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Abstract

The immune system has long been attributed cognitive capacities such as recogni-
tion of pathogenic agents; memory of previous infections; regulation of a cavalry
of detector and effector cells; and adaptation to a changing environment and
evolving threats. Ostensibly, in preventing disease the immune system must be
capable of discriminating states of pathology in the organism; identifying causal
agents or “pathogens”; and correctly deploying lethal effector mechanisms. What
is more, these behaviours must be learnt insomuch as the paternal genes cannot
encode the pathogenic environment of the child. Insights into the mechanisms
underlying these phenomena are of interest, not only to immunologists, but to
computer scientists pushing the envelope of machine autonomy.

This thesis approaches these phenomena from the perspective that immuno-
logical processes are inherently inferential processes. By considering the immune
system as a statistical decision maker, we attempt to build a bridge between
the traditionally distinct fields of biological modelling and statistical modelling.
Through a mixture of novel theoretical and empirical analysis we assert the effi-
cacy of competitive exclusion as a general principle that benefits both. For the
immunologist, the statistical modelling perspective allows us to better determine
that which is phenomenologically sufficient from the mass of observational data,
providing quantitative insight that may offer relief from existing dichotomies.
For the computer scientist, the biological modelling perspective results in a the-
oretically transparent and empirically effective numerical method that is able
to finesse the trade-off between myopic greediness and intractability in domains
such as sparse approximation, continuous learning and boosting weak heuristics.
Together, we offer this as a modern reformulation of the interface between com-
puter science and immunology, established in the seminal work of Perelson and
collaborators, over 20 years ago.
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Chapter 1

Introduction

There is no perfect model. It is not possible to maximise

simultaneously generality, realism and precision.

R. Levins

1.1 Motivation

The immune system has long been attributed cognitive capacities such as recogni-

tion of pathogenic agents; memory of previous infections; regulation of a cavalry

of detector and effector cells; and adaptation to a changing environment and

evolving threats. These are just analogies, but beg the question about just what

mechanistic descriptions could account for this seemingly cognitive behaviour.

Such descriptions would be insightful, not only to immunologists, but to those

seeking to instill similar autonomy into mechanistic computational systems.

Ostensibly, in preventing disease the immune system must be capable of dis-

criminating states of pathology in the organism; identifying causal agents or

“pathogens”; and correctly deploying lethal effector mechanisms. What is more,

these behaviours must be learnt insomuch as the paternal genes cannot encode

the pathogenic environment of the child. At a very high level, the immune sys-

tem can be observed to be responsible for making a decision between immunity

or tolerance, with associated costs in the wrong choices. A mathematical im-

munologist would attempt to assemble experimentally observed phenomena into

mechanistic models that are capable of statistically reproducing this high-level

behaviour. Our thesis approaches this from the other direction:

Examining the immune response from the perspective of a statistical

decision function offers insights and abstractions that can be exploited

by both computer scientists and immunologists.

1



1.1. Motivation

We intend to portray immunological processes as inherently inferential processes.

We are by no means the first to take such a position, but our approach is different

insomuch as we attempt to bridge the gap between biological modelling and

statistical modelling, by treating both at the lower level of numerical methods.

1.1.1 Modelling, inference and immunity

The problem of induction, reasoning from the particular to the general, is of course

the very stuff of science: extracting natural laws from experimental observations;

reasoning about a population based on a sample of its members; even deriving

sufficient axioms for deductive formalism. The workhorse of such reasoning in

science is modelling and statistical inference. Whether one intends, for example,

a logistic regression model of voter demographics or a differential equation model

of biological phenomenon, the modelling cycle is much the same:

(1) Formulate (or reformulate) the model.

(2) Optimise model parameters to align with environmental observations.

(3) Interpret the model in terms of explanatory or predictive consequences.

Notice that (1) traditionally requires some expertise, but this is by no means

essential. (2) only requires sufficient time and computational power. It is (3)

that is the crux of the scientific method: the attribution of meaning and truth

through falsification. This requires cognition. However, if we are willing to relax

the constraints of science, then iterating (1)-(3) simply describes inferring the

state of nature by whatever means available. This does not require cognition.

If one accepts that the immune system must (in some sense) be inferring the

state of nature in order to produce responses that carry survival advantage, then

it follows that there should be insight to be gained from statistically modelling

the immune system’s environment, rather than mathematically modelling the

immune system per se. Going further, one can constrain the statistical model to

only use components and mechanisms that are qualitatively similar to those that

the immune system has at its disposal. Thus, the boundary between statistical

and biological modelling blurs. To be clear, we do not expect to find that the

immune system embodies a particular method of statistical inference. Rather,

we are interested in what any intersection can tell us about the coarse, robust

aspects of the immune response. What is phenomenologically sufficient and what

is evolutionarily contingent? What is signal and what is noise?

2



1.2. Thesis outline

Phenomenological sufficiency is a rather lofty claim, which we temper with

the epigraph from mathematical ecologist Richard Levins that opens this chapter.

Levins observed [111] that ecologists, like immunologists, tend to favour realism

and precision of their models; whereas physicists, like statisticians and computer

scientists, tend to favour generality and precision. Like Levins, our goal is general-

ity and realism. Generality allows us to move towards determining sufficiency and

contingency in the ever growing mass of disconnected experimental observations

that make up the immunology literature. Realism ensures that any abstraction

retains biological plausibility and provides both a constraint and an inspiration

for developing autonomous inferential processes. Any cost to empirical precision

may be offset by the benefit of increased conceptual precision: something we will

argue is lacking in both theoretical models of the immune response and the com-

putational methods that draw inspiration from them. Clarity here would seem a

necessary first step to attaining empirical precision.

1.2 Thesis outline

The title of this thesis refers to the two fundamental problems that need to be

solved by any autonomous decision maker. To attack any problem one needs

a representation of that problem. The obviousness of this statement belies the

subtle and complex issues that arise in choosing a representation. For statistical

inference, a representation is typically chosen a priori by the statistician, but

truly autonomous systems (including statisticians) must be able to learn their

representation as part of inferring the state of nature. Given a representation,

one requires a mechanism for decision making; for transforming inferred repre-

sentations of the state of nature into actions. Our research questions are thus

• Can knowledge of the requirements for statistical decision making be applied

to develop a plausible model of processes in the immune system?

• If so, does such a perspective offer novel insight that can be exploited by

immunologists, computer scientists or statisticians?

Our general approach is to view both representation and decision-making as

problems of approximation. By first demonstrating that, when suitably formu-

lated, ecological models of interacting “species” are capable of such approxima-

tion, we are then able to elaborate this basic dynamical system with decision

making behaviours that are plausible, both statistically and biologically.

3



1.2. Thesis outline

1.2.1 Chapter summary

In Chapter 2 we review the representational abstractions and mechanistic models

of decision making employed in both contemporary immunology and its applied

computational derivative. We will raise several issues regarding the scope of these

established methods, which in turn will motivate a review in Chapter 3 of repre-

sentation and decision making in classical and modern statistical inference. The

goal here is to develop the necessary first principles from which we can tighten

our problem description, critique existing work and formulate our proposed so-

lution. In Chapter 4 we then wield our immunological and statistical knowledge

to assess existing work on immune-inspired inference algorithms. We demon-

strate both empirically and theoretically that such methods are compromised,

in terms of both computational efficacy and biological plausibility, and provide

some constructive suggestions for improving this established “paradigm”.

We then depart from this paradigm completely. In Chapter 5 we approach the

foundational task of learning a problem representation that is immunologically

plausible and empirically compare our theoretical results with state of the art

algorithms. Armed with a representational abstraction, in Chapter 6 we approach

the second problem of designing a mechanism for decision making. Again, we

empirically assess our theoretical work by comparison with the state of the art.

Chapter 7 concludes with some final thoughts and future research directions.

1.2.2 Contribution

Briefly, the contribution of this thesis can be stated as the development of a

hybrid statistical and biological model of the immune response that

1. Clarifies and strengthens the representational abstractions and models of

decision-making employed by immunologists and computer scientists;

2. Offers a simple formalisation of certain immunological phenomena that are

currently awkward or impossible to cast under the prevailing methods;

3. Establishes a foundation for immune-inspired computing that is grounded

in the underlying numerical methods of statistical and biological modelling,

rather than an analogical “mapping” between domains;

4. Produces a general, adaptive numerical method for approximation that is

demonstrably competitive with the state of the art.

As a computer scientist, any purported contribution to immunology is the

most contentious to defend. As we review later, the interface between computer

4



1.2. Thesis outline

science and immunology is founded on out-dated models and opaque informal

reasoning. In this sense, our contribution is to offer one possible modernisa-

tion of this interface, where the opportunity for contribution between domains is

improved.

1.2.3 Methods

Both the critical and constructive aspects of this thesis are presented as a mixture

of theoretical analysis supported by empirical validation. The formal techniques

employed are quite rudimentary, but draw from independent fields that favour

their own nomenclature and idioms. We try to shield the reader from these

superficial differences as much as possible. We also avoid breaking the flow of text

with laborious digressions; the appendix provides sufficient background material

to prepare or refresh the reader.

Some mention should be made of our “empirical validation”. Clearly, a mod-

elling approach that favours generality and realism over precision may not be

well suited to the type of empirical validation expected by a field immunologist.

Indeed, at the time of writing, sufficient data on the physical structures involved

in our model do not exist to validate against. This is a chicken-egg problem: one

cannot expect such data to be collected without first providing a reason to do so.

In the meantime, we make do with demonstrating a qualitative phenomenologi-

cal likeness when our model is applied to synthetic data with similar statistical

properties to what might be expected from biological data. This qualitative

validation is extended with quantitative comparisons with state of the art algo-

rithms, which provides insight into the efficacy of our model. We will explicitly

assume some relationship between statistical efficacy and immunological efficacy.

Whether computational efficacy can be reconciled too is difficult to say because

the biological and computational substrates are so different. To validate more

than this would require collaboration with immunologists.

5



1.2. Thesis outline

Figure 1.1: An intuitive description of the two fundamental problems in infer-
ence and prediction. Top: Representation of elements of the problem, here rep-
resented as points on the plane a distance metric quantifying some relationship
between them. Bottom: Discrimination between elements by some decision-
making mechanism, here represented as a linear decision boundary discriminating
points on one side (black) from those on the other (white).

6



Chapter 2

The Real and Artificial Immune

Systems

I find it astonishing . . . that this cognitive system has

evolved and functions without assistance from the brain.

N. K. Jerne

In this chapter we introduce the necessary background material to frame our

problem statement and its eventual solution. We review the appropriate theoret-

ical immunology and how that has been translated into the computational do-

main. The crux of our argument will be that neither the theoretical immunology

nor the computational analogue has an appropriate formal structure to elucidate

mechanistic inferential behaviour in the immune system.

2.1 The Real Immune System

Our environment is filled with persistent and novel pathogenic agents with the

capacity to invoke illness, disease and death. Once these pathogens have pene-

trated physical barriers to the body, an elaborate irrigation network drains debris

from the tissues to small glands distributed across the body: the lymph nodes. It

is here that the lion’s share of the immune response is initiated and maintained.

The agents that identify and eradicate pathogenic agents are a subset of the

white blood cells, or leukocytes. Dendritic cells are responsible for sampling de-

bris from the tissues and delivering this “information” to the lymph nodes, where

they present fragments of debris on their surface for later inspection. They are

referred to as antigen presenting cells – “antigen” being a generic term for any

chemical structure capable of invoking an immune response. The cells that anti-

gen are presented to, the lymphocytes, are the central components of the adaptive

7



2.1. The Real Immune System

immune response. A human adult’s immune system contains of the order of 1012

lymphocytes, with a daily turnover of around 106 [94]. The reason for this con-

stant turnover is that each lymphocyte is differentiated by a single cell-surface

receptor configuration. Of the order of 105 identical receptors coat the surface of

the lymphocyte and are able to bind, more or less, to particular antigenic struc-

tures that physico-chemically complement them. It is believed that the variability

of receptor configurations is of the order of 1016. Lymphocytes are generated with

an essentially random receptor configuration by the translation and manipulation

of genes encoding the receptor’s binding regions.

The lymphocytes are further sub-divided into B-cells and a suite of T-cells.

B- and T-cells are distinguished by both the form of their receptors and the roles

each play in the immune response. There are several variants of T-cells, but for

our purposes it is sufficient to note that they are believed to fulfil a co-ordination

role in the immune response. In contrast, activation of B-cells results in the

massive secretion of soluble versions of their receptor, antibodies, that traverse

the vascular system and tissues, binding to antigen and signalling their eventual

destruction. For our purposes, the exact process of antigen destruction is less

relevant than how these basic components, randomly generated in massive quan-

tities, are able to orchestrate an exquisite systemic response; balance aggressive

immunity with destructive auto-immunity; and discriminate between pathogenic

and benign substances that are made from the same raw materials. This problem

is referred to as self/non-self discrimination and is the principle phenomenon to

be explained (or dismissed) by any mechanistic description of immunity [108, 171].

2.1.1 Self/Non-self discrimination

In 1957, Burnet proposed1 the clonal selection theory [25] whereby antigen se-

lect their responding lymphocytes, by virtue of binding between the cell-surface

receptor and antigenic fragments of the pathogen, such as surface proteins. In-

duction of the lymphocyte by receptor binding is a function of binding strength,

which in turn is determined by how well the antigen-receptor complexes comple-

ment each other physio-chemically. The stronger this affinity, the stronger and

more prolonged the induction of the lymphocyte, leading to proliferation into a

clone of lymphocytes with similarly configured receptors. Thus, a repertoire of

individual cells gives way to the growth and decay of clonotypes.

During proliferation, daughter cells undergo somatic hyper-mutation of the

1A similar proposal was presented by Talmage around the same time and both were a cell-
based refinement of the natural selection theory of Jerne. See [25] and references therein.
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2.1. The Real Immune System

receptor encoding genes, resulting in their being low-fidelity copies of the mother.

Thus, daughter cells may also bind the same antigen, but with more or less affinity.

As daughter cells compete for antigenic binding and subsequent proliferation, the

clone evolves towards a high-affinity receptor configuration – a process called

affinity maturation. The overarching result is that randomly generated receptors

evolve into clones of antigen specific detectors under asexual Darwinian selection.

It is no exaggeration to say that clonal selection is the keystone of modern

immunology and it is backed up by considerable experimental evidence [105,

161]. But it does not account for self/non-self discrimination (a term actually

coined by Burnet). Consider that nowhere in the above description is there a

semantic difference between antigen produced by the host and those scavenged

from an invading pathogen. We now briefly review the evolution of self/non-self

discrimination models in the immunology literature (see also Fig. 2.1).

Negative and positive selection

Burnet’s solution to the failure of clonal selection to account for self/non-self

discrimination was to posit a mechanism whereby newly created self-reactive

lymphocytes were eradicated prior to release into the periphery [94] (i.e. negative

selection). Although there is evidence that such processes do occur at some

level, such as the early selection of T-cells in the thymus, this more than smacks

of teleology – the immune system does not react to self because it removes all

components that react to self. There are a number of logistical problems with

this proposal. First, how is “the self” systematically checked for each lymphocyte

prior to release, given the large multitude of differentiated cell types and antigen in

the body – particularly as the self changes during the life history of the individual,

such as puberty and pregnancy [127]. Second, if cell receptors undergo mutation

in the periphery, then what is to stop mutation from a non-self-reactive receptor

into a self-reactive receptor? Even if such checks do occur, it might reasonably

be expected that the periphery would still contain self-reactive lymphocytes. In

fact, experimental evidence shows that self-reactive lymphocytes are abundant in

healthy human and mouse immune systems [28, 108].

Two-signal models

The greater appreciation of the independent roles of T- and B-cells lead to sev-

eral models that make explicit use of this fact. Cohn et al. [22] proposed several

models where antigen binding is only the first stage of B-cell activation; full ac-

tivation requiring a second signal from a helper T-cell that may (or may not,

9
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Figure 2.1: A schematic depiction of the principle models of discrimination in
immunology. Top: Burnet’s negative selection posits self-reactive clonotypes
are eliminated prior to release into the periphery. Middle: The evolution of
two-signal models from Cohn and Langman to Matzinger’s Danger theory. Re-
sponsibility for the self/non-self distinction is delegated further along the chain
of interactions until reaching the innate immune system. Bottom: Carneiro et
al’s cross-regulation model. Rather than posit a “switch” for the immune re-
sponse, they assert that a response is the emergent result of systemic dynamics
between pro-response effector and anti-response regulatory T-cells conjugated on
the surface of antigen presenting cells.
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depending on the model) recognise the same antigen. Here, the self/non-self de-

cision is driven by the presence or absence of helper interactions. The absence

of help was suggested to cause permanent inactivation of a responding clone;

the idea being that initially responding clones, during foetal development, would

tolerise to the relatively self-only environment in the womb due to the absence

of pre-existing help. This is not entirely supported, experimentally. A more

experimentally valid two-signal model was proposed by Lafferty and Cunning-

ham [103] in which T-Helper cells require both an antigen-binding signal and

an antigen-agnostic co-stimulation signal from the antigen presenting cell. Such

co-stimulation has been experimentally verified. Again, the idea is that the lack

of such co-stimulation inactivates T-Helper cells, curtailing the remaining chain

of events that would ultimately result in an immune response. The problem here

is that antigen presenting cells present both self and nonself antigen, so the dis-

tinction problem essentially remains unanswered – only delegated to a different

cell type. Recent attempts to resolve this conundrum assert the fundamental role

of the innate, evolutionarily ancient, leukocyte components for co-ordinating the

vertebrate adaptive response [106, 93, 107].

Janeway and Medzhitov [133] proposed that recognition of so-called Pathogen

Associated Molecular Patterns by germline-encoded receptors on antigen present-

ing cells would provide the necessary second signal that had the correct self/non-

self semantics. That is, the second signal is an assertion that evolutionarily

conserved signatures of pathogenicity have also been observed while presenting.

This somewhat implies that pathogens enter the body pre-labelled as toxic. Like

negative selection, one might expect this to be true in certain cases, but given

that pathogens evolve significantly faster than the host germline, PAMPs would

not seem to provide a definitive resolution of the self/non-self problem. For ex-

ample, it is well known that the immune system is able to respond to synthetic,

man-made antigen that could never exist in nature [164, 99].

In contrast, Matzinger [124, 125, 126, 127] proposed a variant on this idea

where the second signal does not come from signatures on the pathogen them-

selves, but from so-called Danger Signals, such as heat-shock proteins, that are

produced by somatic cells undergoing unnatural stress or death. In this case, the

second signal is that cell death or stress was also occurring during collection of

antigenic debris in the tissues. This is a very elegant explanation: it only de-

pends on the pathogenic effect of pathogen, rather than their physical form; and

such somatic signals will evolve at the same rate as the host species germline.

Rather than self/non-self discrimination, there is only danger/non-danger which,

Matzinger argues [6], is not simply a relabelling of terms. We accept this distinc-

11



2.1. The Real Immune System

tion, but the notion that the evolutionarily ancient innate immune system drives

the adaptive immune response is not entirely satisfactory. If the innate immune

system is capable of self/non-self discrimination, then what is the evolutionary

advantage of the vertebrate adaptive immune system?

Systemic models

A lineage of work in immunology has shunned the reductionist idea that a single

“switch” for immunity can even be located. Rather they take a more systemic

view that the immunological decision emerges as a result of the dynamical inter-

actions of self-reactive and nonself-reactive lymphocytes.

Parts of this work can trace its history back to N. K. Jerne’s seminal Idiotypic

network theory [98]. Briefly: Jerne observed that given the fact that B-cell sur-

face receptors are naturally the correct size to bind other cell-surface receptors,

the lymphocyte repertoire could form a network of interacting clonotypes. He

proposed that this network would be self-regulating under a combination of stim-

ulatory and suppressive interactions. Such inter-cell interactions have since been

experimentally verified, but the grand self-regulating network is generally con-

sidered implausible. Jerne’s ideas were developed and formalised mathematically

by other giants of theoretical immunology, notably Antonio Coutinho, leading to

the so-called “second-generation immune networks” [179, 57]. These incorporated

the fundamental role of clonal selection in the immune response, but gave respon-

sibility for tolerance to a network of self-reactive clones which did not react to

self by virtue of being caught up in the dynamics of network interactions. With

characteristic rhetorical flourish, Varela described this network as the immune

system’s “internal image” of the self; referring to this paradigm as self-assertion

[165], because the network of self-reactive clones dominated the capacity for the

immune system to invoke its default response behaviour. In 1996, Jorge Carneiro

elucidated mathematically a mechanism that would allow such self-assertion dy-

namics to occur [28]. This model also relaxed the reliance on the implausible

idiotypic network, although it was still firmly rooted in B-cell interactions. With

the developing understanding of T-cell phenotypes it was a small step to recognise

that Carneiro’s basic mechanism was in fact more plausible when interpreted as a

model of T-cell interactions with antigen presenting cells. This led to the so-called

cross-regulation model [110, 27, 31], which retains much of the systemic spirit of

self-assertion, but with a more concise and biologically plausible interpretation.

This work is backed up with experimental evidence that dominant tolerance –

the induction of tolerance by transferring T-cells from tolerant donors – does in
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fact occur [104, 45]. That is, immunological decisions can be reversed. The fun-

damental aspect of this model to appreciate here is that the “switch” between

tolerance and immunity is now due to a bistable dynamical regime between T-

regulatory and T-effector cells bound to the surface of antigen presenting cells.

Leon et al. argue [110] that only bistability can account for dominant tolerance,

which is anomalous under classical models.

2.1.2 The shape-space abstraction

We have discussed the evolution of theoretical models of mechanisms for self/non-

self discrimination. Although this is a central driving force behind any immuno-

logical model, if one is to move beyond qualitative conceptual models, then one

must formally quantify receptor-antigen interactions. That is, one has to commit

to a representation.

Shape-space

Perelson and Oster introduced the shape-space as a simple quantitative model

of the immune repertoire [147]. In shape-space, receptors and their ligands are

represented as points in an abstract “binding parameter” space, with an isotropic

recognition volume surrounding each point to account for imperfect matching.

Ligands and receptors that have intersecting volumes are said to have affinity –

i.e. binding strength is a function of distance in “generalised shape”.

The original purpose was to answer questions such as “given m receptors,

what is the probability that a random antigen is recognised?” [148]. Assuming a

recognition region of volume vi and the total volume of shape-space V , then the

probability p that an antigen is recognised by a single clonotype is p = vi

V
. It fol-

lows that the probability that an antigen is not recognised by one of m receptors

is P = (1 − p)m. Experimental results estimate that p ≈ 10−5 of the immune

repertoire respond to any given ligand, making P well approximated by a Pois-

son distribution e−mp. This suggests that a value of m = 106 would be sufficient

to ensure negligible chance of any antigen escaping detection. Such a repertoire

would be “complete”. This value for m is in agreement with experimental estima-

tion of the smallest known immune system which, Perelson suggests, is because

a smaller immune system would offer little protective advantage, e.g. if m = 105,

then P = e−1 ≈ 0.37. A key point to appreciate here is that this model is a

heuristic that does not attempt to define the parameters of the space – it only

assumes that they could be defined in principle. In particular, p is based on an

experimental measurement, not a geometric derivation based on volume ratios.
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Perelson and Oster, followed by many others, then went on to provide explicit

representations of shape-space, e.g. n-bit binary representations, thus making

shape-space an n-dimensional space with 2n possible shapes. With an explicit rep-

resentation and affinity function it became possible to computationally simulate

an immune repertoire and quantify (in some more-or-less biologically plausible

sense) the efficacy of particular models. Although biologically simplistic, for theo-

retical immunologists the shape-space has a certain heuristic value in quantifying

gross properties of the immune repertoire, away from the complex bio-chemical

process of protein binding. This seminal work also created the common ground

for computer scientists and immunologists. We now present the main criticisms

of shape space that influence this thesis.

Theoretical arguments against shape-space

The issues with shape-space as a theoretical abstraction were most notably as-

serted by Carneiro and Stewart [32]. Their argument is straight-forward: for a

theoretical immunologist, deriving an affinity function and its dimensions from

the limited experimental knowledge of known binding relationships is clearly ill-

posed and data-dependent. Alternately, experimentally validating the parame-

ters of the real shape-space is a “remote goal”, which would likely result in a

“highly complex, irregular and discontinuous” affinity function. Carneiro and

Stewart criticise theoreticians’ tendency to not distinguish clearly between these

two, quite different, interpretations of shape-space, and thus, avoid the obvious

difficulties with either. Furthermore, Carneiro and Stewart’s experimental work

suggests that shape complementarity is a necessary, but not sufficient, condition

for recognition – there is a “relational aspect”, not accounted for by the classi-

cal lock-and-key metaphor. Carneiro suggests that immunological models should

be robust to the exact nature of the affinity relationship. In his own work, this

took the form of binding occurring probabilistically without regard for position in

shape-space. Receptors bind to multiple antigen that have no geometric relation-

ship to each other. As such, the resulting model’s dynamics are not bound to, or

a side-effect of, any topological properties of the space it operates in [29, 30, 109].

Experimental arguments against shape-space

More recently, experimental evidence has been growing against the validity of

shape-space as an abstraction. It has been increasingly recognised that lympho-

cyte receptors can bind many distinct ligands (poly-recognition) and, similarly,

a ligand can select many clonotype “specificities” (poly-clonality). The general
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term for this phenomenon is degeneracy [189, 134] and there are several authors,

in immunology and biology in general, who embrace degeneracy as an important

feature of biological systems [62, 61, 174, 135, 187]. For immunology in particular,

the most pressing question is how the high-level of specificity in immune responses

emerges from these degenerate interactions [89, 188]. It logically follows that if re-

ceptors can bind many distinct ligands, then the notion of an isotropic recognition

volume and affinity as metric distance is inappropriate. Indeed, the shape-free

probabilistic binding model of Carneiro becomes a more accurate representation

of the actual biology, rather than just good modelling practice.

There is some ambiguity in the literature as to what the shape-space repre-

sents. It is used to abstract both T-cell and B-cell binding models, but a crucial

biological detail is that both have morphologically different receptors and bind to

entirely different structures during the course of a response. At best, one could

argue that T- and B-cells just “live in” different shape spaces. But how different?

