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Abstract

The lucrative features of cloud computing such as pay-as-you-go pricing model and dynamic resource provisioning
(elasticity) attract clients to host their applications over the cloud to save up-front capital expenditure and to reduce the
operational cost of the system. However, the efficient management of hired computational resources is a challenging task.
Over the last decade, researchers and practitioners made use of various techniques to propose new methods to address
cloud elasticity. Amongst many such techniques, control theory emerges as one of the popular methods to implement
elasticity. A plethora of research has been undertaken on cloud elasticity including several review papers that summarise
various aspects of elasticity. However, the scope of the existing review articles is broad and focused mostly on the high-
level view of the overall research works rather than on the specific details of a particular implementation technique. While
considering the importance, suitability and abundance of control theoretical approaches, this paper is a step forward
towards a stand-alone review of control theoretic aspects of cloud elasticity. This paper provides a detailed taxonomy
comprising of relevant attributes defining the following two perspectives, i.e., control-theory as an implementation
technique as well as cloud elasticity as a target application domain. We carry out an exhaustive review of the literature by
classifying the existing elasticity solutions using the attributes of control theoretic perspective. The summarized results are
further presented by clustering them with respect to the type of control solutions, thus helping in comparison of the related
control solutions. In last, a discussion summarizing the pros and cons of each type of control solutions are presented. This
discussion is followed by the detail description of various open research challenges in the field.

Keywords Cloud elasticity - Elastic feedback controllers - Control theory - Dynamic cloud resource provisioning -
Cloud resource management

1 Introduction

Elasticity is the most promising feature of cloud comput-
ing, which enables the readjustment of the underlying
computational resources at runtime to meet application
demands. This helps to avoid the degradation of system
performance, to reduce operational cost and to minimize
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the energy consumption of the system [1]. An elastic policy
is usually required to exploit the elastic architecture of
cloud computing. This policy is responsible for maintain-
ing the performance of the system at an acceptable level
with the lowest cost possible. However, providing such an
efficient policy is a challenging task.

Over the years with the rise in popularity of Internet
based applications, the notion of providing better elasticity
management has increased. This has proportional effects
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on cloud elasticity literature, where researchers and prac-
titioners made use of various techniques ranging from
simple “if-then” kind of rules to complex machine learning
based algorithms. Control theory is one of such techniques
that provides a systematic method to design feedback
controllers to implement cloud elasticity. Such feedback
controllers are designed to be stable in order to avoid
oscillation and settle quickly to the steady state by appro-
priately responding to disturbances. They are better for
achieving service level objectives, such as response time or
throughput [2]. The use of control theory is not limited to
the advent of cloud computing or elasticity. In the past,
control theory has been a well-recognized approach to
achieve the desired QoS needs of computing systems. For
example, feedback controllers are exploited to achieve the
target performance objectives of computing systems like
Webservers [3, 4], database servers [5], cache servers [6],
etc.

Many research undertakings are carried out on cloud
elasticity, and its various aspects are explored. There are
also several survey papers available that provide a concise
review of different aspects of cloud elasticity. Lorido-Bo-
tran et al. [7] classified the overall elasticity proposals
based on the underlying implementation techniques,
whereas Naskos et al. [8] distributed the literature based on
the decision-making mechanism, and Coutinho et al. [9] on
the other hand provided a systematic review of utilised
performance metrics, measurements tools and evaluation.
The scopes of all these papers have been broad where they
mainly focused on the high-level view of overall elasticity
research rather than the specific details on one implemen-
tation technique. In this work, considering the importance,
suitability and abundance of control theoretical approaches
in the context of cloud elasticity, a standalone review paper
is targeted, focusing only on control theoretical methods of
cloud elasticity.

The main contributions of this paper include (1) the
proposition of a taxonomy that includes characteristics
from both (i.e., elasticity and control theory) perspectives,
(2) an exhaustive, up-to-date survey of the literature in
accordance with the taxonomy, and (3) an overview of the
open issues and research challenges. This paper however,
does not cover the following aspects of elasticity domain
including the commonly used experimental platforms, real
workloads’ data, monitoring tools, application benchmarks.
The key reason behind is that these important aspects are
already fully covered in various related survey papers such
as [7, 10].

This paper will help researchers of the target area to
understand the various related concepts of cloud elasticity
including control theoretic approaches, different possible
types of control solutions, how these are used to implement
cloud elasticity, their pros and cons and the open research
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challenges. This paper consolidates the available research
works using a large set of attributes highlighting the
important aspects from both, i.e., the application domain
(elasticity) and implementation technique (control-theo-
retic) perspectives. The inclusion of these large set of
attributes help to better analyse and compare the related
approaches. This paper clusters the existing approaches
based on the type of feedback controllers. Such a classifi-
cation will help the researchers in analysing and bench-
marking the control solutions of a particular type.

The rest of the paper is organized as follows. Section 2
describes the related surveys and how this article is distinct
from them. Section 3 explains the proposed taxonomy that
has been developed to conduct the literature review. Sec-
tion 4 examines the elasticity literature, whereas Sect. 5
provides a discussion and presents open issues and research
challenges of the field. Finally, Sect. 6 concludes the paper.

2 Related surveys

This section briefly describes the current survey papers as
related work and provides a brief explanation of how the
review conducted in this paper is different. For this pur-
pose, we classify the relevant review papers into the fol-
lowing three categories based on their primary strengths.

2.1 Cloud resource management

The review articles in this category mainly cover an
extensive range of cloud resource management related
problems such as provisioning, allocation, scheduling,
mapping, adaptation, discovery and brokering. Amongst
these problems, cloud elasticity (or dynamic cloud resource
provisioning) approaches are covered either partially or in
a limited capacity. For example, Singh and Chana [11]
focused on autonomic computing with a particular
emphasis on QoS-aware management of resources; Jen-
nings and Stadler [12] used resource management functions
as a classification method; Mustafa et al. [13] reviewed the
literature based on the metrics used and discussed the
underlying research problems. Manvi and Shyam [14]
classified the literature into problem specific categories
such as resource provisioning and allocation; whereas
Singh and Chana [15] targeted resource provisioning in
general, wherein elasticity is considered as a trait of
resource provisioning mechanism.

2.2 Adaptability using control theory
The review papers in this category are related as their

primary focus is on the use of control theory in similar
context, e.g., QoS management or adaptation in general.
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However, none of them has considered control solutions
that implement elasticity. Yfoulis and Gounaris [16] briefly
investigated the control theoretical perspective in cloud
computing context with a focus on SLA management.
More relevant however, brief discussions on the use and
suitability of feedback controllers for performance man-
agement in larger context of cloud computing domain is
carried out in [17]. Gambi et al. [18] focused on the
assurance and adaptability perspective of cloud controllers.
However, their scope is wider and also includes other
techniques such as rule-based and machine learning.
Patikirikorala et al. [19] carried out a systematic survey of
the design of self-adaptive systems using control solutions.
They presented a quantitative review based on a taxonomy
consisting of attributes such as target system, control sys-
tem and validation mechanism. The scope of their research,
however, is much wider on general adaptive systems rather
than cloud elasticity. Moreover, they only presented a
quantitative analysis of the existing research works rather
than a detailed review.

2.3 Cloud elasticity

A comprehensive survey on cloud elasticity is carried out
in [7], where the authors classified the overall elasticity
literature based on the underlying implementation tech-
niques. Galante and De Bona [1] classified them into
infrastructure and application level, and a taxonomy con-
sisting of features like scope, purpose, decision-making
mechanism, action type and evaluation is proposed in [8].
A similar taxonomy is also provided in [20] with a focus on
the application provider perspective. The authors of [21]
focused on strategy, action type and architecture perspec-
tive. Whereas, an adaptability view of computational
resources with a larger scope including concepts like node
adaptation and virtual machine (VM) migration is provided
in [22]. They, however, used adaptation techniques as one
of the dimensions to review the literature. At last, elasticity
functions such as reactive migration, resizing and proactive
replication are used as a means of classification in [23].

3 Taxonomy

The primary focus of the survey articles reviewed in Sects.
2.1 and 2.2 are not cloud elasticity. However, they repre-
sent the set of problems (and systems) amongst which
cloud auto-scaling is a subset. In contrast, the survey
papers reviewed in Sect. 2.3 are particularly focused on
cloud elasticity and therefore closely related to this survey
paper. All the survey papers reviewed are very innovative
and mostly overlapped regarding the essential elasticity
features, e.g., elasticity type (Reactive/Proactive), trigger

(Horizontal/Vertical), scope [Cloud provider (CP)/Service
provider (SP)], etc. However, their scope is wide, i.e.,
overall cloud elasticity research and apart from [7], they
lack details on the underlying implementation techniques
of the proposed solutions. Majority of the existing such
review papers utilise the various cloud elasticity features to
classify the overall cloud elasticity literature. In such a
classification, the underlying implementation technique is
consider as one attribute, (e.g., in [7, 9]) and therefore no
classification of the existing literature is performed using
the attributes of a particular implementation technique.
This result in the lack of conducting an exhaustive review
of the proposals of each implementation technique.

