Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force

Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Introduction

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Before electronic communications

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Codes

Caesar code

abcdefghijk1mnopqrstuvwxyz YZABCDEFGHIJKLMNOPQRSTUVWX

RFC ZMW QRMMB ML RFC ZSPLGLE BCAI

Code mapping

403 million billion billion
abcdefghijk1mnopqrstuvwxyz MGPOAFZBCDIEHXJKLNTQRWSUVY

QBCT CT MX AUMHKEA KCAPA JF QAUQ

4.03×10^{26} codes

Vigenere code

 $1 \quad B C D E F G H I J K L M N O P Q R S T U V W X Y Z A$
$2 \quad$ C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
3 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Moves the mapping depending on a keyword (in this case "GREEN")
H I J K L M N OP Q R S T U V W X Y Z A B C D E F

LMN OP Q R S I U WXYZABCD B I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
 $11 \mathrm{~L} M \mathrm{~N} O P \mathrm{Q}$ R S T U V W X Y Z A B C D E F G H I J K

Hello GREEN

Vigenere code

Moves the mapping depending on a keyword (in this case "GREEN")

Hello GREEN
 N

Moves the mapping depending on a keyword (in this case "GREEN")

Hello GREEN

NV

Moves the mapping depending on a keyword (in this case "GREEN")

Hello GREEN NVP

Homophonic
substitution code
Number of codes varies with the probability of the letter.

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption
A few fundamentals

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Private-key:
RC2, RC4, DES, 3DES, AES

Public-key:

RSA, DSA
(factoring prime
numbers)
FIPS 186-2, ElGamal (Elliptic curve)

Three main methods:
Private-key.
Public-key.
One-way hash.

How safe is the key?

- the more keys ... the less likely it is to find the key.

For example, if we have a key with four notches ... each which can exist or not ... how many keys can we have?

Width of Napier (100m)

Width of Edinburgh (6 miles)

Earth to the Moon 93,000,000 miles

If each key was 1 mm , and each key was laid end-on-end, what is the distance spanned for all the possible 64-bit electronic keys?

Width of the Milky Way
90,000 light years across

Width of the Solar System $3,666,000,000$ miles

Width of Napier (100m)

Width of Edinburgh (6 miles)

Earth to the Moon $93,000,000$ miles

If each key was 1 mm , and each key was laid end-on-end, what is the distance spanned for all the possible 64-bit electronic keys? (1,300,000,000,000,000 miles)

Width of the Milky Way 90,000 light years across

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Cracking the code

Man-in-the-middle.

Where the intruder is hidden between two parties and impersonates each of them to the other.

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Brute force

Okay... we select a 64-bit key ...
which has 1.84×10^{19}
combinations

- It is important to understand the length of time that a message takes to crack as it may need to be secret for a certain time period.
18.4 million million million different keys 000000000000.... 000000000000000000 To
111111111111.... 111111111111111111

How long will it take to cracked It by brute-force (on average)?

- From 285 years to 1 day, just by computers increasing their computing power.

56-bit DES:
Developed 1975
30 years ago! ... now easily crackable

- 56 -bit DES is seen as insecure as it can be cracked by enhanced processors.

Year: 1998
Electronic Frontier Foundation Cyberspace Civil Rights Group 90,000,000 keys per seconds

Array: 29 circuits of 64 chips
$=1856$ elements
2.5 days

- Cracks 64-bit DES in less than nine days for less than $\$ 10,000$

Now

System: COPACOBANA

(Cost-Optimized Parallel COde Breaker)
Time to crack: Less than 9 days for DES (64-bit code). Cost: Less than $\$ 10,000$

RSA Lab Challenge

- RSA Labs have a number of challenges, each of which have been solved. The present challenge is 72-bit RC5.

1998. RSA Lab's 56-bit DES II-1 Encryption Challenge - 39 days.
1999. RSA Lab's 56-bit DES II-2 Encryption Challenge - 2.5 days.
2000. RSA Lab's 56-bit DES-III Encryption Challenge - after 22.5 hours using EFF's Deep Crack custom DES cracker.
2001. RSA Lab's 64-bit RC5 Encryption Challenge - Completed 14 July 2002 - 1,757 days and 83% of the key space tested.

RSA Lab's 72-bit RC5 Encryption Challenge - In progress.

- Tries to crack RSA Lab challenge by processing a range of possible keys while the screen save is on.
- Massive parallel
processing system.