For B-cells, it is important to realise that a binding site (epitope) is not a

predefined object. It is an arbitrary discontinuous region on the three-dimensional

surface of a molecule. It comes into being as an epitope by virtue of binding to

a receptor, that is, in the context of a particular interaction [85]. The whole

surface may have, so to speak, “epitope potential”. To appreciate what makes

up the binding site, it is useful to elaborate on the basics of protein structure. A

protein is a long chain of shorter structures, called peptides, which are themselves

chains of amino acids. Laid out as a long chain, this is referred to as the protein’s

primary structure. During synthesis, the protein undergoes a complex folding

process which, ultimately, results in a three-dimensional tertiary structure where

some peptides are buried inside the structure and others are brought together on

the surface (see Fig. 2.2). The significance of this is that B- and T-cells sense

different aspects of the protein [94, Sect. 3.11]:

Antigen recognition by T-cell receptors clearly differs from recog-

nition by B-cell receptors and antibodies. Antigen recognition by B

cells involves direct binding of immunoglobulin to the intact antigen

and [...] antibodies typically bind to the surface of protein antigens,

contacting amino acids that are discontinuous in the primary struc-

ture but are brought together in the folded protein. T cells, on the

other hand, were found to respond to short contiguous amino acid

sequences in proteins. These sequences were often buried within the

native structure of the protein and thus could not be recognised directly

by T-cell receptors unless some unfolding of the protein antigen and

its ‘processing’ into peptide fragments had occurred.
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Figure 2.2: A discontinuous epitope on a protein consists of residues that are
distant in the primary sequence, but close when the protein is folded into its
native three-dimensional structure. All of the residues are required for recognition
by the antibody and thus are not epitopes on their own. Approximately 90% of
ligands are discontinuous. Reproduced, in part, with permission from [85].

Philosophical arguments against shape-space

With self/non-self discrimination and cognitive analogies abound, it is little won-

der that some immunologists take occasion to ponder the more philosophical as-

pects of their muse [171, 170, 91, 40, 41]. Here we concentrate on two influential

propositions that are not so much philosophical arguments against shape-space,

so much as compelling proposals that are unrealisable under this abstraction.

Francisco Varela was an influential cyberneticist, cognitive scientist and the-

oretical immunologist. His ideas were largely driven by his phenomenological

philosophical leanings and his early work with Maturana on the so-called autopoi-

etic theory of the biology of cognition and behaviour [123]. Varela often referred

to the immune system as a “cognitive network” [178] much like the neural sys-

tem – though an order of magnitude larger and inherently mobile. A recurring

theme in his theoretical immunology was that the immune system constructs its

own internal representation of “the self”. We find this argument compelling, less

for philosophical reasons, but because this is a fundamental task for autonomous

inference. Irun Cohen is an experimental and theoretical immunologist who has

expressed several radical ideas that have generated interest in the computational

community [44, 42]. The relation is quite natural: Cohen commonly refers to the

immune system as a “computational system” (and also as a cognitive system,

though this interpretation of cognition seems weaker than Varela’s). Essentially,

he sees the immune system as performing a non-classical distributed computation

on the state of the body, with feedback mechanisms that govern the computa-

tion’s evolution [43, 92, 39]. The purpose of this computation is maintenance –

inflammation, healing, garbage collection, and so on – with the immune response

reduced to an extremal form of this maintenance. One of his most influential
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ideas is co-respondence – how coherent system-wide responses emerge from the

local interactions of diverse, contradictory components with limited sensing and

effecting capabilities [42]. Note that neither author provides explicit mechanistic

explanations of these mysterious phenomena. Later we will offer precise quanti-

tative interpretations of these philosophical proposals.

Our assertion that shape-space cannot realise these ideas will become formally

clearer in later chapters. For now, an intuitive argument may suffice. Conceptu-

ally, the shape-space portrays the immune repertoire as a collection of abstract

points spread out in an abstract space, with binding affinity a function of dis-

tance or pattern-matching. Observe that, in order to construct a representation

one needs building blocks, not point-wise comparisons between atomic entities.

Observe also that, by definition, locality in shape-space is anathema to degen-

erate, contradictory, systemic interactions. Any response from such a localised

repertoire of receptors implies a decision function biased by the rule that “like

begets like” – that nearby points have similar self-ness or nonself-ness. Given

that both self and non-self must prefer proteomic forms that are functional over

forms that are “close”, such an inductive bias would seem physiologically limited.

Computational arguments against shape-space

The implicit assumption behind computational models in immunology is that

“shape” can be abstracted from its physico-chemical reality without affecting the

logical behaviour of the model, i.e. self/nonself discrimination. First, we make

a general observation about n-dimensional spaces. In an n-dimensional shape-

space, the search space for the immune repertoire is of the order O(cn) where c is

a constant. Such exponential scaling is computationally abhorrent for even small

c and moderately sized n. Let us assume, like Perelson and Oster, that p = vi

V

represents the probability that a receptor binds antigen. But now, let us also

introduce an explicit representation. Without loss of generality, we model both

vi and V as cuboid regions with sides of length l and L, respectively2. That is,

vi = ln and V = Ln and thus p = ( l
L

)n, which clearly shrinks exponentially in n.

To provide a sufficient covering of the space for repertoire “completeness” requires

of the order (L
l
)n receptors. If one is to avoid the necessary exponential increase

in repertoire size, the only alternative is to increase the volume of recognition by

increasing l; that is, to decrease receptor specificity. Let us assume it desirable

to retain a fixed value of p, such as that derived experimentally by Perelson. For

2In fact, extending this analysis to spherical volumes produces even worse results. A well
known result is that the volume of a hyper-sphere approaches zero as dimensionality increases!
See e.g. [3, 58, 90, 16, 167] regarding the break down of geometric intuition in high-dimensions.
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fixed p, as n is increased l
L

= p
1
n → 1 very rapidly. In other words, the necessary

length of l to retain a given value of p rapidly approaches L; that is, each receptor

can bind to almost all of the space.

We will revisit this phenomenon of dimensionality in Chapter 3. The point

we wish to make here is that the dimensionality of the shape-space cannot be

abstracted away. The same logical functionality may not be retained in arbitrary

large shape-spaces. Some authors (e.g. [32, 163]) have speculated that the “true”

dimensions of shape-space may be anywhere from 5-20 dimensions. Taking Perel-

son’s value of p = 10−5, Fig. 2.3 shows that values between 5 and 20 dimensions

would still entail very low specificity to attain completeness.

2.2 The Artificial Immune System

On the back of our immunology review, it will be convenient to introduce the

foundations of immune-inspired computing. We will provide deeper theoretical

and experimental analysis of immune-inspired algorithms in Chapter 4.

2.2.1 From in vivo to in silico

As we have previously noted, once receptors and antigen are given an explicit

form, nomatter how abstract, then large-scale computational simulation becomes

a viable alternative to solving minimal mathematical models of elements that

“bind” in some unspecified way. The seminal work at the interface of comput-

ing and immunology was carried out by several notable researchers: Forrest [70]

explored the similarity between clonal selection and natural selection using the

methods of evolutionary computing; Farmer, Packard and Perelson [66] followed

a similar line of research, noting similarities between aspects of immunological

processes and Holland’s Learning Classifier Systems from Operations Research;

Varela and Bersini [15, 14, 13] took a more cybernetic approach, applying im-

munological ideas to reinforcement learning and control problems.

Forrest et al’s early work, together with Perelson’s shape-space abstraction,

proved to be particularly influential. Their position that “the genetic algorithm

without cross-over is a reasonable model of clonal selection” produced a dogma

that largely persists to this day. The intuitive mapping from the immunology to

population-based algorithms in metric-space was sufficiently compelling: Cutello

and Nicosia [33] developed the pattern recognition aspect of Forrest et al’s work;

soon after, de Castro and Von Zuben proposed their seminal data-analysis and

optimisation algorithm [54]. But it is in the black-box stochastic optimisation
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Figure 2.3: The effect of shape-space dimensionality on the probability of antigen
recognition and the width of recognition volumes. Curves represent 2, 3, 5, 10, 20
and 100 dimensions, with 5 and 20 highlighted as speculated plausible values. The
coverage of each dimension l for a given recognition volume rapidly approaches
the width of the space L. On the right we zoom in on the range of Perelson’s
experimentally derived value p = 10−5, which still entails low receptor specificity
to attain repertoire completeness.
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setting where this work has particularly flourished [52, 47, 48, 46]. Recently,

there have been some promising theoretical developments in this programme (see

e.g. [49, 173]), but ultimately, it is difficult to assert that this is not just a

variation on the well established theme of evolutionary computing [141].

2.2.2 Constructing artificial immune systems

Today, this line of research tends to come under the banner of Artificial Immune

Systems, a term established by Timmis and de Castro in their comprehensive

review and unification of disparate work preceding the turn of the millennium

[55]. In addition to bolstering the field, the textbook of Timmis and de Castro

prescribed a framework for producing and communicating such artificial immune

systems, which has been adopted widely in the field. They propose three sufficient

components that make up such a system:

(1) A representation of immunological elements, e.g. receptors and antigen

(2) A set of functions that quantify element interactions, e.g. affinity

(3) A set of algorithms derived from theoretical models and observed immuno-

logical phenomena, e.g. clonal selection, danger theory etc.

This framework is really too general to defend or criticise. But what can be

criticised is how computer scientists have chosen to interpret it.

Deconstructing artificial immune systems

In Timmis and de Castro’s framework, notice that (1) and (2) will always be

intimately related, simply because quantifiable functions must operate on repre-

sentations. Through a mixture of pragmatism, familiarity and ostensible validity,

“shape-space” has become synonymous with the metric spaces Rn, Zn, and {0, 1}n

and “affinity” synonymous with their accompanying metrics, such as Hamming

or Euclidean distance. It then follows that the responsibility for novel computa-

tional methods lies entirely in (3), simply because computational problems are

traditionally cast in these same metric spaces. There are two points of contention

lurking here: (i) that metric shape-space can sufficiently represent immunological

phenomena; and (ii) that shape can be generalised to the high-dimensional spaces

of multivariate data without compromising the functionality of such phenomena.

We have already argued that both are wrong, leading to a contradiction in the

reliance on (3) for computational novelty and efficacy.
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2.3 Conclusion

We have described the key decision mechanisms and representational abstraction

employed by immunologists and exploited by computer scientists. At this stage,

it is difficult to rigorously assess the different self/non-self discrimination mech-

anisms, though we have been able to build up a quite cogent argument against

the shape-space as a representational abstraction. But metric space is a powerful

conceptual tool, not to be given up lightly. Resolving this impedance mismatch

is a central aim of Chapter 5. In the next chapter we introduce the statistical ap-

proach to representation and decision making. This will allow us to better assess

the theoretical immunology, critique existing work in immune-inspired inference,

and motivate our contribution to the state of the art.
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Chapter 3

Statistical Inference

Be approximately right, rather than exactly wrong.

John Tukey

In our consideration of mechanistic descriptions for the immune system’s seem-

ing inferential and predictive behaviour, we now turn our attention to the study

of mechanistic inference and decision making: statistics. Here we intend to go

beyond the superficial decision function analogy and expose the internal workings

of these mechanisms. This numerical perspective will provide the foundation for

assessing existing work and proposing an alternative.

3.1 How to make an optimal decision

Statistical decision theory provides the foundational framework that unifies much

of the field of statistics [97, 190]. Much of the methodological fragmentation and

controversy that actually makes up the field of statistics can be seen as different

responses to the utter intractability of decision theory; so it is a good place to

start. Decision theoretic problems are specified by way of four spaces,

1. The possible “states of nature” θ ∈ Θ

2. The possible experimental outcomes or “observations”, x ∈ X

3. The possible “actions” to be taken ω ∈ Ω

4. The possible functions f ∈ F for choosing actions f : X → Ω

and an additional loss function ` for quantifying the cost in taking action f(x)

when the state of nature was θ, i.e. ` : Ω×Θ→ R. In the case of estimation and

prediction, the case we will be considering, our “decisions” are about the state of
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nature, and thus Ω = Θ and ω = θ̂, our estimate of θ. This reflects the fact that

we are interested in how the immune system is able to infer the self/nonself-ness

of a particular pathogen, i.e. Θ = {self , nonself } and X is the space of ligands.

An inconvenient practicality is that the states of nature and the experimental

observations are random quantities. The optimal decisions (on average) are those

from the decision function that minimises the expected loss, or risk R(f)

f = argmin
f
R(f) = argmin

f
E [`(f(x), θ)] (3.1)

In principle, this expectation should be computed with respect to the joint

distribution P (X ,Θ) over observations and states of nature

Rbayes =
∑
x∈X

∑
θ∈Θ

p(x, θ)`(f(x), θ) (3.2)

leading to the Bayes optimal decision function. In practice, this is not possible

with non-trivial X and Θ. How one chooses to proceed is a semi-religious decision

that has been argued for over one hundred years in the statistics literature. The

crux of the debate is the justification for holding either x ∈ X or θ ∈ Θ fixed and

averaging over the other1, leading to either of

Rfrequentist =
∑
x∈X

p(x|θ)`(f(x), θ) (3.3)

Rbayesian =
∑
θ∈Θ

p(θ|x)`(f(x), θ) (3.4)

In practice, both of these formulations may still be intractable. Another in-

convenience is that the space of decision functions F is infinitely large. Typically,

the statistician suggests a smaller family of functions F̂ ⊂ F where the search

will be concentrated. This makes it highly likely that the optimal f 6∈ F̂ . In-

stead, we seek the best f̂ ∈ F̂ and acknowledge a necessary cost in approximation

error due to R(f̂) > R(f). Further, recall that we do not know the distributions

P (X ,Θ), P (X ) or P (Θ). The risk must be estimated from n observations

Rempirical =
1

n

n∑
i=1

`(f(xi), θi) (3.5)

1Notice how Eq. (3.3) asserts the Frequentist philosophy that θ may be unknown but it
is not random; and that a function should provide performance guarantees over any potential
sample from X . In contrast, Eq. (3.4) asserts the Bayesian philosophy that θ is indeed random;
and a function should be performant on actual data, not hypothetical data. Each must adhere
to two “ideals” encoded in the equations, all of which are in fact compromises.
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and extrapolations made from empirical performance on the observed sample.

Unfortunately, we cannot guard against the possibility that the sample may mis-

lead us into choosing a sub-optimal f̃ 6= f̂ . Thus, we accept an additional cost

in estimation error due to R(f̃) > R(f̂). Lastly, any finite sample from X may

partition F̂ into disjoint subsets that perform identically on this sample. We have

no principled way to choose the “best” from the best performing subset.

3.1.1 How to make a pragmatic decision

In classical statistics, approximation error is called bias (towards an overly sim-

plistic model) and estimation error is called variance (due to sampling from X ).

Ideally, a decision function would exhibit low bias and variance. In practice, this

is not possible as decreasing the bias, by using a more complicated function, will

increase the variance by over-fitting to the observed sample – rather than gen-

eralising to unobserved data [88]. Balancing complexity and performance would

allow us to choose good decision functions and help us differentiate between em-

pirically identical functions. We do this by minimising the regularised risk

Rregularised(f) = Rempirical(f) + λC(f) (3.6)

where C is some measure of the complexity of f and λ controls the trade-off in

performance and complexity. We will see explicit instantiations of Eq. (3.6) later,

here we simply note that it quantifies the folk wisdom behind Ockham’s Razor :

the simplest model that performs adequately is preferred.

Two approaches to regularisation

How the modeller proceeds next depends on her intentions for f . If she intends

that f be an explanatory model, it is wise to start with simple F̂ and add complex-

ity until performance is adequate. This is the classical statistician’s approach. If,

however, she only cares about producing a good predictive model, then it may be

better to start with a highly complex F̂ , that can describe almost any function,

and constrain the model by adding bias and reducing variance [81]. This is the

classical computer scientist’s approach.

Notice that the statistician’s approach is also the traditional mathematical

modeller’s approach: the theoretical immunologist wants her model to explain

some aspect of the immune system. But for the immune system itself, only pre-

dictive power carries survival advantage. That is, the immune system’s capacity
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3.1. How to make an optimal decision

θ = + θ = −
θ̂ = + TP FP P̂

θ̂ = − FN TN N̂
P N T

Table 3.1: The contingency table for {θ, θ̂} pairs.

for inferring the state of nature may have more in common with the computer

scientist’s approach, than with theoretical immunologist’s.

3.1.2 Comparing decision makers

Before introducing specific predictive models, we briefly address the methodology

for assessing and comparing models. This follows on smoothly from the intro-

ductory theory and will be necessary background material for interpreting our

empirical results in later chapters. Recall that our space of actions, or predic-

tions of the state of nature, consists of two classes, e.g. Θ = {self, nonself }.
Conveniently, this is the simplest and most well-developed case for assessing de-

cisions between e.g. rejecting or failing to reject the null hypothesis; labelling

observations as positive or negative examples of a concept; determining probable

or improbable samples from a distribution; or detecting the presence or absence

of a stimuli in a noisy signal; and so on.

For a finite Θ, any given observation xt ∈ X has a finite number of possible

{θt, θ̂t} pairs, which we collect in a contingency table much like Table 3.1. The

count data in this contingency table allows us to derive several metrics to evaluate

and compare performance. Using the standard terms from signal detection, we

name possible pairs as true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN). The terms true and false refer to the correctness

of the decision; positive and negative refer to the predicted classes.

Particular metrics derived from this table are domain specific, but of general

use are accuracy TP+TN
T

, sensitivity TP
P

, specificity TN
N

, and precision TP

P̂
. Notice

that metrics that span columns of the table, such as accuracy and precision, are

dependent on the true underlying class distribution. This can be an important

factor where, for example, if p(θ = +) = 0.01 then a decision function that always

decides θ̂ = f(x) = −, regardless of x, will have a seemingly impressive accuracy

of 99%. In contrast, the columnar metrics specificity and sensitivity would be 1.0

and 0.0, respectively, indicating a constant decision function.

A classic result, typically cast in the terminology of statistical hypothesis

testing, is the Neyman-Pearson lemma [143]. For a given acceptable probability
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3.2. The alpha and omega of inference

of a false positive (1 − specificity , or “significance”) we seek a decision function

that has maximal sensitivity (or “power”). If the distribution P (Θ) is known,

then the Neyman-Pearson lemma states that the optimal decision is

θ̂ = f(x) =

+ if p(x|θ=−)
p(x|θ=+)

< 1− specificity

− otherwise

that is, where p(x|θ = +)p(θ̂ = +|θ = −) > p(x|θ = −). But of course, as the

reader might have anticipated, in practice P (Θ) is never known. Any empirical

estimate of it could be led astray by the finite sample it was based on.

Uncertainty, confidence and significance

The frequentist solution to the uncertainty of the optimal decision function at-

tempts to establish the distribution of a metric or statistic (e.g. accuracy) that

can be used to select the “optimal” decision function by empirical comparison. In

this sense, optimality means that one can provide performance guarantees over

arbitrary samples from X . A practical problem is that we typically only have one

sample X drawn from X . However, by repeatedly sub-sampling (with replace-

ment) from this single sample, we can generate a series of synthetic distributions

over X that could have produced our observed sample. A fortunate result [64]

is that the distribution of the metric over these potential distributions gives us

insight into the metric’s distribution over X . Given such a distribution, one can

assert with c% confidence that the metric’s true value lies in c% of the volume

of the density function. We can now empirically compare decision functions: if

the c% volumes of the metric distributions for two different decision functions are

non-overlapping, then we can be c% confident that these differences are not due

to chance. That is, the difference is statistically significant with probability of

error p = 1− c
100

. By convention, the choice p = 0.05 is often made.

3.2 The alpha and omega of inference

We now make the decision theory more concrete by discussing two fundamental

models that typify the extremes of a spectrum of inferential methods and lay

the groundwork for the more advanced methods employed later. We assume

an n × m matrix X of n-dimensional observations drawn from X and an m-

dimensional vector θ of the states of nature corresponding to each observation.

We also assume θi ∈ [−1,+1] to blur any distinction between classification and

regression. Correct decisions occur when sign(θ) = sign(f(x)).
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3.2. The alpha and omega of inference

Parametric methods and least squares

The simplest non-trivial functional relationship f that could exist between X
and Θ is linear, θ = X ′f , where f is an n-dimensional vector and ′ indicates

transposition. This equation is solved in the same manner as high-school alge-

bra f = (X−1)′θ, with the slight complication that inverting a matrix is not

as straight-forward as inverting a scalar. In practice, we replace X−1 with the

Moore-Penrose pseudo-inverse X+, which reduces to the proper inverse for a fully

determined system, but also behaves sensibly in over and under-determined sys-

tems: solving argminf ‖θ −X ′f‖2
2 when there are no solutions (hence the name,

least squares); and argminf ‖f‖2 s.t. θ = X ′f when there are infinite solutions.

In the typical case of n 6= m, the pseudo-inverse is essentially a low rank

inversion, where rank(X) ≤ min(n,m). Appendix A has more technical details.

Using the notion (·)−1
k for a rank k inversion, the least squares solution is

f = (X+)′θ

= (XX ′)−1
k Xθ (3.7)

= X(X ′X)−1
k θ (3.8)

Typically, one of (XX ′) or (X ′X) will be of rank k, depending on whether

n > m or vice-versa. The decision function is then θ̂ = f(x) = 〈x|f〉 and

the decision boundary a hyperplane 〈·|f〉 = 0 where θ̂ changes sign2. Given an

observation x̂ we predict the state of nature θ̂ as

θ̂ = 〈x̂|f〉 (3.9)

=
〈
x̂|(XX ′)−1

k Xθ
〉

=
〈
x̂|X(X ′X)−1

k θ
〉

This decision function is parametric insomuch as it assumes an explicit para-

metric form for f and attempts to optimise those parameters. The assumption

here of linearity makes this decision function strongly biased, but this also means

that f is not significantly perturbed by random variation in X (see Fig. 3.1(a)).

2Technically, as presented this boundary always passes through the origin. An additional
intercept term removes this restriction and is trivially incorporated by adding a redundant
x0 = 1 component to each vector x. The associated component f0 will then provide the
intercept allowing boundary translation, in addition to rotatation.
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Non-parametric methods and nearest-neighbour

Rather than assume a fixed parametric form of the decision function f , one might

attempt to directly estimate P (X ,Θ) using the observed X and θ. Typically one

does this by smoothing the point mass of each observed x to attribute some

probability mass to nearby, but never observed, points, assuming they would

have the same θ as the observed x. This is done by way of a kernel function,

e.g. a Gaussian distribution centred on each observed x. Controlling the level of

smoothing is achieved by controlling σ2, the variance of the Gaussian. To make

a decision, we simply compute the expected value of θ conditioned on X

θ̂ = f(x̂) = E [θ|X] =
∑
xi∈X

pN (x̂ ; xi, σ
2
i ) θi (3.10)

where pN (· ; µ, σ2) is a Gaussian density parametrised by µ and σ2. A common

variation on this idea is to make predictions based on the observed states of nature

for x ∈ X that are simply nearest to the observation x̂, e.g.

θ̂ = f(x̂) =
∑
xi∈X

1 [‖xi − x̂‖2 < ε] θi (3.11)

where 1[·] ∈ {0, 1} is an indicator function and ε defines the size of the neigh-

bourhood surrounding x̂. Alternatively, one can use a fixed number k of nearest-

neighbours; this is equivalent to adapting ε to the space around x̂ to ensure each

decision averages the same number of points.

These decision functions are non-parametric insomuch as they make no as-

sumption of a parametric form of f . Localisation introduces non-linear decision

boundaries shaped by the proportion of labels in any given region of the space

X (see Fig. 3.1(b)). This is much less biased than parametric methods, but also

much more dependent on the quality and amount of data. Thus the range of f

can alter dramatically with even minor variation in X. Controlling the size of the

neighbourhood can be used to trade-off bias against variance: small neighbour-

hoods have low bias, high variance; larger neighbourhoods have large bias, but

lower variance. When using k neighbours, variance is fixed and bias adjusted to

the local properties of the space.

An (almost) dualistic relationship

We gain better insight into why the non-parametric, low bias, non-linear nearest-

neighbour and the parametric, low variance, linear least squares methods repre-

sent opposite ends of the same spectrum, by examining the dual relationship in
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Eq. (3.9). If we use the dot-product to measure neighbourhood locality3 then

starting from the linear decision function

θ̂ = 〈x̂|f〉 (3.12)

=
〈
x̂|X(X ′X)−1

k θ
〉

= 〈x̂|Xα〉

=

〈
x̂|
∑
xi∈X

αi |xi〉

〉
=

∑
xi∈X

αi 〈xi|x̂〉

≈
∑
xi∈X

θi 〈xi|x̂〉 (3.13)

≈
∑
〈xi|x̂〉<ε

θi 〈xi|x̂〉 (3.14)

we observe that the nearest-neighbour decision, when using the entire X as a

neighbourhood, is an approximation to the linear classifier that omits the inver-

sion of (X ′X). That is, Eq. (3.13) is “solving” θ = X ′f as f = Xθ, rather than

f = X−1θ. The benefit of locality-based non-linear decision boundaries in Eq.

(3.14) can overcome the cost of this omission (cf. Figs. 3.1(b) and 3.1(c)) but,

unfortunately, this reasoning is not as universally applicable as one might hope.

3.3 The Curse of Dimensionality

Understanding the spectrum of inferential methods now puts us in a position to

understand a significant obstacle that underlies much of the variations on the

alpha and omega in the literature; and is a key aspect of this thesis. The so-

called “curse of dimensionality” [11] refers to various practical and theoretical

issues that arise due to the simple fact that as the dimensionality of the space X
increases, its volume increases exponentially faster. The original problem that led

Bellman to coin the wonderful name was computational in nature: the number

of grid-based function evaluations in an optimisation problem quickly becomes

infeasible with even a modest number of degrees of freedom. But the curse has

many different faces and more subtle consequences.

3This is less common in practice, but sound. The dot-product is closely related to both the
Euclidean distance ‖a− b‖22 = 〈a|a〉+ 〈b|b〉 − 2 〈a|b〉 and (cosine of) the angle 〈a|b〉

‖a‖2‖b‖2 between
vectors, which are more common measures of neighbourhood locality.
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3.3. The Curse of Dimensionality

(a) Linear Classifier (b) Nearest Neighbour

(c) Bayes Optimal

Figure 3.1: The theoretical spectrum of inferential models, their decision bound-
aries and associated errors. (a) The linear classifier has high bias (linearity) but
low variance as variation in sampled observations does not radically alter the
decision boundary; (b) The nearest neighbour classifier has low bias but high
variance as the decision boundary is explicitly dependent on observed data; (c)
The Bayes optimal decision boundary derived from the underlying model used
to generate the data. Notice that Bayes optimality does not mean 100% accu-
racy. Although in low-dimensional space the nearest-neighbour appears closer
to the Bayes optimal decision function, in high-dimensional space this intuition
breaks down, in part, due to effects such as (d) the convergence of distances
as dimensionality increases. Figures (a), (b), and (c) are taken from [88] with
permission.
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3.3.1 Distance and density in high-dimensional space

In Chapter 2 we introduced some of the unintuitive behaviour of density in high-

dimensional space in the context of shape-space. Here we elaborate on the statis-

tical consequences of high dimensionality. These consequences effect all immune-

inspired algorithms that are based on shape-space and assume that shape can be

generalised to represent multivariate data.

