et al., 

2014). ATF6 interaction with C/EBP-β is then essential for IFN-γ-induced DAPK1 up-

regulation and subsequent stimulation of autophagy (Gade et al., 2012). Mice lacking 

either ATF6 or Ask1 were highly susceptible to bacterial infection due to defective 

autophagy (Gade et al., 2014, 2012). Furthermore, activated ATF6 was shown to 

stimulate Akt, which resulted in the negative regulation of mTORC1, and ULK1 activation 

(Appenzeller-Herzog and Hall, 2012; Yamazaki et al., 2009). 

In a recent study in MCF-7 human breast cancer cells, the chemopreventative agent 

ursolic acid (UA)-induced ER-stress was an effect rather than cause of autophagy 

activation (Zhao et al., 2013). UA induced autophagy via MAPK1/3 signalling, and 
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subsequent promotion of PERK signalling activated MCL1, the Bcl-2 related protein, to 

inhibit apoptosis. Furthermore, another study in human ovarian cancer cells showed 

interdependent activation of autophagy and the PERK-EIF2 UPR pathway when treated 

with metformin, which causes energy starvation (Moon et al., 2016). In these scenarios 

an unconventional relationship between autophagy and ER stress was uncovered, which 

remains to be mechanistically solved. Nonetheless, in these circumstances the 

intertwining of the UPR and autophagy pathways has pro-survival outcomes.  

The convergence between autophagy and UPR pathways is important for efficient 

resolution of ER stress to maintain intestinal homeostasis, which ultimately confers 

protection against intestinal infections and inflammation. This, therefore, provides new 

opportunity for the treatment of IBD. For example, modulation of the UPR in 

combination with autophagy inducers is a promising therapeutic strategy. 

 

1.5.  Current IBD treatments and Autophagy 
The efficacy of current drugs for the treatment of IBD continues to come under scrutiny 

as response to treatment often diminishes over time, resulting in disease complications 

including abscesses, fistulas and strictures. Furthermore, a review of worldwide cohorts 

estimated that between 10–35% of CD patients required surgery within a year of 

diagnosis and up to 61% by 10 years (Bernstein et al., 2012). Development of new drugs 

is a long and expensive process associated with high failure rates; therefore making 

better use of drugs that have already been approved for clinical use is essential. The 

Crohn’s and Colitis Foundation of America has highlighted this need for research into 

optimising medical therapies (Denson et al., 2013), with patient stratification and 

personalised medicine of key importance in this context (Fiocchi, 2015). In order to 

improve the efficacy of existing drugs a more comprehensive characterisation of their 

mechanism of action is required.  

There is evidence that inducing autophagy can have therapeutic benefits for the 

treatment of IBD, as several studies have investigated the role of autophagy inducers as 

adjuvant therapies for IBD. Rapamycin analogues, sirolimus and everolimus, inhibit 

mTORC1 to induce autophagy and are already approved for clinical use for post-

transplantation management. In IL-10-deficient mice, everolimus treatment alleviated 
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spontaneous colitis and reduced CD4+ T cells and IFN-γ (Matsuda et al., 2007). In a case 

study sirolimus improved symptoms and intestinal healing in a patient with severe 

refractory CD (Massey et al., 2008). In another case study, symptoms were controlled 

with everolimus treatment for 1 ½ years in a refractory UC patient (Dumortier et al., 

2008). Moreover, in a study of refractory paediatric IBD, sirolimus induced clinical 

remission in 45% of UC patients and 100% of CD patients; however, sample size was 

small (Mutalib et al., 2014). Everolimus had comparable safety and tolerability as 

azathioprine when used to maintain steroid-induced remission in a cohort of adult CD 

patients (Reinisch et al., 2008).  

Progress has been made in recent years towards characterising IBD drug effects (Table 

1.2), with the modulation of immunoregulatory signalling pathways often linked directly 

or indirectly to the autophagy response (Table 1.3). These heterogeneous studies have 

been conducted in a wide variety of disease settings and cell types; highlighting the need 

to explore the effect of these drugs on autophagy pathway activity in the context of IBD.  
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Table 1.2: IBD Drug Mechanism of Action  

Five main IBD drug classes shown, with examples of drugs in each class and known 
mechanism of action (Campregher and Gasche, 20111; Ciechomska et al., 20132; Kuenzig 
et al., 20143; Stocco et al., 20154; Tiede et al., 20035; Van den Brande et al., 20036).  
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Table 1.3: IBD Drug Modulation of Autophagy  

Five main IBD drug classes and evidence of modulation of autophagy pathway (Chacon-
Cabrera et al., 20141; Ciechomska et al., 20132; Fatkhullina et al., 20143; J. Gao et al., 
20164; W. Gao et al., 20165; Han et al., 20146; Harr et al., 20107; Harris and Keane, 20108; 
He et al., 20169; Kim et al., 201410; Kimura et al., 201311; Kyrmizi et al., 201312; Laane et 
al., 200913; Levin et al., 201614; Nakagaki et al., 201315; Oancea et al., 201716; Pallet et 
al., 200817; Shi et al., 201518; Swerdlow et al., 200819; Tang et al., 201820; Tsai et al., 
201321; Varshney and Saini, 201822; Wang et al., 200623; Wildenberg et al., 201724; Xia et 
al., 201025; Xie et al., 201726; Xu et al., 201527; Xue et al., 201628; Zeng et al., 200729; Zeng 
and Kinsella, 201030, 200831). 
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Figure 1.7: IBD Drug Modulation of Autophagy  

Evidence of corticosteroid, aminosalisylate, immunomodulator and biological agent 
modulation of autophagy and autophagy signalling. Further details in Section 1.5 

 

1.5.1. Corticosteroids 
First-line treatment for CD and UC is often corticosteroids. These drugs are used to treat 

many autoimmune diseases, such as rheumatoid arthritis and lupus, due to their anti-

inflammatory properties. Most studies with paediatric IBD have been undertaken using 

prednisolone or methylprednisolone, but other corticosteroids can be used, including 

Budesonide (Wilson et al., 2010). Corticosteroids downregulate pro-inflammatory 

cytokines including IL-1, IL-6 and TNF-α by inhibiting the transcription of genes involved 
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in their production and affecting the stability of mRNA to inhibit protein expression 

(Table 1.2) (Kuenzig et al., 2014). Furthermore, inflammatory signalling induced by NFκB 

is decreased due to interaction with corticosteroid receptors (Table 1.2) (Kuenzig et al., 

2014).  

Corticosteroid therapy can be very effective for IBD treatment, as it has been shown to 

induce remission in up to 84% of children with CD (Markowitz, 2008). However, the 

adverse side effects of corticosteroids can be very severe due to their non-specific 

downregulation of immune processes and other metabolic pathways. The side effects 

include increased risk of infection, osteoporosis, growth retardation, pancreatitis, 

glucose intolerance, adrenal insufficiency, cataracts, glaucoma, Cushing syndrome, 

hypertension, weight gain, acne and mood disturbances (Diefenbach and Breuer, 2006; 

Markowitz, 2008). Therefore, prolonged use of corticosteroids in paediatric cases is 

undesirable. Nevertheless, steroid dependence is common with 30-40% of patients 

remaining on steroids at one year, when a common course is recommended for only 8-

10 weeks (Wilson et al., 2010).  

There has been progress in understanding the effect of corticosteroids on autophagy 

activity in a range of disease settings. Clinical response to corticosteroids in UC patients 

has been linked to mTORC1. In a transcriptomics study, it was observed that miRNA and 

mRNA profiles in the rectal mucosa of UC patients differed between responders and 

non-responders to corticosteroid treatment (Naves et al., 2015). The mRNA with the 

most significant differential expression between groups was DNA damage-induced 

transcript 4 (DDIT4), an inhibitor of mTORC1 activity, which was upregulated in 

responders after three days of corticosteroid treatment (Figure 1.7).  

In the hippocampus of rats, it has also been shown that corticosterone treatment affects 

mTORC1 signalling pathways (Polman et al., 2012). In this study, corticosterone up-

regulated the expression of DDIT4, as well as FK506-binding protein 51 (FKBP51), but 

down-regulated DDIT3. DDIT4 and FKBP51 inhibit mTORC1 activity, whereas the pro-

apoptotic transcription factor DDIT3 is itself regulated by mTORC1 (Figure 1.7) (Polman 

et al., 2012). In agreement, Wang et al. (2006) found that dexamethasone treatment of 

in vivo skeletal muscle and cultured L6 myoblasts increased DDIT4 expression and 

confirmed that DDIT4 down-regulates mTORC1 activity (Figure 1.7 and Table 1.3). In a 



 
 

61 

rat model of placental angiogenesis, a rat cell line representing muscle atrophy and in 

human umbilical vein endothelial cells (UVEC) corticosteroids inhibited the Akt pathway, 

a known mTORC1 activator, (Girón et al., 2015; Ozmen et al., 2016, 2015) and activated 

the AMPK pathway, an inhibitor of mTORC1 (Figure 1.7) (Troncoso et al., 2014). Another 

study, investigating the effects of dexamethasone treatment on T-lymphocytes from 

healthy donors, found that there was a reduction in mTORC1 expression (Figure 1.7 and 

Table 1.3) (Fatkhullina et al., 2014). Furthermore, dexamethasone inhibition of mTORC1 

resulted in increased autophagy activity in rat chondrocytes (Xue et al., 2016), a human 

placental choriocarcinoma cell line (BeWo) (He et al., 2016) a osteocyte-like cell line 

(MLO-Y4) and in primary murine calvarial osteocytes (Figure 1.7 and Table 1.3) (J. Gao 

et al., 2016). These studies strongly suggest that the mechanism of action of 

corticosteroids is, in part, through the inhibition of the mTORC1 pathway and increased 

autophagy. 

Several studies have investigated the effects of corticosteroids on osteocyte cell fate. 

Gluococorticoids have been shown to enhance osteoclastogenesis, in vitro and in vivo, 

in an ROS-induced autophagy dependent manner (Table 1.3) (Shi et al., 2015). 

Furthermore, low doses of prednisolone and dexamethasone, in vitro and in vivo, induce 

autophagy in osteocytes and this is associated with increased osteocyte viability (Table 

1.3) (Xia et al., 2010). However, higher doses of corticosteroids induced apoptosis, 

suggesting that autophagy may act as a protective mechanism against the cytotoxic 

effects of corticosteroids (Weinstein et al., 1998).  

Corticosteroids are also used to treat lymphoid malignancies and it has been shown that 

glucocorticoids induce autophagy in immature T cell populations (Harr et al., 2010), 

lymphoid cell lines (Swerdlow et al., 2008) and primary leukaemia cells (Table 1.3) 

(Laane et al., 2009). The dexamethasone-induced autophagy was also associated with 

inhibition of mTORC1, possibly through regulation of the Src kinase Fyn pathway (Figure 

1.7) (Harr et al., 2010). Swerdlow et al. (2008) suggested that a contributing factor to 

dexamethasone-induced autophagy could be metabolic stress caused by reduced 

glycolysis and glucose uptake in corticosteroid-treated lymphocytes (Figure 1.7).  

Autophagy stimulation by glucocorticoids is relevant for treatment of lymphoid 

malignancies as it is intimately linked to the induction of apoptosis in T lymphocytes 

(Laane et al., 2009; Swerdlow et al., 2008). Corticosteroids are able to induce apoptosis 
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in immature T lymphocytes as these cells lack the inhibitor of apoptosis protein Bcl-2 

(Swerdlow et al., 2008). Although Bcl-2 usually acts to inhibit autophagy by binding to 

Beclin1 (Figure 1.4), it has been shown that overexpression of Bcl-2 in immature T 

lymphocytes can increase autophagy levels, presumably due to inhibition of apoptosis 

(Swerdlow et al., 2008). Furthermore, autophagy induction prolonged the survival of 

dexamethasone-treated cells (Swerdlow et al., 2008). In contrast Laane et al. (2009) 

found that autophagy played a positive role in dexamethasone-induced apoptosis in 

lymphoid leukaemia cells. In this study dexamethasone induced cell death through 

promyelocytic leukaemia (PML) protein-dependent dephosphorylation of the 

autophagy inhibitor Akt, stimulating the induction of autophagy.  

In certain scenarios corticosteroids have demonstrated autophagy-inhibiting activity. In 

a rat model of osteoporosis, prednisolone inhibited autophagy, as observed by 

downregulation of Beclin1, Atg5 and LC3-II, and induced apoptosis (Table 1.3) (Tang et 

al., 2018). Methylprednisolone also suppressed autophagy activity in a neuroblastoma 

cell line (Neuro-2a) (Table 1.3) (W. Gao et al., 2016). Additionally, autophagy was 

activated in spinal cord injuries (SCL) along with apoptosis and necrosis, but rats treated 

with methylprednisolone exhibited decreased autophagy post-SCL (Chen et al., 2012). 

The effects of methylprednisolone on autophagy in this study may therefore be 

attributed to direct inhibition of autophagy or due to a decrease in inflammation 

associated with injury, which indirectly reduces autophagy.  

Corticosteroids also block autophagy protein recruitment to pathogen-containing 

phagosomes in human monocytes infected with Aspergillus fumigatus (Kyrmizi et al., 

2013). Detection of the fungal ligand β-glucan by Dectin-1 receptors, triggered Syk 

(Spleen tyrosine kinase) kinase-dependent production of ROS, which stimulated 

autophagy (Kyrmizi et al., 2013). When autophagy was directly inhibited, or cells were 

treated with corticosteroids (in vivo and ex vivo), phagosome maturation (including 

fusion with the lysosome) and A. fumigatus killing were impaired (Table 1.3) (Kyrmizi et 

al., 2013). This highlights the importance of autophagy as a defence mechanism against 

fungal infections, but contradicts studies suggesting that autophagy is induced by 

corticosteroid treatment.  

The contrasting results in these studies could be due to differences in the disease 

pathogenesis investigated, the types of corticosteroids used, or the different types of 
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autophagy that were investigated. For instance, studies showing decreased autophagy 

used prednisolone/methylprednisolone instead of other corticosteroids often used in 

cancer therapy, or focused on the effects of corticosteroids on xenophagy with A. 

fumigatus. Whereas, opposing studies focused on non-selective autophagy induced by 

cellular stress. This serves to highlight the cell-type specific and context-dependent 

nature of autophagy and the need to investigate the effect of corticosteroids on cell 

types that are relevant to IBD.  

 

1.5.2. Aminosalicylates 
Aminosalicylates are effective as first line drugs to induce and maintain remission in mild 

to moderate cases of UC (Turner et al., 2012), and there is some evidence of their 

efficacy in prevention of post-operative CD reoccurrence (Z. Yang et al., 2014). Despite 

the minimal evidence for their efficacy in CD treatment, they are often prescribed as 

adjuvant therapy due to minimal side effects, low cost and chemo-preventative 

properties (Diefenbach and Breuer, 2006; Schoepfer et al., 2014). Sulfasalazine or 

salicylazosulfapyridine (SASP) was originally developed for rheumatoid arthritis and 

contains 5-Aminosalicyclate (5-ASA) bound to sulfapyridine (CCFA, 2013). Sulfapyridine 

exhibits direct antimicrobial activity, and treatments with sulfapyridine have been linked 

to alterations in faecal bacterial profiles (Campregher and Gasche, 2011). Sulfapyridine 

has been associated with additional adverse effects (Diefenbach and Breuer, 2006), 

leading to the development of other forms of aminosalicylates without sulfapyridine, 

including Mesalazine and its pro-drugs Balsalazide and Olsalazine (CCFA, 2013).  

The anti-inflammatory activities of 5-ASA include scavenging of damaging ROS, 

upregulation of endogenous antioxidant systems, inhibition of leukocyte motility, 

leukotriene and platelet activation, interference with NFκB1, TNF-α, IL-1 and TGF-β, 

inhibition of nitric oxide formation, prevention of mitochondrial damage and colonic 

epithelial cell-cycle arrest in S-phase (Table 1.2) (Campregher and Gasche, 2011). In 

theory, many of these activities could directly or indirectly affect autophagy due to a 

reduction of cellular stress. One study, investigating sulfasalazine as an NFκB inhibitor in 

an in vivo murine model of cancer cachexia, reported a decrease in autophagy (Figure 

1.7 and Table 1.3) (Chacon-Cabrera et al., 2014). This could be due to a direct effect of 
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NFκB inhibition, as NFκB signalling regulates autophagy in a context-dependent manner 

(Salminen et al., 2012), or through one or more of the other pathways regulated by 

sulfasalazine. In addition, this response may be specific to the disease or to the muscle 

tissues being examined in murine models.   

In contrast, Han et al. (2014) reported that sulfasalazine treatment in an oral squamous 

cell carcinoma (OSCC) cell line, HSC-4, induced autophagic cell death through inhibition 

of the Akt pathway and activation of the ERK pathway (Figure 1.7 and Table 1.3). The 

seemingly opposing effects of sulfasalazine observed in these studies may be due to 

differences in dosage. Dosage is extremely difficult to compare between in vitro and in 

vivo studies, however it is possible the induction of autophagic cell death observed by 

Han et al. (2014) may be representative of a cytotoxic concentration range. 

 

1.5.3. Thiopurines   
Thiopurines, including azathioprine, 6-mercaptopurine and 6-thioguanine, are 

immunosuppressant drugs used to treat IBD (Guijarro et al., 2012). They have a relatively 

slow onset, but can maintain remission in moderate to severe cases of CD and have also 

shown some effectiveness for the induction of remission (Diefenbach and Breuer, 2006; 

Gisbert et al., 2011). However, only 30% of CD patients achieve complete steroid-free 

remission after 6 months of azathioprine therapy (Colombel et al., 2010). Furthermore, 

adverse effects are observed in 25-30% of children treated with thiopurines (Kirschner, 

1998), and 15-20% of adult patients treated with thiopurines have to discontinue 

treatment due to these side effects (Stocco et al., 2015). The most severe side effects of 

thiopurines are myelosuppression and hepatotoxicity, which are observed in 10-15% 

paediatric patients (Dubinsky, 2004) and 3.5-4.5% of adult patients (Giverhaug et al., 

1996; Shaye et al., 2007). Erythrocyte concentrations of thiopurine metabolites can be 

monitored to maintain therapeutic levels and avoid toxicity (Gardiner et al., 2008). Due 

to higher levels of drug metabolites with 6-TG treatment compared to 6-MP and 

azathioprine, there is more hepatic toxicity with this treatment; therefore, 6-TG is used 

mainly for cancer therapy instead of IBD (Dubinsky, 2004).  

The commonly used pro-drug azathioprine is converted to 6-mercaptopurine (6-MP) 

with release of the imidazole ring through a conjugation reaction with anti-oxidant 
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glutathione (GSH) in the intestinal wall, which can lead to GSH depletion (Figure 1.8) 

(Eklund et al., 2006). This can occur spontaneously or can be facilitated by glutathione 

S-transferases (GST), which generates ROS (Aarbakke et al., 1997). 6-MP is then 

metabolised to the inactive metabolites thiouric acid (6-TU) by xanthine oxidase (XOD), 

generating more ROS (Alice U. Lee and Farrell, 2001), or 6-methylmercaptopurine (6-

MMP) by thiopurine methyltransferase (TPMT) (Figure 1.8). 6-MP is also converted to 

active 6-thioinosine monophosphate (6-TIMP) by hypoxanthine-guanine phosphoribosyl 

transferase (HPRT). 6-TIMP can be methylated by TPMT to methyl-6-TIMP, which 

prevents de novo synthesis of purines (Figure 1.8). 6-TIMP is also metabolized in a multi-

step reaction to 6-thioguanosine monophosphate (6-thioGMP) by ionsine 

monophosphate dehydrogenase (IMPDH) and guanosine monophosphate synthetase 

(GMPS) (Figure 1.8). 6-thioGMP is phosphorylated several times to 6-thioguanosine 

triphosphate (6-thioGTP) (Figure 1.8) (Elion, 1989). 6-TG, on the other hand, is directly 

metabolised to 6-thioGMP by HPRT, then phosphorylated to 6-thioGTP (Figure 1.8) 

(Elion, 1989).  

6-thioGTP has been shown to induce T cell apoptosis through co-stimulation of the CD28 

receptor due to blockage of Ras-related C3 botulinum toxin substrate 1 (Rac1) activation 

of NFκB (Figure 1.8 and Table 1.2) (Tiede et al., 2003). 6-thioGTP is also incorporated 

into genomic DNA (Figure 1.8 and Table 1.2) (Elion, 1989). Once incorporated into the 

DNA 6-thioGTP is methylated by S-adenosylmethionine to S6-methylthioguanine, which 

pairs with thymine and cytosine during DNA replication, causing mismatched base pairs 

(Swann et al., 1996). In response, DNA mismatch repair (MMR) is activated to excise 

damaged DNA (Figure 1.8) (Yan et al., 2003). This, however, can cause DNA single-

stranded breaks, activating apoptosis (Figure 1.8) (Yan et al., 2003). Furthermore, 

protein complexes that are recruited to the single stranded DNA (ssDNA) and MMR 

proteins that bind to O6-methylguanine adducts cause p53-induced apoptosis (O’Brien 

and Brown, 2006). 

It has been shown, in MMR-proficient colonic cell lines (HCT116 and HT29), that 

activated p53 is also essential for 6-TG-induced autophagy, potentially by enhancing 

expression of autophagy genes (Figure 1.8 and Table 1.3) (Zeng et al., 2007). It was 

subsequently shown that the BH3-only protein BNIP3 is also required for 6-TG-induced 

autophagy and that it’s enhanced transcription is mediated by p53 (Zeng and Kinsella, 



 
 

66 

2010). BNIP3 causes PTP in mitochondria, decreasing mitochondrial potential and 

resulting in release of ROS. Enhanced ROS production triggered autophagy to promote 

degradation of damaged mitochondria in cells treated with all three thiopurine drugs 

(Figure 1.8) (Chaabane et al., 2016; Zeng and Kinsella, 2010). This ROS-dependent 

increase in autophagy activity has a pro-survival role as it inhibits apoptosis (Chaabane 

et al., 2016; Zeng et al., 2007).  

Investigating this further, it was found that 6-TG-induced autophagy in HCT116 MMR-

proficient cells and HT29 cells was regulated by mTORC1. Contradictory to the 

established function of mTORC1; in this scenario mTORC1 positively regulated both 

autophagy and apoptosis through S6K1 (Ribosomal protein S6 kinase beta-1) activation 

(Zeng and Kinsella, 2008). This was mediated via inhibition of Akt, which can act to inhibit 

both autophagy and cell death (Zeng and Kinsella, 2008). Inhibition of mTORC1 also 

abrogated 6-TG-induced increases in BNIP3 (Zeng and Kinsella, 2010). As mTORC1-S6K1 

has an important role in protein translation, it was speculated that S6K1 enhances 

translation of BNIP3 in response to 6-TG, which overrided the negative regulation of 

autophagy by mTORC1.  

A recent study has correlated ATG16L1 genotype and response to thiopurines in two IBD 

cohorts, specifically showing the association in patients with CD but not with UC 

(Wildenberg et al., 2017). Furthermore, autophagy-deficient DCs, and DCs from CD 

patients with the T300A variant had cytoskeletal defects that reduced mobility of the 

myeloid cells, due to hyperactivation of RAC1 (Wildenberg et al., 2017). RAC1, a member 

of the Rho family of GTPases, is a known target for inhibition by thiopurines (Poppe et 

al., 2006; Tiede et al., 2003); therefore, thiopurine treatment reversed the cytoskeletal 

aberrations and restored DC migration via RAC1 inhibition and potentially induction of 

autophagy (Figure 1.8 and Table 1.3) (Wildenberg et al., 2017). RAC1 inhibition also 

destabilizes APC-T cell synapses (Poppe et al., 2006), meaning thiopurines have a role in 

regulation of APC activation of the adaptive immune system (Figure 1.8). It has been 

suggested that ATG16L1 genotyping could be used to identify patients that would 

benefit from thiopurine treatment (Wildenberg et al., 2017).  

In another recent study the rapid local bacterial conversion of thioguanine pro-drug to 

active metabolite was shown to augment autophagy in epithelial cells (Table 1.3). This 
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resulted in immune activation in animal colitis models, resulting in increased 

intracellular bacterial killing and decreased intestinal inflammation (Oancea, 2016).  

Thiopurines seem to have two distinct mechanisms that affect autophagy activity. The 

ability of thiopurine metabolites to incorporate into genomic DNA primarily causes 

cytotoxicity, but autophagy is stimulated in this scenario to attenuate cell death. On the 

other hand, thiopurine inhibition of RAC1 can be linked to stimulation of autophagy 

activity and regulation of APC functions. 
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Figure 1.8: Thiopurine Metabolism, Mechanism of Action and Modulation 
of Autophagy 

Metabolism of azathioprine, 6-mercaptopurine and 6-thioguanine, and known 
mechanism of action linked to autophagy and apoptosis. Further details in Section 1.5.3. 
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1.5.4. Immunomodulators: Methotrexate, 
Cyclosporin and Tacrolimus 

Methotrexate, cyclosporin and tacrolimus are immunomodulatory drugs used mainly as 

second-line treatments to maintain remission in severe, steroid-refractory CD 

(Markowitz et al., 2002) with more recent evidence suggesting a role for tacrolimus in 

UC (Nuki et al., 2016). The use of these drugs is limited in CD patients due to severe side 

effects including myelosupression, hepatitis, and renal and neurological effects 

(Diefenbach and Breuer, 2006). 

Methotrexate, often used as a cancer therapy, inhibits DNA and RNA synthesis in rapidly 

dividing cells (Table 1.2) (Ciechomska et al., 2013). In squamous cell carcinoma (SCC) 

cells, methotrexate suppressed the autophagy pathway by phosphorylating and 

enhancing mTORC1 activity (Figure 1.7 and Table 1.3) (Tsai et al., 2013). However, in 

osteoarthritis fibroblast-like synovial (OA-FLS) cells (Xu et al., 2015) and keratinocytes 

(Varshney and Saini, 2018) methotrexate has been shown to induce autophagy.  The 

mechanism of methotrexate-induced autophagy was not associated with modulation of 

the Akt/mTORC1 pathway, but was rather mediated through enhanced expression of 

high mobility group box chromosomal protein 1 (HMGB1) and Beclin 1 (Figure 1.7 and 

Table 1.3) (Xu et al., 2015).  

Cyclosporin, originally used to prevent organ transplant rejection, acts by blocking 

lymphocyte and other immune cell activation due to altered IL-2 transcription (Table 

1.2) (Ciechomska et al., 2013). As this drug has very cytotoxic effects, several studies 

have shown that treatment with cyclosporin can induce autophagy in response to the 

toxicity either as a survival process or as part of a cell death mechanism (Table 1.3) 

(Ciechomska et al., 2013; Kimura et al., 2013; Pallet et al., 2008). Toxic levels of 

cyclosporin induced autophagy in vivo and in vitro in malignant glioma cells (Ciechomska 

et al., 2013). This was accompanied by mTORC1 inhibition and an ER stress response, 

with blockage of ER signalling decreasing accumulation of the autophagy marker LC3-II 

(Figure 1.7 and Table 1.3) (Ciechomska et al., 2013). Furthermore, when autophagy is 

inhibited, by blocking of ULK1, Atg5 or Atg7, cyclosporin-induced cell death was shown 

to increase (Ciechomska et al., 2013). These results suggest that autophagy is induced 

as a protective response to the cytotoxic effects of cyclosporin.  
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In a study of cyclosporin-induced nephrotoxicity, ER stress-dependent autophagy 

induction (Figure 1.7 and Table 1.3) has been demonstrated in primary cultured human 

renal tubular cells and in vivo within rat kidneys (Pallet et al., 2008). In addition, 

cyclosporin can cause chronic metabolic stress, which leads to autophagy induction in 

kidney proximal tubule epithelial cells (Kimura et al., 2013). In this study, autophagy-

competent cells allow for metabolic adaptation to cyclosporin treatment, whereas 

autophagy deficiency resulted in cyclosporin-induced deterioration of the tricarboxylic 

acid (TCA) cycle and the overall energy status of the cell. In a rat pituitary cell line model, 

cyclosporin induced apoptosis and autophagic-cell death in a dose-dependent manner 

(Kimura et al., 2013). From these studies, it appears that autophagy is stimulated by 

cyclosporin only as a secondary response to the drug’s cytotoxic effects.  

The mechanism of action of tacrolimus, also known as FK506, is similar to cyclosporin as 

both drugs inhibit the protein phosphatase calcineurin to block T cell function and IL-2 

transcription (Ciechomska et al., 2013). FK506 inhibits calcineurin by forming a complex 

with the immunophilin FKBP12 (FK506 binding protein 12), which is involved in 

immunoregulation (Liu et al., 1992). FKBP12 is also the direct target of rapamycin, the 

mTORC1 inhibitor.  

A recent study by Ge et al. (2014) investigating a novel activator of mTORC1, 3-benzyl-

5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), demonstrated that 3BDO 

could activate mTORC1 by occupying the rapamycin-binding site in FKBP12 (Amiot and 

Peyrin-Biroulet, 2015). This study suggested that FK506, through a mechanism involving 

the formation of an FK506-FKBP12 complex, has the potential to act as an mTORC1 

activator and autophagy inhibitor (Figure 1.7). However, in another study, investigating 

the use of FK506 as a novel therapeutic for prion infections, FK506 was shown to induce 

autophagy in mouse neuroblastoma (N2a58) and mouse microglial (MG20) cell lines and 

in the brains of mice (Table 1.3) (Nakagaki et al., 2013). FK506 treatment significantly 

increased LC3-II, Atg5, Atg7 and autolysosome formation, concomitant with decreased 

prion protein levels in cell cultures and increased survival of mice due to delayed 

accumulation of prion proteins (Nakagaki et al., 2013). Therefore, the effect of 

tacrolimus on autophagy needs to be investigated more extensively in varying scenarios 

to conclusively determine its effect on mTORC1 and autophagy.  
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1.5.5. Biological agents: Anti-TNF-α 
Overproduction of pro-inflammatory cytokines and chemokines are a common feature 

associated with inflammatory diseases. Monoclonal antibodies that target and 

neutralise cytokines such as TNF-α, IL-12, IL-23, IL-21, IL-22, IL-32 and IFN-γ are used for 

the treatment of IBD (Nys et al., 2013). The most commonly used biological agent for 

IBD is the anti-TNF-α antibody, Infliximab. Other anti-TNF-α treatments approved for 

treatment of IBD patients include Adalimumab, Golimumab for UC only, and 

Certolizumab pegol, which is approved in the USA, Switzerland and Russia. Anti-TNF-α 

biosimilars, which are less expensive versions of licensed biological agents whose 

patents have now expired, have also recently been developed (de Ridder et al., 2015). 