In contrast to the existing survey papers of cloud elas-
ticity, the key aim of this review paper is to propose a
technique specific (control theory in this case), an up-to-
date and exhaustive review of cloud elasticity solutions. A
closely related survey paper in this regard is the research
work conducted by Patikirikorala et al. [19], where they
carried out a systematic survey of the design of self-
adaptive systems using control solutions. However, the
scope of this paper is much wider, i.e., self-adaptive sys-
tems, where cloud auto-scaling is a small part of it. Sec-
ondly, in their paper, no discussion is made about elasticity
perspective nor any elasticity attributes are considered.
Furthermore, they conduct a quantitative review rather than
an analysis of the existing approaches in the context of
cloud elasticity. In contrast, we aim to focus on the
implementation perspective of cloud elasticity only (rather
than larger adaptive systems) using control theoretical
approaches.

The implementation of cloud elasticity using a control
theoretical approach commonly uses a feedback loop
model, where a controller maintains the output of the
system around some desired value by monitoring the inputs
and outputs of the system. Generally such a control system
can be used to satisfy a constraint or guarantee an invariant
on the outputs of the system [25]. Figure 1 depicts the
general mechanism of such a feedback model where it
observes the system output to correct any deviation from
the desired value. The basic elements of the control sys-
tems can be seen from Fig. 1. The details of these elements
describe the implementation aspects of a control systems.
Therefore, these elements become the attributes of the
taxonomy and will helps us to analyse the implementation

Disturbancel
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e
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Fig. 1 Block diagram of feedback control system adapted from [24]
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perspective of a proposed solution. However, these attri-
butes do not tell anything about the elasticity characteris-
tics of the proposed system. Therefore, we also included
the basic characteristics of the elasticity domain, which are
commonly used in the related survey papers such as [9].
Thus to summarise, this section introduce the taxonomy
(shown in Fig. 2) and briefly explains its various charac-
teristics. This taxonomy consists of characteristics from
control theoretical point of view (i.e., as an implementation
technique) as well as from cloud elasticity perspective (i.e.,
as an application domain). In terms of the structure, our
taxonomy complements the taxonomies proposed in

Fig. 2 Taxonomy of control
theoretic elasticity

Control
theoretic
approaches
of elasticity
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Control
solution view

[9, 26]. The following subsections explain all the charac-
teristics of the taxonomy in detail.

3.1 Control solution view

The various essential elements of a control system can be
seen from Fig. 1. The brief explanations of all these ele-
ments are provided below.

(1) Control objective refers to the main intended
purpose for which a control system is developed,
e.g., to maintain an overall average response time of
less than t seconds.
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Reference input refers to the desired value of the
system output that the controller is required to
maintain. For example, the overall average CPU
utilisation of all acquired VMs (cluster) must be
60%.

Control error refers to the difference between
desired reference input and the measured value of
system’s output.

Control input refers to the dynamic parameter
computed by the controller that affects the behaviour
of the target system to achieve the desired reference
input, e.g., the number of VMs.

Actuator is a component that executes the decision
made by the controller.

Sensor measures the values of metrics needed by the
controller for making the next scaling decision. For
example, to measure the CPU utilisation of VMs.
Controller is the mechanism that computes the
values for the Control input required to achieve the
desired objective value, e.g., Reference input by
taking into account various measurements. The
systematic design of a feedback controller consists
of the following two steps: (1) the formal construc-
tion of a system model, and (2) the implementation
of a control mechanism. Based on this description,
the Controller is divided into the following two
subcategories:

(i) Modelling type the model captures the
behaviour of a target system, which repre-
sents the corresponding time-varying rela-
tionship between system inputs (e.g., number
of VMs) and outputs, (e.g., Response time)
[27]. In literature, there are different types of
modelling techniques used for the design of
elastic control solutions. These types can be
seen from Fig. 2, whereas their brief expla-
nation is provided in Sect. 4.4.

(i)  Controller type there are various types of
controller used for the implementation of
elasticity. We have clustered them into four
groups adapted from the controller types
used in [19]. These types can be seen from
Fig. 2, whereas their brief explanation and
the review of the control solutions belong to
these types are provided in Sect. 4.4.

Architecture of a control system refers to the pattern
of how a particular control methodology is imple-
mented. The most common patterns observed in
cloud elasticity research include Centralised and
Decentralised (also known as Distributed). How-
ever, there are also few cases, where Cascade and
Hierarchical patterns are used as well. The brief

description of each of these patterns and the
overview of the control solutions following these
patterns are further provided in Sect. 4.5.

The Disturbance in Fig. 1 refers to the workload, whereas
the Measured output is the latest measurement of the sys-
tem output. All of the above mentioned elements of a
control system except Control error, Actuator and Sensor
are part of the taxonomy.

3.2 Elasticity view

This section covers the attributes from the cloud elasticity
perspective that defines different aspects of an autoscaling
approach. These attributes are already addressed in existing
review papers [1, 7, 8, 20, 23], however, mostly as clas-
sification factors. In contrast, we use the attributes of
control solution view as classification attributes. The
elasticity attributes are included to highlight the elasticity
perspective of the reviewed proposals. The brief descrip-
tion of the attributes considered is as follow:

(1)  Provider an elasticity proposal targets the aims of a
particular stakeholder. This attribute can be divided
into two categories, i.e., CP and SP. The CP
specifies that a proposed elasticity method is imple-
mented by the infrastructure provider, whereas the
SP indicates that the elasticity mechanism is imple-
mented by the user of the cloud, who deploy their
applications/services over the cloud infrastructure.
The CP aim of performing dynamic resource provi-
sioning is to increase the efficiency of their under-
utilised computational nodes by shutting down some
servers and shifting their load to others, hence
minimising the energy consumption to reduce elec-
tricity costs as well as CO, emission. Alternatively,
CPs could also oversubscribe their resources, hence
maximising their revenue. In contrast, the SPs are
concerned with the efficient use of their rented
computational resources, so that they can release any
under-utilised or unused VMs to reduce their service
operating costs. This attribute of the taxonomy
specifies the type of stakeholders, which demon-
strates the aim and purpose of a given elasticity
proposal.

(2) Application type the auto-scaling approaches are
proposed for different kind of applications. This
attribute refers to the nature of the application for
which the elasticity method is proposed. Possible
types can be seen from Fig. 2.

(3) Trigger this represents the triggering behaviour of an
elasticity method. The possible types include Reac-
tive, Predictive or Hybrid. In the case of Reactive,
the auto-scaling system performs the scaling
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decision in response to changes in the behaviour of
the system. The Predictive anticipates future beha-
viour of the system and performs the scaling
decision in advance, whereas, the Hybrid combines
both the Reactive and Predictive mechanisms.

(4)  Elasticity type refers to the type of resource scaling
that can be either Horizontal or Vertical. The
Horizontal elasticity enables the increase or decrease
in the number of VMs, whereas, the Vertical
elasticity allows changes in the specification of
existing VMs, e.g., the increase or decrease in CPU
and/or memory capacity of one or a set of VMs.

(5) Evaluation this attribute of taxonomy highlights how
the assessment of a particular approach is carried
out. This consists of the following specifications:

(i) Workload used for the evaluation can be
either real or synthetically generated. This
attribute represents the nature of the work-
load and its brief description.

(ii)  Applications used includes the details of
any applications used either for the gener-
ation of workload or experimentation
purposes.

(iii))  Environment includes the particulars of the
experimental set-up.

(iv)  Compared with specifies the approaches or
scenarios used for comparison purposes.

4 Review of existing control theoretical
approaches of elasticity

This section provides the details of the existing cloud
elasticity approaches that are implemented using control
theory. The review is carried with respect to each attribute
of the control solution view of the taxonomy. The sum-
marised results are clustered by the Controller Type attri-
bute of the taxonomy and presented in Tables 1, 2, 3, 4, 5,
6 and 7.

4.1 Control objective

In general, there are three different types of Control
objective. The brief descriptions of these types are the
following:

— Regulatory purpose a feedback controller developed for
regulatory purposes maintains system output close to
the desired reference value. For example, the average
CPU utilisation of the Cluster must be 60%.

@ Springer

— Optimisation the controller is responsible to obtain the
best settings for the system output in the presence of
certain constraints. For example, minimisation of
system’s response time with the lowest possible cost.

— Disturbance rejection such a controller is used to
manage and adjust the level of disturbances, e.g.,
Admission control system. It only allows enough
workload that does not affect the performance of the
system.

In cloud elasticity domain, the majority of existing solu-
tions belong to the category of either regulatory control
(e.g., [28-33]) or optimisation (e.g., [34-39]). The control
solutions having the objective of disturbance rejection
often assist another control solution (e.g., [40-43]). Irre-
spective of these types, the key objective of any elastic
control solution is to improve the utilisation of computa-
tional resources whilst maintaining acceptable level of
performance of the system and reducing its operational
cost. This objective however, can be viewed differently by
CPs and SPs.

The CPs perspective of better resource utilisation is to
improve performance of the system and to reduce the
operational cost of data centre, e.g., decrease in electricity
consumption, increase in revenue generations using over-
subscription, and reduction in the CO, emissions. From the
SPs perspective, it is to reduce the operational cost of the
services consumed whilst simultaneously maintaining
performance and reliability of their deployed services.
These different points of views dictate the design of control
solution for various purposes. The control solutions
reviewed in this paper carries one or multiple of the fol-
lowing purposes including maintaining an acceptable level
of performance, reducing operating cost, minimising
energy consumption and maintaining capacity level.