Distributed.net is starting and stopping (Max CPU when searching for possible keys)

픙 Windows Task Manager
File Options Yiew Help

Applications	Processes Performance	Networking

\square dist.net

Hicention File and Folder Task 9 Make a new folder as publish this folder to Share this folder

Other Place

- Local Disk (C:)

My Documents
Shared Docur
3 my computer
3 my Network Places

\sim

 $\vee \rightarrow_{60}$ \rightarrow go

Super Computers

BlueGene/L - eServer Blue Gene Solution DOE/NNSA/LLNL, IBM Department of Energy's (DOE) National Nuclear Security Administration's (NNSA). 131,072 processors
367,000 Gigaflop $=367,000,000$ Mflops

- BlueGene is 1.8 million times more powerful than a standard PC.

```
Red Storm - Sandia/ Cray Red Storm
NNSA/Sandia National Laboratory United States, Opteron 2.4 GHz dual core Cray Inc.
```

26,544 processors 127,000 Gflops

Typical PC: 200 Mflop ... BlueGene is $\mathbf{1 , 8 3 5 , 0 0 0}$ times more powerful than a desktop.

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Block or stream

Encryption

Introduction
Before electronic communications Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

3-DES. The DES encryption algorithm uses a 64-bit block and a 64-bit encryption key (of which only $\mathbf{5 6}$ bits are actively used in the encryption process). Unfortunately DES has been around for a long time, and the 56-bit version is now easily crackable (in less than a day, on fairly modest equipment). An enhancement, and one which is still fairly compatible with DES, is the 3-DES algorithm. It has three phases, and splits the key into two. Overall the key size is typically 112 bits (2×54 bits - with a combination of the three keys - of which two of the keys are typically the same). The algorithm is:
Encrypt $_{k 3}$ ($\operatorname{Decrypt}_{k 2}$ ($\operatorname{Encrypt}_{k_{1}}$ (message)))
http://buchananweb.co.uk/security07.aspx
where K1 and K3 are typically the same (to keep compatibility).
RC-2. RC2 ("Rivest Cipher") is seen as a replacement for DES. It was created by Ron Rivest in 1987, and is a 64-bit block code and can have a key size from 40 bits to 128 -bits (in increments of 8 bits). The 40 -bit key version is seen as weak, as the encryption key is so small, but is favoured by governments for export purposes, as it can be easily cracked. In this case the key is created from a Key and an IV (Initialisation Vector). The key has 12 characters (96 bits), and the IV has 8 characters (64 bits), which go to make the overall key.

AES/Rijndael. AES (or Rijndael) is the new replacement for DES, and uses 128-bit blocks with 128, 192 and 256 bit encryption keys. It was selected by NIST in 2001 (after a five year standardisation process). The name Rijndael comes from its Belgium creators: Joan Daemen and Vincent Rijmen.

RC4. This is a stream encryption algorithm, and is used in wireless communications (such as in WEP) and SSL (Secure Sockets).

Pseudo infinite stream

Data stream (eg 0101010 010)
General Forms Links Media Security
Web Site Identity Verified
The web site signin.ebay.co.uk supports authentication for the page you are viewing. The identity of this web site has been verified by VeriSign, Inc., a certificate authority you trust for this purpose.

View the security certificate that verifies this web site's identity.

Connection Encrypted: High-grade Encryption (RC4 128 bit)
The page you are viewing was encrypted before being transmitted over the Internet.
Encryption makes it very difficult for unauthorized people to view information traveling between computers. It is therefore very unlikely that anyone read this page as it traveled across the network.

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Encryption keys

Key entropy: Relates to the equivalent number of bits given the range of phases used.

For example: if there were eight pass phrases this would be equivalent to a 3-bit key.

Standard English gives 1.3 bits per character. Thus an 8 character word gives $\mathbf{1 0 . 4}$ bits for the key entropy.