These biological agents are usually reserved for the treatment of refractory CD or 

steroid-dependent patients to induce and maintain remission. Studies have shown that 

Infliximab can only induce remission in roughly 50% of CD patients (Akobeng and Zachos, 

2004) but in a recent study of paediatric cases, the treatment induced remission in 85% 

of patients (Ruemmele et al., 2009). This reiterates the differences between adult and 

paediatric cases of CD and therefore the need for separate investigations of the disease. 

One of the main causes of diminished response to biological agents is the development 

of anti-drug antibodies in patients. However, combination with low dose 

immunosuppressant thiopurines can reduce risk of antibodies to anti-TNF-α and 

enhances the probability of clinical remission (Boyapati et al., 2017). The side effects 

associated with biological agents remain severe and can include infusion reaction, 

nausea, fever/chills, hives, fatigue and even a long-term risk of T cell lymphoma 

(Diefenbach and Breuer, 2006). 

Anti-TNF-α antibodies in IBD, neutralize TNF-α mainly produced by inflammatory 

macrophages and T cells, but can also induce apoptosis of activated T cells and 

monocytes (Table 1.2) (Van den Brande et al., 2003). TNF-α plays a major role in 

modulating inflammatory responses, and while the effects of TNF-α have been 

extensively studied in a variety of cell types, its mechanism of action in the gut remains 

unclear. One confirmed effect of TNF-α is the modulation of autophagy, which has been 

observed in synovial fibroblasts from rheumatoid arthritis patients (Connor et al., 2012), 

in skeletal muscle (Keller et al., 2011), in atherosclerotic vascular smooth cells (Jia et al., 

2006) and in trophoblastic cells (Cha et al., 2014). Furthermore, mouse macrophages 
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activated by TNF-α have increased mitophagy resulting in increased mitochondrial 

protein degradation and enhanced MHC I presentation to T cells (Bell et al., 2013).  

Taken together, these studies imply that anti-TNF agents would inhibit autophagy 

(Figure 1.7). Although there are no studies that have directly confirmed this, there is 

support for this hypothesis as anti-TNF agents can induce reactivation of Mycobacterium 

tuberculosis, at least partially due to decreased autophagy (Table 1.3) (Harris and Keane, 

2010). This effect is likely due to the protective antibacterial and anti-inflammatory roles 

of autophagy in epithelial cells infected with this non-motile bacillus (Castillo et al., 

2012). Additionally, Andrographis paniculata plant extract (HMPL-400), which is 

currently being studied in IBD trials for reduction of TNF-α, IL-1β, IFN-γ and IL-22 

expression, has been shown to inhibit autophagy in cancer (Zhou et al., 2012). This may 

be due to the reduction of cytokines or another mechanism affected by HMPL-400.  

It is worth noting, however, that TNF-α can also have inhibitory effects on autophagy in 

some contexts. A study investigating the effects of elevated TNF-α on congestive heart 

failure in H9C2 rat cardiomyoblasts found that although TNF-α induces autophagy, 

autophagic protein degradation is disrupted, as evidenced by accumulation of p62 and 

increased ubiquitin-proteasome pathway activity (Opperman and Sishi, 2015). 

Furthermore, there is growing evidence that anti-TNF agents also have the ability to 

increase autophagy activity. In a murine model, infliximab augmented and prolonged 

autophagy responses to retinal detachment, which promoted cell survival (Table 1.3) (Xi 

et al. 2017).  

It has also been shown that anti-TNF-induced macrophages (MΦind) have enhanced 

levels of autophagy compared to IFN-γ induced macrophages (MΦ1) and IL-4-induced 

macrophages (MΦ2), which was dependent on autophagy-related protein cathepsin S 

(Table 1.3) (Levin et al., 2016). Macrophages induced by anti-TNF agents harboured a 

regulatory macrophage phenotype similar to M2 macrophages (CD206 positive). 

Macrophage polarisation to M2 phenotype is autophagy dependent (Chang et al., 2013; 

Roca et al., 2009; M. Yang et al., 2014) and this macrophage subset can reduce intestinal 

inflammation in murine colitis models (Hunter et al., 2010; Leung et al., 2013). IBD 

patients who responded to anti-TNF therapy had increased levels of intestinal M2 

macrophages (Vos et al., 2012), which were able to inhibit prolonged inflammation and 

promote wound healing (Vos et al., 2012, 2011). Furthermore, stimulation of the 
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autophagy pathway has been proven key for the effectiveness of anti-TNF therapy 

(Wildenberg et al., 2017). Additionally, anti-TNF-induced differentiation to M2 

macrophage phenotype, expression of CD206 and immunosuppression of T cell 

proliferation were correlated with number of ATG16L1 wild type alleles (Levin et al., 

2016). These studies have identified that anti-TNF agents promote development of 

regulatory macrophage populations via enhanced autophagy and this response in 

patients is determined by ATG16L1 genotype.  

There are contradictory results regarding the effect of anti-TNF agents on autophagy 

activity. Most studies describe autophagy-stimulating properties of TNF-α, however, 

there is little evidence that anti-TNF agents inhibit the pathway. In contrary, some 

studies have found that anti-TNF-induction of autophagy was key to differentiation of 

regulatory macrophages. There could be modes of action of anti-TNF agents that are 

distinct from TNF-α neutralization, but are capable of inducing autophagy. Furthermore, 

the effect of anti-TNF agents could be cell type dependent and depend on differentiation 

stage of cells like monocytes and macrophages. As macrophages play a crucial role in 

innate immunity and inflammation within the gastrointestinal tract, the effects of anti-

TNF-α on autophagy in this cell type is particularly relevant to IBD. 
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1.6.  Hypothesis and Aims 
Evidence suggests that enhancing autophagy may be therapeutically beneficial for the 

treatment of CD. We hypothesise that current IBD drugs exert their effects, in part, 

through stimulation of the autophagy pathway.  

The principal aim of this study was to determine activity and mechanism of action of 

current IBD drugs in the context of autophagy. The specific aims were to: 

1. Determine whether IBD drugs modulate autophagy activity 

2. Characterise the molecular mechanisms by which IBD drugs modulate autophagy  

3. Assess the effect of IBD drugs on the invasion and survival properties of CD-

associated AIEC. 

4. Confirm in vitro results in PBMCs and GI biopsies isolated from paediatric IBD 

patients: The IDEA (IBD Drug Effect on Autophagy) study 

 



 
 

75 

2. Materials and Methods 

2.1 Cell culture 
Human embryonic kidney cells 293 (HEK293) were grown in Dulbecco’s modified Eagle 

medium (DMEM) with 4.5g/l glucose, L-glutamine, NAHCO3 and pyridoxine HCl (Gibco™, 

ThermoFisher Scientific, Paisley, UK) supplemented with 10% heat inactivated foetal 

bovine serum (FBS) (Invitrogen™, ThermoFisher Scientific) and 1% antibiotics; 500μg/ml 

Streptomycin and 500μg/ml Penicillin (Gibco™). HEK293 cells, stably expressing LC3 

protein tagged with green fluorescent protein (GFP), were provided as a gift from Dr 

Craig Stevens (Edinburgh Napier University, Edinburgh, UK) and were cultured in DMEM 

growth media. THP-1 cells were grown in RPMI (Roswell Park Memorial Institute) 1640 

(Sigma-Aldrich, Irvine, UK), supplemented with 10% FBS, 1% penicillin streptomycin and 

200mM L-glutamine (Gibco™). Cells were incubated at 37oC and 5% CO2 and were 

passaged every 3-4 days by washing in NaCl solution (Baxter Healthcare, Newbury, UK) 

and detaching cells with 0.05% Trypsin-Ethylenediaminetetra acetic acid (EDTA) for 

adherent cells (Gibco™). Cell counts were performed using a haemocytometer to 

determine seeding density. For experiments HEK293 cells were seeded in growth media 

overnight at 37oC and 5% CO2 until an 80-90% confluent cell monolayer had formed. For 

differentiation to macrophages, THP-1 cells were incubated in RPMI supplemented with 

10ng/ml phorbol myristate acetate (PMA) (Sigma-Aldrich) for 48 hours, then rested for 

24 hours in fresh RPMI prior to experiments. 

 

2.2 Cell treatments and Reagents 
Cells were washed in NaCl then treated with the pharmacological agents diluted in 

growth media for the appropriate incubation time. All reagents used are detailed in 

Table 2.1, and equivalent amounts of dimethyl sulfoxide (DMSO) (Sigma) were used as 

vehicle control. For nutrient deprivation, cells were incubated with Earle’s Balanced Salt 

Solution (EBSS) (Gibco™).  
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Table 2.1: Details of reagents used for cell treatments 

 
 

2.3 Transfection and plasmids 
For transfection of HEK293 cells, Nucleofector Kit V (Lonza Ltd, Manchester, UK) was 

used according to the manufacturer’s instructions with the Nucleofector™ 2b Device 

(Lonza Ltd). The GFP-LC3 (Kabeya et al., 2000), red fluorescent protein (RFP)-GFP-LC3 

(Kimura et al., 2007) and TNFR plasmids have been described previously, and were 

provided as gifts from Dr Craig Stevens (Edinburgh Napier University, Edinburgh, UK).   

 

2.3.1 Plasmid propagation  
On ice, 25μl of Efficiency® DH5α™ Competent E. coli (Invitrogen™) were transformed 

with 17.5ng of plasmid and incubated for 30 minutes. E.coli were heat shocked at 42oC 

for 1 minute and returned to ice for 2 minutes before being incubated at 37oC in Luria-

Bertani (LB) broth (10% tryptone, 5% yeast extract and 5% NaCl in dH2O) for 2 hours. 

The E.coli were then grown on LB nutrient agar plates supplemented with selection 

antibiotic overnight at 37oC. Single resistant colonies were picked and grown in LB broth 
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shaking at 37oC for 2 hours. The E. coli plasmid cultures were then diluted in LB broth 

containing selection antibiotic for reselection overnight at 37oC. The plasmid was then 

isolated from E. coli using the Plasmid Midi Kit (Qiagen, Crawley, UK) according to 

manufacturer’s protocol.   

 

2.4 Antibodies 
Details in Table 2.2 
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Table 2.2: Details of antibodies  

 

F Flow cytometry, IF immunofluorescent staining, IHC immunohistochemistry, Ms 
Mouse, Rb rabbit, WB western blot.  
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2.5 Western immunoblotting 
Treated cells were washed with phosphate buffered saline (PBS) (Thermo Fisher 

Scientific Oxoid Ltd, Basingstoke, UK), then cell pellets were prepared by gently scraping 

cells from 6-well plates into PBS, followed by centrifugation at 300G for 5 minutes and 

removal of supernatant. Cells were lysed in ice-cold extraction buffer (50mM Tris [pH 

7.6], 150mM NaCl, 5mM EDTA, 0.5% NP-40, 5mM NaF, 1mM sodium vanadate, 1 × 

Pierce Protease Inhibitor Cocktail [Thermo Scientific™]) for 30 min followed by 

centrifugation at 17000G for 15 minutes at 4oC to remove cell debris. Protein 

concentration of the supernatant was determined by adding 5μl of sample or BSA 

standard to 195μl of Bradford reagent (Sigma-Aldrich) and measuring absorbance at 

595nm using the MRX II absorbance reader (Dynex Technologies, Worthing, UK) with 

the Revelation 4.25 software. Between 10μg and 50μg of protein lysates and 2.5μl of 

PageRuler™ Plus prestained protein ladder (Thermo Scientific™) were resolved by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE was 

performed in the Mini-PROTEAN® Tetra Vertical Electrophoresis Cell (Bio-Rad, Perth, UK) 

using a discontinuous buffer system with a stacker gel (pH 6.8) and an 8-15% bis-

acrylamide (Sigma-Aldrich) resolving gel (pH 8.8). Proteins were then electrotransferred 

to Immobilon®–FL polyvinylidene difluoride (PVDF) membrane (Millipore, Cork, Ireland) 

using either Tris-Glycine Buffer or CAPS (3-(Cyclohexylamino)-1-propanesulfonic acid) 

buffer (Sigma) in the Mini-PROTEAN® Cell (Bio-Rad). Ponceau stain (Sigma-Aldrich) was 

used to assess transfer quality before membranes were blocked for an hour in 10% w/v 

non-fat skimmed milk in PBS + 0.1% Tween 20 (PBST) (Sigma-Aldrich). Membranes were 

incubated at 4oC overnight with constant agitation in the primary antibody diluted 

between 1 in 1000 to 1 in 5000 in 5% w/v non-fat skimmed milk in PBST. Membranes 

were washed in PBST for 10 minutes (x3) prior to incubation with secondary antibodies, 

which were diluted 1 in 5000 in 0.5% w/v non-fat skimmed milk in PBST, for 1 hour at 

room temperature (RT) with constant agitation. Membranes were washed in PBST for 

10 minutes (x3) and incubated with the ECL™ select western blotting detection reagent 

(GE Healthcare Bio-Sciences AB, Uppsala, Sweden), before proteins were visualised 

using Bio-Rad ECL system (Bio-Rad) or G: BOX system (Syngene, Cambridge, UK). Relative 

intensity of bands was measured using Image J software (Schindelin et al., 2012) 

(National Institutes of Health, Bethesda, MD, USA). 
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2.6 Immunofluorescence microscopy 
Cells were seeded on 21-mm borosilicate glass cover slips (VWR International, 

Lutterworth, UK), 8 chamber polystyrene vessel CultureSlides (Falcon®, Fisher Scientific, 

Loughborough, UK) or 35mm imaging dishes (Ibidi, Thistle Scientific, Uddingston, UK).  

 

2.6.1 Confocal Microscopy with fixed cells 
Upon treatment completion, cells were washed with PBS (x3). Cells were fixed by 

addition of 4% paraformaldehyde (PFA) (Sigma-Aldrich) directly onto the cell monolayer 

and incubated at RT for 10-15 minutes before washing with PBS (x3). For transfected 

cells, with no immunostaining required, cells were then counterstained with 4',6-

diamidino-2-phenylindole (DAPI) or mounted with Vectashield® mounting medium for 

fluorescence with DAPI (Vector Laboratories, Burlingame, CA). 

For immunostaining with antibodies, after fixation, cells were permeabilized with 0.2% 

Triton-X and incubated at RT for 3-5 minutes. After another wash in PBS (x3), cells were 

blocked with PBS containing 10% FBS or 10% goat’s serum (Gibco™) with 2.5% Human 

TruStain FcX™ (BioLegend®, San Diego, USA) and incubated at RT for 20-30 minutes. 

Primary antibodies were incubated overnight at 4°C, then washed with PBS (x3) prior to 

secondary antibody incubation for 30 minutes to 1hr at RT. Both primary and secondary 

antibodies were diluted in 1% FBS or goat’s serum. Isotype controls and secondary only 

controls were used where appropriate. Cells were counterstained with DAPI or mounted 

with Vectashield® mounting medium for fluorescence with DAPI (Vector Laboratories). 

Images were captured using Carl Zeiss LSM880 confocal microscope (Carl Ziess Ltd., 

Cambridge, UK) and analysed using Image J software (National Institutes of Health).  

 

2.6.2 Live-cell imaging 
Immediately after treatment, cells were transferred to the live-cell imaging chamber 

attached to Carl Zeiss LSM880 confocal microscope and maintained at 37oC and 5% CO2 

for the duration of the experiment. Images were taken every 2 minutes over an 

appropriate time period and images were analysed using Image J software (Schindelin 

et al., 2012) (National Institutes of Health). 
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2.6.3 GFP-LC3 autophagy assay  
The basal threshold number of GFP-LC3 foci per cell was established as 5, as untreated 

cells that represented basal autophagy usually had between 1-4 GFP-LC3 foci. Therefore, 

cells exhibiting >5 GFP-LC3 foci were regarded as having modulated autophagy activity. 

The basal threshold number of RFP-GFP-LC3 plus RFP-LC3 foci per cell was established 

as 10. Percentage of cells displaying greater than the threshold number of foci was 

calculated. 

 

2.6.4 TUNEL assay 
The Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) Assay 

was performed using the ApopTag Plus Fluorescein In Situ Apoptosis Detection Kit 

(Millipore). All buffers and reagents were prepared according to manufacturer’s 

instructions. The assay was performed on cells grown on glass coverslips and the 

protocol was adapted to fit this application. Coverslips were then mounted on glass 

slides with Vectashield® mounting medium for fluorescence with DAPI (Vector 

Laboratories). 

 

2.7 Flow cytometry 
After treatments in 12-well plates, cells were gently detached using 0.05% trypsin or Cell 

Dissociation Solution Non-enzymatic (Sigma) at 37°C for 10 min. Centrifugation steps 

were at 350G or 400G for 5 minutes. Cells were acquired using the BD Biosciences 

(Oxford, UK) Celesta flow cytometer or the FACSCalibur (BD) with a stopping gate of 

20,000 (cell lines) or 50,000 (PBMCs) events. Data analysis performed using BD FACsDiva 

Software or FlowJo software. Cell debris was excluded by forward scatter (FSC) and side 

scatter (SSC), and then single cell events were selected by FSC-H and FSC-A. 

 

2.7.1 CD14 flow cytometry  
After collection of THP-1s, cells were blocked with 2.5% Human TruStain FcX™, then 

incubated with CD14 surface marker or IgG fluorescent isotype diluted in Brilliant Stain 
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Buffer (BD Horizon™) for 25 minutes, both at RT. Cells were then washed with distilled 

PBS (dPBS) and acquired.  

 

2.7.2 GFP-LC3 and endogenous LC3 flow cytometry  
HEK293 GFP-LC3 cells were collected then washed in 0.05% w/v saponin (Sigma) diluted 

in PBS to remove the unbound cytosolic LC3 (Eng et al., 2010). Prior to acquisition cells 

were washed in dPBS. For endogenous LC3 staining, following saponin wash, cells were 

fixed with 1% PFA for 20 minutes at 4oC. Cells were then washed with 0.05% saponin, 

blocked with 2.5% Human TruStain FcX™ in 0.05% saponin for 20 minutes, then 

incubated overnight with primary LC3 antibody or rabbit (Rb) IgG Isotype control 

(Invitrogen™) diluted in 1% goat serum in 0.05% saponin at 4oC. After washing cells with 

0.05% saponin (x3), cells were incubated with Anti-rabbit Fluorescein isothiocyanate 

(FITC) secondary antibody in 1% goat serum in 0.05% saponin and incubated at 4oC for 

30 minutes. Prior to acquisition cells were washed twice in 0.05% saponin and then once 

in dPBS.  

 

2.7.3 Annexin-V/PI assay 
Cells were stained using the FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen™) 

according to manufacturer’s instructions. To calculate voltage compensation and apply 

gating strategy, experimental staining controls were used. Unstained cells were 

untreated, Annexin-V only stained cells that were transfected with TNFR and propidium 

iodide (PI) only stained cells that were scraped (Figure 2.1). For THP-1-derived 

macrophages annexin-V and PI only cells were both treated with camptothecin.   
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Figure 2.1: Annexin-V/PI experimental staining controls and gating strategy  

HEK293 cells were untreated for unstained control (i), transfected with TNFR for 
annexin-V staining only (ii) or detached by scraping for PI staining only (iii). 

     

2.7.4 Cytospins 
After flow cytometry acquition, remaining cells were cytospun onto glass slides for 

confocal analysis where required. Cell suspensions were transferred to the Shandon 

Cytospin 3 (Thermo Fisher Scientific) chambers and cytocentrifuged at 800G for 3 

minutes. Cells were mounted with Vectashield® mounting medium for fluorescence with 

DAPI (Vector Laboratories). Images were captured using Carl Zeiss LSM880 confocal 

microscope (Carl Ziess Ltd.) and analysed using Image J software (National Institutes of 

Health). 

 

2.8 RT-qPCR 
After appropriate treatments in 12-well plates, cells were scraped into RNAzol® RT 

(Sigma-Aldrich) and immediately frozen at -80oC. After thawing total RNA was extracted 

according to manufacturer’s instructions and was quantified using a NanoDrop 2000 

Spectrophotometer (Thermo Scientific). The integrity of Total RNA was assessed using 

an Agilent 2100 Bioanalyzer (Agilent Technologies, Stockport, UK) with RNA Nano Chips 

and Agilent RNA 6000 Nano Reagents (Agilent Technologies). mRNA was converted to 

complementary DNA (cDNA) using nanoScript 2, Reverse Transcription Premix 

(PrimerDesign Ltd, Chandler´s Ford, UK) according to manufacturer’s instructions and a 

control of RNA with addition of no reverse transcriptase was included. For quantitative 

reverse transcription PCR (RT-qPCR) analysis of gene expression, PrecisionPLUS 
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Mastermix with SYBR green and ROX with inert blue dye (PrimerDesign) was used 

according to manufacturer’s instructions with RT-qPCR Grade Water (Invitrogen™) and 

the StepOnePlus Real-time PCR System (Applied Biosystems, ThermoFisher). Primers are 

detailed in (Table 2.3). A geNorm kit (PrimerDesign) was used for the selection of 

appropriate reference genes with the qbase+ software (Vandesompele et al., 2002). 2-

ddCT was used for relative quantification of gene expression (Livak and Schmittgen, 2001).   

For the RT² Profiler™ PCR Array of Human Autophagy genes (Qiagen) RNA was extracted 

from cells using the RNeasy® mini kits following manufacturers protocols (Qiagen). RNA 

was converted to cDNA using RT2 First Strand Kit (Qiagen) and the PCR array was 

performed according to manufacturer instructions with RT2 SYBR Green Mastermix 

(Qiagen). Analysis was performed according to manufacturer’s instructions.  
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Table 2.3: Details of primers used for RT-qPCR 

 

FW forward and RV reverse primer sequences. 

 

2.9 Bacterial infection assays 
2.9.1 Bacterial strains, plasmids and transformation  
The AIEC strain CUICD541-10 (Baumgart et al., 2007) was selected and transformed with 

the isopropyl β‐D‐1‐thiogalactopyranosid (IPTG)-inducible x-light mCherry  plasmid, 

(Mills et al., 2013). Repression of the x-light mCherry plasmid is relieved upon 

metabolism of IPTG in viable bacteria to allow synthesis of fluorescent protein (Figure 

2.2). 

Electrocompetent CUICD541-10 were prepared using an established method of washing 

the bacterial culture in decreasing volumes of ice-cold 10% glycerol (Miller and Nickoloff, 

1995). Aliquots of glycerol stocks were frozen at -80oC, at a concentration of roughly 1-

3x1010 cells/ml (Miller and Nickoloff, 1995). At 4oC, 2μl of plasmid in Tris-EDTA (TE) 
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buffer from the Plasmid Midi Kit (Qiagen) was mixed with 40μl of electrocompetent 

CUICD541-10 glycerol stock and incubated for 1 minute on ice before electroporation at 

2483 volts and 12.4-field strength for 5.3 milliseconds using the GenePulser Xcell™ 

electroporator (BioRad). CUICD541-10 was immediately resuspended in 1ml of SOC 

medium (Sigma) and incubated at 37oC for 1 hour, shaking at 225 revolutions per minute 

(RPM). Selection of transformed CUICD541-10 was achieved by spreading on LB agar 

plates with 100μg/ml ampicillin sodium salt (Sigma-Aldrich).  

 

 

Figure 2.2: IPTG-inducible x-light mCherry plasmid  

Plasmid is repressed by Lacl repressor. When IPTG is present Lacl repressor dissociates 
from Operator and RNA polymerase is able to transcribe plasmid for mCherry expression 
in bacteria.  

 

2.9.2 Growth Curve  
10ml of LB broth was inoculated from an overnight culture of CUICD541-10 to an optical 

density of 0.05 at 600nm using the Jenway 6300 spectrophotometer. Cultures were 

treated appropriately and incubated at 37oC with 200RPM shaking. Optical density was 

measured at 600nm every 30 minutes. 
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2.9.3 Infection model and analysis 
To assess intracellular survival of AIEC an infection protocol was designed (Figure 2.3). 

Cells were infected with CUICD541-10 at a multiplicity of infection (MOI) (MOI= colony 

forming unit (CFU)/Host Cell Number) of 10 for 3 hours, incubated for 1 hour in 

100μg/ml gentamicin (Gibco™) to kill extracellular bacteria, then maintained for a 

further 24h in 20μg/ml gentamicin. Appropriate treatments were added for the final 6 

hours.  

The survival of intracellular bacteria was assessed by gentamicin protection assay with 

enumeration of CFU, or with confocal microscopy to visualise and enumerate 

fluorescent intracellular bacteria. For immunofluorescence, cells were infected with 

CUICD541-10 transformed with an x-light mCherry plasmid and 30 minutes prior to 

immunostaining cells were incubated with 0.1mM IPTG (Sigma) to promote bacterial 

fluorescence. IPTG and 5µM Cell Tracker™ Green BODIPY® (Invitrogen™) were added for 

the duration of the live-cell imaging of infected cells.  

For CFU enumeration, cells were washed in PBS and then lysed for 10 minutes using 1% 

Triton X100 in PBS. PBS wash and lysates were serially diluted and spread on LB agar 

plates for overnight incubation at 37°C. CFU of PBS wash was subtracted from CFU of 

lysates, then CFU/ml of intracellular bacteria was calculated. 
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Figure 2.3: AIEC infection and treatment regime in THP-1-derived 
macrophages to assess intracellular survival  

THP-1-derived macrophages infected with CUICD541-10 at MOI 10 for 3 hours. Cell 
treated with 100μg/ml gentamicin for 1 hour to kill extracellular bacteria. Cells were 
maintained in 20μg/ml gentamicin for a total of 24 hours. For the final 6 hours 
appropriate treatments were added. To analyse survival of intracellular AIEC, colony 
forming unit (CFU) enumeration and live-cell and fixed-cell confocal imaging of AIEC-
mCherry was undertaken. To monitor autophagy, fixed-cell confocal imaging was 
combined with LC3 immunostain. Pro-inflammatory cytokine expression was quantified 
by RT-qPCR.  

 

2.10  AlamarBlue assay 
AlamarBlue® assay (Invitrogen) was adapted from manufacturer’s protocol for use in 24-

hour time-course experiments. Pharmacological treatments, prepared in growth media, 



 
 

89 

were supplemented with 10% alamarBlue® reagent prior to cell treatment. This was 

repeated for no-cells controls. 

Cells were seeded in a Microtest™ 96-well assay plate, Optilux, with black sides and clear 

bottom (BD Falcon, Oxford, UK) for fluorescence assays. Fluorescence was read via 

bottom optics with an excitation wavelength of 544nm and an emission wavelength of 

590nm after gain adjustment was applied to the entire plate, using the FLUOstar Omega 

with software version 1.2 fluorescent plate reader (BMG Labtech, Aylesbury, UK). The 

metabolic activity of cells was calculated according to the manufacturer’s instructions 

and calculations were performed as follows:  

 

FI590: Fluorescent intensity at 590nm emission (544nm excitation)  

 

Percentage                   (FI590 of test agent treated cells - FI590 of test agent only) x100     

difference                =                     (FI590 of untreated cells - FI590 of media only) 

between treated  

and control cells          

 

Absorbance was measured using the MRX II Microplate Reader (Dynex Technologies), 

with absorbance wavelength at 550nm and reference wavelength at 595nm. Flat 

bottom 96-well assay plates were used. In accordance with the manufacturer’s protocol, 

the metabolic activity of cells was calculated as follows: 

 

O1: molar extinction coefficient (E) of oxidized alamarBlue® (Blue) at 550 nm (0.431) 

O2: E of oxidized alamarBlue® at 595 nm (0.795) 

A1: absorbance of test wells at 550 nm  

A2: absorbance of test wells at 595 nm 
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P1: absorbance of positive growth control well (cells plus alamarBlue® but no test agent) 

at 550 nm  

P2: absorbance of positive growth control well (cells plus alamarBlue® but no test agent 

at 595 nm 

 

Percentage                   ((O2 x A1) – (O1 x A2)) x100     

difference                =       ((O2 x P1) – (O1 x P2)) 

between treated  

and control cells          

 

2.11  IDEA study 
Patient recruitment and sample collection was performed at the Royal Hospital for Sick 

Children in Edinburgh, and processing and analysis was performed at Edinburgh Napier 

University. All samples were collected with local institutional and NHS ethical approvals 

(reference 16/WW/0210).  

 

2.11.1 Patients and sample collection   
Inclusion criteria were: (1) aged 6-18 years on date of colonoscopy; (2) Already 

confirmed Crohn’s disease, ulcerative colitis or IBDU (Levine et al., 2014) or undergoing 

first upper and lower GI endoscopy due to gastrointestinal symptoms suggestive of 

possible bowel inflammation (e.g. abdominal pain, PR bleeding, weight loss). Non-IBD 

patients were defined as those with both microscopically and macroscopically normal 

colonoscopy. Patients were excluded if they had previously undergone colonoscopy for 

anything other than known IBD, were found to have anything other than IBD following 

a full investigative cycle, or who could not provide written consent. Eligible patients 

were approached at least 48hrs prior to colonoscopy and following consent whole blood 

samples (maximum 15ml), GI biopsies (two standard biopsies were collected from the 

rectum in all patients and also two biopsies from either terminal ileum or caecum if 
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ileum was not intubated) and saliva samples were collected from patients for analysis 

(Figure 2.4).  

 

Figure 2.4: IDEA Study sample collection and analysis 

Samples collected from paediatric patients, PBMCs frozen at -80oC for 3-9 months and 
analysis completed within study. Plasma and PBMC protein lysates have also been 
stored at -80oC for any future analysis. 

