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Abstract: Organizations' own personnel now have a greater ability than ever before to misuse their 

access to critical organizational assets. Insider threat detection is a key component in identifying 

rare anomalies in context, which is a growing concern for many organizations. Existing perimeter 

security mechanisms are proving to be ineffective against insider threats. As a prospective filter for 

the human analysts, a new deep learning based insider threat detection method that uses the 

Dempster-Shafer theory is proposed to handle both accidental as well as intentional insider threats 

via organization's channels of communication in real time. The long short-term memory (LSTM) 

architecture together with multi-head attention mechanism is applied in this work to detect 

anomalous network behavior patterns. Furthermore, belief is updated with Dempster's conditional 

rule and utilized to fuse evidence to achieve enhanced prediction. The CERT Insider Threat Dataset 

v6.2 is used to train the behavior model. Through performance evaluation, our proposed method is 

proven to be effective as an insider threat detection technique.  
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1. Introduction 

Threats posed by the insiders, such as employees, of an organization is among the greatest 

threats to information security. Only just the last decade, over 120 cases of malicious insider crime 

(espionage) that involve classified national security information were identified by the CERT Insider 

Threat Center (ITC) [1-4]. The latest case comes as the NSA has worked to reform security after the 

Edward Snowden disclosures, especially regarding insider threats. An insider threat is generally 

defined as a current or former employee, contractor, or other business partner who has or has had 

authorized access to an organization's network, system, or data and intentionally misused that 

access to negatively affect the confidentiality, integrity, or availability of the organization's 

information or information systems [5, 6].  

Insider threats are not new. In May 2000, a Walt Disney CEO accidentally disclosed the 

quarterly earnings of the company to a reporter via an email prior a public announcement. Since 

information security has become very important in most organizations, there have been adversaries, 

enemies, and competitors trying to gain an advantage [7, 8]. To address the many problems arising 

from insider threat, recent research in cyber security has casted its focus on how to store, transmit, 

and process huge amounts of data. Unfortunately, these abilities cannot prevent illegitimate and 
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unauthorized access to digital assets. Not all insider threats are the same; they differ in terms of their 

attack methods and objectives. Identifying insider threats and creating an effective mitigation 

strategy requires an understanding of threat types and representing the relationships [9, 10]. 

In this article, we propose a new deep learning based approach for insider threat detection that 

uses Dempster-Shafer theory to handle accidental and intentional insider threats through various 

monitored communication channels of an organization. The proposed Dempster-Shafer and Deep 

Learning based Insider Threats Detection (DSDLITD) is an online algorithm to filter network traffic or 

data traffic for analyst review in real time. Because insider threats contain different variations, we do 

not attempt to make direct models on threat behavior. Instead, we apply a Long Short-Term 

Memory Recurrent Neural Network (LSTM-RNN) [11], which has been proved to have excellent 

performance in speech recognition and natural language processing over recent years, together with 

multi-head attention mechanism to aid modelling complex nonlinear relations by its well-designed 

architecture to capture different aspects of data representations which correspond to distinct levels 

of abstraction. To aid analysts in interpreting system decisions, DSDLITD deploys a fusion engine 

combination of multichannel classifiers to determine whether the data are a threat, which achieves 

high accuracy. Furthermore, in our proposed method, the selection of a neural network is guided by 

the characteristics of the data features. This equips our method with greater scalability and stronger 

applicability to other similar tasks. 

In the following sections of this paper, we present some related work on data leakage 

prevention and insider threat detection in Section 2; the proposed DSDLITD model and the detection 

algorithms are presented in Section 3; we deliver the experimental results and analysis in Section 4; 

finally, we draw a conclusion in Section 5 with a discussion of future research. 

2. Related Work  

Over the past years, efforts have been invested to develop secure machine learning schemes for 

automated malware detection and cloud data analysis [12-16, 23-28]. This section focuses exclusively 

on the recent advances on insider threat detection using machine learning techniques. 