It is evident from the analysis of Tables 1, 2, 3, 4, 5, 6
and 7 that the objective of the majority of the control
solutions is to improve system performance. These objec-
tives are either in the form of the regulation of different
performance metrics (e.g., the control solutions proposed in
[31, 41, 44-47] aiming to maintain the response time of
system less than certain threshold) or in the form of opti-
misation of the system (e.g., obtaining the best value for
the number of VMs to avoid under-utilised and over-uti-
lised behaviour [48]). In such control solutions, the oper-
ating cost factor is indirectly considered, but the primary
objective is to maintain the desired level of performance.
Alternatively, the control solutions proposed in
[28, 35-37, 49] directly consider cost as one of the
objective by the system.
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Table 1 Fixed gain controllers
[72] [60] [44] [43] [48] [53] [50] [61]
Type PID PID PID PI PD Fixed gain Integral Integral
Model State-space  Queuing - Grey-box - Black-box Black-box Black-box
Architecture  Centralized Distributed Centralized  Centralized Centralized Centralized Centralized  Centralized
Control 99th % read Application Maintain a Ensure Optimal Desired Desired Maintain a
objectives operation SLO desired service time ~ number of memory CPU desired
latency (response response constraints VMs utilization utilization response
time) at a time avoiding time
pre-defined under/over
level utilized
scenarios
Reference Service CPU CPU Service time  Server load Memory CPU CPU
inputs time utilization utilization and memory utilization utilization utilization
utilization
Control input Number of  Number of Number of ~ Number of Number of Memory Number of ~ Number of
Voldmart VMs VMs map-reduce VMs allocation VMs VMs
nodes nodes,
number of
clients
Monitoring Read Mean CPU Mean CPU Service time Server load CPU and CPU load, CPU load,
metrics latency utilization of  utilization and number and memory memory arrival rate  arrival rate
without tier’s VMs of cluster of clients utilization usage, page
round-trip fault rates
time
Ingredients SPStR Ho SP W R Ho SPW R Ho -DHyHo CP W R Ho -WRYV SPW R Ho SPStR Ho
Workloads Synthetic: Real: FIFA Synthetic Synthetic Synthetic Real Synthetic Synthetic
generated
using
YCSB
Applications YCSB - Hogna MapReduce - httperf, - Cloudstone
used Framework  Benchmark MemAccess
Suite
Environment Real: Real: Amazon Real: Real: Real: Amazon Real: Custom Real: ORCA Real: ORCA
Voldmart Amazon Grid5000 (4 HP [119] + [119] +
and SAVI [118] Proliant Xen as Xen as
[117] servers) + Hypervisor ~ Hypervisor
Xen 2.6.16
Compared Not Threshold Not provided Not provided Compared Not provided  Static Static
with provided based, with [81] threshold, provisioning
proportional integral
controller control

The second popular category of control objective after
performance management is the maintenance of resource
level capacity. The capacity level in most cases has an
indirect relation with the performance of the system.
However, in terms of implementation, the control solution
is responsible for maintaining the utilisation (or allocation)
level of system resources. In such cases, we found the
following two possibilities: (1) in the case of horizontal
elasticity, the common objective is to maintain the CPU
utilisation level of overall cluster (e.g., [50-52]). (2)
Whereas, in the case of vertical elasticity, the objective
depends on the nature of reconfigurable resources. For

example, there are control solutions, where the control
objective is the readjustment of the memory allocation
(such as [53, 54]) or the readjustment of the CPU allocation
(such as [49, 55-58]).

In last, the following control solutions [34, 39, 45, 59]
have considered the energy efficiency perspective of cloud
elasticity, where the control objective is to reduce the
power consumption behaviour of the system in association
with the performance goal.
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Table 3 Adaptive approaches

[62] [63] [73] [75] [49] [55] [54]
Types Adaptive Adaptive Adaptive PI  Nested adaptive =~ MIMO adaptive SISO, MIMO  Adaptive
(optimal) PI + pole (integral) PI + RL and adaptive
placement MIMO
Model Black-box Black-box (Ist Least square — ARMAX (2nd Kalman filter Linear regression
(ARMA 2nd order AR regression order) + SVM (1st order)
order) model) [124]
Architecture  Distributed - Distributed  Cascade and Centralized Centralized Centralized (node
distributed level)
Control To achieve To achieve To obtain To achieve To maximize To maintain Adjustment of
objectives application application target job target QoS application CPU memory size to
level QoS level QoS progress goal (response benefit (QoS) allocation achieve desire
(response (response to meet time) within time and right above application
time) time) deadline budget the CPU response time
constraints utilization
Reference Per application Response time Target job Response time,  Benefit function, CPU utilization Response time
input response progress CPU execution time,
time utilization resource cost
Control CPU CPU CPU share ~ CPU allocation  Adaptive CPU allocation Memory size
input entitlement entitlement parameters allocation
and 10
allocation
Monitoring ~ CPU usage, Response time  Job CPU utilization, Adaptive CPU utilization Measured
metrics response progress, measured parameters, CPU response time,
time, disk milestone response time and memory memory
usage usage utilization
Ingredients CP WPV -WRYV SPScRV -GRYV SP/ICP GPV -WPV SPWRYV
Workloads Synthetic Synthetic Synthetic R: SPECweb99  — Synthetic R: FIFA,
[125] Wikipedia
Application ~ RUBIS, TPC-  httperf ADCIRC, httperf Great Lake RUBIS RUBBoS,
used W, custom: OpenLB, nowecasting and httpmon
secure media WREF, forecasting,
server BLAST volume rendering
and
Montage
Environment Real: two test- Real: two Real:8-core  Real: two Real: two private R: three R: 32 cores and 56
beds (HP machines, AMD machines, i.e., clusters (each machines GB memory
C-class i.e., HP9000- server + HP9000-L with 64 nodes) with Xen based machine
blades and R server and Hyper-V server and HP 3.0.2 + Xen
Emulab Pentium 11T and Xen LPr Netserver Hypervisor hypervisor
[126])
Compared Two cases: Fixed PI Feedback Single loop QoS Work conserving, = Not provided Capacity based
with work- controller approach controller, static scheduling [128] and
conserving of [127] utilization performance
and static controller based [46]
allocation memory
controllers

4.2 Reference input

The reference input in most of the cases reflects the cor-
responding control objective of the control systems.
However, this is not always the case, e.g., the objective of
the control solutions proposed in [44, 60, 61] is to maintain
the desired level of system performance but the reference

input in each case is the CPU utilisation. Therefore, we
analyse the reference input independently from control

objective attribute.

The analysis of the reference input for each reviewed
solution presented in Tables 1, 2, 3, 4, 5, 6 and 7 hints on
the use of three types of metrics. These include Perfor-
mance-based, Capacity-based and the combination of both.

@ Springer
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The Performance-based as their name specifies refers to
the category that include metrics related to the performance
of the system, e.g., Response time, Throughput, etc. On the
other hand, the Capacity-based relies on system provided
metrics such as CPU utilisation, memory consumption, etc.
The key benefits of using system provided metrics are the
following: (1) they are directly obtained from monitoring
API provided by CPs. Hence it does not require application
level monitoring or efforts. (2) No runtime relation iden-
tification between application metric, e.g., Response time,
is required. Hence it does not involve additional overhead
at runtime. However, control solutions that rely only on
system provided metrics assume that the specified utilisa-
tion threshold will always meet the performance expecta-
tion. On the other hand, control solutions that rely on
performance metrics require an additional burden of
monitoring system’s performance. Furthermore, they do
not consider system resource utilisation level.

The commonly used performance based metric includes
the use of Response time as Reference input. This include
the control solutions proposed in
[31, 39-42, 45, 46, 52, 54, 59, 62-67]. The subset
[39, 45, 59, 62, 64-66] of these control solutions targets the
CPs perspective, where the reference input is actually the
Response time for each application (or each client). In
some other control solutions, the use of Response time is
coupled with Throughput such as in [30, 68-71]. Apart
from Response time and Throughput, the use of some other
performance metrics is also observed. This include Service
time for data oriented applications [43, 72], Job progress
for scientific application [73] and Read operation latency
for storage application [32, 74].

On the other hand, the capacity based Reference input
depends on the type of elasticity. In the case of horizontal
elasticity, CPU utilisation of the cluster is the common
metric used for Reference input [44, 50, 51, 60, 61],
whereas, in the case of vertical elasticity, the utilisation of
individual resources is utilised as Reference input. For
example, the control solutions in [55, 58] rely on the use of
CPU utilisation, whereas Memory consumption was
focused in [53] and both components were utilised in [48].
In last, very few approaches including the control solutions
proposed in [28, 29, 75] use both performance based (i.e.,
Response time) and capacity based (i.e., CPU utilisation) as
Reference input.

