
1ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

www.nature.com/scientificreports

Decentralized dynamic
understanding of hidden relations
in complex networks
Decebal Constantin Mocanu1, Georgios Exarchakos2 & Antonio Liotta2,3

Almost all the natural or human made systems can be understood and controlled using complex
networks. This is a difficult problem due to the very large number of elements in such networks, on the
order of billions and higher, which makes it impossible to use conventional network analysis methods.
Herein, we employ artificial intelligence (specifically swarm computing), to compute centrality metrics
in a completely decentralized fashion. More exactly, we show that by overlaying a homogeneous
artificial system (inspired by swarm intelligence) over a complex network (which is a heterogeneous
system), and playing a game in the fused system, the changes in the homogeneous system will reflect
perfectly the complex network properties. Our method, dubbed Game of Thieves (GOT), computes the
importance of all network elements (both nodes and edges) in polylogarithmic time with respect to the
total number of nodes. Contrary, the state-of-the-art methods need at least a quadratic time. Moreover,
the excellent capabilities of our proposed approach, it terms of speed, accuracy, and functionality, open
the path for better ways of understanding and controlling complex networks.

In any real-world system, at micro and macro-scale, from the vigintillions of interacting atoms in the observable
universe, to the billions of persons who live on Earth, there are amazing structures of networks of networks. These
networks can be studied, understood, and controlled by the means of network science and complex networks1,
leading to advances in many domains, including neuroscience2–4, astrophysics5, biology6,7 epidemiology8, social
networks9,10, transportation networks11, communication networks12,13, and artificial intelligence14 (to mention
but a few). Yet, unveiling the complex networks hidden patterns and computing even their most basic properties
is far from trivial, due to the massive number of node entangles that interact in non-obvious ways, evolving and
unfolding continuously15.

Among all these network properties, the centrality (or importance) of nodes and links is fundamental to
understanding things such as: biological neural networks2–4, cosmic structures5, biological networks7, how viruses
spread or can be contained16; which people or news are influencing opinions and decisions the most17; how to
protect computer systems from cyber-attacks18; or how to relay data packets in the one-trillion Internet-of-Things
network of the future. While there is ample literature on node centrality computation19, the existing methods
do not scale to the size and dynamics of practical complex networks, which operate at the tunes of millions to
trillions nodes. Besides that, the state-of-the-art centrality metrics are designed for specific goals, and one metric
which performs well for one goal is suboptimal for another20. Furthermore, existing methods focus on finding the
most important network elements (i.e. nodes or links), but fail to capture the hidden relations across the whole
network links and nodes. The centralized algorithms consider the topology as a whole, overlooking many of the
local features19.

Per contra, the decentralized methods are usually based on local computations to construct statistics of net-
work elements (as in21), but fail to capture the overall network structure. In fact, the most effective decentralized
methods nowadays still fail to capture all the relations between the networks elements, and this is our main target.
In addition, current methods have technological constraints that have to be surpassed. To tackle the scale as well
as dynamics of real-world networks, we need to compute centrality metrics not only accurately but also timely,
based on the existing computational capabilities.

1Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, 5612 AP, The
Netherlands. 2Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AP, The
Netherlands. 3Present address: Department of Electronics, Computing and Mathematics, University of Derby, Derby,
DE22 1GB, UK. Correspondence and requests for materials should be addressed to D.C.M. (email: d.c.mocanu@tue.nl)

Received: 17 July 2017

Accepted: 21 December 2017

Published online: 25 January 2018

OPEN
Correction: Author Correction

mailto:d.c.mocanu@tue.nl
https://doi.org/10.1038/s41598-018-24851-9

www.nature.com/scientificreports/

2ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

To tackle all of the above constraints and limitations, in this paper we propose a new viewpoint to model and
understand complex networks. The basic idea is fairly simple. First, we overlay a homogeneous artificial system
(a system created in such a way that all its elements ponder equally) over a complex network, which is a hetero-
geneous system - its level of heterogeneity being given by its topology. We then start a gaming process, whereby
the artificial system entities start interacting with the network. What’s interesting is the artificial system evolves
in different ways, depending on the features of the complex network. In turn, network features, specifically the
centrality metrics, start emerging. Our viewpoint is inspired to a basic principle of physics. If one would like to
measure the volume of an irregular-shape object then one solution would be analytical, by measuring its dimen-
sions and by solving some complicated triple integrals. An alternative much faster and ingenious solution, which
needs just middle school knowledge, is the water displacement method coming from the Ancient Greeks, i.e.
Archimedes of Syracuse. One would need just to submerge that irregular object in a graduated cylinder filled with
water and to measure the water displacement. Further on, this easy to obtain volume can be used to measure other
properties of the object, e.g. density.

Keeping the proportion, in the case of complex networks, the artificial homogeneous system represents the
water, and the centrality represents the volume, while the game represents the action of submerging the irreg-
ular object. With the complex networks constraints in mind, our proposed homogeneous system follows four
stratagems:

 1. completely decentralized computations, so that all nodes contribute simultaneously to the calculation of
centrality;

 2. computational simplicity, so that the algorithm may be executed in thin nodes, such as the low-resources
sensors of the Internet of Things;

 3. nature-inspired, swarm computations22, to pursue global convergence through localized, stochastic
actions;

 4. human-behaviour like computations23(namely, egoistic behaviour), to gain an insight on the topological
features of the network.

Altogether, the above four stratagems are confined in a novel algorithm, dubbed Game of Thieves (GOT).

Results
Game of Thieves. Intuitively, GOT mimics the egoistic behaviour of a multitude of thieves faced with the
prospect of easy-to-steal diamonds - from here comes its name. Our homogeneous artificial system has two
virtual elements: a group of wandering thieves (in game theory: the actors) and a set of virtual diamonds or
vdiamonds (in game theory: the resources). At start, each node is artificially endowed with vdiamonds which
are nomadic, reusable and non-replicable virtual resources, generalizing and virtualizing the concept from12,24.
Likewise, each node is endowed with wandering thieves, mobile actors which act stochastic (they wander in
search of vdiamonds to steal) and egoistic (as soon as they have an opportunity, they steal vdiamonds and take
them back to their home node).

