Authentication

Introduction
Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC

Digital certificates

Authentication

Authentication

Introduction
Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Email encryption
Conclusions

Introduction

> How does Bob distribute his public key to Alice, without having to post it onto a Web site or for Bob to be on-line when Alice reads the message?

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Methods

Authentication type

User
One-way server authentication. Server provides authentication to the client, such as SSL (HTTPS, FTPS, etc).

Authentication methods

Every authentication method has weaknesses, and, if possible, multiple methods should be used.

(ageing)

Ease-of-use

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Usernames/Passwords

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Biometrics Issues

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Biometrics Methods

DNA／Fingerprints

DNA．This involves matching the DNA of the user， and is obviously one of the best methods of authentication，but has many legal／moral issues．It is typically only used in law enforcement applications， and also suffers from the fact that other information can be gained from DNA samples such as medical disorders．It is also costly as a biometric method，but it is by far the most reliable．Also the time to sample and analyze is fairly slow，taking at least 10 minutes to analyze．Finally，the methods used to get the DNA， such as from a tissue or blood sample can be fairly evasive，but newer methods use hair and skin samples，which are less evasive．

Finger prints．This involves scanning the finger for unique features，such as ridge endings，sweat ports，and the distance between ridges，and comparing them against previous scans．It is one of the most widely used methods，and is now used in many laptops for user authentication．Unfortunately，the quality of the scan can be variable，such as for： dirty，dry or cracked skin；pressure or alignment of the finger on the scanner； and for surface contamination．The main methods used include thermal，optical， tactile capacitance，and ultra－sound．

- One of the best methods of authentication.
- Everyone has a unique iris, which is fairly complex in its pattern.
- Key characteristic marking such as the corona, filaments, crypts, pits, freckles, radial furrows and striations.
- Extremely difficult to trick the system.
- Affected by glasses which affect the quality of the image.
- Moral issues associated with this method.
- Fairly costly to implement.
- Fairly evasive in its usage, where the user must peer into a special sensor machine.
- Accuracy obviously depends on the resolution of the scanner, and the distances involved.

Retina scan

- Shines a light into the eye.
- Analyses the blood vessels at the back of the eye for a specific pattern.
- Good method of authenticating users.
© creditable scans.
- May cause some long term damage to the eye.

Face recognition

Face recognition

Hand geometry

- 2D or 3D image is taken of the hand.
- System measures key parameters, such as the length of the fingers, the position of knuckles, and so on.
- One of the most widely used methods.
- One of the most acceptable from a user point-of-view.
- Can be inaccurate, and thus should be only used in low to medium risk areas.
- Typically contactless, and can handle fairly high volumes of users.
- Main application is typically in building/ room access.
- Scans the face for either a 2D or 3D image, and performs pattern.
- Match to determine the likeness to a known face.
- Optical scanning, also can be infrared (thermal) scanning.
- Distance between the eyes, width of forehead, size of mouth, chin length, and so on.
- Suffers from permanence factors that cause the face to change, such as facial hair, glasses, and, obviously, the position of the head.
- Remote scanning and unobtrusive sensor.
- Poor match the further the face is away from the scanner.

Hand geometry

Face recognition/hand geometry

Keystroke

- Analyzing the keystrokes of a user, for certain characteristics, such as typing speed, typical typing errors, time between certain keys, and so on.
- One of the least liked authentication methods, and also suffers from changes of behavior, such as for fatigue and distractions.
- Can be matched-up with other behavioral aspects to more clearly identify the user, such as in matching up their mouse stokes, applications that they run, and so on.

Others

- Ear shape. Analyzes the shape of the ear, and has not been used in many applications. It is normally fairly obtrusive, and can involve the user posing in an uncomfortable way.
- Body odor. Analyzes the body odor of a user, for the chemicals they emit (knows as volatiles), from non-intrusive parts of the body, such as from the back of the hand.
- Personal signature. Analyzes the signing process of the user, such as for the angle of the pen, the time taken for the signature, the velocity and acceleration of the signature, the pen pressure, the number of times the pen is
 lifted, and so on.

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Message Hash

How do we get a finger-print for data?

Hello. How are you? Is this okay?