4.3 Control input

The choice of control input depends on the Elasticity type.
Thus for the control solutions, where the Elasticity type is
horizontal, the Control input is the Cluster size (Number of
servers). This is evident from Tables 1,2, 3,4, 5,6 and 7,
with the only exception in the cases of [40, 41], where the

@ Springer

control input consist of an additional parameter for dis-
turbance rejection. In the case of vertical elasticity, the
choice of Control input depends on the nature of applica-
tion type, i.e., either CPU (or memory) sensitive. However,
in terms of vertical elasticity, the existing literature lacks
on providing the justification of the choice of Control
input. It is evident from Tables 1, 2, 3,4, 5, 6 and 7 that the
CPU allocation is the most common choice considering
their use as single Control input in the following control
solutions [32, 34, 55-57, 59, 6366, 68, 70, 73, 75, 76] and
as combined with Memory allocation in [30, 42, 45, 71],
combined with bandwidth in [62, 77] and combined with
both memory and bandwidth in [30, 69]. In last, the control
solutions proposed in [31, 53, 54] only use Memory allo-
cation as Control input.

4.4 Controller

Generally, the various modelling approaches used in the
design of control systems are categorized into the follow-
ing three main classes [78-80]:

(i)  White-box such models are used when it is
possible to construct the model based on the prior
knowledge and the availability of the physical
insight about the system. White-box modelling
derive mathematical models based on the use of
first principles.

(i)  Black-box such models are data driven and no
physical insights or prior knowledge of the system
is required. Statistical methods are used to derive
the model based on the measurement of data using
well designed experiments, where the underlying
system is considered as black-box.

(iii)  Grey-box such models are hybrid in nature and are
used in situations where some physical insights or
prior knowledge about system is available, how-
ever, certain parameters are required to be derived
from observed measurements.

The use of white-box modelling approaches in the context
of cloud elasticity are rare. However, in certain few cases
Queuing Theory and State-space modelling approaches are
utilized. Thus, in the context of cloud elasticity, we found
the following types of modelling techniques are used in the
construction of control systems to address dynamic
resource provisioning problem:

(i)  Queuing theory the elastic system is considered as
a queue so that different analysis can be per-
formed such as prediction of queue length,
average service rate, and average waiting time.

(i)  Black-box/Grey-box as earlier described, such
methods are used when the detailed knowledge
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of the target system is not available. Such
approaches involve the construction of SID
experiments, where well-designed system input
signal is generated to record outputs of the system.
Statistical techniques are then utilised to infer
system input and output relationship.

(iii))  State-space the target system using such an
approach is characterised and represented using
a set of state variables to express their dynamics.
For detail description of these modelling tech-
niques, please refer to [27].

The study of existing elasticity approaches implemented
using control theory indicate, the use of various types of
controllers. We have clustered them into the following four
groups inspired by the controller types used in [19].

4.4.1 Classic

This family of control solutions contains the commonly
used controller types that are comparatively simpler in
nature. This category is further distributed into the fol-
lowing three types:

4.4.1.1 Fixed gain This subclass of controllers are refer-
red to those control solutions, where the tuning/gain/model
parameters are estimated off-line and then remains fixed at
runtime. The most commonly used controller of this cate-
gory is called Proportional-Integral-Derivative (PID) or its
different variants such as Proportional-Integral (PI) or only
Integral (I).

The authors of [44, 50, 60] focused on horizontal elas-
ticity and proposed fixed gain control solutions for web
applications. All these solutions aim to achieve a desire
performance level using CPU utilisation as reference input.
Lim et al. [50] used an Integral controller, where Gergin
et al. [60] and Barna et al. [44] adopted PID based
approach. In both of these papers, the design of the con-
troller is similar but the adaptation is different. More
specifically, Barna et al. [44] only considered one tier,
whereas Gergin et al. [60] considered n-tiered transactional
application and proposed a distributed architecture, i.e.,
using multiple controller in parallel but one for each tier.
The multiple controllers do not have any interaction and
synchronisation towards the achievement of end to end
objective. Gergin et al. [60] decomposed the primary
control objective to the objective of individual tiers based
on the utilisation demand. Each control is then responsible
for their tier’s objective. The influence of tiers on each
other are not considered in their approach. Furthermore, no
relation identification between the desired performance and
CPU utilisation is provided. On the other hand, Barna et al.
[44] only considered the application business tier.

However, they assumed that the intensity of the incoming
workload would not saturate the other tiers. Lim et al. [50]
in contrast focused on the application as a whole rather
than tier specific. They further proposed a dynamic
threshold based approach for the reference input (CPU
utilisation in this case) to avoid oscillation. They used a
dynamic range of CPU utilisation with lower and upper
thresholds rather than the commonly used static target
value as in the case of [60]. Barna et al. [44] also used the
static value but avoided scaling decision within the range
of £15% of the target threshold.

Similar to Barna et al. [44], Ashraf et al. [48, 81] also
focused on application business tier. However, there
approach is different in the following ways: (1) they used a
Proportional-Derivative (PD) controller without any per-
formance model. (2) They have also used memory con-
sumption as reference input instead of only CPU
utilisation. Apart from above difference, they proposed the
concept of shared hosting, where multiple web applications
could be hosted to similar VM. However, it is not clear
how to measure (and guarantee) the performance of web
applications that share the same VM. Furthermore, no
insight on the selection of lower and upper threshold for the
memory and CPU utilisation is provided. Lastly, it is not
clear how to model and quantify the relationship between
utilisation metrics and application performance. Heo et al.
[53] in contrast to the above mentioned approaches,
focused on vertical elasticity, where they used the reallo-
cation of memory and CPU resources at VM level to
comply with the SLO requirements.

The control policy of [50] has been further utilised to
maintain the performance (Response time) of storage tier
of a multi-tier application in [61]. Whereas, a PID con-
troller is proposed in [72] to adjust nodes of a cloud-based
storage system (named Voldmart [82]) to maintain the
desired service time. Both of these control solutions
focused on Storage tier and used the data rebalancing
component to distribute the data load among the available
servers as a result of scaling decision. The approach of Lim
et al. [61] is accompanied by a state machine, that is
responsible to synchronise the actions of the Integral con-
troller and the rebalancing component of the storage tier.
However, no such details are provided in the case of [72].
In contrast, the authors of [43, 83] used a PI feedback
controller for big data application. They focused to adjusts
the computing nodes of a map reduce cluster to guarantee
the desired service time of map reduce jobs. Their pro-
posed approach guarantee the desired system performance.
Furthermore, it is also associated with an admission control
component that is responsible to stop disturbance from
impacting the performance of the system. However, the
response to disturbance is kept slow to minimise the
number of scaling decision. Furthermore, they have
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provided analysis of the control properties such as closed-
loop analysis and 0% overshoot. The other approaches lack
in this regard.

The gains of the fixed gain controllers can be estimated
off-line either using a trial-and-error methods or perfor-
mance model [50], application specific model [81] or using
a standardised method such as ZieglerNichols and Root-
locus. However, they remain fixed at runtime. The sum-
marise details of the proposals reviewed in this category
are provided in Table 1.

4.4.1.2 State space feedback (SSF) This class of con-
trollers used state-space modelling approach to design the
control solutions [27]. Li et al. [30] proposed an integrated
three-layer automatic management approach. The three
layers include resource management at VM, node and
cloud level. Amongst these layers, the method at VM level
is only relevant to the scope of the paper, where they
proposed a MIMO based SSF controller responsible for
determining VM resource requirements. They focused on
vertical elasticity and considered multiple resources
including the CPU power, memory and I/O allocation to
achieve application SLO requirements consisting of
Throughput and Response time. Their method uses an on-
line model estimator to capture the relationships between
application performance and resources at runtime. Simi-
larly, Moulavi et al. [28] also used SSF, however for the
horizontal scaling of distributed cloud storage systems’
computational nodes.

Both of the above approaches use linear quadratic reg-
ulator (LQR) method to obtain the gains (Proportional and
Integral) of their controllers. However, in [30], the gain is
adaptive and may change at runtime, whereas the gain
remains fixed in [28]. Moreover, Moulavi et al. [28] used
an additional fuzzy controller, which is responsible for
allowing or discarding the control decision considering the
standard deviations of CPU loads. The purpose of the
additional controller is to avoid unnecessary fluctuations.
However, no description is provided for the design of fuzzy
controller. Their approach also considers cost as one of the
reference input. However, it is not clear how it influences
the decision of the controller. A similar approach is utilised
in [29] with a difference of using Throughput as one of the
reference input rather than cost. However, no details are
provided on the performance aspects of the proposed
method. The details of the papers mentioned in this cate-
gory are provided in Table 2.