CoBAn is a context-based model for prevention of accidental and intentional data leakage. The 

context-based model is comprised of two phases: training and detection. During the training phase, 

clusters of documents are generated and a graph representation of the confidential content of each 

cluster is created. During the detection phase, each tested document is assigned to several clusters 

and its content matched to each cluster's respective graph in an attempt to determine the document's 

confidentiality [17, 49]. Aruna et al. provided a means of detecting insider threat activities by 

leveraging patterns of usage and a tailored k-nearest neighbor (k-NN) algorithm in collaborative 

information systems [18]. In this work, the relational patterns of access logs are analyzed for nearest 

neighbors in terms of the number of subjects accessed. Parveen et al. conceptualized the insider 

threat detection problem as a stream mining problem and proposed a supervised learning solution 

based on one-class SVMs to cope with evolving concepts [19]. This method effectively addresses the 

rare instance issues, in which labeled training data fall short. Stolfo et al. [20] introduced a 

general-purpose Probabilistic Anomaly Detection (PAD) algorithm for the Windows environment, 

where anomalies or noise are assumed rare events in the training data. Hamedani et al. [21] 

introduced a novel method detecting attacks on smart grids with wind power generators using 

reservoir computing (RC). The proposed algorithms are shown to be more robust than MLP and SVE 

in dealing with different variables, such as the amplitude of the attack, attack types, and the number 

of compromised measurements in smart grids. 

Different from the one-level classification, numerous two-level classification methods have also 

been considered. Hodo et al. focused on the classification of normal and threat patterns and took a 

multilevel perceptron, a type of supervised artificial neural network, trained it using network traffic 

traces and then evaluated its capability in preventing distributed denial of service (DDoS/DoS) 

attacks [22]. Another such work proposed a hybrid method that used discriminative multinomial 

naïve Bayes as a base classifier and nominal to binary supervised filtering at the second tier along 

with 10-fold cross validation [29]. This mothed was later improved with END (ensembles of 



 

 

balanced nested dichotomies) at the primary tier and apply Random Forest at the following tier [30]. 

As supposed, this improvement brings about a raise in detection rate and a decrease in false positive 

rate. One other two-class classification strategy, along with the 10-fold cross validation method, 

subsequent in promising detection accuracy with the unique training dataset and the full 41-feature 

set. The overall performance of the resultant model is enhanced [31]. Significant improvement had 

been shown that gained information can be used to rank features and assist the following 

behavioral-based feature selection, which reduces the number of features in the set down to 20. 

Consequently, the reported accuracy for using only the training dataset is improved. As oppose to 

depend on only the machine learning algorithms, the outcome of the proposed network-based 

intrusion detection system (IDS) is also influenced by the use of both training and testing datasets. 

Some studies researched on the division between training and testing data for obtaining better 

detection systems. Unsupervised clustering algorithms was applied in an important work had 

shown that as oppose to make use of only the training data, the performance using both training and 

testing data was drastically reduced [37]. Similarly, an implementation utilizing the k-point 

algorithm had displayed slight improved accuracy of detection and when training and test datasets 

were both employed [38], reduced the false positive rate. 

Despite some positive result obtained from applying neural networks in this field, many 

researchers use deep learning [32-35, 42-44, 48] to obtain accuracy in the intrusion detection field [36]. 

A deep learning-based method on the implementation of an efficient and adaptable network IDS 

was proposed by Niyaz et al. Unlabeled network traffic data were captured from different sources in 

this work and an informative feature representation was crafted for these collected datasets with 

self-taught learning techniques. These well-crafted features can, then, be applied in supervised 

classification of a small, but labeled traffic dataset containing both normal as well as anomalous 

network traffic packets [38]. Kim et al. built an intrusion detection model, which essentially applies 

the LSTM architecture in a recurring neural network. The proposed intrusion detection model is 

trained using KDD Cup 1999 dataset [40]. 

3. The Proposed DSDLITD Model 

DSDLITD is comprised of two phases: learning and detection. During the former phase, 

classifiers are generated based on Attention-LSTM. During the latter phase, input vectors to the 

feature extraction process will be fed into the multichannel classifier to calculate their confidentiality 

score. We introduce Dempster-Shafer theory in order to help to determine whether our input data 

can be considered confidential. 