 

Patients ranged between 8.4 and 16.9 years of age, of which 20 were IBD cases and 9 

were non-IBD controls (Table 2.4). Within the IBD patient group, there were 12 patients 

diagnosed with CD, 7 with UC and one with IBDU. Due to new diagnosis, most of the IBD 
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cases were not receiving therapy. However, one CD patient was receiving an 

immunosuppressant drug, four CD patients were receiving biological agents, one of 

which in combination with thiopurines, and three UC patients were receiving 5-

aminosalicylates, one of which in combination with biological agents and two in 

combination with thiopurines. 

 



 
 

93 

Table 2.4: IDEA study paediatric patient demographics 

 

CD Crohn’s disease, UC Ulcerative colitis, IBDU IBD unclassified. SD Standard deviation. 
aPorto Criteria for CD: L1 ileal, L2 colonic, L3 ileocolonic, L4a upper disease proximal to 
ligament of Treitz*; B1 non-stricturing and non-penetrating, B2 stricturing, B3 
penetrating, p perianal disease modifier (Levine et al., 2011). bPorto Criteria for UC: E1 
ulcerative proctitis, E2 left-sided UC (distal to splenic flexure), E3 extensive (hepatic 
flexure distally), E4 pancolitis (proximal to hepatic flexure); S0 never severe, S1 ever 
severe as defined by Paediatric Ulcerative Colitis Activity Index (PUCAI) (Levine et al., 
2014). 5-ASA 5-aminosalisylates. 
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2.11.2 PBMC isolation and Flow cytometry  
Whole blood samples, up to a volume of 15ml, were collected in EDTA coated tubes and 

stored at RT for 1 to 2 hours before isolating PBMCs. Firstly, whole blood was mixed with 

dPBS at 1:1 volume ratio, then layered on top of Ficoll-Paque™ PLUS solution (GE 

Healthcare Bio-Sciences AB), at a 4:3 ratio of blood and dPBS to Ficoll volume. This was 

then centrifuged at 700G for 30 minutes, with the brake disabled. Plasma was collected 

and stored at -80oC for future analysis. The PBMC layer was collected and washed twice 

with dPBS by centrifugation at 300G for 10 minutes. PBMCs were re-suspended in 1ml 

of heat inactivated FBS supplemented with 10% DMSO and gradually cooled to -80oC for 

storage for 3-9 months.  

Once recruitment was completed, batch analysis of PBMCs by flow cytometry was 

undertaken. PBMCs were thawed rapidly at 37oC and immediately washed, twice, in 

RPMI growth media. PBMCs were seeded at 2x105 cells per well in a 96-well round-

bottom plate, then rested overnight. Cells were kept in the 96-well rounded-bottom 

plate for the entire protocol and flow cytometry acquisition was achieved using the BD 

High Throughput System (HTS) attachment on the BD Biosciences Celesta flow 

cytometer. The protocol described in section 2.7.2 was also altered to accommodate for 

PBMC surface marker staining.  

After treatments in duplicate, cells were gently detached using Cell Dissociation Solution 

Non-enzymatic (Sigma) on ice for 10 minutes, then washed in RPMI growth media then 

dPBS. Cells were blocked with 2.5% Human TruStain FcX™, then incubated with PBMC 

surface markers or IgG isotypes diluted in Brilliant Stain Buffer (BD Horizon™) for 25 

minutes, both at RT. Cells were washed in 0.05% saponin (Sigma), which does not alter 

expression of membrane antigens (Jacob et al., 1991) and fixed with 1% PFA. Cells were 

washed with 10% goat serum in 0.05% saponin prior to overnight incubation with 

primary antibody or Isotype control. Prior to acquisition cells were re-suspended in 

200μl of dPBS. 

To calculate voltage compensation and apply gating strategy, experimental staining 

controls were used, which consisted of single fluorochrome staining and Fluorescence 

Minus One Control (FMO) staining (LC3 intracellular stain excluded). The gating strategy 
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was undertaken as follows. LC3 stained PBMCs were selected by FITC histogram by 

reference to isotype control staining. CD3+ T cells, CD56+ NK cells and CD19+ B cells 

were selected by scatterplots against LC3. Monocytes were selected firstly by exclusion 

of CD56+ and CD3+ cells; as CD3+ T cells are the largest population and CD56+ NK cells 

also express the monocyte marker CD16. Then CD14 and CD16 were used to select 

monocytes. HLA-DR+ PBMCs were selected by HLA-DR versus LC3 scatterplot and HLA-

DR+ T cells, NK cells, B cells and monocytes were selected by scatterplot of HLA-DR 

versus respective PBMC surface marker. Percentage of cell populations and LC3 

geometric mean within each population was analysed.  

 

2.11.3 Genotyping  
Saliva samples were collected using Oragene DNA kits (DNA Genotek, Ontario, Canada) 

and stored at RT prior to genotyping analysis. Due to unforeseen circumstances saliva 

samples were not able to be collected for one IBDU patient (AUT026) and one non-IBD 

patient (AUT004). Saliva samples were sent to Wellcome Trust Clinical Research Facility 

in Edinburgh, for analysis within the Genetics Core with all materials provided at this 

site. DNA was extracted from saliva samples using Isohelix Kit and placed on rotating 

wheel to ensure complete re-suspension in 1ml TE buffer. DNA yield was measured 

using Picogreen, and DNA was subsequently stored at -20oC. Taqman Genotyping for 

each sample was undertaken for the following SNPs: ATG16L1 T300A (rs2241880), NOD2 

L1007f/s (p.Leu1007fsX1008) (rs2066847), NOD2 R702W (rs2066844) and NOD2 G908R 

(rs2066845).  

 

2.11.4  Immunohistochemistry  
For each patient two biopsies were collected from the rectum and two from either 

terminal ileum or caecum. Due to unavoidable circumstances biopsies were not able to 

be collected from one UC patient (AUT014) and only rectal biopsies were able to be 

collected from one CD patient (AUT023). Biopsies were immediately fixed in 10% neutral 

buffered formalin for 24 hours then stored in 70% ethanol.  

Once study recruitment was completed, biopsies were processed using Leica 1020 tissue 

processor (Leica Biosystems, Newcastle):  
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1) 70% ethanol for 1 hour 30 mins at RT 

2) 80% ethanol for 1 hour 30 mins at RT 

3) 90% ethanol for 1 hour 30 mins at RT 

4) 95% ethanol for 1 hour 30 mins at RT 

5) 95% ethanol for 1 hour 30 mins at RT 

6) Absolute ethanol for 2 hours at RT 

7) Absolute ethanol for 2 hours at RT 

8) Xylene for 1 hour at RT  

9) Xylene for 1 hour at RT  

10) Paraffin wax supplemented with Bouin’s dye (Sigma-Aldrich) for 1 hour at 60oC 

11) Paraffin wax supplemented with Bouins dye for 1 hour at 60oC 

Paraffin wax infused biopsies were then orientated and embedded in Paraplast® paraffin 

wax (Sigma). Paraffin blocks were section to 5μM at the Centre for Comparative 

Pathology (University of Edinburgh, Edinburgh, UK).  

For IHC staining of sections, wax was removed with AnalaR NORMAPUR Xylene (VWR 

PROLABO® Chemicals, Lutterworth, UK) and tissue was then rehydrated with decreasing 

concentrations of EtOH at RT:  

1) Xylene for 5 mins  

2) Xylene for 5 mins  

3) Absolute ethanol for 2 mins 

4) Absolute ethanol for 2 mins 

5) 90% ethanol for 1 min 

6) 70% ethanol for 1 min 

7) Distilled water for 5 mins 

Antigen retrieval was performed using 10mM citrate buffer, pH 6.0, and microwaving 

on full power for 5 minutes followed by a 1 minute rest, then microwaving for a further 

5 minutes followed by a 20 minute rest. Endogenous peroxidase was blocked with 3% 

Hydrogen Peroxide solution (Fischer Scientific) for 10 minutes. After washing sections 

twice with PBS for 5 minutes, sections were blocked for 30 minutes in Normal Horse 

Serum from the R.T.U. Universal Elite® ABC Vectastain® Kit (Vector Laboratories). Then 

sections were incubated overnight at 4oC with 1 in 1000 primary LC3 antibody or Rb IgG 
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isotype control diluted in Normal Horse Serum, and then were washed in PBS + 0.1% 

tween-20 (PBS-T), twice, for 5 minutes. Using the same ABC kit, sections were incubated 

in biotinylated secondary antibody, then Avidin-Biotin Conjugate complex, each for 30 

minutes at RT and followed by two PBS-T washes for 5 minutes. Sections were exposed 

to 3'-Diaminobenzidine (DAB) substrate from the Peroxidase Substrate Kit (Vector 

Laboratories), followed by haematoxylin Gill’s formula (Vector Laboratories) 

counterstain, both for 2 minutes. The DAB reaction was stopped by placing slides in 

distilled water and excess haematoxylin was removed by 1 minute in 2% acetic acid, 

followed by 1 minute in Scots tap water substitute (Cell Path, Newtown, UK). Tissue was 

dehydrated with increasing concentrations of EtOH and xylene, as described above, in 

reverse, prior to mounting with Pertex® (HistoLab®, Västra Frölunda, Sweden). 

Sections were imaged by brightfield microscopy using Leica DM2500 microscope and 

Leica DFC425 camera. LC3 staining intensity was scored blinded, by two independent 

investigators. Overall LC3 staining intensity was scored as follows:  

0 – No staining  

1 – Low intensity staining  

2 – Medium intensity staining  

3 – High intensity staining 

 

2.12  Statistical analysis 
Results are reported as the mean ± Standard Error Mean (SEM) assuming normally 

distributed variables with statistical analysis conducted by using GraphPad Prism version 

7.0 (GraphPad Software, CA, USA). One-way or two-way ANOVAs were performed with 

Tukey’s or Dunnett’s multiple comparisons tests, as appropriate. For certain analysis 

within the IDEA study, paired, two-tailed t-tests were performed.  
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3.  Investigating IBD drug modulation of 
autophagy  

 

3.1 Introduction  
There are five main classes of drugs commonly used for the treatment of IBD. In this 

chapter, azathioprine and 6-mercaptopurine (thiopurines), Infliximab (biological agent), 

Methotrexate (immunomodulatory), Methylprednisolone (corticosteroid) and 

Sulfasalazine (aminosalicylate) were screened for their ability to modulate autophagy. 

As described in section 1.5 and shown in Table 1.3, the mechanism of action of these 

drugs has previously been linked either directly, or indirectly, to the modulation of 

autophagy in a variety of cell types and disease settings (Hooper et al., 2017). 

Corticosteroids (Fatkhullina et al., 2014; Harr et al., 2010; Kyrmizi et al., 2013; Laane et 

al., 2009; Swerdlow et al., 2008; Wang et al., 2006) and sulfasalazine (Chacon-Cabrera 

et al., 2014; Han et al., 2014) have been shown to both induce and inhibit autophagy. 

Thiopurines (Chaabane et al., 2016; Oancea et al., 2017; Wildenberg et al., 2017; Zeng 

et al., 2007; Zeng and Kinsella, 2010, 2008), cyclosporine (Ciechomska and Kaminska, 

2012; Kim et al., 2014; Kimura et al., 2013; Pallet et al., 2008) and tacrolimus (Nakagaki 

et al., 2013) have been shown to induce autophagy. Anti-TNF-α biological agents have 

been shown to inhibit autophagy (Harris and Keane, 2010), but also induce 

differentiation of macrophages that have enhanced autophagy activity (Levin et al., 

2016). Due to a lack of consensus, it was necessary to determine the effect of each IBD 

drug on autophagy in our chosen experimental cell line.   

The HEK293 cell line is well-characterised and has been extensively used for 

investigating autophagy (Musiwaro et al., 2013). Moreover, HEK293 cells engineered to 

stably express the autophagy marker LC3 fused to green fluorescent protein (HEK293 

GFP-LC3) were available as a powerful tool to use in experimental work. Several studies 

that had previously used IBD drugs to investigate modulation of autophagy in vitro were 

referred to, and this informed on the concentration ranges (Agnholt and Kaltoft, 2001; 

Han et al., 2014; Harr et al., 2010; Henderson, 2013; Kyrmizi et al., 2013; Laane et al., 

2009; Petit et al., 2008; Swerdlow et al., 2008; Wittstock et al., 2015). Initially, well-

characterised stimulators and inhibitors of autophagy, including serum starvation, 
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rapamycin and bafilomycin were used to optimise techniques for measuring autophagy 

(Supplementary Results: chapter 9). 

 

3.2 Results 

3.2.1 AlamarBlue® Cytotoxicity Assay to Identify Non-
Toxic Concentration Range of IBD Drugs in HEK293 
cells 

The alamarBlue® assay was used to assess whether IBD drugs disrupted the metabolic 

activity of HEK293 cells over a 24-hour time-course. AlamarBlue® measures cytotoxicity 

via detection of a colorimetric change from the blue reagent resazurin that is 

metabolically reduced to the pink and highly fluorescent resorufin. Fluorescent intensity 

or absorbance can be measured to quantify levels of oxidation in the cell, which are an 

indirect indicator of cell viability or cytotoxicity. As resazurin and resorufin are non-toxic, 

this assay can be used for time-course analysis at prolonged time points.  

The effect of drug treatment and concentration on metabolic activity, expressed as 

mean percentage of untreated metabolic activity (indicated by the red line at 100% 

metabolic activity), was assessed within each time-point (Figure 3.1). There was no 

effect of the vehicle control, DMSO, on the metabolic activity of cells, and when treated 

with 0.5% Triton-X, as a positive control for cell death, metabolic activity significantly 

decreased to 1% throughout the time-course (data not shown).  

Metabolic activity of cells was unaffected by treatment with azathioprine, infliximab, 

methotrexate, methylprednisolone or sulfasalazine throughout the time-course and 

corresponding concentration ranges  (Figure 3.1: i-ii, iv-vi). A concentration of 60µM of 

6-MP at the 2-hour time-point showed a significant decrease in metabolic activity to 

80% (Figure 3.1: iii). However, higher concentrations and longer incubation times with 

6-MP had no significant effect on metabolic activity (Figure 3.1: iii).  
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Figure 3.1: AlamarBlue® Toxicity Time-course and Concentration Range 
Analysis with IBD Drugs in HEK293 Cells 

HEK293 cells were treated with IBD drugs for 24-hours in the presence of 10% 
alamarBlue® reagent (n=3). Cells were treated with 0-120μM of Azathioprine (i), 0-
100μg/ml Infliximab (ii), 0-120μM 6-mercaptopurine (iii), 0-120μM Methotrexate (iv), 0-
100μM methylprednisolone (v) or 0-150μM sulfasalazine (vi). Fluorescence was read at 
2, 4, 6, 8 and 24 hours. Percentage difference between fluorescent intensity of treated 
and untreated cells (0μM or 0μg/ml: red line) was calculated after fluorescent intensity 
of corresponding “no cells” controls were subtracted. Mean percentage metabolic 
activity (+/- SEM) is displayed. Two-way ANOVA with Tukey’s multiple comparison test 
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was performed for each drug to compare the effect of treatment and concentration 
within each time-point. 

 

3.2.2 Live-cell Imaging Time-Course to Identify IBD 
Drugs that Modulate Autophagy in HEK293 GFP-LC3 
Cells  

As the concentrations of IBD drugs tested in section 3.2.1 were not cytotoxic, the highest 

concentration of each drug was used to treat HEK293 GFP-LC3 cells for up to 12 hours. 

GFP-LC3 foci formation was monitored with live-cell imaging on the confocal 

microscope.  

At 0 hours of confocal imaging, the percentage of cells exhibiting >5 GFP-LC3 foci was 

between 5% and 17% (Figure 3.2B). The percentage of cells with >5 GFP-LC3 foci 

remained low in the negative control (untreated) and vehicle control (DMSO), 

fluctuating between 1% and 13% throughout the time-course (Figure 3.2B). EBSS 

treatment was used as a positive control to induce autophagy via nutrient deprivation. 

With EBSS treatment the percentage of cells exhibiting >5 GFP-LC3 increased to 22% at 

0.5 hours, then increased significantly to 35% at 1 hour and fluctuated between 64% 

and 79% up to 12 hours, with optimum autophagy induction at 6 hours (Figure 3.2A and 

B).  

Azathioprine treatment increased autophagy slightly from 0.5 to 2 hours with between 

17% and 20% of cells exhibiting >5 LC3 foci (Figure 3.2B). There was a significant increase 

in percentage of cells exhibiting >5 GFP-LC3 foci compared to DMSO between 3 and 12 

hours fluctuating between 33% and 49%, with optimum autophagy induction at 6 hours 

(Figure 3.2A and B).  

When HEK293 GFP-LC3 cells were treated with infliximab, the percentage of cells 

exhibiting >5 GFP-LC3 foci increased from 17% at 0 hours to 27% at 0.5 hours and 

fluctuated between 16% and 23% from 1 to 5 hours (Figure 3.2B). As infliximab 

neutralizes TNF-α, it is important to note that HEK293 cells express low levels of the TNF 

receptor (TNFR) (McFarlane et al., 2002). The percentage of cells with >5 GFP-LC3 foci 

increased significantly to an optimal level of 31% at 6 hours (Figure 3.2A and B). At 7 and 

8 hours treatment with infliximab the significant increase in autophagy was sustained 
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with 27% and 25% of cells with >5 GFP-LC3 foci, respectively (Figure 3.2B). At 9 hours 

25% of cells exhibited >5 GFP-LC3 foci and this decreased to 21-23% from 10 to 12 hours 

(Figure 3.2B).  

Neither 6-mercaptopurine, methotrexate, methylprednisolone nor sulfasalazine 

induced significant increases in percentage of cells exhibiting >5 GFP-LC3 foci at any 

time-point. At 0.5 hours a slight increase in percentage of cells with >5 GFP-LC3 foci to 

21%, 18% and 20% was induced by methotrexate, methylprednisolone and 

sulfasalazine, respectively (Figure 3.2). However, this decreased to between 6% and 17% 

for these treatments between 1 and 12 hours (Figure 3.2). There was no increase at 0.5 

hours induced by 6-mercaptopurine as percentage of cells exhibiting >5 GFP-LC3 

remained between 7% and 16% throughout the time-course (Figure 3.2). 

As the optimum time-point for increases in percentage of cells with >5 GFP-LC3 foci was 

6 hours for treatments azathioprine, infliximab and EBSS, the 6-hour time-point has 

been shown separately for comparison of all treatments (Figure 3.2A).  
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Figure 3.2: Live-cell Imaging to monitor IBD drug modulation of Autophagy 
in HEK293 GFP-LC3 cells  

HEK293 GFP-LC3 cells were untreated (i); treated with DMSO (vehicle control) (ii), EBSS 
(nutrient deprivation) (iii), 120μM Azathioprine (iv), 100μg/ml Infliximab (v), 120μM 6-
mercaptopurine (vi), 120μM Methotrexate (vii), 100μM methylprednisolone (viii) or 
150μM sulfasalazine (ix) and imaged by live-cell confocal microscopy for 12 hours. Mean 
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percentage of cells with >5 GFP-LC3 foci per cell (+/- SEM) were calculated from n=3 and 
fifty cells were counted in 1 field of view for each condition.   

A: Confocal microscopy images (i-ix) and quantification (x) for 6 hour time-point shown. 
One-way ANOVA with Tukey’s multiple comparison test was performed on data for the 
6-hour time-point **p < 0.01; ****p < 0.0001.  

B: Quantification of all time-points shown. Two-way ANOVA with Tukey’s multiple 
comparison test was performed on data to compare the effect of different treatments 
within each time-point *p <0.05; ** p <0.01; ****p < 0.0001 (azathioprine vs. DMSO; 
EBSS and infliximab vs. untreated).  

 

3.2.3 Fixed-Cell Confocal Microscopy to Monitor 
Autophagy Modulation by Azathioprine and 
Infliximab in HEK293 GFP-LC3 Cells  

Fixed-cell confocal fluorescence microscopy was used to confirm the effect of 

azathioprine and infliximab on autophagy. HEK293 GFP-LC3 cells were treated with 

azathioprine and infliximab for 6 hours. Untreated cells and cells treated with DMSO 

showed a basal levels of autophagy with 15% of cells exhibiting >5 GFP-LC3 foci (Figure 

3.3). When cells were treated with EBSS the percentage of cells with >5 GFP-LC3 foci 

increased significantly to 91% (Figure 3.3). The percentage of cells exhibiting >5 GFP-LC3 

foci were significantly increased to 61% with azathioprine treatment (Figure 3.3). 

However, infliximab treatment did not appear to modulate autophagy as only 6% of cells 

exhibited >5 GFP-LC3 foci (Figure 3.3).  
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Figure 3.3: Fixed-cell Confocal Microscopy to Monitor Autophagy in HEK293 
GFP-LC3 Treated with Azathioprine and Infliximab  

HEK293 GFP-LC3 cells were untreated (i) or treated with DMSO (ii), EBSS (iii), 120μM 
Azathioprine (iv) or 100μg/ml Infliximab (v) and mounted with DAPI Vectashield (blue) 
(n=3). 30 cells were counted in 3 fields of view per treatment and mean percentage cells 
with >5 GFP-LC3 (green) foci was quantified (+/- SEM) (vi). One-way ANOVA with Tukey’s 
multiple comparison test was performed ***p < 0.0001.  
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3.2.4 LC3 Western Immunoblot to Confirm 
Azathioprine-Induced Autophagy in HEK293 cells 

LC3 western immunoblot was used to confirm azathioprine-induced autophagy and 

determined the optimum concentration. HEK293 cells were treated with 60-120µM of 

azathioprine for 6 hours and bafilomycin was used to block degradation of LC3-II positive 

autophagosomes in combination with azathioprine and EBSS.  

Mean LC3-II density was 0.7% of β-actin in untreated cells and 0.3% in cells treated with 

DMSO (Figure 3.4A). When treated with EBSS or 120µM azathioprine, mean LC3-II 

density increased to 10.7% and 3.0%, respectively (Figure 3.4A). As bafilomycin 

treatments were on a separate blot the quantification was analysed separately with LC3-

II density at 39.7% of β-actin in bafilomycin only treated cells (Figure 3.4A). LC3-II density 

increased to 76.0% when bafilomycin was combined with EBSS, which was a fold-change 

of 3.4 (Figure 3.4A i-ii). When cells were treated with azathioprine LC3-II density 

increased to 48.7%, 67.0% and 99.0% of β-actin for concentrations of 80, 100 and 

120µM, respectively (Figure 3.4A). Mean fold-change from bafilomycin was 2.3-, 4.0- 

and 3.3- fold increase when combined with increasing concentrations of azathioprine, 

respectively (Figure 3.4A: ii). There was a consistent, yet non-significant, trend showing 

that azathioprine increased autophagosome-bound LC3-II, which accumulated upon 

combination with bafilomycin.  

The optimal concentration of azathioprine for fold-increase from bafilomycin was 

100µM (Figure 3.4A: ii). However, there was high variability at 100µM azathioprine and 

the mean LC3-II density was optimal with 120µM azathioprine combined with 

bafilomycin. Therefore, it was determined that the optimal concentration for 

azathioprine-induced autophagy at 6 hours was 120µM. 
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Figure 3.4: LC3 Western Immunoblot to Monitor Autophagy in HEK293 cells 
Azathioprine and Infliximab 

HEK293 cells were untreated; treated with DMOS (vhc), EBSS for nutrient deprivation, 
120μM azathioprine (A) or 100μg/ml infliximab (B) for 6 hours. Cells were also treated 
with either 160nM bafilomycin only or bafilomycin in combination with EBSS, 60-120μM 
azathioprine (A) or 20-100μg/ml infliximab (B) for 6 hours. Protein lysates were 
separated on a 15% SDS-page gel and immunoblotted for LC3, with a representative 
western immunoblot from n=3 shown. ImageJ software was used for western 
densitometry. A: Fold-change from bafilomycin only treatment in LC3-II (16kDa) bands 
normalized to β-actin was quantified from n=3 (+/- SEM), and not including 60µM 
azathioprine treatment. B: Mean percentage LC3-II bands normalized to β-actin was 
quantified from n=3 (+/- SEM). 
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3.2.5 LC3 Western Immunoblot to Monitor 
Autophagy in HEK293 Cells Treated with Infliximab 

The LC3 western immunoblot was used as an alternative method to assess autophagy 

modulation induced by infliximab. Bafilomycin was used to block degradation of LC3-II 

positive autophagosomes in HEK293 cells and was combined with EBSS and 20-

100μg/ml infliximab for 6 hours.  

Mean LC3-II density was between 0% and 2% of β-actin in cells without bafilomycin 

treatment (Figure 3.4B). Bafilomycin treatment increased LC3-II density to 17% of β-

actin (Figure 3.4B). LC3-II density increased to 88% when bafilomycin was combined with 

EBSS, but increased more modestly to 24% when combined with 20μg/ml infliximab 

(Figure 3.4B). However, when bafilomycin was combined with higher concentrations of 

infliximab, 30-100μg/ml, LC3-II density decreased to between 7% and 9% (Figure 3.4B).  

 

3.2.6 Flow Cytometry to Monitor Autophagy in 
HEK293 GFP-LC3 cells Treated with Azathioprine and 
Infliximab  

Flow cytometry for GFP-LC3 analysis was used as a complementary technique to support 

the finding that azathioprine induces autophagy. As LC3 does not increase in abundance 

but rather re-localises to the autophagosome membrane upon autophagy induction, to 

quantify autophagy levels by flow cytometry, cytosolic LC3 must be removed (Figure 

3.5A: i). This allowed for quantification of GFP-LC3 to indicate levels of autophagy 

activity in the cell (Figure 3.5A). HEK293 GFP-LC3 cells were left untreated or treated 

with bafilomycin to block degradation of GFP-LC3 positive autophagosomes for 6 hours 

(Figure 3.5A). Initially, geometric mean of GFP-LC3 fluorescent intensity was used to 

compare cells permeabilised with saponin to cells not permeabilised, to assess efficacy 

of cytosolic GFP-LC3 removal (Figure 3.5A). The GFP-LC3 geometric mean of non-

permeabilised cells was 1023 for untreated cells, which increased slightly to 1212 when 

treated with bafilomycin (Figure 3.5A: ii-iii). When cytosolic GFP-LC3 was removed the 

geometric mean was markedly lower (30 for untreated) but when cells were treated 

with bafilomycin, the geometric mean more than doubles to 77 (Figure 3.5A: iv-v). 

Therefore, although the fluorescent intensity was lower overall when cytosolic GFP-LC3 
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was removed, the increase in autophagosome-bound GFP-LC3 when treated with 

bafilomycin can be clearly observed.  

HEK293 GFP-LC3 cells were then untreated or treated with DMSO, EBSS for nutrient 

deprivation, azathioprine or infliximab for 6 hours (Figure 3.5 B: iv). Bafilomycin was 

used to block degradation of autophagosomes, and EBSS (i), azathioprine (ii) and 

infliximab (iii) treatments were also combined with bafilomycin (Figure 3.5B). Cells were 

permeabilised with saponin to remove cytosolic GFP-LC3 for flow cytometry analysis and 

were then cytospinned on to microscope slides for confocal microscopy analysis to allow 

visualisation of the location and intensity of GFP-LC3.  

The GFP-LC3 geometric mean in untreated cells was 22, which remained relatively 

constant (~19-22), when cells were treated with DMSO, EBSS and infliximab (Figure 

3.5B). There was a small increase in GFP-LC3 intensity to 25 with azathioprine treatment 

(Figure 3.5B). When cells were treated with bafilomycin there was a significant increase 

in GFP-LC3 intensity to a geometric mean of 84 (Figure 3.5B). The fold-change from GFP-

LC3 geometric mean of cells treated with bafilomycin to cells treated with bafilomycin 

combined with EBSS, azathioprine or infliximab was shown in Figure 3.5B (v) to allow 

assessment of the augmentation of GFP-LC3 accumulation.  When bafilomycin was 

combined with infliximab, GFP-LC3 intensity remained constant at 85 (Figure 3.5B). 

However, when EBSS was combined with bafilomycin the geometric mean increased to 

125, which was a fold-change of 1.67 compared to bafilomycin (Figure 3.5B). 

Furthermore, when azathioprine was combined with bafilomycin, GFP-LC3 intensity 

increased to a geometric mean of 122, which was a fold-increase of 1.52 compared to 

bafilomycin (Figure 3.5B). Despite the notable increase in GFP-LC3 intensity from 

bafilomycin induced by combination with EBSS or azathioprine, the changes were not 

statistically significant. However, the trend observed does support the statistically 

significant observations found with previous complimentary methods such as live-cell 

and fixed-cell imaging.  

Saponin treatment and cytospinning of the cells caused GFP-LC3 to appear diffuse within 

the cell, however the untreated control cells had no visible GFP-LC3, and therefore it 

was assumed that all cytosolic GFP-LC3 had been removed (Figure 3.5C). Furthermore, 

there was a visible increase in GFP-LC3, when comparing bafilomycin only (xv) to 

bafilomycin combined with EBSS (xvi) or azathioprine (xvii) (Figure 3.5C).  
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Figure 3.5: Flow Cytometry to Monitor Autophagy in HEK293 GFP-LC3 Cells 
Treated with Azathioprine and Infliximab  

A: Schematic diagram showing cell permeabilisation with 0.05% saponin to remove 
cytosolic GFP-LC3 to allow flow cytometery analysis (Eng et al., 2010) (i). HEK293 GFP-
LC3 cells were either untreated or treated with 160nM bafilomycin for 6 hours (ii-v). 
Cells were washed without (ii-iii) or with (iv-v) cell permeabilisation with 0.05% saponin 
to remove cytosolic GFP-LC3 before fixation. Geometric mean of GFP-LC3 fluorescent 
intensity of cells was quantified by flow cytometry and analysed using FlowJo software. 

B: HEK293 GFP-LC3 cells were treated with either 160nM bafilomycin only or 
bafilomycin with EBSS for nutrient deprivation (i), 120μM azathioprine (ii) or 100μg/ml 
Infliximab (iii). Cells were also treated without bafilomycin (iv). After 6-hour incubation, 
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cells were washed with 0.05% saponin. Geometric mean of GFP-LC3 intensity of cells 
was quantified by flow cytometry and analysed using FlowJo software. Histograms were 
selected to represent n=3 and fold-change in GFP-LC3 geometric mean from bafilomycin 
only was quantified from n=3 (+/- SEM) (v).   