4.4.1.3 Adaptive This class of controllers have the ability
to estimate the model/control parameters at runtime thus
adjusting itself to changes in the environment, e.g., the self-
tuning PID controllers [17].
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The authors of [32, 55, 62, 68, 75] focused on vertical
elasticity, where they all used the dynamic readjustment of
CPU allocation to maintain the target CPU utilisation of the
system. Amongst these solutions, Zhu et al. [75] used a
nested control design that comprise of two integral feed-
back loops. Their idea is to use CPU utilisation as a ref-
erence input in association with the target response time.
However the threshold value for the CPU utilisation is not
fixed and will be adjusted by the outer loop to maintain the
target QoS goal (Response time). The inner loop is then
responsible to maintain the variable CPU utilisation by
adjusting the CPU allocation of a VM. Padala et al. [68]
utilised a similar idea of multiple controllers but in hier-
archical style. Furthermore, the focus is on multi-tiered
applications that share the same physical node. The control
solution in this case is responsible to adjust the CPU
allocation of VMs that host individual tiers of multi-tier
applications. They introduced a utilisation controller
implemented using an adaptive Integral controller that runs
at each VM and is responsible to maintains the target CPU
utilisation by adjusting the CPU allocation, whereas an
arbiter controller implemented using a fixed Integral con-
troller is responsible to allocate the CPU share based on the
requested CPU allocations by the utilisation controllers.

In the case of Zhu et al. [75], due to the variability of
reference input of the inner loop, the target response time
can be obtained using different CPU utilisation thus han-
dling the uncertainty aspect between resource utilisation
and performance. Moreover, this also improve cost effi-
ciency. In contrast, in the case of Padala et al. [68], the
target CPU utilisation for each VM is fixed that can be
obtained at design time. Furthermore, no performance
parameter at runtime is considered. However, their
approach at node level resolves any conflicting decisions
made by the utilisation controller in the case of resource
contention situation, whereas no such scenarios are dis-
cussed in the case of Zhu et al. [75]. The approach of
Padala et al. [68] is further enhanced in [62], where they
not only considered the readjustment of CPU allocation but
also included Disk I/O allocation. Moreover, they changed
the adaptive Integral controller with an optimiser controller
aiming to minimise a cost function comprise of perfor-
mance and control cost while obtaining the values of
required resource allocations for next interval.

Contrary to the integral controller based approaches of
[68, 75], Kalyvianaki et al. [55] exploited the use of Kal-
man filter based feedback controller to adjust the CPU
allocation for multi-tier applications. They proposed three
Kalman filter based control solutions including a SISO,
MIMO process noise covariance controller (PNNC) and an
adaptive MIMO PNCC controller. The SISO is responsible
for the CPU allocation of individual VMs that hosts a
single application tier. MIMO PNNC is responsible for the
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CPU allocation of all VMs of a multi-tier application.
However, both their controllers (i.e., SISO and MIMO
PNNC) are fixed, where the gain of the Kalman filter does
not change at runtime. The adaptive MIMO PNNC is the
adaptive counterpart of MIMO PNNC, where the gain of
the controller is obtained at runtime. Their approach further
utilised filters to track noise in the CPU utilisation.
Moreover, the coupling between multi-tiers of the appli-
cation is also considered, which was not discussed in other
related approaches.

Spinner et al. [32], in contrast to the above mentioned
approaches focused on a different perspective of CPU
allocation, wherein they adjusted the number of virtual
CPUs of VMs to meet target latency of an application.
They used a queuing theory based on layered performance
modelling approach in collaboration with a runtime model
estimation component. Their performance model not only
considers the application demand of the resources, but the
demands of the virtual and physical resource as well. They
also further considered the scheduling and contention
delays caused by the rearrangement of VMs due to the over
subscription or overloading of the physical host. However,
the response of their resource controller to the disturbance
in some scenario may be slow as their scaling decision is
fixed where at each control interval, only one virtual CPU
can be added or removed at a time.

All the above approaches were capacity based, where
the decision making mechanism was based on resource
utilisation except [75], where both CPU utilisation and
response time were used as reference inputs. The control
solutions that are only based on capacity based are inade-
quate to guarantee application performance because of
their no consideration of performance aspects at runtime
[54].

In contrast to these approaches, the authors of
[31, 49, 54, 63, 73] included performance based metrics
into their decision making mechanism. Amongst these, the
target performance measurements were used to readjust,
the memory size in [31] and CPU entitlement in [63, 73].
All these three methods only rely on performance based
metrics that may not be adequate to ensure the desired
quality of service, because the performance can be also
disturbed by an internal bug [54]. The control solution of
[31] is further extended in [54], where memory utilisation
is considered as part of the decision additional to response
time, making their methodology hybrid, which consider
both aspects. Zhu et al. [49], in contrast utilised both CPU
and memory allocation by proposing an adaptive version of
the MIMO PI controller in collaboration with a reinforce-
ment learning component. This approach, however, is
different in two aspects from any other approaches men-
tioned in this section. Firstly, it does not directly control
resources but rather change adaptive parameters of the

cloud applications. Secondly, it aims to maximise the
application specific benefits (QoS) within a pre-specified
time limit and budget constraints. Similarly to this
approach, the control solutions proposed in [84] also con-
sider cost and efficiency constraint in order to find an
optimal trade off between these two aspects. However, the
control objective in this case is to obtain the optimal
numbers of VMs rather than the readjustment of adaptive
parameters of the application. Analogously, Mao et al. [85]
also focused on maximizing efficiency with lowest cost
possible under the deadline constraints. Furthermore, they
consider different kinds of VM instances as well as
heterogeneous deadlines. The nature of the application
types in all three proposals are different, i.e., Zhu et al. [49]
focused on adaptive systems of Jiang et al. [84] on web
based systems, whereas Mao et al. [85] target on long
running jobs.

In contrast to all of the above approaches in this section
where the focus was on vertical elasticity, Ali-Eldin et al.
[33] proposed an adaptive hybrid controller for horizontal
scaling using queuing theory as a modelling technique. The
queuing based model determines the total service capacity
required per control interval while considering the arrival
rate of the concurrent requests. The output of the controller
is dependent on a gain parameter that is obtained at runtime
using the change in demand on the past time unit and the
necessary service capacity. The approach is independent of
any performance controller. However, it does not consider
how the application performance can be guarantee. Fur-
thermore, the approach does not consider the impact of the
delay caused by the start up of a VM. The same approach is
applied in [86] considering scientific domain with an
enhanced model and controller design. The enhanced
model also considers buffer size, the delay caused due to
VM start process, allocated capacity and changing request
service rate of the VM. Furthermore, they not only pre-
dicted the future load changes but also considered the
monitored load changes and delay caused due to VM start
up. The summarise details of the proposals reviewed in this
category as per the taxonomy attributes are provided in
Tables 2 and 3.

4.4.2 Optimal

This class of controllers refers to all those control solutions
that formulate and solve the cloud resource provisioning as
an optimisation problem. There are two types of optimal
methods utilised in the cloud elasticity domains. Their brief
explanation and review of the proposals are provided as
follows.

4.4.2.1 Model predictive controller (MPC) The MPC is
based on a twofold concept [87]. Firstly, it uses an internal
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dynamic model to predict future system behaviour, and
optimises the forecast to generate the best decision at the
current time. Secondly, it uses the previous moves of the
controller to determine the best possible initial state of the
system as the current move of the optimal control depends
on it. For further details on MPC, refer to [87].

The readjustment problem of data centre capacity with a
focus on energy saving perspective is addressed using an
MPC based approach in Zhang et al. [35]. They included
aspects like cluster reconfiguration cost (due to saving/
loading/migration of systems’ state), electricity price fluc-
tuation (as rates vary at different time of the day in some
countries, e.g., the USA). Their work, however, assumes
that (1) all data centre machines have the same computa-
tional capabilities and (2) the instances of incoming
workload shares similar characteristics, e.g., task length,
resource requirements. Roy et al. [88] proposed a similar
MPC based solution with the exception that they do not
include electricity price fluctuation in their cost function
but consider cluster reconfiguration cost, resource renting
cost. Furthermore, they also consider SLA violation cost,
which isn’t the case in [35]. The work of Zhang et al. [35]
is further extended in [36], where they considered hetero-
geneous hardware and workload behaviour. They approa-
ched the heterogeneity issue using MPC controllers
coupled with a k-means clustering algorithm, which is used
to cluster the tasks into various groups based on the iden-
tical characteristics, i.e., performance and resource
requirements.

The MPC based approach in [37] decides a sequence of
resource reservations actions for N steps rather than a
single decision for next control input. The paper, however,
lacks details about the results obtained. Whereas, Cerf et al.
[38] focused on the idea of reducing the number of elas-
ticity decisions for big data cloud systems using an MPC
controller coupled with an event triggering mechanism.
The event triggering mechanism serves as an additional
layer to determine whether the MPC decision will be car-
ried out or not. The mechanism is based on the optimal cost
function rather than the state of the system or any form of
control error mechanism.

In contrast to MPC approaches mentioned above, Lama
et al. [45] proposed a distributed MIMO control solution to
address vertical elasticity. They used multiple MPC to
manage the allocation of resources (CPU and memory) to
achieve the target performance requirements of the co-lo-
cated multi-tier web applications deployed on shared
computational nodes of a data center. Each MPC handles
one application and controls the allocation of resources of
all their respective VMs whilst considering each tier of the
application deployed on a separate VM, which may reside
in different computational nodes than other tiers’ VMs.
They used neural network based fuzzy models and
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considered variables of the local controller as well as the
neighbour controller, which manages VMs of other appli-
cations that share the underlying physical resources.

A few other MPC based proposals include reconfigura-
tion of storage system [89], resource management of
multiple client classes in shared environment [90], per-
formance optimisation using power control [91], and
dynamic resource allocation using an integrated approach
of fuzzy model and MPC [92].

