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Abstract—Semantic technology can provide a bridge between
smart applications and Internet of Things (IoT) to enable
possible integration and interoperability of data produced by
heterogeneous devices. In IoT, data quality plays an important
role when it comes to interfacing sensor readings with real-time
applications at the basic atomic level. Popular techniques of ma-
chine learning and point-based calibrations are inadequate due
to inability to perform semantic reasoning and interoperability
on sensor streams even in real time. In this paper, a layered
software framework based on semantic technologies is developed
to maintain the consistency of data streams produced by physical
sensors that interprets measurements as numeric values. The
framework shows how semantic modelling and reasoning can
be applied to validate the consistency of data streams while
placing emphasis on the temporal characteristics of the stream.
The evaluation of the approach involves analysing the effects of
different Resource Description Format(RDF) data serializations
on the response times of the reasoning engine and throughput
of continuous semantic stream query execution. The outcome
of experiments indicates the semantic framework as a promising
approach for stream validation in Smart Spaces and other related
IoT domains.

Index Terms—Ontology, C-SPARQL, Latency, Throughput, Sen-
sor, Data Stream, Smart Space

I. INTRODUCTION

Smart Spaces (e.g. smart building) are open pervasive envi-
ronments having computing hardware with embedded comput-
ers and multi-modal sensors providing access to information
and unprecedented level of services. They are defined by sen-
sors, measurements, actuators and controllers. The objective
of IoT and Smart Spaces concerns integrating heterogeneous
readings from different sensors to infer new knowledge for
proactive guidance [1].

Sensor readings or measurements are continuous streaming
atomic data that are fast changing in space and time. They
are used to drive automation, make decisions, execute trans-
actions, entertain, inform and secure. These huge amounts of
data produced needs to be consistent and managed quickly
for intelligent systems and real-time IoT applications. For
instance, sensor measurements derived from temperature and
humidity sensors may produce inconsistent readings as a result
of physical disturbances or environmental influences. At the
same time, these readings may need to be utilised at the lowest
atomic level by a highly sensitive context-aware applications

such as fire and safety monitoring systems or decision support
systems. This will impact on the performance and eventual
processing of the system. For this reason, the data needs to be
validated to prevent false positive events or malicious decisions
from such applications. In this context, it will be necessary to
integrate readings from several sensors within the space to
perform semantic validation of sensor readings in order to get
a coherent idea of the space and to support applications relying
on them as infrastructure.

The method of interpolation and integration through seman-
tic modelling and inferencing has been suggested as one of
the possible ways of dealing with the data quality problems
in sensor readings [2]–[4]. Although semantic technology is
becoming popular in stream processing, targeting data quality
validation and related issues is marginally unexplored. The
previous approaches in dealing with data quality problems in
sensor readings mainly adopt either statistical approaches (in-
cluding analytic techniques) or methods of point calibrations
built into sensors. These approaches are not able to provide
meaning to sensor streaming data and inadequate to perform
real-time semantic reasoning and interoperability on sensor
streams.

The contribution of this work is to enhance the stream
processing system (such as C-SPARQL) with production rules
(using Jena rule constructs) to achieve a Continuous Time-
Aware reasoning. This approach is used to provide stream
validation for quality problem relating to inconsistencies in
sensor streams. It provides semantic meaning and machine
interpretation to sensor streams for enhanced sensor streams
interoperability.

The rest of this paper is organized as follows: section II
discusses the state of the art solutions in semantic technique
for sensor streams. Section III presents the semantic software
framework for consistency validation of sensor streams. Sec-
tion IV provides relevant use case scenario that describes the
suitability of approach for IoT-based monitoring system in
smart building. Section V and VI describes the experiments
and Performance Evaluation respectively. The conclusion and
future outlook of the work is presented in section VII.



II. RELATED WORK

Sensor-driven IoT applications is a new research area of
stream processing system. Until recently the Data Stream
Management system (DSMS) has been considered as an area
of research for managing and addressing the issues challenging
data stream processing. This system is known to be deficient
when it comes to performing reasoning over a complex task.
In addition, it cannot provide the required protocol to support
accessibility and publication of spatial-temporal data [5]. The
semantic data modelling and reasoning approach has become
an alternative to dealing with sensor streaming data.