3.1. The learning phase 

Figure 1 is the graphic representation of the learning phase. The objective of this phase is to 

generate an Attention-LSTM based classifier that represents each of the organization’s fields of 

activity.  

 

Figure 1. The learning phase. 

3.1.1. The specific step of learning phase 



 

 

The learning phase begins by a data preprocessing step which is the process of transforming 

format of the input data to a vectorized matrix. Data cleansing, data sampling, and data 

dimensionality are some common operations. 

The next step is the extraction and learning of multi-feature. In the network, the traffic data 

tend to have various types of features as they are received from different sources. For instance, 

three different types of features: basic, content-based, and traffic-based can be categorized from the 

traffic data. The multi-feature is gathered by those categorized features which combined in different 

combination. Each multi-feature is named “Type  ”. For example, as show in figure 1, the “Type 

A” multi-feature is composed of basic and content-based feature. 

However, rather than directly concatenate the vector representation of those categorized 

features with different length to form multi-feature, we choose to use multi-head attention [50] to 

learn each of those features first. The multi-feature is finally formed by the learned vector of each 

feature, as shown in figure 2. 

Feature 1

Feature 2

Feature N

…
…

concatenate 

Classifier NType N

…
…

Multi-head attention learningMulti-head attention learning

Multi-head attention learningMulti-head attention learning

Multi-head attention learningMulti-head attention learning  

Figure 2. Use multi-head-attention to learn each feature of “Type N”. 

The reason we choose to use multi-head attention is under the consideration of the number of 

categorized features could be large. Multi-head attention is proposed by Google as an important 

component in their model Transformer. Multi-head attention has shown its high priority in dealing 

with neural language processing tasks for two advantages. 

 

Figure 3. (left) Multi-Head Attention. (right) Scaled Dot-Product Attention.. 

The first advantage is adopting self-attention mechanism. As is depicted in figure 3 (left), 

multi-head attention is composed of several scaled dot-product attention, which is a specially type 

of self-attention. Self-attention is an attention mechanism that relating different position among a 

single sequence itself in order to generate the representation of the sequence. The second advantage 

is the parallelization compute capability, for it totally eschewing the recurrent neural network way. 

Recurrent neural network dealing with sequence along with time step to generate a sequence of 

hidden states and use the final hidden state as the representation of the whole sequence. However, 

the generate of current time hidden state rely on the previous generated hidden state, which is time 



 

 

consuming and sequence length constrict. While using self-attention, a sequence representation 

could be generated in a unit time. 

As depicted in figure3 (right), by using the embedding vector X multiply three different 

weight matrix: QW , KW , VW . A sequence  nxxxX ,...,,: 21 is represented in three ways 

 nqqqQ ,...,,: 21 ,  nkkkK ,...,,: 21 ,  nvvvV ,...,,: 21 . According to attention function that 

mapping a query and a set of key-value pairs to an output, we obtain the output  noooO ,...,,: 21  

as the learned vector of each feature. Specially, o_1 is obtained by: 

 

    .,...,2,1,,,...,, 1211
nikqweightweightweightW inq   (1) 

Where 
1qW is a set of values that weight the relevance between 1q  and ik . Other  

iqW compute in the same way. 





ni

iq vWo
,...,2,1

1 1
 (2) 

Other output computed in the same way. 

Multi-head attention consists of several self-attention layers running in parallel. Each 

self-attention represents a head. That allowed we set a smaller dimension of vectors to each 

head and finally concatenate them and project them to a higher dimension. A smaller 

dimension, apparently could improve calculation speed. 

Now, the output literally contains more information than the originally embedding vector 

that could enhance other neural network. After gets the output of each feature, we concatenate 

them to form the final multi-feature. Each multi-feature is allocated to its own channel for next 

step training. 

Based on the recurrent neural network, the last step is multichannel training. Each channel 

is trained to match with a neural network and followed by the generation of classifiers, which 

ultimately detect insider threats. The input for training the recurrent neural network is the 

multi-feature generate from the previous step. The number of channels can be varied, depend 

on the actual application. Considering that the traffic data are structured as sequences and the 

superiority for LSTM tackle with sequence, we choose it in our paper. 