C: Cells used for flow cytometry were cytospinned and mounted with DAPI Vectashield 
(blue) for confocal microscopy imaging and analysis of GFP-LC3 (green): untreated (i, vi), 
DMSO (ii, vii), EBSS (iii, viii), 120μM azathioprine (iv, ix), 100μg/ml Infliximab (v, x), 
bafilomycin only (xi, xv) and bafilomycin in combination with EBSS (xii, xvi), 120μM 
azathioprine (xiii, xvii) or 100μg/ml Infliximab (xiv, xvii).  

 

3.2.7 HEK293 Cells Transiently Transfected with RFP-
GFP-LC3 to Confirm Azathioprine-Induced Autophagy 
Flux  

LC3-II and autophagosomes can accumulate due to activation or inhibition of the 

autophagy pathway. To clarify the effect of azathioprine on autophagy, HEK293 cells 

were transfected with the tandem fluorescent-tagged RFP-GFP-LC3 plasmid and treated 

with azathioprine, bafilomycin or EBSS for 6 hours. When RFP-GFP-LC3 proteins are 

localised to autophagosomes (early stage of the pathway), both GFP and RFP proteins 

are stable and can be observed as yellow foci in merged images (Figure 3.6A). When 

autophagosomes fuse with lysosomes (late stage of the pathway) GFP is quenched 

leaving only the more stable RFP-LC3 bound to autophagolysosomes (Mizushima et al., 

2010) (Figure 3.6A).  

When autophagy activity was induced by EBSS there was an increase in autophagosome 

formation, therefore an increase in percentage of cells with >10 yellow RFP-GFP-LC3 foci 

(Figure 3.6B: xi, xiv). As EBSS induces autophagy flux, there was also an increase in 

autophagosome fusion with lysosomes, which degrades GFP causing an accumulation of 

red late stage autophagolysosomes (Figure 3.6B: xi, xiv). When autophagosome fusion 

with lysosomes was inhibited, with bafilomycin treatment, only an accumulation of 

yellow RFP-GFP-LC3 foci was visible (Figure 3.6B: x, xiii). Azathioprine treatment induced 

autophagy activity, as both yellow RFP-GFP-LC3 (xii, xv) and red RFP-LC3 foci (xii, xv: 

indicated with arrow) were visible (Figure 3.6B: iv).  

For quantification of autophagy modulation, the percentage of transfected cells with 

>10 LC3 foci was quantified (Figure 3.6B: xvi) and compared to untreated. As expected, 
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all three treatments caused significant increases in autophagosome accumulation 

compared to untreated (Figure 3.6B, panel xvi).  

To determine the proportion of late stage autophagosomes and therefore the mode of 

autophagy modulation, the percentage of RFP-LC3 foci (autophagolysosomes), 

normalised to total LC3 foci (red autophagolysosomes plus yellow autophagosomes), 

was quantified (Figure 3.6B: xvii). In untreated cells basal autophagy flux was observed 

with 85% of autophagosomes appearing red, therefore having fused with lysosomes. 

Upon treatment with EBSS and azathioprine, autophagy flux was not disrupted as the 

percentage of red autophagosomes remained between 78% and 86%, respectively 

(Figure 3.6B, panel xvii). However, as fusion with the lysosome and subsequent 

degradation of GFP was blocked with bafilomycin treatment, there was a significant 

decrease in percentage of red autophagosome compared to untreated cells, to only 5% 

(Figure 3.6B, panel xvii).  
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Figure 3.6: HEK293 Cells Transiently Transfected with GFP-RFP-LC3 to 
Monitor Azathioprine-Induced Autophagy Flux using Confocal Microscopy  

A: Schematic diagram of RFP-GFP-LC3 plasmid used to track autophagosome 
progression through pathway. When GFP-RFP-LC3 proteins are bound to 
autophagosomes, yellow foci are visible. Fusion with the lysosome quenches GFP and 
autophagolysosomes appear as red foci.  
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B: HEK293 cells were transfected by nucleofection with RFP-GFP-LC3 plasmid and left 
untreated (i, v, ix) or treated with 160nM Bafilomycin (ii, vi, x, xiii), EBSS (iii, vii, xi, xiv), 
or 120µM azathioprine (iv, viii, xii, xv) for 6 hours and mounted with DAPI Vectashield 
(blue). Percentage of transfected cells with >10 LC3 foci was quantified (+/-SEM) (n=5) 
(xvi) *p value <0.05. Percentage of RFP-LC3 foci (autophagolysosomes) normalised to 
total LC3 foci (red autophagolysosomes plus yellow autophagosomes) was quantified 
(+/-SEM) (n=5) (xvii) **p <0.01, ***p <0.001. 

 

3.2.8 AlamarBlue® Cytotoxicity Assay to Identify Non-
Toxic Concentration Range of Azathioprine in THP-1-
Derived Macrophages   

Resident macrophages have an important role in maintaining GI tract homeostasis, and 

macrophages from CD patients are more susceptible to pathogen infection and 

persistence, with more pronounced pro-inflammatory responses (Vazeille et al., 2015), 

in part due to defects in autophagy (Lapaquette et al., 2010, 2012; Negroni et al., 2012; 

Sadabad et al., 2015). Therefore, the human monocyte cell line, THP-1’s, differentiated 

into macrophages using PMA (Supplementary Results: Chapter 9), were used as a more 

physiologically relevant cell line for investigating autophagy in the context of CD.  

As described in section 3.2.1, the alamarBlue® cytotoxicity assay indirectly measures cell 

viability by assessing metabolic activity, and can be used for time-course studies. The 

THP-1-derived macrophages were left untreated (indicated by red line) or treated with 

60-160μM azathioprine for 24 hours in the presence of 10% alamarBlue® reagent. 

Absorbance was measured at 2, 4, 6 and 24 hours and metabolic activity was calculated 

as a percentage of the metabolic activity of untreated cells for each time-point (Figure 

3.7).  

When cells were treated with DMSO there was no significant change in metabolic 

activity compared to untreated cells. However, when cells were treated with 0.5% 

Triton-X, as a positive control for cell death, metabolic activity significantly decreased 

throughout the time-course (data not shown).  

It was found that azathioprine did not induce a decrease in metabolic activity with the 

lowest metabolic activity being 94% of untreated (Figure 3.7). There were some 

increases in metabolic activity observed, with the highest value being 154% at 2 hours 
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with 100μM (Figure 3.7), although none of these increases were statistically significant 

and did not correlate with concentration or incubation time.  

 

Figure 3.7: AlamarBlue® Toxicity Assay Time-course and Concentration 
Range Analysis in THP-1-derived Macrophages Treated with Azathioprine 

THP-1-derived macrophages were untreated or treated with 60-160μM azathioprine for 
24-hours in the presence of 10% alamarBlue® reagent (n=3). Fluorescence was read at 
2, 4, 6 and 24 hours. Percentage difference between fluorescent intensity of treated and 
untreated cells (red line) was calculated after fluorescent intensity of corresponding “no 
cells” controls were subtracted. Mean percentage metabolic activity (+/- SEM) is 
displayed. A two-way ANOVA with Tukey’s multiple comparison test was used to 
compare the effect of treatments and concentration within each time-point. 
Experimental procedure was performed by Ms Suzie McGinley under the supervision of 
Ms Kirsty Hooper.  

 

3.2.9 LC3 Immunostain to Monitor Azathioprine-
Induced Autophagy in THP-1-Derived Macrophages  

LC3 immunostaining was used to determine if azathioprine modulates autophagy in 

THP-1-derived macrophages. Although alamarBlue® analysis detected no cytotoxic 

effects of azathioprine up to 160μM and 24-hour incubation, the concentration used in 

THP-1-derived macrophages was 120μM to replicate findings in HEK293 cells. To 

determine the optimal time-point for azathioprine-induced autophagy in THP-1-derived 

macrophage, cells were untreated or treated with azathioprine for 2, 4, 6, 8, 16 and 24 

hours.  
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Although notable increases in percentage of cells with >5 LC3 foci were visible between 

6 and 24 hours, an optimal increase was observed at 6-hour incubation time 

(Supplementary Figure 10.1). At this time-point, the percentage of THP-1-derived 

macrophages with >5 LC3 foci increased from 17% in untreated cells to 62% in 

azathioprine-treated cells (Supplementary Figure 10.1: xiii).  

At the optimal 6-hour time-point cells were left untreated (i), or treated with DMSO (ii), 

azathioprine (iii), or EBSS (iv) (Figure 3.8). Untreated cells and DMSO-treated cells 

exhibited >5 LC3 foci in 9% and 15% of cells, respectively (Figure 3.8B). A significant 

increase in the percentage of cells with >5 LC3 foci was observed when cells were 

treated with azathioprine to 43% (Figure 3.8). There was a slightly more pronounced 

increase in percentage of cells exhibiting >5 LC3 foci when treated with EBSS to 59% 

(Figure 3.8).  



 
 

120 

 

Figure 3.8: Azathioprine-Induced Autophagy in THP-1-derived 
Macrophages Monitored by LC3 Immunostaining 

Cells were untreated (i), or treated with DMSO vehicle control (ii), 120µM azathioprine 
(iii), or EBSS (nutrient deprivation) (iv) for 6 hours (n=3). Cells were then immunostained 
for LC3 (green) and mounted with DAPI Vectashield (blue). 30 cells were counted in 3 
fields of view per treatment and percentage cells with >5 GFP-LC3 foci quantified from 
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n=3 (+/- SEM). One-way ANOVA with Tukey’s multiple comparisons was performed *p 
<0.05; **p < 0.01. 

 

3.2.10 THP-1-derived macrophages LC3 flow cytometry  
Flow cytometry for endogenous LC3 was investigated as a supplementary method for 

monitoring autophagy in THP-1-derived macrophages. Cells were treated with DMSO, 

azathioprine, EBSS, bafilomycin, EBSS with bafilomycin and azathioprine with 

bafilomycin for 6 hours and immunostained for endogenous LC3 for flow cytometry 

analysis, as optimised in Supplementary Results (Chapter 9). The representative 

histograms demonstrate an increase in LC3-II from untreated compared to bafilomycin 

treated cells (Figure 3.9: i), which was augmented by addition of azathioprine (Figure 

3.9: ii), and to a lesser extent, EBSS treatment (Figure 3.9: iii). However, quantification 

of mean geometric mean showed that results obtained with this method were not 

reproducible, as responses to autophagy-modulating controls appeared to be 

inconsistent due to highly variable LC3-II/FITC immunostaining intensities. Therefore, in 

this cell type, flow cytometry for endogenous LC3 could not be used to confirm 

autophagy induction by azathioprine.  
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Figure 3.9: Endogenous LC3 Flow Cytometry to monitor Autophagy 
Induction in THP-1-derived Macrophages 

 THP-1-derived macrophages were treated with either 160nM bafilomycin only or 
bafilomycin with EBSS for nutrient deprivation (i), 120μM azathioprine (ii) or 100μg/ml 
Infliximab (iii). Cells were also treated without bafilomycin (iv). After 6-hour incubation, 
cells were washed with 0.05% saponin and immunostained for LC3. Geometric mean of 
LC3 intensity of cells was quantified by flow cytometry and analysed using FlowJo 
software. Histograms were selected to represent n=3 and mean LC3 geometric mean 
was quantified from n=3 (+/- SEM) (iv).   
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3.3 Summary 
Six commonly used IBD drugs were selected from the five main drug classes used for CD 

treatment. Using the alamarBlue® cytotoxicity assay, it was confirmed that none of the 

drugs selected had cytotoxic effects in the HEK293 cells at the concentrations and time-

points investigated. Using live-cell imaging to monitor GFP-LC3 foci formation in HEK293 

GFP-LC3 cells, it was identified that azathioprine, and to a lesser extent, infliximab, 

modulated autophagy activity, while the other IBD drugs screened induced minimal or 

no effect.  

At the optimum time-point of 6 hours, complementary techniques were used in an 

attempt to confirm these results. However, infliximab treatment of HEK293 GFP-LC3 

cells for 6 hours failed to increase autophagy activity as assessed by fixed-cell confocal 

microscopy and flow cytometry analysis of GFP-LC3. Western immunoblot revealed 

slight decreases in accumulated LC3-II with some concentrations, which may suggest 

that infliximab causes inhibition of autophagy activity. However, the varying effect of 

concentration and the opposing findings from live-cell imaging contradict this 

conclusion. The discrepancies in results for infliximab between live-cell imaging and the 

additional techniques is likely due to the higher sensitivity of the live-cell imaging 

technique.  

In contrast, azathioprine induced strong autophagy responses in HEK293 and HEK293 

GFP-LC3 cells, and THP1-1-derived macrophages. Fixed-cell and flow cytometry analysis 

of GFP-LC3 formation and western immunoblot for LC3-II in HEK293 cells confirmed 

azathioprine-induced autophagy modulation and identified optimum time-point as 6 

hours and optimal concentration as 120μM. Although there was a lack of statistical 

significance observed with some techniques, the result remains valuable to supplement 

previous significant results, especially when it is considered that the positive control, 

EBSS, shows a similar trend to azathioprine that was also not statistically significant. 

Azathioprine treatment modulated autophagy in THP-1-derived macrophages at the 

same time-point and concentration that was optimal for autophagy induction in HEK293 

cells, as monitored by LC3 immunostaining.  

When treating cells with bafilomycin, the GFP-LC3 foci and LC3-II that accumulate 

represent the autophagosomes that are formed and usually degraded during basal 
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autophagy activity. When bafilomycin is combined with treatments that increase 

autophagy activity and autophagosome formation, GFP-LC3 and LC3-II accumulation 

would be augmented. If bafilomycin were combined with treatments that modulate 

autophagy in a similar manner to bafilomycin, accumulated GFP-LC3 foci and LC3-II 

would likely remain constant. When azathioprine was combined with bafilomycin it 

increased GFP-LC3 foci and LC3-II compared with bafilomycin treatment alone. To 

corroborate that azathioprine induces autophagy flux as opposed to blocking 

autophagosome turnover, HEK293 cells were transfected with RFP-GFP-LC3 to 

differentiate between early and late stage autophagosomes. Azathioprine treatment 

resulted in the accumulation of both autophagosomes and autophagolysosomes, 

confirming that azathioprine induces flux through the entire autophagy pathway.  

In conclusion, azathioprine has been identified as a strong inducer of autophagy in the 

HEK293 cells and THP-1-derived macrophages, and optimal concentrations and 

incubation times have been identified for autophagy induction. These findings set the 

foundations for subsequent investigation of the mechanism of action of azathioprine 

and its effect on pathogen clearance in the context of autophagy. Furthermore, this 

enables examination of the effect of this IBD drug in primary immune cells derived from 

paediatric IBD patients.  
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4. Investigating the effects of IBD 
Drugs on Cell Death  

4.1 Introduction  
Autophagy is intimately linked with cell death as described in section 1.2.4.  When 

exposed to mild stress, the autophagy pathway promotes cell survival and inhibits 

apoptosis (Mariño et al., 2014). When stress is prolonged or intense, however, the cell 

will initiate apoptosis, and actively suppress autophagy to accelerate cell death (Mariño 

et al., 2014). Therefore, autophagy often precedes apoptosis when cells undergo stress. 

In a different model of cell death and autophagy; autophagic cell death (ACD) can be 

caused by excessive autophagy causing degradation of essential cellular components 

(Pattingre et al., 2005). This is distinct from apoptosis that is accompanied by autophagy, 

as ACD is cell death directly mediated by autophagy and if autophagy is prevented, cell 

death will not occur (Pattingre et al., 2005).  

When thiopurine nucleotides incorporate into DNA, DNA mismatch-repair (MMR) is 

activated, which can lead to DNA single-stranded breaks that activate apoptosis via p53 

(O’Brien and Brown, 2006; Yan et al., 2003). In MMR-proficient HCT116, HT29 and 

human endometrial cancer cells (HEC59), thiopurines induce both apoptosis and 

autophagy (Chaabane et al., 2016; Zeng et al., 2007; Zeng and Kinsella, 2010, 2008), 

regulated by p53-mediated responses to MMR processing (Zeng et al., 2007). The 

increased autophagy activity had a pro-survival role as it inhibited apoptosis, and it was 

suggested that the most likely mechanism was through the degradation of damaged 

mitochondria (Chaabane et al., 2016; Zeng et al., 2007). The aim of this chapter is to 

determine whether azathioprine-induced autophagy is linked to cell death by using 

complementary techniques to analyse different types of cell death.  
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4.2 Results 

4.2.1 Cleaved-PARP Western Immunoblot to Monitor 
Apoptosis in HEK293 Cells Treated with Azathioprine  

To determine if azathioprine treatment induces cell death, cleaved- Poly (ADP-ribose) 

polymerase (PARP) western immunoblotting was used. Both intrinsic and extrinsic 

pathways can induce caspase-3 dependent apoptosis, which results in the cleavage of 

PARP. Therefore, the accumulation of cleaved PARP on a western immunoblot is 

indicative of caspase-dependent apoptosis. To identify an effective positive control for 

PARP cleavage (TNFR) HEK293 and HEK293 GFP-LC3 cells were transfected with the p55 

TNF receptor, as ligation of this receptor triggers extrinsic apoptosis. Cell lysates were 

prepared and western immunoblotted for full length PARP (116kDa) and cleaved PARP 

(89kDa) (Supplementary Figure 10.2). In transfected cells there is a clear increase in 

cleaved-PARP compared to non-transfected for both cell lines (Supplementary Figure 

10.2).  

Following on from this HEK293 cells were left untreated, treated with DMSO or with 

azathioprine for 6 and 24 hours (Figure 4.1). There was no increase in cleaved-PARP 

observed with azathioprine or DMSO for either time-point, however TNFR transfection 

induced a considerable increase in cleaved-PARP (Figure 4.1).  
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Figure 4.1: Cleaved-PARP Western Immunoblot to Monitor Apoptosis in 
Cells Treated with Azathioprine  

HEK293 cells were untreated; treated with DMSO (vehicle control) or 120μM 
azathioprine for 6 and 24 hours, or transfected with 0.5μg of TNF receptor plasmid and 
rested for 24 hours. Protein lysates separated on 10% SDS-page gel were 
immunoblotted for PARP and actin (i). ImageJ software was used for western 
densitometry. PARP and cleaved-PARP density normalized to actin was quantified (ii). 

 

4.2.2 TUNEL Assay to Monitor Apoptosis in HEK293 
cells treated with Azathioprine 

Extensive DNA fragmentation is associated with the later stage of apoptosis and is 

induced during caspase-independent apoptosis by AIF and Endonuclease G release from 

the mitochondria following (MOMP). This can be detected using the TUNEL assay kit as 

the active enzyme Terminal deoxynucleotidyl transferase (TdT) binds to ends of double-

stranded DNA breaks.  

HEK293 cells were left untreated, treated with DMSO or with azathioprine for 6 and 24 

hours, or transfected with 0.5µg of TNFR plasmid. After staining with the TUNEL kit, 

apoptotic cells positive for TdT (FITC) were enumerated and expressed as a percentage 

of total cells. A slight increase in TdT stained cells was observed with azathioprine at 24 
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hours from 2.3% of untreated cells at 24 hours to 5% (Figure 4.2). However a more 

considerable increase was observed with TNFR transfection to 14% (Figure 4.2). 

Importantly, at the optimum time-point for autophagy induction with azathioprine as 

shown in Chapter 3 (6 hours), apoptosis was not detected (1.7%) (Figure 4.2).  
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Figure 4.2: TUNEL Assay to Monitor Apoptosis in Cells Treated with 
Azathioprine  

HEK293 cells were untreated (ii, v); treated with DMSO (vehicle control) (iii, vi) or 120μM 
azathioprine (iv, vii) for 6 and 24 hours, or transfected with 0.5μg of TNF receptor 
plasmid and rested for 24 hours (viii). Cells were then stained using the TUNEL assay kit 
and mounted with DAPI Vectashield (blue) for confocal microscopy imaging. A staining 
control of inactivated TdT is also shown (i). Total cells were counted in 3 fields of view 
and a percentage of TdT stained/apoptotic (FITC: green) was calculated (+/- SEM) (ix). 

 

4.2.3 Annexin-V/PI Flow Cytometry to Monitor 
Apoptosis and Necrosis in HEK293 cells and THP-1-
derived macrophages treated with Azathioprine 

Annexin-V/Propidium Iodide (PI) flow cytometry can differentiate between early stage 

apoptosis, late stage apoptosis and necrosis. In viable cells, the cell membrane 

phospholipid, phosphotidlyserine (PS), is located on the inner surface of the membrane. 

However, in early stage apoptosis the asymmetry of the phospholipid bilayer is altered 

and PS becomes exposed on the external surface of the cell membrane. Exposed PS is 

bound by Annexin-V to a high affinity; therefore, cells in early-stage apoptosis are 

stained solely with Annexin-V (AnnexinV+/PI-). PI is a DNA stain that can only enter cells 
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with disrupted cell membranes. Late-stage apoptotic cells have permeabilised cell 

membranes that enable PI staining of nuclear material but also are positive for Annexin-

V staining due to exposed PS (AnnexinV+/PI+). PI staining alone occurs in necrotic cells 

that have compromised cell membranes exposing nuclear material but due to PS 

degradation Annexin-V staining is absent (AnnexinV-/PI+).  

The effect of azathioprine treatment on early and late apoptosis, and necrosis in HEK293 

and THP-1-derived macrophages was analysed. Apoptosis was triggered in HEK293 cells 

via the extrinsic pathway by overexpressing TNFR and as a positive control for PI staining 

HEK293 cells were mechanically detached by scraping, which compromised cell 

membrane integrity (Figure 4.3). HEK293 cells were also treated with DMSO and 

azathioprine for 6 and 24 hours (Figure 4.3). THP-1-derived macrophages were left 

untreated or treated with DMSO, azathioprine or 30μM camptothecin for 6 and 24 hours 

(Figure 4.4). 

For both cell types the percentage of viable cells when untreated was between 84.9% 

and 86.4% at both 6 and 24 hours (Figure 4.3 and Figure 4.4). When cells were treated 

with DMSO or azathioprine for 6 and 24 hours, viability of cells was unaltered, ranging 

between 82.5% and 86.8% within the AnnexinV-/PI- quadrant (Figure 4.3 and Figure 4.4). 

Therefore, we did not detect any effect of azathioprine treatment on viability in either 

THP-1-derived macrophages or HEK293 cells.  

There was a significant decrease in percentage of viable HEK293 cells to 56.1% and 

60.4% when cells were scraped or transfected with TNFR, respectively (Figure 4.3). In 

scraped cells the population primarily shifted to necrosis with an increase from 9.3% to 

28.7% AnnexinV-/PI+ cells, but late apoptosis also increased slightly from 2.2% to 9.5% 

(AnnexinV+/PI+) (Figure 4.3 B and C: x). TNFR transfection was intended as a positive 

control for Annexin-V staining, but percentage of AnnexinV+/PI- cells only increased 

slightly from 3.7% to 8.2% and AnnexinV+/PI+ increased from 2.2% to 5.4% (Figure 4.3 B 

and C: x). The decrease in viability of TNFR transfected cells was mainly due to an 

increase in percentage of AnnexinV-/PI+ cells to 25.6% (Figure 4.3 B and C: x).  

When THP-1-derived macrophages were treated with camptothecin for 6 hours 

percentage of viable cells significantly decreased to 39.2% and percentage of positively 

stained cells significantly increased to 17.9%, 20.5% and 22.6% for AnnexinV+/PI- (early 
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apoptosis), AnnexinV-/PI+ (necrosis) and AnnexinV+/PI+ (late apoptosis) staining, 

respectively (Figure 4.4A and C). When exposure to camptothecin was prolonged to 24 

hours the significant decrease in viable cells was more pronounced with only 16.4% 

within the AnnexinV-/PI- quadrant (Figure 4.4B and C). The percentage of early apoptotic 

cells did not increase, as the most prominent population shift was towards late stage 

apoptosis with 53% of cells AnnexinV+/PI+, and to a lesser extent, there was an increase 

in necrotic cells with 25.5% of cells AnnexinV-/PI+ (Figure 4.4B and C). 
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Figure 4.3: Annexin-V/PI Flow Cytometry to Monitor Apoptosis and 
Necrosis in HEK293 Cells Treated with Azathioprine 

HEK293 cells were untreated (i), detached mechanically by scraping (ii) or transfected 
with p55 TNFR plasmid (iii). Cells were stained with Annexin-V/PI kit and analysed by 
flow cytometry. Representative blots from n=3. Mean percentage population in each 
quadrant from n=3 (+/- SEM) was quantified (viii). Two-way ANOVA was used with 
Tukey’s multiple comparisons between treatments within each quadrant. **p <0.01, 
***p <0.001 compared to untreated for corresponding time-point and quadrant. 
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Figure 4.4: Annexin-V/PI Flow Cytometry to Monitor Apoptosis and 
Necrosis in THP-1-derived macrophages Treated with Azathioprine 

THP-1-derived macrophages were either untreated (i) or treated with DMSO (ii), 120μM 
azathioprine (iii) or 30μM camptothecin (iv) for 6 (A) and 24 hours (B). Cells were stained 
with Annexin-V/PI kit and analysed by flow cytometry. Representative blots from n=3 
shown. Mean percentage population in each quadrant from n=3 (+/- SEM) was 
quantified (C). Two-way ANOVA was used with Tukey’s multiple comparisons between 
treatments within each quadrant. * p <0.05, **p <0.01, ***p <0.001, ****p <0.0001 
compared to untreated for corresponding time-point and quadrant. 

 

4.3 Summary 
Azathioprine did not induce cell death in the HEK293 cell line or THP-1-derived 

macrophages at the concentration range and incubation times investigated. The 

complementary methods used investigated various types of cell death and were verified 

using positive controls for cell death induction. Caspase-dependent and caspase-

independent apoptosis were monitored in HEK293 cells by western immunoblot for 

PARP and the TUNEL assay, respectively. Furthermore, in both HEK293 cells and THP-1-

derived macrophages, flow cytometry for Annexin-V/PI assessed the effect of 

azathioprine on early/late apoptosis and necrosis.  

If, in response to azathioprine, autophagy was accompanied by cell death or preceded 

cell death, it could be suggested that azathioprine is inducing cellular stress and 

autophagy is stimulated as a mechanism to cope with the stress and promote survival. 

However, as there is no cell death apparent at the optimum time-point for autophagy 
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or at subsequent time-points this suggests that azathioprine induces autophagy 

independently of apoptosis.  
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5 IBD Drug Modulation of Autophagy 
and UPR Signalling Pathways 

 

5.1 Introduction  
The mechanism of action of azathioprine in the context of autophagy was examined in 

THP-1-derived macrophages. Regulation of autophagy responses incorporates several 

coordinated signalling networks, which intertwine with signalling pathways from other 

cellular processes, such as the UPR and apoptosis. To explore the expanse of signalling 

pathways involved in autophagy regulation, the RT² Profiler™ PCR Array for Human 

Autophagy genes was used. This encompasses a wide range of autophagy-related genes 

and genes involved in autophagy signalling. Although autophagy induction is most 

commonly monitored on a protein level, in particular post-translational modifications, 

there are some autophagy proteins that are transcriptionally altered when autophagy is 

induced (Klionsky et al., 2016). Following identification of differentially expressed of 

genes in the PCR array, these leads were investigated further by qPCR and western 

immunoblot. Furthermore, the effect of azathioprine on the activity of the mTORC1 

regulatory hub was examined.  

 

5.2 Results 

5.2.1 Human Autophagy RT-PCR Array in THP-1-
Derived Macrophages Treated with Azathioprine 

For the RT² Profiler™ PCR Array for Human Autophagy genes, gene expression in THP-1-

derived macrophages treated with azathioprine for 6 hours was compared with 

untreated cells. An LC3 immunostain was performed in conjunction to ensure autophagy 

induction was observed in the cells to be analysed by qPCR (Supplementary Figure 10.3). 

Percentage of cells with >5 LC3 foci increased from 24% in untreated cells to 48% in 

azathioprine-treated cells (Supplementary Figure 10.3). 

The Autophagy PCR Array includes 84 genes related to autophagy or autophagy 

signalling. Figure 5.1 shows the fold-change expression of all genes in cells treated with 
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azathioprine, normalized to untreated. The red lines indicate 1.5-fold-change, which 

was considered as the threshold for differential regulation. Overall there are more genes 

downregulated, with a higher magnitude in downregulated fold-change compared to 

upregulation, in azathioprine-treated cells (Figure 5.1).  
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Figure 5.1: RT2 Profiler™ PCR Array for Human Autophagy Genes for Analysis 
of Azathioprine-Induced Autophagy  

THP-1-derived macrophages were untreated or treated with 120µM azathioprine for 6 
hours. mRNA was extracted and converted to cDNA for RT-qPCR analysis using the RT² 
Profiler™ PCR Array for Human Autophagy genes according to manufacturer 
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instructions. The calibrating sample was untreated cells and relative expression for 
azathioprine treatment is displayed as fold-change, with upregulated genes calculated 
as 2-ddCT and downregulated genes as 2ddCT. The red lines indicate 1.5-fold change in 
expression, which was considered the threshold for differential expression. Upregulated 
genes are circled in red: SQSTM1 (p62); EIF2AK3 (PERK). 

 

An overview of differentially expressed genes with fold-changes and a summary of their 

function are detailed in Table 5.1. Azathioprine upregulated the genes encoding the key 

autophagy proteins, MAP1LC3B and p62, the UPR kinase PERK, and chemokine receptor, 

CXCR4 (Table 5.1). 

Certain genes for autophagy regulation were downregulated, such as Akt1, AMBRA1 and 

ULK1, and several genes that translate to components of the autophagy machinery were 

also downregulated (Table 5.1). Furthermore, genes involved in lysosome biogenesis 

were downregulated by azathioprine treatment (Table 5.1).  

Several apoptosis genes were downregulated with azathioprine treatment (Table 5.1). 