The approach to sensor and measurement modelling with
the use of ontology model in the domain of Wireless Sensor
Networks (WSN) [6] [7] has continue to gain the interest of the
semantic web community. The leading standard among these
models is the SSN ontology [6], which provides a modular
ontology that is considered suitable for various practitioners.
It caters for most of the limitation in the previous version
which makes it unsuitable for some domain applications. Most
ontologies [8] [9] previously developed consider accuracy as
being independent of sensor measurements. Although some
of these ontologies are able to capture the real time measure-
ments of the sensor readings, the self-evolving capability and
important data quality issues relating to Smart Spaces are still
lacking and are not within the scope of these models.

The World Wide Web Consortium (W3C) provides a num-
ber of reasoning systems to support the process of ontology
modelling. These reasoning systems are not able to perform
reasoning on the semantic data streams [10]. This shortfall
was addressed by StreamRule System [11], which specifically
targets the Semantic Web. The system only provides its
description using the Extended Mark-up language and fails to
support the processing of historical data. SPARQL extensions
such as C-SPARQL is currently used as stream querying
and processing system for sensor data stream [12] [13]. A
new approach to stream reasoning can combines C-SPARQL
with either of Descriptive or Non-Descriptive logic systems.
Mixed approach requires the combination of Non-Description
Logic rule language with stream querying over an ontology
[14]. It is necessary to consider a mixed approach that will
will implement continuous rule with time-aware feature for
data consistency management in Smart Spaces. The current
research chooses the option of C-SPARQL against the CQELS
because of its support for nested aggregations and temporal
operators [15] [16].

Lightweight RDF data serialization is considered the most
expressive means for providing meaning and machine inter-
pretations. The most referred RDF data serialization format
is the RDF/XML format. This is because it is found to be
highly expressive when compared to its counterparts such as
N3, Turtle and N-Triples formats. However, recent study [17]
indicates RDF/XML serialization can cause increased latency
and throughput for centralized reasoning system. Although the
claim is yet to be established in the case of sensor streaming
data, this forms part of our current investigation.
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Fig. 1. Semantic framework for stream Consistency.

To the best of our knowledge, combining the Jena Rule
construct with C-SPARQL to achieve a continuous rule and
time-aware reasoning is yet to be subject to consideration.

III. SEMANTIC FRAMEWORK

In an attempt to provide a method for validating the consis-
tency requirement for sensor streams, we present a semantic
framework in figure 1 to describe its implementation as it is
related to Smart Spaces. The core of the framework is the
semantic process found in the second and third layers . The
framework follows a bottom-up approach, where the data entry
point is considered to be the first lower layer of the framework.
The description of each layer of the framework is similar to
the one presented in [4]

A. Sensing Layer

The layer contributes to the large volume of data stream
produced within the Smart Space. It consists of sensors
and physical network devices. It receives data from the
different sensors and devices within the space and prepares
the data for the immediate upper layer representing the



core of the architecture. Most of the data produced at this
layer exists as data streams with temporal characteristics
and are heterogeneous nature. In an attempt to arrive at
an effective metadata to validate the sensor streams, four
different serialization formats for achieving Semantic Stream
data are considered [18]. The semantic streams are later
constituted as elements of ABox in the modelling layer.

Stream Service
The stream service runs in the background as black box for

delivering the specified semantic data serialization formats. It
also resolves the continuous binding arising from C-SPARQL
query by separating individual quadruples using the hash table
indexing key/value property to eliminate redundant quadruples
while also providing unique identification for each quadruple.
This module is developed with multi-stream management
capabilities to ensure the continuous transfer of data streams
with java infrastructure such as Apache Camel. It interfaces
with a data stream aggregator that collects the raw sensor data
and later present them as quadruples (a triple with individual
timestamp also called Semantic Stream) to the next upper
layer.