Notice the similarity of Perelson’s recognition volume vi and the neighbour-

hoods ε (or σ2) used in non-parametric statistics. Recall that a fixed-size volume

grows more slowly than the space as dimensionality is increased. For a non-

parametric decision function, this results in an increase of the variance of estima-

tions made in that neighbourhood because the neighbourhood covers less of the

space. In the worst case, there are no neighbours in any fixed neighbourhood, and

thus, no generalisation from observations. Again, the only solution is to increase

ε which, as shown in Fig. 2.3, rapidly approaches the width of the space. This

dramatically increases the bias of our decision function as desirable non-linearities

from localisation are lost. As discussed previously, Eq. (3.12) shows that as ε is

increased the nearest-neighbour “solution” approaches θ = X ′f .

One may attempt to finesse this problem by fixing k the number of neighbours,

rather than fixing ε, the size of the neighbourhood. In principle, this would allow

us to fix variance at some cost to bias. Unfortunately, this strategy does not

quite work as expected [4, 16]. A high-dimensional space has 2n corners where

most of the volume is concentrated. The practical consequence of this is that any

metric defined across the space becomes increasingly meaningless as dimension-

ality increases because all data points tend to become equidistant! Figure 3.1(d)

illustrates the difference in pairwise distances between 10 uniformly distributed

points as the dimensionality of the unit-space is increased. It is clear that all

distances are converging. This results in a very fine distinction between an ε-

neighbourhood capturing either all or none of the data-points. Although one can

still select the k “nearest” neighbours; they will not be significantly nearer than

the other (n−k) neighbours – an implicit low-dimensional assumption behind this

strategy. The situation is worse if the data are noisy: even an inconsequentially

small amount of noise, once applied to many dimensions, can cause a significant

displacement from the original position. In high dimensions, a scalar metric can-

not differentiate between two vectors that differ negligibly across all dimensions

(and may be the same after accounting for noise) or differ significantly on just

a few dimensions (and are clearly different in some respect). The discriminatory

power of pairwise distance has been lost.
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3.3.2 Dimensionality and under-determinism

High dimensionality does not only affect decision functions that rely explicitly

on geometric reasoning. Increasing the dimensions of X , without increasing the

number of observations X, affects the nature of the solution to the least squares

criterion, making it under-determined and numerically ill-conditioned. The result

of ill-conditioning is a linear model that is nevertheless highly variable due to

numerical instability in its solution. In conjunction with under-determinism,

the “least” squares solution argminf ‖θ − X ′f‖2
2 will be non-unique. That is,

many linear f will have minimum error. In effect, the linear decision function

is too complex; not because of inherent complexity in the model, but because

of the paucity of observational data. Using regularisation, we can artificially

introduce bias to reduce the variance and reclaim a unique solution that minimises

our objective function. The seminal method to do this was called Tikhonov

regularisation in approximation theory and Ridge Regression in statistics [19]

and the solution is given by

argmin
f
‖θ −X ′f‖2

2 + λ‖f‖2
2 (3.15)

where the parameter λ can be used to trade-off accuracy against complexity,

quantified in Eq. (3.15) as Euclidean norm. Low norm solutions is our bias.

That both measures use the same norm allows us to rewrite the solution as

a minor variation on the Moore-Penrose pseudo-inverse f = (XX ′ + λI)−1
k Xθ.

This further clarifies how Eq. (3.15) finesses numerical instabilities in inverting

XX ′ by adding a small constant λ to the diagonal components. Variations on

Eq. 3.15 will return in later chapters of the thesis.

3.4 The State of the Art

All of the preceding material leads us to a lesson learnt in contemporary statistical

learning that is really at the heart of this thesis: finding good decision functions

is, in principle, simple; but crafting a representation that makes finding a good de-

cision function simple can be, in practice, difficult. This lesson has consequences

for anyone conceptualising the immunological decision in shape-space, regard-

less of whether the intention is biological or computational. We will see these

consequences empirically in the next chapter, specifically for immune-inspired in-

ference algorithms. Here we go on to consider the state of the art methods in

statistical prediction and machine learning that attempt to finesse the curse of

dimensionality and naive representations.
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3.4.1 Simple decisions, powerful representations

Recall from Eq. (3.9) the dualism between row-space and column-space derived

projections of θ onto θ̂. It is a small notational and conceptual step to go from

θ̂ =
n∑
i

fix̂i =
m∑
j

αj 〈xj|x̂〉 (3.16)

to a more abstract and richer functional form

θ̂ =
n∑
i

fiβi(x̂) =
m∑
j

αjK(xj, x̂) (3.17)

Both of these generalisations allow us to introduce non-linear transformations

in the representation (where we need them) but maintain linearity in the param-

eters (where it is analytically convenient to do so). The practical significance of

either abstraction is that simple linear decision boundaries in the transformed

space can produce complex, non-linear boundaries in the original space.

Kernel methods

The kernel function K on the right-hand-side of Eq. (3.17) returns an inner-

product in some unspecified, higher-dimensional, non-linearly transformed space

[160]. Assuming that K satisfies some basic properties not relevant here, the

representer theorem [182, 157] assures us that variants of Eq. (3.15) can always

be represented as a linear combination of the observations X. The main research

thrust surrounding this strategy is the so-called kernel trick – deriving high(er)-

dimensional inner-products in terms of the low(er)-dimensional untransformed

vectors4. This ingenious trick avoids the computational burden of explicitly work-

ing with a higher-dimensional representation and can be used in any context

where one would normally use X ′X, e.g. non-linear principle component analysis

[158]. However, this method is better suited to transforming low-dimensional,

non-linearly separable observations into high dimensional, linearly separable ob-

servations. If the original observations are already high-dimensional, then any

measure derived from their dot-product or Euclidean distance may already be

cursed, in the sense discussed earlier.

4For example, the polynomial kernel K(x, y) = (1 + 〈x, y〉)p only uses a regular dot-product;
but the exponent p returns the same result as if all p-order component products were features,
e.g. when p = 2 then xi · xj is an implicit dimension in addition to the original xi and xj .
There are many more exotic kernel functions than the polynomial kernel, see [160].
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Generalised transformations

The nonlinear transformation implied by a kernel function can be explicitly rep-

resented in Eq. (3.17) by βi(x̂). The obvious problem here is that we suffer

the computational burden of working explicitly in the higher-dimensional space.

But the left-hand-side of Eq. (3.17) is much more general. The βi can represent

any transformation, with βi(x̂) = x̂i reducing to the standard linear model. The

generalisation of linear models with non-linear functions is common statistical

practice (see e.g. [88, Chapter 9]). Using T to represent a transformation that

takes an arbitrary vector z to z̃, observe that in the linear case

θ̂ = f(x) = 〈f |Tx〉 = 〈T ′f |x〉 (3.18)

that is, 〈f |x̃〉 =
〈
f̃ |x
〉

. It is the non-linearity of T (x) that breaks this equivalence.

3.4.2 Many simple decision functions

Continuing with the left-hand-side of Eq. (3.17) it is another small step to note

that, if βi can be arbitrary, then why not let it be a full decision function – a

transformation X → Θ, rather than between different observation spaces. Thus

our representation of x̂ becomes the decisions of an ensemble of decision functions

and the original decision function f becomes a higher-level weighted integration of

these low-level decisions [78]. The general goal of ensemble methods is to improve

the performance of a single decision function, not by increasing its complexity,

but by integrating the results of many diverse decision functions. Diversity is

crucial, and can be specified in different ways: different function families; different

parametrisation of the same family; functions trained on different subsets of the

observations, and so on (see e.g. [162]).

Boosting [73, 101] has emerged as one of the most radical and successful in-

stantiations of ensemble learning. The radical aspect is the formal demonstration

of the equivalency of weak and strong learnability5: a “weak learner”, performing

only marginally better than random guessing, can be aggregated into an arbitrar-

ily strong learning algorithm

θ̂ = fstrong(x) =
∑
i

αifweaki
(x)

5This formal demonstration only holds in the PAC learning framework (see [101, 156] for
background and proofs), though the same intuition has been applied very successfully in general.
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Initialise empty ensemble and uniform distribution over data
E = ∅
Di = |X|−1 i = 1 . . .m
for t = 1 . . . T do

Generate a new weak learner with current distribution
ft = argminf∈F PrD [f(X) 6= θ]
εt = `(X, θ, ft)
if εt ≥ 0.5 then

break
end
Weight learner based on performance
αt = 1

2
log 1−εt

εt
Reweight (and normalise) data distribution based on performance
Di = Di exp (−αtθift(xi)) i = 1 . . .m
Di = DiP

j Dj
i = 1 . . .m

Add learner to ensemble
E = E ∪ αtft

end

Algorithm 1: The canonical Adaboost.M1 algorithm

Intuitively, boosting can be seen as the integration of many cheap heuristics

that will often fail – but have some edge over random guessing in some circum-

stances – rather than the integration of a few, strong classifiers as employed by

ensemble methods in general. There are still gaps in the theoretical understand-

ing of boosting (see e.g. [75, 132]), but it is well established that a key aspect

of its success is that, during training, diversity is induced by re-weighting the

observations (see Alg. 1). After each iteration of weak learner construction,

successfully classified observations have their weight decreased (and vice-versa),

forcing weak learners in later iterations to compensate any predecessor’s bias and

concentrate on observations that are causing continued training error. During

decision making, integration across the ensemble increases the confidence in any

particular decision, by averaging out the variance of individual weak learners.

Somewhat contradicting the bias-variance trade-off, we see both a decrease in

bias, through diversity, and a decrease in variance, through integration (Alg. 1).

3.4.3 Successive approximation

The culture surrounding boosting has a different origin than the rest of the ma-

terial presented in this chapter; but the statistics community have also provided

insightful analysis that is particularly clean [75]. This perspective allows us to

introduce much the same ideas without getting bogged down in foreign nomen-

clature. Indeed, we have essentially already done the introduction in Eq. (3.17).
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The statistical view of boosting is simply as an additive expansion in a set

of “basis functions” βi(·). Quite literally, boosting attempts to approximate the

label vector θ using a linear combination of functions of X. This is quite a subtle

difference and deserves some reflection. Ostensibly, all decision functions want

the distance (or loss) between inferences θ̂ and the truth θ to be as small as

possible. The way this is usually cast, as was done in this chapter, is as learning

the underlying function f : X → Θ. In contrast, boosting directly attempts to

approximate θ with a seemingly arbitrary collection of functions of X. Recall,

predictive power does not necessarily imply any explanatory power.

Fitting residuals

When we measure the loss of a decision function, we are measuring the distance

between its decisions θ̂ and the truth θ, e.g. ‖θ − θ̂‖2
2. The vector R = θ − θ̂

is called the residual. In the case of a linear least squares, the residual R =

θ − X ′(XX ′)−1
k Xθ cannot be explained any further because XR = 0. That is,

the residual is outside of the vector space spanned by the observations – it is in the

null-space of X. However, the same does not hold for a nonlinear least-squares

model f(X; θ). What remains in its residual may profitably be used to develop a

second model f ′(X; θ−f(X; θ)). Combining these models captures aspects of the

observations missed by the first, but picked up by the second. In principle, this

repeated fitting of the residuals can construct arbitrarily precise, though possibly

overfit, successive approximations of θ. Starting from the residual R0 = θ

Rt+1 = θ − Ft(x) (3.19)

= θ −
t∑
i=1

fi(X; Ri)

= θ − f1(X; R1)− f2(X; R2)− . . .− ft(X; Rt)

= θ − [Ft−1(X) + ft(X; Rt)]

= [θ − Ft−1(X)]− ft(X; Rt)

= Rt − ft(X; Rt) (3.20)

Note that the dependence on Ri forces a sequential nature on this approach.

The above method is called `2 boosting [23, 118] (Alg. 2). Notice that if θ ∈
[−∞,∞] then the subtraction increments components in R whenever sign(θ) 6=
sign(θ̂); and vice-versa. Thus, observations are re-weighted based on their diffi-

culty. Algorithm (1) uses a similar mechanism except that instead of the residual,
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Initialise empty ensemble and residual
R = θ
F = ∅
for t = 1 . . . T do

Generate a new weak learner with current residual
ft = argminf∈F ‖R− f(X; R)‖2

2

Recompute the new residual
R = R− ft(X)
Add learner to ensemble
F = F + ft

end

Algorithm 2: `2 boosting. The least squares perspective identifies boosting as
a variation on stagewise fitting residuals.

Initialise the ensemble and gradient
∇` = θ
F = ∅
for t = 1 . . . T do

Generate weak learner most correlated with negative gradient
ft = argminf∈F ‖ − ∇`− f(X)‖2

2

Weight learner based on performance on actual loss function
αt = argminα `(θ, Ft−1(X) + αft(X))
Add learner to ensemble
F = F + αtft
Recompute the gradient

∇`i = −
[
∂`(θi,F (xi))
∂F (xi)

]
i = 1 : n

end

Algorithm 3: Gradient boosting. Observing that the residual is the gradient
of the squared-error loss function, we can generalise to boosting-like procedures
for arbitrary (convex) loss functions.
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it uses the negative exponential of the so-called margin exp[−θf(X)]. This also

decays same-sign factors and vice-versa, albeit more smoothly.

Using only two fittings was proposed in 1977 by Tukey under the characteristi-

cally humorous name, twicing [177]. This “stagewise fitting” was not historically

popular amongst statisticians, who naturally preferred well-designed models [24].

However, under the severe conditions of modern data analysis, of which Tukey is

the grandfather, well-designed models are difficult to construct. Mildly effective

heuristics are not. That many weak heuristics can be combined into a strong

model, is the conceptual and theoretical crux of boosting.

Generalised residual fitting

One of the key differences between Adaboost (Alg. 1) and `2 boosting (Alg. 2) is

that they are optimising different loss functions – exponential and squared loss,

respectively. Friedman [79], Breiman [21] and Mason [122] introduce a generali-

sation that can be applied to convex loss functions.

Consider an arbitrary initial guess f0 of a linear decision function’s parame-

ters. Let f ∗ represent the optimal function parameters. Then the best movement

away from this initial guess would be

ft+1 = ft + (f ∗ − ft) (3.21)

except for the snag that taking this step would require knowing f ∗, which is what

we are attempting to find! One might attempt to find the optima analytically

by solving ∂`(θ,θ̂)
∂f

= 0 but it is more instructive here to reach the same solution

algebraically. Now, we know that the linear solution is f ∗ = (XX ′)−1Xθ and it

follows from this that Xθ = (XX ′)f ∗. That is, even though we do not know f ∗,

we do know that its projection over (XX ′) will be Xθ. We also know that f ∗

must lie in the span of the observations. For any f , the product (XX ′)f only

loses information that is in the null-space of X. Plugging into Eq. (3.21) gives

ft+1 = ft + (f ∗ − ft)

≈ ft + ((XX ′)f ∗ − (XX ′)ft)

= ft + (Xθ − (XX ′)ft)

= ft +X(θ −X ′ft)

= ft +X(θ − θ̂t)

= ft +XRt (3.22)
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and we arrive at the same conclusion as numerically solving ∂`(θ,θ̂)
∂f

= 0. That is,

XRt is the (negative) gradient of the the squared error loss function with respect

to ft, and we follow this gradient until it is zero. If we followed this gradient for

T steps, then by linearity the accumulation of steps can be left as individual ft

θ̂ = f(x) = 〈x|fT 〉 =

〈
x|

T∑
t=1

ft

〉
=

T∑
t=1

〈x|ft〉 =
T∑
t=1

ft(x) (3.23)

where ft = XRt = −∂`(θ,θ̂t)
∂f

. With a slight abuse of notation, we can generalise

this gradient descent in parameter space, to a non-parametric gradient descent

in function space

θ̂ = FT (X) =
T∑
t=1

ft(X) = FT−1(X) + ft(X) = θ̂T−1 −
∂`(θ, θ̂T−1)

∂θ̂T−1

(3.24)

that is, the best ft is the one that’s decisions follow the negative gradient of the

loss function in Θm. One caveat is that we are constrained to choose functions

from F̂ , so we choose the ft that’s decisions are closest to this gradient

ft = argmin
f∈F

‖ − ∂`(θ, θ̂T−1)

∂θ̂T−1

− f(X)‖2
2 (3.25)

which, for squared error loss, −∇` = XR and f(X) = Xf and we recover `2

boosting. This generalised procedure can be plugged back into the boosting

framework and applied to arbitrary (convex) loss functions (see Alg. 3).

3.5 Conclusion

We have reviewed theoretical and numerical statistical inference: from abstract

decision theory; through the spectrum of (non-)parametric, (non-)linear decision

functions; the bias/variance trade-off and curse of dimensionality; to state of the

art methods to address these issues.

Coming from the field of Computational Learning Theory, boosting shares its

foundations with the seminal work of Littlestone and Warmuth et al. on Online

Learning and Weighted Majority Learning [115, 114]. The boosting process has

also been shown to have a game theoretic interpretation as learning an optimal

mixed-strategy in iterated games [74]. Intuitively, at least, these ideas would

seem relevant to notions of decision making in the immune system. In particular,

compare the definition of weak learnability and Cohen’s co-respondence.
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3.5. Conclusion

In the next chapter, we turn our attention to existing work in using immuno-

logical metaphors to produce novel inference algorithms. These methods tend to

revolve around variations of the ideas embodied in Eq. (3.11) thus we can con-

clude a priori that they will not be particularly sophisticated from a statistical

perspective. It might be argued that the immunological metaphor contributes

something that compensates for the lack of statistical sophistication. We will

have to wait and see if that is true.
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Chapter 4

Critical Analysis of Prior Work

Passing peer review is better understood as saying a paper is

not obviously wrong, redundant or boring, rather than as

saying it is correct, innovative and important.

Cosma Shalizi

Having established our statistical foundations we are now in a position to bet-

ter assess prior work in applying immune-inspired computational methods in the

domain of inference and prediction. We will find these methods to be compro-

mised and will offer a reformulation for improving their biological and statistical

plausibility. In the remaining chapters, we move away from this paradigm entirely.

4.1 Clonal selection as algorithm

For non-parametric statistics, the mapping between immunological and statisti-

cal domains is quite intuitive. For a sample of antigen (data) distributed across

shape-space (possibly self and non-self depending on the application) the goal is

to generate a repertoire of receptors (prototypes) that are sufficient to capture

salient features of the antigen distribution and generalise to unseen antigen. The

shape-space abstraction certainly makes it seems plausible that the immune sys-

tem needs to achieve a similar goal; but it is readily apparent that the Pattern

Recognition, Machine Learning and Signal Processing literature abounds with

variations on this basic idea. The question we are concerned with in this chapter,

is whether the immunological inspiration contributes anything substantive on top

of these standard metric-space methods. Of course, published benchmarks claim

that they do; yet few offer any real reason as to why that would be so.
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4.1. Clonal selection as algorithm

4.1.1 The state of the art

We base our analysis on two algorithms for the following reasons: they are widely

cited; have been used by more than one research group in published work; and

are representative of the approach used by other more proof-of-concept work.

Freitas and Timmis [71] review 17 immune-inspired algorithms that all fit this

general description. The reader is directed to the primary references for detailed

discussion of these algorithms; our analysis relies upon none of those details.

aiNET

For unsupervised learning, the seminal clonal selection algorithm is de Castro

and Von Zuben’s CLONALG (Alg. 4). This work is only of historic interest,

later developing into aiNET (Alg. 5) from the same authors [54, 53]. Both

CLONALG and aiNET have spawned many derivative algorithms, usually with

an application-specific focus; often employing hybridisation with classical meth-

ods. Such ad hoc domain specific hybridisations are not relevant here. The

principle idea behind Algs. (4) and (5) is to use affinity maturation to distribute

receptors in antigen space. It is apparent from inspection that the major thrust

of both algorithms is very similar. Indeed, a large portion of the inner-loop of

aiNET is CLONALG. What aiNET adds is the suppressive effects of inter-clonal

interactions, purported to allow the repertoire to regulate its own size without a

priori parametrisation.

AIRS

For supervised learning, Watkin’s clonal selection based algorithm AIRS has gar-

nered significant attention in the literature [183, 83, 184, 185, 84, 186]. The

supervised moniker is a red herring – AIRS models each class independently us-

ing an unsupervised process (Alg. 6). During decision making, AIRS makes no

appeal to immunology and simply selects the k-nearest receptors from any class,

using a majority vote to determine the predicted classification. The only signifi-

cant differences between aiNET and AIRS is that the latter’s inner proliferation-

mutation loop iterates until the population reaches a desired average fitness. For

what follows, these differences will be inconsequential.

4.1.2 Theoretical and empirical analysis

Let us start with a very simple observation, that can be derived from just the

loop structure in the pseudo-code directly. These algorithms all process data-
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4.1. Clonal selection as algorithm

R = RandomRepertoire()
for x ∈ X do
P = ∅
// proliferation and mutation
for µt ∈ Fittest(R, x) do
Q = Daughters(µt, ||µt − x||2)
P = P ∪ Fittest(Q, x);

end
// clonal selection
R = R∪ Fittest(P , x)
R = R \Weakest(R, x)

end

Algorithm 4: CLONALG. The set R of prototypes (i.e. receptors) µt is
evolved via mutation, proliferation and selection for each datum (i.e. antigen).

R = RandomRepertoire()
while . . . do

for x ∈ X do
P = ∅
for µt ∈ Fittest(R, x) do
Q = Daughters(µt, ||µt − x||2)
P = P ∪ Fittest(Q, x);

end
// Delete clones with low antigen affinity
P = {µi : µi ∈ P and ||µi − x||2 > ε}
// Delete clones with high intra-clonal affinity
P = P \ {µi, µj : µi, µj ∈ P and ||µi − µj||2 < σintra}
R = R∪ P

end
// Delete clones with high inter-clonal affinity
R = R \ {µi, µj : µi, µj ∈ R and ||µi − µj||2 < σinter}
// Generate fresh components
R = R∪RandomRepertoire()

end

Algorithm 5: aiNET. Essentially CLONALG with additional prototype inter-
actions that attempt to self-regulate the size and quality of R.
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R = RandomRepertoire()
for {x, θ} ∈ X do

µt = Fittest(x, θ,R)
P = {µt}
while AvgFitness(P) < σ do

for µk ∈ P do
P = P ∪Daughters(µk, ||µk − x||2)

end
Cull(P)

end
µt+1 = Fittest(P)
if µt+1 > µt then
R = R∪ µt+1

if ||µt+1 − µt||2 < ε then
R = R \ µt

end

end

end

Algorithm 6: AIRS training procedure. Similar in spirit to aiNET but has
different implementation details and maintains θ-specific repertoires. The test
procedure is simply k-nearest neighbour amongst all prototypes.

R = RandomRepertoire()
for {x, θ} ∈ X do

µt = Fittest(x, θ,R)
µt+1 = µt+x

2

R = R∪ µt+1

if ||µt+1 − µt||2 < ε then
R = R \ µt

end

end

Algorithm 7: AIRS−. The optimal (one step) candidate is chosen determinis-
tically, rather than via AIRS’ many rounds of stochastic mutation and resource
competition (c.f. Algorithm 6).
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4.1. Clonal selection as algorithm

points (antigen) sequentially in their outer loop; and perform stochastic search

for fitter prototypes (receptors) in their inner loops. Now, if there is only ever

one data-point in the space at any given time, then any fitness landscape induced

by a pattern-matching or distance function will be uni-modal, with the mode ap-

pearing centred on that data-point. Thus, stochastic search appears to be entirely

redundant as a learning strategy. With only one antigen, affinity maturation is

simply an inefficient hill-climb along a gradient that could be derived from the

same quantities used to compute the affinity function.

A simple experiment clarifies. We completely remove the generate-and-filter

subroutine from AIRS, replacing it with a trivial, deterministic update which we

dub AIRS− (see Alg. 7). Here, we simply generate one mutant daughter exactly

halfway between the datum and the best matching receptor. The rest of the

algorithm is unchanged. Table (4.1) reports performance comparisons for several

benchmark datasets. The figures validate our observation: the clonal selection

phase of AIRS has almost no positive effect on the algorithm’s performance. Not

only is the stochastic search unnecessary, it can be detrimental. AIRS performs

significantly worse on all high-dimensional datasets. Indeed, on the newsgroup

dataset AIRS has the same expected accuracy as producing decisions based on

a coin flip! For comparison, on the same task 3-nearest neighbour achieves 75%

accuracy, linear regression 80% and Multinomial Naive Bayes 97%.

In deriving the deterministic update rule for AIRS− we simply performed

the logical behaviour that AIRS was indirectly attempting by affinity matura-

tion. Regardless of how this behaviour is implemented, we now ask what is this

behaviour achieving during training? In AIRS− we used the update rule

µt+1 = γ(xt + µt), (4.1)

where µt+1 is the deterministically constructed best mutant, µt is the best match-

ing existing prototype and γ = 0.5 was the distance to the boundary of the

mutation region used in AIRS. Using this fact, we can express (4.1) as

µt+1 = µt + γ(xt − µt) (4.2)

of which there are two points to make. First, to generalise back we note that this

has the same form as aiNET’s “guided mutation” step, where γ ≈ 1
‖xt−µt‖2 . So,

aiNET is not only performing random search in a unimodal space, but performing

random search along perturbations of the line between xt and µt. Second, Eq.