Most of these genes were pro-apoptotic, however, some of the downregulated genes 

had anti-apoptotic activity. In addition to the genes involved in apoptosis that are 

highlighted in Table 5.1, some genes within the table that have distinct primary 

functions can also modulate apoptosis. Huntingtin (HTT) protein, which was 

transcriptionally downregulated, has a primary function in the cytoskeleton and 

mitochondrial transportation, but has also been implicated in both pro- and anti-

apoptotic regulation (S.-H. Li et al., 2000; Rigamonti et al., 2000; Saudou et al., 1998). 

IGF-1 can act to induce cell proliferation and inhibit apoptosis via Akt pathway 

(Fernández et al., 2004), and both IGF-1 and Akt are downregulated. Furthermore, CLN3, 

which is involved in lysosome function, can have anti-apoptotic functions and is 

downregulated by azathioprine (Mao et al., 2015).  
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Table 5.1: Differentially Expressed Genes from RT2 Profiler™ PCR Array for 
Human Autophagy Genes  

Differentially expressed genes are shown, with 1.5-fold change in expression considered 
as the threshold for differential expression. Fold-change, with upregulated genes 
calculated as 2-ddCT and downregulated genes as 2ddCT. Primary function of genes 
indicated. Bcl-2-associated death promoter (BAD), Fas-associated death domain (FADD), 
Regulator Of G Protein Signaling 19 (RGS19), transglutaminase 2 (TGM2), Eukaryotic 
Translation Initiation Factor 4 Gamma 1 (EIF4G1), Histone Deacetylase 6 (HDAC6), 
Hepatocyte growth factor (HGS), Insulin-like growth factor 1 (IGF1). (Fridman and Lowe, 
20031; Gupta et al., 20042; Howells et al., 20113; Jänicke et al., 20084; Sánchez-Capelo, 
20055; Tatsukawa et al., 20166; Thorburn, 20077; Zheng et al., 20168). 
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5.2.2 CXCR4 Expression Altered by Azathioprine 
Treatment in THP-1-Derived Macrophages 

CXCR4 is a chemokine receptor for CXCL12 and macrophage migration inhibitory factor 

(MIF) (Bernhagen et al., 2007). Upregulation of CXCR4 in response to treatment with 

azathioprine, which was identified in the PCR array, was confirmed by qPCR 

(Supplementary Figure 10.4). Prior to this a geNorm was performed to identify the most 

appropriate reference genes, which were ribosomal protein L13a (RPL13A) and β-actin 

(data not shown).  

A time-course was undertaken in THP-derived macrophages treated with DMSO, 

azathioprine and EBSS (Supplementary Figure 10.4A). EBSS upregulated CXCR4 

expression by 1.9- to 8.4-fold, at 2, 6, 8 and 16 hours, but cells were not treated with 

EBSS for 24 hours. Azathioprine only upregulated CXCR4 expression at 6 hours, with a 

3.5-fold increase and the optimal time-point for EBSS upregulation of CXCR4 was 6 

hours.  

Further investigation of CXCR4 expression when treated with azathioprine at 6 hours 

revealed a clear, but non-significant, increase in CXCR4 relative expression with a 3.5-

fold increase (Supplementary Figure 10.4B). EBSS induced a significant increase in CXCR4 

expression with a 5.5-fold increase. 

 

5.2.3 Expression of Unfolded Protein Response 
Markers Altered by Azathioprine Treatment  

Up-regulation of EIF2AK3 (Eukaryotic Translation Initiation Factor 2 Alpha Kinase 3), also 

known as the UPR kinase PERK, was identified in the PCR array and was investigated 

further by qPCR. Initially, brefeldin A treatment was optimised as a positive control for 

induction of ER stress and subsequent stimulation of UPR, by blocking protein transport 

from the ER to Golgi apparatus (Nebenführ et al., 2002). Cells were treated with varying 

concentrations of brefeldin A for 2, 4 and 6 hours and expression of BiP and PERK were 

then analysed by qPCR (Supplementary Figure 10.5). 

Optimal upregulation of 13.4-fold and 10.3-fold in the expression of PERK and BiP, 

respectively, were observed at 6 hours. BiP was optimally upregulated with 1μg/ml, 

whereas PERK was optimally upregulated with 0.5μg/ml. Therefore, treatment of THP-
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1-derived macrophages with 0.5μg/ml Brefeldin A for 6 hours was used as a positive 

control in subsequent experiments.  

THP-1-derived macrophages were treated with DMSO, azathioprine, and EBSS for 2, 4, 

6, 16 and 24 hours (Figure 5.2: i). PERK upregulation was only observed at 6 hours with 

azathioprine inducing 2.6- to 3.2-fold-increases in a concentration dependent manner. 

EBSS also upregulated PERK, by 2.1-fold, at 6 hours.  

Further investigation by qPCR assessed relative expression of several genes involved in 

the UPR, including PERK, ATF4, CHOP and PDI at the optimal 6hr time-point. THP-1-

derived macrophages were then treated with DMSO, azathioprine, EBSS and brefeldin 

A for 6 hours (Figure 5.2: ii-vi). Azathioprine induced a 1.8-fold increase and a significant 

2.6-fold-increase in PERK with increasing concentration (Figure 5.2: ii). EBSS upregulated 

PERK by 2.3-fold and brefeldin A induced a 10.9-fold-increase.  

Both ATF4 and CHOP are transcriptionally upregulated by PERK activation (Harding et 

al., 2000). Azathioprine induced a slight upregulation of ATF4 with a 1.6-fold-increase 

(Figure 5.2: iii). EBSS and brefeldin A upregulated ATF4 expression significantly by 4.6- 

and 4.8-fold. Azathioprine increased CHOP expression by 1.6- and 2.1-fold with 

increasing concentration (Figure 5.2: iv). A 4.5-fold-increase in CHOP expression was 

induced by EBSS and a significant up-regulation in CHOP by 14.5-fold was induced by 

brefeldin A. PDI is involved in protein refolding in the ER lumen and is transcriptionally 

regulated by the IRE1α–XBP1 pathway (Lee et al., 2003; Oslowski and Urano, 2011). PDI 

was upregulated by 120µM azathioprine with a 1.9-fold-increase and brefeldin A 

increased PDI expression by 2.2-fold (Figure 5.2: v). EBSS significantly upregulated PDI 

expression by 2.6-fold (Figure 5.2: v).  

For analysis of expression of the gene for ER stress chaperon protein BiP/Grp78, cells 

were also treated for 24 hours. Azathioprine did not upregulate BiP expression above 

1.5-fold. EBSS had a slight stimulatory effect on BiP expression with a 1.7-fold-increase 

and brefeldin A upregulated BiP expression by 3.8-fold, at 6 hours. 
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Figure 5.2: RT-qPCR for Unfolded Protein Response Markers  

THP-1-derived macrophages were untreated or treated with DMSO (vehicle control), 
60μM and 120μM azathioprine or EBSS for nutrient deprivation for 2, 4, 6, 16 and 24 
hours (n=3) (i). Cells were additionally treated with 0.5μg/ml brefeldin A for 6 hours (ii-
vi). For BiP RT-qPCR cells were also treated for 24 hours (vi). mRNA was extracted and 
converted to cDNA for qPCR analysis using primers for PERK (i-ii), ATF4 (iii), CHOP (iv), 
PDI (v) and BiP (vi). Reference genes were RPL13A and actin and the calibrating sample 
was untreated cells for corresponding time-points. Relative expression was calculated 
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as 2-ddCT and is displayed as Log10 or Log100 of fold-change (+/- SEM). One-way ANOVA 
and Dunnett’s multiple comparisons was performed. *p <0.05, **p <0.01, ***p <0.001 
using 2-ddCT values.  

  

5.2.4 Western Immunoblot for UPR markers in THP-1-
Derived Macrophages Treated with Azathioprine 

To further investigate the effects of azathioprine on ER stress and the UPR, protein 

expression was analysed by western immunoblot. THP-1-derived macrophages were 

treated with DMSO and azathioprine for 6 and 24 hours, and EBSS and brefeldin A for 6 

hours.  Protein lysates were prepared and run on a 10% gel followed by immunoblotting 

for BiP, PDI and β–actin (Figure 5.3).  

Immunoblotting for BiP revealed two protein bands, which represent the two isoforms 

of BiP that occur due to alternative splicing of pre-mRNA (Ni et al., 2009). At 6 and 24 

hours there was no increase in either of the BiP isoforms when treated with azathioprine 

(Figure 5.3: i-iii). At 6 hours there was a 1.4-fold-increase in both BiP isoforms when cells 

were treated with EBSS. Brefeldin A treatment increased BiP protein to a higher degree, 

with 2.4- and 1.8-fold-increase in BiP 1 and 2, respectively.  

Fold-change in PDI was calculated from DMSO, due to an un-transferred protein band 

in an untreated sample in one of the immunoblots (immunoblot not shown). In some 

immunoblots a faint PDI band at 51kDa was visible, which was likely a degradation 

product (Mezghrani et al., 2000), but as this band was not resolved for all immunoblots, 

PDI was quantified from the protein band at 57kDa. There was no effect of azathioprine 

on PDI protein levels at 24 hours (Figure 5.3: i, iv, v). At 6 hours there was a very modest 

1.3-fold-increase in PDI with azathioprine treatment. EBSS treatment increased PDI by 

1.4-fold and a significant increase in PDI was induced by brefeldin A with a 1.6-fold-

increase. 
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Figure 5.3: Unfolded Protein Response Markers Protein Expression 
Modulated by Azathioprine 

THP-1-derived macrophages were untreated or treated with DMSO (vhc), 60μM or 
120μM azathioprine for 6 hours and 24 hours; and also treated with EBSS for nutrient 
deprivation or 0.5μg/ml brefeldin A for 6 hours (n=3). Protein lysates separated on 10% 
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SDS-page gel were immunoblotted for BiP, PDI and β-actin, with a representative 
western immunoblot from n=3 shown (i). ImageJ software was used for western 
densitometry and fold-change from untreated in BiP bands (1 and 2) (ii-iii) and fold-
change from DMSO in PDI bands (iv-v) normalized to β-actin was quantified for 
corresponding time-points (+/- SEM). One-way ANOVA with Tukey’s multiple 
comparisons test was performed on data for each time-point. *p <0.05 compared to 
DMSO. 

 

5.2.5 Western Immunoblot for rpS6 and 
Phosphorylated rpS6 to Monitor mTORC1 Activity in 
THP-1-Derived Macrophages 

When active, mTORC1 upregulates protein translation via inhibition of eukaryotic 

initiation factor 4E (EIF4E) binding protein 1 [4EBP1] and phosphorylation of S6 

ribosomal protein kinase (S6K) (Ma and Blenis, 2009). Phosphorylated S6K in turn 

phosphorylates and activates S6 ribosomal protein (rpS6) (Figure 5.4A). Therefore, 

depletion of phosphorylated rpS6 (p-rpS6) is an indirect indicator of mTORC1 inhibition. 

Western immunoblotting was used to monitor the levels of total rpS6 protein and 

phosphorylated rpS6 in THP-1-derived macrophages.  

THP-1-derived macrophages were treated with DMSO, a concentration range of 

azathioprine, EBSS or rapamycin for 6 hours. Phosphorylated rpS6 density decreased 

slightly to 83% when treated with DMSO (Figure 5.4: i-ii). A more notable decrease was 

observed with 60µM azathioprine to 55% (Figure 5.4: i-ii). Significant decreases in 

phospho-rpS6 density were induced by higher concentrations of azathioprine to 29%, 

30% and 23% (Figure 5.4: ii). As expected, EBSS and rapamycin treatment decreased 

phospho-S6 density significantly to 18% and 5% (Figure 5.4: i-ii). Total rpS6 also 

fluctuated, with increases when cells were treated with azathioprine and decreases with 

EBSS (Figure 5.4: i, iii).  
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Figure 5.4: Western Immunoblot for rpS6 and Phospho-rpS6 to Monitor 
mTORC1 Activity Modulation by Azathioprine 

A: Active mTORC1 increases translation and protein synthesis through phosphorylation 
of S6 kinase (S6K), which subsequently phosphorylates ribosomal protein S6 (rpS6), and 
inhibition of eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) via 
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phosphorylation. To inhibit autophagy mTORC1 phosphorylates ULK-1 to prevent 
formation of the ULK1-ATG13-FIP200 complex.  

B: THP-1-derived macrophages were untreated or treated with DMSO (vehicle control), 
60-120μM azathioprine, EBSS for nutrient deprivation or 100nM rapamycin for 6 hours. 
Protein lysates separated on a 10% SDS-page gel were immunoblotted for rpS6, 
phosphorylated rpS6 (p-rpS6 (S235/236)) and actin, with a representative western 
immunoblot from n=3 shown (i). ImageJ software was used for western densitometry 
and percentage change from untreated in phospho-rpS6 (ii) and total rpS6 (iii) bands 
normalized to β-actin was quantified from n=3 (+/- SEM). One-way ANOVA with Tukey’s 
multiple comparisons test was performed on data. *p <0.05; **p <0.01 compared to 
DMSO. 

 

5.2.6 Azathioprine inhibits mTORC1 activity 
independent of PERK 

To test whether the inhibition of mTORC1 observed with azathioprine is dependent on 

PERK, cells were treated with azathioprine in the absence or presence of a 

pharmacologic inhibitor of PERK. THP-1-derived macrophages were untreated or 

treated with PERK inhibitor for 30 minutes prior to treatment with DMSO, azathioprine, 

EBSS or brefeldin A for 6 hours.  

To confirm PERK inhibitor activity, phosphorylation of eIF2α (p-eIF2α), a well-

characterised substrate of PERK, was assessed. The results show an increase in p-eIF2α 

from 13% in untreated cells to 35% and 54% with EBSS and brefeldin A treatment, 

respectively (Figure 5.5: iii). A more modest increase in p-eIF2α with azathioprine 

treatment to 20% was observed (Figure 5.5: iii). There is a clear reduction in eIF2α 

phosphorylation in the presence of PERK inhibitor (Figure 5.5: i, iii).  

Azathioprine again caused a decrease in p-rpS6 from 90% in untreated cells to 24% in 

azathioprine treated cells. However, the PERK inhibitor did not significantly alter this 

effect, as azathioprine decreased p-rpS6 from 77% to 31% in the presence of PERK 

inhibitor (Figure 5.5: i, compare lanes 3 and 8, and quantified in ii).  
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Figure 5.5: Azathioprine-induced inhibition of mTORC1 is not PERK 
dependent 

THP-1-derived macrophages were untreated, or treated with DMSO, 120µM 
azathioprine, EBSS, or 0.5μg/ml Brefeldin A for 6 hours without (lanes 1-5) and with 
(lanes 6-10) 50nM PERK inhibitor I. Protein lysates separated on 10% SDS-page gel were 
immunoblotted for rpS6, phosphorylated rpS6 (p-rpS6 (S235/236)), phosphorylated 
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eIF2α (p-eIF2α (S51)) and tubulin (i). Representative blot from n=3. ImageJ software was 
used for western densitometry. rpS6/p-rpS6 density normalized to tubulin (+/- SEM) (ii) 
and p-eIF2α normalized to tubulin was quantified (iii).  

 

5.2.7 Azathioprine-induced autophagy is dependent 
on PERK 

To determine whether the UPR is required for azathioprine-induced autophagy, THP-1-

derived macrophages were treated with azathioprine or EBSS in the absence or 

presence of PERK inhibitor and then immunostained for LC3 (Figure 5.6). DMSO vehicle 

control (not shown) had 20.3% cells with >5 LC3 foci. Both azathioprine and EBSS 

significantly increased percentage of cells with >5 LC3 foci from 10% in untreated cells 

to between 59% and 60% (Figure 5.6: vii). In the presence of PERK inhibitor, 

azathioprine-induced autophagy was specifically attenuated as percentage of cells with 

>5 LC3 foci were between 13% and 15% in untreated and azathioprine-treated cells 

(Figure 5.6: compare panel ii and v, and quantified in vii). EBSS-induced autophagy was 

maintained with 48% of cells with >5 LC3 foci (Figure 5.6: compare panel iii and vi, and 

quantified in vii).  
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Figure 5.6: Azathioprine-induced autophagy is PERK dependent 

THP-1-derived macrophages were untreated (i), or treated with 120µM azathioprine (ii) 
or EBSS (iii) for 6 hours without (i-iii) and with (iv-vi) 50nM PERK inhibitor I. Cells were 
then immunostained for LC3 (FITC: green) and mounted with DAPI Vectashield (blue). 
100 cells were counted per treatment and percentage cells with >5 GFP-LC3 foci 
quantified (+/- SEM) from n=3 (vii). Two-way ANOVA with Tukey’s multiple comparisons 
was performed *p <0.05.  
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5.3 Summary 
By using the RT² Profiler™ PCR Array for Human Autophagy genes it was possible to 

screen the effects of azathioprine on several autophagy and autophagy-related 

signalling pathways. The genes encoding the key autophagy proteins, MAP1LC3B and 

p62, were upregulated by azathioprine. In addition, upregulation of both PERK and 

CXCR4 was confirmed with further investigation using qPCR.  

Most genes encoding ATG proteins and major autophagy regulatory proteins were not 

transcriptionally upregulated by azathioprine in the PCR array, and some were shown to 

be downregulated. Genes involved in lysosome biogenesis and apoptosis, both pro- and 

anti-apoptotic, were also downregulated by azathioprine treatment.  

In addition to UPR kinase, PERK, azathioprine increased the expression of UPR genes 

ATF4, CHOP and PDI, to a lesser extent. However, azathioprine did not increase 

expression of ER chaperone BiP. Western immunoblot also revealed a slight increase in 

PDI protein at 6 hours, but no increase in BiP when cells were treated with azathioprine.  

A major regulator of autophagy activity, the mTORC1 pathway, was also investigated. 

Azathioprine decreased phosphorylation of rpS6, which indicates inhibition of mTORC1 

activity, and an increase in total rpS6 emphasized the decrease in phosphorylation of 

the protein. Inhibiting PERK activity did not affect mTORC1 inhibition by azathioprine 

but had a pronounced affect on azathioprine-induced autophagy.  

In conclusion, several interesting leads were identified using the PCR array; however, 

with further investigation of the UPR pathway, a link between UPR and autophagy 

signalling was identified in the context of azathioprine mechanism of action. It was also 

determined that inhibition of mTORC1 activity was involved in azathioprine-induced 

autophagy.   
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6. Effects of Azathioprine-induced 
Autophagy on Clearance of CD-
associated Adherent Invasive E. coli  

 

6.1 Introduction  
Dysregulated immune responses to intestinal microflora are a crucial contributing factor 

to IBD pathogenesis (Boyapati et al., 2015). Although IBD cannot be attributed to one 

specific bacterial species, examination of the disease-associated microbiome has 

implicated several potentially causative agents (Frank et al., 2011). Most notably E. coli 

strains with an adherent and invasive phenotype (AIEC), are highly prevalent in CD 

(Boudeau et al., 1999; Darfeuille-Michaud et al., 2004; Frank et al., 2011; Martin et al., 

2004; Thomazini et al., 2011). AIEC strains are persistent in intestinal macrophages from 

CD patients, leading to prolonged TNF-α production, continued recruitment of immune 

cells and granuloma formation (Bringer et al., 2012; Glasser et al., 2001; Meconi et al., 

2007). 

THP-1-derived macrophages were used to represent intestinal monocyte-derived 

macrophages and the AIEC CUICD541-10 strain isolated from a CD patient was used as 

it had previously been characterised for several key virulence genes (Baumgart et al., 

2007). The effect of azathioprine on intracellular AIEC survival and pro-inflammatory 

responses was analysed and autophagy levels were monitored to determine if 

autophagic clearance of intracellular pathogens (xenophagy) was enhanced with 

azathioprine treatment.  

 

6.2 Results 

6.2.1 AIEC infection of THP-1-derived macrophages 
THP-1-derived macrophages were infected with AIEC CUICD541-10 strain and 

gentamicin protection assay was used to optimise infection conditions. THP-1-derived 

macrophages were infected with MOI 10, 20 or 100 for 1, 2 or 3 hours prior to 

gentamicin treatment. An MOI of 100 appeared to infect cells to an excessive extent, as 
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did MOI 20 at 3 hours (Supplementary Figure 10.6). Optimal infection time for MOI 10 

was 3 hours (Supplementary Figure 10.6).  

THP-1-derived macrophages were then infected with AIEC CUICD541-10-mCherry strain 

and live-cell imaging was used to assess efficacy of bacterial internalisation in host cells. 

Cells were treated with IPTG to induce mCherry fluorescence in viable AIEC and Cell 

Tracker™ Green BODIPY® was used to demark the boundary of host cells. Enumeration 

of intracellular bacteria per host cell (indicated with white arrows) was carried out for 

up to 3 hours after infection, and revealed that detectable numbers of intracellular AIEC 

were apparent at 1 hour with 0.3 AIEC per host cell (Supplementary Figure 10.7: iii, vi). 

This increased to 0.6 and 0.9 AIEC per host cell at 2 and 3 hours, respectively 

(Supplementary Figure 10.7: iv-vi).  

 

6.2.2 Azathioprine decreased intracellular AIEC 
survival as monitored by live-cell imaging  

To ensure azathioprine does not have a direct anti-bacterial effect, a growth curve assay 

of AIEC bacterial cells was performed. There was no variation in growth of AIEC when 

treated with azathioprine or DMSO (Figure 6.1). 

 

Figure 6.1: AIEC growth curve when treated with Azathioprine 

LB broth was inoculated from an overnight culture of AIEC to an optical density of 0.05 
at 600nm. The cultures were untreated, or treated with DMSO, or 120μM of 
azathioprine and incubated at 37oC, with shaking at 200RPM (n=3). Optical density at 
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600nm was measured every 0.5 hours and plotted in Log2 scale to show growth phases 
(+/-SD). Experimental procedure performed by Ms Suzie McGinley under the supervision 
of Ms Kirsty Hooper.     

 

THP-1-derived macrophages were infected with AIEC-mCherry for 3 hours and 

intracellular AIEC were maintained in low levels of gentamicin for 24 hours. For the final 

6 hours of the gentamicin survival assay, cells were untreated or treated with 

azathioprine, as well as IPTG to induce mCherry fluorescence in AIEC. Live-cell imaging 

was used to monitor the percentage of THP-1-derived macrophages infected with AIEC 

(i) and the number of intracellular AIEC per host cell (ii) throughout the 6 hours (Figure 

6.2).  

At 0 hours, percentage of infection in both untreated and azathioprine-treated cells was 

between 30-40% (Figure 6.2: i). From 0.5 to 6 hours, between 38-48% of cells were 

infected when cells were untreated (Figure 6.2: i). In azathioprine-treated cells, 35% of 

cells were infected at 0.5 hours but this decreased to between 17-28% from 1 to 6 hours, 

which was significantly lower than untreated cells at the matched time-point (Figure 6.2: 

i). The optimal time-point for decreased percentage of infected cells with azathioprine 

treatment was 4 hours (Figure 6.2: i).   

For quantification of intracellular AIEC per host cell, untreated cells had between 1.4 

and 2.0 AIEC per cell from 0 to 6 hours (Figure 6.2: ii). When treated with azathioprine, 

intracellular AIEC per host cell remained between 0.9 and 1.3 from 0 to 1 hour (Figure 

6.2: ii). However, from 2 to 6 hours of azathioprine treatment, intracellular bacteria per 

cell decreased to between 0.4 and 0.6 (Figure 6.2: ii). Intracellular AIEC per host cell 

numbers were significantly lower in azathioprine-treated cells at 0.53 compared to 

untreated cells at 1.9, at the 4-hour time-point (Figure 6.2: ii).  
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Figure 6.2: Azathioprine-induced clearance of mCherry AIEC monitored by 
live-cell imaging 

THP-1-derived macrophages were infected with MOI 10 of mCherry-AIEC for 3 hours, 
treated with 100µg/ml gentamicin for 1 hour, and then maintained in 20µg/ml 
gentamicin for 24 hours. For the final 6 hours, cells were left untreated or treated with 
120µM azathioprine and imaged by live-cell confocal microscopy (n=3). To induce 
mCherry fluorescence in AIEC, 0.1mM IPTG was added and 5µM Cell Tracker™ Green 
BODIPY® was added to visualise cells for the duration of the live-cell. 30 cells counted 
per image. Percentage cells with intracellular bacteria (+/- SEM) (i) and number of 
intracellular bacteria normalised to number of cells (+/- SEM) (i) were quantified. A 
paired two-way ANOVA with Sidak’s multiple comparisons was performed, with 
comparison of untreated and azathioprine treatment within each time-point *p <0.05, 
**p <0.01, ***p <0.001. 

 

6.2.3 Azathioprine decreased intracellular AIEC 
survival as monitored by gentamicin protection 
assay with enumeration of CFU 

The effect of azathioprine on intracellular AIEC survival was then assessed using classical 

gentamicin protection assay with enumeration of CFU/ml. THP-1-derived macrophages, 

infected with AIEC, were untreated or treated with DMSO or azathioprine for the final 6 

hours of the assay. A significant decrease in CFU/ml of intracellular AIEC was observed, 

with a roughly 2-fold decrease when cells were treated with azathioprine compared to 

DMSO-treated cells (Figure 6.3).  
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Figure 6.3: Azathioprine-induced clearance of AIEC monitored by 
gentamicin protection assay with CFU enumeration  

THP-1-derived macrophages were infected with MOI 10 of AIEC for 3 hours, treated with 
100µg/ml gentamicin for 1 hour, and then maintained in 20µg/ml gentamicin for 24 
hours. For the final 6 hours, cells were left untreated or treated with DMSO or 120µM 
azathioprine (n=3). Cell lysates were prepared, spread on LB agar plates and incubated 
at 37oC overnight. CFU/ml of cell lysates was calculated and mean fold-change of CFU/ml 
normalised to untreated was calculated (+/- SEM). One-way ANOVA with Tukey’s 
multiple comparison was performed **p <0.01. 

 

6.2.4 Azathioprine increased autophagy induction in 
correlation with enhanced bacterial clearance 

THP-1-derived macrophages were infected with AIEC and left untreated (ii) treated with 

DMSO (iii) or treated with azathioprine (iv) for the final 6 hours of the gentamicin 

survival assay. Cells were immunostained for LC3 to evaluate autophagosome 

formation. Percentage of cells infected with AIEC and percentage of cells with >5 LC3 

foci was quantified (Figure 6.4: v). Number of intracellular AIEC per host cell was also 

calculated (Figure 6.4: vi). 

Confocal fluorescence imaging revealed a significant decrease in the percentage of cells 

infected, from 52% in untreated cells to 24% in azathioprine-treated cells (Figure 6.4: v). 

There was also a significant increase in percentage of cells exhibiting >5 LC3 foci, when 

comparing DMSO treatment to cells treated with azathioprine, from 20% to 52%, 

respectively (Figure 6.4: v).  A notable decrease in the number of intracellular AIEC per 

host cell was observed from between 1.6 and 1.7 in untreated cells and DMSO-treated 

cells, to 0.6 in cells treated with azathioprine (Figure 6.4: vi).  
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Figure 6.4: Azathioprine-induced clearance of mCherry AIEC and autophagy 
stimulation monitored by LC3 immunostaining  

THP-1-derived macrophages were infected with MOI 10 of mCherry-AIEC for 3 hours, 
treated with 100µg/ml gentamicin for 1 hour, and then maintained in 20µg/ml 
gentamicin for 24 hours. For the final 6 hours cells were left untreated (ii), or treated 
with DMSO (iii) or 120µM azathioprine (iv). 30 minutes prior to fixation 0.1mM IPTG was 
added, then cells were immunostained for endogenous LC3 (FITC: green) and mounted 
with DAPI Vectashiled (blue). 100 cells were counted per condition. Percentage cells 
with >5 LC3 foci and with intracellular AIEC was quantified from n=3 (+/- SEM) (v) and 
number of intracellular bacteria normalised to number of cells (+/- SEM) (vi) were 
quantified. One-way ANOVA with Tukey’s multiple comparison was performed *p <0.05. 
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6.2.5 Azathioprine dampens pro-inflammatory 
cytokine responses to both AIEC infection and LPS  

The effect of azathioprine treatment on AIEC- or LPS-induced pro-inflammatory cytokine 

expression was assessed in THP-1-derived macrophages using RT-qPCR. Cells were 

either not infected or infected with AIEC, then untreated or treated with DMSO or 

azathioprine for the final 6 hours of the gentamicin survival assay. Alternatively, cells 

were treated appropriately with/without combination with 200ng/ml 

lipopolysaccharide (LPS) for 6 hours (Figure 6.5: iv). Expression of IL-1β (i), IL-6 (ii) and 

TNFα (iii-iv) was significantly upregulated by AIEC infection and LPS treatment and this 

was reduced when cells were treated with azathioprine (Figure 6.5). The dampening of 

TNFα expression was significant when infected cells were treated azathioprine (Figure 

6.5: iii). Azathioprine had no effect on the expression of these cytokines in unstimulated 

cells (Figure 6.5).  

  



 
 

161 

 

Figure 6.5: Azathioprine dampens AIEC- and LPS-induced pro-inflammatory 
cytokine expression 

THP-1-derived macrophages were infected with MOI 10 of AIEC for 3 hours, treated with 
100µg/ml gentamicin for 1 hour, and then maintained in 20µg/ml gentamicin for 24 
hours (i-iii). For the final 6 hours cells were left untreated, or treated with DMSO or 
120µM azathioprine. Cells were also untreated, or treated with DMSO or 120µM 
azathioprine either alone or in combination with 200ng/ml LPS for 6 hours (iv). mRNA 
was collected and converted to cDNA for RT-qPCR analysis of IL-1β (i), IL-6 (ii) and TNF-
α (iii-iv). Differential expression, normalized to untreated, was determined and mean 
fold-change expression is quantified from n=3 (+/- SEM) (i-ii). One-way ANOVA with 
Tukey’s multiple comparison was performed using dCT *p <0.05. Significant difference 
(p <0.001 - p <0.0001) for non-infected vs. infected, and untreated vs. LPS not shown. 