A thief has two states: “empty” (i.e. it does not carry any vdiamond) and “loaded” (i.e. it carries one vdia-
mond). Besides that, he has three functionalities: he wanders from one node to a neighbour, picked randomly
(chaotic behaviour), to search for vdiamonds; when he finds vdiamonds, the thief fetches one (egoistic behav-
iour); he brings it to his home node by following back the same path previously used to find the vdiamond. Like
any other vdiamond, this newly homed vdiamond becomes immediately available for the other wandering thieves
to steal it. More details about the thieves behavior can be found in Methods. When GOT starts, all nodes host the
same given number of thieves and vdiamonds. Then the game proceeds in epochs. At each epoch, all thieves jump
from their current location to the next one, changing state when they find or deposit a new vdiamond.

Comparing with classical swarm computational methods, in GOT the thieves do not communicate directly
among them - they are independent actors in the game. Nodes, links and thieves perform just local actions,
while the interactions at global level are ensured by the vdiamonds migration. In turn, the vdiamonds migration
is driven by the network topology (a heterogeneous system), since the resources tend to be drawn more rapidly
from the better connected nodes and tend to be accumulated in the less connected nodes. It is through this
migration process that the network elements strengths (node and link centralities) gradually emerge from the
vdiamonds distribution.

GOT formalism. Let us consider G = (V, E) to be an undirected graph (G) containing a set of nodes (V) and
a set of edges (E). Φn

0 is the initial amount of vdiamonds in node n ∈ V (at time zero). Similarly, ΦT
n denotes the

number of vdiamonds in node n ∈ V at time T (i.e. after the game has run for T epochs). ΨT
l is the number of

“loaded” thieves traversing link l ∈ E at epoch T. The average number of vdiamonds present at a node (n), after
the game has run for a duration of T epochs, can be computed as:

∑Φ = Φ
=T

1
(1)T

n

e

T

e
n

0

The average number of “loaded” thieves passing through link (l) after T epochs will be:

∑Ψ = Ψ
=T

1
(2)T

l

e

T

e
l

0

www.nature.com/scientificreports/

3ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

Counterintuitively, a smaller ΦT
n value reflects a more important node, while a higher ΦT

n value indicates a less
important one. This is a consequence of the fact that the more central nodes are visited by many thieves which will
contribute to their fast depletion, while the less central nodes are visited by few thieves which will not be able to
deplete them. Intuitively, higher ΨT

l values reflect more important links, while lower ΨT
l values point to the less

important links.

GOT functionality illustration. GOT algorithm is presented in Methods, while Fig. 1 shows snapshots
of GOT in operation at eight different times, on a simplistic 10-node network. Notably, after just 5 epochs GOT
already reflects in a decent manner the nodes centrality. Being a purely stochastic process, GOT rapidly leads to
well-organized patterns in the resource distribution, as visible from the evolution of the colour codes over the
eight epochs. This behaviour agrees with diffusion-limited aggregation processes25 and ensures that the most
central nodes lose their resources first (e.g. Figure 1, nodes B, C, F), while the marginal nodes (e.g. Figure 1, node
G) will tend to accumulate resources more rapidly (Fig. 1g and h). This also follows the intuition that nodes with
higher centrality have higher chances of being visited by thieves. This observation is also compatible with a sim-
ilar phenomenon discovered by Saavedra et al. in the context of real-world biological and economical networks,
whereby the strongest network contributors were found to be the most prone to extinction26.

GOT visualization. To begin with, we have tested GOT in small scale simulations, mainly to visualise its
operation. We simulated ten Erdös-Rényi Random Graphs27, ten Scale-Free networks28, and ten Small-World
networks29, each being unweighted, and including 100 nodes and 500 to 1,000 links. The game started with 1 thief
and 100 vdiamonds per node and run for 1,000 epochs. At that point we averaged the results on each network
type. Figure 2 shows both the node ranking (following a colour scheme) and GOT’s convergence level (dotted
line). Remarkably, after just a few hundred epochs GOT stabilizes, indicating that the striking majority of node
ranks have been established. It is interesting to see that scale-free networks stabilize significantly faster (in just a
few epochs), as it was expectable by the peculiar node degree distribution on such network types.

GOT stopping criterion. The stopping criterion of the GOT algorithm is reached when just a small num-
ber of nodes still changes their rank of importance from one epoch to the next successive ones using the scores
assigned by GOT. Formally, let us define a vector Λe for any epoch (e). Each element Λe,n ∈ Λe is the rank of impor-
tance given by GOT to node n ∈ V in epoch (e). Note that all elements of Λe are unique natural numbers between
1 and |V|. Thus, a general stopping criterion for GOT can be expressed as:

∑ ∑ ε





Λ − Λ






< | |

= − =

| |

−H
V1 ()

(3)e T H

T

n

V

e n e n
1

, 1,
2

Figure 1. Thieves in action. Snapshots with the illustration of GOT behavior over epochs on a simple
unweighted network with 10 nodes. Initially, we set Φ =10n

0 vdiamonds and one thief per node, and we let the
game to run for 1000 epochs. The colormap gives the number of vdiamonds, Φe

n, in any node (n) at epoch (e).
The numbers on the side of each node show the rank of importance, Λe,n, assigned by GOT to the specific node
(n) after (e) epochs, where e = 1, 2, 3, 4, 5, 100, 500, and 1000 epochs in subplots a,b,c,d,e,f,g, and h respectively.

www.nature.com/scientificreports/

4ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

where T is the actual epoch, H is the number of past epochs taken into consideration, and ε ∈ (0, 1) is a subunitary
real number. Figure 2 reflects GOT stopping criterion for networks with 100 nodes and H = 10 over 1000 epochs.