4.4.2.2 Limited lookahead controller (LLC) The LLC fol-
lows the similar concept as MPC, where the next action of
the controller is determined using the projected behaviour
of the system over a limited look-ahead horizon [93]. The
key difference between MPC and LLC is that the former
deals with the systems operating in continuous, whereas the
latter deals in discrete input-output domains [34].

Kusic and Kandasamy [39] utilised an LLC mechanism
for enterprise computing system by formulating the
resource provisioning problem as a sequential optimisation
problem. They approached the problem by considering
multiple fixed three client classes, each with different QoS
requirements. A different cluster is used to manage one
client class focusing on reducing operating cost regarding
switching cost and minimisation of energy consumption.
The distinct feature of their approach is the consideration
of provisioning decision risk as a factor and encoding it
into the cost function while considering the variability of
workload patterns. Each of their decision determines not
only the number of machines in each cluster but also the
operating processing frequencies associated with different
pricing regarding power.

The same approach is adopted in [34] for virtualised
environments with the following modifications. The con-
troller decision concludes the allocation of CPU share of
each VM for each cluster rather than specifying operating
frequencies, the indication of active host machines and the
share of workload to be assigned to each VM. Bai and
Abdelwahed [59] demonstrated the use of artificial intel-
ligence based search methods on a case study of processor
power management to address the problem of computa-
tional overhead caused while using LLC.

4.4.3 Advance

This family of controllers clustered all those control solu-
tion methodologies that either combine multiple control
method into one or have some notion of runtime adaptive
behaviour. However, the adaptation mechanism is not
based on runtime parameter estimation, which is described
earlier for the Adaptive type in the Classic category. This
family of controllers includes the following types.
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4.43.1 Hybrid This set of controllers refers to all those
control solutions that combine more than one controllers
and all of them are active at the same time. The control
solutions proposed in [42, 46, 57, 69] utilised multiple
controllers in various capacity to directly maintain per-
formance based metrics that identify the target quality of
service. Amongst these, the control solution proposed in
[42] consists of the use of three feedback controllers to
dynamically allocate CPU, memory and application per-
formance tuning respectively. All of the three controllers
run in parallel albeit independent from each other and it is
not clear how and why the decision of one controller does
not have any effect on others. Analogously, Dutreilh et al.
[94] proposed a generic framework, where multiple control
policies can be used. Each policy is responsible to manage
the scaling of a group of VMs (referred to as scaling point
by the authors), which host one component of an applica-
tion. Similar to [42], it is not clear, why the decisions of
each control policy will not have an impact on each other.
This approach however deals with horizontal elasticity in
contrast to that of Dawoud et al. [42].

Farokhi et al. [46] also used two different controllers
each for CPU and memory allocation of VMs. Their
approach, however in contrast to [42, 94] consists of a
fuzzy based coordination mechanism. This mechanism
consider CPU and memory consumption as well applica-
tion performance to determines the contribution of each of
the controller to the final decision making. The use of fuzzy
control solution in their approach also consider noise in
measurement and uncertainty aspects during decision
making, which rarely consider by cloud resource provi-
sioning mechanism.

Xiong et al. [57], only focused on the CPU share allo-
cation using a two-level hybrid control scheme to indi-
vidual VMs hosting the different tiers of a N-tiered
application. This approach consists of an inter-dependent
application implemented using a PI feedback and resource
partitioner implemented using optimal controller. The
application controller is responsible to compute the CPU
budget required for the application, whereas the resource
controller is responsible to optimally distribute the com-
puted CPU share among the individual VMs hosting the
different tiers. This approach provide details about the
resource partitioner controller, which solves an optimisa-
tion problem to derive optimal share for each VM using
fixed CPU budget. However, no details are provided of
how the total CPU budget for the application can be
obtained, i.e., the details about the application controller
are missing. Rao et al. [69] on the other hand also
approached using a two-level approach. However, they
considered multi-objectives and proposed a self tuning
fuzzy controller (STFC) for each objective and a gain
scheduler controller to compute the final decision by

aggregating the decisions of all STFCs. This approach
readjust three different components including CPU, mem-
ory and disk bandwidth. The gain scheduler is responsible
to synchronise the decisions by the individual controller
using the control errors of each STFC. Furthermore this
approach provides resolution strategy in the case of con-
flicting decisions by the individual controllers and/or
resource contention. The other methods discussed in this
category lacks in these aspects.

In contrast to above approaches discussed in this cate-
gory, the control solutions proposed in [56, 64, 74, 95] use
a combination of feedback and feed-forward methods. The
idea behind such merging is to exploit feed-forward to
predict large spikes of the workload using a proactive
method to make scaling decision in advance, whereas, the
feedback approach can be exploited to manage the gradual
changes and to rectify any modelling errors. Al-Shishtawy
and Vlassov [74] used such an approach to perform hori-
zontal scaling of cloud-based key-value stores. The scaling
decision in their methodology will be either carried out
with feed-forward or feedback method and that depends on
the intensity of the workload. Their approach, however, is
different in general than any other related horizontal
approaches as they use average throughput per server as the
control input in contrast to the commonly used number of
servers.

Wang et al. [95] focused on vertical elasticity to adjust
CPU allocation of virtual containers that hosts different
tiers of an application. Their feed-forward method esti-
mates optimal CPU utilisation level, whereas the feedback
controller further tunes the utilisation target for individual
containers that are maintained by the distributed utilisation
controllers. In the case of [74], either feedback or feed-
forward control executes at a time as their control interval
is the same, whereas, in the case of [95], all controllers run
at different control intervals. Their approach is further
extended in [64] to manage the performance of multiple
applications. The extension includes the consideration of
hybrid controller of [95] as the application controller,
which is responsible for calculating required CPU entitle-
ment necessary to obtain the desired performance target.
Furthermore, the addition of a node level controller (Inte-
gral) to manage the CPU entitlement of the respective VMs
on a given node. Kjer et al. [56] combined a PI and a
Proportional based feed-forward method. Their feed-for-
ward approach however, is different as it uses an on-line
performance model in contrast to other related hybrid
approaches mentioned in this category which use off-line
performance model.

4.4.3.2 Gain scheduled/switched controllers This family

of control solutions refers to those methods, where multiple
models/controllers/gain parameters are used
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simultaneously. Such methodologies are accompanied with
an associated reconfigurable/switching/gain scheduler layer
to select the suitable model/controller/gains at runtime.

Grimaldi et al. [58] proposed a PID gain scheduling
approach to dynamically adjust the number of VMs to
maintain the desired CPU utilisation. The gain scheduler is
based on the minimisation of a cost function to obtain
optimised values of the controller gains in a particular
operating region (characterised by different workload and
timeslots) with an objective to reduce the control error
close to zero. Certain details such as modelling aspects and
how CPU utilisation is related to the end-user performance
are missing. A linear parameter varying (LPV) modelling
approach is followed in [40] to guarantee web server per-
formance (Throughput and Response time) by dynamically
adjusting the number of VMs. They utilised a gain sched-
uled LQR design approach, where the CPU utilisation of
VMs is used as a scheduling parameter. In contrast, Qin
and Wang [52] used LPV — H, controllers as their design
approach for calculating the aggregate CPU frequency
needed to maintain a target Response time, which was then
used to compute the number of VMs. They used arrival rate
of the workload and average service rate as the scheduling
parameter for the characterisation of time-varying operat-
ing conditions. Similarly, Tanelli et al. [66] also used
arrival rate and effective service rate per application as
their scheduling variables in their proposed MIMO LPV
approach. However, they focused on the dynamic alloca-
tion of CPU capacity to individual VMs that share the same
physical system.

Patikirikorala et al. [65] proposed a multi-model
switching control system to dynamically allocate CPU
capacity to the VMs of a physical machine to maintain
response time objectives of an individual application. Their
approach distributes the overall system in two operating
regions using a threshold level of Response time. A specific
model is then designed to represent the behaviour of the
system in each operating region. Their approach uses
multiple fixed PI feedback controllers, which on runtime
change based on the operating region using if-else based
switching mechanism. In contrast, Saikrishna and Pasu-
marthy [41] used ten distinct operating regions and arrival
rate as the switching signal. Similarly, our early work in
[51] is based on the use of multiple controllers to dynam-
ically adjust the number of VMs to guarantee application
performance. The distribution of overall system among
different operating region is based on the various intensity
levels of incoming workload, whereas the selection of
suitable controller is realised at runtime using a fuzzy
control system based switching mechanism. The switching
mechanism consists of attributes like workload intensity,
application performance and resource utilisation level.
Morais et al. [96] in contrast, combine multiple predictors,
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where they switch amongst them in order to find best set-
tings for the resources to meet the target utilization level.
They however, do not consider any target performance and
assume that the target utilization level meet the purpose.
Their method, in contrast to other approaches mentioned in
this category, is also accompanied with a reactive strategy,
where the scaling actions shall be taken based on prede-
fined utilization threshold.

4.4.4 Intelligent

This set of controllers is based on uniting the underlying
knowledge of the system in the form of ontology or rules to
reason about the behaviour of the system, e.g., knowledge-
based fuzzy control and neural network based control
solutions.