(4.2) is the well-known update rule for MacQueen’s 1967 online k-means algorithm

[119]. It is also well known (see e.g. [20]) that this strategy implies stochastic
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dimension AIRS AIRS−

elements 2 74.35 ± 7.29 71.95 ± 7.72
iris 4 94.67 ± 5.36 94.47 ± 6.34
balance 5 80.93 ± 4.11 * 77.36 ± 4.83
diabetes 8 71.60 ± 4.40 * 69.45 ± 4.98
breastcancer 9 96.28 ± 2.35 96.35 ± 2.19
heart-statlog 13 78.15 ± 8.63 77.11 ± 7.34
vehicle 18 62.05 ± 4.89 * 57.06 ± 6.04
segment 19 88.21 ± 2.48 * 83.79 ± 2.91
ionosphere 34 84.44 ± 5.18 89.66 ± 5.39 *
sonar 60 67.03 ± 11.60 84.58 ± 7.86 *
newsgroup 3783 51.35 ± 4.60 78.87 ± 14.05 *

* significant at p-value of 0.001

Table 4.1: Accuracy comparison of AIRS and our deterministic derivative. Exper-
iments were performed using the default algorithm parameters, 10-fold stratified
cross-validation and a paired T-test. Most datasets are standard UCI benchmark
problems (http://archive.ics.uci.edu/ml/). Newsgroups is a two-class clas-
sification of determining comp.graphics from alt.atheism posts using a subset
of the 20 Newsgroup dataset. Elements is a synthetic mixture of Gaussians taken
from [88] that we will further use in the remainder.

gradient descent on the loss function

`(µ1 . . . µk|X) =
k∑
i

∑
xj∈µi

‖xj − µi‖2
2 (4.3)

which is the sum of squared distances from prototypes to their assigned data-

points. Note that for k-means the stochasticity comes from computing the gradi-

ent using only a single datum sample. The update is deterministic, which involves

(i) explicitly moving µt to µt+1, and (ii) monotonically decreasing γ over time

to ensure convergence. In contrast, aiNET and AIRS retain one or both of µt

and µt+1 depending on their pairwise distance and derive γ per datum as an (in-

verse) function of distance. It seems unlikely this strategy is implicitly optimising

anything: it is k-means with variable k and unmotivated randomness.

Reasoning by analogy is not enough

Based on this observation, we hypothesise that, though smaller in size, the AIRS

repertoire does not compress or otherwise extract meaningful structure from the

dataset. We validate this claim by comparing the loss in Eq. (4.3) against

that of k-means with the same number of prototypes as AIRS memory cells (see

Table 4.2). For non-trivial datasets, AIRS is far from the local optima found
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by k-means. Alternately, we can find the value k̂ for k-means that produces the

same performance as AIRS. It is apparent that a significantly larger amount of

compression is possible than is achieved by AIRS. A similar result has already

been demonstrated by Timmis and Stibor for aiNET [166]. By comparing the

Kullback-Leibler divergence between a density estimate based on the original

data, and one based on the repertoire of memory cells, they demonstrated that

aiNET fails to compress non-uniformly distributed data. Although they did not

identify the futility of aiNET’s stochastic search, they did identify another factor

that limits its effectiveness, which also applies to AIRS. By enforcing a uniform,

fixed width separation between components, both algorithms fail to represent

fine-grained structure in the data occurring at a granularity below this width;

likewise, both fail to generalise uniform regions with fewer components (Fig. 4.1).

There have been recent attempts in the literature to address these omissions

using an “adaptive radius” [17, 180]. The idea behind these methods is that by

varying each receptor’s recognition volume in inverse proportion to the density

of antigen in that region of shape-space, the repertoire can more accurately re-

flect dense (resp. sparse) regions by packing more (resp. less) receptors into a

given region, as appropriate. Technically, this is sound. But practically, this

still contradicts the very notion of “compression” as dense antigenic regions must

now be represented by very many receptors. The problem here is not so much

fixed-size recognition volumes, but the insistence of non-overlapping recognition.

To demonstrate the cost of this constraint, Table (4.3) provides a comparison

between classification accuracy of AIRS and a classical Radial Basis Function

(RBF) classifier fit via the k-means algorithm. This comparison is not entirely

fair, as the RBF was fit in a batch setting and thus benefited from random access

to the data. But even if we handicap the RBF to only two basis functions (cf. the

number of prototypes used by AIRS in Table 4.2) it still significantly outperforms

AIRS on eight of our datasets.

4.1.3 How “immune inspired” should an “algorithm” be?

Having cut through the immunological rhetoric, it is apparent that any biological

influence in these algorithms is in fact very weak. Although the degree of bio-

logical fidelity necessary for an algorithm to be “inspired” can be a contentious

issue, attending to several rudimentary details would significantly increase the

validity of the immune inspired moniker. After introducing these details, we will

demonstrate that they improve the algorithm moniker also.
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Figure 4.1: Configuration of the aiNET repertoire on the Elements dataset, ex-
plicitly showing the fixed-width “suppression threshold” used to resolve pairwise
competition. It is apparent that although aiNET has fewer prototypes than data,
it has not “compressed” the data insomuch as density information has been lost
under an essentially uniform tiling. AIRS suffers from exactly the same problem,
although the threshold is a hidden parameter in that case. Best viewed in colour.

k (memory) AIRS k-means k̂
iris 47 1.10 0.768 20
balance 295 16.93 13.5 225
diabetes 407 22.81 8.028 125
breastcancer 209 55.22 28.0 100
heart-statlog 209 108.46 9.036 20
vehicle 336 92.50 23.284 25
segment 219 135.81 51.81 45
ionosphere 145 410.66 94.86 12
sonar 143 420.04 38.679 3

Table 4.2: The within-cluster squared distances for AIRS and k-means using the
same number of prototypes as AIRS’ memory cells. The value k̂ is the number
of k-means required to produce the same performance as AIRS. These figures
suggest that, although smaller than the dataset, the AIRS repertoire has not
extracted meaningful structure. This is further illustrated for a two-dimensional
dataset in Figure 4.1.
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AIRS RBF (2)
balance 80.93± 4.11 86.18± 3.76 *
breastcancer 96.40± 2.18 96.18± 2.17
diabetes 71.60± 4.40 74.06± 4.93 *
heart-statlog 78.15± 8.63 83.11± 6.50 *
ionosphere 85.53± 5.51 91.74± 4.62 *
iris 94.67± 5.36 96.00± 4.44 *
segment 88.21± 2.48 * 87.32± 2.15
sonar 67.03±11.60 72.62± 9.91 *
vehicle 62.05± 4.89 65.34± 4.32 *
elements 69.85±10.69 73.80± 10.28 *

* significant at p-value of 0.05

Table 4.3: Classification accuracy comparison of AIRS and Radial Basis Func-
tions. The RBF is handicapped to only two prototypes per class. Compare this
to the AIRS repertoire sizes in Table 4.2 for the same datasets.

1. Antigen are not processed sequentially. This is an artifact of the desire

for AIS to perform “online”. We agree with this sentiment but strictly

sequential processing of antigen is of dubious biological validity and the

unimodal fitness function renders stochastic search impotent.

2. Clones are a population. This is true by definition, but AIS algorithms

typically represent them as discretely present or absent. Without clonal

growth and decay, notions such as immunological memory and adaptation

are trivialised to GA-like elitism. This is an artifact of practitioner bias

towards the methods of evolutionary computing [87].

3. Selection is an anthropomorphism. With the exception of selective

breeding, the survival of species is not determined by fitness per se, but

by exclusion from garnering limited resources for survival. Furthermore,

“fitness” is not an inherent property of species, but must be assessed with

respect to the environment and the entire population. This distinction is

missing from AIS algorithms, again due to practitioner’s algorithmic bias.

4. Cells are adaptive. Adaptive sensitivity to prolonged stimulation has

been explored by Andrews et al. [7] in a modelling context, but is yet to

be fully integrated into an algorithmic context.
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4.2 Rethinking clonal selection as algorithm

Although the results of Sect. 4.1.2 may seem discouraging, we do not consider

this to be the final word by any means. The computational properties of the

immune system are a rich topic, and it is only natural that seminal work should

have erred on the side of simplification. However, we think it apparent that to

address these issues requires more than ad hoc modifications.

We propose that the uncomfortable mixture of instance-based/non-parametric

statistics and evolutionary computing methods be unified under the setting of

probabilistic approximation and estimation. This will not address the fundamen-

tal metric shape-space problem of Chapter 2 but it will offer a more general and

analytically elegant formulation of the traditional AIS1. Further, it will address,

albeit rudimentarily, the main biological and statistical criticisms raised in the

preceding sections. To appreciate the leap we intend to make, we must first

understand the workhorse of statistical model fitting: the EM Algorithm.

4.2.1 Expectation maximisation

The basic idea behind the EM Algorithm [56, 131] is to solve a difficult “in-

complete” data problem with a simpler “complete” data problem. Often, this

incompleteness will be a convenient fiction. We dispense with a fully general in-

troduction and cut straight to mixture models, which are particularly apt in this

context and are more algorithmically transparent that the abstract EM “algo-

rithm”. Our presentation mostly follows that of [18], where the reader is directed

for additional details.

In a mixture model, we postulate an underlying generative model for the

observed data xi ∈ X ⊂ X that is a mixture of simpler distributions

p(xi|Θ) =
K∑
k=1

p(xi|θk)p(θk) (4.4)

where θk parametrises a member of a family of distributions (e.g. multivariate

Gaussians with θk = {µk,Σk}). The overarching goal is to find a parametrisation

of our mixture that maximises the likelihood of observing the given data

1In [130] the authors extend this formulation to address stochastic black-box optimisation,
but with only partial success. Here we concentrate on the inferential domain only.
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argmax
Θ

p(X|Θ) = argmax
Θ

N∏
i=1

p(xi|Θ) (4.5)

= argmax
Θ

N∑
i=1

log p(xi|Θ)

= argmax
Θ

N∑
i=1

log

[
K∑
k=1

p(xi|θk)p(θk)

]

If we knew which component generated each xi the objective would be greatly

simplified, so we assume a hidden vector y where yi = k if xi was generated by

the component parametrised by θk. The likelihood becomes

p(X|Θ, y) '
N∑
i=1

log p(xi|θyi
)p(θyi

)

Unfortunately, we do not know y, but given some arbitrary y we do know

p(y|X,Θ) =
N∏
i=1

p(yi|xi,Θ)

=
N∏
i=1

p(xi|θyi
)p(θyi

)∑
k p(xi|θk)p(θk)

We now have all the quantities we need to invoke the EM Algorithm. Because

y is a random quantity, the goal is to maximise the expected (log) likelihood of

the now complete data p(X, y|Θ)

E [log p(X, y|Θ)|X,Θ] =
∑
y∈Y

p(y|X,Θ) log p(X|Θ, y)

=
∑
y∈Y

[
N∏
i

p(yi|xi,Θ)

]
log

[
N∏
i

p(xi|θyi
)p(θyi

)

]

which, after some manipulation, simplifies to

E [log p(X, y|Θ)|X,Θ] =
K∑
k=1

N∑
i=1

p(yi = k|xi,Θ) log p(xi|θk)p(θk) (4.6)
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Starting from an initial value Θ0, the EM Algorithm alternates between cal-

culating the distribution for the expectation, holding Θt fixed; then maximising

the likelihood, by updating Θt+1 holding p(yi = k|xi,Θt) fixed. Hence, the name.

The algorithm is guaranteed to increase the likelihood at each step until a local

optimum is reached. Algorithm (8) describes the steps for Gaussians mixtures.

4.2.2 The EM algorithm as “simulation”

Looking at Alg. (8) we can identify the rudimentary sense-act loop of a clonal

selection simulation. In the E-Step, we first calculate the demand on each datum

σi =
∑

k p(xi|θk)p(θk) before allowing components to sense the environment by

allocating data proportionally to each component’s contribution to the demand

γi,k = p(xi|θk)p(θk)
σi

. In the M-Step, each component acts by moving µk, adapting its

distribution Σk, and updating its prior πk. It is this basic connection we will now

develop to make the translation to models that may have qualitatively different

“actions” from those derived from differentiating the global log-likelihood with

respect to the parameters.

Population as prior

Treating the prior πk as clonotype population carries a particularly attractive con-

nection to dynamical models of evolutionary systems. If one considers a Bayesian

update, e.g. γi,k in Alg. (8)

γi,k ≈ p(θk|xi) =
p(xi|θk)p(θk)∑
j p(xi|θj)p(θj)

then it has already been observed [159] that this has the same form as the discrete

replicator equation

xk(t+1) =

(
fk(x(t))∑

j xj(t)fj(x(t))

)
xk(t) (4.7)

where fk is the replicator’s fitness, which we associate with the likelihood p(xi|θk),
and xk is the replicators population size, which we associate with prior p(θk). The

essential dynamics of Eq. (4.7) are that replicators with above average fitness (the

denominator) grow, while others decay. For Algorithm (8), a component’s prior

πk aggregates this measure over all data points, where each αk is the sum of indi-

vidual replicator updates αk =
∑

i

(
p(xi|θk)
p(xi|Θ)

)
p(θk). Intuitively, components with

consistently higher likelihood are rewarded by having their prior (in the next time

step) increased. There are two interesting deviations from traditional Bayesian
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4.2. Rethinking clonal selection as algorithm

while likelihood not converged do
σ = ∅
α = ∅
γ = ∅
E-Step: compute probabilities for the expectation
for µk ∈ K do

for xi ∈ X do
σi = σi + p(xi|µk)p(µk)

end

end
for µk ∈ K do

for xi ∈ X do

γk,i = p(xi|µk)p(µk)
σi

αk = αk + γk,i
end

end

M-Step: Update the parameters to maximise the expectation
for µk ∈ K do

// Update location (mean) of component
µk = 0
for xi ∈ X do

µk = µk +
γk,i

αk
|xi〉

end
// Update covariance of component
Σk = 0
for xi ∈ X do

Σk = Σk +
γk,i

αk
|xi − µk〉〈xi − µk|

end
// Update prior of component
πk = αkP

j αj

end

end

Algorithm 8: The EM Algorithm for Gaussian mixtures: p(yi = k|xi,Θ) ≈
γk,i, p(xi) ≈ σi and p(θk) ≈ πk. The maximisation of the likelihood has a
closed-form solution for Gaussians, where θk = {µk,Σk}.
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4.2. Rethinking clonal selection as algorithm

statistics: we are considering iterations where it is the parameters of the model,

rather than the data, that is changing; and replicator fitness is typically a func-

tion of the population fitness, whereas mixture components do not traditionally

interact with each other directly.

Clonal Selection as E-Step

The first contribution is largely from the EM algorithm. The key quantity is

p(θk|xi) ∝ p(xi|θk)p(θk). Ignoring the normalising denominator for a moment,

this equation states, in words, that the probability that a datum should be as-

signed to a particular component (cf. clonal selection), is proportional to the

probability assigned to that point in space by the component (cf. affinity) mul-

tiplied by the prior probability of that component (cf. population). This natu-

rally incorporates the intuition that fitness is a function of both binding strength

and abundance. Further, the probabilistic interpretation hides awkward geomet-

ric notions of affinity, accommodating either biologically or application driven

measures. This formulation allows us to address several of the short-comings

of existing clonal selection algorithms discussed earlier. By using more than a

single datum we now have a complex fitness landscape suitable for stochastic

search. Adaptive control of the local bandwidth of component distributions may

represent adaptive stimulation. Clones have a rudimentary population and com-

petition dynamic that acknowledges classical models from mathematical biology.

We find this to be a compelling list of benefits, which come essentially for free.

Affinity Maturation as M-Step

The analogy continues with affinity maturation insomuch as the overarching goal

is to “reparameterise the mixture” in order to optimise some quantity. Here

the immunological perspective departs from both the regular EM Algorithm and

evolutionary approaches to maximising likelihood. If our components are multi-

variate Gaussians, then by definition the weighted mean is an intuitive location

to move a component (this is the M-Step in Alg. 8). But in affinity maturation

the components do not move: daughter clones spread out into the space; some

coming to dominate their parent and siblings. Reparameterise the mixture, for

affinity maturation, is not just an update of Θt → Θt+1 but a partial redefinition

of the model: components enter stochastically and leave in accord with selec-

tive pressures. This further distinguishes clonal selection and affinity maturation

from black-box optimising the log-likelihood with an evolutionary algorithm. An

evolutionary algorithm’s population would each search for a global optimum of
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4.2. Rethinking clonal selection as algorithm

while not converged do
Sample new components from the current mixture
Θ = Θ + {θi : θi ∼ Θ} i = 1 . . . k
Fit the new mixture model without updating means
(`,Θ) = EM(X,Θ)
Evaluate and remove poor components
Θ = Θ− {θi : θi ∈ Θ and p(θi) < ε1 or det(Σi) < ε2}

end

Algorithm 9: A modified EM Algorithm for Gaussian Mixtures which uses
sampling and exclusion of components instead of relocating existing compo-
nents. This can be considered as adding a very rudimentary “meta-dynamics”
to the EM Algorithm: there is no a priori model; poor components are eradi-
cated; and proliferation is proportional to fitness.

p(X, y|Θ) in Θ-space. In contrast, during affinity maturation each member of the

population is searching for its own optima of p(X|θk) in X -space. Any optimisa-

tion of P (X, y|Θ) is implicit in optimising its factors.

4.2.3 Empirical analysis

There is much existing work in the statistics literature on stochastic variants of

the M-Step (see e.g. [131, 34, 95]). Much like the stochastic k-means introduced

earlier, these methods tend to involve deterministic updates based on a sample of

the data, rather than stochastic updates per se. However, we are now in a position

to make use of stochastic search as our fitness landscape is no longer unimodal.

The obvious question is whether an EM-like algorithm with proliferation and

mutation is a valid technique for fitting mixture models?

We assess this question without getting bogged down in immunology by mak-

ing three simple changes to Alg. (8). First, we trivially modify the EM algorithm

to not update mean locations. After this modified EM Algorithm converges we

then, in a surrounding loop, remove redundant components with low priors (cf.

clonal extinction) and sample new components from the current mixture to add

to the mixture in the next iteration (cf. fitness proportional proliferation and

mutation). This process is repeated until the outer loop converges; that is, until

the repertoire stabilises on its fit to the data (see Alg. 9).

To reduce the degrees of freedom in our analysis, we will also ignore updating

each component’s covariance or bandwidth. Note that this is not such a compro-

mise as it was in Algs. (5) and (6) as these “fixed regions” are no longer criteria

for discrete pairwise separation and removal. Components are free to overlap.

This will necessarily reduce their overall fitness by invoking competition in re-
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4.2. Rethinking clonal selection as algorithm

Figure 4.2: Component configuration for Alg. (9) on the Elements dataset.
Unlike aiNET in Fig. 4.1 components overlap and population levels vary in
accord with the underlying prior probabilities; represented here by opacity.

source allocation, but it will also allow the repertoire to properly reflect density

in the data. Intuitively, it may be better to compete over a dense region than

dominate a sparse region. This intuition is borne out in Fig. 4.2, which shows

the configuration of components (i.e. clonotypes) for Alg. (9) on the Elements

dataset. This configuration should be compared with the aiNET configuration

on the same dataset (Fig. 4.1).

One might ask whether the ability of components to overlap reduces the com-

pression ratio of components to data-points. In all our experiments with Alg.

(9) the repertoire size never strayed beyond 20-25 components, even though 5

new components were introduced on each iteration for a total of 500 iterations.

This suggests that once a stable configuration has been found it becomes increas-

ingly hard for randomly generated components to perturb the repertoire. This

suggestion is confirmed by the robust temporal dynamics in Fig. 4.3.

One might also ask how this strategy compares to the EM Algorithm proper.

Such a comparison is premature, but it is insightful to consider anyway to mo-

tivate further development. In the right hand side of Figure 4.3 we plot the

evolution of the likelihoods of observed data (green) and unobserved data (red)

drawn from the same underlying model behind the Elements dataset. There was

no set convergence criteria, but it is clear that from 10 runs with random ini-

tial configurations the dynamics do not vary considerably. It is also interesting to
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Figure 4.3: Quartiles of observed (green) and unobserved (red) likelihood for the
EM and modified EM Algorithm when fit to data generated from the mixture
of Gaussians used for the Elements dataset. Left: The EM Algorithm exhibits
characteristic overfitting as the number of components is increased. Right: the
modified algorithm converges consistently to the equivalent of a 7-component
mixture model. The horizontal lines show the same likelihoods under the true
generating model. Note that only the y-axes are comparable.
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note that at no point does the algorithm overfit to the observed data at some cost

to the unobserved performance; but this is most likely explained by the restricted

updates making such overfitting impossible. On the left hand side of Figure (4.3)

we show the same likelihood measures, but this time for the regular EM Algo-

rithm parametrised with different mixture sizes. Here we see the typical increase

in observed data likelihood at the cost of unobserved likelihood as the mixture

model’s complexity increases and overfits the observed data. The data and y-axis

are comparable for these two graphs and it is interesting to note that the modified

EM Algorithm performs in-sample roughly the same as a 7-component mixture

model (which would be a reasonable choice given the data) although it uses over

20 components and introduces 2,500 components over the course of its execution.

Out of sample, the modified algorithm generalises like a 12-component mixture

model. That is, it is overfitting above its complementary mixture model in terms

of performance on the observed data. It is difficult to say anything general here

as performance of the EM Algorithm on unobserved data is not typically reported

– its job is to maximise the likelihood, which is maximised by the observed data

itself. At the very least, it suggests that there is room for improvement in this

basic implementation.

4.3 Conclusion

We have assessed the status quo of immune-inspired learning algorithms and

found them lacking, both statistically and biologically. A proposed change of

abstraction based on probabilistic approximation improves the “metaphor” con-

siderably. This is certainly true from a theoretical perspective; and our initial

experiments, though rudimentary, suggest the same might be true empirically.

However, no amount of mathematical elegance can hide that one could derive

Alg. (9) without the slightest concern for immunological insight. We are still

abstracting the repertoire as points covering shape-space and thus inherit all of

the same problems we have bemoaned in earlier chapters. In the remaining chap-

ters, we leave pattern-matching in shape-space behind, in search of degeneracy,

constructive representations and systemic responses.
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Chapter 5

A Model of Ligand Binding,

Competitive Exclusion and

Representation Learning

We now move away from models of receptor-ligand interactions in the traditional

metric shape-space. In its place, we offer an abstraction that is more biologically

plausible, insomuch as it addresses the criticisms we have raised against shape-

space and clonal selection as algorithm. By validating our abstraction in terms

of computational efficacy, we assert its utility as a basis for both immunological

models and applied computational models. This chapter charts the first necessary

step in autonomous inference, representation learning, on which our thesis of the

immune system as a dynamic decision function can build upon.

5.1 Lymphocyte Ecology I

The intuitive notion behind affinity maturation is that a clone “moves” (in shape-

space) towards a high-affinity configuration for the antigen inducing proliferation.

This is easy to comprehend in the artificial case of one antigen; but in the lymph

nodes many antigen are being presented at once and what constitutes a high-

affinity configuration becomes less clear. For individual clones, there will be

a survival trade-off in terms of strongly binding a specific antigen of limited

supply, or sufficiently binding many to retain stimulation. Similarly, for the entire

repertoire there is a trade-off between maintaining a diversity of clonotypes and

allocating resources to specific responses. Just as in natural selection, these issues

are not directly resolved by “selection” per se, but by the exclusion of redundant

clones to access limited resources and the subsequent partitioning of resources into
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5.1. Lymphocyte Ecology I

niches. If one wishes to model stability and diversity phenomena in a population,

then one might look to ecology for guidance, rather than immunology. Ecologists

have developed a significant body of work around simple, elegant models of inter-

species competition [112, 111, 144, 150]. With some notable exceptions [51, 72,

110, 168], what we will call “lymphocyte ecology” has been given little attention in

the immunology literature; less so in the computational literature, where notions

of selection come from evolutionary computing.

5.1.1 The generalised Lotka-Volterra model

The model we will focus on is paradigmatic, originally formulated by Alfred

Lotka and Vito Volterra [116, 181], and later developed by many others, notably

Levins [111], Roberts [151] and Nowack [145]. It posits an environment with n

species where each species has a carrying capacity : the maximum population of

that species that the environment could support in the absence of any competi-

tors. The independent dynamics of species is initial exponential growth followed

by exponential decay towards capacity as the population saturates – the clas-

sic sigmoid-shaped curve of the logistic equation. Unlike the logistic equation,

reaching capacity is further hindered by competitive effects from other species.

More formally, let ρi and ki represent the population and carrying capacity of

the i’th species, respectively. The population dynamics then evolve as follows

dρi
dt

=

(
ki − σi
ki

)
ρi, i = 1 . . . n (5.1)

If σi = ρi, then species dynamics are independent of each other and we recover

the classic logistic equation. To introduce dependence, and thus competition, we

define σi =
∑

jKijρj, where Kij is the so-called “community matrix” represent-

ing the competitive effect of species i on species j. That is, Kij ≥ 0 and Kii = 1

to account for the fact that a species competes with itself. If K is the identity

matrix, then σi = Kiiρi = ρi and we, again, recover the logistic equation. It

is apparent that when ki = σi the capacity is equal to the competitive effects

and that species reaches equilibrium. If ki < σi then the species is out-competed

and declines. If ki > σi the species grows smoothly towards its, now reduced,

capacity. It is straight forward to add additional factors such as growth-decay

rates, immigration-emigration terms, and mutually cooperative-antagonistic in-

teractions; but they add little to the immediate exposition.

For the field ecologist, it is often not practical to derive the components of

k and K in Eq. (5.1) for the particular ecological community being observed.

Nevertheless, a lot of insight and intuition has been gleaned from formally study-
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5.1. Lymphocyte Ecology I

ing artificial ecologies where, for example, the values in K are chosen randomly.

Much of the seminal analytical work with this model has been able to elucidate

plausible conditions to achieve stability and robustness in ecological dynamics

from these synthetic models [80, 128, 129, 175, 153, 96]. We intend to follow this

approach in an immunological context. It seem apparent that determining k and

K is not going to be any easier for the immunologist1. We will only progress if

we follow in the ecologist’s footsteps and make do with synthetic data. What

makes our study different is that we will not use randomness as a model for

interactions, but will derive k and K based on explicit receptor and resource rep-

resentations. However, these representations will not be based on the classical

metric shape-space.

5.1.2 A Model of Ligand Binding

To understand our model of ligand binding, we recall the quote from Janeway in

Chapter 2. Rather than assume an n-dimensional binding parameter (or pattern

matching) space we will explicitly model epitopes as compound objects; that is,

as peptides localised on the surface of the tertiary structure of a protein.

Let us assume n possible such peptides. For example, an immunologically

plausible value for n might be 209, that is, all possible 9-mer configurations of the

20 amino acids. We will not enforce (or exclude) any further structure on these

peptides, which will allow us to abstract from computation and biology. We then

define the following

Definition 1. We abstract the complex surface of a protein as a square sym-

metric matrix P , where Pij represents the surface correlation of peptides i and j.

That is, we do not model the 3-dimensional shape of a protein, but rather provide

a statistical description of the surface of this shape. We will further assume that

these surface descriptions are additive, in which case individual surfaces can be

arbitrarily aggregated to describe compound structures Q =
∑

k P(k).

Definition 2. We model a clonotype identifying receptor ϕi as an n-dimensional

vector. Each component of ϕi quantifies some ability to bind with the correspond-

ing peptide but, crucially, most components will be assumed zero or negligible.