Please note that the GOT stopping criterion from Equation 3 is independent of the order in which the nodes
are considered, as long as the same order is used in all epochs. Still, the stopping criterion is dependent on the
rank of importance Λe, n ∈ Λe assigned by GOT to each node (n) in epoch (e). As long as the network scrutinized
has a heterogeneous topology the GOT algorithm will converge to a statistical equilibrium state. We demonstrate
this empirically in the next two paragraphs (i.e. GOT scalability and GOT performance). Yet, if the network is
perfectly homogeneous (e.g. a complete unweighted graph) then GOT will never converge. This behavior, even
if it looks unwanted, is in fact as it should be, as in a complete unweighted graph all nodes have exactly the same
importance.

In practice, we found that satisfactory results are achieved by setting H = 10, and ε = 0.02, and we named
SC2 this particular instantiation of Equation 3. In other words, SC2 means that a maximum 2% of the nodes
change their rank over 10 consecutive epochs. We validate the performance of GOT stopped when SC2 is fulfilled
throughout the paper.

GOT scalability. To study the ability of GOT to scale, we have conducted extensive simulations on a variety
of networks, up to one million nodes. We consider three types of randomly generated networks, Erdös-Rényi
Random Graphs, Scale-Free and Small-World networks, both weighted and unweighted. Simulations are rand-
omized, repeated and averaged to ensure statistical significance. We look at the number of epochs required for
GOT to converge, using the stopping criterion described above (SC2). Therein we shall also discuss why SC2 is
satisfactory for the assessment of node and link centrality. We simulate networks ranging from 10 to 106 nodes,
having a number of links comprised between six and ten times the number of nodes. We also tried different start-
ing conditions, with 1, 3 and 10 thieves per node, setting Φ = | |Vn

0 .
Empirically, we found that the number of epochs needed for convergence is on the polylogarithmic scale of

the network size. Figure 3 depicts this sub-linearly relation for each network type. More exactly, the parallel time
complexity of GOT convergence, O(GOT), is bounded by log2|V| < O(GOT) < log3|V|. Furthermore, due to the
facts that each network node can run completely independently of the others, and the thieves can be emulated by
messages transmitted between nodes, if we assume an environment where each node can do its own computa-
tions, then we can say that GOT is a fully distributed algorithm. Such environment can be offered, for instance, by
all devices running a Facebook application. Even in a traditional parallel computing environment, a high level of
parallelization can be achieved. For instance, the nodes could be split in disjunctive subsets, and each subset can
run on a computing core. To our best knowledge, this represents a breakthrough compared to the state-of-the-art
centrality algorithms which have at least a quadratic time complexity (see Table 1).

Figure 2. GOT visualization. Nodes rank assigned by GOT in each epoch, while it runs for 1000 epochs in
random generated networks with 100 nodes and between 500 and 1000 links. The results are averaged on 10
different networks for each network type. The dash lines show GOT stopping criteria as a percentage of the total
number of nodes, at any epoch T.

www.nature.com/scientificreports/

5ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

It has to be mentioned that computing the ranks of importance, Λe, can be done by using a simple sorting
algorithm on the ΦT

n values. If GOT is run until the SC2 criteria is fulfilled than this sorting algorithm has to be
executed in every epoch, according with Equation 3. We highlight that this overhead can be avoided by letting
GOT to run for a fixed number of epochs, within the above discussed bounds. In this case the sorting algorithm
can be executed just once, after GOT has been stopped, as demonstrated further in the Performance on real-world
networks paragraph.

GOT performance. We have assessed GOT both on simulated and real-world networks, against state-of-the-art
centrality metrics, i.e. Betweenness Centrality (BC)30, Current Flow Betweenness Centrality31 (CFBC),
DACCER21, and Second Order Centrality32 (SOC), as detailed in Methods.

To assess GOT’s accuracy in identifying the correct node centrality (while validating SC2), we used three
classes of simulated networks: Erdös-Rényi Random Graphs, Scale-Free and Small-World networks. For each
class, we randomly generated 100 weighted networks with weights generated randomly between 1 and 10, and 100
unweighted networks. Each network had 1,000 nodes and between 4,500 and 5,500 links. Comparing GOT to the
literature was tricky, because nobody so far has managed to compute node and link centrality rankings simulta-
neously, as we do. We compared to two centralized methods, Brandes’ algorithm30 for Betweenness centrality and
Current flow betweenness centrality31, which have variants for vertices and edges. We ran these multiple times to
allow the comparison with GOT. Also, we compared GOT with two decentralized algorithms, DACCER21 and
Second order centrality32, for nodes centrality. DACCER and SOC do not have variants for links centrality, and
DACCER is not capable to assess nodes centrality in weighted networks. For GOT, we set 1 thief and Φ =1000n

0
vdiamonds per node and we ran the algorithm until SC2 convergence was achieved. To assess the accuracy of all
metrics used, we used the NRP procedure32 (as detailed in Methods). Figure 4 and 5, and Table 2 depict the gen-
erality of GOT, which has a better accuracy than all the other centrality metrics for nodes, while for links it out-
performs its competitors in 8 of 12 scenarios, staying very close to the best performer (BC or CFBC) in the
remaining 4 scenarios. But we should note that BC and CFBC are only used to compare centrality accuracies -
these are centralized algorithms and would not scale in massive-scale networks (which is the ultimate goal of
GOT). In all scenarios, SC2 was fulfilled on average after 274 ± 45 epochs, this being within the previous discussed
bounds. More than that, in both figures, it can be observed that GOT performs better because it is capable to
discover well the centrality of the medium important nodes and links, while the other algorithms fail to do that.