B. Modelling and Integration Layer

The method of encoding meaning into raw streaming sen-
sor data useful for other applications is an opportunity for
validating the quality of readings. This layer models the
ontology for entities of Smart Spaces, description of sensors
and streaming data with their relationships. The resulting
ontology is called the Smart Space and Sensor Measurement
(SmartSASM) Ontology. SmartSASM is used to integrate and
enhance reasoning for sensor streaming data available as raw
numeric data. The development of SmartSASM extends the
latest version of the SSN ontology1 , which currently considers
SOSA 2 (Sensor, Observation, sample and Actuation) ontology
at the core to cater for its deficiency. This SSN ontology
still lacks self-evolving capability and adequate specification
of certain concepts peculiar to Smart Space domain. The
logical structure of the SmartSASM ontology reflects exten-
sion of fundamental concepts of SSN ontology as identified
by the ongoing work in [6]. For example, SmartSASM on-
tology extends concepts such as ’Feature of Interest’ from
SSNO with Phenomena (smartspace : Phenomena v
ssn : FeatureofInterest), ’Observable Property’ with Sen-
sorMeasurement (smartspace : SensorMeasurement v
ssn : ObservableProperty), and so on.
Consistency Model for Ontology Evolution

We define the consistency model for the evolving ontology
based on sensor data stream resulting from frequent update
of the persisted data or addition of new concepts. The goal
of the evolving property of our ontology is to ensure that the
application of changes must result in the ontology conformity
to consistency without any loss of data.

1http://www.w3.org/ns/ssn/
2http://www.w3.org/ns/sosa/

Definition 1. A single stream STr within a particular time
window Tw is consistent iff it maintains specified constraints
for each individual time window Tw within each timestamp.

Since we chose to define the streams consistency for a
particular ontology, the set constraints will then depends on
the underlying semantic rules. In the remaining part of this
section, it is worth noting that most of the definition used for
stream consistency model is similar to that in [19]. Then, we
can define the stream consistency model MSTr as:

MSTr = CRules ∪ Sconstraints ∪ Uconstraints

Where CRules are the consistency rules of the model,
Sconstraints are the soft-constraints and the Uconstraints are
the user-defined constraints. These constraints are defined in
relation to sensor streams. The same situation holds for the
consistency of ontology concepts.

The evolving feature of the ontology is perceived as
elementary changes that represents simple, fine-grained
changes caused by frequent automatic update performed
on the ontology instances. The propagation of this
change is closely monitored to maintain and preserve
the consistency of the ontology throughout the process.
The meta-change transformation of the ontology is best
described as AddConcept or AddInstanceOf depending
on the complexity of the change (higher or lower). For
example, each concept representing a property or phenomena
is automatically populated with its own instance without
conflict. Suppose we represent a single Smart space ontology
subject to changes as SpaceOnt:

Definition 2. The change ∆ between ontologies is a functional
mapping of SpaceOnt1 and SpaceOnt2 such that SpaceOnt2
= ∆(SpaceOnt1)

It is important to note that in the definition SpaceOnt2
is the changed ontology. This change is tracked along the
individual sensor reading. A change is additive when the
entities (i.e. concepts or instance) of the resulting ontology
are added without altering the existing one. In the present
work, instance can added to the existing ontology where new
set of sensor reading is produced. Likewise, new concepts can
be added automatically where new sensor is detected in the
space.

C. Reasoning Layer

The objectives of this layer is to provide semantic reasoning
that complement the stream aggregation system (C-SPARQL)
in order to achieve a Continuous Time-Aware reasoning. This
is used to achieve the process of continuous validation of the
sensor stream through the semantic inferencing. Readings from
a particular sensor within a time window is validated against
prevailing disturbances with data validation policies and, other
relevant sensor readings. The fact that most ontology-based
reasoners and the counterparts can only provide inferencing



for concepts and properties of ontology models [20] is the
main rationale for our reasoning system .

1) C-SPARQL Engine:
The query engine is responsible for the continuous aggregation
and ordering of semantic streams within each processing
window and supports the Stream Service module to perform
its intermediate function before the semantic reasoning and
inferencing can occur. It adopts the window-based aggrega-
tion strategy to perform continuous query over the semantic
streams within the sliding windows. The overlapping sensor
streams in successive querying window is carefully resolved
with customized hash table.