The authors of [47, 67, 97] proposed horizontal elas-
ticity solution for Internet based systems using fuzzy sys-
tems. They all have used performance based metrics to
make scaling decisions. Jamshidi et al. [47] highlighted the
lack of handling uncertainty related issues in existing auto-
scaling approaches and the static scaling behaviour of
commercially available rule based systems. They proposed
the idea of qualitative elasticity rules using a fuzzy control
system to the aforementioned issues. The inputs to their
method consist of Arrival rate and Response time, whereas
the output is the number of VMs to be added or removed.
Their approach utilised the knowledge of domain experts to
design fuzzy rules at design time. These fuzzy rules are
then responsible to make scaling decisions at runtime. The
key problems of this approach is their reliance on domain
knowledge, which may not always available. Furthermore,
the output (number of VMs) of their approach are a pre-
defined fixed range. Their approach is further extended in
[67], where they have used fuzzy Q-Learning to learn the
best elastic policies (fuzzy rules) at runtime to cope with
the issue mentioned above.

In both of the above mentioned approaches, they have
consider application as a whole rather than handling the
complexities of the multiple tiers of the application. In
contrast, Lama et al. [97] focused on multi-tier applications
to guarantee the 90th percentile end-to-end delay. This
approach utilised an optimal approach to determine the
optimal number of servers needed for a multi-tier appli-
cation and integrate a self tuning fuzzy controller to
compensate the delay caused due to the addition of new
server. This approach however, assume that all the servers
are homogeneous. Furthermore, in contrast to [47, 67], they
also consider resource utilisation in decision making in
accompanying to their performance measurements.

In contrast to the approaches mentioned above, the
control solutions proposed in [70, 71, 76, 77] focused on
vertical elasticity. Xu et al. [76] used two fuzzy based
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methods, i.e., modelling and prediction to dynamically
estimate the CPU capacity of a VM needed by an appli-
cation. Their modelling approach builds a fuzzy model at
runtime by directly monitoring/learning the relationship
between application workload, resource usage and perfor-
mance. Whereas, their adaptive prediction technique only
considers the observations of resource usage to estimate
future resources. Their approach is generic in nature and
can be utilised for different type of applications. In con-
trast, Ref. [70] focused on multi-tier application to
dynamically allocate CPU share of VMs of each tier. This
approach is further extended in [71] to also take into
account the memory readjustment in collaboration to CPU
capacity. Moreover, they also provided a cascade based
coordination mechanism at the time of scaling decision to
consider the joint effect of both kinds of resources. Such
coordination mechanism has not been considered by many
authors for the same problem, e.g., [42, 92, 98]. Wang et al.
[77], in contrast focused on data based system to read-
justment the CPU capacity and disk IO bandwidth using an
adaptive fuzzy modelling approach. Some other examples
of fuzzy approaches include neural fuzzy control [99],
fuzzy logic based feedback controller [100], fuzzy model
coupled with a performance prediction model [101] and
multi-agent fuzzy control [102].

4.5 Architecture

The analysis of implementation pattern of each reviewed
proposal presented in Tables 1, 2, 3, 4, 5, 6 and 7 indicate
the use of following patterns:

— Centralised the control system following this architec-
ture is implemented as one unit, which is responsible
for managing the control objective from a central place,
e.g., at a global system level. It is evident from
Tables 1, 2, 3, 4, 5, 6 and 7 that the majority of the
control solutions are Centralized. A solution can be
centralized at one of the following three levels, i.e.,
Application, Node or Cloud. The solutions that focused
on horizontal elasticity from the SP perspective are
centralized at Application level (e.g.,
[43, 44, 48, 50, 61, 72]), whereas the control solutions
that cater CPs perspective runs centrally at Cloud level,
where they could be responsible for different applica-
tions (e.g., [33, 48, 86]). The application level control
solutions can be executed outside of the cloud
environment and therefore they can control interactions
with multiple control. The centralizes solution at node
level are those, where the control solutions are
responsible for the resource management of VMs
running at that computational node (e.g., [49, 53, 54]).

— Distributed the control systems adopting distributed
pattern implement at sub system level. Such control
methods are usually responsible for achieving the
control objective at sub system level. It can be seen
from Tables 1, 2, 3,4, 5, 6 and 7 that such an approach
is mostly common in the cases of vertical elasticity,
where the implementation of the control solutions are
proposes at each VM of the cluster, (e.g., [30, 62, 73]).
In the case of horizontal elasticity, there are few
approaches including [40, 41, 60], where sub con-
trollers are responsible to handle resource management
task at per tier (or objective) level.

— Hierarchical the control system in this case is imple-
mented at two different levels, i.e., lower and upper
level. At the lower level, the distributed controllers
manage a sub-system, whereas, at the upper level,
another controller mediate distributed controllers to
achieve the control objective at the global scale. This
category only include the following control solutions
[34, 64, 68].

— Cascade using such an approach, multiple controllers
work simultaneously in a way, where the decision of
one control solution becomes input for the next one,
(e.g., [28, 75]).

5 Discussion, issues and challenges

The feedback control solutions that follow the fixed gain
design principle such as [44, 48, 50, 53, 60, 61, 72] in
general work well for systems that are subject to stable or
slowly varying workload conditions [17]. However, due to
the lack of adaptive behaviour at runtime, the performance
suffers in scenarios where the operating conditions change
quickly or when the environmental conditions and config-
uration spaces are too wide to be explored effectively [18].

The lack of adaptivity issue has been addressed by
incorporating runtime adaptation mechanism using online
learning algorithms such as the use of linear regression
[31], optimisation [62], Kalman filter [55] and reinforce-
ment learning [49]. In general, such adaptive control
methodologies have the ability to modify themselves to the
changing behaviour in the system environment that make
them suitable for systems with changing workload condi-
tions. However, such methodologies are criticised for the
associated additional computational cost caused due to the
online learning [7], their associated risk of reducing the
quality assurance of the resulted system, and the impossi-
bility of deriving a convergence or stability proof [18].
Moreover, they are unable to cope with sudden changes in
the workloads.
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Similarly, the optimal methodologies such as MPC and
LLC based approaches are also blamed for their compu-
tationally expensive nature due to solving complex opti-
mization models [103] despite their ability of producing
optimal results. For example, Ali-Eldin et al. [33] reported
that for the LLC based solution proposed in [34], it takes
half an hour for computing the elasticity decision for a
system consist of 60 virtual machines hosted by 15 phys-
ical servers. The computational time for such solutions
demonstrate exponential increase with the increase in the
problem size, i.e., the number of computational servers.

The hybrid approaches integrates multiple controllers to
achieve efficient control over cloud resources. The inte-
gration includes controllers either of same kind (e.g.,
[42, 46]) or different kinds (e.g., [57, 69]). The proposals
reviewed in this category hint on the following three dif-
ferent types of integration. Firstly, the multiple controllers
act in parallel, e.g., [42, 46]. Secondly, the different con-
trollers used are executing at different levels, e.g., [57, 69].
Lastly, a combination of feed-forward and feedback con-
trollers are utilized, e.g., [56, 64, 74, 95].

The hybrid approaches where the controllers run in
parallel require a synchronization method to determine the
contribution of each controller into the final objective. For
example, consider the case of vertical elasticity, where
individual feedback controllers are provided to handle
memory and CPU requirements. In such a solution, the role
of the decisions taken by individual controller shall be
synchronized and coordinated, otherwise it may result in
unpredictable system behaviour [46]. However, establish-
ing better coordination mechanism is challenging as it
requires to determine the relation between application
performance and the variations in the combination of dif-
ferent resources.

The hybrid approaches [57, 69] running at different
levels have some sort of coordination. In such approaches,
the multiple controllers at first level aim to maintain indi-
vidual objectives (e.g., the resource requirements of indi-
vidual tiers of the application), where the next level
resolves any conflicting decision made by individual con-
trollers to deduce the final output. The hybrid scheme in-
tegrating the combination of feed-forward and feedback
methods are effective, where the feed-forward controller
follows a predictive approach that takes scaling decisions
for a longer time in advance, whereas the feedback method
is responsible for making gradual changes in a reactive
style. However, the performance and accuracy of the pro-
posals are more dependent on the choice of the type of
controllers used as feed-forward and feedback methods.
For example, Al-Shishtawy and Vlassov [74] used MPC
based feed-forward control solution and a fixed-gain PI
based feedback control method. MPC based approaches as
earlier mentioned are very accurate but computationally
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expensive, whereas fixed gain PI feedback controller suf-
fers from lack of adaptivity at runtime.

The gain scheduled (switched) controllers like the
hybrid approaches also consist of multiple controllers, but
only one controller (model) is active at a time. The gain
scheduled (switched) controllers have the ability to adapt
themselves to the changing environment at runtime using
the pre-configured repository of multiple controllers (or
models), where each works well in a different operating
region. Such a controller helps to achieve certain level of
adaptivity at runtime without learning at runtime, e.g.,
[41, 51, 65]. However, such controllers require a large
amount of work to be done at design time to identify and
partition the system among the various operating regions.
Furthermore at runtime, the handling of any situation that
was unseen at design time will be uncertain. Lastly, they
are also criticized more often for their associated unwanted
behaviour, termed as bumpy transition, that could lead the
system to an oscillatory state [27, 104, 105]. On the other
hand, knowledge-based control solutions utilizing machine
learning [67, 106, 107] or neural networks [99, 108] pro-
vide high levels of flexibility and adaptivity. However,
such flexibility and adaptivity come at the cost of long
training delays, poor scalability, slower convergence rate,
and the impossibility of deriving stability proof
[7, 18, 103, 109].