Figure 3. GOT scalability. The plot shows the number of epochs needed by GOT to converge. For each network
used, the number of edges is between 5 and 10 times bigger than the number of nodes. Independently of the
network model, or the number of agents used per node (i.e. 1, 3, or 10), GOT convergences in a number of
epochs empirically lower-bounded by log2|V| and upper-bounded by log3|V|, which is on the polylogarithmic
scale with respect to the total number of nodes in the network, |V|.

Algorithm
Functional
Performance

Computational Efficiency Performance Accuracy
PerformanceArchitecture Time complexity

GOT with SC2 Nodes and Links Fully Distributed O(log2|V|) < O(GOT) < O(log3|V|) 83.4%

CFBC31 Nodes or Links Centralized O(I(|V| − 1) + |V||E|log|V|) 8.3%

BC30 Nodes or Links Centralized O(|V||E|) 8.3%

SOC32 Nodes Partially Distributed O(|V|2) < O(SOC) < O(|V|3) 0%

DACCER21 Nodes Fully Distributed n/a 0%

Table 1. Comparison of five centrality algorithms using different performance criteria (i.e. functional,
computational efficiency, and accuracy). The bold values represent the best performer for specific performance
criteria.

www.nature.com/scientificreports/

6ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

Performance on real-world networks. We have validated GOT using three real-world networks (from
different domains): the “Dolphins social network”, an undirected social network of the most frequent associations
between a community of 62 dolphins living in Doubtful Sound, New Zealand33; the “Internet”, a symmetrized
snapshot of the structure of the Internet created by Mark Newman from BGP tables posted by the University of
Oregon in 2006; and the “High Energy” theory collaborations, a weighted disconnected network with the
co-authorships between scientists posting preprints on the High-Energy Theory E-Print Archive between 1 January

Figure 4. GOT accuracy - random generated unweighted networks. The evolution of the size of the giant
component and of the number of connected components with mean (the straight line) and standard deviation
(the shadow area) in unweighted networks during the NRP procedure, averaged over 100 networks in each
subplot. The y-axes give figure of merit, while the x-axes represent percentage of node and links removals,
respectively. In the top subplots, nodes centrality is assessed, while in the bottom subplots, the links centrality is
evaluated.

www.nature.com/scientificreports/

7ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

1995 and 31 December 199934. For GOT, we set 1 thief and Φ = | |Vn
0 vdiamonds per node and we ran it for log2|V|

epochs (i.e. the lower bound of GOT with SC2) to avoid the overhead introduced by the SC2 computing. By using
the same NRP procedure as before, Fig. 6 shows that GOT achieves a better accuracy than the other approaches in
10 out of 12 situations, while in the other 2 cases it stays very close to the best performer (CFBC) - again, CFBC is
used only for comparison, being a centralized algorithm which would not be usable in massive-scale networks.

Figure 5. GOT accuracy - random generated weighted networks. The evolution of the size of the giant
component and of the number of connected components with mean (the straight line) and standard deviation
(the shadow area) in weighted networks during the NRP procedure, averaged over 100 networks in each
subplot. The y-axes give figure of merit, while the x-axes represent percentage of node and links removals,
respectively. In the top subplots, nodes centrality is assessed, while in the bottom subplots, the links centrality is
evaluated.

www.nature.com/scientificreports/

8ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

We emphasize that in the case of the “Internet” network, which was the biggest real-world network used in
this paper (i.e. 22,963 nodes, 48,436 links) a Python sequential implementation of GOT ran in 88 seconds and
assessed both, nodes and links centrality, at the same time, while the cumulative times for the next two perform-
ers, BC and CFBC using their NetworkX35 implementations, were 6,322 seconds and 66,977 seconds, respectively.
These running times are at least two orders of magnitude larger than GOT. DACCER and SOC, using our own
Python implementation, were a bit faster than BC and CFBC, and ran in 574 and 3,213 seconds, respectively, but
their accuracy was much lower. Besides that, they were able to compute just nodes centrality.

The “High Energy” network was particularly interesting to show another singular feature of GOT: its ability
to compute centrality in disconnected networks. This is not possible with existing distributed methods, so we use
the centralized algorithm BC for the sake of performance comparison.

As a curiosity, looking at the “High Energy’’ network we found that prof. Jan Ambjorn was the most important
researcher. Considering that this database was 17 years old, we found a strong correlation of GOT results with a
recent Google scholar profile of prof. Jan Ambjorn (i.e. 16,194 citations, 68 h-index) on 22 nd May 2017. We can
then speculate that centrality algorithms may even be used to make future extrapolations on networks.

Discussion
GOT is a new approach to profiling complex networks using a fully decentralized method. It outperforms
state-of-the art algorithms on three different performance criteria (i.e. functional, accuracy, and computational
efficiency), as summarized in Table 1. Functionally, it is capable of assessing at the same time nodes and links
importance in weighted, unweighted or disconnected networks. More than that, it outperforms state-of-the art
algorithms in terms of accuracy, being capable to accurately capture the underlying relations between the network
elements and to detect well all shades of centrality, including the most difficult entities - i.e. the one of medium
importance. All of these are detailed in Table 2, which summarizes all the accuracy experiments by computing the
area under the curve for each metric from each subplot of Figs 4–6. Overall, GOT was the best performer in terms
of accuracy in 30 out of 36 scenarios, while in the remaining 6 it was the second best performer or very close to
the best performers - but these are centralized, thus unscalable methods.