2) Reasoning Engine:
This layer relies on the content of the rule base containing the
data consistency policies specified using sets of production
rule defined by the domain expert to realize the reasoning
task. The rule is applied in continuos fashion to infer new
knowledge from the semantic data streams within each sliding
window. The Continuous Time-aware feature of the production
rule is implemented using Jena rule construct including its
Application Programming Interface (API) subsystem because
Jena is known be popular for performing read or write oper-
ations on application-specific ontology. The rule construct is
designed to support the temporal identity of the data streams
while putting into consideration the temporal requirements.
The execution of Jena rule is influenced by the presence
of disturbance(s) within the space. In order to allow the
Jena API performs the continuous reasoning over the query
window of the quadruples; (i) The conversion of the Jena rule
into another system that support reasoning is considered (ii)
Layering of Jena rule language with stream processing system
(C-SPARQL) to support Continuous Time-Aware reasoning
and Close World Assumption (CWA). The problem associated
with separation of ontologies during inferencing as identified
with Jena is resolved by continuous binding function defined
in the framework. The output of the reasoning operation is
an inference graph that represents new set of facts. These
new facts automatically evolve as updated conceptual model
(SmartSASM ontology) in form of historical data.

D. Application Layer
This layer is considered as the uppermost layer of the

framework. It consists of various modules that specifies mech-
anisms for managing interfaces and agents that consumes
actionable knowledge produced within the Smart Space. The
layer receives output from the reasoning layer as Java Script
Object Notation (JSON) format for web based applications.
One of the objectives of the layer is to provide support for
intelligent services at all levels. The layer can consist of a
number of automated applications that interface directly with
the underlying semantic process to deliver a better quality
output. In order to achieve the desired level of services, the
layer relies on the domain logic of the application system.

IV. Use Case Scenario
IoT-based Fire and Safety Monitoring System (FSMS) gen-

erates alerts to a team of fire service upon detection of fire

@prefix rdf: http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#
@prefix owl: http://www.w3.org/2002/07/owl#
@prefix rdfs: http://www.w3.org/2000/01/rdf‐schema#
@prefix xsd: http://www.w3.org/2001/XMLSchema#
@prefix smartSpace: http://localhost:8080/smartSpace#
[consistencyCheck:

(?humidityReadings smartSpace:hasHumidityReading ?humidityValue)
(?humidityReadings smartSpace:humidityHasTimestamp ?humidityTime)
greaterThan(?humidityValue,39)
lessThan(?humidityValue,51)
(?tempReadings smartSpace:tempHasTimestamp ?tempTime)
(?tempReadings smartSpace:hasValue ?tempValue)
greaterThan(?tempValue,17)
lessThan(?tempValue,24)
(?pressureReadings smartSpace:hasPressureReading ?pressureValue)
(?pressureReadings smartSpace:pressureHasTimestamp ?pressureTime)
greaterThan(?pressureValue,750.1)
lessThan(?pressureValue,761.0)
le(?tempTime,?humidityTime)
le(?tempTime,?pressureTime)
‐>
(?tempReadings smartSpace:isValid 'Consistency Check')

]

Fig. 2. Sample Rule Syntax for Sensor Stream Consistency Validation.

from a smart building. The FSMS relies on sensor readings
from physical properties within the building to generate notifi-
cations, which is sent to a remote command system via HTTP
protocol. On event of fire, the firefighters carries a wearable
sensor for detecting temperature, smoke, location, etc. One of
the fire vehicle contains the on-site command system (CS) -
application that continuously evaluates the situation on site to
suggest the best strategies for evacuation and rescue operation.
The FSMS performs continuous validation and updates on
temperature readings in relatively short time intervals by
invoking the proposed semantic process against the sensor
readings and influencing smart space components within same
time window. The remote personnel uses these data to maintain
awareness about the situation on site. Similarly the FSMS
uses the smart building sensors and other wearable sensors not
affected by smoke or fire to deliver streaming data between
the site and CS.