3.1.2. Learning algorithm 

In the light of all derivations above, the proposed multichannel learning is described in 

following Algorithm 1. 

Algorithm 1. The presented algorithm for learning 

1: Input: A feature vector X extracted from a labeled given training dataset and the number 

of channel I 

2: Initialization for the classifier result set C; 

3: for fetch ci∈C and set i = 1 to I do 

4:     Train Attention-LSTM model; 

5:     Save the Attention-LSTM model as a classifier ci to a set of C; 

6: end for 

7: return: C; 

3.2. The detection phase 

Figure 4 provides an overview of the DLDS detection phase. First, traffic data in the network 

are fed into preprocessing and feature extraction components, where their counts are aggregated 



 

 

and one vector is outputted for each distinct source. A feature vector is then fed into each 

Attention-LSTM classifier. These classifiers aim to predict the next vector in the sequence; effectively, 

they learn to model “normal” behavior. Anomalies occur in proportion to the prediction error and 

anomalous behavior, being marked, is sufficient enough for analysts to probe into. Finally, the 

results are passed to the D-S fusion engine, which determines the identity of the original traffic. 

Algorithm 2 is shown below in pseudocode for detailed procedures of the detection algorithm. 

 

Figure 4. The detection phase. 

 

Algorithm 2. The presented algorithm for detection 

1: Input: A feature vector X extracted from test dataset with labeled 

information 

2: Initialization:  

3:  for channel ci set i = 1 to I do 

4:     Load Attention-LSTM model as a classifier; 

5:     Get the result vector R of the classifier; 

6:  end for 

7: Insider threat detection: 

8:     Select the appropriate element v in vector R as the detection result 

using D-S fusion engine; 

9: return v; 

3.3 D-S fusion engine 

In 1976, Shafer proposed a theory that is generally considered a generalized Bayesian approach 

and is named the Dempster-Shafer theory [45]. On the basis of the Dempster-Shafer, the frame of 

discernment, that is, the set of all possible complete facts or events { |1 }i i N    , which are 

mutually exclusive, is involved in the D-S fusion engine. It consists of all hypotheses whose 

evidence is provided by the information sources.  contains hypothesis H as subsets, in which a 

value is assigned by an observation from a probability mass function m defined as follows: 

: 2 [0,1]m             (3) 

and meets the requirements as follows: 

2

( ) 0

( ) 0,

( ) 1
H

m

m H H

m H







   



        (4) 

The degree to which the evidence supports the hypothesis H can be revealed by the probability 

that is within the interval determined by the plausibility and belief of H.  



 

 

 ( ), ( )Belief H Plausibility H        (5) 

where 

( ) ( )

( ) 1 ( )

B H

B H

Belief H m B

Plausibility H m B








 




         (6) 

Belief(H) and Plausibility(H) denote the lower limit and the upper limit, respectively. The belief 

function can be distinguished from the plausibility function by the ignorance and both 

( ) 1Belief    and ( ) 1Plausibility   . The ignorance of the hypothesis can be indicated by the gap 

 ( ) ( )Plausibility H Belief H . In D-S theory, the probability is calculated according to whether a 

hypothesis is supported by the evidence instead of the hypothesis itself. Thus, the probability being 

calculated is not bound to some particular hypothesis being correct but rather is bound to the 

confidence that a specific series of evidence is being correctly interpreted. 

In DLDS, the D-S fusion engine collects the classification results from each classifier, and the 

evidence from all observers is combined by the D-S fusion engine to deduce the true state of the 

system. Next, with Dempster’s rule of combination, multiple evidence can be gathered together. 