Data

With a
fingerprint we
can hopefully tell
if Eve has
modified any of
the data

> Solved by Prof Ron Rivest with the MD5 hash signature.

	Hashing Algorithm (MD5)
hello	XUFAKrxLKna5cZ2REBfFkg
Hello	ixqZU8RhEpaoJ6v4xHgE1w
Hello. How are you?	CysDE5j+ZOUbCYZtTdsFiw
Napier	j4NXH5Mkrk4j13N1MFXHtg
	Base-64
hello	5D41402ABC4B2A76B9719D911017C592
Hello	8B1A9953C4611296A827ABF8C47804D7
Hello. How are you?	CC708153987BF9AD833BEBF90239BF0F
Napier	8F83571F9324AE4E23D773753055C7B6
	Hex

Securiad mobility are two of the most mportant issues on the lnters t, as they will allow users to ecure their data transmissions, and also break their link with physical connections.

Securityand mobility are two of the mast mportant issues on the interet, as they will allow users to ecure their data transmissions, and also break their link their physical connections.

F94FBED3DAE05D223E6B963B9076C4EC

+U++09rgXSI+a5Y7kHbE7A==

Base-64

8A8BDC3FF80A01917D0432800201CFBF

iovcP/gKAZF9BDKAAgHPVw==

Hash signatures are used to gain a signature for files, so that they can be checked if they have been changed.
[Path] / filename
[C:\Windows\System32\]

12520437.cpx
12520850.cpx

8point1.wav
aaclient.d11
AC3ACM.acm
Ac3audio.ax
ac3filter.cp1
accessibilitycp1.d11
ACCTRES.d11
acledit.d11
ZSHP1020.CHM
ZSHP1020.EXE
ZSHP1020.HLP
ZSPOOL.DLL
ZTAG.DLL
ZTAG32.DLL

MD5 sum

0a0feb9eb28bde8cd835716343b03b14 d69ae057cd82d04ee7d311809abefb2a beab165fa58ec5253185f32e124685d5 ad45dedfdcf69a28cbaf6a2ca84b5f1e 59683d1e4cd0b1ad6ae32e1d627ae25f 4b87d889edf278e5fa223734a9bbe79a 10b27174d46094984e7a05f3c36acd2a ac4cecc86eeb8e1cc2e9fe022cff3ac1 58f57f2f2133a2a77607c8ccc9a30f73 Obcee3f36752213d1b09d18e69383898
c671ed [Path] / filename MD5 sum

96e459----------------------
a0769-12520437.cpx
fae33412520850.cpx
7ca836 8point1.wav
27b02 aaclient.d11
AC3ACM.acm
Ac3audio.ax

Cg/rnrKL3ozYNXFjQ7A7FA== 1prgV82c0e7n0xGAmr77Kg== vqswX6W0xSUxhfMuEkaF1Q== ruXe39z2mijLr2osqEtfHg== WWg9HkzQsa1q4y4dYnriXw== S4fYie3ye0X6Ijc0qbvnmg==

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Authenticating with the private key

Bob encrypts the message/hash with Alice's public key

Bob encrypts the message/hash with Alice's public key

Alice decrypts the message

Alice decrypts the message

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

HMAC

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Digital Certificates

How to store the private key and pass the public key?

Digital certificates should only be distributed with the public key

Encrypting messages to Alice

Authenticating Bob

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Alice

Trust - meet Trent

Who can we trust to get the digital certificate from?

Public Key Infrastructure (PKI)

Trusted Root CA

Eve tricks the CA to get a certificate with Bob's name

Certificate Authority (CA)

- Able to grant certificates
Examples; Verisign, Entrust, Microsoft Trust.

Trusted root certificates
are installed as a default
on the machine (or
installed with the user's
permission)

Real or fake?

Real or fake?

Real or fake?

Real or fake?

Authentication

Introduction

Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Conclusions

Cardspace

Identity Provider (IP)

RP and IP

RP and IP

Authentication

Introduction
Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Email encryption
Conclusions

Email encryption

Authentication

Introduction
Methods
Usernames/passwords
Biometric issues
Biometric methods
Message hash
Authenticating with private key
HMAC
Digital certificates
Trust
Cardspace
Email encryption
Conclusions

Conclusions

Authentication