SOC DACCER BC CFBC GOT

Random generated
unweighted networks
(Fig. 4)

Erdos

Nodes
centrality

Giant size
Components number

4293
486

4625
267

4348
453

4237
530

4086
668

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

8185
1574

6843
3129

6853
3141

Scale-free

Nodes
centrality

Giant size
Components number

2960
1386

4167
571

2987
1433

2823
1569

2794
1620

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

8308
1277

6888
3042

6362
3633

Small- World

Nodes
centrality

Giant size
Components number

4447
272

4655
167

4472
252

4312
306

4257
365

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

6038
1484

7001
1127

7645
2322

Random generated
weighted networks
(Fig. 5)

Erdos

Nodes
centrality

Giant size
Components number

4501
354

n/a
n/a

4659
258

4360
453

4219
566

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

8413
1262

8358
1257

8287
1340

Scale-free

Nodes
centrality

Giant size
Components number

3204
1199

n/a
n/a

3803
841

2974
1392

2917
1479

Links
centrality

Giant size
Components number n/an/a n/a

n/a
8301
1547

8380
1444

8073
1837

Small-World

Nodes
centrality

Giant size
Components number

4636
191

n/a
n/a

4732
162

4511
244

4456
280

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

7907
1208

8231
1177

8263
1187

Real-World networks
(Fig. 6)

Dolphins

Nodes
centrality

Giant size
Components number

3643
1030

3527
1228

2490
1875

2400
1971

2272
2344

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

5094
3691

4172
3946

5625
4244

Internet

Nodes
centrality

Giant size
Components number

179
4217

1020
3034

180
4631

163
4577

179
4641

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

5164
4289

4111
3685

4027
5972

High Energy

Nodes
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

654
2789

n/a
n/a

649
3291

Links
centrality

Giant size
Components number

n/a
n/a

n/a
n/a

3390
4645

n/a
n/a

3299
6458

Table 2. Experiments summary. Area under the curve (AUC), rounded to the nearest integer, computed for
each metric from each subplot from Figs 4–6. The bold values represent the best performer for that specific
scenario, while “n/a” means that the metric is not suitable for that specific scenario.

www.nature.com/scientificreports/

9ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

Besides that, in terms of computational complexity, GOT is much faster and scalable (in terms of both number
of nodes and number of links) compared to existing methods. The worst-case implementation of GOT is sequen-
tial (i.e. it emulates all network actions in sequence in a single computer). Yet this is bounded up by O(|V|log3|V|),
which is much faster than the next three followers in terms of accuracy BC, CFBC, and SOC. These have compu-
tational complexity of O(|V||E|)30, O(I|V| − 1) + |V||E|log|V| (where O(I|V| − 1) is the time necessary to compute
the inverse Laplacian)36, and at least O(|V|2)32, respectively.

Figure 6. GOT accuracy - real-world networks. The evolution of the size of the giant component and of the
number of connected components during the NRP procedure in three real-world networks: Dolphins (62
nodes, 159 links, unweighted), Internet (22963 nodes, 48436 links, unweighted), and High Energy (8361 nodes,
15751 links, weighted, disconnected). The y-axes give figure of merit, while the x-axes represent percentage of
node and links removals, respectively. The top subplots depict the performance of nodes centrality metrics. The
bottom subplots show the links centrality metrics.

www.nature.com/scientificreports/

1 0ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

Another computational aspect which has to be considered is given by the randomness of GOT. Thus, as usual
for stochastic algorithms, the best practice would be to run GOT many times on the same network and to take the
statistical average into consideration. However, in practice, we found out that GOT is very stable and by running
it just once on a particular network it offers very good results in terms of accuracy performance. This stability
is best reflected by the very small standard deviations (the shadow areas) from Figs 4 and 5, where the results of
each subplot are computed as an average over 100 random generated networks, on each of these networks GOT
being run just once.

Even more strikingly, when GOT is implemented in distributed systems, its execution will proceed in parallel
across all nodes. This natively decentralized version of GOT has a parallel time complexity on the polylogarith-
mic scale with respect to the number of nodes in a network. This makes it suitable to perform real-time analysis
of very large-scale networks with billions of nodes, easily identifiable in the big data era, such as Facebook (in
the range of 1.000.000.000 nodes) or the Internet of Things (expected to expand to an order of 1 trillion of nodes
within the next few years).

To give an impression of the significance of the computational capability at hand, let us consider what GOT
could achieve in a 1 trillion Internet of Things network of the near future. Assuming that each device would run
GOT and would be able to transmit one message per millisecond. The scalability figures given above, would lead
to a complete computation of all node and link ranks in a timespan comprised between 0.8 seconds (given by the
lower bound of GOT with SC2) and up to 22 seconds (given by the upper bound of GOT with SC2). By compari-
son, if we were to use the state-of-the-art parallel processing algorithms of today on powerful computers, it would
take at least several weeks of continuous computation to achieve comparable results. This places GOT in a much
better position in terms of performing real-time centrality computations on massive-scale networks, being able
to tackle not only scale but also network dynamics.

Concretely, GOT is more accurate and much more faster than the most used centrality metrics. Thus, we fore-
see that it will start replacing those metrics in a number of real-world problems where the correct and efficient
identification of nodes and links centrality is essential: in biological neural networks2–4, in cosmic structures5,
in biological networks7, for viruses spreading and containing16, to identify the people or the news capable to
influence opinions the most in social networks17,37, to protect computer systems from cyber-attacks18, and so on.

In this paper we introduce a new viewpoint to understand and model complex networks, which overlays a
homogeneous artificial system over a network to unveil its hidden properties. We propose a novel algorithm to
compute centrality in networks, dubbed GOT. We show that GOT can compute all node and link centralities,
treated together, in a polylogarithmic time with respect to the number of nodes in the network. GOT has the
computational simplicity of nature-inspired swarm algorithms, while performing human-behaviour like compu-
tations23 (namely, egoistic behaviour). We demonstrate on thousands of simulated networks with different types
of topologies, and on real-world networks, that GOT can compute the whole range of link and node strengths
of any complex network, while being more accurate, much faster, scalable and technologically viable than the
state-of-the-art centrality metrics. Moreover, we have also used it to confirm well-established findings about a
non-obvious behaviour of natural networks26. Natively, GOT permits to investigate much larger networks, which
are not tractable with current algorithms - for instance GOT would require less than 9 seconds to compute the
centrality of the one-billion network formed by all Facebook user devices. The latter is one near future research
direction that we would like to take. Another direction is to try to replace the sorting algorithm which computes
the ranks of importance, Λe, with a decentralized GOT extension which makes use of network statistics collected
by thieves and vdiamonds with memory. Also, we intend to make a formal mathematical proof to show that GOT
is as a stochastic process which has its stationary state.