When A and B are used to calculate the new belief function for the focal element H, Dempster’s rule 

of combination is represented as follows: 

( ) ( )
( )

1 ( ) ( )

A B H

A B

m A m B
m H

m A m B











            (7) 

Dempster’s rule is independent of a priori probability distributions on the possible system 

states, which is considered a useful property. Moreover, even without a priori knowledge about the 

system, it is still applicable. Actually, Dempster’s rule can be generalized by iteration. If evidence A 

is denoted as the classification result, which is generated by classifier ( 1... )i i n , we are inclined to 

know whether A is true or false, and the frame of discernment is { , }A A   . Then, the possible 

hypotheses are as follows:   

2 { ,{ },{ },{ , }}A A A A             (8) 

It is known that: 

({ , }) 0, ({ }) 1 ({ })m A A m A m A            (9) 

Then, the Dempster’ rule is transformed as: 

({ })
({ })

{ } { }

({ })
({ })

{ } { }

P A
m A

P A P A

P A
m A

P A P A


 


 

 

       (10) 

In the detection algorithm, we employ the confidence (1 )  as the probability mass 

function ( )im A . Then, as described in Eq. 7, all the evidence from classifier ( 1... )i i n  is recursively 

gathered. 

1 2final nm m m m           (11) 

where  shows Dempster’s rule of combination. When determining this two-classification problem 

(true or false), it is not necessary to address the increasing computational complexity of D-S theory 

[47]. Then, the final result can be obtained by employing threshold t to
finalm : 

,

,

finalTrue positive if m t
Result

False positive otherwise


 


      (12) 



 

 

4. Experimentation and Evaluations 

This section begins with the explanation of our experiments (implemented it in TensorFlow 

(v1.2) [41]) performed. We then analyze the effectiveness of DSDLITD. Furthermore, we compare 

our experimental results against those of other known methods (including, RBNN, PNN, GRNN, 

Bayesian, SVM and KNN). For better demonstrating the efficacy of our proposed method, a single 

channel was used for the purpose of training and detection only. All results generated by the 

compared methods were get from running the respective pieces of source code indicated in their 

original papers with the best suitable parameters. 

The CERT Insider Threat Dataset v6.2 is used. All experiments were executed on a PC with 

Inter(R) Core(TM) i5-7200 U CPU 2.50 GHz, 4 Gb memory, and an NVIDIA GeForce 920 MX GPU. 

For evaluation, the metrics defined below are employed. True positive (TP) - Attack samples that are 

correctly flagged as attacks. False positive (FP) - Normal samples that are incorrectly flagged as 

attacks. True negative (TN) - Normal samples that are correctly classified as normal. False negative 

(FN) - Attack samples that are incorrectly classified as normal. Detection Rate (DR) - the ratio of the 

attack occasions discovered by the presented method. Precision Rate (PR) and False Alarm Rate 

(FAR) - the ratio of misclassified normal occasions. The DR increases together with the FAR 

decreases made the performance of the method increases. The accuracy measures the proportion of 

the overall number of correct classifications over all classifications. 

/ ( )DR TP TP FN  , (13) 

/ ( )FAR FP TN FP  , (14) 

/ ( )PR TP TP FP   (15) 

( ) / ( )Accuracy TP TN TP FN FP TN     , (16) 

As shown in Table 1, three datasets are generated to match each channel for training and testing 

purposes. In these datasets, the features of data are divided in the same way as described in [46]. The 

following features are used as the inputs for each channel: channel 1: basic, content-based, time, and 

traffic-based features; channel 2: basic and traffic-based features; and channel 3: basic and 

content-based features. 

Table 1: Input features selected in each channel for training and detection purposes. 

CHANNEL DATASET INPUT FEATURES 

# 1 basic, content-based, traffic-based, time  

# 2 basic, traffic-based  

# 3 time, content-based  

 

In the CERT Insider Threat Dataset v6.2, which is composed of event log entries from the 

computer network of a virtual organization that was simulated with advanced user models. External 

storage device usage, email traffic, file operations, http traffic and Logon/logoff activity are the five 

sources of events that we employ. 135,117,169 events (log lines) were generated by 4,000 users over 

the course of 516 days. Events were manually driven by domain experts, representing the given 

insider threat scenarios. Moreover, it includes the user attribute metadata. For instance, the six 

categorical attributes are listed as follows: 

Table 2: CERT insider threat dataset statistics. 

# Device Events # Email Events # File Events # HTTP Events # Logon Events Total Events 

1,551,828 1,926,528 2,014,883 117,025,216 3,530,285 35,117,169 

 



 

 

The unified Attention-LSTM, used in the training as well as the detection channels, composed 

both the priority of LSTM and multi-head attention mechanism. All the weights of Attention-LSTM 

are initialized with the numbers obtained from executing a stochastic gradient descent algorithm. 