V. EXPERIMENTS AND TECHNOLOGIES

The experimental setup consists of a domain/sensor on-
tology, reasoning engine, continuous query engine and the
RDF database. Ideally, The proposed framework from section
III has been contextualized in the use case scenario for this
experiment. The goal of the experiment is to measure the
effects of the semantic data serialization formats on the latency
of the reasoning engine and and throughput of the C-SPARQL
query.

The dataset from the REFIT3 Smart Home project has
been manipulated for the use case scenario. These data were
gathered by 1,567 sensors measuring different properties from
20 homes in city of Loughborough, United Kingdom between
2013 and 2015. It consists of 25,312,397 sensor readings with
individual timestamps. The relevant sensor readings from the

3http://www.refitsmarthomes.org/index.php/data/



        REGISTER QUERY sensorValueOf AS 
        PREFIX smartSpace:<http://localhost:8080/smartSpace#> 
        SELECT *         
        FROM STREAM <http://localhost:8080/smartSpace/streamTemperature> [RANGE 15s STEP 2s]
        FROM STREAM <http://localhost:8080/smartSpace/streamPressure> [RANGE 15s STEP 2s]
        FROM STREAM <http://localhost:8080/smartSpace/streamHumididty> [RANGE 15s STEP 2s]  
        WHERE {
        ?tempReadings smartSpace:hasValue ?tempValue.
        ?tempReadings smartSpace:hasTimestamp ?tempTime.
        ?tempReadings smartSpace:hasId ?tempId.
        ?tempReadings smartSpace:hasSeason ?tempSeason.
        ?tempReadings smartSpace:hasTimestamp ?tempTime.
        ?pressureReadings smartSpace:hasPressureReading ?pressureValue.
        ?pressureReadings smartSpace:pressureHasTimestamp ?pressureTime.
        ?humidityReadings smartSpace:hasHumidityReading ?humidityValue.
        ?humidityReadings smartSpace:humidityTimestamp ?humidityTime.
        }
        ORDER BY ASC(?tempTime)

Fig. 3. Sample C-SPARQL query.

project were simulated for 24 hours to facilitate the run-time
experiments by using the existing Java streaming libraries4 to
generate similar datasets in real time.

In the experiment, we consider four separate semantic
serialization formats to represent sensor streams as semantic
streams or quadruples within each sliding window. The query
engine is allowed to execute concurrently with the streaming
data in each window to aggregate multiple quadruples without
loss of data points using a sample C-SPARQL queries in figure
3. It adopts a window based aggregation strategy to capture
the real time Semantic Streams. The query is able to aggregate
an average of 72 quadruples per window.

Furthermore, we induced the system with some likely
disturbances and inconsistent temperature readings that can
influence the consistent state of temperature readings beyond
set point. Such type of disturbances can include Door/Window
Leakage or Sensor Status. This is used as a guide to firing of
rule for validating indoor temperature readings and actuation
process within the Smart Space. The Jena rule construct
(shown in figure 2) is a type of productions that implements
a forward RETE system for stream consistency validation of
temperature readings. The rule conditions is based on the
domain expert knowledge of Occupational Health and safety5

for ideal indoor temperature readings. The rule was able to
validate temperature readings in each sliding window applied
to quadruples during reasoning process. The snapshot of the
output from the semantic validation is shown in figure 4 where
individual data point is represented as quadruple and annotated
as isValid for true positive temperature readings as seen with
tempReading4.

VI. PERFORMANCE EVALUATION

The experiment was conducted on a single node centralized
server running on multiple processor computer (Pentium Core
(TM) i7-4770 CPU @ 3.40GHz – 16GB RAM) with an initial
and maximum heap size of 1024m and 2048m respectively.
The importance of the semantic querying and reasoning in
this work is to detect possible errors or wrong temperature

4http://streamreasoning.org/resources/c-sparql
5http://www.ohsrep.org.au/hazards/workplace-conditions/heat