Recall, immunoglobulin does not bind to peptides, but to epitopes, thus binding is

a function of multiple peptides being correlated on the protein surface; which we

quantified in our previous definition. It will be convenient to set ‖ϕi‖2 = 1.

1An ecological model would not deny that capacity and competition are fundamental effects
driving population dynamics, even if they are difficult to quantify in practice. Compare this
with the immunological models of Chapter 2, where such effects are eerily absent.

61



5.1. Lymphocyte Ecology I

With the above definition of receptors and ligands, we can now derive the

necessary quantities to realise our competitive exclusion model of clonal selection

Definition 3. Our measure of affinity, or binding strength, is embodied in the

product 〈ϕi|P |ϕi〉, which measures the surface correlations on protein P of pep-

tides specific to the receptor ϕi. If P is a projection matrix, i.e. P 2 = P , then

affinity is the magnitude of ϕi in the subspace of Rn defined by P .

Definition 4. We can now define a clone’s capacity as the maximal induction

signal available – the sum of affinities to every protein in the environment. Due

to additivity, this is simply ki = 〈ϕi|Q|ϕi〉 =
∑

k

〈
ϕi|P(k)|ϕi

〉
. Note that capacity

is limited by antigen “supply” as well as receptor-ligand affinity.

Definition 5. Finally, we model competition between clones in terms of re-

ceptor overlap or receptor-receptor correlation 〈ϕi|ϕj〉. Notice that 〈ϕi|ϕj〉 = 1

when receptors are the same (i.e. of the same clonotype) and 〈ϕi|ϕj〉 = 0 when

there is no overlap. Thus the competitive effect on clone i is an aggregate mea-

sure of redundancy and competitor fitness σi =
∑

j〈ϕi|ϕj〉ρj, which includes a

clones “competition” with itself, 〈ϕi|ϕi〉ρi. We collect these correlations in a ma-

trix K that readily satisfies the conditions for Eq. (5.1). Notice that clones should

be understood to interact indirectly, through garnering resources that may have

otherwise been allocated elsewhere, rather than via receptor-receptor interactions.

5.1.3 Constructive Approximation

Classically, in biology and computer science, the immune repertoire has been por-

trayed as points “covering” the shape-space or a population exploring an affinity

landscape. Although this has allowed a pragmatic relationship to exist between

computer science and immunology, we have argued at length that it does not

allow for an effective relationship for either. In contrast, we assert the position

that, in a quite precise sense, the immune system constructs a representation of

its environment. That is, that the immune system approximates the environment

by means of clonotypes and their receptors.

Problem formalisation

The classical approximation problem formulation is to minimise the metric dis-

tance between a given vector or function x and its approximation x̃ chosen from

some set of elements. Of particular interest here will be additive expansions of

basis functions ϕi ∈ Φ such that
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x ≈ x̃ =
∑
i

αiϕi = Φα (5.2)

The classic metric of error is the `2 norm, leading to a least-squares problem

argmin
α
‖x− Φα‖2

2 (5.3)

which, if the columns of Φ form an orthonormal basis, has the convenient solution

α = ΦTx, that is, αi = 〈ϕi|x〉. In this case the approximation is exact and easy

to compute. But this convenience comes with two undesirable conditions:

1. The constraint of pairwise orthogonality severely limits the form (and amount)

of components in the additive expansion [37]. This makes representing

some signals extremely convoluted (e.g. representing a sharp, temporally

localised wave with periodic functions). This is also a problem when the

coefficients of ϕi are to be interpreted (e.g. representing data as a sum of

latent factors). In both cases, it is desirable to expand the number and

diversity of columns of Φ, resulting in redundant, overcomplete representa-

tions [5]. However, this results in a non-unique solution to Eq. (5.3).

2. Any least-squares solution to Eq. (5.3) will be dense, that is, every basis

will contribute to the approximation. In many domains, assuming sparsity

in the coefficients is either reasonable or highly desirable. For example,

in statistics, one might appeal to parsimony of the model (i.e. feature

selection); in signal processing, an appropriately chosen basis may induce

the representation coefficients to rapidly approach zero, allowing truncation

with little perceptible loss in reconstruction (i.e. lossy compression).

The ubiquity of these conditions leads to sparse approximation

argmin
α
‖α‖`p s.t. ‖x− Φα‖2

2 < ε (5.4)

Stated as an optimisation objective, Eq. (5.4) is essentially a regularised

variant of Eq. (5.3) that can be used to finesse the over-determined nature of

(1) and bias the solution of (2) towards extremal coefficient values. The primary

parameter is p, the norm used to constrain α. In principle, the sparsest solution

can be quantified using the `0 pseudo-norm, which counts the non-zero coefficients

in α. Unfortunately, its combinatorial nature makes Eq. (5.4) NP-Hard [140].
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function mp (x, Φ)
r = x
α = []
while ‖r‖2 > ε do

i = argmaxi〈ϕi|r〉
αi = 〈ϕi|r〉
r = r − αiϕi

end
return α

Algorithm 10: Matching Pursuit. Repeated subtraction of the bases most
correlated with the residual error. In the classification and regression setting,
variations on this algorithm are Least Angle Regression and `2-Boosting.

State of the art

Briefly, there have been two major thrusts at attacking this problem. Donoho [59]

was the first to show that the `0 and `1 solutions coincide when ‖α‖0 <
1+M−1

2
,

where M is the “coherence” of Φ defined as maxi 6=j〈ϕi|ϕj〉. Using the `1 norm,

it is (somewhat) straight forward to relax this combinatorial optimisation into a

quadratic program with linear equality constraints (see e.g. [176, 35]). In the

signal processing literature, this method is known as Basis Pursuit [36]; in statis-

tical learning, it is called the Lasso [172]. Unfortunately, this rigorous approach is

prohibitive computationally and scales very poorly, due to the contrived manner

in which the problem is recast as a linear program.

The second approach uses heuristic, greedy algorithms to construct a sparse

representation sequentially. Mallat and Zhang’s [120] Matching Pursuit algorithm

holds a special place in the literature. It is simple, intuitive, and has a rich history

within, and outside of, the field [146, 60, 76, 77]. We outline the procedure in

Alg. (10): the residual error r is repeatedly stripped of structure correlated with

bases until a stopping criterion is satisfied (e.g. number of chosen bases, norm

of the residual etc). In regression and classification problems, this approach is

known as Forward Stepwise Regression and `2-Boosting, respectively. A modern

variation on this idea, Least Angle Regression [63], avoids overly greedy steps

based on 〈ϕi|rt〉, favouring instead to increase αi until ϕi is no longer the most

correlated with r; at which point a “competing” predictor is introduced into

the representation. It is this notion of competition amongst predictors, bases or

classifiers that we wish to develop here, albeit without myopic greediness.
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5.2 Theoretical Analysis

We now demonstrate formally how the generalised Lotka-Volterra model, together

with our ligand binding model, is able to perform approximation of the environ-

ment. In order to ease our analysis and make the connection more explicit, we

will simplify our model of ligand binding from the matrix-based 〈ϕi|P |ϕi〉 to a

vectorial 〈ϕi|p〉. This simplification is justified because, in a data-analysis setting,

data are typically in vectorial form. To create our matrix “surface representation”

in this case, it is natural to use the outer-product |p〉〈p|, which correctly satisfies

the interpretation of measuring feature correlations. However, 〈ϕi|p〉〈p|ϕi〉 visibly

reduces to 〈ϕi|p〉2 and thus, we are simply using the square root of the matrix

representation in our simplified analysis. The square root preserves inequalities

and thus does not change the optimisation objective2.

5.2.1 Competition and Approximation

If our basis (or repertoire) matrix Φ were orthonormal, then by definition there

would be no competitive effects between clones. The dynamics of ρ smoothly

approaches equilibrium where ρi = ki = 〈ϕi|x〉, as would be expected from any

orthonormal system. For reasons discussed above, orthonormal bases are not de-

sirable in the applied computational (or biological modelling) setting, but giving

up orthogonality forces us to deal with redundancy and dependencies.

The key idea behind our formulation is to exploit a fundamental trade-off

that, although originally cast for competing species, can be readily mapped to

the regularised optimisation criteria of Eq. (5.4)

• Maximise capacity. Growth requires maximising correlation with envi-

ronmental resources (i.e. capacity). The ecological interpretation is obvious

enough; the approximation interpretation is that maximising capacity min-

imises reconstruction error in the approximation. If Φ has an element ϕi

that contributes greatly to the approximation, then giving this element as

much weight (αi or ρi) as possible improves the approximation.

• Minimise competition. Recall that competition is defined in our model

as receptor (basis) correlation. For a species of potential high capacity, if

many species are competing for similar resources then this capacity will

never be reached. However, a species of lesser capacity, that is also under

2However, the effect of squaring does encourage more extremal values, which carries addi-
tional practical benefits shown later but not relevent to our analysis here.
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less competition, may well prove more successful. In the approximation set-

ting, this translates to redundant, highly correlated clones facing exclusion,

driving Φ towards “almost orthogonality”. This both increases the spar-

sity and diversity of a representation. Notice that, in contrast to Donoho’s

coherence (and similar measures in the literature), we need not expect our

basis to satisfy “almost orthogonality” a priori. Rather, the competition

dynamics promote satisfaction in the context of individual approximations,

by culling redundant ϕi that fail to garner limited resources.

This intuitive description makes the relationship with the regularised optimi-

sation in Eq. (5.4) clear enough: maximising capacity has the effect of minimising

the squared error; minimising competition is effectively similar to minimising the

`p norm. We can more rigorously clarify the approximatory behaviour of the

repertoire using our simplified theoretical model, under which the numerators for

all species in the dynamical system Eq. (5.1) are written simultaneously as

k − σ = k −Kρ (5.5)

= Φ′x− Φ′Φρ

= Φ′(x− x̃)

which clearly reaches a steady-state when x = x̃ or when the residual error (x−x̃)

is in the null-space of Φ′. Notice that the competition vector σ = Φ′Φρ = Φ′x̃

is implicitly equivalent to clonotype capacity for the approximation x̃ =
∑
ρiϕi.

That is, a clonotype is penalised for being more correlated with x̃ than x. Notice

also, that Eq. (5.5) is essentially a restatement of the least-squares solution

ρ = (Φ′Φ)−1Φ′x, stated as (Φ′Φ)ρ = Φ′x. Rather than inverting a matrix we are

iterating Φ′Φρ. The logistic equation and dynamical system integration further

introduces non-linearity and “lag” into Eq. (5.1) and the stable configuration

is not the least-squares solution. The question is: how does the solution to the

dynamical model compare to those found by greedy and global optimisation?

5.2.2 Competition and the Greedy/Global Trade-Off

It should now be clear that we are iteratively solving the approximation problem

by integrating a dynamical system that has been crafted to have a sufficiently

appropriate steady-state. There is nothing offensively artificial about this craft-

ing; with the right representation, competitive exclusion simply takes over. We

now clarify how this strategy relates to greedy iterative methods.
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Let max(x) return the index of the maximum component in x, rather than

its value. Now observe that in Matching Pursuit (Alg. 10) the index i1 in the

first iteration will be max(Φ′x), simply because r0 = x. On the second iteration

i2 = max(Φ′r1)

= max(Φ′(x− 〈ϕi1|x〉ϕi1))

= max(Φ′x− 〈ϕi1|x〉Φ′ϕi1)

= max(k − 〈ϕi1|x〉Ki1)

where Ki1 refers to the i1 column of K. In general, we have

it+1 = max(k −
t∑

j=1

〈ϕit |x〉Kit) (5.6)

= max(kt)

where kt = kt−1 − 〈ϕit|x〉Kit . What this derivation makes explicit is the implicit

role that inter-basis correlation plays in the evolution of the Alg. (10). When

a basis ϕit is selected, those correlated with it suffer a drop in their capacity

proportional to their correlation with the signal in the subspace of ϕit

kj(t+1) = kj(t) − 〈ϕj|ϕit〉〈ϕit|x〉 (5.7)

Crucially, notice that we are now dealing solely the same quantities used in

Eq. (5.1) – capacity and competition. If we expand Eq. (5.5) as

k −Kρ = k −
∑
j∈Φ

ρjKj (5.8)

then it becomes clear that, while Alg. (10) greedily sums over the current se-

lections weighting by their maximal coefficient values (Eq. 5.6), in contrast,

competitive exclusion sums over all dictionary atoms, weighting by their current

coefficient values ρi. The rest of Eq. (5.1) simply provides an update rule to have

ρi → ki, subject to competitive effects.

So, in contrast to the myopic selective process of Matching Pursuit, Eq. (5.1)

uses a more informed eliminatory process, competitive exclusion, while evolving

population coefficients. This carries an obvious computational cost above that of

greedy approximation, the reality of which will become clear in Sect. 5.4. The
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5.2. Theoretical Analysis

only point to be made here is that, if one needs to consider an environment that is

changing, rather than a static “signal”, then both greedy and global optimisation

will require recomputation on a regular basis, whereas the competition dynamics

adapt in a timely manner with no additional logic required.

5.2.3 Computational Complexity

Ostensibly, the space complexity of our dynamical system is dominated by O(n2)

for representing an n-dimensional surface environment; and O(|Φ|2) for represent-

ing the competition matrix K. A saving grace is that, in practice, both of these

matrices can be safely assumed to be sparse – that is, most components are zero.

The actual space cost will be significantly less given an intelligent sparse matrix

implementation, how much so depending on the density of the matrices. In time,

k and K can be calculated a priori and their cost ameliorated over the entire

execution, which is dominated by calculating σ = Kρ to be of order O(|Φ|2),

but again, the sparsity of K will determine the actual cost. This calculation is

performed for each time-step of the algorithm until reaching steady-state, which

could be a non-trivial multiplicative factor. However, a detail not exploited here

is that because our “algorithm” is in fact a dynamical system, the integration till

steady-state can (and should) be handled by a standard ODE solver, which will

incorporate more sophisticated and highly optimised execution strategies than

Euler’s method employed here (see e.g. [26]). The potential computational sav-

ing here is literally massive. The reason we do not take advantage of this now is

the development convenience of controlling the integration method.

The cost of search

For massive Φ, simulating the entire repertoire is not only computationally im-

practical, but is biologically implausible too. The immune system finesses such

physical constraints through a mixture of unbiased random receptor generation

in the bone marrow, and biased localised search due to affinity maturation. This

translates computationally to allocating a fixed-size repertoire Φ̃ ⊂ Φ where

|Φ̃| � |Φ| and then exploiting exclusion and random search to develop a suffi-

ciently expressive Φ̃ over time. This is a natural extension of our model, which is

easily integrated into Eq. (5.1) and can draw upon existing research in both AIS

and evolutionary dynamics. We will only briefly touch on this in Sect. 5.4.3. Here

we present a simple combinatorial analysis of the complexity of such a search for

an expressive immune repertoire. The main purpose is to compare this search

cost against that of the traditional shape-space. A caveat is that this combina-
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5.3. Dynamic Pursuit for approximation

torial perspective restricts the generality of our notion of receptors as subspaces;

but it is a good place to start.

• Worst-case search

Assume that an immunoglobulin can recognise c nearby surface peptides.

Thus, we can expect a search space of the order O
(
n
c

)
for the repertoire

of the immune system. In the worst case, this scales polynomially in the

dimension n, O(nc). To show this, observe that given n! < nc(n − c)! it

then follows that

(
n

c

)
=

n!

c!(n− c)!
≤ nc(n− c)!

c!(n− c)!
=
nc

c!
≤ nc (5.9)

Contrast this with the traditional shape-space, where the search was expo-

nential in the dimension O(cn), for a different constant c but the same value

of n. Note that this worst case bound is only incurred if each peptide is

uniformly likely to appear close to another. This does not hold in both the

biological and statistical context, because redundancy is rife in meaningful

environments. It is this redundancy that makes learning possible [69].

• Average case search

Lacking the inherent parallelism of the biological substrate, generating 106

receptors per day in a repertoire of order 1012 is not something we can hope

to simulate in silico. However, it is apparent that the immune system is

grossly inefficient insomuch as almost all generated lymphocytes will never

bind antigen and will die by apoptosis. Simulating this aspect of the im-

munology carries no obvious benefit and, unlike the in vivo system, we can

use information in the surface matrix Q to generate a priori competitive

immunoglobulin. Treating Q as an adjacency matrix, let us state that each

node has, on average, z neighbours. It then follows that to generate a c-

sized immunoglobulin requires n choices for the first peptide, and zc−1 for

the remainder. Thus the complexity of our search is reduced to O(nzc−1).

It is safe to assume that z � n. If Q is sparse, z may be very small indeed.

5.3 Dynamic Pursuit for approximation

We dub our competitive exclusion model of approximation Dynamic Pursuit in

reference to traditional sequential pursuit algorithms and its differentiation as
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5.3. Dynamic Pursuit for approximation

function dp (x, Φ)
k = ΦTx
K = ΦTΦ
ρ = init(x,Φ)
while ‖ρt−1 − ρt‖2 > ε do

for ϕi ∈ Φ do

ρi = ρi + ∆
(
ki−(Kρ)i

ki

)
ρi

end

end
return ρ

Algorithm 11: Dynamic Pursuit. Signal representation is the stable configu-
ration of the clonotype populations, i.e. basis coefficients.

a dynamical system. The pseudo-code is provided in Alg. (11). The only pa-

rameters of the algorithm are those used to control the integration by Euler’s

method: the fixed step-size ∆ and the minimum change in population ε to detect

steady-state. These were set at 0.1 and 0.0001, respectively, as these values gave

a reasonable trade-off in numerical accuracy and algorithmic performance.

We also include a number of simple optimisations, not shown in Alg. (11):

• Whenever a sufficient number of clones have been out-competed to extinc-

tion, we resize Φ, K and k. This simply avoids redundant calculations that

would result in zero values. We perform this operation whenever more than

25% of the population has been excluded since the last resize.

• All species are initialised with the same population magnitude. Ideally, this

value would be something intuitive like |Φ|−1, but in practice, a good value

depends on the minimum coefficient value that would be accepted as not

noise; that is, it depends on properties of the signals being approximated

and the basis used for approximation. We finesse this problem during ini-

tialisation by scaling the population so that ki = σi for the lowest capacity

species. That is, the weakest species will be stable in the first iteration,

before being out-competed as other species begin to grow. This heuristic

simply gets the population to roughly the correct scale. Too small an initial

population produces inefficient “burn-in” dynamics of uniform exponential

growth until competitive pressure begins to be exerted.

We experimented with various ad-hoc algorithmic modifications that will not

be reported here. Empirical improvement was inconclusive and detracted from the

elegance of the basic idea. In what follows we will assess our proposed receptor-

ligand capacity measure 〈ϕi|X|ϕi〉 and the analytical simplification 〈ϕi|x〉.
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5.4. Empirical Validation

5.4 Empirical Validation

5.4.1 Protocol

In the following experiments we follow a standard protocol: generate noisy, syn-

thetic signals from a given over-complete “basis” (described below); then approx-

imate each signal using greedy Matching Pursuit, global Basis Pursuit and our

proposed competitive exclusion based algorithm, which we dub Dynamic Pursuit.

For each algorithm, we record the summary statistics (max, min, quartiles, mean

and variance) averaged over 100 signals for the metrics

• Sparsity: number of non-zeros components ‖α‖0.

• CPU: time to produce a representation.

• Reconstruction Error: ‖x− Φα‖2
2

• Synthetic Error: ‖β − α‖2
2, described below.

Bases and signal generation

In a typical signal processing application, where these techniques originate, there

is a stock collection of (almost) orthonormal bases that can be aggregated to

create a non-orthogonal basis, or so-called “dictionary”, such as the Fourier basis,

Wavelet basis, Haar basis and so on. Thus, non-orthogonality in these cases

is rather mild; the result of using more than one orthogonal basis. There are

several problems with using these bases in our experiments. First, they do not

properly reflect our ligand-binding abstraction. Second, they make extensive use

of negative values, in both basis components and coefficients. This can result in

either negative populations or negative competition coefficients, both of which

are biologically implausible. These issues can be addressed3 but to minimise

ad-hocery we prefer the following procedure

(1) Generate Φ as an n×m matrix where each entry is set to non-zero with some

probability p. Thus, each basis vector has randomly assigned positive entries.

Each basis is then normalised so that ‖ϕi‖2 = 1.

(2) Generate signals xi as a sparse linear combination of s randomly chosen basis

vectors in Φ, with randomly chosen coefficients βi ∈ [0,max]. Each signal is

then corrupted with Gaussian noise to add realism.

3For example, by doubling the size of Φ to include −Φ then if ϕi has a negative coefficient,
−ϕi will have a positive coefficient. To deal with negative competition coefficients in K one
might simply set all Kij < 0 to 0. But such tricks confound and complicate our study.
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(a) Matching Pursuit
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Figure 5.1: Illustration of differences in synthetic error for Matching Pursuit
and Basis Pursuit, which both achieve the same reconstruction error for this
problem. Each bar on the x-axis represents a basis. Light (yellow) background
bars represent each bases correlation with a signal. Heavy (blue) foreground bars
represent coefficients α selected for approximation. Dots (red) represent actual
coefficients β used in the signal generation process.

Note that the generation of Φ in the first step is quite arbitrary, but should

have little effect on algorithm performance when approximating signals that have

been generated from the same basis used for the approximation procedure. The

second step is standard protocol, regardless of how Φ is produced.

Reconstruction and synthetic errors

Squared reconstruction error is the de facto metric in these types of experiments.

However, reconstruction error is only a proxy measure implying that the algorithm

has found a good representation. When using synthetic signals it is possible to

measure the actual error in representation, that is, the error in selected coefficients

and their magnitude. We refer to this as Synthetic Error : ‖β − α‖2
2 where β

denotes the coefficients used to generate the synthetic datum. In contrast to pure

approximation, this metric can be important when the bases have application-

specific meaning and their coefficients are to be interpreted, which is often the

case in practice. This issue is illustrated further in Fig. 5.1, where two algorithms,

both achieving the same reconstruction error, have produced representations with

quite different synthetic errors, one clearly superior to the other.

5.4.2 Comparison with state of the art

In Figure 5.2 we graph the performance of the algorithms in approximating 100-

dimensional signals, each sparsely generated from 10 bases selected at random
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from a 1000 element basis. We include two variants of our algorithm: dp repre-

sents the simplified model used in our theoretical analysis; dp2 uses the outer-

product matrix representation of signals |x〉〈x|. It can be seen that the former

is more accurate, but slower and denser. The latter is faster and sparser. Notice

that the difference between variants in terms of synthetic error is negligible. The

density of representation in dp can be explained by retaining many low coefficient

(population) bases (clonotypes). In contrast, the extremising effect of squaring

on capacity makes it harder for low population clones to survive. This is benefi-

cial, because these low population clones are modelling the Gaussian noise, not

the underlying structure of the signal.

In terms of CPU efficiency, integrating dynamics (dp) will always be computa-

tionally more demanding than greedy approximation (mp), though the difference

is not as large as one might expect; even when using the inefficient Euler’s method

of integration. More importantly, it is significantly more efficient than perform-

ing optimisation by linear programming. Basis Pursuit’s CPU time was over 200

seconds and is well outside the bounds of this graph. It is also interesting to note

that in all other respects dp performs similarly to bp, but at a fraction of the

computational effort in both time and space.

Matching Pursuit achieves the lowest reconstruction error, but it does so at

a significant cost to synthetic error and sparsity (recall Fig. 5.1(a)). Matching

Pursuit, Basis Pursuit and our own algorithm without quadratic capacity all

significantly under -estimate the true sparsity (i.e. 10), employing between 60

and 90 bases. In contrast, the quadratic capacity version of our algorithm is able

to drive the sparsity down to around 20. The cost here is a notable increase in

reconstruction error which, as we explained above, is in part caused by failing to

model the Gaussian noise. The slight variance in synthetic error seems acceptable.

5.4.3 Comparison with a constrained repertoire

We now compare the basic dynamic pursuit implementation, which integrates the

entire repertoire, to one that maintains a fixed-size repertoire Φ̃ ⊂ Φ. The goal

is to ensure that our results do not depend on the rather unrealistic assumption

that the entire repertoire is available and initialised with uniform population.

Implementing the affinity maturation aspect of clonal selection would require ex-

ploring and justifying somewhat arbitrary decisions on mutation and local search

strategies. Instead we simply extend Alg. (11) so that clones in Φ̃ with negligible

population (i.e. coefficients) are replaced by random samples from Φ. We explore

two sampling strategies
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1. With Replacement. Samples are selected uniformly at random from the

columns of Φ. The same clonotype may be sampled more than once.

2. Without Replacement. Samples are selected uniformly at random from

the columns of Φ but the same clonotype may not be resampled.

In Figure 5.3 we demonstrate the effect of sampling on the same metrics

and signals used in Sect. 5.4.2 when using a fixed-size |Φ̃| = 100 for |Φ| =

{100, 1000, 10000}. It is apparent that any negative effects are contained to sam-

pling with replacement (with), which in the case of |Φ| = 10000 takes longer

to reach steady-state and suffers notable variance in sparsity. Sampling with

replacement is computationally easier to achieve, but would seem less biologi-

cally plausible. The general robustness of sampling can be explained because

Φ is redundant. The algorithm has no preference for which ϕi makes it into a

representation, other than it be fit enough to compete; the population dynamics

then adjusts the representation as necessary. One would expect any additional

local search via “mutation” to improve on the results presented here.

5.5 Conclusion

We have introduced a more biologically plausible abstraction of ligand binding

and shown how this abstraction, coupled with ecological competition dynamics,

is effective: as a qualitative model of the clonal selection; as a quantifiable inter-

pretation of constructive representation learning; and as an applied method for

solving sparse approximation problems. The fundamental conceptual shift was to

understand the immune repertoire as performing approximation of the environ-

ment via an additive expansion of basis (receptors) and their coefficients (clono-

type population). Once properly formulated, the competition dynamics cannot

“help”, so to speak, but to perform such an approximation. This competition

dynamic addresses many of the criticisms raised against existing clonal selection

algorithms in earlier chapters: where the notion of clonotype is absent; emphasis

is on ad hoc selection rather than principled exclusion; interactions are defined

based on implausible immune network metaphors; and the model of receptor-

ligand interactions is based on the traditional metric shape-space. In the next

chapter, we extend this basic lymphocyte ecology towards immunological models

of self/non-self discrimination.
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Figure 5.2: Approximation results for greedy Matching Pursuit (mp), global Basis
Pursuit (bp) and two variants of our competitive exclusion algorithm (dp and
dp2) that represent our simplified theoretical model and actual proposed model,
respectively. See text for discussion.
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Figure 5.3: Degradation in dp performance when it is constrained to use a fixed-
size repertoire that is only a subset of the basis used to generate the data. As
basis coefficients become negligible they are replaced with random samples from
the full basis, both with and without replacement. The ratio refers to the fixed
size of the repertoire (100) divided by the full size of Φ.
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Chapter 6

A Systemic Two-signal Model of

Decision Making

We may find a more reasonable analogy between language

and the immune system, by regarding a given antibody not

as a word; but as a sentence or phrase.