To conclude, we anticipate that our approach may lead to advances in various research fields for which nodes
and links centrality is of crucial importance2–13. Thus, we consider that our viewpoint will start a novel class
of methods in network science which natively incorporate the primordial property of real-world networks, i.e.
decentralization, and which may change our understanding about the natural and human-made complex systems
modelled by networks.

Methods
Game of Thieves. Thieves behavior. In the paper, we have presented the intuitions and the main flow of
the Game of Thieves (GOT) approach, and how it can be used to compute the centrality of vertices and edges in
a graph G = (V, E), where (V) is the set of vertices, and (E) is the set of edges. A key ingredient in the success of
GOT is the behavior of thieves (the agents) within the network. Before going into details, let us add the following
notations: Γn is the set of nodes that are connected by a link with node n, ∀n ∈ V; with Ωnm ≥ 0 the weight of the
link which connects the nodes n ∈ V and m ∈ V; and with Υa a dynamic list with the nodes visited by thief a,
useful to keep the path of a in his search for vdiamonds.

So, a thief a in the “empty” state will always perform successively the following operations in any epoch e:

•	 It randomly picks a node m ∈ Γn, where n is its actual location, with the following probability = Ω
∑ Ω∈Γ

pa
nm nm

v n nv ;

and it moves to node m. It is clear that unweighted networks are just a particular case of weighted networks, by
setting the weights of all links from the networks to 1.

•	 If m ∈ Υa then all the nodes situated after m in the list are removed from Υa, to avoid the apparition of cycles
in the list.

•	 If m ∉ Υa then m is added to the end of Υa.
•	 If node m has vdiamonds then the thief a takes one and it changes his state to “loaded”, while node m

decreases Φe
m by one vdiamond.

www.nature.com/scientificreports/

1 1ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

•	 At the same time, a thief a in the “loaded” state will always perform successively the following operations in
any epoch e:

•	 It moves from the last node n from Υa, which is his actual location, to the last but one node m from Υa, and
after that it removes n from Υa.

•	 Link l from n to m increases Ψe
l by one.

•	 If m is the home node of a, the thief unloads the vdiamond, and sets his state to “empty”, while node m
increases Φe

m by one vdiamond.

GOT algorithm. The algorithm is detailed below.

GOT optimal parameter choice. In total, GOT has three parameters: i.e. the number of epochs to run the game,
the initial amount of vdiamonds which have to be set in each node, and the number of thieves in each node. In
terms of accuracy, these parameters do not affect the algorithm performance, if the game is ran until the SC2 crite-
ria is fulfilled. To clarify, SC2 represents an equilibrium state of GOT as a stochastic process. Once GOT arrives in
this state, the above mentioned three parameters do not affect any-more the nodes and links ranks of importance.
Throughout the experimental section of the paper, we evaluated the quality of these ranks given by GOT when
the SC2 criteria was fulfilled.

Thus, we studied the three parameters just in term of computational efficiency and how they can affect (or
delay) GOT to reach the SC2 criteria. Previously, we demonstrated that independently of the network size GOT
converges to SC2 in a bounded number of epochs. So, we consider a safe practice to set the number of epochs
to run the game to the lower bound of SC2, O(log2|V|), if one needs the results faster, or to the upper bound,
O(log3|V|), if a better accuracy is needed. To find the best value for the initial amount of vdiamonds per node, we
performed extra experiments on different network types and sizes. We found that this parameter does not signifi-
cantly affect the convergence time of the algorithm if it is set to non trivial values, e.g. 1, 2, 3 vdiamonds per node.
Our experiments showed us that best practice is to set this parameter to the total number of nodes in the network.
We should, in fact, mention that the initial value of vdiamonds is not the crucial one, since it has negligible com-
putational costs. Finally, we have analyzed how the number of thieves per node influences the number of epochs
needed by the algorithm to converge considering different network types and sizes. In all cases, independently

Algorithm 1. Game of Thieves (GOT) algorithm.

www.nature.com/scientificreports/

1 2ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

on the number of thieves, the game converged within the bounds of SC2. To conclude, we consider that by setting
just one thief per node is enough, due to the fact that it achieves fast convergence time, independently of the cases
studied, while being the fastest option in terms of the total number of messages exchanged in the network.

Centrality in complex networks. Centrality is a measure to assess how important individual nodes (or links) are
in a network and how they can affect their neighborhood or even the whole network. However, there is no clear
way to define “centrality” in graphs. In the literature, there are several methods to calculate node’s centrality, each
one focused on specific features. Broadly, there are two main approaches: centralized and decentralized methods.
We exemplify these approaches, through four state-of-the-art centrality metrics, as summarized in Table 1.

Betweenness Centrality (BC). BC and its variants are among the most utilized metrics to assess the nodes’ impor-
tance38. It quantifies how a node lies on the path between other nodes. Formally, for a node n∈V, where V is the
set of all nodes, this can be written as:

∑
σ

σ
=

∈
C n

n
()

()

(4)
be

w u

w u

w u, V

,

,

where σw,u(n) represents the number of shortest paths from node w to node u which pass through the node n, and
σw,u represents the total amount of shortest paths from w to u. The computational complexity of the original algo-
rithm is  n()3 , making it unsuitable for large networks. For this reason, in the last period, several BC approxima-
tions have been proposed (see30 and references therein).