Pass phrases might be: Napier, napier, napier1, napier11, napier123, and so on (the range of key will obviously be limited if the number of phrases are limited)

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Passing keys

Diffie-Hellman suffers from a man-in-themiddle attack, where Eve negotiates for each side, and creates two encryption channels

Diffie-Hellman suffers from Eve intercepting the key interchange, so that Bob thinks he's talking to Alice for the key exchange.
He110

не11о

Hello

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Public-key encryption

Bob
Select two prime numbers: \mathbf{a} and \mathbf{b}
$n=a \times b$
e is chosen so that e and $(a-1) \mathbf{x}(b-1)$ are relatively prime (no common factor greater than 1)

Public key is now: <e,n>
$d=e-1 \bmod [(a-1) x(b-1)]$

Private key is now: <d,n>

```
RSA Program
```

Results
Private key
test
$\mathrm{d}=3 \mathrm{DE}$ 45B74AAA94AD54A8B1C411F781B3FB6DDFC
CA22A88D 15350744F98B7E6C22E50F57DAD58A024
2F8948C24EFCC8E76678F5CA8ADB57AF53972EC78
CDEDCF460E46E18DD9D57503D1F4188ECOBDA843
6ED 42 DE 1 COE 632 AD47DA66971F3FDEC03B46C 225 F
77A40C27B0589.
$\mathrm{n}=\mathrm{C} 6 \mathrm{BA1E70BB} 34887 \mathrm{DFDDF73475FE03A17EE9CD96}$
24967E8CB360685A2AA996FF4C6F2C11A518F717B6
9F03B1E2369B8D27C03D0CA9CBAE3531F6526FD8F
2D74A925BB4574885A1A22FDC2D590BDCE110AA24
2D74A925BB4574885A1A22FDC2D590BDCE110AA24
FDA48FCDD38961B7924CFB77879DB2C7DCB19CCE
Public key
$\mathrm{e}=010001$.
$\mathrm{n}=\mathrm{C} 6 \mathrm{BA} 1 \mathrm{E} 70 \mathrm{BB} 34887 \mathrm{DFDDF73475FE03A17EE9CD96}$
n=C6BA1E70BB34887DFDDF73475FE03A17EESCD96
24967E8CB360685A2AA996FF4C6F2C11A518F717B6
24967E8CB360685A2AA996FF4C6F2C11A518F717B6
2D74A925BB4574885A1A22FDC2D590BDCE110AA24
FDA48FCDD3896187924CFB77879DB2C7DCB19CCE
06C6673735A4BE4063FDO2C5D8431011169D91A45
852B6A3D14F

Encryption

GA6EA150E253B415CC28A7837DBA6002123F70
9A6EA150E253B415CC28A7837DBA6002123F70
9840087475 E 002 F 27 C 633774684403 A4DE13704 283C97A7AO16726E4AFAF9E38951FBD3D8A5D 7977A0A7F58B42C3939B5E26BFC65E561F3CE5 A8F489B64B8F9C 3391 A7C5C8EF56C4F3910A18 1B4123D073E6A738A216C8E0E8458F896A99D COF234B44ACEB077C3F74520D76FF

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

One-way hash

One-way hash

Windows login/ authentication

- Hashes are used for digital fingerprints (see the next unit) and for secure password storage.
- Typical methods are NT hash, MD4, MD5, and SHA1.

Bob
mypass

NT hash
fa1bfa14fa13fa12fa10fa1ffa14fa12

NT-password hash for Windows NT, XP and Vista

Cisco password storage (MD5)

Windows login/ authentication

- Hashing suffers from dictionary attacks, thus it is important that any passwords are not standard words, such as to change password for pA55wOrd.

mypass

Hashing suffers from dictionary attacks where the signatures of well know words are stored in a table, and the intruders does a lookup on this

effahd13fa12fa10fgffa1ffa14fa144
fa1bfa14fa13fa12fa10fa1ffa14fa12
ff12189043210954defff0123444512d

A major factor with hash signatures is:

- Collision. This is where another match is found, no matter the similarity of the original message. This can be defined as a Collision attack.
- Similar context. This is where part of the message has some significance to the original, and generates the same hash signature. The can be defined as a Pre-image attack.
- Full context. This is where an alternative message is created with the same hash signature, and has a direct relation to the original message. This is an extension to a Pre-image attack.

In 2006 it was shown that MD5 can produce collision within less than a minute.

A 50% probability of a collision is:

$$
\sqrt{\text { bility of a collision is: }} \sqrt{N(\text { signatures })}=\sqrt{2^{n}}=2^{\frac{n}{2}}
$$

where n is the number of bits in the signature. For example, for MD5 (128-bit) the number of operations that would be required for a better-than- 50% chance of a collision is:

$$
2^{64}
$$

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Encrypting disks

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

PGP encrypting

Encryption

Introduction
Before electronic communications
Codes
A few fundamentals
Key-based encryption
Cracking the code
Brute force
Block or stream
Private-key methods
Encryption keys
Passing keys
Public-key encryption
One-way hash
Encrypting disks
PGP encryption

Conclusions