<rdf:Description rdf:about="http://localhost:8080/
smartSpace#tempReadings4"><smartSpace:isValid 

rdf:datatype="http://www.w3.org/
2001/XMLSchema#integer">50</smartSpace:isValid>

<smartSpace:isValid rdf:datatype="http://www.w3.org/
2001/XMLSchema#integer">54</smartSpace:isValid>

<smartSpace:hasValue rdf:datatype="http://www.w3.org/
2001/XMLSchema#float">26.69</smartSpace:hasValue>

<smartSpace:tempHasTimestamp rdf:datatype="http://
www.w3.org/2001/XMLSchema#dateTime">2018‐09‐
19T20:44:26.160Z</smartSpace:tempHasTimestamp>

<rdf:type rdf:resource="http://localhost:8080/
smartSpace#tempValue"/>

</rdf:Description>
<rdf:Description rdf:about="http://localhost:8080/

smartSpace#tempReadings5">
<smartSpace:hasValue rdf:datatype="http://www.w3.org/

2001/XMLSchema#float">11.34</smartSpace:hasValue>
<smartSpace:tempHasTimestamp rdf:datatype="http://

www.w3.org/2001/XMLSchema#dateTime">2018‐09‐
19T20:44:26.160Z</smartSpace:tempHasTimestamp>
<rdf:type rdf:resource="http://localhost:8080/

smartSpace#tempValue"/>
</rdf:Description>

Fig. 4. Sample Inference from Consistency Validation.
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Fig. 5. Latencies of Semantic Process with various Serialization.

readings from sensor streams and make necessary inferences
about the consistent state of the streams in relation to certain
external disturbances.

In the experiments, we validate the consistency of the
temperature readings against the proportionate values and
timestamps for humidity and pressure readings while also
considering other disturbances and status of sensors within
the space.

In the experiment, investigation based on peak times (in mil-
liseconds) of the data serialization formats (i.e. RDF/XML,N-
Triple, Turtles,N3) was performed to evaluate the performance
of the semantic approach. This was carried out in two spe-
cific aspects: (i) the peak mean latency of the reasoning
per window to execute the semantic stream by exclusively
using each of the four semantic data serialization formats
and, (ii) peak throughput for window based aggregation of
each of the semantic data formats. The reasoning engine is
able to execute more than 8047 window cycles and producing
around 656,104 inferred quadruples during the experiments.
In specific details, Figure 4 shows the peak of mean latency



Fig. 6. Throughput of Window-Based Execution of C-SPARQL with various
Serialization.

for RDF/XML serialization which is below 7 milliseconds
with better performance compared to other formats. This
means RDF/XML experiences the shortest delay among other
formats. Moreover, Figure 6 indicates both RDF/XML and
N3 requires maximum of about 6 milliseconds to perform
aggregation over 8163 operations. Considering that streaming
data are generated every 15mins (based on the REFIT Smart
Home project), it is possible to affirm that the semantic
querying and reasoning with RDF/XML serialization can be
contained within the interval between read of the participating
sensors deployed within Smart Space.

VII. CONCLUSION AND FUTURE WORK

Research on stream reasoning that involves the combination
of ontologies and query processing has continue to gain the
interest of researchers and semantic web community. Most
of the researches in the domain of sensors and smart cities
deals with various issues but with little concern on the
quality of sensor readings. The proposed approach mainly
combines domain ontology that provides the description and
integration of heterogeneous Smart Space devices/components
with semantic reasoning derived from First Order Logic. A
remarkable advantage of the approach is that the continuous
sliding window aggregation and reasoning technique with
Non-Description Logic improves the accuracy of semantic
validation over continuous sensor streams. Furthermore, the
outcome from the experiments indicates sensor streams can
be validated at the basic atomic level of applications before it
is consumed by time sensitive or automated applications.

An investigation into the suitability of the framework for
validating the sensor readings against plausibility or trust-
worthiness and incompleteness of sensor streams is being
considered. The spatial characteristics of the data stream with
the time-awareness is equally worth being considered. In the
future, investigation will be conducted in order to confirm
the efficiency and effectiveness of the semantic process in
distributed environment. Further studies will also include
designing the semantic reasoning that is able to handle larger
data source and more sophisticated or complex rules.
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