Current Flow Betweenness Centrality (CFBC). It was proposed in31, and is inspired to how the electric cur-
rent flows into an electric network. In comparison to BC, CFBC does not make the assumption that only the
shortest paths are important to compute the node centralities. It considers all the possible paths in a network,
by making use of random walks. In general, CFBC is considered to reflect centrality more accurately than BC,
but it is slower.

Second Order Centrality (SOC). It is a novel form of node’s centrality metric, calculated in a decentralized way,
and proposed by Kermarrec et al. in32. The algorithm is based on a random walk in the graph, which starts from a
random chosen node, and runs continuously. After the random walk has visited all nodes at least three times, the

Figure 7. NRP procedure - nodes. Snapshots during the NRP procedure for nodes in a random generated
network with 500 nodes. At the bottom of each subplot, the number of connected components (CC) and the size
of the giant component (GC) are shown.

www.nature.com/scientificreports/

13ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

standard deviation of the number of steps required to reach each of the nodes is computed. The authors demon-
strate why this value reflects the centrality of nodes.

DACCER. It is a decentralized algorithm to measure the centrality of nodes in networks, proposed by Wehmuth
and Ziviani in21. The main idea is that each node is computing its own centrality, based on the information
acquired from its vicinity. The authors showed that a two-hop vicinity reflects well the closeness centrality.

Evaluation metric - Node Removal Procedure (NRP). In the experiments, we have used a stand-
ard procedure to assess the accuracy of the nodes centrality metrics, namely the Node Removal Procedure
(NRP)32, as described next. After a centrality metric assigns scores for each node of the graph, all the nodes are
sorted according to their scores, starting with the most important one, and ending with the less important one.
Furthermore, the nodes from this sorted list are removed one by one from the graph, and after each removal the
size of the Giant Component (GC) and the number of Connected Components (CC) in the remaining graph
are measured. A node centrality metric is considered to be better if the number of connected components is
as big as possible, while the size of the giant component is as small as possible, during this NRP procedure.
Similarly, NRP can be applied for links, if the links are sorted according with their importance and after that
they are removed one by one. In Fig. 7, we have illustrated some snapshots during the NRP procedure for nodes
in a random network with 500 vertices. In Fig. 8 we have illustrated the NRP procedure for links in a random
network with 100 vertices.

Implementation. For all the experiments performed in this paper we used Python and the NetworkX
library35. Furthermore, for BC and CFBC we used the standard implementations offered by the aforementioned
library, while GOT, DACCER and SOC were fully implemented by us. Moreover, we used NetworkX to generate
the simulated networks, to work with the real-world networks under scrutiny, and to compute the size of the
giant component and the number of connected components during the NRP procedure. The hardware platform
utilized was a typical desktop computer (i.e. Intel Core i7, 32 GB RAM).

Data Availability. The source code will be available online after the acceptance of the paper, while the data
will be available from the authors upon request.

Figure 8. NRP procedure - links. Snapshots during the NRP procedure for links in a random generated
network with 100 nodes. At the bottom of each subplot, the number of connected components (CC) and the size
of the giant component (GC) are shown.

www.nature.com/scientificreports/

1 4ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

References
 1. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276, https://doi.org/10.1038/35065725 (2001).
 2. Pessoa, L. Understanding brain networks and brain organization. Physics of Life Reviews 11, 400–435 (2014).
 3. Stam, C. J. Modern network science of neurological disorders. Nature Reviews Neuroscience 15, 683–685, https://doi.org/10.1038/

nrn3801 (2014).
 4. Fornito, A., Zalesky, A. & Breakspear, M. The connectomics of brain disorders. Nature Reviews Neuroscience 16, 159–172, https://

doi.org/10.1038/nrn3901 (2015).
 5. Hong, S. & Dey, A. Network analysis of cosmic structures: Network centrality and topological environment. Monthly Notices of the

Royal Astronomical Society 450, 1999–2015, https://doi.org/10.1093/mnras/stv722 (2015).
 6. Wuchty, S. & Uetz, P. Protein-protein interaction networks of e. coli and s. cerevisiae are similar. Scientific Reports 4 (2014). https://

doi.org/10.1038/srep07187.
 7. Jeong, H., Mason, S. P., Barabási, A.-L. & Oltvai, Z. N. Lethality and centrality in protein networks. Nature 411, 41–42, https://doi.

org/10.1038/35075138 (2001).
 8. Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature Physics 6, 888–893, https://doi.org/10.1038/

nphys1746 (2010).
 9. Freeman, L. C. Centrality in social networks conceptual clarification. Social Networks 1, 215–239 (1978).
 10. Iranzo, J., Buldú, J. M. & Aguirre, J. Competition among networks highlights the power of the weak. Nature Communications 7,

https://doi.org/10.1038/ncomms13273 (2016).
 11. Crucitti, P., Latora, V. & Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E 73, 036125, https://doi.

org/10.1103/PhysRevE.73.036125 (2006).
 12. Mocanu, D. C., Exarchakos, G. & Liotta, A. Node centrality awareness via swarming effects. In 2014 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), 19–24 (2014).
 13. Albert, R., Jeong, H. & Barabási, A.-L. Error and attack tolerance of complex networks. Nature 406, 378–382, https://doi.

org/10.1038/35019019 (2000).
 14. Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M. & Liotta, A. A topological insight into restricted boltzmann machines.