N. K. Jerne

The meaning of a word is its use in the language.

Wittgenstein

Having developed the necessary methods to describe representation learning

in the immune system as an approximation problem, we now extend this approxi-

mation framework to encompass decision making. The essential difference is that

we are now approximating an unknown function of our signal θ = f(x), rather

than approximating x itself. Our derivation for the immunological form of f(·)
may offer some insight into the role and sufficiency of immunological components.

6.1 Lymphocyte Ecology II

Although the ecological dynamics of the previous chapter are plausible with re-

spect to clonal selection, clonal selection does not in itself explain self/non-self

discrimination – indeed, it cannot because it makes no semantic distinction be-

tween different antigen. Of the remaining theories in Chapter 2, there is one

particular dichotomy we hope to offer some relief from. With the exception of

Janeway and Matzinger’s theories, none of the models have clear semantics for

what would make up a self or non-self response. However, both Janeway and
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Matzinger’s theories rely on the notion that an evolutionarily ancient, germline

encoded immune system is responsible for self/non-self discrimination and the

“switch” for the adaptive response. Although Carneiro et al. assert the im-

portance of holistic dynamics over a reductionist switch, the dynamics of the

cross-regulation model are once again ambiguous to the semantics of the self/non-

self distinction. In principle, we are seeking both proper semantics and systemic

“switch free” effects. In practice, the numerical methods underlying statistical

inference can provide us with that.

6.1.1 Revisiting the alpha and omega

Recall, in Chapter 3 we derived a dual-like relationship between the nearest neigh-

bour and linear regression models of learning. We will now reverse that derivation,

introduce irreversible non-linearity and move away from locality-based shape-

space models of immune decision making.

Recall also, the form of the linear classifier. Given a column matrix X of

observations and an accompanying vector θ of class labels θi ∈ [−1, 1], we have

f = argmin ‖θ −X ′f‖2
2 (6.1)

= (X+)′θ

= (XX ′)−1
k Xθ

= G−1
k f̃

where we have collected the terms G = (XX ′) =
∑

i |xi〉〈xi| and f̃ = Xθ =∑
i θixi for presentational convenience. Now, given an unobserved x̂ the linear

decision function predicts

θ̂ = f(x̂) (6.2)

= 〈x̂|f〉

=
〈
x̂|G−1

k |f̃
〉

with the decision boundary lying orthogonal to f , i.e. where 〈x̂|f〉 = 0. From a

numerical computing perspective, the major transformational effect and compu-

tational cost is the inversion of G, which we turn to now.
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The spectral theorem

The famous Spectral Theorem [12] states that G can be decomposed1 as a super-

position of basis vectors

G = ΦΛΦ′ =
∑
i

λi|ϕi〉〈ϕi| (6.3)

where the basis vectors ϕi are the eigenvectors of G and the λi coefficients are

their accompanying eigenvalues. The significance of the eigen-decomposition is

that it is the only factorisation that diagonalises Λ, in effect, decoupling all of

the factors. This occurs because, in addition to being an orthonormal basis, the

eigenvectors are the invariant subspaces of the vector space spanned by G – that

is, multiplication Gϕi does not change the direction ϕi points in. This somewhat

magical property is exploited throughout applied mathematics for a multitude of

reasons. The relevant reason here is that factorising G greatly simplifies math-

ematical operations on G such that for some functions f(G) = Φf(Λ)Φ′ and Λ

behaves algebraically similar to a scalar, because it is a diagonal matrix.

One such function is inversion, that is G−1
k = ΦΛ−1Φ′. Inversion of a diagonal

matrix (unlike any other type of matrix) is simply the scalar inversion of its

diagonal components, thus

G−1
k = ΦΛ−1Φ′ =

k∑
i

1

λi
|ϕi〉〈ϕi| (6.4)

Now, substituting Eq. (6.4) into Eq. (6.2) we can derive a mathematically

equivalent, but semantically quite different, interpretation of the linear classifier

based on its numerical, rather than algebraic, solution

θ̂ =
〈
x̂|G−1

k |f̃
〉

=

〈
x̂|
∑
i

1

λi
|ϕi〉〈ϕi||f̃

〉
=

∑
i

1

λi
〈x̂|ϕi〉

〈
ϕi|f̃

〉

=
∑
i

〈x̂|ϕi〉
〈
ϕi|f̃

〉
〈ϕi|G|ϕi〉

(6.5)

1In more detail, G must satisfy certain conditions to be diagonalisable. In our case these
conditions are immediately satisfied by virtue of G being the product of a positive matrix X
with its transpose X ′, thus rendering G both non-negative Gi,j ≥ 0 and symmetric Gi,j = Gj,i.
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where λi = 〈ϕi|G|ϕi〉. Equation (6.5) shows us that the classification decision of

the linear classifier is the integration of three key measures of information about

each basis vector ; each of which is a coefficient of correlation or approximatory

capacity. Notice that 〈ϕi|G|ϕi〉 appears in the denominator, thus eigenvectors

with large eigenvalues – the most important in terms of reconstructing X and

G – are weighted less in the classification decision. Statisticians call this inverse

relationship between representational power and discriminatory power precision.

6.1.2 A model of systemic response

The conceptual leap from a statistical model of linear functional relationships to

a non-linear dynamical model of an immune response now rests upon two very

simple ideas:

1. A change of basis. For the same reasons discussed in the previous chap-

ter, an orthonormal basis is only desirable from a platonic mathematical

point of view. For solving computational problems in applied mathematics,

a redundant overcomplete “basis” can be highly desirable. Thus, we reinter-

pret the ϕi in Eq. (6.5) as arbitrary basis vectors or functions. Recall, only

the eigenvectors satisfy Eq. (6.4) but, using an argument similar to that for

justifying nearest-neighbour decisions (Chapter 3), we assert that this tech-

nical omission can be ignored if the benefits of expanding Φ offset any costs

in inaccurately approximating G−1. For classification, this is entirely plau-

sible as approximation errors do not necessarily imply classification errors

– e.g. only the sign of the decision needs to be correct.

2. Resolve dependencies. The consequence of no-longer using an orthonor-

mal Φ is that bases become dependent. We solve this using exactly the same

technique employed in the last chapter. With a slight abuse of notation, let

each 〈·〉 in Eq. (6.5) be upper-bounded by the value of the inner-product.

That is, this upper-bound is the capacity of ϕi. The actual value 〈·〉 takes

will be the equilibrium population emerging from competition dynamics.

Using the notation ϕi(x) to represent the steady-state population of species i in

approximating the signal x, we now rewrite Eq. (6.5) as

θ̂ = f(x̂)

=
∑
ϕi∈Φ

ϕi(x̂)ϕi(f̃)

ϕi(G)
(6.6)
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which, as in Eq. (6.5), states that the immune response is the integration across

the repertoire of three key pieces of information about the fitness of each clonotype

in competing for (i.e. approximating) three different environmental resources.

Definition 6. We refer to x̂ as the Target as it is the object that the response

is being directed against. Notice that it is an arbitrary compound object – not an

antigen or epitope – best described, again, by a surface representation. General-

ising the vector x̂ to |x̂〉〈x̂| or some other matrix X̂ is easily done.

Definition 7. As in Chapter 5, we refer to G =
∑

i |xi〉〈xi| as the Environ-

ment, that is, the sum of protein surface descriptions. Notice that Eq. (6.5)

and (6.6) make no explicit reference to individual observation vectors xi. A more

general matrix or graph-based surface description may be introduced.

Definition 8. We refer to f̃ as the Context because the components of f̃ =

Xθ =
∑

i θixi represent the bias of each dimension towards a positive or negative

response. Again, there is no explicit reference in Eq. (6.5) and (6.6) to obser-

vations xi and their labels θi. That is, the “learning from examples” protocol is

only implied. To avoid negative quantities, it will be convenient to expand f̃ as

f̃ =

(∑
θi>0

xi

)
−

∑
θj<0

xj

 = f̃+ − f̃− (6.7)

though we will use f̃ notation when the distinction is not important.

Given these definitions, then under Eq. 6.6 the response θ̂ is the integration

of individual clonotype responses; where each response is a function of competi-

tiveness in garnering resources from the environment, the target and the context.

Following the immunological models of Chapter 2 we will refer to both ϕi(x̂) and

ϕi(G) as signal one because this is, quite precisely, what they represent: a clono-

types ability to garner binding sites on surfaces of the target and in the general

antigenic environment, respectively. The context ϕi(f̃) requires some additional

justification, which we provide now.

6.1.3 A two-signal systemic response

A fundamental property of the two-signal models in Chapter 2 is that they all

involve feedback based on either

• The presence or absence of activated T-Helper cells

• The ratio of T-Effector to T-Regulatory cells
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• The presence of Danger or PAMP “signals” during antigen presentation

Notice that, regardless of the proposed mechanism, each of these second sig-

nals is based on (fragments of) peptides – the unit of interaction for T-cells and

antigen presenting cells. Thus, signal two in either of its forms is directed at pep-

tides, not epitopes, which is ultimately what antibody bind to. Now, because our

representational abstraction makes the distinction between peptides and epitopes,

we are able to represent this different granularity of feedback.

In the definition of context above, we have already shown that the statistical

role of f̃ is to encode the correlation of X and θ: each f̃i represents the bias of

the i’th component towards one response or the other. In our systemic model,

each f̃i represents a particular peptide, so context is functionally equivalent to

all of the above immunological descriptions. Because of the structural similarity

of this aspect of the immunological models, we have some freedom in how to

interpret f̃ . Each f̃i may represent a T-cell clonotype that favours one response

over another, e.g. activated or anergised, effector or regulator etc. Similarly, each

f̃i may represent the sum of antigen presenting cell profiles with the presence

or absence of co-stimulation derived from danger signals, pathogen associated

molecular patterns, and so on. Regardless of the interpretation, assuming these

effects are additive the net effect will be the same – f̃ – and the ability of induced

B-cells to garner signal two is encoded in ϕi(f̃). There are some caveats:

1. We are assuming that B-cells only receive a second signal from T-cells that

bind to the same peptides that make up a B-cell receptor epitope. This

is of course a simplification of the biology: B-cells interact with T-cells by

presenting peptides derived from matter endocytosed during binding [164].

This would presumably include cognate peptides, but not exclusively.

2. We are ignoring that T-cell receptors are themselves highly degenerate. This

“one T-cell per peptide” model is again a simplification of the underlying

biology. More elaborate T-cell representations could readily be incorporated

into this basic model, but we will not do so here.

3. For completeness, by defining θ ∈ [−1,+1] we are assuming the presence

of pro- and anti-response forces. This matches the theoretical immunology

but it would also be possible to consider θ ∈ [0, 1].

To a first approximation, the biological simplifications would seem acceptable.

Given that we are not aware of any model in the literature that includes a multi-

level response with T-cell/B-cell ligand distinction, this basic abstraction may

still yield insights that immunological sophistication can be built upon.
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6.2 The Statistical Immune Response

The fundamental concept behind our formulation of systemic decision making

was to recast it as another form of approximation. Equation (6.6) has allowed us

to abstract quite a lot from the immunology, but we had to trade off a closed form

mathematical solution to the decision-making problem for an approximation with

no real guarantees about solution quality. Here we try to strengthen Eq. (6.6) by

revisiting the boosting methodology of Chapter 3. We first motivate this with a

statistical analysis that may also offer immunological insight into the roles of the

innate “reductionist switch” and the adaptive “holistic dynamics” of Chapter 2.

6.2.1 The role of Danger as “switch”

It follows quite directly from Eq. (6.6) that decisions at the peptide level may not

be, in a statistical sense, sufficiently discriminatory. Consider some bio-chemical

compound structure, of unknown “self/nonself-ness”, statistically described as a

vector x. That is, xi quantifies the amount of i’th peptide that could be scavenged

and appear on the surface of antigen presenting cells. For any given context, a

peptide-specific response to this structure would be the integration of the bias of

peptides in this structure towards pro- or anti-response, e.g.

θ̂ = f(x) =
∑
i

g(xi)g(f̃i) ≈
∑
i

xif̃i (6.8)

where g(·) represents the complex extra-cellular and intra-cellular processes that

result in peptides being phagocytosed and presenting on cell surfaces. Assuming

this is roughly the same for all peptides, the approximation in Eq. (6.8) seems

reasonable2. Statistically speaking, this produces a very particular kind of linear

decision boundary (Fig. 6.1) with the following properties

• The classes self and non-self should be separable orthogonally to the mean

observation. That is, the decision boundary lies orthogonal to the difference

vector f̃ = f̃+ − f̃− and self/non-self discrimination requires that classes

lie on opposite sides of this boundary. This only occurs if a pathogen’s

peptides occur more than average in the context of danger and less than

average in the context of non-danger, or vice-versa.

2In fact, this is not the same for all peptides (see e.g. [50]) but there is no semantic distinction
in the differences of peptide egression rates, so our approximation still seems valid.
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• Peptides that occur more than (or less than) average in the context danger

and non-danger are not discriminatory unless the decision boundary can be

translated from the origin. This is equivalent to a decision boundary where

〈f |·〉 = γ for some threshold γ.

• The classes self and non-self should have similar variance characteristics.

This is simply because there is no way to adjust for variance using only f̃ .

These are fairly mundane statistical criteria. More subtle issues arise in deter-

mining how the immune system might meet them. For example, the assumption

that the response must cross a threshold γ seems innocuous enough. But how

the immune system could learn that threshold is not clear. This is a function of

the distributions of self and non-self and thus the immunological mechanisms

of Chapter 2 are moot on this point. The assumption of equal class variance

is, of course, questionable; but a more pressing issue is that Eq. (6.8) implic-

itly requires the class distribution of self and non-self to be equal – which is

certainly false. The issue here is the effects of class skew, which effects the deci-

sion slightly differently whether f̃ = f̃+ − f̃− is interpreted as the difference in

class-conditional means, or the difference in class-conditional sums, of the obser-

vations. Skew in the class distribution will bias class-conditional sums towards

the majority class and θ̂ towards a majority class constant decision. In contrast,

the class conditional means may be skewed in the other direction, because the

minority class will have a smaller denominator.

Note that these are not just technical arguments: any transformation f̃ → f ∗

requires additional information – such as peptide-peptide correlations – that may

not be plausibly available to T-cells, antigen presenting cells, or any other peptide-

specific component.

6.2.2 The role of systemic response

The systemic response model in Eq. (6.6) incorporates the danger-based “switch”

element, but does not allow it to fully dictate the response. We now consider

what our statistical perspective suggests the adaptive immune system contributes

beyond the simpler and evolutionarily ancient innate system.

Sub-optimal decisions in more expressive spaces

The most obvious improvement is representational. Rather than represent bio-

chemical compound structures of unknown “self/nonself-ness” in peptide-space,

the receptor-space representation is (i) a projection into Φ space, where |Φ| may
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Figure 6.1: The geometry of linear decision functions. The decision boundary
(red) produced by a response such as Eq. (6.8) only separates classes that occur
in a very particular configuration (top). Other configurations (bottom) can be
finessed by the introduction of a threshold γ, but the optimal value for this
threshold must be learnt from the data and depends on class variance.
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Figure 6.2: A conceptual diagram illustrating how the mathematical quantities
in Eq. (6.6) and immunological components of Chapter 2 relate to each other.
B-cell clonotypes ϕi compete over epitope binding sites G and x̂ and a second
peptide-specific second signal derived from T-cell/APC interactions f̃ . As in
the statistical setting, f̃ encodes how individual peptides (i.e features) bias the
response towards a particular decision. However, the systemic response is epitope
driven. This provides a larger, synthetic feature space where the competition
dynamics provide non-linearity and subsequent feature reduction by exclusion.
The mathematical and biological realisations of f̃ , G and x̂ are quite flexible,
with the exception that the former is a peptide-specific signal and the latter are
epitope-specific signals based on peptide surface correlations.
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be very large indeed, and (ii) the subsequent reduction in the representation as

a result of competitive exclusion dynamics. Thus, the systemic response both

expands the dimensionality by feature generation from the original representa-

tion; and performs a reduction in dimensionality by feature selection on the new

representation. The competition dynamics make this transformation non-linear

and “adaptive” in the sense that a representation is approximant specific3. Alone,

this change of representation could, in principle, be sufficient to allow even a sub-

optimal linear decision in receptor-space better linear decisions in peptide-space4.

The interpretation of context: precision and tolerance

Even if one accepts the mapping between statistical and immunological compo-

nents, it remains to assert why the systemic response would take the mathemat-

ical form of Eq. (6.6). The answer is straight forward and best understood by

rearranging the equation

θ̂ =
∑
ϕi∈Φ

ϕi(f̃)

ϕi(G)
ϕi(x̂) =

∑
ϕi∈Φ

αiϕi(x̂) (6.9)

That is, a clone’s response is proportional to its competitiveness for the target.

This proportion αi is the distribution of signal two amongst those members that

have achieved signal one. Although a simplification of the underlying biology,

this is an intuitive statement that follows logically from the two-signal models.

Understanding how this ratio can be realised gives some insight into the statisti-

cal and immunological effects of Eq. (6.6). Notice that a receptor’s contribution

to the response is no longer in absolute value. An ostensibly small difference in

ϕi(f̃
+)−ϕi(f̃−) will be weighted more if ϕi(G) is also small. Likewise, ostensibly

large differences will be weighted less if ϕi(G) is also very large. Further, osten-

sibly low differences with large ϕi(G) will be penalised: proliferate epitopes with

little discriminatory power contribute less to the response, even if the difference

in class-bias is relatively large in absolute terms. The final permutation is where

ϕi(f̃
+)−ϕi(f̃−) is large and ϕi(G) is small, suggesting a clonotype that has much

more available signal two than signal one. This may represent clonotypes that

are highly effective latecomers to a response, or perhaps low population resting

memory clones. Such a contribution to the response would be weighted more.

Figure 6.3 illustrates the presence of this effect in a simulated response.

3This is the mathematical, rather than biological, meaning of the word “adaptive”.
4The efficacy of this would depend on how clonotype capacity was defined as a function

of epitope representation. In practice, the algebraic formulation introduced here is formally
convenient but unlikely to be that effective, but it is a good starting point for developing
immunological and mathematical sophistication.
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Figure 6.3: An empirical target response from a repertoire of 300 clones. Clones
are ranked by magnitude of response in each graph. Top: The response of

each clone. Middle: The absolute bias of each clone: abs
(
ϕi(f̃+)− ϕi(f̃−)

)
.

Bottom: The unconditional fitness of each clone ϕi(G). The effect of this
appearing in the denominator of Eq. (6.6) is that high magnitude responses are
not necessarily the product of clones with the greatest concentration or bias.
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It is insightful to briefly consider the other possible rearrangement of Eq. (6.6)

θ̂ =
∑
ϕi∈Φ

ϕi(x̂)

ϕi(G)
ϕi(f̃) =

∑
ϕi∈Φ

αiϕi(f̃) (6.10)

Regardless of a clonotypes ability to garner signal two its contribution to a

response can be radically reweighted depending on the ratio of target to environ-

ment competitiveness for signal one. Again, high environment competitiveness

leads to a lower weighted response: this is the inverse relationship between rep-

resentational power and discriminatory power alluded to earlier. Equation (6.10)

suggests that high target competitiveness and low environment competitiveness

maximises the response weight of a clonotype. That is, highly specific responses

to less abundant epitopes.

A corollary to both of these interpretations is that, because ϕi(G) appears

in the denominator, the sheer abundance of self-epitopes provides its own to-

lerising effect. Even if for some self-epitopes, the context wrongly suggests

p(non-self) > p(self), which might be expected to occur transiently during a

response, the abundance of ϕi(G) epitopes will keep the weight of associated

clonotypes responses low. This is by no means an explanation of tolerance, but

of all the assumptions that could be made about self-epitopes, that they are abun-

dant would seem the least questionable. An immune system that habituates, in

a sense, to the continual presentation of self, even when presented in the context

of danger, offers a less assumptive alternative to Matzinger’s explanation of why

danger does not have the side-effect of overt autoimmunity (e.g. [127]).

The strength of any particular clonotype response is a trade off between pathogen

specificity, epitope abundance and discriminatory bias. The fundamental mech-

anism that induces this trade off is the distribution of signal two amongst cells

achieving signal one. This is biologically plausible, immunologically functional

and, though not statistically optimal, is statistically sound. This leads us to the

question that opened this section: is this enough to ensure “correct” responses?

6.2.3 “Boosting” the immune system

Recall, that both Matching Pursuit and Boosting algorithms iteratively fit “basis

functions” to a residual vector (See Alg. 12 for a side-by-side comparison). For

Matching Pursuit, the residual is the reconstruction error in representing the ob-

servation x. For `2 Boosting, the residual is the loss in representing the decision

surface θ. Recall also, that the “trick” that allowed us to demonstrate the ap-
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r = x
α = []
while ‖r‖2 > ε do

i = argmaxi〈ϕi|r〉
αi = 〈ϕi|r〉
r = r − αiϕi

end

R = θ
F = ∅
for t = 1 . . . T do

ft = argminf∈F ‖R−f(X; R)‖2
2

F = F + ft
R = R− ft(X)

end

Algorithm 12: A comparison of the algorithms Matching Pursuit (left) from
Chapter 5 and `2 Boosting (right) from Chapter 3. The underlying connection
between strategies is made particularly clear if one recalls that argmin ‖R −
ft‖2

2 = argmin ‖R‖2
2 + ‖ft‖2

2 − 2 〈R|ft〉 ≈ argmax 〈R|ft〉

proximatory capacity of competitive exclusion relied on using, what we will call,

an implicit residual

k −Kρ = Φx− ΦΦ′ρ = Φ (x− Φρ) = Φ (x− x̃) (6.11)

In principle, this same trick can be applied where one would rather minimise

the residual θ−θ̂. The most explicit method of casting boosting in the competitive

exclusion framework would be redefining capacity and competition as

dρi
dt

=


〈
θ|θ̂ϕi

〉
−
∑

j

〈
θ̂ϕi
|θ̂ϕj

〉
ρj〈

θ|θ̂ϕi

〉
 ρi (6.12)

where θ̂ϕi
are the decisions of an arbitrary weak learner ϕi. Thus, diversity is

induced by having learners with similar decision vectors suffer competition, and

accuracy is improved by favouring high capacity learners most correlated with the

ground-truth θ. To the best of our knowledge, Eq. (6.12) is an entirely novel take

on Friedman et al’s gradient boosting [79, 21, 122], where the stagewise gradient

descent is replaced by competitive exclusion. Notice also that the inner-products

can easily be substituted with arbitrary utility (rather than loss) functions.

Unfortunately, it does not seem biologically plausible to assume clonotypes

retain a record of previous performance on each ligand and have direct access to

the ground-truth θ. We need something more subtle. Taking our lead from `2

boosting, an implicit residual formulation might attempt to minimise X(θ − θ̂),
which is the steady-state of the following competition dynamics:

k −Kρ = f̃ −Gρ (6.13)

= X (θ −X ′ρ)

90



6.2. The Statistical Immune Response

that is, ρ ≈ G−1f̃ and θ̂ = X ′ρ. But the population now consists of n species,

where n is the number of features. Equation (6.13) represents a competition

dynamic among peptides or peptide-specific components such as T-cells. It is

certainly plausible that T-cells undergo competitive exclusion, though why com-

petition amongst T-cells (or any other peptide-specific component) should be

quantified by peptide surface correlations in G is not obvious5.

A more pressing statistical issue is that the steady-state of Eq. (6.13) is a

linear decision boundary in peptide-space. But we have already solved the non-

linear representation learning problem. Replacing the matrix X with the matrix

XΦ of repertoire representations XΦ = [Φ(x1), . . . ,Φ(xm)] gives

k −Kρ = f̃Φ −GΦρ (6.14)

= XΦ (θ −XΦρ)

which is still linear in the features – but the number of features is now |Φ| and

these features are not linear transformations 〈ϕi|x〉, but the steady-state of com-

petition dynamics. Undoing the non-linearity for the moment, observe that

fΦ =
∑
i

θiΦ (xi) ≈
∑
i

θi (Φ
′xi) = Φ′

(∑
θixi

)
= Φ′f̃ (6.15)

is the capacity vector k in ϕ(f̃) of Eq. (6.6), and similarly

(GΦ)ij = (Φ(X)Φ(X)′)ij ≈
(
(Φ′X) (Φ′X)

′)
ij

= (Φ′GΦ)ij = 〈ϕi|G|ϕj〉 (6.16)

is a minor variant of the competition matrix K shared by all ϕ(·) in Eq. (6.6)6.

Minor variations aside, the point is that in the linear setting this implicit formu-

lation of boosting is competitive exclusion over context

ki − (Kρ)i = (f̃Φ)i − (GΦρ)i (6.17)

=
〈
ϕi|f̃

〉
−
∑
〈ϕi|G|ϕj〉 ρj

5Competition for APC binding sites, perhaps? Assuming that surface correlated peptides
are likely to be presented as fragments on the same APC, this might be plausible.

6In fact, this may be a superior measure of clonotype competition than 〈ϕi|ϕj〉. Notice
〈a|G|b〉 =

∑
i

∑
j aibjGij . It follows that a and b may be considered orthogonal with respect to

G, 〈a|G|b〉 = 0, even if 〈a|b〉 > 0. Orthogonality in this context is called “conjugacy” and this
better abstracts that the ϕi only interact indirectly. If there is no resource to compete over,
e.g. Gij = 0, then overlapping receptors are not competing, even if 〈ϕi|ϕj〉 > 0.
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which is already incorporated into Eq. (6.6). Thus we may be reassured that

ϕi(f̃) should be driving the response towards a correct one, even though θ is not

provided explicitly and θ̂ϕi
are not retained. The compromise, compared to Eq.

(6.12), is that we lose generality in the definition of weak learners and utility.

Insight regarding the non-linear setting eludes us at this time. In the meantime,

Sections 6.5.1 and 6.5.2 offer additional empirical evidence for our claims.