 

6.3 Summary 
Live-cell confocal imaging revealed that the CD-associated AIEC CUICD541-10-mCherry 

strain was able to infect THP-1-derived macrophages. Importantly, AIEC growth curves 
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demonstrated that azathioprine had no direct effect on growth of the bacteria. With this 

established, THP-1-derived macrophages were infected with AIEC, and live-cell imaging 

revealed that azathioprine decreased survival of intracellular bacteria between 1 and 6 

hours of treatment, with an optimum time-point of 4 hours. This was verified using the 

classical gentamicin protection assay at the 6-hour time-point. 

A key finding, demonstrated by LC3 immunostaining, was that azathioprine treatment 

increased clearance of intracellular AIEC in conjunction with enhanced autophagy 

activity. Additionally, azathioprine abrogated pro-inflammatory cytokine responses to 

AIEC infection, as assessed by RT-qPCR for IL-1β, IL-6 and TNFα. Furthermore, 

azathioprine also reduced the expression of TNFα in cells treated with LPS. Overall, 

azathioprine increased clearance of intracellular AIEC, while dampening pro-

inflammatory responses, potentially due to enhanced autophagy activity.  
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7. The IDEA Study - Azathioprine 
modulation of autophagy in paediatric 
IBD patient samples  

7.1 Introduction  
Alterations in IECs and immune cells have been linked to IBD, as detailed in section 1.1.4 

and 1.1.5. Aberrant Paneth cell and goblet cell functions can drive IBD pathogenesis, and 

deficiencies in autophagy are key to these abnormalities (Section 1.3). Innate and 

adaptive immune cells both within the GI environment and systemically have also been 

associated with IBD. Due to autophagy’s integral role in regulation, differentiation, 

development and survival of these cell types, this pathway can either directly or 

indirectly link these populations to IBD pathogenesis (Section 1.3). Furthermore, 

presentation of CD-associated variants in NOD2 and ATG16L1 can drive dysfunction in 

specific GI and systemic cells (Section 1.3). Importantly, enhancing autophagy levels in 

these cell types within the distinct physiological environments could have therapeutic 

benefits in IBD.  

The aims of the IDEA (Inflammatory Bowel Disease Drug Effect on Autophagy) study 

were two-fold; measure autophagy in PBMCs and GI biopsies collected from paediatric 

IBD patients, and assess the effect of ex vivo azathioprine treatment on autophagy levels 

in PBMCs. Immunohistochemistry was used to measure endogenous LC3 in GI biopsies 

and flow cytometry was used to measure endogenous LC3 in PBMCs. Genotyping for 

CD-associated NOD2 and ATG16L1 variants determined the effect of genotype on basal 

autophagy activity and autophagy responses to azathioprine.  

 

7.2 Results 

7.2.1 Paediatric patient genotype: ATG16L1 and 
NOD2 CD-associated variants 

The paediatric patients within the cohort were genotyped for CD-associated ATG16L1 

and NOD2 variants. CD-associated NOD2 variants were present in 1 out of 8 non-IBD 

patients, 2 out of 12 CD patients and 1 out of 7 UC patients (Table 7.1). No patients 
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carried the NOD2 L1007fs variant. One CD patient was homozygous for NOD2 G908R 

SNP and one CD patient was heterozygous for NOD2 R702W (Table 7.1). One non-IBD 

patient and one UC patient were homozygous for the NOD2 R702W SNP (Table 7.1). 

ATG16L1 genotype of one non-IBD patient (AUT007) could not be determined. CD-

associated ATG16L1 T300A SNP was present heterozygously, in 3 out of 7 non-IBD, 6 out 

of 12 CD and 3 out of 7 UC patients (Table 7.1). Homozygous presentation of the risk 

allele was apparent in 3 out of 7 non-IBD, 4 out of 12 CD and 3 out of 7 UC patients 

(Table 7.1). In the overall cohort, 4 patients presented the WT alleles for ATG16L1, 12 

patients were heterozygous for T300A risk allele and 10 patients were homozygous.  
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Table 7.1: IDEA Study Paediatric Patient Genotypes 

DNA was isolated from saliva samples collected from paediatric patients. Taqman 
Genotyping for each sample was undertaken for the following SNPs: ATG16L1 T300A 
(rs2241880), NOD2 L1007f/s (p.Leu1007fsX1008) (rs2066847), NOD2 R702W 
(rs2066844) and NOD2 G908R (rs2066845). This was performed by the Genetics Core at 
Edinburgh Clinical Research Facility, University of Edinburgh.  

 

 

7.2.2 Comparison of autophagy levels in GI biopsies 
from non-IBD and IBD paediatric patients  

Immunohistochemical staining for LC3 in GI biopsies revealed differences in LC3 

intensity between the patient groups (Figure 3.4). Figure 3.4 shows representative 

images of ileum and rectum biopsies from each patient group, with mean LC3 intensity 

in epithelial cells (vii) and mononuclear cells (viii) quantified in ileum/caecum and 

rectum biopsies from all patient groups. In non-IBD patients, high levels of LC3 staining 

were observed in epithelial cells in ileum/caecum biopsies (Figure 3.4: i, vii), which was 



 
 

166 

slightly decreased in UC patients (Figure 3.4: v, vii) and markedly decreased in CD (Figure 

3.4: iii, vii). LC3 staining of mononuclear cells in ileum/caecum biopsies was constant for 

all patient groups (Figure 3.4: viii).  

In rectal biopsies LC3 expression was slightly decreased in epithelial and mononuclear 

cells when compared to ileum/caecum, except for in UC patients where there was no 

difference between biopsy locations (Figure 3.4: i-viii). In rectal biopsies, UC patients 

had the highest levels of LC3 in both epithelial and mononuclear cells compared to other 

patients groups (Figure 3.4: vi-viii), which was slightly decreased in non-IBD patients 

(Figure 3.4: ii, vii-viii) and more substantially decreased in CD (Figure 3.4: iv, vii-viii).  
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Figure 7.1: LC3 immunohistochemistry in paediatric patient GI biopsies 

Biopsies taken from rectum (ii, iv, vi, viii) and either ileum or caecum (i, iii, v, vii) from 
non-IBD control (i-ii), CD (iii-iv) and UC (v-vi) patients were stained by 
immunohistochemistry for LC3 with DAB and haematoxylin counterstain. Two biopsies 
were taken per location. LC3 intensity of either epithelial cells (vii) or mononuclear cells 
(viii) was scored blind by two independent investigators and mean intensity score (+/- 
SEM) for each non-IBD and IBD patient group is shown for ileum/caecum and rectum 
(vii). Biopsies were sectioned at Centre for Comparative Pathology, University of 
Edinburgh, and remaining experimental procedures were performed by Ms. Sadie Kemp 
under the supervision of Ms. Kirsty Hooper. 

 

7.2.3 Effect of azathioprine on PBMC sub-populations 
A flow cytometry PBMC surface marker panel that stratified T cells, NK cells, B cells and 

monocytes was used to explore the effect of azathioprine on patient PBMC sub-

populations. Cells were untreated or treated with azathioprine for 6 hours before 

immunostaining for flow cytometry analysis. Due to very low event count acquired for 

one CD patient (AUT020), this data was excluded from LC3 flow cytometry analysis. 

Percentages of the different PBMC subsets within the overall PBMC populations were 

analysed, and untreated cells were compared between the patient groups. Percentages 

of B cells were significantly increased in PBMCs from CD patients compared to non-IBD 

and UC patients (Figure 3.5A: iii). Comparisons were also made between untreated and 

azathioprine treated cells within each patient group. This revealed a significant 

reduction in B cell populations from CD patients when treated with azathioprine (Figure 

3.5A: iii). All other cell populations were similar between patient groups and unaltered 

by azathioprine treatment (Figure 3.5A).  
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HLA-DR is a MHC II cell surface receptor that is constitutively expressed on B 

lymphocytes, monocytes and macrophages, and signifies late stages of T cell and NK cell 

activation (Bajnok et al., 2017). Initially, percentage of untreated cells that were HLA-

DR+ was compared between the patient groups. HLA-DR expression was significantly 

increased in PBMCs from CD patients compared to non-IBD patient cells and in T cells 

from CD patients compared to cells from non-IBD and UC patients (Figure 3.5B: i-ii). 

There was also a significant increase in percentage of HLA-DR+ NK cells from UC patients 

compared to non-IBD patients (Figure 3.5B: iii). To determine the effects of azathioprine 

treatment on HLA-DR expression, percentage of untreated and azathioprine treated 

cells that were HLA-DR+ was compared within patient groups. There was a significant 

decrease in HLA-DR expression in B cells from non-IBD patients (Figure 3.5B: iv).  
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Figure 7.2: Paediatric patient PBMC populations 

PBMCs isolated from non-IBD control and IBD patients were left untreated or treated 
with 120μM azathioprine for 6 hours. PBMCs were stained with surface markers for 
classification into populations and then washed with 0.05% saponin to remove cytosolic 
LC3. Cells were immunostained for endogenous LC3. Following flow cytometry 
acquisition, PBMC populations were analysed using FACSDiva software. PBMC 
populations are expressed as a mean percentage of PBMCs (+/- SEM) for non-IBD and 
IBD patient groups. One-way ANOVA with Tukey’s multiple comparisons was used to 
compare untreated cells between the patient groups. Paired two-tailed t-test was used 
to compare untreated and azathioprine treated cells within each patient group. *p < 
0.05, **p <0.01, ***p <0.001.  

A: T cells (i), NK cells (ii), B cells (iii) and monocytes (iv) are expressed as a percentage of 
PBMCs. 
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B: Percentage of each PBMC populations positive for expression of HLA-DR is shown for 
PBMCs (i), T cells (ii), NK cells (iii), B cells (iv) and monocytes (v).  

 

7.2.4 Effect of azathioprine on autophagy in PBMCs 
Flow cytometry for endogenous LC3 was coupled with a PBMC surface marker panel to 

analyse autophagy in different PBMC populations. There were no significant differences 

observed in basal levels of autophagy between patient groups when LC3 geometric 

mean of untreated cells was compared between the groups. However, azathioprine 

treatment induced a significant increase in LC3 in PBMC populations from non-IBD, CD 

and UC patients (Figure 7.3A). There was a significant increase in LC3 geometric mean 

in general PBMC populations from non-IBD, CD and UC patients, and in HLA-DR+ PBMCs 

from CD and UC patients, when treated with azathioprine (Figure 7.3A: i-ii). This was 

reflected in NK cells in all patient groups and in T cells from non-IBD patients only (Figure 

7.3A: iii-iv). An azathioprine-induced increase in LC3 geometric mean was observed in B 

cells from non-IBD and CD patients and in monocytes from non-IBD patients and UC 

patients (Figure 7.3A: v-vi). As there was only one patient diagnosed with IBDU, no 

statistical analysis could be undertaken, although a similar azathioprine-induced 

increase in LC3 can be observed for all PBMC populations from the IBDU patient. These 

results confirm that azathioprine robustly induces autophagy in primary PBMCs ex vivo, 

supporting our in vitro findings.  

 

7.2.5 Ex vivo azathioprine treatment preferentially 
increases autophagy in paediatric patient PBMC 
populations with ATG16L1 T300A SNP  

To determine the effect of ATG16L1 genotype (WT, T300A heterozygous and T300A 

homozygous) on azathioprine modulation of autophagosome-bound LC3, data was also 

analysed by sub-categorisation of ATG16L1 genotype in the overall cohort. LC3 

geometric mean of untreated and azathioprine-treated cells was compared within each 

patient genotype group. Azathioprine induced significant increases in LC3 in PBMCs, 

specifically from patients with the CD-associated ATG16L1 T300A SNP (Figure 7.3B). LC3 

geometric mean of untreated cells was compared between ATG16L1 genotype groups. 
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However, there were no significant differences in basal levels of autophagy between 

these groups (Figure 7.3B). 
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Figure 7.3: Paediatric patient PBMC LC3 flow cytometry 

PBMCs isolated from non-IBD and IBD patients were left untreated or treated with 
120μM azathioprine for 6 hours. PBMCs were stained with surface markers for 
classification into populations and then washed with 0.05% saponin to remove cytosolic 
LC3. Cells were immunostained for endogenous LC3 and geometric mean of LC3 
intensity of cells was quantified by flow cytometry and analysed using FACSDiva 
software.  

A: Mean of LC3 geometric mean (+/-SEM) is shown for PBMCs (i) and, then after gating 
for surface markers for PBMC populations, for HLA-DR+ PBMCs (ii), T cells (iii), NK cells 
(iv), B cells (v) and monocytes (vi) from each non-IBD and IBD patient group. One-way 
ANOVA with Tukey’s multiple comparisons was used to compare untreated cells 
between the patient groups. Paired two-tailed t-test was used to compare untreated 
and azathioprine treated cells within each patient group.  *p < 0.05, **p <0.01, ***p 
<0.001. 

B: Mean of LC3 geometric mean (+/-SEM) is shown for PBMCs from each ATG16L1 
genotype patient group. Patients had either wild-type (WT) alleles or were 
heterozygous/homozygous for ATG16L1 T300A SNP. One-way ANOVA with Tukey’s 
multiple comparisons was used to compare untreated cells between genotype groups. 
Paired two-tailed t-test was used to compare untreated and azathioprine treated cells 
within each genotype group *p < 0.05. 

 

7.3 Summary 
In the GI tract we observed decreased LC3 levels in CD patients compared to non-IBD 

patients, but basal levels of autophagy remained constant between patient groups in 

untreated PBMCs. Ex vivo treatment with azathioprine enhanced autophagy activity in 

both innate and adaptive systemic immune cells, and in activated, HLA-DR+, PBMC 
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populations. Interestingly, enhanced autophagy was more prominent in PBMCs derived 

from patients with the ATG16L1 T300A SNP.  

Flow cytometry analysis also showed very similar percentages of PBMC populations in 

the distinct patient disease groups and the percentages of the populations was not 

altered with ex vivo azathioprine treatment. The exception to this was expansion of B 

cells in CD patients, which subsided upon azathioprine treatment. HLA-DR expression 

was altered in CD patient-derived PBMCs and T cells, and in UC patient-derived NK cells, 

compared to non-IBD patient-derived cells. Interestingly, azathioprine treatment 

decreased HLA-DR expression in B cells from non-IBD patients.  
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8  Discussion 

8.1 Summary of results 
By screening a panel of IBD drugs, it was identified that immunosuppressant drug 

azathioprine is a strong inducer of the autophagy pathway. Subsequent analysis 

determined that azathioprine induced autophagy independently of apoptosis, and via 

UPR kinase PERK signalling and inhibition of mTORC1 activity. Azathioprine also 

increased clearance of intracellular AIEC and dampened pro-inflammatory responses to 

infection. Finally, azathioprine increased autophagy activity in PBMCs derived from non-

IBD and IBD paediatric patients, and this response was more pronounced in cells from 

patients harbouring the CD-associated ATG16L1 T300A SNP. By expanding the 

understanding of the mechanism of action of azathioprine its therapeutic use could be 

improved.   

 

8.2 The effect of anti-TNF-α agents on autophagy  
Initial testing of the IBD drug panel in HEK293 cells revealed that infliximab possessed 

modest autophagy modulating activity; however, this could not be confirmed with 

further investigation. Several studies have identified that the cytokine TNF-α harbours 

autophagy-inducing properties (Bell et al., 2013; Cha et al., 2014; Connor et al., 2012; 

Keller et al., 2011), and infliximab has been shown to reactivate Mycobacterium 

tuberculosis infection, at least partially through autophagy impairment (Harris and 

Keane, 2010). However, there is growing evidence that anti-TNF-α agents have the 

ability to enhance autophagy activity. In particular, infliximab has been shown to 

promote development of regulatory macrophage populations, in part through 

autophagy stimulation, and this response in patients was determined by ATG16L1 

genotype (Levin et al., 2016; Vos et al., 2012). Additionally, stimulation of the autophagy 

pathway has been proven to be key for the effectiveness of anti-TNF-α therapy 

(Wildenberg et al., 2013). As macrophages play a crucial role in innate immunity and 

inflammation within the GI tract, further investigation of the effects of anti-TNF-α on 

autophagy in this cell type will be particularly relevant to IBD. Although we could not 

confirm infliximab-induced autophagy in HEK293 cells, it is possible that autophagy 

responses to infliximab would have been more pronounced in macrophages. Also, as 
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infliximab acts via the neutralization of TNF-α, the effects of infliximab may be 

augmented when treating an inflamed area that has elevated TNF-α levels. 

 

8.3  The effect of corticosteroids, aminosalisylates 
and immunomodulators on autophagy 

Autophagy modulation was not observed in HEK293 GFP-LC3 cells treated with 

methylprednisolone, sulfasalazine or methotrexate, despite many studies previously 

exhibiting autophagy-modulating properties in these drug classes, as described in 

section 1.5 and shown in Table 1.3 (Hooper et al., 2017). There is a plethora of evidence 

showing that corticosteroids can modulate autophagy activity with many studies linking 

the mechanism to mTORC1 and apoptosis. miRNA and mRNA profiles in the rectal 

mucosa of UC patients showed differential expression of DDIT4, an inhibitor of mTORC1 

activity, in responders to corticosteroid treatment (Naves et al., 2015). Several other in 

vitro and in vivo studies showed that mTORC1 is inhibited by corticosteroids (Fatkhullina 

et al., 2014; Ozmen et al., 2016; Wang et al., 2015), resulting in enhanced autophagy 

levels (J. Gao et al., 2016; He et al., 2016; Xue et al., 2016). Taken together these studies 

strongly suggest that inhibition of the mTORC1 pathway and subsequent enhancement 

of autophagy play an important role in the response to corticosteroid treatment. This 

opposes our results that showed minimal effect of methylprednisolone on autophagy 

activity. However, most of these aforementioned studies focused on dexamethasone 

and corticosterone that are more commonly used in cancer therapy. 

Methylprednisolone and prednisolone, which are more commonly used for paediatric 

IBD treatment, suppressed autophagy activity in a neuroblastoma cell line (Neuro-2a) 

(W. Gao et al., 2016), in a rat model of osteoporosis (Tang et al., 2018) and in a rat model 

of spinal cord injury (Chen et al., 2012).  This suggests that methylprednisolone and 

prednisolone may have mechanisms of action that differ slightly from the other drugs 

within the corticosteroid drug class, resulting in opposing effects on autophagy. Due to 

low basal levels of autophagy in our cell lines, it may not have been possible to detect 

autophagy suppression. To determine if methylprednisolone does inhibit autophagy 

activity, a future avenue of investigation would be to combine the drug with a known 



 
 

177 

autophagy modulator such as rapamycin or bafilomycin, to allow detection of decreases 

in autophagosome accumulation.  

Sulfasalazine has opposing effects on autophagy, as the drug has been shown to 

decrease autophagy activity in a murine model of cancer cachexia (Chacon-Cabrera et 

al., 2014), but has also enhanced autophagic cell death in an oral squamous cell 

carcinoma (OSCC) cell line (Han et al., 2014). Dosage is difficult to compare between in 

vitro and in vivo studies, however it is possible that the induction of autophagic cell 

death observed by Han et al. (2014) may be representative of a concentration range that 

is cytotoxic. Therefore, the lack of autophagy modulation observed in HEK293 cells could 

be explained by the use of non-toxic concentrations in this cell line.  

In various human cell lines, methotrexate has been shown both to enhance (Varshney 

and Saini, 2018; Xu et al., 2015) and suppress (Tsai et al., 2013) the autophagy pathway. 

The lack of autophagy modulation observed in our cell line may be due to differing 

effects of this immunosuppressant drug in HEK293 cells. It could also be possible that 

methotrexate was suppressing autophagy in our cell line, but this was not detected due 

to low basal levels of autophagy. 

 

8.4  The effect of thiopurines on autophagy and 
apoptosis 

Autophagy induction by thiopurines has previously been shown in a variety of cell types 

including HCT116 and HT29 cells (Chaabane et al., 2016; Oancea, 2016; Zeng et al., 2007; 

Zeng and Kinsella, 2010, 2008), human endometrial cancer cells (HEC59) (Zeng et al., 

2007), HeLa cells,  human hepatocytes cell line (HepG2), murine Ralph and William’s cell 

line (RAW) macrophage-like cells and primary murine fibroblasts (Oancea, 2016). The 

majority of these studies focused solely on 6-TG, which is commonly used for cancer 

therapy. To date, only one study has shown autophagy induction mediated by 

azathioprine, which was in HCT116 and HT29 cells (Chaabane et al., 2016).  

As previous studies focused on human epithelial cell lines, our observation that 

azathioprine induced autophagy in human THP-1-derived macrophages, a cell type 

distinctively relevant in IBD pathogenesis, is both novel and interesting. A recent study 
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investigated the effects of 6-TG on the mobility of DCs, which are another monocyte-

derived cell type implicated in IBD pathogenesis. In DCs derived from individuals 

harbouring the ATG16L1 T300A SNP, defects in migration caused by autophagy 

deficiency could be restored by 6-TG treatment (Wildenberg et al., 2017). Although this 

study did not directly demonstrate autophagy induction by 6-TG, it does suggest that 

thiopurines are capable of inducing autophagy in primary innate immune cells. It would 

be valuable to confirm our THP-1-derived macrophage findings in primary monocyte-

derived macrophages, and determine whether ATG16L1 T300A genotype affects 

responses to azathioprine in this cell type.   

Despite demonstrating that azathioprine strongly induced autophagy, most genes 

encoding autophagy-related proteins were not transcriptionally upregulated in our RT2 

PCR array (Chapter 5). When transcription factor E2F1 binds to the LC3B promoter, 

expression of several autophagy genes have been shown to increase, resulting in 

increased autophagy (Haim et al., 2015; Kovsan et al., 2011). We found that the only 

autophagy genes upregulated by azathioprine were for LC3B and p62. However, it has 

been observed that increases in expression of ATG genes are usually very modest and 

dependent on cell type (Klionsky et al., 2016). Furthermore, autophagy proteins that are 

involved in autophagosome formation and maturation, such as ATG5 and ATG12, are 

not necessarily required for autophagy initiation. Therefore, transcriptional increases in 

these genes are more likely to be required for replenishment of protein when autophagy 

flux is extensive or prolonged (Kouroku et al., 2007; Rouschop et al., 2010; Sandri, 2010). 

This suggests that at the time-points we investigated, the upregulation of autophagy 

genes may not be apparent with azathioprine treatment, as autophagy flux is not 

excessive. 

In some cases, azathioprine downregulated the expression of ATG genes: ATG16L1, 

ATG16L2, ATG4B, ATG4D, ATG9A, ATG9B, LC3A, RGS19 and TMEM74. The 

downregulation of these genes may be part of a mechanism to limit autophagosome 

formation to prevent excessive autophagy in response to stimuli. For instance, the 

NR1D1 and ZKSCAN3 transcription factors are responsible for repressing autophagy 

genes in such a scenario (Chauhan et al., 2013; Klionsky et al., 2016).  

From our array data, we identified that genes involved in lysosome biogenesis were 

downregulated with azathioprine treatment. This would suggest that azathioprine 
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decreases lysosome biogenesis, which may impair the fusion of autophagosomes and 

lysosomes that is necessary for autophagy flux. It was shown in Chapter 3, that 

autophagy flux is enhanced with azathioprine treatment. Therefore, despite impaired 

transcription of some key lysosome proteins, there appears to be sufficient lysosome 

formation to facilitate autophagy flux upon azathioprine treatment. Investigating the 

effect of azathioprine on lysosomal regulators, as well as regulators of autophagy would 

aid the understanding of the influence of this drug on autophagy flux.  

Our array data also indicated that several genes involved in the modulation of apoptosis 

were downregulated with azathioprine treatment. Most of these genes were pro-

apoptotic; however, some of the downregulated genes had anti-apoptotic activity. This 

highlights the complex signalling pathways involved in autophagy and apoptosis 

regulation, as genes with opposing functions can be altered simultaneously. Due to the 

contradictory effects on apoptosis signalling, it is therefore important to highlight the 

overall effect of azathioprine on apoptosis activity. As such, downregulation of mainly 

pro-apoptotic genes by azathioprine supports our observation that azathioprine-

induced autophagy is independent of apoptosis induction (Chapter 4).  

In previous studies thiopurine-induced autophagy was accompanied by apoptosis in 

HCT116 and HT29 cells (Chaabane et al., 2016; Zeng et al., 2007; Zeng and Kinsella, 2010, 

2008) and HEC59 (Zeng et al., 2007). In one study, HCT116 and HT29 cells were treated 

with azathioprine at 50μM or 100μM for 24 hours followed by a 72 hour rest (Chaabane 

et al., 2016). Another study that focused solely on cytotoxicity, observed a decrease in 

the viability of human hepatocytes at 96 hours when treated with 5-25μM azathioprine 

(Petit et al., 2008). We found that the optimum time-point for monitoring autophagy 

induction in our model was 6 hours post-treatment, and prolonging incubation with 

120μM of azathioprine to 24 hours did not induce cell death. Given that previous studies 

have used longer time-points, induction of apoptosis may have occurred if incubation 

with azathioprine were prolonged further. However, pre-mortem autophagy 

(autophagy preceding apoptosis) increases cell surface expression of phosphatidyl-

serine to encourage phagocytic clearance of apoptotic cells (heterophagy) in an attempt 

reduce tissue inflammation (Qu et al., 2007). If azathioprine-induced autophagy were 

preceding apoptosis, then annexin-V staining of phosphatidyl-serine would likely be 

increased, which was not apparent at 6- or 24-hour time-points. This could suggest that 
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the azathioprine-induced autophagy observed in our cell model is mediated via a 

mechanism of action that is distinct from cytotoxicity. 

The proposed mechanism of dual autophagy and apoptosis induction by thiopurines has 

been linked to MMR processing of damaged DNA, which caused mitochondrial PTP and 

subsequently increased ROS production (Chaabane et al., 2016; Zeng et al., 2007; Zeng 

and Kinsella, 2010, 2008). Mitochondrial PTP triggered mitophagy (Chaabane et al., 

2016), and it has been shown that enhanced ROS can influence autophagy by enhancing 

ATG4 activity to promote autophagosome expansion (Scherz-Shouval et al., 2007). 

Enhanced mitophagy activity promoted cell survival in response to thiopurine treatment 

due to removal of damaged mitochondria; however, when ROS production and 

mitochondrial damage were extensive apoptosis was stimulated (Chaabane et al., 2016; 

Zeng and Kinsella, 2010). Both HEK293 cells and THP-1 cells are MMR proficient 

(Cannavo et al., 2005; Hangaishi et al., 1997), therefore would be capable of this 

response.  

Metabolism of azathioprine inherently produces more ROS than 6-MP due to the 

reduction of the imidazole group when azathioprine is converted to 6-MP (Aarbakke et 

al., 1997; A. U. Lee and Farrell, 2001). It was observed in an immortalized human hepatic 

(IHH) cell line and a non-tumour intestinal human colon epithelial cell line (HCEC), that 

only azathioprine, and not 6-TG or 6-MP, increased ROS production (Pelin et al., 2015). 

In this study, the cytotoxic effects of these drugs were not linked to ROS production, but 

anti-proliferative effects of azathioprine were ROS-dependent. It was therefore 

suggested that ROS production in response to thiopurines is less pronounced in non-

tumour cells, as in human colorectal cancer cells (HCT116 and HT29) enhanced ROS 

production was integral to autophagy and apoptosis induction by all three thiopurine 

drugs (Chaabane et al., 2016). A decreased propensity for ROS production or a higher 

tolerance of ROS may account for the lack of cell death accompanying azathioprine-

induced autophagy in HEK293 cells and THP-1-derived macrophages. HEK293 cells are 

transformed healthy human embryonic kidney cells, and THP-1 cells, although 

leukaemia-derived, are a monocyte-like cell line, which produce high levels of 

antioxidants to combat the generation of ROS during respiratory bursts (Pietarinen-

Runtti et al., 2000). Interestingly, 6-MP exposure did not induce autophagy in our own 

assays. Therefore, it can be speculated that azathioprine, but not 6-MP, induces levels 
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of ROS that cross a threshold for autophagy activation, but as HEK293 and THP-1 cells 

are more resistant to ROS, induction of cytotoxicity is not apparent. A key step in 

conclusively determining this would be to monitor ROS levels and antioxidant levels in 

our experimental model. Also, further experimental work is also required to delineate 

the role of the imidazole group and thiopurine metabolism in autophagy modulation. 

When azathioprine is metabolised to 6-MP the imidazole moiety is released in a non-

enzymatic reaction (De MIRANDA et al., 1973). Although the main active metabolites of 

azathioprine and 6-MP are the same, responses to these drugs can be drastically 

different with a higher incidence of intolerance to azathioprine than 6-MP (Fraser and 

Jewell, 2000). In patients intolerant to azathioprine but not 6-MP there were no 

differences in the activity of key enzymes required for thiopurine metabolism, such as 

TPMT (McGovern et al., 2002). Therefore, it was suggested that the non-enzymatic 

reaction cleaving the imidazole moiety might be integral to the differences in the drugs 

mechanism of action, as imidazole derivative can exert independent 

immunomodulatory activity (McGovern et al., 2002). Autophagy was clearly modulated 

by azathioprine and not 6-MP in our study, therefore, it would be interesting to 

determine if this was dependent on imidazole activity. Interestingly, one study found 

that imidazole blocked autophagy flux in HEC-1B cells while inducing apoptosis 

potentially due to its lysosomotrophic properties (Liu et al., 2015). This contradictory 

effect of imidazole in this study to our hypothesis may be dependent on specific 

conditions and cell types; however, this facet of thiopurine metabolism would need to 

be investigated further for clarification.   