Machine Learning 104, 243–270, https://doi.org/10.1007/s10994-016-5570-z (2016).
 15. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven contagion phenomena. Science 342, 1337–1342,

https://doi.org/10.1126/science.1245200 (2013).
 16. Pei, S. & Makse, H. A. Spreading dynamics in complex networks. Journal of Statistical Mechanics: Theory and Experiment 2013,

P12002 (2013).
 17. Aral, S. & Walker, D. Identifying influential and susceptible members of social networks. Science 337, 337–341, https://doi.

org/10.1126/science.1215842 (2012).
 18. Wang, P., González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding the spreading patterns of mobile phone viruses. Science

324, 1071–1076, https://doi.org/10.1126/science.1167053 (2009).
 19. Lawyer, G. Understanding the influence of all nodes in a network. Scientific Reports 5, https://doi.org/10.1038/srep08665 (2015).
 20. Borgatti, S. P. Centrality and network flow. Social Networks 27, 55–71 (2005).
 21. Wehmuth, K. & Ziviani, A. Daccer: Distributed assessment of the closeness centrality ranking in complex networks. Computer

Networks 57, 2536–2548 (2013).
 22. Bonabeau, E., Dorigo, M. & Theraulaz, G. Inspiration for optimization from social insect behaviour. Nature 406, 39–42, https://doi.

org/10.1038/35017500 (2000).
 23. Sanfey, A. G. Social decision-making: Insights from game theory and neuroscience. Science 318, 598–602, https://doi.org/10.1126/

science.1142996 (2007).
 24. Exarchakos, G. & Antonopoulos, N. Cooperative stalking of transient nomadic resources on overlay networks. Future Generation

Computer Systems 29, 1473–1484 (2013).
 25. Witten, T. A. & Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403, https://

doi.org/10.1103/PhysRevLett.47.1400 (1981).
 26. Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to

extinction. Nature 478, 233–235, https://doi.org/10.1038/nature10433 (2011).
 27. Erdös, P. & Rényi, A. On random graphs i. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959).
 28. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512, https://doi.org/10.1126/

science.286.5439.509 (1999).
 29. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
 30. Brandes, U. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001).
 31. Newman, M. J. A measure of betweenness centrality based on random walks. Social Networks 27, 39–54 (2005).
 32. Kermarrec, A.-M., Le Merrer, E., Sericola, B. & Trádan, G. Second order centrality: Distributed assessment of nodes criticity in

complex networks. Computer Communications 34, 619–628, Special Issue: Complex Networks (2011).
 33. Lusseau, D. et al. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations.

Behavioral Ecology and Sociobiology 54, 396–405, https://doi.org/10.1007/s00265-003-0651-y (2003).
 34. Newman, M. E. J. The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United

States of America 98, 404–409 (2001).
 35. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkx. In Varoquaux, G.,

Vaught, T. & Millman, J. (eds) Proceedings of the 7th Python in Science Conference, 11–15 (Pasadena, CA USA, 2008).
 36. Brandes, U. & Fleischer, D. Centrality measures based on current flow. In Proceedings of the 22Nd Annual Conference on Theoretical

Aspects of Computer Science, STACS'05, 533–544 (Springer-Verlag, 2005).
 37. Hu, Y., Ji, S., Feng, L., Havlin, S. & Jin, Y. Optimizing locally the spread of influence in large scale online social networks. arXiv

preprint arXiv 1509, 03484 (2015).
 38. Brandes, U. On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30, 136–145

(2008).

Acknowledgements
This research has been partly funded by the European Union’s Horizon 2020 project INTER-IoT (Grant Number
687283).

Author Contributions
D.C.M. conceived the initial idea. D.C.M., G.E., and A.L. designed the experiments and analyzed the results.
D.C.M. performed the experiments. D.C.M., G.E., and A.L. wrote the manuscript.

http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1038/nrn3801
http://dx.doi.org/10.1038/nrn3801
http://dx.doi.org/10.1038/nrn3901
http://dx.doi.org/10.1038/nrn3901
http://dx.doi.org/10.1093/mnras/stv722
http://dx.doi.org/10.1038/srep07187
http://dx.doi.org/10.1038/srep07187
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1038/ncomms13273
http://dx.doi.org/10.1103/PhysRevE.73.036125
http://dx.doi.org/10.1103/PhysRevE.73.036125
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1038/35019019
http://dx.doi.org/10.1007/s10994-016-5570-z
http://dx.doi.org/10.1126/science.1245200
http://dx.doi.org/10.1126/science.1215842
http://dx.doi.org/10.1126/science.1215842
http://dx.doi.org/10.1126/science.1167053
http://dx.doi.org/10.1038/srep08665
http://dx.doi.org/10.1038/35017500
http://dx.doi.org/10.1038/35017500
http://dx.doi.org/10.1126/science.1142996
http://dx.doi.org/10.1126/science.1142996
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1103/PhysRevLett.47.1400
http://dx.doi.org/10.1038/nature10433
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1007/s00265-003-0651-y

www.nature.com/scientificreports/

1 5ScieNtific REPORTs | (2018) 8:1571 | DOI:10.1038/s41598-018-19356-4

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Decentralized dynamic understanding of hidden relations in complex networks

	Results

	Game of Thieves.
	GOT formalism.
	GOT functionality illustration.
	GOT visualization.
	GOT stopping criterion.
	GOT scalability.
	GOT performance.
	Performance on real-world networks.

	Discussion

	Methods

	Game of Thieves.
	Thieves behavior.
	GOT optimal parameter choice.
	Centrality in complex networks.
	Betweenness Centrality (BC).
	Current Flow Betweenness Centrality (CFBC).
	Second Order Centrality (SOC).
	DACCER.

	Evaluation metric - Node Removal Procedure (NRP).
	Implementation.
	Data Availability.

	Acknowledgements

	Figure 1 Thieves in action.
	Figure 2 GOT visualization.
	Figure 3 GOT scalability.
	Figure 4 GOT accuracy - random generated unweighted networks.
	Figure 5 GOT accuracy - random generated weighted networks.
	Figure 6 GOT accuracy - real-world networks.
	Algorithm 1 Game of Thieves (GOT) algorithm.
	Figure 7 NRP procedure - nodes.
	Figure 8 NRP procedure - links.
	Table 1 Comparison of five centrality algorithms using different performance criteria (i.
	Table 2 Experiments summary.