6.3 Dynamic Pursuit for decision making

As we have just emphasised, during decision making pathogen specificity, epi-

tope abundance and discriminatory bias are each mediated through competitive

exclusion. In a maximal simplification of the biology, we simulate each of these

competitions independently until reaching steady-state. That is, we focus only

on the steady-state values, not how these quantities interact as they evolve. Os-

tensibly, we must run at least four simulations of Alg. (11) to compute ϕi(G),

ϕi(f̃
+), ϕi(f̃

−) and ϕi(x). Depending on the experimental setup, the first three

may be computed once and ameliorated over multiple ϕi(x) – e.g. see Alg. (13).

In the empirical validation that follows, Alg. (13) was used for the batch

learning experiments of Sect. 6.5.1. However, in order to demonstrate the scal-

ability and adaptation of Dynamic Pursuit for the continuous learning experi-

ments in Sect. 6.5.2, it was necessary to implement our own sparse linear algebra

data-structures and routines. This gave us opportunity to make the following

improvement to Alg. (13). The independence of each exclusion process means

that it is possible to compute all of the steady-states in one non-terminating sim-

ulation of the original Dynamic Pursuit algorithm (Alg. 11). The trick to making

this work is simply to perform the necessary linear algebra routines on “scalars”

that are in fact 4-tuples {f+, f−, G, x}. These scalars are then used to represent

clonotype population ρi, clonotype capacity ki and surface correlations in x, G,

f̃+ and f̃−, now folded into a single sparse matrix. As the simulation runs the

user is free to perturb the environment and context (i.e. provide “feedback”) as

well as perturb the target (i.e. elicit a prediction). A response is always available

on demand, but the nature of the response will change as the population adapts

to perturbations. A decision stabilises with the population. This is not only a lot

more biologically satisfactory than the rigid logical procedure in Alg. (13), but

is computationally more efficient as there is only one sparse surface matrix and

the community matrix K is shared across each competitive process.
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function dpl(x ; Φ, G, f̃+, f̃−)
if environment or context has changed then

// update populations to reflect change
ρG = dp(G,Φ, ρG)
ρ+ = dp(f̃+,Φ, ρ+)
ρ− = dp(f̃−,Φ, ρ−)

end
// this simulation run is decision specific
ρx = dp(x,Φ)
// integrate systemic response

θ̂ =
∑

i

(
ρ+i −ρ

−
i

ρG
i

)
ρxi

return θ̂
Algorithm 13: Dynamic Pursuit for decision making, which makes use of the
original Dynamic Pursuit (Alg. 11) as a subroutine to compute the steady-state
of clonotypes competing over x, G, f̃+, and f̃−. Note that the presentation here
is designed for clarity, see the text for a more elegant implementation.

6.4 Justification of Surrogate Data

Before empirical analysis, we briefly discuss the nature of our data. Sufficient

biological data to assess our model’s precision (in Levin’s sense of the word) is

not currently available. Although epitope prediction [85, 68, 149] is an active

field, with some data available, at the time of writing this work has mostly been

limited to contiguous, so-called “linear”, epitopes (although things are improving

[169, 102]). Such epitopes do not reflect our ligand-binding model and only

account for a negligible minority of epitopes in vivo [85]. As a surrogate we

will use textual data extracted from natural language documents. That this is

appropriate is by no means obvious, so we now defend this decision.

In 1949, George Kingsley Zipf published an ambitious position that human

behaviour could be understood by a single Principle of Least Effort, much akin

to the principle of least action from physics [192]. Through a mixture of brilliant

rhetoric and ingenious empirical demonstration, Zipf built his argument’s foun-

dation on a statistical study of natural language texts, culminating in several

empirical laws. The most famous of these, which bears his name, is that the

occurrences of words are inversely proportional to their rank in frequency

fi · ri = k (6.18)

where k is a constant. Thus, a rank-frequency graph exhibits an exponential

decay; linear with logarithmic axis (see Fig. 6.4(a)). Conversely, the amount of

words in a corpus is approximately the sum of a harmonic series F = k
∑

r
1
r
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– with few words being used significantly more than average, but many words

significantly less than. For Zipf, this law was the result of two competing “forces”

of economy in communication: the force of unification, resulting from the desire

of the speaker to economise to a single word repeated with 100% frequency to

represent all meanings; and the force of diversification, resulting from the de-

sire of the listener to economise to a 1:1 mapping between word occurrence and

meaning. A compromise between these extremes results in words being repeated,

and reused, as is consistent with natural languages. Zipf’s harmonic series can

be generalised to decaying curves of the form

fi = kr−pi (6.19)

where for Zipf, p = 1. More recently, Sole et al. [67] have observed that the

topologies of word co-occurrence networks exhibit this characteristic decay also

(Fig 6.4(b)). It turns out that such “power laws” are proliferate in physics, biology

and economics [142, 82]. These ideas have recently enjoyed a cross-disciplinary

renaissance due to the work of Barabási on scale-free7 network topologies [9].

Though the validity of some of these observed “laws” are considered dubious [38],

we are less interested in whether a bona fide power-law exists, than in emphasising

the long-tailed distribution that does accurately describe all of these domains.

Notably, such power laws are present throughout the environment of the im-

mune system: protein-protein interactions, protein functions, metabolic pathway

connectivity and, most crucially from our perspective, the occurrence of n-mer

base sequences in DNA [117], which ultimately transcribe into amino-acid se-

quences and thus peptides, and the occurrence of peptides in digested proteins

[113]. Thus, textual data exhibits the appropriate statistical properties. Less

quantitatively, in his 1987 Noble lecture Jerne drew an analogy between linguistics

and immunology (recall the epigraph that opens this chapter), observing “Every

amino acid sequence is a polypeptide chain, but not every sequence will produce a

well-folded stable protein . . . some grammatical rules would seem to be required”.

More recently, immunologists have explored spam-detection as a suitable surro-

gate for assessing immunological functionality [2]. Thus, both quantitatively and

qualitatively, there is some justification for our approach.

7A genuine power-law exhibits no natural scale, that is, the curve is the same shape at any
magnification. In physics at least, such scale-free configurations tend to occur at the boundary
of critical phase transitions, thus indicating interesting phenomena are occurring.
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(a) Zipf’s Law

(b) Term Co-occurrence

(c) Peptide occurrence in proteins

Figure 6.4: The statistical properties of language revolve around the same dis-
tributions that pervade biology. (a) Zipf’s empirical law of word occurrences
demonstrated on the text of Herman Melville’s Moby Dick ; (b) The degree dis-
tribution of word co-occurrences, taken from [67]. (c) The distribution of peptide
occurences in digested proteins [113].
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6.5 Empirical validation

It is important to note that we do not think it reasonable to expect Alg. (13) to

perform well on arbitrary classification tasks. It is specifically suited to exploit

the statistical properties of sparse, high-dimensional problems. This is not so bad,

given that these are the mainstream problems of modern statistical inference. We

justified above that this may well describe the immunological context too.

6.5.1 Batch learning

Our first set of experiments use a subset of the UCI newsgroups dataset to produce

a task of discriminating comp.graphics from alt.atheism postings. Recall that

in Chapter 4 the clonal selection based algorithm AIRS was shown to perform

no better than random guessing on this dataset. Our goal here is to assert the

efficacy of our systemic response model; but we will not be overly concerned with

optimising performance metrics.

Protocol

We compare the performance of our algorithm against the k-nearest neighbour

classifier (k = 7 was empirically best) and the linear classifier. These algorithms

represent the theoretical extremes between which our approach lies. The following

experimental protocol is standard for text classification (see e.g. [121])

• Preprocessing. The newsgroups data comes in raw SMTP e-mail format.

We perform a basic preprocessing of the text that involves removing SMTP

related data and punctuation. It is convenient to also stem words to their

common prefix and remove functional stop-words, such as “the”, leaving

a vocabulary of 5000 words. Each document is stored as a sparse vector

x with dimensionality n = 5000 and is normalised ‖x‖2 = 1 so that word

frequency is relative to document size. We do not perform any other com-

mon text preprocessing based on global analysis of the corpora, such as

inverse-document-frequency term weighting.

• Cross-Validation. The collection of document vectors is shuffled ran-

domly and split into c = 10 disjoint subsets, or “folds”. This allows us

to perform c replications of the learning experiment. In each replication

i = 1 → c, the i’th fold is retained and the algorithms allowed to observe

the other c − 1 folds (i.e. “training”). The i’th fold provides unobserved

data to assess the algorithms ability to generalise (i.e. “testing”).
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Documents are distributed evenly between classes. For reasons discussed later,

we cap the total number of documents at 1000. For each algorithm we record the

summary statistics for the following metrics

• Classification performance: the accuracy, sensitivity, specificity and

precision of each algorithm. See Sect. 3.1.2 for a discussion.

• Computational performance: the computational time in seconds (per

observation) to both train the algorithm and to produce decisions.

Unlike the experiments of Chapter 5, Dynamic Pursuit does not have an a

priori provided repertoire (basis) with which to construct representations. This

is a potentially open-ended area for empirical research. We use the following

procedure, not because it is sophisticated, but because it minimises confound-

ing factors in assessing our proposed model; maintains some sense of biological

plausibility; and provides empirical support for our analysis in Sect. 5.2.3:

• We decide on an a priori fixed size repertoire |Φ| = 10, 000. Each ϕi

is allocated c = 3 non-zeros components8 that are generated by taking a

uniformly random c-step walk on the matrix/graph G =
∑
|xi〉〈xi|. Thus

each ϕi can reasonably be expected to attain some capacity 〈ϕi|G|ϕi〉.

Note that 10, 000 ≈ 5×10−7 of the possible
(

5000
3

)
receptor space. We perform

no additional search for new receptors during algorithm execution. We also do

not a priori assess receptors with respect to producing good results or any other

metric of quality. These are very severe restrictions, that might be considered

unreasonable to impose on a classification algorithm. We stress again that our

goal is demonstrating the efficacy of competitive exclusion between randomly

generated receptors in producing a coherent systemic response.

Computational performance analysis

We plot our results in Fig. (6.5). First, notice the performance extremes rep-

resented by k-nearest neighbour (knn) and least squares (lsq). The former is

impossible to beat in training CPU, because knn involves no training whatso-

ever; the latter is impossible to beat in test CPU, because the lsq decision is

simply a dot-product calculation. The train/test optimality for knn and lsq, re-

spectively, comes with a necessary computational cost: each must invest all of its

8The value 3 is unfortunately a “magic number”. Lacking any compelling reason to choose
one value over another we chose this because it is well-known to be the average number of
keywords in a search engine query. This is not very scientific, but it is pleasing as a modern
twist on Jerne’s epigraph for this chapter: an antibody is a query, not a sentence or phrase.
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Figure 6.5: High-level classification performance metrics comparing competitive
exclusion with randomly generated receptors against two statistical algorithms.
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Figure 6.6: Elucidation on the learning behaviour of competitive exclusion against
that of k-nearest neighbour, which achieves similar accuracy.
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computational effort in the complementary learning phase. Thus we see that the

test CPU time of knn is penalised by calculating nearest-neighbours for n train-

ing documents. Similarly, the train CPU of lsq is penalised in performing either

of the matrix inversions in Eq. (3.9) – both very large matrices. For complete-

ness, we include two computational variants of the least squares method. The

first, (lsq) is the method described in this thesis. The second (lsq2) uses Mat-

lab’s built-in inversion operator “\” which exploits a variety of highly optimised

and complex matrix factorisation techniques. Figure 6.5 makes it clear that the

saving in computational effort carries significant cost in the numerical quality of

the results. We will not consider lsq2 a valid competitor, but include it because

it represents a potential “folk wisdom” argument against our analysis: that the

matrix inversion is an algebraic artifact and need not be done in practice.

It is with respect to this trade-off in computational performance that Dynamic

Pursuit (dp) is particularly interesting. Ostensibly, dp test CPU performance is

substantially faster than knn; its train CPU performance is marginally better

than lsq. But this is only true at this particular snapshot of 1000 documents.

What this graph does not show is that as the number of documents grows, both

knn and lsq CPU performance grows much faster, of the order O(n2) and O(n3),

respectively. Including lsq in this experiment is why the total number of docu-

ments was capped at 1000. In contrast, the test CPU of dp depends on calculating

the steady-state ϕi(x) and then integrating the systemic response from surviving

clonotypes. This computation is dominated by repertoire size, not the number

of observations or their dimensionality. Similarly, the train CPU of dp depends

on calculating the steady-states ϕi(G) and ϕi(f̃). This again is independent of

the quantity of observations, beyond the trivial construction of G and f̃ . But the

dimensionality of observations will become a dependency if one plans to search

through
(
n
c

)
< nc possible receptor configurations. We have used the strategy

suggested in Sect. 5.2.3 to make this search somewhat more reasonable. We now

show that exhaustive search is unnecessary for performant inference.

Classification performance analysis

Ostensibly, the classification accuracy of our algorithm is, perhaps reasonable,

but not overly compelling. Mean and median performance is comparable to

knn, albeit noticeably more variable. The additional variability in dp accuracy is

the result of random receptor generation during training. This variability seems

unavoidable without some form of compensation – e.g. by employing a substan-

tial repertoire size that ensures “good” receptors are always included with high
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probability; or optimising the generation process to produce consistently “good”

receptors. The latter is a fairly standard pre-processing procedure in statistical

inference; the former may be more descriptive of the immune system’s strategy.

But even though sampling 10−5% of the repertoire, uniformly at random, incurs a

cost in variance, this variance in accuracy is still between 80−90%. This strongly

suggests that the algorithm is still learning, even under such severe conditions.

We quantify just how the algorithm is learning in Figure 6.6. It is apparent that

although knn has high sensitivity (probability of correctly predicting “positive”

given a positive observation) its precision (probability of correctly predicting pos-

itive given a positive prediction) is in fact quite low. That is, it is biased towards

positive predictions. In contrast, dp is less sensitive but more precise. That is, it

is less likely to predict positive, but if it does, it is more likely to be correct. The

dp algorithm has higher specificity (probability of correctly predicting “negative”

given a negative observation) but is slightly less specific than knn is sensitive.

In terms of unconditional discriminatory power, these differences average out to

qualitatively similar accuracy. Though it is clear from Fig. 6.6 that both algo-

rithms are in fact learning in quite different ways.

In Fig. 6.5 we can also observe the theoretical effects of dimensionality on the

trade-off between classifier complexity and accuracy (see Chapter 3). Non-linear

decision boundaries have not provided sufficient advantage to knn to improve

performance over a linear decision boundary; whereas the linear model is more

accurate and robust (lsq), albeit subject to numerical instability (lsq2). A crucial

detail not explicit in Fig. 6.6, but apparent in figure 6.15 later, is that although we

generate 10,000 receptors during initialisation, only 50-1500 survive the competi-

tive exclusion process during training. That is, the representation constructed by

Dynamic Pursuit is 1%-30% the dimensionality of the original observations and

0.5%-15% of the receptor space – with little practical difference in classification

performance from knn. It is perhaps remarkable that so few, low-dimensional

random projections are capable of retaining sufficient representational and dis-

criminatory power.

6.5.2 Continuous learning

It would seem evident that an “immune-inspired” algorithm should not proceed

through a batch training (i.e. model fitting) stage and subsequent deployment

stage. Like the immune system, the algorithm should learn continuously. This is

probably in part why the non-parametric, nearest-neighbour approach has tradi-

tionally been so popular in AIS – there is no model to be fit. Dynamic Pursuit
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is designed to be well suited for continuous learning. As shown in the preceding

analysis, its scaling properties do not depend on the number of observations. Al-

though our model is somewhat parametric, by unrolling the matrix inversion in

Eq. (6.5) we leave it in a state where the model fitting and decision making can

be interleaved. Lastly, the quantities dynamic pursuit relies on, G and f̃ , can

readily be updated incrementally

Gt = Gt−1 + |xt〉〈xt|

f̃t = f̃t−1 + θtxt

Notice also that G can be updated independently from f̃ . That is, we can

incorporate more data into our model of the environment G than we have explicit

feedback on f̃ . From the inferential perspective, this would take us into the

domain of semi-supervised learning [191] – using both labelled and unlabelled

observations – but here we focus on the incremental aspect of our model only.

Information filtering

We continue in the domain of text classification, but relax the somewhat artificial

batch learning methodology. Instead, the problem formulation is that documents

now arrive sequentially in a “stream” and must be classified on-line, in a timely

manner. Classic examples are spam filters or aggregated news filters: each must

learn to produce decisions from limited previous exposure to both the preferences

of the user (the unknown function) and the sources that documents are arriving

from (the unknown population). Typically, the class distribution of “good” and

“bad” documents is also heavily skewed [10, 86].

Nanas et al. [139, 138] have been strong advocates of this learning domain as

the most appropriate for immune-inspired algorithms. We are inclined to agree:

statistically and methodologically it seems closer to the biology. In developing

Nootropia, Nanas et al. proposed an empirical framework for assessing the ability

of filtering algorithms to adapt over time to user’s changing interests [136, 137].

As a step towards producing comparable results, we work with the same dataset as

Nanas et al. However, our protocol (discussed next) differs from theirs in several

respects: (i) we do not perform global analysis of the data as a preprocessing

step; (ii) we insist that each algorithm produce a hard classification, rather than

a ranking from most to least relevant ; and (iii) we allow algorithms to make use

of negative as well as positive observations. In all, we consider these differences

to make for a more stringent comparative assessment.
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Protocol

Nanas et al’s preferred dataset is a subset of the publicly available9 collection of

Reuters news-wire articles collected over 1987. Many articles have been manually

classified into one or more news-related topics (e.g. earnings, acquisitions, etc.)

and it is these topics that we will take to indicate relevance. Articles with no

classification and classes with less than 100 relevant articles were removed from

the original dataset, leaving 6753 articles. The distribution of topics is shown

in Table 6.1. Our text preprocessing methods were the same as for the previous

experiments, resulting in a vocabulary of 20,121 words (i.e. dimensions).

Due to the sheer magnitude and rate of change of streaming data, traditional

batch learning algorithms such as least squares and prototype-based algorithms

such as k-nearest neighbour are not feasible to deploy. For comparative analysis,

we use as a baseline Rocchio’s Algorithm [152]. This algorithm is well established

in the information filtering and retrieval literature and is the benchmark algorithm

used by Nanas et al. Its popularity for continuous learning stems from its minimal

space and time complexity: it retains only a single “profile” vector per class that

represents the mean document in that class. Thus it is very efficient to train

and produce decisions. We include two variants of Rocchio’s algorithm from the

literature. The first is the classical Rocchio’s algorithm

θ̂ = f(x̂) = 〈x̂|f〉 =

〈
x̂| 1

N+

∑
θi=+

xi −
1

N−

∑
θj=−

xj

〉
(6.20)

Equation (6.20) is the same decision function as our Danger model, Eq. (6.8).

Such comparison allows us to empirically assert earlier theoretical claims. The

second variant [155] is used by Nanas et al. where class profiles are updated as

f+
t+1 = δf+

t + βxt if θt = +

f−t+1 = δf−t + βxt if θt = −

In contrast to Eq. (6.20) this update allows the influence of documents to

decay over time. We use the same parameters reported by Nanas et al. δ = 0.95

and β = 0.25. Preliminary experimentation (not reported) showed that we can

substantially improve the performance of this algorithm by predicting

θ̂ = f(x̂) =
〈x|f+〉
‖x‖2‖f+‖2

− 〈x|f−〉
‖x‖2‖f−‖2

9Reuters-21578 Distribution 1.0 http://www.research.att.com/∼lewis.
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The reason for this improvement is two-fold. Firstly, by normalising profile

vectors we achieve a much stronger conditionalisation on classes than using a

scaling factor such as 1
N

. This is because each feature is weighted relative to the

other features in that class, rather than simply its mean value. Secondly, the

difference between class-specific dot products, rather than the dot-product with

the class difference vector 〈x̂|f+ − f−〉, better quantifies which class x̂ is closest

to because it is less effected by skew class distributions.

To assess each algorithm, the following procedure was repeated for each topic,

with that topic being considered relevant and all others irrelevant :

• Each article was processed in chronological order. Algorithms were allowed

to passively observe {x, θ} pairs until 10 relevant articles had been observed.

• After this initialisation stage, for each article taken from the stream the

algorithms were requested to make a prediction θ̂ of that article’s relevance

to the current topic, given only x.

• After prediction, the algorithms received feedback θ on the article’s rele-

vance which they may use to update their parameters.

The accumulation of true positives, false positives and so on were recorded

over the entire stream. In addition to the standard metrics, we include our own

metric discrimination, defined as(
TP

TP + FN

)
+

(
TN

TN + FP

)
− 1 (6.21)

that is, the true positive rate plus the true negative rate, minus one. This metric

lies in the interval [−1,+1] representing 100% incorrect and 100% correct, respec-

tively. How the metric differs from e.g. accuracy is that majority class constant

decisions, random guessing and any other strategy that produces results with the

same distribution as classes are all assigned 0 discrimination. Thus, the range

[0, 1] of this metric quantifies improvement beyond trivial unlearnt decisions.

Implementation notes

For continuous learning, it is not possible for Dynamic Pursuit to generate recep-

tors a priori, as it had been in the batch setting. Instead, we implement a minor

variation on the receptor generation strategy employed earlier:

• We do not a priori fix the repertoire size. Again, each ϕi is allocated c = 3

non-zero components that are generated by taking a uniformly random
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topic p(topic) topic p(topic)
acq 0.31 coffee 0.02
corn 0.03 crude 0.08
earn 0.27 gold 0.01
grain 0.08 interest 0.05
livestock 0.01 money-fx 0.09
money-supply 0.01 nat-gas 0.01
oilseed 0.02 ship 0.04
soybean 0.01 veg-oil 0.01
wheat 0.04

Table 6.1: The distribution of topics in the Reuters news-wire article stream.
Notice that the topics acq (acquisitions) and earn (earnings) dominate the stream
but all topics have a highly skewed distribution of relevance and irrelevance.

Figure 6.7: Top: The true probability of relevance as a function of time for
the subset of topics our analysis focuses on. Bottom: Close-up of the first 200
articles where the topic earn rapidly dominates the stream’s content.
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c-step walk. However, instead of taking a random walk on G during initial-

isation, we take a random walk on the surface description of each article

|x〉〈x| as it is processed. Thus, there are always ϕi that can be reasonably

expected to attain some target capacity 〈ϕi|x〉〈x|ϕi〉. Again, no a priori

assessment of receptor quality was carried out.

The number of receptors generated per document was set to 100. Experimen-

tation with values up to 1000 produced no obvious improvement. The average

number of unique words per article was 56.9 ± 42.7 with a maximum number

of 390 and minimum 20. Thus, 100 receptors covers between 0.08 and 0.00001

possible receptors with an average of 0.003, for
(

20
3

)
,
(

390
3

)
and

(
56
3

)
respectively.

With only 56 unique words 100 × 3 receptors can afford to cover each word 6

times on average. Integration into the repertoire depends on how these receptors

generalise to G and f̃ , either exploiting uncrowded “niches” or having sufficient

capacity to overcome an initially low concentration.

Experimental analysis

Due to the similarity of results for classes with similar probabilities of relevance,

we focus our analysis on the classes acquisitions, earnings, crude oil, coffee and

gold. Respectively, these represent p(θ = +) ranging across 0.31, 0.27, 0.08, 0.02

and 0.01. We include crude oil in particular as it has been observed [100] that

these articles have a restricted vocabulary with words that are highly indicative

of document class. In contrast, topics such as acquisitions have a much broader

vocabulary. The reason for including both acquisitions and earnings, which have

similar probability of relevance, is that the latter produced results that were

anomalous with respect to the trend in all other datasets.

Figures 6.8-6.12 plot the progression of metrics accuracy, sensitivity, specificity

and discrimination for each algorithm as the stream is processed. There are some

general observation that can be made from these results

• For very low probability p(θ = +) < 0.1 topics, the classic Rocchio al-

gorithm Rocchio (mean) – which is also our Danger model in Eq. 6.8 –

performs poorly. This is because the mean profile vectors are still subject

to class skew effects, resulting in this case in a tendency to predict relevant.

This effect is most notable in coffee and crude, where the true negative rate

of Rocchio (mean) plummets and never recovers. This validates our claims

in Sect. 6.2.1. In the immune system proper, p(nonself)� 0.1.
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• For the same p(θ = +) < 0.1 topics, the improved Rocchio (cosine) and

Dynamic Pursuit perform comparably. For gold, Rocchio (cosine) is more

accurate, and marginally more discriminatory, due to improved specificity.

For coffee and crude, Dynamic Pursuit is marginally more accurate – but

less discriminatory, due to a preference for the majority class at some cost to

sensitivity. Crude represent the largest margin between sensitivity for both

algorithms, which may be due to Rocchio (cosine) being able to make more

use of the restricted vocabulary than Dynamic Pursuit’s random repertoire.

• For the acquisitions topic, the difference in performance between algorithms

is negligible, practically. Rocchio (mean) is less plagued by class skew.

Rocchio (cosine) and Dynamic Pursuit look like mirror images of each other,

the former favouring sensitivity the latter specificity.

• On the earnings topic, Dynamic Pursuit’s performance is radically altered:

rapidly approaching around 99% true positive rate and 85% false positive

rate. That is, in contrast to all previous topics, Dynamic Pursuit now

strongly favours predicting the minority class relevant, almost to the ex-

clusion of ever predicting irrelevant. This anomalous behaviour can be

explained as the consequence of both the rapid domination of the earnings

topic in the early stages of stream processing (Fig. 6.7) coupled with the

breadth of vocabulary in that topic due to its agnosticism with industry sec-

tors. This results in Dynamic Pursuit producing a repertoire that quickly

becomes biased towards earnings and is very difficult for new clonotypes to

infiltrate as they tend to be redundant. The Rocchio algorithms are more

robust to this effect because their features are never competing.

In Tables 6.2 and 6.3 we quantify these observations more precisely by pro-

viding a statistical analysis of each algorithm’s mean performance across topics.

For completeness, we include a statistical hypothesis test of the significance in ac-

curacy differences between Dynamic Pursuit and the Rocchio-based algorithms.

The statistically (and practically) significant difference from Rocchio (mean) sub-

stantiates our earlier claims about the contribution of systemic response beyond

peptide-specific Danger signals. The lack of statistically significant difference

with Rocchio (cosine) is also interesting. As shown in Fig. 6.15, the average

repertoire size for this dataset was just over 300 clones – on a dataset with 20,121

dimensions. That is, the representation learnt by Dynamic Pursuit is only 1.4%

the dimensionality of the representation used by the Rocchio-based algorithms

and only 0.05% of the ≈ 600, 000 generated receptors. For the most part, per-

formance is maintained, by maximising capacity while minimising competition.
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Algorithm Accuracy
Dynamic Pursuit 0.75± 0.272
Rocchio (mean) 0.59± 0.262
Rocchio (cosine) 0.83± 0.243

Table 6.2: Mean performance across topics.