It is likely that the increased autophagy activity observed in HEK293 and THP-1-derived 

macrophages could be a pro-survival mechanism, potentially to remove damaged 

mitochondria, in response to the low level ROS production and cellular stress caused by 

azathioprine. However, the autophagy response in HEK293 and THP-1-derived 

macrophages could also be mediated, at least in part, by mechanisms independent of 

cytotoxicity, ROS production and mitochondrial damage, as investigated in Chapter 5. It 

has been suggested that at lower therapeutic concentrations of thiopurines, which are 

typically used when treating IBD compared to their use in cancer therapy, there is less 

cytotoxicity and RAC1-dependent mechanisms that modulate autophagy are more 

prominent (Wildenberg et al., 2017). 
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8.5 Azathioprine mechanism of action in the context 
of autophagy 

The major regulatory hub of autophagy is the mTORC1 pathway, which acts to inhibit 

autophagy activity. We demonstrated in THP-1-derived macrophages that azathioprine 

decreased phosphorylation of rpS6, which indicates inhibition of mTORC1 activity. This 

suggests that azathioprine-induced autophagy is mediated, in part, through mTORC1 

inhibition. Furthermore, in our RT2 PCR array, Akt was downregulated, which is a known 

activator of mTORC1 (Miyazaki et al., 2010; Sancak et al., 2007). Therefore, Akt 

downregulation may contribute to decreased mTORC1 activity. In HCT116 cells, it was 

shown that 6-TG induced both autophagy and apoptosis via positive regulation of 

mTORC1 and S6K1 (Zeng and Kinsella, 2008). As this is contrary to the established role 

of mTORC1 in autophagy regulation, it was suggested that positive regulation of 

mTORC1 increased translation of proteins required for autophagy induction, which 

superseded mTORC1’s negative regulation of autophagy. The opposing mechanism 

observed in our cell model was reflected in human leukaemia T cells, where 6-MP 

decreased ATP production, which activated AMPK to subsequently inhibit mTORC1 

(Fernández-Ramos et al., 2017). This recent study demonstrated that 6-MP can alter 

glycolytic and glutaminolytic fluxes in leukaemia T cells. Interestingly p53 can also 

modulate metabolic checkpoints and cell metabolism (Jones et al., 2005), and previous 

studies have exhibited p53-depedendent autophagy induction with 6-TG treatment 

(Zeng et al., 2007). This could suggest that azathioprine-induced autophagy involves 

both p53 activation and mTORC1 inhibition that intersect at metabolic checkpoints.  

The RT2 PCR array was as a valuable tool to identify autophagy or autophagy-related 

genes that were modulated by azathioprine. One of the genes upregulated by 

azathioprine in THP-1-derived macrophages was CXCR4, a chemokine receptor for 

CXCL12 and MIF. MIF has a role in inflammatory diseases and tumorigenesis (Bernhagen 

et al., 2007; Chen et al., 2015; Lourenco et al., 2015), and can induce autophagy through 

TNF-α and IL-1β induction, ROS generation during inflammation (Chuang et al., 2012) or 

through inhibition of mTORC1 (Hashimoto et al., 2008). Future investigation of the role 

of CXCR4-MIF signalling in azathioprine-induced autophagy is required. It would be 

valuable to determine if inhibition of mTORC1 by azathioprine is, in part, facilitated by 

CXCR4-MIF pathway. Furthermore, as this cytokine is known to mediate macrophage 
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migration, it would be intriguing to determine the effects of azathioprine on this 

process, which is a key requirement for an effective innate immune response.  

The PCR array also identified azathioprine-induced upregulation of UPR kinase PERK, 

which was of particular interest due to the association between the UPR, autophagy and 

IBD (section 1.4.2). Further investigation revealed that azathioprine also increased 

expression of ATF4 and CHOP, which are downstream of PERK; and PDI, which is 

transcriptionally regulated by the IRE1α–XBP1 pathway (Lee et al., 2003; Oslowski and 

Urano, 2011). Azathioprine also induced a slight increase in PDI protein and 

phosphorylation of eIF2α, which is an indicator of PERK activity. It could be speculated 

that azathioprine activated autophagy and the UPR to restore ER homeostasis. However, 

a growing body of work suggests that the UPR is regulated by a diverse range of stimuli 

independent of ER-stress (Rutkowski and Hegde, 2010) and stressors such as nutrient 

deprivation and hypoxia have been shown to activate UPR signalling (Appenzeller-

Herzog and Hall, 2012). In our own study, azathioprine did not appear to increase gene 

or protein expression of the ER chaperone BiP. The upregulation of UPR signalling, but 

does not ER stress chaperones, may therefore suggest that azathioprine can directly 

modulate UPR kinases and not exert its effects via direct induction of ER stress (Lee, 

2005). However, azathioprine induction of ER stress cannot yet be dismissed and may 

have an additive effect on stimulation of the UPR. To conclusively determine the effect 

of azathioprine on ER stress, robust techniques for analysing ER lumen dilation by 

electron microscopy (Oslowski and Urano, 2011) and ER redox reporter assays 

(Merksamer et al., 2008) could be used in future studies.   

It is well known that the UPR can stimulate autophagy activity (Hart et al., 2012; Li et al., 

2008; Ogata et al., 2006; Shimodaira et al., 2014; W. Wang et al., 2016). Furthermore, 

PERK signalling plays an established role in the enhancement of autophagy (Jia et al., 

2015; Kouroku et al., 2007; Moon et al., 2016; Zhao et al., 2013). PERK has also been 

implicated in the maintenance of mitochondrial homeostasis (Rainbolt et al., 2014). One 

example of this is PERK-mediated upregulation of Parkin, which ubiquitinates damaged 

mitochondria to enhance mitophagy (Bouman et al., 2011). As our data showed 

azathioprine-induced upregulation of PERK and its downstream effectors, PERK 

signalling could be a contributing factor in azathioprine-induced autophagy. 

Furthermore, as defective mitophagy has been implicated in the mitochondrial damage 
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that is observed in IBD (Novak and Mollen, 2015), it would be intriguing to determine 

the effects of azathioprine-induced PERK signalling specifically on mitophagy. 

UPR activation has been linked to mTORC1 inhibition and can occur both upstream and 

downstream of mTORC1 (Appenzeller-Herzog and Hall, 2012). Although PERK has been 

shown to inhibit mTORC1 (Avivar-Valderas et al., 2013; Ji et al., 2015; Laplante and 

Sabatini, 2012), there is also evidence that inhibiting mTORC1 can induce PERK 

activation (Freis et al., 2017), with both scenarios resulting in enhanced autophagy 

activity. In our cell model, PERK inhibitor did not affect mTORC1 inhibition by 

azathioprine, but dramatically decreased azathioprine-induced autophagy. This 

demonstrated that azathioprine-induced autophagy is dependent on PERK signalling but 

this is not mediated via downstream inhibition of mTORC1. Two conclusions could be 

drawn from these results: either mTORC1 and PERK signalling mediate azathioprine-

induced autophagy as independent processes, or mTORC1 inhibition is acting upstream 

of PERK activation (Figure 8.1). As PERK inhibition caused such a dramatic decrease in 

azathioprine-induced autophagy, it could be speculated that mTORC1 inhibition is likely 

acting upstream of PERK activation, if it is assumed that both mTORC1 inhibition and 

PERK activation are indeed integral for azathioprine-induced autophagy (Figure 8.1). To 

conclusively determine this, the effects of preventing mTORC1 inhibition would have to 

be explored. 

Interestingly, RAC1, a known target of thiopurines, can activate mTORC1 (Saci et al., 

2011). RAC1 inhibition by thiopurines has been associated with the restoration of 

mobility in autophagy-deficient DCs (Wildenberg et al., 2017). We therefore speculate 

that inhibition of RAC1 may also contribute to mTORC1 inhibition and stimulation of 

autophagy (Figure 8.1). 

Genetic studies have identified ER-stress and UPR genes associated with IBD, most 

notably the transcription factor XBP1 and AGR2, which is a member of the PDI family 

(Kaser et al., 2008; Zheng et al., 2006). Furthermore, the major risk factors for CD, NOD2 

and ATG16L1 functionally intersect with the UPR. One study demonstrated a direct link 

between NOD1/2 and ER stress-induced inflammation (Keestra-Gounder et al., 2016). 

In addition, in Paneth cells of CD patients harbouring an ATG16L1 T300A risk allele, BiP 

and p-eIF2α were highly expressed (Deuring et al., 2014). Elevated ER stress is a common 

outcome when either UPR or autophagy are not functional, especially in cells types such 
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as Paneth cells that naturally secrete large amounts of protein (Adolph et al., 2013; Todd 

et al., 2008). This suggests that the ATG16L1 T300A variant may define a subtype of CD 

characterized by abnormal Paneth cell functions due to deficiency in autophagy and UPR 

(Deuring et al., 2014). These studies highlight the coefficient and compensatory 

relationship between UPR and autophagy, which is contextualised by the CD-associated 

SNPs in ATG16L1 and XBP1. Azathioprine signalling via an mTORC1-PERK pathway could 

have synergistic outcomes, as a well-established function of both mTORC1 inhibition 

and PERK-eIF2 stimulation is to inhibit global protein translation, meaning ER stress is 

relieved by both autophagic degradation of proteins and inhibition of protein synthesis. 

Ultimately, this could have a significant impact in cell types, such as Paneth cells, where 

ER stress can become particularly elevated. The proposed mechanism of action we have 

highlighted (Figure 8.1) not only aids the understanding of how azathioprine can act, but 

also identifies another potential therapeutic effect of the drug.  

 

Figure 8.1: Proposed mechanism of action of azathioprine in the context of 
autophagy  
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In this study it was shown that azathioprine induces autophagy via mTORC1 inhibition 
and PERK activation. As PERK inhibition blocks azathioprine-induced autophagy but not 
inhibition of mTORC1, it can be speculated that mTORC1 is acting upstream of PERK. 
Azathioprine is also a known as an inhibitor of RAC1 (Tiede et al., 2003), which is known 
to activate mTORC1 (Saci et al., 2011). Enhanced autophagy resulted in increased 
clearance of intracellular AIEC and dampened pro-inflammatory cytokine release. 

 

8.6 The effect of azathioprine-induced autophagy 
on clearance of AIEC  

A major factor in CD pathogenesis is microbial dysbiosis, as well as infection with specific 

pathogens, such as AIEC. Autophagy-mediated clearance of pathogens (xenophagy) is 

vital for efficient degradation of intracellular bacteria, and is also necessary for 

controlling pro-inflammatory responses to infection. Importantly, deficient autophagy 

has been implicated in the prolonged survival of intracellular pathogens and excessive 

pro-inflammatory signalling in CD (Cooney et al., 2010; Homer et al., 2010; Lapaquette 

et al., 2010, 2012; Negroni et al., 2016; Sadabad et al., 2015; Wolfkamp et al., 2014). 

Therefore, investigating the role of azathioprine-induced autophagy in bacterial 

handling and pro-inflammatory responses establishes a stronger link to its therapeutic 

benefit in CD.  

We demonstrated that azathioprine enhanced clearance of AIEC in THP-1-derived 

macrophages and attenuated pro-inflammatory responses to infection and LPS 

treatment, and we speculate that this is mediated by autophagy induction (Figure 8.1). 

This hypothesis is reflected in our findings that azathioprine increased autophagy levels 

in conjunction with these effects. To corroborate this, a previous study found that 6-MP 

attenuated LPS-induced TNFα production in microglial cells via inhibition of PI3K-

Akt/mTORC1 pathway (Huang et al., 2016). As we also identified mTORC1 inhibition by 

azathioprine in THP-1-derived macrophages, this advocates a link between autophagy 

induction via mTORC1 inhibition and TNFα downregulation.   

The link between impaired autophagy and excessive pro-inflammatory signalling has 

been extensively investigated. Loss of functional ATG16L1 protein can result in increased 

pro-inflammatory IL-1β and IL-18 production in response to NOD2 ligand in murine 

studies (Lassen et al., 2014; Saitoh et al., 2008) and in human PBMCs (Glubb et al., 2011; 

Plantinga et al., 2011; Salem et al., 2015). It has been suggested that when bound to 
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NOD2, ATG16L1 shifts NOD2 activity towards autophagy, but loss of functional ATG16L1 

skews NOD2 activity towards pro-inflammatory signalling (Plantinga et al., 2011). In our 

findings, attenuation of LPS-induced expression of TNFα in the presence of azathioprine 

demonstrates that azathioprine impairment of pro-inflammatory cytokines is likely not 

simply due to decreases in bacterial load. We would suggest that further 

characterisation of azathioprine-mediated effects on pro-inflammatory signalling at the 

protein and genomic level should therefore be undertaken to fully characterise this 

finding in a therapeutic context. 

To more conclusively determine the functional link between these effects, we elected 

to characterise inhibition of the autophagy pathway through pharmacological 

intervention and siRNA of essential ATG proteins. Knockdown of the essential autophagy 

protein ATG5 with siRNA was attempted, in parallel with the use of the PI3K inhibitor, 

3-MA. Although siRNA knockdown was successful at a transcriptional level, we 

established that autophagy activity was still maintained in our model. Treatment 

regimens utilising 3-MA were also not successful, likely due to the temporal effects of 3-

MA that result in both autophagy enhancing and inhibiting activity of this drug (Y.-T. Wu 

et al., 2010). Therefore, we established that neither technique could be used to 

confidently block autophagy activity in this context. However, in order to clarify the link 

between azathioprine-induced autophagy and bacterial clearance, alternative siRNA 

sequences or siRNA knockdown of other ATG proteins could be considered in a future 

study. 

It has previously been shown that infliximab does not decrease infection of monocyte-

derived macrophages from CD patients (Vazeille et al., 2015), despite evidence that 

blocking TNFα inhibits AIEC replication (Bringer et al., 2012). Therefore, azathioprine 

may be better suited at controlling bacterial replication in macrophages through 

autophagy induction, which in turn controls TNFα release, as opposed to simply 

neutralizing TNFα with infliximab. Furthermore, in a recent study the rapid local 

bacterial conversion of the 6-thioguanine pro-drug to an active metabolite was shown 

to augment autophagy in epithelial cells, resulting in increased intracellular bacterial 

killing, and decreased intestinal inflammation and immune activation in animal colitis 

models (Oancea, 2016). Therefore, the effects of azathioprine in vivo may be more 

pronounced, depending on the local microbial community.  
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Azathioprine-induced autophagy plays a potential role in clearance of intracellular AIEC 

and regulation of pro-inflammatory responses. The combined effects of azathioprine 

therefore represent a promising therapeutic option for treating subsets of patients with 

confirmed AIEC infection and deficiency in autophagy. Further studies are required to 

determine the effects of azathioprine-induced autophagy on clearance of other CD-

associated pathogens within more complex microbial communities.  

 

8.7 The IDEA study  

8.7.1 Autophagy levels in GI biopsies from paediatric 
patients 

PBMC populations and GI biopsies from non-IBD patients or patients with the diagnosis 

of IBD were analysed to determine basal autophagy levels and response to azathioprine 

treatment ex vivo. In GI biopsies from CD and IBDU patients there was a subtle decrease 

in levels of LC3 expression compared to non-IBD controls. This is an interesting 

observation due to the genetic association between autophagy genes particularly in CD 

pathogenesis.  

These results are in contrast with other published studies showing that LC3-II levels were 

increased in protein lysates from colonic mucosal biopsies and unchanged in ileal 

biopsies from paediatric CD and UC patients compared to controls (Negroni et al., 2016). 

In another cohort, LC3 levels were specifically increased in Paneth cells in the duodenum 

and ileum in paediatric CD patients when compared to control, UC and celiac patients 

(Thachil et al., 2012). Finally, in adult patients with ileocecal CD, it has been reported 

that LC3-II levels were increased in protein lysates from terminal ileum biopsies 

compared to controls, whereas in adjacent mesenteric fat tissue autophagy levels were 

decreased compared to controls (Leal et al., 2012). There is clear disparity between the 

findings of these studies, possibly due to sample location, diversity between cohorts and 

varying techniques used such as LC3 western blot and LC3 IHC.  

Analysing autophagy by IHC can be problematic as LC3 foci are difficult to distinguish. 

Some papers have described methods to detect LC3 foci in tissue (Rosenfeldt et al., 

2012), but in our paediatric patient biopsies distinct autophagosomes could not be 

observed. However, previously published studies have quantified endogenous levels of 
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LC3 in tissue to monitor autophagy activity (Hiniker et al., 2013; Thachil et al., 2012). 

This method was used to indicate autophagy levels in our paediatric biopsies, but to 

support this technique, p62 IHC can also be used in future examinations. Additionally, 

in GI biopsies from CD patients, characteristics of pathogenic changes in the tissue are 

not consistent throughout the GI tract. Therefore, autophagy levels may differ 

dependent on whether biopsies are collected from highly localised inflamed or non-

inflamed regions, and to determine this, pathological analysis of tissue would be 

required. These limitations may therefore explain why our results do not align with 

previous studies. However, they do complement several murine studies showing that 

deficient autophagy is a prominent factor in colitis development (Cadwell et al., 2010, 

2008; Murthy et al., 2014; Saitoh et al., 2008; Tsuboi et al., 2015).  

 

8.7.2 Effects of azathioprine on PBMC populations 
and autophagy in paediatric patient PBMCs  

In PBMC populations isolated from paediatric patients, it was possible to compare the 

impact of patient diagnosis and genotype on basal levels of autophagy, but importantly 

we were also able to investigate the effect of ex vivo treatment with azathioprine on 

autophagy responses. Furthermore, flow cytometry with PBMCs allowed analysis of 

percentages of PBMC populations in the distinct patient disease groups and the effect 

of drug treatment on these populations. In CD patients, B cell populations were 

expanded and ex vivo azathioprine treatment decreased this enlarged population. It has 

been previously shown in patients with lupus nephritis and chronic glomerulonephritis 

that azathioprine treatment depletes T-cell and B-cell lymphocyte populations 

(Tareyeva et al., 1980). Slight alterations in B-cell sub-populations can impact 

lymphocyte homeostasis; therefore, it would need to be determined whether 

azathioprine decreases IBD-associated populations of B cells, subsequently dampening 

production of auto-reactive antibodies (Mizoguchi and Bhan, 2012), or whether 

regulatory B cell populations are also decreased (Oka et al., 2014; Zheng et al., 2017). As 

we determined that azathioprine treatment increased autophagy activity in B-cells from 

CD patients (Figure 8.2), it would be interesting to determine if the decrease in CD-

associated B cell expansion due to enhanced autophagy or the suppression of DNA 

replication.  
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HLA-DR is a MHC class II cell surface receptor that is constitutively expressed on B 

lymphocytes, monocytes and macrophages, but signifies late stages of T cell and NK cell 

activation (Bajnok et al., 2017). HLA-class II gene SNPs have been associated with 

susceptibility to IBD (Stokkers et al., 1999). Furthermore, several studies have shown 

increased expression of the activation marker, HLA-DR, in intestinal epithelial cells 

(Horie et al., 1990, Selby et al., 1983, Hirata et al., 1986), lamina propria lymphocytes 

(Hirata et al., 1986) and intestinal macrophages (Selby et al., 1983) from CD patients. In 

the blood, T cells from CD patients are also enriched for HLA-DR (Ebert et al., 2005; 

Funderburg et al., 2013). HLA-DR+ NK cells have increased proliferation activity, 

enhanced cytokine-induced IFN-γ production and increased propensity to degranulate 

(Erokhina et al., 2018). Increases in this population of NK cells have also been associated 

with UC (Ng et al., 2009). In our results, HLA-DR expression profiles mirror these previous 

studies as PBMCs and T cells from CD patients have higher levels of HLA-DR, and NK cells 

from UC patients have increased HLA-DR expression.  

Interestingly, azathioprine treatment decreased HLA-DR expression on B cells from non-

IBD patients. Cross-linking of HLA-DR molecules on the surface of B cells has been shown 

to enhance presentation of antigens to T cells and increase production of IgM antibodies 

(Tabata et al., 2000). Reduced expression of HLA-DR could decrease T cell activation via 

B cell antigen presentation. However, diminution of HLA-DR could also decrease IgM+ B 

cells, which has been associated with IBD (Sabatino et al., 2005). Therefore, the 

implications of decreasing HLA-DR expression on B cells would need to be investigated 

further in the context of CD.  

Although azathioprine-induced reduction in HLA-DR expression was not observed in any 

cell types derived from CD patients, increases in autophagy levels were apparent in 

these activated cells from CD patients.  Azathioprine-induced autophagy in HLA-DR+ 

populations may play a role in dampening the hyper-inflammatory responses in these 

activated populations.  

In PBMCs, our results indicate that there was no difference between patient groups in 

autophagy levels of untreated cells. This was in contrast to the GI biopsy results, which 

showed decreased LC3 expression in CD, highlighting the differences in autophagy 

activity between the GI tract and systemic immune cells. In this context, our findings 
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shed light on the role of autophagy in IBD pathogenesis by emphasizing its distinct 

activity in varying cell types and physiological systems.  

Although deficient autophagy in cells from IBD patients may not be apparent in un-

stimulated PBMCs, treatment with MDP, LPS or infection with CD-associated bacteria 

can highlight the inability of these cells to mount an appropriate xenophagy response to 

resolve inflammation (Cooney et al., 2010; Homer et al., 2010). Therefore, it is of 

particular significance that azathioprine was able to induce increases in 

autophagosome-bound LC3 in PBMCs as this could resolve defects in autophagy 

responses of CD-derived PBMC populations (Figure 8.2).  

In terms of autophagy detection, the technique used for flow cytometric analysis of 

autophagy in PBMCs was able to identify increases in autophagosomes but could not 

distinguish between increased autophagosome formation or decreased degradation 

resulting in autophagosome accumulation. Therefore, the effect of azathioprine on 

autophagy flux in PBMCs was not investigated. However, as autophagy flux was 

observed in HEK293 cells treated with azathioprine, we would propose that the 

mechanism of action is similar in PBMCs and therefore increases in autophagosome 

number are assumed as an indication of enhanced autophagy activity.  

Azathioprine-induced autophagy was observed ex vivo in both innate and adaptive 

systemic immune cells, and in activated, HLA-DR+, PBMC populations (Figure 8.2). 

Deficient autophagy in monocytes, monocyte-derived cells and T cells has been linked 

to IBD pathogenesis, and autophagy is key to homeostasis and development of B and 

NK cells, which have both been linked to IBD when regulation of these populations is 

aberrant (described in section 1.1.5). In a recent study, ex vivo treatment of CD patient-

derived DCs with thiopurines corrected a dysfunctional migration phenotype that was 

associated with deficient autophagy activity (Wildenberg et al., 2017). Autophagy is key 

for monocyte to macrophage differentiation, which prevents monocyte apoptosis 

(Zhang et al., 2012) and differentiation of monocytes to a regulatory phenotype is 

dependent on autophagy (Levin et al., 2016). Therefore, enhancing autophagy activity 

in systemic immune cells could have therapeutic benefit in IBD. To clarify this, it would 

be of interest to determine if enhancing autophagy with azathioprine in circulating 

monocytes could reduce IBD-related defects in intestinal macrophages and DCs post-

differentiation.  
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CD has been associated with imbalances in regulatory and effector T cell sub-

populations, in part attributed to insufficient autophagy (Kabat et al., 2016; Shale et al., 

2013). As azathioprine increased autophagy in T cells in our study (Figure 8.2), it would 

be interesting to determine these effects in T cell sub-populations and whether 

azathioprine-induced autophagy could enhance Treg expansion. However, it is worth 

noting that azathioprine treatment has previously been linked to lymphopenia due to 

enhanced T cell apoptosis (Tiede et al., 2003). As well as decreased numbers of CD4+ T 

cells, azathioprine can cause diminished Treg suppressive activity in systemic lupus 

erythematosus patients (Gómez-Martín et al., 2011). Furthermore, azathioprine 

treatment in CD patients was shown to reduce Treg populations (Saruta et al., 2007). 

This was replicated in a subsequent study with high doses of azathioprine, however, it 

was noted that lower concentrations of azathioprine actually expanded Treg 

populations (Daniel et al., 2016). This reiterates previous suggestions that high 

concentrations of azathioprine primarily cause cytotoxic effects, whereas lower 

concentrations function via distinct pathways that enhance autophagy (Wildenberg et 

al., 2017) and the enhanced autophagy could expand Treg populations. Furthermore, in 

our study, azathioprine treatment did not significantly decrease the T cell population, 

suggesting T cell apoptosis was not induced, but this would need to be confirmed with 

viability assays.  

Autophagy in monocyte-derived DCs has an indirect effect on T cell activation, as it can 

destabilize immunological synapses between DCs and T cells (Wildenberg et al., 2012). 

Interestingly, azathioprine has also been shown to destabilizes APC-T cell synapses via 

RAC1 inhibition (Poppe et al., 2006). As a previous study has linked azathioprine 

inhibition of RAC1 to autophagy induction (Wildenberg et al., 2017), it could be 

speculated that azathioprine-induced autophagy in DCs could destabilize immunological 

synapses via RAC1 inhibition, subsequently decreasing T cell activation.  

In CD and UC there is an increase in CD16+ NK cells with an immature and pro-

inflammatory phenotype (Steel et al., 2010). It has previously been shown that 

azathioprine treatment decreases NK cell activation and IFN-gamma responses, 

preferentially in this CD16+ subpopulation (Steel et al., 2010). Although we did not 

observe decreases in NK cells with azathioprine treatment, there was a consistent 

increase in autophagy in NK cells. As autophagy in NK cells has been associated with 
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their proper development and maturation (S. Wang et al., 2016), it can be suggested 

that azathioprine-induced autophagy could help prevent expansion of immature and 

highly inflammatory NK cells that are associated with IBD.   

Interestingly, the ATG16L1 T300A genotype was associated with significant increases in 

autophagy with azathioprine treatment, whereas increases in autophagy in cells from 

patients with the WT ATG16L1 genotype were not significant. Therefore, ATG16L1 

T300A genotype appears to be associated with a more pronounced autophagy response 

to azathioprine. The T300A SNP may be an indicator of the response of immune cells to 

azathioprine treatment.  
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Figure 8.2 Summary of effect of azathioprine on autophagy activity in PBMC 
populations 

Diagram of systemic immune cells indicating significant azathioprine-induced increases 
in autophagosome-bound LC3 in PBMC populations from different paediatric patient 
groups, as assessed by LC3 flow cytometry.  

 

8.8 Clinical Implications of azathioprine-induced 
autophagy  

A recent study identified an association between ATG16L1 T300A SNP and an enhanced 

therapeutic effect of thiopurines (Wildenberg et al., 2017). Furthermore, this genotype 

has been associated with a subset of patients that exhibit deficiencies in both UPR and 
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autophagy (Deuring et al., 2014). It is plausible that the enhanced therapeutic effect in 

patients with ATG16L1 T300A SNP is, in part, caused by heightened autophagy and UPR 

responses to this IBD drug.  

Genetic polymorphisms of enzymes involved in azathioprine metabolism have been 

implicated in efficacy and toxicity of this drug. A variant in TPMT causes accumulation 

of toxic metabolites, whereas deletion in GST-M1 for the GST enzyme and an ITPA C94A 

polymorphism for the ITPA enzyme causes increased levels of inactive metabolites 

(Stocco et al., 2014). One study identified a 32-gene transcriptomic signature that 

predicts lack of response to thiopurines, which implicated aberrant cell cycle, DNA 

mismatched repair and RAC1-dependent mechanisms in thiopurine resistance 

(Chouchana et al., 2015).  

In the context of targeted therapeutic approaches, the FDA recommends TPMT 

genotyping prior to azathioprine administration, to identify patients that would be at 

risk of severe adverse effects and would benefit from alternative medication or reduced 

doses (Dean, 2012). By additionally genotyping patients for ATG16L1 T300A, this could 

help predict patients that are more likely to clinically respond to the drug. As roughly 

only 30% of CD patients achieve steroid-free remission after 6 months of azathioprine 

treatment (Colombel et al., 2010), predicting response to this drug prior to 

administration would have great clinical benefit. Through this genetic stratification, long 

relapse periods with interchanging therapeutic approaches could be avoided, thus 

accelerating the progression towards remission.  

 Monitoring efficacy and adverse effects of thiopurines at various administered doses 

could discriminate between cytotoxic effects and autophagy modulating capacity of the 

drug. Erythrocyte concentrations of thiopurine metabolites are routinely monitored to 

maintain therapeutic levels and avoid toxicity (Gardiner et al., 2008). Therefore, future 

clinical studies could fine tune appropriate doses of azathioprine by correlating 

erythrocyte concentrations of thiopurine metabolites with autophagy and cytotoxic 

effects. This could differ depending on genotype and therefore, a dose of azathioprine 

that enhances autophagy without eliciting cytotoxic effects may vary depending upon 

CD-associated genotype. It is possible that specific concentration ranges could be set 

based on predicted response to azathioprine treatment.  
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Another important consideration is that our findings were generated from paediatric 

patient samples. It is valuable to specifically investigate paediatric IBD, as there are 

distinct characteristics compared to adult IBD. Certain IBD drugs are more effective in 

paediatric cases (Akobeng and Zachos, 2004; Ruemmele et al., 2009), whereas some 

cause more adverse effects (Kirschner, 1998; Stocco et al., 2015). This could be due to 

discrepancies in aetiology between paediatric and adult IBD, which may suggest that the 

effect of azathioprine on autophagy could differ based on age of diagnosis. Genetic 

susceptibility is more prominent in paediatric IBD and ATG16L1 T300A confers greater 

risk for CD in paediatric patients as opposed to adult patients (Amre et al., 2009; Zhang 

et al., 2009). This could imply that the enhanced azathioprine-induced autophagy 

response in T300A patients could be more prominent in paediatric patients compared 

to adult patients. As the incidence of paediatric IBD is rising (Benchimol et al., 2014; 

Henderson et al., 2012), optimising therapies for these patients is pertinent. However, 

it would be valuable to determine if our results are reflected in an adult cohort. 

Finally, the effect of azathioprine on autophagy could be harnessed in combination 

treatments for IBD. As certain IBD drugs have been shown to harbour autophagy-

inhibiting properties, combination with a drug known to enhance autophagy, such as 

azathioprine may be beneficial. Treatment of refractory CD with mTORC1 inhibitor, 

sirolimus, has previously been demonstrated (Massey et al., 2008; Mutalib et al., 2014), 

however, as azathioprine is an established IBD drug it may be a preferential option to 

enhance autophagy activity. The autophagy-enhancing properties of azathioprine, 

combined with its effects on the UPR, could be enhanced through combination 

treatments and dosage control for its optimal therapeutic use in a more personalised 

approach.  