Attention-LSTM is trained for 5 epochs, each of which of size 128. The learning rate is decayed from 

0.01 to 0.0001 over 5 epochs. 

For our proposed method, we study the performance using different input features on one 

single channel to adjust manually the channel numbers. As we can see in Figure 5, the learning rate 

degraded from 0.01 to 0.0001, while the accuracy follows a growing trend as the learning rate 

increases. Different results of single channel are produced for using different input features. In this 

case, combining basic and traffic-based features results in a higher detection accuracy. 

 

Figure 5. Impact of learning rate on detection accuracy when using a single channel 

We study the impact of various parameters on the performance of DSDLITD, including the 

number of layers N and window size of h. Figure 6 plots the detection results curves. In each 

experiment, the value of one parameter is varied while the values of others are set default. Figure 6 

shows that with N = 4, DSDLITD obtains the best results of the precision rate and detection rate. It 

also shows that the precision rate and detection rate are highly sensitive to changes in the window 

sizes, and a larger h value leads to a higher detection rate.  

   

Figure 6. Performance with different parameters. 

In Figure 6, we set the hyperparameters N = 4 and h = 10 in order to train the Attention-LSTMs. 

For test purpose, we set the DSDLITD input to be the same as what is introduced in Section 4. We 

choose DR, FAR and accuracy as the comparison factors against other methods [40]. Table 3 

illustrate all comparison results on DR, FAR and accuracy. We observe that DLDS achieves the best 



 

 

results, namely, DR of 95.79%, FAR of 4.67% and an accuracy of 95.47%, compared to the dataset 

baselines.  

Table 3: DR, FAR and Accuracy results of all competitive methods 

METHODS DR (%) FAR (%)  Accuracy (%) 

GRNN 59.12 12.46 87.54 

PNN 96.33 3.34 96.66 

RBNN 69.83 6.95 93.05 

KNN 45.74 46.49 90.74 

SVM 87.65 6.12 90.4 

Bayesian 77.6 17.57 88.46 

DLDS 95.79 4.67 95.47 

 

Figure 7 compares the CPU and memory usage rates of DLDS. Obviously, with a large dataset, 

the overhead of DLDS will become increasingly large. This is because when using -AttentionLSTM 

for modeling, a given word is mapped from a one-hot vector to an embedding vector following an 

input-embedding matrix. Then, to predict the probability of the next word, the top hidden layer is 

projected onto a probability distribution over all the words in the vocabulary following an 

output-embedding matrix. 

 

 
Figure 7. The CPU and memory usage of DLDS 

5. Conclusions and future work 

This paper has proposed an effective insider threat detection method based on neural network 

and Dempster-Shafer theory. The contributions of this paper are threefold: First, the proposed DLDS 

models “normal” behavior and indicates anomaly as potential malicious behaviors. Second, 

Attention-LSTM has been introduced in multichannel processing to build classifiers, which separate 

the attack traffic data from the normal ones. This allows the preservation of attack features in input 

traffic. A unified optimization method is used to train the Attention-LSTMs. Finally, we introduce 

Dempster-Shafer theory to determine whether a given set of input data forms an attack. The CERT 

Insider Threat Dataset v6.2 is used to perform tests that are used to evaluate our proposal algorithms. 

The results show that DLDS models outperform six standard baseline anomaly detection techniques 

(based on GRNN, PNN, RBNN, KNN, SVM and Bayesian). Experimental results demonstrate that 

state-of-the-art performance on running time comparing to most postprocessing algorithms is 

achieved by the proposed intelligent attack detection method. 

Detecting an insider threat is still a long and complex investigative process. First, we will 

further improve the performance of DSDLITD on its execution time and memory usage. Second, we 

will consider the role that users and content metadata can play in both attack and defense 



 

 

perspectives. Finally, another area of future work will be on conducting an implementation on a 

distributed filing system such as Hadoop HDFS using large datasets containing terabytes of log files. 
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