Statistical significance of performance differences
H0 Difference 95% Confidence interval Reject H0

Rocchio (mean) +0.16± 0.065 +0.032,+0.287 yes
Rocchio (cosine) −0.08± 0.044 −0.167,+0.007 no

Table 6.3: Statistical significance of accuracy differences with Rocchio-based base-
lines. Dynamic Pursuit can claim a statistically significant difference with Rocchio
(mean), which lends weight to our theoretical discussion of the benefits of sys-
temic behaviour over peptide-specific responses. The lack of significant difference
with Rocchio (cosine) is discussed in the text.

However, it is apparent that Rocchio (cosine) still has the advantage as algorithm.

The development work necessary to deploy Dynamic Pursuit as an information

filtering algorithm is of practical importance, but not part of this thesis.

Robustness

In Figure 6.13 we plot 10 runs of Dynamic Pursuit on the acquisitions topic. It

is apparent that the particular repertoire that is realised during a run has an ef-

fect on the trade-off between sensitivity (true positive rate) and specificity (true

negative rate). However, the effect on overall accuracy is negligible. Likewise, in

Fig. 6.15 we plot the variation in population size and clonotype turnover over

the same 10 runs. Recall, we do not fix the repertoire size. The stability of

the repertoire size can be explained because clonotype viability is a function of

antigen supply and demand and the competition dynamics ensure that redun-

dancy is driven out. Recall also, that 100 clones were randomly generated with

each new article and we did not a priori assess receptors for representation or

discriminatory power. The rapid decline of survival for these new clones reflects

that the competition dynamics only integrates those receptors that add value to

the repertoire: either by preference for resources not currently competed over

or sufficient capacity to overcome an initially low clonotype concentration with

respect to established competitors.
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Adaptation

Although not part of our thesis, demonstrating the capacity for adaptation (in a

biological sense) is certainly a natural goal for biologically inspired work. What

follows is more a record of future issues to be addressed.

To model a user with changing notions of relevance, we repeat the above exper-

imental protocol but now consider both topics gold and coffee relevant. However,

rather than simply label both as θ = + we assign positive labels probabilistically.

The probability of one, or the other, topic receiving a positive label is linearly in-

terpolated across the entire stream from p(θ = +|gold) = 1→ p(θ = +|gold) = 0

and p(θ = +|coffee) = 1 − p(θ = +|gold). Thus, the stream starts off with gold

being the relevant class and gradually gives way to coffee, simulating a decrease

(respectively, increase) of interest in a topic over time. In Figure 6.14 we plot

our initial attempts at assessing the adaptivity of Dynamic Pursuit. The results

are to be expected: only Rocchio (cosine) is capable of any form of adaptation

due to the decay term in Eq. (6.21). Clearly, a simple decay of parameters is

quite a weak interpretation of “adaptation”. Both Dynamic Pursuit and Rocchio

(mean) have similar flaws insomuch as the quantities they depend on are only ever

added to. This means they cannot adapt until sufficient data has been observed

to overcome the original class distributions. Dynamic Pursuit does manage to

retain accuracy, simply because its specificity is robust to this change, but this

preference for the majority class results in a drop in discrimination.

From the immunological perspective, the problem is clear enough. Although

we make use of the systemic response to predict observation classes, the response

does not in itself effect the environment. For example, in an immune response

the production of antibodies signals the eventual destruction of pathogen, which

changes the environment and, in turn, feeds back into the concentration of Danger

signals, pro- and anti-inflammatory cytokines, and so on. None of these effects

are present in our current model, or those in Chapter 2, but clearly are important.

6.6 Conclusion

We have extended the approximatory behaviour of competitive exclusion to the

decision making setting. We discussed the qualitative likeness to the arrangement

of components and mechanisms in the immune response and justified this arrange-

ment theoretically in terms of both its relationship with the numerical methods

underlying least squares and as an implicit variation on boosting. We then quan-

titatively demonstrated the efficacy of competitive exclusion in both batch and
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online inference and prediction. Competitive exclusion performed comparatively

to well-established algorithms, but was additionally able to significantly reduce

the representational complexity of observations. This is entirely consistent with

the regularised optimisation criteria in Eq. (5.4) – Dynamic Pursuit retains accu-

racy, but prefers simplicity, by maximising capacity and minimising competition.

Taken together, this confirms that competitive exclusion is a robust mecha-

nism for turning randomly generated receptors into representative and discrim-

inatory detectors. However, a more sophisticated receptor generation process

would be required to best make use of the repertoire’s ability to expand and

contract the representation. Integrating receptor mutation and the subsequent

affinity maturation would be an obvious next step. Further, Eq. (5.1) and (6.6)

need to be elaborated to better capture “adaptation”, in the biological sense.
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Figure 6.8: Filtering gold related articles where p(θ = gold) = 0.01.
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Figure 6.9: Filtering coffee related articles where p(θ = coffee) = 0.02.
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Figure 6.10: Filtering crude oil related articles where p(θ = crude) = 0.08.
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Figure 6.11: Filtering earnings related articles where p(θ = earn) = 0.27. Note
that these results are anomalous. See text for discussion.
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Figure 6.12: Filtering acquisitions related articles where p(θ = acq) = 0.31.
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Figure 6.13: Replications of Dynamic Pursuit on the acquisitions topic. Although
individual runs may have different sensitivity and specificity due to the particular
repertoire, the overall effect on accuracy and discrimination is negligible.
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Figure 6.14: Performance of algorithms on the adaptation dataset where p(θ = +)
changes linearly between the classes coffee and gold as the stream progresses.
Only Rocchio (cosine) exhibits adaptation due to the decay term δ in Eq. (6.21).
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Figure 6.15: Evolution of the population size and number of surviving newly gen-
erated clones over 10 replication runs of Dynamic Pursuit on the acq topic. Top:
Although no fixed repertoire size is enforced, the size of the repertoire is a func-
tion of antigen supply/demand and is consistent across replications. Bottom:
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Chapter 7

Conclusion

Fundamental progress has to do with

the reinterpretation of basic ideas.

Alfred North Whitehead

All models are wrong; but some are useful.

George E. P. Box

Let us is briefly review the thesis. In Chapters 2-4 we established foun-

dational problems with the representational abstractions and decision-making

mechanisms employed by immunologists and computer scientists in interpreting

the immune response. In Chapters 5 and 6 we formulated an alternative inter-

pretation grounded in the numerical methods of approximation, simulation and

statistical inference. Recall, our research questions from Chapter 1.

• Can knowledge of the requirements for statistical decision making be applied

to develop a plausible model of processes in the immune system?

• If so, does such a perspective offer novel insight that can be exploited by

immunologists, computer scientists or statisticians?

With respect to the former, we submit a possibly contentious, yes. Our model

is able to express the same components and relations as the immunological mod-

els in Chapter 2, but goes further by theoretically predicting and empirically

demonstrating the response behaviour when simulated with thousands of compo-

nents and a changing antigenic environment. As a modelling strategy, we have

attempted to determine sufficient immunological detail that statistically exhibits

the correct behaviour, rather than reverse engineer the correct behaviour from a

mountain of experimental observations of unknown significance. This is not an
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approach we expect to be readily accepted by immunologists, but when facing

a phenomenon as exquisitely complex as the immune system, one has to ask:

how much of that complexity is necessary to support and explain immunity and

tolerance? This is a very different question than that faced by, for example, the

designer of a targeted drug treatment; but still an important one. With respect

to the latter, we now reflect on our contributions and omissions.

7.1 Contributions

Our thesis was that a statistical perspective offered insight and abstraction to

immunologist and computer scientists alike. For clarity, we separate our discus-

sion of how we have asserted this thesis into that based on immunological ideas

and that based on computer science and statistics.

7.1.1 An immunological perspective

Lymphocyte ecology

It is a curious omission of the self/non-self models of Chapter 2 that none of

them depend on antigen supply and demand. The assumption that such effects

are negligible in establishing what is necessary or sufficient to produce a coherent

response would seems to be highly questionable. What our approach loses in us-

ing surrogate data to quantify such interactions is, arguably, more than made up

for by the demonstration that redundant competitive interactions are sufficient

to produce qualitatively appropriate systemic behaviour. It is not clear from the

literature, given that clonal selection was “an attempt to apply the concepts of pop-

ulation genetics to the mesenchymal cells within the body” [25], why the ecological

view of the immune repertoire was not pursued further than it has been (see e.g.

[51, 72, 110, 168]). The key manoeuvre that allowed us to build upon this basic

principle was recognising that, once properly formulated, the generalised Lotka-

Volterra steady-state provides a solution to the sparse approximation problem.

Such a technical move is certainly not beyond the mathematical sophistication

of the typical theoretical immunologist. But making such a connection possibly

does benefit from the statistical perspective we have advocated.

The form of the generalised Lotka-Volterra model employed in this thesis is mini-

mal. It contains the key dynamics but omits additional factors such as clonotype

decay rates and immigration-emigration terms due to mutations. Introducing

such factors would certainly improve the biological plausibility of our model, but
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they would also complicate the dynamics and subsequent analysis. The basic

dynamical behaviour established here provides intuition that can be built upon.

Systemic dynamics and self/non-self semantics

Another omission from the self/non-self models in Chapter 2 was the apparent

mutual exclusion between unambiguous response semantics and accounting for

the evolutionary role of the adaptive immune system: the dichotomy between

the “reductionist switch” and “holistic emergence” views. Our systemic response

model offers one possible approach to resolving this dichotomy: the innate re-

sponse may well provide feedback on peptide-class correlations; but this feedback

may not be sufficient to produce non-trivial decision boundaries without further

accounting for peptide-peptide correlations and the inverse relationship between

representational capacity and discriminatory capacity. The statistical view makes

these numerical aspects clear. It remains to be seen how relevant these aspects

are biologically – but they are easier to digest and test than philosophical debate.

The main failure of our systemic model is that it is still a little too algebraic.

The competition dynamics for ϕi(x), ϕi(G) and ϕi(f̃) occur independently of

each other, which is acceptable if one is only interested the final steady-state val-

ues, but it would seem to be more plausible to have a compartmentalised model

where e.g. a naive clone compartment competing over signal one flows into an

induced clone compartment competing over signal two; and so on. How much the

behaviour of such a model would deviate from that presented here is unclear, but

such development could better assert validity as a bona fide biological model.

Shape, degeneracy and redundancy

In addition to the issues with the self/non-self discrimination models, the isotropic

recognition volumes in shape-space were found to be unable to express receptor-

ligand degeneracy and beneficial redundancy. Further, they were subject to a

breakdown in intuitions about the properties of n-dimensional spaces that directly

affects both the plausible size of the repertoire and the specificity of receptor-

ligand binding. Under our formulation, ligands are not atomic entities: binding

is a function of correlation in physical space, not distance in shape space. By

recasting receptors and ligands as sub-spaces, rather than points covering shape-

space, we were able to provide one possible formalisation of degeneracy: antigen

will intersect with many, but not all, subspaces sensed by the ϕi; and conversely,

each ϕi will intersect with many distinct antigen – as demanded by poly-clonality
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and poly-recognition, respectively. Similarly, the benefits of redundancy become

apparent in this formalism as those same benefits afforded by overcomplete rep-

resentations in the approximation setting. Crucially, we have not entirely aban-

doned the powerful conceptual tool of geometric thinking, only changed spaces.

The particular subspace implementation used in this thesis is more proof-of-

concept than a mathematically sophisticated abstraction. In particular, the

choice of 3 non-zero uniformly weighted components in each ϕi was arbitrary

and simplistic. A more plausible formulation would account for the fact that if

ϕi can bind with epitopes that include e.g. peptide “ARNDC” then it may also

attribute some lesser affinity to those that include “ARNDG”. These rules could

satisfy known physico-chemical properties or more abstract binding relationships

such as those used in the traditional shape-space. Similarly, the use of vector

outer-products |x〉〈x| to represent surface correlation is limited and biologically

naive. However, the strength of the abstraction is its generality. How the surface

representation is best instantiated and then carved up is an open-ended question,

that would benefit from deeper immunological and mathematical insight.

Constructive representations and co-respondence

It is a very elegant aspect of the applied statistics that this work draws upon,

that the same approximation strategy has been applied to representation learn-

ing at one level, and decision making at another. By connecting this distinct

research with the approximatory behaviour of competitive exclusion, we were

able to gather a lot of seemingly diverse ideas into one very simple idea. We

submit that this simple idea provides a quantifiable, formally malleable defini-

tion of the influential, but essentially rhetorical, ideas of immunologists such as

Cohen and Varela. Thus, the immune system’s self-constructed internal repre-

sentation, and the integration of diverse, limited and contradictory components

into a coherent systemic response, become two different perspectives of the same

underlying phenomenon – the repertoire approximating its environment.

7.1.2 A computational perspective

The statistical approach our thesis advocates was invaluable in allowing us to

make a clean transition between biology and computer science. This led to a

contribution that does not depend on its biological inspiration to assert novelty.
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Competitive exclusion as numerical method

In addition to being an elegant interpretation of the immunology, we have shown

competitive exclusion to be a very successful algorithmic strategy. The primary

benefit competitive exclusion has over existing iterative sparse approximation

and boosting algorithms is that it relaxes the myopic, greedy nature of these

algorithms. Competition automatically resolves redundancies and dependencies

without significant a priori effort in the design of base components or the un-

derlying algorithmic logic. Indeed, the beauty of this approach is that, once

properly formulated, the dynamics cannot help but “do the right thing”, even if

the environment being approximated or the components of the approximation are

continually changing. Formulated as a dynamical system it is inherently adap-

tive; but in a way that may be relied upon as an algorithm because its systemic

behaviour is not entirely unpredictable. Ecological interpretation aside, this is a

potentially elegant numerical method in its own right.

Like all numerical methods, competitive exclusion has some nuisance parame-

ters that are difficult to provide a one-size-fits-all value for. In particular, there is

no obvious value for a clonotype’s initial population size. This problem is partic-

ularly acute in the case where one also wants to determine a minimum population

size where a clonotype can be considered extinct and removed. Valid parameter

values depend on the properties of both the signals and bases of the approxima-

tion problem – the acceptable value of coefficients that should not be considered

noise. There is an additional trade-off between choosing an ε sufficiently small to

determine stability, but sufficiently large to avoid glacial convergence times. Our

experience is that approximation error converges much earlier than population

levels; allowing one to choose quite a coarse ε without significantly degrading

performance. From an algorithmic perspective, we are less concerned with a nu-

merically accurate integration than, for example, a mathematical modeller might

be, although some level of accuracy is necessary to ensure the dynamics are not

corrupted by numerical instabilities. In practice, these issues are quite easy to

identify and resolve by simply observing the dynamic evolution of the population,

but a more principled approach would seem preferable.

Immune-inspired computing

We have been quite critical of immune-inspired computing throughout this the-

sis, bemoaning its lack of both statistical and biological insight. Of course, it is

easier to criticise than to construct. We hope that the constructive aspects of
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this thesis, if not adopted or furthered by others, will at least inspire others to

think outside of the stagnant “GA without crossover” paradigm that has domi-

nated the field for almost 20 years. To be clear, this is not a criticism of Forrest

and Perelson’s seminal work. Quite the contrary, we would hope to see the field

of artificial immune systems return to the interface between immunology and

computation, where these ideas were born. Both immunology and computer sci-

ence have changed dramatically since 1993. So should the interface between them.

That is not to say that previous work in immune-inspired computing is redun-

dant. The most glaring omission from the work presented here is the reluctance

to integrate mutation, and the subsequent affinity maturation, into the compet-

itive exclusion dynamics of clonal selection. We have little reason to doubt that

mutation would improve the efficacy as well as plausibility of our model. This

is quite straight-forward to formalise (see e.g. [144, 173]) but is not very practi-

cal in terms of running simulations and algorithms. One alternative is to adopt

the methods employed in evolutionary algorithms and more traditional artificial

immune systems. This gives us a rich literature to draw from in implementing

mutation, but leaves us with little theoretical formalism to fall back on. The sta-

tistical sampling perspective exploited in Chapter 4 may offer some compromise

between these extremes, but requires a probabilistic reinterpretation of our alge-

braic model. This is a natural progression to make if one accepts the statistical

perspective advocated here.

This is also not to say that our peers are not also addressing the imbalance in

the biological and statistical efficacy of immune-inspired computing. Of particular

interest at the time of writing are Owens’ model of receptor binding and intra-

cellular signalling [65] and Abi-Haidar and Rocha’s implementation of Carneiro’s

cross-regulation model [1]. Both are based on biologically detailed models and

have been shown to exhibit promising results when applied in the statistical infer-

ence domain. However, these models are isolated and not obviously understood

as different parts of the same system. We have argued that the strength of our

particular approach is that it allows us to clearly isolate the important factors in

decision making: how they are organised and interact, and how they relate to im-

munological components and interactions. It seems possible that research such as

Owens’ and Abi-Haidar’s could offer more biologically detailed and statistically

stronger instantiations of ligand binding, inter-cellular learning and the dynamics

of context, than the abstraction presented here. Such development would seem

to be a step towards an artificial immune system that is in the same spirit as

what the term conjures, at least in this author’s mind.
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7.2 Future Work

Disregarding incremental improvements and addressing highlighted omissions, we

see several opportunities for development of the work introduced in this thesis

that seem valid for both real and artificial immune systems:

• Integration of mutation and affinity maturation.

• Dynamics that incorporate how dependencies between environmental, tar-

get and contextual signals effect the evolution of clonotype concentrations.

• An explicit incorporation of antibody production, antigen clearance and

their effect on the environmental and contextual signals.

• Development of T-Cells and antigen presenting cells beyond a simple scalar

quantity and the inclusion of T-Cell receptor degeneracy.

With regard to our reluctance to implement mutation and the possible value

of the probabilistic sampling framework developed in Chapter 4, it is well-known

that the replicator equation (Eq. 4.7) and the Lotka-Volterra model (Eq. 5.1)

have a formal connection (see e.g. [144]). Generalising the algebraic formulation

in chapters 5 and 6 under the probabilistic setting of chapter 4 would seem the

most profitable means toward developing a coherent theoretical foundation for

the interface between immunology and computer science.

7.3 Concluding Remarks

From the right perspective, mechanistic descriptions of inferential behaviour are

the essential stuff of immunological modelling and statistical numerical methods.

What the latter provides the former is clarity on what are sufficient components

and interactions. What the former provides the latter is insight into how in-

ferential behaviour can be made autonomous. We assert that this statistical

perspective is the interface between immunology and computer science.

No-one would knowingly attribute cognitive capacity to a predictive statisti-

cal model, though many critical decisions might be made on the basis of their

predictions. Attributing such capacity to the immune system would be a sim-

ilar mistake. Inference and prediction are not cognition: they can be entirely

explained in terms of mechanistic reactions coupled to a higher-level process that

sets up the conditions for these reactions. Each of the algorithms proposed in this

thesis continuously iterate a highly simplified version of the mathematical and
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statistical modelling strategy: generate components; fit them to the environment;

and infer the state of nature as best as one can. A cognate modeller may seek

explanation and meaning, but predictive power is sufficient to confer survival ad-

vantage. That is what we have hypothesised the natural immune system to be

capable of. That is what we have demonstrated existing artificial immune sys-

tems to be incapable of. That is what we have shown to be possible and effective,

with only a basic ecological principle and a repertoire of redundant low quality

components. That is our thesis.
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Appendix A

Mathematical Background

The reader is directed to the textbooks [8, 154] for a deeper treatment of the

material presented here. We first recall the definition of a vector space. A real1

vector space V is a set endowed with two operations

1. Element addition: u+ v ∈ V ∀u, v ∈ V

2. Scalar multiplication: αv ∈ V ∀v ∈ V , α ∈ R

Addition is commutative and associative. V contains an additive identity 0

such that u + 0 = u and an additive inverse: ∃w ∈ V such that u + w = 0.

Essentially, addition works like normal. Scalar multiplication is distributive and

also has an identity, 1. In general, our vector spaces will tend to be finite-

dimensional Euclidean space Rn, though this is easy to generalise if need be. We

now recall some basic features of vector spaces:

1. A subspace of a vector space, is a subset U ⊂ V of elements such that the

conditions for a vector space still apply. For example, the subspaces of R2

are {0}, R2, and the set of all lines in R2 passing through the origin.

2. The set of all linear combinations α1v1 + . . .+ αmvm of m vectors vi ∈ V is

called the span of those vectors. It is a subspace of V .

3. Any linearly independent set of vectors than span V are a basis for V . Any

v ∈ V can be uniquely represented as a linear combination of basis vectors.

To avoid digression we omit the definition of “linearly independent” which

we will supplant later. The notion of basis (pl. bases) is pivotal in much of

1We will only be concerned with vector spaces over the real numbers, but the definition is
much the same for complex numbers.
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this thesis, so we elaborate briefly to clarify the idea for the unfamiliar reader.

Consider an arbitrary vector in R3

v =

xy
z

 = x

1

0

0

+ y

0

1

0

+ z

0

0

1

 (A.1)

Here we have represented the vector v (uniquely) as a linear combination of

the standard basis vectors. This apparent contrivance belies the fact that there

is nothing special about the standard basis: other vectors may provide a more

convenient basis. What is crucial to appreciate is that when the basis changes,

so do the values of the coefficients x, y and z. It is still the same vector, but

represented differently.

Inner product spaces and orthonormal bases

It is useful to extend our basic vector space with the notions of magnitude, dis-

tance and angle. We do this with an inner product

〈v|u〉 =
n∑
i=1

vi · ui

Technically, this is the Euclidean inner product which, again, can be gener-

alised. The inner product allows us to define vector length, or norm

‖v‖2 = 〈v|v〉
1
2

which is simply an n-dimensional generalisation of Pythagoras’ Theorem. We

define the Euclidean distance between vectors u and v as ‖u− v‖2, that is, the

norm of the difference vector. The Triangle Inequality ‖u+ v‖2 ≤ ‖u‖2 + ‖v‖2

holds for all u and v, making the Euclidean distance a metric. We can further

define the angle between vectors u and v via

cos(θu,v) =
〈u|v〉

‖u‖2 · ‖v‖2

=

〈
u

‖u‖2

| v

‖v‖2

〉
= 〈ũ|ṽ〉

where the right hand side emphasises that this is simply the inner product of

normalised vectors, ‖ũ‖2 = ‖ṽ‖2 = 1. Note that normalisation changes length,

but not direction. The fact that θ is well-defined follows from the Cauchy-

Schwarz Inequality | 〈u|v〉 | ≤ ‖u‖2 · ‖v‖2 and noting that 〈ũ|ũ〉 = 1,
〈
ũ|−̃u

〉
=

−1 and 〈ũ|ṽ〉 = 0 when u and v are orthogonal. In the 2-dimensional plane

defined by u and v this is the same as cos(0), cos(180) and cos(90), respectively.
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If a collection of normalised vectors ũi are pairwise orthogonal, they are or-

thonormal. Orthogonality is sufficient for the ũi to be a basis for the vector

space they span. A desirable property of such bases is that the inner product

recovers the coefficients of an arbitrary vector v represented in that basis, say ṽ

ṽ =
n∑
i=1

〈ui|v〉ui

It is apparent that Eq. (A.1) is a special case of this formula. A significant

part of this thesis is based around what can be done when it is undesirable to use

an orthonormal basis to represent vectors and the above convenience is lost.

Low rank approximation and inversion

The eigen decomposition is a fundamental operation in applied and theoretical

mathematics. Any square symmetric m×m matrix M can be decomposed into

a sum of matrices formed from the eigen vectors ϕi and their eigen values λi,

M = ΦΛΦ′ =
m∑
i=1

λi|ϕi〉〈ϕi|,

The eigen decomposition is the only decomposition that diagonalises M (i.e.

Λ is a diagonal matrix), decoupling all of the ϕi. The eigen vectors form an

orthonormal basis for the subspace spanned by M . One consequence of this is

that, assuming the eigen vectors are ordered in decreasing magnitude of eigen

value, the optimal rank k < m approximation to M is

M̃k = ΦkΛkΦ
′
k =

k∑
i=1

λi|ϕi〉〈ϕi| ≈M,

where optimality is defined in terms of squared error ‖M − M̃k‖2. Another con-

sequence is that

M−1 = ΦΛ−1Φ′ =
m∑
i=1

1

λi
|ϕi〉〈ϕi|,

and thus, the eigen-decomposition is a method of inverting a square symmetric

matrix when λi > 0 ∀i. That is, M is invertible when λi > 0 ∀i. That this is an

inverse follows from I = M−1M = ΦΛ−1Φ′ΦΛΦ′ = ΦΦ′ = ΦΦ−1. If some λi = 0

we can, as with approximation, consider a rank k < m inversion using only (a

ranked subset of) the eigen vectors with non-zero eigen values
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M̃−1
k = ΦkΛ

−1
k Φ′k =

k∑
i=1

1

λi
|ϕi〉〈ϕi| ≈M−1

The generalisation of the eigen decomposition to an arbitrary n ×m matrix

X is the Singular Value Decomposition

X = USV ′ =
k∑
i=1

si|ui〉〈v′i|

where k ≤ min(m,n) is the rank of X, U are the eigenvectors of the square

symmetric matrix XX ′, V are the eigenvectors of the square symmetric matrix

X ′X and S = sqrt(Λ), where Λ is a diagonal matrix of eigen values shared

between both decompositions. Similar to the eigen decomposition,

X−1 = V S−1U ′ =
k∑
i=1

1

si
|vi〉〈u′i| (A.2)

From Eq. (A.2) we can derive the identities, U ′ = S−1V ′X ′ and V = X ′US−1.

Plugging these back into Eq. (A.2), we note that

X−1 = V S−1U ′

= (X ′US−1)S−1U ′

= V S−1(S−1V ′X ′)

and thus, by associativity of multiplication, X−1 = (V Λ−1
k V ′)X ′ = X ′(UΛ−1

k U ′).

Recalling our earlier presentation of the eigen decomposition and the fact that

U and V are the eigen vectors of XX ′ and X ′X, we conclude that (X−1)′ =

(XX ′)−1
k X = X(X ′X)−1

k , where k denotes a low rank inversion, as defined above.

This is the well-known Moore-Penrose pseudo inverse X+, although the pre-

sentation given is non-classical. In Eq. (3.7) and (3.8), we make use of this

row/column-space duality in order to elucidate a connection between the least

squares and k-nearest neighbour solutions to the statistical inference problem.

In Eq. (6.6), the expansion of (X+)′θ = (UΛkU
′)Xθ is central to the statistical

justification of our systemic model of the immune response.
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