It is concluded from the above discussion that the dif-
ferent elastic controllers due to their underlying imple-
mentation techniques have different pros and cons, hence
there is no best solution and the choice of selecting suit-
able approaches depends on the requirements [18]. Fur-
thermore, irrespective of the considerably wide range of
control theoretical approaches to implement cloud elastic-
ity, there are still various issues and challenges that have
not received much attention. Based on our analysis, we list
the following important open issues and challenges that
need to be further addressed:

(i)  Heterogeneity majority of the existing hori-
zontal auto-scaling systems consider hiring of
VMs with same computational resources.
Such consideration eases the design and
implementation of the control systems. How-
ever, renting homogeneous servers is not
always pragmatic. Therefore, further research
is required for the development of control
systems that consider acquisition and release
of servers having different computational
capabilities. This creates challenges for build-
ing efficient, accurate and robust performance
models that consider heterogeneous computa-
tional capabilities.
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(i)

(iii)

(iv)

Vertical elasticity the commercial CPs ( such
as Amazon, Microsoft, etc.) only provide
horizontal elasticity features. However, verti-
cal elasticity facilitate users to control their
rented resources at the fine-grained level. It
allows to dynamically increase (and decrease)
certain components, e.g., CPU and memory. It
is evident from Sect. 4 that there are many
academic control solutions that handle verti-
cal scaling. Some of such approaches either
rely on the dynamic adjustments of one
computational resource or independently con-
trol different resources using multiple inde-
pendent controllers. However, considering the
uncertain nature of applications, it is difficult
to predict at design time the dependent
resource components and therefore, relying
on the dynamic adjustments of one computa-
tional resource is not always pragmatic. On
the other hand, the existing approaches handle
multiple resources, lack coordination mecha-
nisms that can address the collaborative
behaviour of the readjustment decisions made
by different controllers runs in parallel to each
other. Such mechanisms are needed to avoid
unnecessary adjustments, avoid oscillations,
resolve conflicting decisions and avoid over
(and under) provisioning.

Hybrid (feed-forward and feedback) solutions
the hybrid solutions that integrate feed-for-
ward and feedback methods are effective as
they can obtain the benefits of both style of
auto-scaling decisions, i.e., predictive and
reactive. The feed-forward method in the
hybrid approach anticipate system’s demand
in advance and takes scaling decision to make
sure the virtual machines are ready at the right
time thus avoiding the additional delay caused
by the virtual machine start-up in the case of
reactive auto-scaling. On the other hand, the
feedback method handles the small variations
in reactive style to handle any unpre-
dictable situation. It is evident from
Sect. 4.4.3.1 that there are very few research
works [56, 64, 74, 95] that address cloud
elasticity problem using such an approach.
Furthermore, most of these approaches
focused only on vertical elasticity. Therefore,
considering the benefits of such hybrid
approaches, further research is required in
this direction.

Interoperability the cloud is perceived as the
repository of unlimited computational

)

(vi)

(vii)

resources. However, in reality, every CP has
a limited set of computational resources.
Therefore, the application providers may need
to hire resources from different CPs. How-
ever, reliance on resources from different CPs
raised a number of challenges related to
interoperability for the application providers.
Some of these challenges in the prospect of
elasticity (including the interaction between
control solution and auto-scaling APIs of CPs,
the delay, the design of accurate performance
model, etc.) have not been addressed in the
existing control solutions. Therefore further
research is required for the consideration of
interoperability with respect to addressing
elasticity.

Oscillation the design of control solutions for
auto-scaling requires careful attention and
detailed evaluation because badly designed
controller may result in oscillation and insta-
bility [24]. The switched controllers in par-
ticular are criticized for the phenomenon like
bumpy transitions that could leads system to
an oscillatory state [27, 104, 105], where
cloud resources are acquired and released
periodically. The occurrences of bumpy tran-
sitions may be due to an inappropriate
switching or some larger changes in the
system state. The existing research works
lack on providing an explanation on how a
proposed method deals with such undesirable
oscillatory behaviour.

Resource usage analysis over-provisioning is
used to avoid performance violation consid-
ering peak workload scenarios [110, 111].
However, this results in the wastage of
resources. It is therefore undesirable and
should be avoided. In the existing research
works, the authors mostly provide the evalu-
ation of the proposed methodologies in terms
of achieving the performance objective. How-
ever, an explanation or comparative analysis
of the methodology in the prospect of min-
imising the computational resources is mostly
missing. Therefore, further research on cloud
elasticity shall consider to conduct compara-
tive cost analysis against state of the art
approaches in accordance to obtaining the
performance objectives.

Evaluation and benchmarking the perfor-
mance of a control methodology is sensitive
to the changes in workload. Therefore, exten-
sive evaluation of control solutions are
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necessary. However, majority of the existing
research works have been evaluated only
using less than three workload scenarios
[112]. Moreover, as is evident from Tables
1,2,3,4,5, 6 and 7, the majority of the papers
also lack on providing details of comparative
evaluation. Furthermore, the unavailability of
benchmark frameworks makes it difficult to
compare and evaluate the related approaches.
A recent development in this regard is the
performance evaluation framework proposed
in [112]. However, this framework is generic
and there is a stronger need for specific
control-theoretical benchmarks that have the
ability to facilitate analysis of control solution
specific characteristics, e.g., SASO (Stability,
Accuracy, Short settling and Overshoot)
properties as discussed in [2].

Computational overhead analysis most of the
control methodologies are adaptive in nature
as they have the ability to dynamically adapt
to the changing environments. Such method-
ologies provide flexibility and adaptivity.
However, they are also criticized for their
long training delays and slower convergence
rate [7, 18, 103, 109] because they are
required to learn the system behaviour at
runtime. The existing research works that
have utilised such methods are often lack on
providing details regarding the associated
computational overhead. Therefore, further
research works proposing such adaptive meth-
ods shall consider providing details on over-
head analysis of their respective methods.
Uncertainty the deployed application over
cloud environment automatically inherits the
uncertainty related challenges associated with
the cloud environment [113]. Hence the
underlying elastic method, which is responsi-
ble for the resource management of the
application, has to deal with these challenges.
However, handling uncertainty aspects in the
existing elasticity research has not yet
received much attention [114]. Some exam-
ples of such uncertainty behaviour include
impreciseness in domain knowledge, inaccu-
racy in monitoring information, delays caused
due to actuator operation, failure of a VM,
noise in input data, the unpredictability of
workload and inaccuracies in performance
model [114-116]. The existing research
works on cloud elasticity in general has not
paid much attention to consider such

uncertainty aspects, while designing auto-
scaling system [114, 115]. Therefore, further
research works in this direction is needed.
(x)  Scalability it is observed, during our analysis
that most of the control methods are either
designed or tested for web applications.
Furthermore, the evaluation and analysis by
the authors of respective approaches are
performed at small scale, i.e., using a work-
load spanning of hours/days [112] or fewer
number of VMs. The experimentation and
description on the suitability of control solu-
tions at larger scale considering realistic
enterprise level web applications is missing.

6 Conclusion

With the increasing popularity of cloud computing in
recent years, the quest for better elasticity methods has
received a lot of attention. However, determining the right
amount of computational resources needed at runtime is a
challenging task. Over the years, the use of control theory
has been stood out as one of the very few main techniques
to implement cloud elasticity. In this paper, we survey the
cloud elasticity literature by focusing on control theoretical
approaches to provide a detailed review of the literature,
using a proposed taxonomy consisting of characteristics
belonging to both domains, i.e., control theory and cloud
elasticity. Finally, we highlight some open issues and
challenges that have not received sufficient attention in the
literature.

7 Summarized results

The details of all the proposals reviewed in Sect. 4 are
clustered with respect to the type of controller and pre-
sented in Tables 1, 2, 3, 4, 5, 6 and 7. The extracted
information from the reviewed proposals are presented as
per the attributes of the taxonomy explained in Sect. 3. The
rows of the tables represent the characteristics of the tax-
onomy where each column indicate a different approach.

Note the Ingredients attribute of the taxonomy combine
four characteristics (including Provider, Application type,
Trigger and Elasticity type). This can be seen from Fig. 2.
In light of this, each cell of the Ingredients row present
respective value for each of the four characteristics men-
tioned above. The possible values (and their corresponding
acronyms) for each characteristic is as follow (this can also
be seen from Fig. 2)

— Provider the possible values include CP and SP.
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Application type the possible values include Generic
(G), Web (W), Scientific (Sc), Storage (St) and
Database (Db).

Trigger the possible values include Reactive (R),
Predictive (P) and Hybrid (H).

Elasticity type the possible values include Horizontal
(Ho) and Vertical (V).
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