 

8.9 On-going and Future research  
Due to inherent limitations with in vitro research, alternative ex vivo systems, such as 

intestinal organoid models, can be used as a more physiological representation of the 

GI tract. Pluripotent stem cells from the crypts of the GI tract can be isolated from 

murine models of colitis or surgical resections from IBD patients. Supplying these stem 

cells with specific growth factors can influence differentiation into a 3-dimensional 
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tissue structure with multiple cell types. The effect of azathioprine, and other IBD drugs, 

on autophagy and associated pathways, could be investigated in intestinal organoids. 

This could determine the effects of these drugs in various cell types of the GI tract and 

would factor in altered pharmacokinetics and pharmacodynamics within tissue 

compared to cell lines. However, despite the limitations, in vitro findings remain 

valuable for delineating the signalling pathways and specific effects in a given cell type. 

In the cell line model, many variable factors are absent, allowing further characterisation 

of azathioprine mechanism of action in a controlled environment. These findings can act 

as the foundation for translation of the research into a more complex system.   

A major challenge with in vitro research is translating pharmacological concentrations 

of drugs. A previous study determined that at therapeutic doses of 2-3mg/kg, 

concentrations in the tissue are unlikely to exceed 10μM (Lennard et al., 1997). In 

another study, mice were administered a 6-MP pro-drug, known as cis-AVTP, at 

42.5μmol/kg (roughly 12mg/kg) and it was determined that thiopurine metabolites did 

not exceed 16μM in plasma, RBCs, intestine or liver (Gunnarsdottir and Elfarra, 2003). 

In our study a supra-pharmacological concentration range of azathioprine (60-120μΜ) 

was selected with reference to concentrations used in similar studies of autophagy and 

apoptosis responses to azathioprine treatment in cell lines (Chaabane et al., 2016; Pelin 

et al., 2015; Petit et al., 2008). Despite supra-pharmacological concentrations being 

used, there was absence of cytotoxicity in our cell lines, which suggests that thiopurine 

metabolites did not accumulate to concentrations that were toxic in our cell lines at the 

time-points used. It would therefore be useful to determine the levels of thiopurine 

metabolites in our cell lines treated with 120μM azathioprine as this may reflect the 

concentrations of metabolites in patient and murine tissue. As thiopurine metabolites 

can accumulate to toxic concentrations in patients the absence of toxicity in our cell 

lines suggests the concentrations used were not excessive and findings remain clinically 

relevant. Furthermore, a more recent study determined that patient weight and body 

composition do not correlate with blood levels of 6-TGN or 6-MMP metabolites (Holt et 

al., 2016), which have been shown to reflect the eventual tissue concentrations of 

thiopurine metabolites (Goel et al., 2015).  This study suggested that enzyme levels of 

TPMT are more relevant predictors of appropriate therapeutic dose range (Holt et al., 

2016), which could mean that tissue concentrations of thiopurine metabolites could 
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exceed predicted levels in patients with certain enzyme genotypes.  This advocates for 

exploring higher concentrations of thiopurine drugs in vitro.  

To expand the in vitro findings of this study, a pilot murine study has been undertaken. 

A DSS-induced colitis model was used to assess the effect of therapeutically appropriate 

concentrations of azathioprine on autophagy in the GI tract and in splenic mononuclear 

cells. This provides an opportunity to confidently translate our findings to an in vivo 

system. 

Although a previous study has identified that both 6-MP and azathioprine induce 

autophagy (Chaabane et al., 2016); 6-MP did not modulate autophagy in our 

experimental model. This needs to be confirmed with further investigation using varying 

techniques to assess autophagy, and in different experimental models. If this is 

confirmed, it would then have to be determined if these drugs have distinct mechanisms 

of action and whether this is due to discrepancies in ROS levels or the release of the 

imidazole ring from azathioprine. Thiopurine administration is considered 

interchangeable, as 6-MP is often well tolerated with relatively high efficacy in 

azathioprine-intolerant patients (Domènech et al., 2005; Hindorf et al., 2006; Lees et al., 

2008). However, if there are discrepancies in their mechanism of action, these drugs 

may vary in efficacy in distinct patients groups, based on phenotype or genotype. If this 

were the case, then more caution may be required when selecting a thiopurine drug or 

interchanging the drugs.   

In our study, ex vivo treatment of patient samples allowed the use of a much more 

clinically appropriate cell model. However, due to the small cohort, sample size in each 

patient group was relatively small, which is emphasized when genotype analysis is 

considered.  A larger cohort would allow analysis of autophagy levels in samples from 

patients that were administered drugs in vivo, which would be more relevant than ex 

vivo treatment of samples. Nevertheless, the IDEA study provided valuable data, which 

can aid the understanding of azathioprine mechanism of action and how its use can 

potentially be targeted to patients that would experience greater clinical benefit.  
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8.10  Final Conclusions 
Azathioprine has been identified as a robust inducer of autophagy in cell lines and 

PBMCs from paediatric non-IBD and IBD patients. This activity was independent of 

apoptosis. However, azathioprine-induced autophagy was associated with upregulation 

of the UPR and inhibition of mTORC1. Through pharmacological inhibition of the UPR 

kinase, it was determined that PERK activation was vital for autophagy stimulation. 

Furthermore, by inhibiting PERK, a pathway was delineated, suggesting azathioprine 

inhibition of mTORC1 could be upstream of PERK activation. Azathioprine also enhanced 

clearance of CD-associated AIEC and dampened pro-inflammatory responses, in 

conjunction with autophagy stimulation, which demonstrates the functional effects of 

azathioprine-induced autophagy. 

In patient PBMCs, azathioprine increased autophagy levels in both innate and adaptive 

immune cells. Enhancing autophagy in these cell types could be therapeutically 

beneficial for CD by promoting effective innate immune responses in the GI tract and 

controlling subsequent adaptive immune responses. Furthermore, azathioprine-

induced autophagy was more pronounced in cells from patients with the ATG16L1 

T300A SNP. Therefore, this genotype could predict patients that are more likely to 

therapeutically benefit from azathioprine treatment, thus, contributing to the 

progression towards a more personalised approach to IBD treatment.  
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9. Supplementary Results: 
Optimisation of techniques to monitor 
autophagy  

9.1 Introduction  
The most established marker protein for monitoring autophagy is the mammalian 

homologue of Atg8, LC3. When autophagy is activated the LC3 precursor is converted 

into LC3-I and is then conjugated to phosphatidylethanolamine (PE) to form lipidated 

LC3-II (Klionsky et al., 2016). This allows LC3-II to bind to the isolation membrane to 

promote autophagosome formation.  

Increased levels of LC3-II can be detected by western immunoblot and correlate with 

autophagy induction. LC3-II has a greater molecular weight than LC3-I, however due to 

its hydrophobicity, it migrates faster on a SDS-PAGE. When bound to autophagosome 

membranes, LC3-II forms distinct foci within the cell cytosol, which can be detected by 

anti-LC3 immunofluorescence staining or by utilising a reporter consisting of Green 

Fluorescent Protein (GFP) fused to LC3. LC3-II or GFP-LC3-II foci can be quantified and 

indicate autophagy levels within the cell.  

The Human Embryonic Kidney (HEK293) cell line has been used extensively for 

investigating autophagy (Musiwaro et al., 2013), therefore it was selected as a model 

for the initial stage of the project. In this chapter the autophagy techniques described 

above were optimized in the HEK293 cell line using well-characterised modulators of 

autophagy induction and inhibition including bafilomycin, rapamycin and nutrient 

deprivation. Bafilomycin is a vacuolar proton pump inhibitor that blocks the fusion of 

autophagosomes with lysosomes by increasing the lysosomal pH and altering its 

membrane potential (Yamamoto et al., 1998). This causes accumulation of 

autophagosome-associated LC3. Rapamycin and nutrient deprivation cause an increase 

in autophagosome-associated LC3 due to the induction of autophagy and increased 

autophagosome formation. Rapamycin induces autophagy by inhibiting the regulatory 

mTORC1 pathway and nutrient deprivation induces autophagy through PI3K-dependent 

signalling pathways. 
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Resident macrophages play an important role in maintaining homeostasis in the (GI) 

tract, as they are responsible for effective clearance of pathogens and mounting 

appropriate innate immune responses. The THP-1 monocyte-like cell line can be 

differentiated with PMA into a macrophage like-cell, and was therefore a useful model, 

for GI macrophages. In this chapter the development of techniques to monitor 

endogenous LC3 in THP-1-derived macrophages are also described.  

 

9.2 Results 

9.2.1 Optimisation of the autophagy response: 
Confocal imaging of HEK293 GFP-LC3 cells  

HEK293 cells stably expressing GFP-LC3 were treated with bafilomycin (Baf), rapamycin 

or complete medium without FBS (serum starvation) for 2, 4, 6, 8 and 18 hours before 

confocal microscopy imaging. Autophagy activation was determined as the percentage 

of cells exhibiting >5 GFP-LC3 foci for all time-points (i) and for the 6-hour time-point (ii) 

(Supplementary Figure 9.1E). It can be seen in Supplementary Figure 9.1E that a very 

low percentage of untreated cells, between 6 and 17%, were positive for autophagy 

throughout the time-course. Bafilomycin treatment at 2 hours, had a very modest effect 

on LC3 accumulation as only 22% of cells have >5 foci (Supplementary Figure 9.1E). 

However, after 4 hours of bafilomycin treatment GFP-LC3 accumulation increased 

considerably, varying between 97-99% of cells containing >5 foci for the remainder of 

the time-course (Supplementary Figure 9.1E).  

Treatments of rapamycin and serum starvation showed increases in autophagy levels as 

early as 2 hours, with 59% and 62% autophagy positive cells, respectively 

(Supplementary Figure 9.1E). Serum starvation had a relatively modest effect on 

autophagy induction, throughout the time-course but reaches a maximum level after 6-

hour treatments, with 69% of cells positive for autophagy induction (Supplementary 

Figure 9.1E). Rapamycin had a similar effect to bafilomycin treatment and after 4 hours 

of treatment induced high levels of autophagy, fluctuating between 80% and 100% 

(Supplementary Figure 9.1E). 

From the results in Supplementary Figure 9.1, 6-hour incubations were considered the 

most appropriate for all autophagy controls. From n=3 quantification for the 6-hour 
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time-point (ii), 6% of untreated cells were positive for autophagy, which significantly 

increased to 63%, 66% and 97% for serum starvation, rapamycin and bafilomycin 

treatment, respectively (Supplementary Figure 9.1E).  
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Supplementary Figure 9.1: Confocal Microscopy Imaging of HEK293 GFP-
LC3 cells to Analyse Response to Autophagy Modulating Agents  

HEK293 GFP-LC3 cells were treated with autophagy modulators for 2, 4, 6, 8 and 18 
hours and fixed with 4% paraformaldehyde. GFP-LC3 (FITC: green) and nuclear material, 
stained with DAPI Vectashield (blue) mounting buffer were visualized by confocal 
microscopy. 
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 A: Untreated HEK293 GFP-LC3 cells incubated in DMEM media with 10% FBS (normal 
growth media)  

 B: HEK293 GFP-LC3 cells treated with 160nM Bafilomycin  

 C: HEK293 GFP-LC3 cells treated with 100nM Rapamycin  

 D: HEK293 GFP-LC3 cells incubated in DMEM media without FBS (serum starvation) 

 E: Cells with >5 GFP-LC3 foci were considered positive for autophagy modulation. 30 
cells were counted per field of view and mean percentage of cells with >5 GFP-LC3 foci 
in each field of view are displayed for each time-point (+/- SEM) (i). Mean percentage 
cells with >5 GFP-LC3 foci for 6-hour time-point was calculated from n=3 (+/- SEM) (ii). 
One-way ANOVA with Tukey’s multiple comparison test was performed **p <0.01 (ii). 

 

Methods for nutrient deprivation to induce autophagy can vary in efficacy depending on 

cell line. Therefore, Earle’s Balanced Salts Solution (EBSS) was used instead of serum 

starvation to determine if this was more effective at inducing autophagy. Cells were left 

untreated or incubated with EBSS for 0.5, 1, 2, 4, and 6 hours and GFP-LC3 foci formation 

was imaged by fluorescent microscopy. Quantification revealed 9% of untreated cells 

with >5 GFP-LC3 foci (Supplementary Figure 9.2: xiii). At 0.5 hours percentage of 

autophagy positive cells increased significantly to 58% and this response was sustained 

for the 6 hours of incubation, fluctuating between 68% and 85% (Supplementary Figure 

9.2). 
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Supplementary Figure 9.2: HEK293 GFP-LC3 Cells Treated with EBSS for 
Autophagy Induction via Nutrient Deprivation 

HEK293 GFP-LC3 cells were untreated (i-ii) or treated with EBSS media for nutrient 
deprivation for 0.5, 1, 2, 4 and 6 hours (iii-xii). Cells were fixed with 4% 
paraformaldehyde. GFP-LC3 (FITC: green) and nuclear material, stained with DAPI 
Vectashield (blue) mounting buffer were visualized by confocal microscopy. Cells with 
>5 GFP-LC3 foci were considered positive for autophagy modulation. A mean of 
percentage of total cells with >5 GFP-LC3 foci in each field of view is displayed for each 
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time-point (+/- SEM) (xii). One-way ANOVA with Tukey’s multiple comparison test was 
performed  ***p value <0.001 (xii). 

 

9.2.2 Optimisation of the autophagy response: 
Western Immunoblot of LC3 in PC3 cells 

Western immunoblot for endogenous LC3 was also optimized as a method to identify 

and quantify modulation of autophagy. LC3-I and LC3-II enriched cell fractions from the 

human prostate cancer PC3 cell line were supplied with the NanoTools anti-LC3 

antibody. These cell fractions were used as positive controls to identify the most 

appropriate anti-LC3 antibody and western immunoblot transfer buffer (Supplementary 

Figure 9.3). The anti-LC3 antibodies compared were a mouse monoclonal antibody from 

Nanotools and a rabbit polyclonal antibody from Cell Signalling. A CAPS (3-

(Cyclohexylamino)-1-propanesulfonic acid) transfer buffer was compared to a TRIS (2-

Amino-2-(hydroxymethyl)-1,3-propanediol)-glycine transfer buffer. As LC3-II is the 

active form of LC3, conditions optimal for LC3-II detection rather than LC3-I were 

considered most appropriate.  

Although 20μl of cell lysate was resolved in all the lanes, which is stated by NanoTools 

to be equivalent to approximately 1x105 cells per lane, it appears that there was more 

protein from the LC3-I samples due to the higher density of β-actin observed at 42kDa. 

This may be due higher levels of protein lysate concentrations in the LC3-I controls 

despite the number of cells being equal. Nonetheless, it is clear from the results that the 

NanoTools mouse monoclonal antibody to LC3 combined with the CAPS transfer buffer 

allowed for optimal LC3-II detection at 16 kDa (lane 2 of iii) (Supplementary Figure 9.3). 

This was confirmed by densitometry (vi), showing that LC3-II in lane 2 was 254.7% of β-

actin density with these optimal conditions (iii) compared to 57.5% and 110.2% with Cell 

Signalling antibody (i-ii) and 33.0% with TRIS-glycine buffer with NanoTools anti-LC3 (iv) 

(Supplementary Figure 9.3). Furthermore, it is clear there is more non-specific antibody 

binding when using Cell Signalling antibody to LC3 (i-ii) compared with the NanoTools 

antibody (iii-iv) (Supplementary Figure 9.3). From these results it can be concluded that 

the NanoTools antibody is most appropriate for LC3 western immunoblot. 
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Supplementary Figure 9.3: Optimisation of LC3 Western Immunoblot of 
LC3-I and LC3-II Positive Protein Lysates 

LC3 western immunoblot using either Cell Signalling (i-ii) or Nanotools (iii-iv) anti-LC3 
antibodies (both 1 in 1000). 20μl (approximately 1x105 cells per lane) of LC3-I and LC3-II 
enriched cell fractions from the human prostate cancer PC3 cell line, supplied by 
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NanoTools, were separated on a 15% SDS-page gel. Protein was transferred to the 
nitrocellulose membrane using either CAPS transfer buffer (i and iii) or TRIS transfer 
buffer (ii and iv). ImageJ software was used for western densitometry and the LC3-I and 
LC3-II bands were expressed as a percentage of β-actin density for both LC3 I- (i) and 
LC3 II- (ii) positive protein lysates. 

 

9.2.3 Optimisation of the autophagy response: 
western immunoblot of LC3 in HEK293 cells  

LC3 western immunoblot was further optimised by comparing NanoTools and Cell 

Signalling anti-LC3 antibodies, using cell lysates from HEK293 and HEK293 GFP-LC3 cells 

that were treated with bafilomycin for 6 hours. In response to bafilomycin, a clear 

increase in endogenous LC3-II was detected in both HEK293 and HEK293 GFP-LC3 cell 

lines with both antibodies (Supplementary Figure 9.4). Higher levels of LC3-II were 

detected from HEK293 cells, possibly due to suppression in endogenous LC3 protein 

expression in HEK293 GFP-LC3 cells due to high levels of GFP-LC3 from the transfected 

plasmid (Supplementary Figure 9.4). As there is expression of full length, unprocessed, 

GFP-LC3 protein at 45kDa, the immunoblot could not be re-probed for β-actin and, 

therefore, western densitometry could only be performed for HEK293 in lanes 1 and 2 

(Supplementary Figure 9.4). LC3-II levels, quantified as a percentage of β-actin density, 

were very similar with both antibodies. LC3-II levels for untreated control cells were 

14.1% and 12.2% of β-actin density for Cell Signalling (i) and NanoTools (ii) antibodies, 

respectively (Supplementary Figure 9.4). LC3-II levels increased with bafilomycin 

treatment to 62.1% of β-actin density for both Cell Signalling and NanoTools antibodies 

(Supplementary Figure 9.4). However, there was non-specific binding seen with Cell 

Signalling antibody at around 25 kDa (i), meaning Nanotools antibody was more specific 

to LC3 in HEK293 cell lines. 
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Supplementary Figure 9.4: Comparison of LC3 Antibodies for Western 
immunoblot of HEK293 and HEK293 GFP-LC3 Cells Treated with Bafilomycin 

HEK293 and HEK293 GFP-LC3 cells were either untreated or treated with 160nM 
bafilomycin for 6 hours. Protein lysates were separated on a 15% SDS-page gel and 
proteins were transferred to nitrocellulose membrane using TRIS transfer buffer and 
were immnoblotted using either Cell Signalling (i) or Nanotools (ii) anti-LC3 antibodies 
(both 1 in 1000). ImageJ software was used for western densitometry and LC3-II bands 
were expressed as a percentage of β-actin density for the HEK293 cells only (iii).  

 

HEK293 cells were then treated with bafilomycin, rapamycin and serum starvation for 6 

hours, and CAPS and TRIS-glycine transfer buffer were compared. LC3-II was not 

detected in untreated lysates and bafilomycin treatment resulted in a modest increase 

in LC3-II to 13% and 16% for TRIS (i) and CAPS (ii) buffers, respectively (Supplementary 

Figure 9.5). There were minimal increases in LC3-II with serum starvation and rapamycin 

to between 1% and 5% for both buffers (Supplementary Figure 9.5). Rapamycin and 

serum starvation were combined with bafilomycin to prevent degradation of LC3-II 

(lanes 5 and 6) (Supplementary Figure 9.5). This resulted in considerable increases in 

LC3-II levels with CAPS buffer to 146% and 44% with rapamycin and serum starvation 

treatments combined with bafilomycin, respectively (Supplementary Figure 9.5: ii). This 

increase in LC3-II was not observed using the TRIS-glycine buffer (Supplementary Figure 
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9.5: i). These results confirm that CAPS buffer combined with NanoTools antibody are 

optimal for western immunoblot of LC3 with HEK293 cells. 

 

 

 

Supplementary Figure 9.5: Comparison of Transfer Buffers for LC3 western 
Immunoblot of HEK293 cells 
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HEK293 cells were untreated or treated with 160nM bafilomycin or/and 100nM 
rapamycin, DMEM without FBS (serum starvation) or DMEM without FBS (serum 
starvation) with 160nM bafilomycin for 6 hours. Protein lysates separated on 15% SDS-
page gel and proteins were transferred to nitrocellulose membrane using either CAPS 
(i) or TRIS (ii) transfer buffer and were immunoblotted with Nanotools anti-LC3 antibody 
(1 in 1000).  ImageJ software was used for western densitometry and LC3-II bands were 
expressed as a percentage of β-actin density (iii). 

 

9.2.4 Differentiation of THP-1 monocytes into 
macrophage-like cells 

When THP-1 cells differentiate into macrophages they undergo morphological changes 

from suspension to adherent cells (Supplementary Figure 9.6A). However, to confirm 

differentiation the CD14 surface protein, which is a well-established marker for 

monocyte to macrophage differentiation (Aldo et al., 2013), was analysed by flow 

cytometry. THP-1s were seeded with PMA and incubated for 72 hours, then incubated 

in normal growth media for 24 hours. There was a clear increase in CD14 expression 

when cells were exposed to PMA (Supplementary Figure 9.6B). Although, the level of 

CD14 expression is not dependent on the concentration of PMA used, there were 

pronounced morphological alterations with the higher PMA concentration 

(Supplementary Figure 9.6A). Therefore, it was determined that 10ng/ml of PMA was 

optimal to stimulate THP-1 differentiation into macrophage-like cells. 
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Supplementary Figure 9.6: THP-1 Cell Line Differentiated to Macrophage-
Like Cells 

THP-1 cells were incubated with 5ng/ml or 10ng/ml of PMA for 72 hours. PMA was 
removed by washing in PBS twice and cells were rested in normal growth media for a 
further 24 hours.  

A: Brightfield images showing morphological differences between untreated (i), 5ng/ml 
(ii) or 10ng/ml (ii) PMA. 

B: Cells were detached and stained for CD14 surface marker for flow cytometry 
acquistion. Geometric mean of CD14 intensity of cells was quantified by flow cytometry 
and analysed using FlowJo software. 

 

9.2.5 Endogenous LC3 Immunostaining in THP-1-
derived Macrophages  

THP-1-derived macrophages were left untreated or treated with bafilomycin for 4 hours 

then anti-LC3 antibodies from NanoTools, Cell Signalling and MBL were compared for 
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immunostaining. There was no non-specific secondary antibody binding visible 

(Supplementary Figure 9.7: i, v). NanoTools and Cell Signalling anti-LC3 antibodies were 

unable to detect endogenous LC3 in untreated and bafilomycin-treated THP-1-derived 

macrophages (Supplementary Figure 9.7: iii, iv, vii, viii). However, MBL anti-LC3 detected 

basal levels of LC3 in untreated cells (Figure 3.8: ii). When THP-1-derived macrophages 

were treated with bafilomycin increased expression of LC3 was visible, with distinct LC3 

foci also identified (Supplementary Figure 9.7: vi). Therefore, immunostaining with the 

MBL antibody allows detection of basal autophagy as well as increases in 

autophagosome accumulation due to autophagy modulation. 

 

 

Supplementary Figure 9.7: Comparison of LC3 antibodies for 
immunostaining in THP-1-derived macrophages  

LC3 immunostain using either MBL (ii, vi), Cell Signalling (iii-vii) or Nanotools (iv-viii) anti-
LC3 antibodies (1 in 1000). Cells were untreated (i-v), or treated with 160nM bafilomycin 
for 4 hours (vi-viii). Cells were then immunostained for LC3 (FITC: green) and mounted 
with DAPI Vectashield (blue). Anti-Rb (for MBL and Cell Signalling) (i) and anti-Ms (for 
NanoTools) (v) secondary only staining controls were also included. 
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9.2.6 Endogenous LC3 flow cytometry in THP-1-
derived Macrophages  

To facilitate analysis of autophagosome-bound LC3-II by flow cytometry, unbound 

cytosolic LC3-I can be removed by permeabilisation of the cell membrane with 0.05% 

saponin prior to fixation (Eng et al., 2010). THP-1-derived macrophages were left 

untreated or treated with Baf for 4 hours. After removal of cytosolic LC3, 

immunostaining with a concentration range of MBL anti-LC3 antibody was undertaken. 

There was a notable increase in LC3 geometric mean when cells are treated with 

bafilomycin and with increasing concentrations of antibody (Supplementary Figure 9.8). 

However, the most substantial increase in LC3 staining between untreated and 

bafilomycin was observed with an antibody concentration of 1 in 500 (Supplementary 

Figure 9.8). These optimal conditions for endogenous LC3 flow cytometry allow the 

detection of bafilomycin-induced autophagosome accumulation. 

 

 

Supplementary Figure 9.8: Optimisation of antibody concentration for 
endogenous LC3 Flow cytometry in THP-1-derived macrophages  

Flow cytometry with MBL anti-LC3 antibody, comparing concentrations of 1 in 1000, 1 
in 500 and 1 in 300. THP-1-derived macrophages were untreated or treated with 160nM 
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bafilomycin. After 4-hour incubation, cells were washed with 0.05% saponin and 
immunostained for LC3. Geometric mean of LC3 intensity of cells was quantified by flow 
cytometry and analysed using FlowJo software.  

 

9.3 Summary  
HEK293 cells have a fully functional autophagy pathway and respond as expected to 

autophagy modulating control treatments including bafilomycin, rapamycin and serum 

starvation. When cells were treated with autophagy controls, GFP-LC3 autophagosomes 

accumulated between 2- and 18- hour time points to varying degrees, however optimal 

accumulation was observed at 6 hours. Immunoblotting for LC3 was optimal when using 

a combination of NanoTools antibody and CAPS transfer buffer.  

THP-1 differentiation to macrophage-like cells was successfully induced by PMA. In 

these THP-1-derived macrophages, detection of endogenous LC3 and autophagosome 

accumulation in response to bafilomycin was optimised. Therefore, LC3 immunostaining 

and flow cytometry, using the MBL antibody, can be used as complementary techniques 

to monitor responses to autophagy modulation in this cell line. The optimisation of 

techniques to monitor autophagy was an essential first step to allow subsequent 

investigations with IBD drugs to be carried out with confidence. 
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10. Supplementary Figures 

 

Supplementary Figure 10.1: Azathioprine-Induced Autophagy in THP-1-
derived Macrophages Monitored by LC3 Immunostaining 

THP-1-derived macrophages were untreated (i, iii, v, vii, ix, xi) or treated with 120µM 
azathioprine (ii, iv, vi, viii, x, xii) for 2 (i, ii), 4 (iii, iv), 6 (v, vi), 8(vii, viii), 16 (ix, x) and 24 
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hours (xi, xii) (n=1). Cells were then immunostained for LC3 (green) and mounted with 
DAPI Vectashield (blue).  30 cells were counted in 3 fields of view per treatment and 
percentage cells with >5 GFP-LC3 foci quantified (n=1).  

 

 

Supplementary Figure 10.2: Cleaved-PARP Western Immunoblot to 
Monitor Apoptosis 

HEK293 and HEK293 GFP-LC3 cells were untreated or transfected by electroporation 
with 0.5μg of TNF receptor plasmid and rested for 24 hours. Protein lysates separated 
on 10% SDS-page gel were immunoblotted for PARP and actin (i). ImageJ software was 
used for western densitometry. PARP and cleaved-PARP density normalized to actin was 
quantified for HEK 293 (ii) and HEK 293 GFP-LC3 cells (iii). 
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Supplementary Figure 10.3: LC3 Immunostaining to Monitor Autophagy 
Activity for Human Autophagy Gene Array  

Cells were untreated (i-ii) or treated with 120µM azathioprine (iii-iv) for 6 hours. Cells 
were then immunostained for LC3 (FITC: green) and mounted with DAPI Vectashield 
(blue). 30 cells were counted in 3 fields of view per treatment and percentage cells with 
>5 GFP-LC3 foci were quantified (+/- SEM) (v).  
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Supplementary Figure 10.4: CXCR4 Gene Expression Up-Regulated by 
Azathioprine in THP-1-Derived Macrophages 

mRNA was extracted and converted to cDNA for qPCR analysis using primers for CXCR4. 
Reference genes were RPL13A and actin, and the calibrating sample was untreated cells 
for corresponding time-points. Relative expression was calculated as 2-ddCT and is 
displayed as Log10 of fold-change (2-ddCT).  

A: THP-1-derived macrophages were untreated or treated with DMSO (vehicle control), 
120μM azathioprine or EBSS for nutrient deprivation for 2, 4, 6, 8, 16 and 24 hours. 

B: THP-1-derived macrophages were untreated or treated with DMSO (vehicle control), 
120μM azathioprine or EBSS for nutrient deprivation for 6 hours (n=3). Log10 of fold-
change expression (+/- SEM) is shown. One-way ANOVA with Dunnett’s multiple 
comparison test was performed on dCT values. *p <0.05 compared to untreated. 
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Supplementary Figure 10.5: Optimisation of Brefeldin A treatment as a 
positive control for BiP and PERK qPCR 

THP-1-derived macrophages were untreated or treated with 0.1, 0.5 and 1μg/ml 
brefeldin A for 2, 4 and 6 hours. mRNA was extracted and converted to cDNA for RT-
qPCR analysis using primers for BiP (i) and PERK (ii) (n=1). Reference genes were RPL13A 
and Actin, and the calibrating sample was untreated cells for corresponding time-points. 
Relative expression was calculated and displayed as 2-ddCT (fold-change).  
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Supplementary Figure 10.6: Optimisation of THP-1-derived macrophages 
infection with AIEC  

 THP-1-derived macrophages were infected with MOI 10, 20 and 100 of AIEC for 1, 2 and 
3 hours, then treated with 100µg/ml gentamicin for 1 hour. Cell lysates were prepared, 
spread on LB agar plates and incubated at 37oC overnight. CFU/ml of cell lysates was 
calculated. 
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Supplementary Figure 10.7: Live-cell confocal imaging of THP-1-derived 
macrophages infected with mCherry-AIEC 

THP-1-derived macrophages were infected with MOI 10 of AIEC CUICD541-10-mCherry 
strain for 3 hours. To induce mCherry fluorescence in AIEC, 0.1mM IPTG was added and 
5µM Cell Tracker™ Green BODIPY® was added to visualise cells for the duration of the 
live-cell. Number of intracellular bacteria normalised to number of host cells was 
quantified at 0, 0.5, 1, 2 and 3 hours (vi).  
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